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ABSTRACT: Starch aerogels are attractive materials for biomedical applications due to their low 16 

density and high open porosity coupled with high surface areas. However, the lack of 17 

macropores in conventionally-manufactured polysaccharide aerogels is a limitation to their use 18 

as scaffolds for regenerative medicine. Moreover, the stability under storage of polysaccharide 19 

aerogels is critical for biomedical purposes and scarcely studied so far. In this work, the 20 

induction of a new macropore population (1-2 µm) well-integrated in the starch aerogel 21 

backbone was successfully achieved by the incorporation of zein as a porogen. The obtained 22 

dual-porous aerogels were evaluated in terms of composition as well as morphological, textural 23 

and mechanical properties. Stability of aerogels upon storage mimicking the zone II (25 ºC, 65 % 24 

relative humidity) according to International Conference on Harmonization (ICH) guideline of 25 

climatic conditions was checked after 1 and 3 months from morphological, physicochemical and 26 

mechanical perspectives. Zein incorporation induced remarkable changes in the mechanical 27 

performance of the end aerogel products and showed a preventive effect on the morphological 28 

changes during the storage period.  29 

 30 

  31 
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INTRODUCTION 32 

The development of innovative synthetic grafts, known as scaffolds, offers a promising 33 

response to regenerate damaged tissues encouraging the self-healing capacity of the patients. 34 

Depending on the anatomical target, scaffolds must display a particular 3D interconnected and 35 

hierarchical porous structure for an appropriate performance once implanted 1–3. Moreover, the 36 

mechanical behavior of the grafts is of particular relevance since they should temporarily 37 

surrogate the requirements of the natural tissue. 38 

Aerogels are solid mesoporous materials characterized by extremely low densities and high 39 

open porosities of tailored size and distribution 5,6. These properties of aerogels have been widely 40 

exploited in several fields, particularly silica and carbon aerogels in the building industries as 41 

thermal insulation materials 7–9. Nevertheless, bio-based aerogels (i.e. from polysaccharides and 42 

proteins) are the mainstream choice for biomedical applications. In particular, starch aerogels 43 

emerge as an attractive alternative for bone scaffolds, where the advanced properties of aerogels 44 

are supplemented by the biocompatibility, the complete physiological degradation and the 45 

abundance of starch in nature 10–12. In addition, starch-based blends promote cell adhesion and 46 

proliferation using human osteoblasts 13,14. 47 

Starch aerogels are formed by a network of intermingled fibers of amylose and amylopectin 48 

with a defined micro/mesoporous architecture that can mimic the extracellular matrix. 49 

Nevertheless, the usual absence of pores in the macroscale (1 µm and above) hampers the 50 

interaction of the scaffold with the biological tissue. The addition of sacrificial porogens (e.g., 51 

salts, sugar or paraffin wax) of defined shapes and dimensions has been explored to confer 52 

macroporosity to different aerogel sources 15–18. However, these approaches result in tedious and 53 
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cumbersome protocols for aerogel processing requiring additional leaching steps to remove the 54 

porogen.  55 

Stability studies are mandatory for conventional drug products and medical devices to verify 56 

that raw materials and end products meet the legal requirements in terms of identity, output, 57 

quality and purity over time 19. Stability in terms of chemical identity, physical form and 58 

biological activity, is a critical parameter that could prevent the clinical use and that gives 59 

practical information to decide on the need and choice of primary and secondary packaging for 60 

the product. However, there is a paucity of information focused on the effect of the storage 61 

period on the performance of nanostructured scaffolds, although those with intricate geometries 62 

are particularly affected by environmental conditions. 63 

In this work, starch-based aerogels endowed with macroporosity were obtained through an 64 

innovative processing approach involving the use of porogens without extra-leaching steps. Zein, 65 

the major protein of storage of corn, was tested as porogen to induce the formation of well-66 

integrated macropores in the mesoporous starch aerogel network. The effect of the use of zein 67 

was evaluated on the resulting aerogel composition, textural and mechanical properties. In 68 

addition, quantitative determinations of zein residues in the aerogels were performed, since its 69 

presence favor the in vivo promotion of mesenchymal stem cells adhesion and proliferation 20,21. 70 

The stability upon storage was studied on a mid-term (1 and 3 months) mimicking the zone II 71 

International Conference on Harmonization (ICH) guideline of climatic conditions (25 ºC, 60 % 72 

relative humidity) 22, which corresponds to the worst case storage scenario for the regions of 73 

