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In this supplementary material we present a brief overview of the FCI algorithm and related graphical
terminology as well as details, proofs, further simulation studies, and figures for illustrating the
application to the real data example that have been omitted from the main text for reasons of space.

We always assume that there are no selection variables. When saying that S is a separating set of A
and B the exclusions A ¢ S and B ¢ S are implicit. The term subset without the attribute proper
refers to both proper subsets and the original set itself, although in formulas we make this explicit
by using the symbol C instead of C. We switch between using variable names such as X;__ and
X7 that make the time structure explicit, and generic names such as A and B that do not make this
explicit (using generic names does, however, not imply that there is no time structure). The precise
configurations of numerical experiments are given in the respective panel label and figure caption.

S1 Relevant graphical terminology and notation

The structural causal model (SCM) in eq. (1)) can be graphically represented by its time series graph
(also known as full time graph) G [Spirtes et al., 2000}, [Pearl, 2000} [Peters et al., 2017]]. This graph
contains a node for each variable in the SCM (we use the words node and variable interchangeably
in this context) and an edge (link, words again used interchangeably) XZ_T—>Xf if and only if
Xi € pa(Xf ). It can be understood as a directed acyclic graph (DAG) with infinite extension
and repeating structure along the time axis. The parents pa(X7,G) = pa(X}) of X/ are the set
of nodes X;__ with XZ_THth in G, the ancestors an(th, G) are the set of nodes connected to
X f by a directed path in G together with Xg itself (so every node is an ancestor of itself), and the
adjacencies adj (X g , G) the set of nodes connected to X'g by any edge in G. Parents are a special case
of ancestors. We call Xg a descendant of X;__ if X;__is an ancestor of Xf (this implies that every

node is a descendant of itself). A link between X;__ and Xg is lagged if T > 0, contemporaneous if
7 =0, for i = j we speak of an autodependency link, and for i # j of a cross link.

In the presence of unobserved variables so called maximal ancestral graphs (MAGrs)
[Richardson and Spirtes, 2002] provide an appropriate graphical language for representing causal
relationships. Since in this paper we assume the absence of selection variables, the relevant MAGs
M contain two types of edges: directed ‘—’ and bidirected ‘<+’. These edges are interpreted as
composite objects constituted by the symbols at their ends (edge marks), which can be an (arrow-
)head (>’ or ‘<’) or a tail (*-’). These edge marks carry a causal meaning: Tails convey ancestorships
in G, ie, X]_ _—X] in M asserts that X;__ € an(X;,G); heads convey non-ancestorships in
G, ie., X{_,—X] and X}_, <X in M say that X] ¢ an(X}_,,G). As an immediate conse-
quence of time order there cannot be a link X;__«X; for 7 > 0 (an effect cannot precede its
cause). Parents, ancestors and adjacencies are defined in the same way as for DAGs, and the
spouses sp(X/, M) of X} are the set of nodes X; . with X/ _<+X;/ in M. Two variables are
connected by an edge in M if and only if they cannot be d-separated by a subset of observed
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variables in G, and d-separation in G restricted to observed variables is equivalent to m-separation
in M [Pearl, 1988, |Verma and Pearl, 1990, Richardson and Spirtes, 2002]]. The parents (ancestors,
adjacencies, spouses) of a set of variables are defined as the union of parents (ancestors, adjacencies,
spouses) of the individual variables. Example: pa({4, B},-) = pa(4,-) Upa(B,-).

The Markov equivalence class of a MAG is the set of all MAGs that yield the exact same set of
m-separations [Zhang, 2008]]. These are graphically represented by partial ancestral graphs (PAGs),
in which the set of allowed edge marks is extended by the circle mark ‘o’ [Zhang, 2008|]. Such a
graph is said to be a PAG for MAG M if ) it has the same nodes and adjacencies as M and if i)
all its non-circle edge marks are shared by all members in the Markov equivalence class of M. It
is further said to be maximally informative if for all its circle marks there is some member of the
equivalence class in which there is a tail instead and some other member in which there is a head
instead. The wildcard symbol ‘x’ may stand for all three possible edge marks (head, tail, circle). This
is a notational device only, there are no ‘x’ marks in PAGs.

S2 Some background on FCI

The Fast Causal Inference (FCI) algorithm is an algorithm for constraint-based causal discovery in the
presence of unobserved variables [Spirtes et al., 1995, [Spirtes et al., 2000, Zhang, 2008]. It allows
for both latent confounders and selection variables, although in this paper we assume the absence
of selection variables. Under the assumptions of faithfulness [[Spirtes et al., 2000]], acyclicity, and
the existence of an underlying SCM the algorithm determines the maximally informative PAG from
perfect statistical decisions of conditional independencies in the distribution P generated by the SCM.
The algorithm is based on the following fact:

Proposition S1 (m-separation by subsets of D-Sep sets [Spirtes et al., 2000]]). Let A and B be two
nodes such that A ¢ adj(B, M) and B ¢ an(A, M), then they are m-separated by some subset of
D-Sep(B, A, M). Here:

Definition S2 (D-Sep sets [Spirtes et al., 2000]). Node V € M is in D-Sep(B, A, M) if and only
if i) it is not B and i) there is a path py between B and V such that iia) all nodes on py are in
an({4, B}, M) and iib) all non end-point nodes on py are colliders on py .

A node B is a collider on a path p if the two edges on p involving B both have a head at B, as e.g.
in As—B+«C, otherwise it is a non-collider. Together with acyclicity Proposition [ST] guarantees
that non-adjacent variables A and B are m-separated by a subset of D-Sep(B, A, M) or a subset of
D-Sep(A4, B, M). However, M is initially unknown and the D-Sep sets cannot be determined without
prior work. Therefore, starting from the complete graph over the set of variables, FCI first performs
tests of CI given subset of pa(B, M’) and pa(A, M') where M’ is the (changing) graph that the
algorithm operates on. Whenever two variables are found to be conditionally independent given some
subset of variables, the edge between them is removed and their separating set is remembered. This
removes some, but in general not all false links. Second, the algorithm orients all resulting unshielded
triples As—Bx—C in M’ (these are triples Ax—«B*—C' such that A and C are not adjacent) as
colliders Ax— B<—C'if B is not in the separating set of A and C (rule R0). We note that at this
point head marks are not guaranteed to convey non-ancestorships, but those unshielded triples in M’
that are part of M are oriented correctly. This is enough to determine the Possible-D-Sep sets, see
[Spirtes et al., 2000], which are supersets of the D-Sep sets define above. Third, FCI performs tests
of CI given subsets of Possible-D-Sep(B, A, M) and Possible-D-Sep(A4, B, M’). This removes all
false links. Fourth, all previous orientations are undone, R0 is applied once more and then followed
by exhaustive application of the ten rules R1 through R10. Tests of CI are preferentially made given
smaller conditioning sets S, i.e., FCI first tests sets with |S| = p = 0, then those with |S| =p =1
and so on.

S3 LPCMCI-PAGs

Section[3.2]introduced middle marks and LPCMCI-PAGs. We here give a more formal definition of
these notions. Recall that we assume the absence of selection variables.

Definition S3 (LPCMCI-PAGs). Consider a simple graph C(G) over the same set of variables as
M(G) with edges of the type =5, <, o*», and o*o where the wildcard ‘x’ can stand for the five
possible middle marks “?’, ‘L’, ‘R’, *!I’, or ©’ (empty). Such C(G) is a LPCMCI-PAG for G with respect



to total order < if for any probability distribution P that is Markov relative and faithful to G the
following seven conditions hold:

1. If A»=>BinC(G), then B ¢ an(A,G).

2. If A5BinC(G), then A € an(B, G).

3. If A ¢ adj(B,C(G)), then A ¢ adj(B, M(G)).
4

. If Ax*xB in C(G) for A < B, then B ¢ an(A,G) or there is no S C pa(A, M(G)) that
m-separates A and B in M(G).