Europe, Japan and USA. Scaffolds were monitored in terms of morphological, physicochemical 74 

and mechanical stability.  75 

 76 

MATERIALS AND METHODS 77 
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Materials. Native corn starch (52.6 % amylose content, 𝜌skel= 1.4562 ± 0.012 g/mL) was 78 

provided by Roquette Frères S.A. (Lestrem, France). Zein (m.p. 266-283 °C, size of dry 79 

agglomerates by the sieving method: 557 ± 208 µm; 𝜌skel= 1.167 ± 0.025 g/mL) was purchased 80 

from Sigma-Aldrich, Inc. (Madrid, Spain). CO2 (purity > 99.9 %) was supplied by Praxair, Inc. 81 

(Madrid, Spain). Absolute ethanol (EtOH) was provided by VWR (Radnor, PA, USA).  82 

Corn starch aerogels preparation. Cylindrical aerogel specimens were obtained by adapting 83 

a previously reported procedure 23. Briefly, starch-aqueous dispersions (10 % w/w) containing 84 

varying ratios of zein as porogen (Table 1) were subjected to a thermal treatment for starch 85 

gelatinization (121 °C, 20 min) and dosed in cylindrical polypropylene molds (length: 14 mm, 86 

diameter: 12 mm). After storage at 4 °C for 48 h, the resulting gels were immersed in absolute 87 

ethanol for solvent exchange (gel-alcogel transition) and zein leaching. Solvent was replaced 88 

with fresh ethanol six times at an exchange frequency of 48 h. Starch alcogels were then loaded 89 

in a 100 mL autoclave (Thar Process, Pittsburg, PA, USA) containing 45 mL of absolute ethanol. 90 

A continuous flow of 6 g/min of supercritical CO2 (40 ºC, 130 bar) through the autoclave during 91 

4 h was employed for ethanol extraction. Subsequently, a controlled depressurization of 2 92 

bar/min until atmospheric pressure was performed. Aerogel cylindrical probes (length: ca. 11 93 

mm, diameter: ca. 8.5 mm) were collected from the autoclave for further characterization. 94 

 95 

Table 1. Starch aerogel notation regarding the initial content of starch and zein (expressed in 96 

grams and in weight ratios) used in the batches for the hydrogel formation.  97 

Aerogel Zein-to-starch weight ratio c (see Eq. 4) 

Z0 0 g : 8 g (0:1) 0 

Z1 2 g : 8 g (1:4) 0.25 
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Z2 4 g : 8 g (1:2) 0.5 

Z3 6 g : 8 g (3:4) 0.75 

Z4 8 g : 8 g (1:1) 1 

 98 

Analytical, physicochemical, structural and mechanical characterization of starch 99 

aerogels. The volume reduction (∆V, in percentage) of the gels after the solvent exchange and 100 

the supercritical drying steps was evaluated as 101 

 ∆𝑉 = (
𝑉0−𝑉

𝑉0
)  x 100 (1) 102 

where Vo denotes the initial volume of the hydrogel and V the end volume of the alcogel or 103 

aerogel, accordingly. 104 

For zein residues quantification in the aerogels, a bottom-up proteomics approach was applied, 105 

involving proteolytic digestion of zein before high-resolution tandem-mass spectrometry 106 

analysis. Starch aerogel samples were dissolved at a concentration of 1 mg/mL in buffer solution 107 

A (10 mM Tris–HCl pH 8.0, 8 M urea) under agitation overnight. Dissolved samples were 108 

diluted in buffer solution B (50 mM Tris–HCl pH 8.0, 0.5 mM CaCl2) in order to reach urea 109 

concentrations below 6 M. For zein proteins digestion, 370 µL of the previous sample solution 110 

were mixed with 120 µL of thermolysin stock solution prepared in buffer solution B (enzyme-to-111 

substrate weight ratio 1:20), and incubated for 1 h at 80 ºC in an Eppendorf ThermoMixer 112 

(Eppendorf AG, Hamburg, Germany). The digestion reaction was stopped by adding 25 µL of 113 

formic acid (10 vol.%). Digested solutions were filtered through a Microcon-30 kDa Centrifugal 114 

Filter (Merck KGaA, Darmstadt, Germany) before analysis to remove non-digested proteins. 115 

An Agilent 1290 UHPLC system coupled to an Agilent 6540 quadrupole-time-of-flight mass 116 

spectrometer (q-TOF MS) and equipped with an orthogonal ESI source was employed for the 117 

determination and quantification of zein residues. Chromatographic separation of digested zein 118 
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was conducted using a Zorbax Eclipse Plus C18 column (2.1 × 100 mm, 1.8 µm particle 119 

diameter, Agilent Technologies, Santa Clara, CA, USA) at 30 °C. The mobile phase was 120 

composed of water (0.1 vol.% formic acid, solvent A) and acetonitrile (0.1 vol.% formic acid, 121 

solvent B). A 5-µL aliquot of the sample was injected at a flow rate of 0.5 mL/min during 122 

gradient elution. The gradient program was as follows: 0 min, 0 % B; 7 min, 30 % B; 9 min, 80 123 