5. If Ax"xB in C(G) for A < B, then A ¢ an(B,G) or there is no S C pa(B, M(G)) that
m-separates A and B in M(G).

6. If Ax*+B in C(G), then both Ax“xB and Ax™xB would be correct.
7. If Ax~B in C(G), then B € adj(A, M(G)).

The first two points give the same causal meaning to head and tail edge marks as they have in MAGs
and PAGs. We repeat that while this definition involves a fixed total order < , its choice is arbitrary
and without influence on the conveyed causal information. Moreover, the definition does not depend
on time order. Also note that if all middle marks in C(G) are empty, then C(G) is a PAG for M(G)
(guaranteed by the first, second, third, and seventh point). Parents, ancestors, descendants, spouses,
and adjacencies in C(G) are defined (and denoted) in the same way as for MAGs and PAGs, i.e.,
without being influenced by middle marks.

S4 Orientation rules for LPCMCI-PAGs

The following is a list of rules for orienting edges in LPCMCI-PAGs. These are extensions of the
standard FCI rules [Zhang, 2008] as well as the unshielded triple rule and discriminating path rule of
RFCI [Colombo et al., 2012]. If a rule proposes to orient the same edge mark as both tail and head,
this is resolved by putting a conflict mark ‘x’ instead. The edge mark wildcard ‘+’ is redefined to
stand for the circle, head, tail or conflict mark; the second wildcard symbol ‘x’ excludes the conflict
mark. For two reasons we explicitly present and prove also those rules that generalize without much
modification: To demonstrate their validity for LPCMCI-PAGs, and to show in which cases the rules
also apply to structures with conflict marks.

If X+*Y %7 is an unshielded triple we write Sx z for the separating set of X and Z. Many rules
require that Sx z be weakly minimal and Y € Sxz. In all these case the requirement of weak
minimality can be dropped if X+—+Y x—Z, i.e., if both middle marks on X +*+Y x*xZ are empty.
For this reason the standard FCI orientation rules are implied as special cases.

RO’a: For all unshielded triples Ax*+«B+*xC: If ia) Ax—=B or ib) A and B are condition-
ally dependent given [Sac U pa({4, B},C(G))] \ {4, B,nodes in the future of both A and B},
iia) C+—xB or 4ib) C' and B are conditionally dependent given [Sac U pa({C, B},C(G))] \
{C, B,nodes in the future of both C' and B}, iii) none of the edge mark‘«’s at B on Ax*xB**«C'is
-’ or ‘x’, and iv) B ¢ Sac, then mark the unshielded triple for orientation as collider A B<x«(C.
Condition ib) need only be checked if not ia), iib) need only be checked if not iia), and iv) need
only be checked if all previous conditions are true. If ib) or 4ib) find a conditional independence,
mark the corresponding edge(s) for removal.

R0’b: For all unshielded triples Ax*+ Bo'«xC' and for all unshielded triples A%+ Bo™xC with B < C'
and for all unshielded triples As%> Bo*xC with B > C If ia) A*—B orib) A and B are conditionally
dependent given [Sac U pa({A, B},C(G))] \ {A, B,nodes in the future of both A and B}, and i)
B ¢ Sic, then mark the edge between B and C for orientation as B<*C (the middle mark
remains as it was before). Condition ib) need only be checked if not ia). If i) finds a conditional
independence, mark the corresponding edge for removal.

RO’c: For all unshielded triples A% Bo‘xC and for all unshielded triples A+—Bo™xC with B < C'
and for all unshielded triples A*—Bo™xC with B > C: If B ¢ S4c, then mark the edge between B
and C for orientation as B+:x(C' (the middle mark remains as it was before).




‘RO’d: For all unshielded triples Ax—oBo- C' and for all unshielded triples Ax—BoxC: If B ¢ Sac,
then mark the unshielded triple for orientation as collider Ax— B<«—C'.

R1’: For all unshielded triples A% Bo*xC'": If S is weakly minimal and B € S4¢, then mark
the edge between B and C for orientation as B=C.

R2': For all A% B#xC with Ax*oC and for all A= B-5C with Ax*o(C'": Mark the edge between
A and C for orientation as Ax~C'.

R3’: For all unshielded triples A B«=«C with Ax*oDo*xC and Dx*oB: If S4¢ is weakly
minimal and D € S4¢, then mark the edge between D and B for orientation as D+ B.

R4’: Use the discriminating path rule of [Colombo et al., 2012]] with the following modification:
When the rule instructs to test whether any pair (A, B) of variables is conditionally independent given
any set S, then 7) if A and B are connected by an edge with empty middle mark do not make this test,
and i7) else replace S with [S U pa({4, B},C(G))] \ {A, B, nodes in the future of both A and B}.

R8': For all A% B-%C with Ao*xC': Mark the edge between A and C for orientation as A-5C.

RY’: For all A;o=»A,, for which a) there is an uncovered potentially directed path from A; to A,
through A,, ..., A,,_1 (in this order) such that b) A is not adjacent to A,,: If forallk =1,...,n—1
ia) Ay Agq1 or ib) Sa, ., 4,_, is weakly minimal and A, € Sy, 4,_, (With the convention
Ag = A,), then mark the edge between A; and A,, for orientation as A; % A,,.

R10Q’: For all AoxD for which a) there is B,,2D<C,,, b) an uncovered potentially directed
path pp from A = By to B,, through By, ..., B, _; (in this order), ¢) an uncovered potentially
directed path pc from A = Cj to C,, through C, ..., C,,_; (in this order) such that d) B; and
C are not adjacent: If i) Sp, ¢, is weakly minimal and A € Sp, ¢, i) forall k = 0,...,n — 2
iia) Bry1-5Byyo or iib) Sp,,,p, is weakly minimal and By, € Sp,,,B,. and iii) for all

=0,....m—2 uza) C’k+1i>0k+2 or Z’le) Sck+20k is weakly minimal and Ck+1 S Sck+2ck,
then mark the edge between A and D for orientation as A= D.

These rules orient edge marks. They are complemented by the following two rules for updating
middle marks:

APR: (ancestor-parent-rule, see Lemma([I)) Replace all edges A-»B by A— B, all edges A% B with
A > Bby A—B, and all edges A% B with A < B by A—B.

MMR: (middle-mark-rule) Replace all edges A+ B with A < B by A+ B, all edges Ax%> B with
A > Bby A% B, all edges A+ B with A < B by A+> B, and all edges A+ B with A > B by
A+ B.

S5 Pseudocode for Algorithms [S2|and [S3|

In Sec. [3.4] of the main text we give pseudocode for LPCMCI in Algorithm [T} This involves calls to
Algorithms [S2]and[S3] for which we here provide pseudocode and further explanations.

o X tj ) of variables that are not adjacent in
M(G) and for which one of them is an ancestor of the other (it may also removed edges between
some pairs of non-adjacent variables for which neither one of them is ancestor of the other, but this is

not guaranteed). To this end the algorithm tests for CI given S U Sy, r, where the cardinality |S| = p
of S C Ssearch = apdst(th , X}_+,C(G)) \ Saey is successively increased. The apds; sets are
defined in Sec.[S7|below, they exclude all variables that have already been identified as non-ancestors
of th . This reflects the first design principle behind LPCMCI, see Sect. The default conditioning

set Suep = pa({X{_., X]},C(G)) consists of all variables that have been marked as parents of X;__

t—1>

Algorithm [S2{removes the edges between all pairs (X}

or X} in C(G), which implies that they are ancestors of X;__ or X/ in G. The extension of S to
S U8, ¢ reflects the second design principle behind LPCMCI, see Sect. and according to Lemma
[S4] cannot destroy m-separations. The parentships used to define S are found by the application of
orientation rules in line 18 (with Alg. see further below in this section) that are made if at least
one edge was removed in the current step of the repeat-loop (or have been passed on from an earlier
iteration in the preliminary phase of LPCMCI). It is then necessary to restart with p = 0, otherwise
future separating sets might not be weakly minimal. The rules may also find non-ancestorships, these
then further restrict the apds; sets. Another novelty is that some edges are tested and removed (if