% B; 11 min, 100 % B; 13 min, 100 % B; 14 min, 0 % B. The mass spectrometer was operated in 124 

MS and MS/MS modes. MS parameters were the following: capillary voltage, 4000 V; nebulizer 125 

pressure, 40 psi; drying gas flow rate, 10 L/min; gas temperature, 350 ºC; skimmer voltage, 45 126 

V; fragmentor voltage, 110 V. The MS and Auto MS/MS modes were set to acquire m/z values 127 

ranging between 50-1100 and 50-800, respectively, at a scan rate of 5 spectra per second. 128 

Operating the ESI source in positive ionization mode, four proteolytic peptides were monitored: 129 

LQQQ (m/z 516.2776), LQQ (m/z 388.2190), FNQ (m/z 408.1877) and FSQ (m/z 381.1768).  130 

Skeletal density of starch aerogels (𝜌skel) was determined by helium pycnometry 131 

(Quantachrome, Boynton Beach, FL, USA) at room temperature (25 °C) and 1.01 bar. Values 132 

were obtained from five replicates (standard deviation < 4 %). Bulk density of the aerogels (ρbulk) 133 

was determined by weighing and measuring their dimensions. The resulting overall porosity (ε) 134 

and total pore volume were calculated from Eqs. (2) and (3), respectively. 135 

 𝜀 = (1 −
𝜌𝑏𝑢𝑙𝑘

𝜌𝑠𝑘𝑒𝑙
)  x 100 (2) 136 

 Vp = (
1

ρbulk
−

1

ρskel
) (3) 137 

Textural properties of the aerogels were determined by N2 adsorption-desorption analyses 138 

(ASAP 2000 Micromeritics Inc, Norcross, GA, USA). Prior to the measurements, aerogels were 139 

outgassed at 80 °C and under vacuum (<1 mPa) for 24 h. Specific surface area (ABET) of the 140 

aerogels scaffolds were determined by the Brunauer-Emmett-Teller (BET) method. Specific pore 141 
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volumes (Vp,BJH) and mean pore diameter (dp,BJH) were evaluated from the desorption branch of 142 

the isotherms using the Barrett-Joyner-Halenda (BJH) method (Figure S1).  143 

Based on the BJH-pore volume distribution, the contributions (in percentage) of mesopores (2-144 

50 nm range, Vp,meso) to the total pore volume were determined. The contribution of the 145 

macropore population (>50 nm, Vp,macro) was determined by the difference between the total 146 

specific pore volume and the specific mesopore volume (Vp,meso).  147 

The structure of the aerogels was evaluated by scanning electron microscopy (FESEM, 148 

ULTRA-PLUS, Zeiss, Oberkochen, Germany) running at 3 kV. Prior to imaging, aerogels were 149 

sputtered with a layer of iridium of 10 nm thickness.  150 

The mechanical behavior of cylindrical aerogel specimens was analyzed by means of uniaxial 151 

quasistatic compression tests using a 10 kN load cell on the universal testing machine Z010 152 

(Zwick/Roell GmbH, Ulm, Germany). The strain rate of 10 %/min was applied for all 153 

compression tests. To characterize the inelastic features of the aerogels, cyclic compression was 154 

conducted, whereby the aerogel specimens were subjected to three sets of loading and unloading 155 

cycles with the strain amplitude increased stepwise by 20 %. All the experiments were 156 

performed at 20 °C, atmospheric pressure and in triplicate. 157 

 158 

Stability tests under storage of starch aerogels. Aerogel cylindrical probes of each 159 

composition were placed inside sterile glass vessels with hermetic closure, containing a solution 160 

of sulfuric acid (37 % v/v) to maintain the relative humidity at 65 % 24. Containers were stored 161 

for either 1 or 3 months at 25 °C. After the storage time was elapsed, aerogels were collected for 162 

their complete characterization.   163 
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Statistical analysis. All results were expressed as mean ± standard deviation. Statistical 164 

analyses of shrinkage values (1-way ANOVA) were performed followed by the post hoc Tukey-165 

Kramer method test using Statistica v.8.0 software (StatSoft Inc., Tulsa, OK, USA) 166 