Algorithm S2 Ancestral removal phase

Require: LPCMCI-PAG C(G), memory of minimal test statistic values 7™ (-, -), memory of sepa-
rating sets SepSet(-, -), time series dataset X = {X!, ..., X"}, maximal considered time lag
Tmax, Significance level o, CI test CI( X, Y, S)

1: repeat starting with p = 0

2 for —1 < m < Tyax do ) ' )

3 for all ordered pairs of variables (X;__, X;) adjacent in C(G) with X;__ < X/ do
4 if (m = —1landi # j) or (m > 0 and 7 # m or i = j) then continue with next pair
5: Saer = pa({X] ., X]},C(9))

6: if the middle mark is *?’ or ‘L’ then

7 Secarch = apds; (X7, Xi_,C(G)) \ Saer, ordered according to ™" (X7, -)
8 if |Ssearcen| < p then update middle mark with ‘R’ according to Lemma
9: for all subsets S C S,eqren With ‘|S | =pdo
10: (p-value, I) + CI(X]_,, X{, SUS4ey)
11: Imm(XtZ T th) = Imin(th ) Xtif'r) = min(|/], Imin(th T th))
12: if p-value > « then ‘
13: mark edge for removal, add S U Sz. to SepSet(X;_., X7)
14: break innermost for-loop
15: repeat lines 6 - 14 with X} __and X; as well as ‘R’ and ‘L’ swapped
16: remove all edges that are marked for removal from C(G)
17: if any edge has been removed in line 16 then
18: run Alg. using [APR,MMR, R8', R2',R1’,RY, R10'], orient lagged links only
19: letp =0

20: else increase ptop + 1

21: until there are no other middle marks than © (empty)

22: run Alg.|S4|using [APR, MMR, R8', R2’, Rl’ RO d, R0'¢c, R3', R4, RY, R10', R0'b, R0 ]
23: return C(G), ™" (., ), SepSet( 3

4|7

found insignificant) before other edges are tested, see lines 2, 4 and the indentation of line 16. To be
precise: All autodependency links are tested first, followed by cross links starting with lag 7 = 0
and moving to lag 7 = Ty,ax in steps of one. This ordering does not depend on the ordering of the
N time series variables X7 and does therefore not introduce order-dependence in the sense studied
in [[Colombo and Maathuis, 2014]]. The algorithm converges once all middle marks in C(G) are ‘!’
or empty. By means of the APR rule (see Lemma|[T]or Sect.[S4) all edges with a tail mark will then
have an empty middle mark, i.e., they cannot be m-separated and do not need further testing. Line 11
updates a memory for keeping track of the minimum test statistic value across all previous CI tests
for a given pair of variables (the memory is initialized to plus infinity when line 1 of Algonthm l is
executed). These values are used to sort Sgeq.cp, in line 7 such that X -, appears before XF* i
Seearcn if 1™ (X7 X1 n) > (X7 Xk +.)- Note that in line 18 only a select subset of rules
is applied and that these are only used to orient lagged links. Moreover, in line 22 we choose to
apply the standard rule R4 rather than the modified rule R4’. The reason for this is that, as observed
in [Colombo and Maathuis, 2014]}, the discriminating path rule (on which R4’ is based) becomes
computationally intensive when applied in an order-independent way involving conflict resolution.
We found these choices to work well in practice but do not claim their optimality.