 167 

RESULTS AND DISCUSSION 168 

Morphological and physicochemical characterization of starch-based macroporous 169 

aerogels. Corn starch aerogels were prepared in the form of cylindrical monoliths for a 170 

reproducible determination of their densities and mechanical properties. White solid lightweight 171 

structures were obtained in all cases, although the modified starch aerogels showed a slight 172 

yellow coloration suggesting the presence of zein residues (Figure S2). The use of zein favored 173 

the homogeneous dosing of the aqueous dispersion in the moulds. The reduced content of 174 

amylose in the admixture extended its retrogradation rate since less intermolecular hydrogen-175 

bondings were formed within the dispersion 11,25. 176 

A determination method based on a bottom-up approach was set up to quantify zein residues in 177 

the aerogel samples. The full sequence of 19 kDa alpha-zein 19C2 (ZEA9 MAIZE – P06677) 178 

protein was obtained from Uniport database, and the whole sequence of peptides was exported to 179 

PeptideMass tool from ExPasy website for in silico digestion. Theoretical peptide masses of the 180 

input proteins were generated applying the following stringent criteria: thermolysin was selected 181 

as digestion enzyme, and only one missed cleavage was allowed for thermolysin digestion.  182 

Operating the HPLC-ESI-QTOF system in the positive ionization mode (ESI+), a targeted 183 

screening analysis in full MS mode (m/z 100–1100 mass range) was performed to identify the 184 

m/z [M+H]+ peptide masses obtained from in silico digestion in a zein standard solution and in 185 

the starch aerogel sample theoretically containing the highest zein content (Z4). Figure 1 shows 186 
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four selected zein peptides masses (m/z = 516.2776 [LQQQ+H]+ 388.2190 [LQQ+H]+; 408.1877 187 

[FNQ +H]+; 381.1768 [FSQ +H]+) in Z4 sample. Theses peptides were selected for zein 188 

determination, exhibiting satisfactory intensity, sensitivity and dynamic range. 189 

 190 

Figure 1. High-resolution extracted ion chromatograms (HREICs) of Z4 starch aerogel, showing 191 

the target peptides masses (10 ppm extraction window) for zein residues determination in 192 

aerogels. 193 

Table 2 shows the main LC-HRMS parameters for the target peptides, including 194 

chromatographic retention time, monoisotopic mass, protonated molecular ion and calculated 195 

mass error (∆m/z). The identification of zein peptides was based on identity of the exact mass, 196 

monoisotopic profile and MS/MS fragmentation spectra (Figure S3). Zein content in Z0-Z4 197 

starch aerogels was determined by external standard calibration using a zein standard solution 198 

submitted to the same digestion process as the starch samples (see Table 2). 199 

 200 

Table 2. HPLC-HRMS parameters of target zein peptide fragment. Concentration values (% 201 

w/w) for zein residues in different starch aerogels. 202 

+ESI EIC Scan Frag=110.0V Z4-01-r001.d

LQQQ 

(m/z 516.2776; +1)

FNQ 

(m/z 408.1877; +1)

LQQ

(m/z 388.2190; +1)

FSQ 

(m/z 381.1768; +1)

ZEA9_MAIZE (P06677)

19 kDa alpha-zein 19C2

[M+H]+ Peptide sequence

516.2776 LQQQ

408.1877 FNQ

388.2190 LQQ

381.1768 FSQ
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RT 

(min) 

Peptide 

sequence 
Formula 

Monoisot

opic mass 

[M+H]+ 

(m/z) 

Error 

(ppm) 

Concentration in starch (%, w/w ± std) 

Z0 Z1 Z2 Z3 Z4 

1.719 
LQQ

Q 

C21H37N7

O8 
515.2704 516.2776 1.0 nd 4.0±0.1 13.5±0.1 12.8±1.1 27.4±0.9 

1.795 LQQ 
C16H29N5

O6 
387.2118 388.2190 3.6 nd 3.3±0.1 9.9±0.2 10.4±0.3 21.2±0.2 

2.153 FNQ 
C18H25N5

O6 
407.1805 408.1877 1.5 nd 3.8±0.1 11.3±0.7 12.3±1.0 25.5±0.2 

2.229 FSQ 
C17H24N4

O6 
380.1696 381.1768 4.2 nd 3.7±0.4 7.2 ±0.5 11.1±1.1 21.1±0.9 

Average zein concentration nd 3.7±0.3 10.5± 2.6 11.6±1.1 23.8±3.1 

 203 

All the manufactured starch aerogels had a certain volume shrinkage mainly during the solvent 204 

exchange step and, in a lesser extent, during the supercritical drying step (Figure 2). The addition 205 

of the zein in the aerogels strongly reduced the shrinkage values, particularly during gel-alcogel 206 

transition. For instance, a 4-fold reduction in these values was observed for Z4 aerogels. 207 

However, this effect was not linear and aerogels with similar residual zein content (Z2, Z3, in 208 