Algorithm [S3]is structurally similar to Algorithm Once called in line 6 of Algorithm [1} all
middle marks in C(G) are ‘I’ or empty. Whereas edges with empty middle mark are in M(G)
for sure, some edges with middle mark ‘I’ might not be in M(G). Those latter type of edges are
between pairs of variables in which neither one of them is ancestor of the other. According to
Lemma [S3|below in combination with Proposition [ST|such pairs are m- separated by some subset
of napds; (X7, X! _,C(G)) as well as by some subset of napds,(X;__, X7 C(G)). These sets are
defined in Sec. [S7|below, they are the more restricted LPCMCI equivalent of the Possible-D-Sep sets
in FCI and the pds; sets in SVAR-FCI. For computational reasons the algorithm nevertheless only
searches for separating sets in napds, (X}, X} __,C(G)), unless for 7 = 0 where order-independence
dictates otherwise. This is the reason for the logical or-connection in line 10. As compared to



Algorithm S3 Non-ancestral removal phase

Require: LPCMCI-PAG C(G), memory of minimal test statistic values 7™ (-, -), memory of sepa-
rating sets SepSet(-, -), time series dataset X = {X!, ..., X"}, maximal considered time lag
Tmax, Significance level o, CI test CI( X, Y, S)

1: repeat starting with p = 0

2 for —1 < m < 7. do 4 ) ' )

3 for all ordered pairs of variables (X;_ ., X]) adjacent in C(G) with X}__ < X7 do

4 if the middle mark is empty then continue with next pair

5: if (m = —landi # j) or (m > 0and 7 # m or i = j) then continue with next pair
6 Siey = pa({Xi_,, X{},C(G))

7

8

82, s = nodes that have ever been in pa({X}_,, X7},C(G)) since re-initialization

: S o = napds, (X7, Xi_ )\ (Sges U Si. ), ordered according to Imin(x7
9: S?

2 aren = napdsy(X]_ X])\ (8},; US3, ;). ordered according to I™®(X; ")
10: if Sl .n] <porT=0and|S2,,.| <pthen
11: Update middle mark with ** according to Lemma[S8] continue with next pair
12: for all subsets S C S, with |S| =pdo
13: Sdef = Séef U [Sﬁef Nnapdsy (X7, Xi_,C(G))]
14: (p-value, ) < CI(X?__, X}, SUSuer)
15 (X)L X]) = (X X ,) = min(|1], (X X))
16: if p-value > « then
17: mark edge for removal, add S U S to SepSet(X7_,, X7)
18: break innermost for-loop
19: if 7 = 0 then ‘
20: run lines 12 - 18 with 2, replacing 8L, ., and X;__ and X} swapped
21: remove all edges that are marked for removal from C(G)
22: if any edge has been removed in line 21 then
23: run Alg.[S4|using the same rules as in line 22 of Alg.
24: letp=20
25: else increase ptop + 1

26: until all middle marks in C(G) are empty
27: run Alg.[S4|using the same rules as in line 22 of Alg.[S2]
28: return C(G), I™™"(-, ), SepSet(-, )

Algorithm[S2] the default conditioning is extended: According to Definition [S3]a tail on an edge in
C(G) signifies ancestorship in G. Since C(G) is an LPCMCI-PAG at every point of LPCMCI, X;__

is an ancestor of X7 if there ever was the link X;__ - X7. This gives rise to the set Sg, , in line 6. In

addition to the parents in C(G), the algorithm also conditions per default on all nodes in 83, ¢ that are
in the current napds; set. This decreases the number of sets S that need to be searched through in the
for-loop in line 12 at the price of a higher-dimensional conditioning set. Also this extended default
conditioning cannot destroy m-separations. Non-ancestorships are used to constrain the napds; sets
in the first place, and prior to determining napds; sets the collider rule R0’a must have been applied
to all unshielded triples in C(G). The algorithm converges once all middle marks are empty, followed
by a final exhaustive rule application to guarantee completeness.

Algorithm [S4|exhaustively applies a given set of orientation rules specified by an ordered list t. The
rules are executed in this order and, once any rule has modified C(G), the loop jumps back to the
first rule. This can be used for a preferential execution of simpler and less time consuming rules.
Rules R0’a and R0’ involve CI tests and may therefore remove some edges. The corresponding
separating sets are not guaranteed to be weakly minimal, see Example 1 in the supplement paper to
[Colombo et al., 2012] for a counterexample. (There this example is used to show that the separating
sets may not be minimal, however it is also a counterexample for weak minimality.) Since many other
rules require weak minimality of separating sets, line 10 instructs to make them weakly minimal.