Table 2) behaved differently. On the other hand, the volume reduction detected during the 209 

supercritical drying was severe, although the overall shrinkage values are in accordance with 210 

those reported for starch aerogels with similar amylose contents (30-40 %) 26,27. Interestingly, Z1 211 

aerogels presented similar values to Z4, despite of the fact that zein residues were much higher in 212 

the latter formulation. 213 
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Figure 2. Volume shrinkage of starch-based gels after (a) the solvent exchange and (b) 214 

supercritical drying. Equal letters denote statistically homogeneous groups. 215 

Bulk densities of the obtained aerogels (𝜌bulk) strongly depended on the initial hydrogel 216 

composition (Table 3). Aerogel formulations prepared from hydrogels with lower zein contents 217 

(Z1, Z2) were significantly lighter (ca. 30%) than pure starch aerogels (Z0) (p>0.05). 218 

Conversely, denser structures were proportionally obtained with zein content when the 1:2 zein-219 

to-starch weight ratio was exceeded for the Z2-Z3-Z4 aerogel sequence. The remaining zein 220 

residues are responsible for this effect as depicted in Table 2. For example, Z3 presented almost 221 

identical density values to the unmodified formulations (Z0), whereas Z4 aerogels were the 222 

heaviest structures. Accordingly, the overall porosity of the aerogels (𝜀) followed a reverse trend 223 

with respect to the bulk density, but falling in the 85-91 % range in all cases, which is 224 

advantageous for regenerative medicine applications as scaffold matrices 28. 225 

The technical feasibility of the processing strategy to induce a larger pore population in starch 226 

aerogels was confirmed from the textural analysis (Table 3). The zein addition in the aerogel 227 

formulations resulted in increased specific surface areas (ABET = 183-228 m2/g) with values in 228 

the range of those reported for high amylose corn starch aerogels 12,26,29. Similarly, the specific 229 

pore volume (Vp,BJH) was higher as the porogen content increased while the mean pore diameter 230 

a b 
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(dp,BJH) remained constant at 18-20 nm. The formation of dual porous aerogels was confirmed 231 

from the macropore contribution to the overall porous values (Vp,macro in Table 3). The total pore 232 

volume and macropore contribution were determined by the combination of N2 adsorption-233 

desorption and helium pycnometry analyses, since the contribution of macropores in the pore 234 

volume (over 80 % of the overall porosity for other bio-aerogels 30,31), may not be taken into 235 

account in the characterization of aerogels through the BJH method. The zein effect in 236 

macropore formation is clearly appreciated from Z0 to Z2 aerogels by an increase in Vp,macro of 237 

up to 4 %. Conversely, Vp,macro values for Z3 and Z4 aerogels were similar and 10 % lower than 238 

that ones for unmodified aerogels (Z0). Although most of the porogen was leached during the 239 

solvent exchange step, the zein residue of 10 to 20 wt.% quantified in the abovementioned 240 

formulations is responsible for their densification and thus directly decreasing  the pore volume 241 

Vp since it is a specific parameter (i.e. expressed in a mass basis). (Table 3).  242 

Scanning electron microscopy (SEM) images of starch aerogels confirmed that their 243 

morphology and texture were dramatically influenced by the presence of zein porogen in the 244 

aerogel processing (Figure 3). The unmodified aerogel (Z0) presented an interconnected fiber 245 

network in the 30-60 nm diameter range (Figures 3a,b) typical for starch aerogels 32. The 246 

incorporation of zein during the aerogel processing induced remarkable morphological changes 247 

to the aerogel architectures with the presence of spherical macropores (ca. 2 µm) even in the 248 

formulation with lower zein content (Z1 in Figures 3c,d). This new pore family presented inner 249 

rough surfaces, but the presence of a thin film in certain pores (Figure 3d) suggested an 250 

incomplete zein removal during the solvent exchange step. The observed morphology was thus 251 

coherent with the zein quantifications (Table 2). The thermal treatment for the starch 252 

gelatinization disrupts the close-packed tertiary globular structure of zein, increasing its water 253 
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soluble fraction and promoting the formation of disulphide bonds 33–35. Therefore, the formation 254 

of zein agglomerates are favored due to the higher interactions between polypeptide chains 36,37. 255 

Z2 aerogels presented regions of large protein aggregates (>10 µm) and also regions of perfectly 256 

integrated dual and interconnected porosity (Figures 3e,f). Aerogels prepared with higher 257 

contents of porogen led to more irregular structures (Z3 in Figures 3g,h, and Z4 in Figures 3i,j), 258 

supporting the increased specific surface areas values (ABET in Table 3). The formation of larger 259 

pores in Z3 aerogels was clearly identified as the footprint of zein particles after the leaching 260 

(Figure 3g). The remaining globular zein residues embedded in the starch mesoporous backbone 261 

were also observed (Figure 3h). The presence of porous zein films was more abundant in Z4 262 

formulation (Figure 3i). Overall, the formation of a family of large (1-3 µm) and interconnected 263 

macropores was achieved through the use of zein as porogen (Figure 3j).  264 

 265 

 266 
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Table 3. Morphological and textural properties of the obtained aerogels. Values expressed as mean values and standard deviation. 

 

Aerogel 
𝝆𝒃𝒖𝒍𝒌  

(g/mL) 

𝝆𝒔𝒌𝒆𝒍  
(g/mL) 

ε  

(%) 
ABET  

(m2/g) 

Vp,BJH  

(cm3/g) 

dp,BJH  

(nm) 
Vp 

(cm3/g) 

Vp,meso  

(%) 

Vp,macro ( 

%) 

Z0 

No storage 0.175 ± 0.004 1.478 ± 0.05 88.1 ± 0.4 183 ± 9 1.01 ± 0.05 19.1 ± 1.0 5.03 15.1 84.9 

1 month 0.200 ± 0.005 1.495 ± 0.03 86.6 ± 0.4 217 ± 11 1.30 ± 0.07 21.6 ± 1.1 4.33 20.8 79.2 

3 months 0.184 ± 0.006 1.467 ± 0.03 87.5 ± 0.4 213 ± 11 1.30 ± 0.06 23.3 ± 1.2 4.76 18.6 81.4 

Z1 

No storage 0.120 ± 0.013 1.349 ± 0.02 91.1 ± 1.0 228 ± 11 1.29 ± 0.06 18.9 ± 0.9 7.57 12.7 87.3 

1 month 0.158 ± 0.005 1.389 ± 0.04 88.6 ± 0.5 226 ± 11 1.07 ± 0.05 16.9 ± 0.8 5.59 13.8 86.2 

3 months 0.150 ± 0.006 1.414 ± 0.05 89.4 ± 0.5 85 ± 4 0.43 ± 0.02 18.4 ± 0.9 5.94 4.9 95.1 

Z2 

No storage 0.120 ± 0.006 1.465 ± 0.01 91.8 ± 0.4 226 ± 11 1.25 ± 0.06 19.0 ± 1.0 7.62 11.0 89.0 

1 month 0.134 ± 0.009 1.394 ± 0.03 90.4 ± 0.7 164 ± 8 0.87 ± 0.04 18.0 ± 0.9 6.76 8.6 91.4 

3 months 0.135 ± 0.006 1.433 ± 0.04 90.6 ± 0.5 120 ± 6 0.60 ± 0.03 16.5 ± 0.8 6.69 6.4 93.6 

Z3 

No storage 0.172 ± 0.006 1.385 ± 0.02 87.6 ± 0.5 204 ± 10 1.18 ± 0.06 19.9 ± 1.0 5.08 16.0 84.0 

1 month 0.182 ± 0.006 1.369 ± 0.03 86.7 ± 0.5 184 ± 9 0.97 ± 0.05 17.3 ± 0.9 4.78 14.5 85.5 

3 months 0.176 ± 0.007 1.360 ± 0.01 87.0 ± 0.5 178 ± 9 0.98 ± 0.05 17.8 ± 0.9 4.93 15.1 84.9 

Z4 

No storage 0.192 ± 0.016 1.353 ± 0.02 85.8 ± 1.2 226 ± 11 1.35 ± 0.07 19.0 ± 0.9 4.46 22.5 77.5 

1 month 0.197 ± 0.002 1.350 ± 0.03 85.4 ± 0.4 207 ± 10 1.30 ± 0.07 21.2 ± 1.1 4.35 20.1 79.9 

3 months 0.187 ± 0.008 1.303 ± 0.03 85.6 ± 0.7 157 ± 8 0.91 ± 0.05 19.0 ± 0.9 4.58 15.1 84.9 



 16 

 267 
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Figure 3. SEM images of horizontal cross-sections of the obtained starch-based aerogels. (a,b) 268 

Characteristic microstructure of unmodified aerogels (Z0). (c,d) The addition of low contents of 269 

the porogen (Z1) and later leaching induced the formation of larger pores with rough inner 270 

surfaces, although thin films of zein residues could be observed along the aerogel (d, arrow). 271 