This is implemented in the following way: A separating set of X;__ and X f that is not necessarily



Algorithm S4 Orientation phase

Requilje: LPCMCI-PAG C(G), ordered list of rules v, memory of minimal test statistic values
I™in(..), memory of separating sets SepSet(-,-), time series dataset X = {X!,... XV},
maximal considered time lag 7.y, significance level «, ClI test CI( X, Y, S)

1:1=0
2: repeat
3: apply the i-th rule in v to C(G), do not modify C(G) yet
4: if the rule proposes any modification then
5: for all edges marked for orientation do
6: resolve conflicts among the proposed orientations
7: apply the conflict resolved orientations C(G)
8: for all edges marked for removal do
9: remove the edge from C(G)
10: make the corresponding separating set weakly minimal
11: leti =0
12: else increase ¢ to ¢ + 1

13: until 7 > len(r)
14: return C(G), I™™(-,-), SepSet(-, -)

weakly minimal is made weakly minimal by successively removing single elements that are not
known ancestors of X} __ and X7 until the resulting set is no separating set anymore. In particular,
there is no need to search through all subsets of the original separating set. The validity of this
procedure owes to the equivalence of weak minimality and weak minimality of the second type,
see Definition [S6|and part 3.) of Lemma[S7]below. The algorithm also tests for potential conflicts
among the proposed orientations and, if present, resolves them by putting the conflict mark ‘x’. Most
rules require to know whether certain nodes are or are not in certain separating sets. Queries of the
second type (Is node B not in the separating set of nodes A and C'?) are answered by a modified
version of the majority rule proposed in [Colombo and Maathuis, 2014]. Our modification consists
of 7) searching for separating sets not in the adjacencies of A and C' but rather in the relevant apds;
sets and 74) including also those separating sets that were found by Algs. andin the majority
vote. The second part of this modification is necessary to guarantee completeness (FCI with the
unmodified majority rule is not complete, see Sec.[STT|for an example). The modification does not
introduce order-independence since 7) the sets Ssearch, S Slemch and S? arch, are ordered by means

se

of I™™ (- -) and since i) line 13 of Alg.|S2|and line 17 of Alg. |S3|instruct to add S U Syc5 to

SepSet(X_,, X7) rather than saying write to. Point i) is relevant for contemporaneous links: if in

the same iteration of Alg.[S2|(Alg.[S3) a pair of variables is found to be conditionally independent
given subsets of both apds; (X}, X{,C(G)) and apds,(X}, X],C(G)) (both napds, (X}, X],C(G))
and napds, (X}, X],C(G))), both separating sets are remembered. The search for separating sets
involves the same default conditioning as in Alg. For queries of the first type (Is node B in the
separating set of nodes A and C'?) we distinguish two cases. If B is adjacent to both A and C' and
the middle mark of both edges is empty, then the query is answered in the same way as queries of the
first type. Otherwise, the query is answered solely based on the separating sets found by Algs.[S2]and
[S3] Alternatively, one might also in this second case perform a majority-type search of additional
separating sets, albeit restricted to separating sets of minimal cardinality due to the requirement of
weak minimality (whereas this restriction is not necessary when A and B as well as C' and B are
connected by edges with empty middle marks). We do not claim optimality of these choices.

S6 A variant of LPCMCI without Alg. [S3|

A variant of LPCMCI can be obtained by skipping the execution of Alg.[S3]in line 6. According
to Lemma [S11|the estimated graph C(G)" is then still a LPCMCI-PAG. This implies that all causal
information as conveyed by the absence of edges, by the presence of edges with their respective
middle marks, as well as by heads and tails as detailed in Sec.[S3|remains correct. Lemma[STT]further
says that 7) all edges in C(G)’ that are of the form % are also in P(G) and that 74) if X} __ and X7
are adjacent in C(G)’ but not in P(G) then neither of these variables is an ancestor of the other. This



is analogous to RFCI-PAGs, see Theorem 3.4 in [Colombo et al., 2012]|. This variant of LPCMCI
therefore compares to standard LPCMCI as (SVAR-)RFCI compares to (SVAR-)FCIL.