(e,f) More residues were detected for Z2 in certain areas, but an interconnected porous network 272 

was obtained. (g,h) The incorporation of higher zein amounts (Z3) leads to more irregular 273 

surfaces and entire spherical zein particles were identified (h, arrow), highlighting the 274 

uncompleted porogen leaching. (i,j) Z4 aerogel formulation presented numerous porous zein 275 

plates well-integrated with the starch network backbone. (j) In addition, larger and 276 

interconnected pores (arrows) with noticeable roughness were obtained. Scale bars: 300 nm (b, j) 277 

and 2 µm (a, c-i). 278 

Mechanical characterization of starch aerogels. All starch aerogel formulations were 279 

subjected to uniaxial quasistatic compressions of up to 70 % strain (Figure 4). The mechanical 280 

response of the aerogels showed an irregular nature subject to addition of the zein component. 281 

Considering the pure starch aerogel (Z0) as the reference, the curves corresponding to Z1 and Z2 282 

showed that the addition of zein strongly softened their stress-strain response. This behavior is 283 

clearly related to the formation of hollow spaces in the starch aerogel backbone (Figure 3). 284 

However, this softening trend was reversed for the case of the aerogels with higher zein residues 285 

(Z3, Z4 in Table 2) and its stiffness was strongly enhanced. For instance, the stiffness of the 286 

starch aerogel processed with the highest zein content (Z4) was even stronger than the reference 287 

aerogel Z0. The compression moduli of the five aerogel formulations are illustrated in Figure 4 288 

to quantitatively show this effect. A polynomial fit expressing the relation between Young’s 289 
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modulus under compression (given in MPa) and the zein-to-starch ratio is expressed as follows 290 

(Eq. 4) 291 

 𝐸(𝑐) = −4.2157𝑐3 + 12.1715𝑐2 − 7.1856𝑐 + 2.0639 (4) 292 

 293 

where c varies from 0 to 1 and denotes the zein-to-starch weight ratio (Table 1). For the aerogels 294 

in consideration, an explanation to the trend seen in Figure 5 can be deduced from the bulk 295 

density measurements in Table 3. Porous materials, such as aerogels, exhibit a power-law scaling 296 

relation between Young’s modulus 𝐸 and the bulk density (𝜌𝑏𝑢𝑙𝑘) 38–40. Such scaling behavior is 297 

also specifically observed in other polysaccharide-based aerogels 41–45. Table 3 shows the effect 298 

of zein on the bulk densities of the aerogels, where a decreasing trend from Z0→Z1→Z2 and an 299 

increasing trend from Z2→Z3→Z4 were observed. This explains the trend of Young’s modulus 300 

vs. the zein-to-starch weight ratio (density) curve. The addition of zein as a porogen induced the 301 

formation of macropores, which also influenced the overall macroscopic mechanical behavior of 302 

the aerogels. Such influence of the hierarchical porous structure on the mechanical behavior was 303 

previously reported for cellulose aerogels 46. 304 

 305 
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Figure 4. Stress-strain curves of starch aerogels processed with different zein contents (Z0 to Z4 306 

with increasing zein content) tested under compression. 307 

 308 

Figure 5. Effect of the zein content used during the starch aerogel processing on Young’s moduli 309 

of the aerogels. A polynomial fit is generated to show the relation between the zein-to-starch 310 

weight ratio (in percentage, adhering to Eq. (4)) to Young’s modulus. 311 

Under cyclic loading, all the tested aerogels show typical elastoplastic behavior, with very 312 

large permanent set (Figures 6 and S4). This behavior is typical of other biopolymer-based 313 

aerogels 43. The very small hysteresis (area between the unloading curve of a cycle and the 314 

reloading curve of the subsequent cycle) along with the permanent set indicate severe 315 

irreversible damage within the microstructure of the aerogel network. However, the aerogels 316 

exhibit a good strain memory as the reloading curve comes back to the point of the maximal 317 

strain of the previous loading cycle and continues the path as if it were the monotonic loading 318 

(Figure 6).  319 
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 320 

Figure 6. Stress-strain response of Z1 aerogels under cyclic loading-unloading quasistatic 321 

compression. The specimen was subjected to three sets of loading cycles with the strain 322 

amplitude increased stepwise by 20 %. The monotonic loading curve is illustrated as a dotted 323 

line, demonstrating a memory of the aerogels. Curves of the other tested formulations (Z0, Z2, 324 

Z3 and Z4) showed a similar behavior and can be found as supplementary material (Figure S4). 325 

Effect of storage time. The stability under storage of drug products, medical devices and 326 

combination products (i.e. products comprising a drug and a medical device, or a biological 327 

product and a medical device) is a critical quality parameter within a well-established legal 328 

framework, since the variety of degradation processes (chemical, physical, biopharmaceutical) 329 

that may occur could render products ineffective or unsafe before patient use 22. Nevertheless, 330 

there is paucity of information on research regarding the stability of complex porous 331 

architectures conceived as scaffolds 47.  332 

The exposition to the storage conditions induced certain volume shrinkage of the starch 333 

aerogels. Formulations containing higher zein residues (Z3, Z4) presented values identical to 334 

their non-stored counterparts, thus preserving their initial structure. On the other hand, higher 335 
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volume shrinkages close to 5 % were observed for unmodified aerogels (Z0) after 3 months of 336 

storage (Figure 7). 337 

After 1 month of storage at 25 ºC and 65 % relative humidity, aerogels experienced a 338 

densification in the 3-32 % range, depending on the formulation (Table 3). The highest 339 

densification was reached for Z1 aerogel, whereas this effect was very low in formulations with 340 

higher initial zein-to-starch weight ratio (Z2-Z4). This preventive effect can be directly attributed 341 

to the zein residues (Table 2). 342 

Interestingly, bulk densities of aerogels after 3 months were lower than after 1 month, 343 

regardless the aerogel composition. The incorporation of higher amounts of zein reduced the 344 

storage impact, obtaining slightly lighter structures for Z4 after 3 months of storage. Overall, all 345 

manufactured aerogels experienced a densification and a mild reduction in the overall porosity 346 

after the storage period (Table 3).  347 

 348 

Figure 7. Overall shrinkage values of starch aerogels after the storage periods of (a) 1 month and 349 

(b) 3 months. Equal letters denote statistically homogeneous groups. 350 

The densification of the aerogels after the storage had a parallel impact on the textural 351 

properties, with consistent decreases in the specific surface areas (ABET in Table 3). Aerogel 352 

formulations containing zein presented a reduction in the Vp,BJH values. This is attributed to the 353 

a b 
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swelling ability of amylopectin in humid environment that would cause the pore collapse, mainly 354 

affecting the smaller pore population 48. In general, the impact of storage on the aerogel 355 

formulations depended on the remaining porogen traces. In Z1 and Z2, the major part of the zein 356 

was leached during the aerogel processing, leading to a more open structure and thus favoring 357 

the water intake, as suggested by both the remarkable decrease in Vp, BJH and the increase in the 358 

Vp,macro values. The presence of hydrophobic zein residues along the aerogel monoliths may 359 

hinder the starch interaction with the moisture 49. Accordingly, Z3 and Z4 aerogels had less 360 

drastic variations in the textural properties. For instance, Vp,macro of Z3 aerogels after 3 months of 361 

storage was nearly identical to its non-stored counterpart.   362 

After the storage period (1 and 3 months), aerogels were tested again under quasistatic 363 

compression. Despite the abovementioned morphological changes mainly in the smaller pore 364 

population (micropores), their mechanical performance was virtually unaffected after the storage 365 

period under 25 °C and 65 % relative humidity (Figure 8). In previous theoretical studies on 366 

modeling of biopolymer aerogels 40,50, it was proposed that pores (cellular fiber-network) within 367 

the microporous region and lower mesoporous region do not play a significant role in the overall 368 

mechanical performance of the aerogels. This could explain the absence of an effect on the 369 

stress-strain response due to a reduction in the amount of micropores and lower mesopores. The 370 

result illustrated in Figure 8 opens up questions that need further investigations by theoretical 371 

and experimental approaches. The stored aerogels were further subjected to cyclic loading and 372 

showed similar elastoplastic behavior as that of the non-stored aerogels. 373 
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 374 

Figure 8. Uniaxial quasistatic compression curves of starch aerogel (Z3) specimens subject to 375 

different storage duration (0, 1 and 3 months) at 25 ºC and 65 % relative humidity. Curves for 376 

the rest of aerogels can be found in the supplementary information (Figure S5). 377 

 378 

CONCLUSIONS 379 

Starch aerogels displaying a new macropore population (1-2 µm) were successfully 380 

manufactured by the incorporation of zein as a porogen. Highly porous aerogels (85-92 %) were 381 

obtained with well-integrated macropores in the mesoporous starch aerogel backbone, 382 

encouraging its use as scaffolds for tissue engineering applications. Zein incorporation induced 383 

remarkable changes in the mechanical performance of the end aerogel products with an enhanced 384 

stiffness. The storage period mimicking the ICH-climatic conditions of Europe, USA and Japan 385 

induced morphological modifications in the aerogels whilst the mechanical behavior was 386 

virtually unaffected. The presence of zein residues along the aerogel scaffolds had a preventive 387 

effect on the morphological changes during the storage period. Overall, zein appears as an 388 

advantageous biocompatible porogen for the processing of dual-porous starch aerogels from the 389 
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technological (integration in classical aerogel processing pathway without extra-leaching steps) 390 

and materials performance (enhanced stiffness and stability) points of view.  391 
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