As a side remark, even if LPCMCI is interrupted at any arbitrary point it still yields a graph with
unambiguous and sound causal interpretation. This is implied by the fact that the graph C(G) remains
and LPCMCI-PAG at every step of the algorithm, which is proven in Lemmas [S9|and

S7 Definition and relevance of apds, and napds; sets

As explained in Sec. [S5] Algorithms [S2] and [S3] respectively perform tests of CI given subsets of
apds; sets and napds; sets. These are defined and motivated here.

In words apds, (X}, X}

t—1>

C(G)) is the set of all non-future adjacencies of X7 other than X/ _ that
have not already been identified as non-ancestors of X7, formally:

Definition S4 (apds; sets). The set apds; (X}, Xi_.,C(G)) is the set of all X} __, other than X}__
with 7' > 0 that are connected to X} by an edge without head at X} __,

All statements in this and the following definition are with respect to the graph C(G). The definition
of napds; sets is more involved. It uses already identified (non-)ancestorships, time order and some
general properties of D-Sep sets to provide a tighter approximate of the latter than the Possible-D-Sep
sets of FCI and pds; sets of SVAR-FCI do. Formally:

Definition S5 (napds; sets). 1.) The set napdst(th, X} _,C(G)) is the wunion of
napds! (X}, X! __,C(G)) and napds®(X7, X! _,C(G)). 2.) The set napds! (X}, X! __,C(G)) is
apdsy (X7, X!__,C(G)) without all variables X¥ _, that are connected to X} _, by an edge with tail
at X!__. 3.) The set napds?(Xi, X __,C(G)) is the set of all variables X[ __, that are connected to
X; J bya path p with the following properties: i) on p there is no tail at any node other than Xt s
ii) the middle node of every unshielded triple on p is a collider on p, iii) p does not contain X} __,

iv) the node X! _- adjacent to XJ is not connected to X}__ by an edge with head at X!_-, and is

t—7
not after X}__, v) all nodes on p other than X} and X! - are not connected to Xt or X;__byan
edge with tail at X] or X}__, are not at the same time connected to both X} and X}__ by edges
with a head at themselves, and are not after both X} and X} _

The use of the apds; and napds; sets in Algorithms [S2]and[S3]is due to the following result:

Lemma S3 (Relevance of apds; and napds; sets). Let A and B be such that A ¢ adj(B, M(
L) If A € an(B,G) then apds;(B,A,C(G)) 2 D-Sep(B,A,M(G)). 2.)If B ¢ an(A
A ¢ an(B, Q) and rule R0'a has been exhaustively applied to C(G) then napds,(B, A C( )
D-Sep(B, A, M(G)).

9))-
.9),
) 2

This remains true when Definition[S3]is strengthened in the following way: Whenever the definition
demands that there be no edge between X;__ (or X}) and some node X" withhead at X{"

add the requirement that there be a potentially directed path from X;"  to X} (or Xt] ).

S8 Proofs

Theorem 1 (LPCMCI effect size). Let Ax—B (with A = X}__and B = XJ) be a link (— or <)
in M(G). Consider the default conditions Sgey = pa({A, B} M( )\ {A, B} and denote X* =
X\ Sges. Let S = argmingcx«\{a,8} [ (A; B|S U Sacy) be the set of sets that define LPCMCI’s
effect size. If i) there is S* € S with §* C adj(A, M(G)) \ Sgey or S* C adj(B, M(G)) \ Saer
and i1) there is a proper subset Q C Sqey such that T(A; B; Sgey \ Q|S* U Q) < 0, then
min  I(A;B|SUS4y) >  min  I(A;B|S). S1

SCX*\{A,B} ( | def) SCX\{A,B} ( %) G

If the assumptions are not fulfilled, then (trivially) ">" holds in eq. (ST).

Remark. Assuming the link between X} __ and th to be of the form XZ_T*HXIZ is no restriction.
If X}_ < X] then T = 0 by time order and we can swap the roles of X} __ = X} and X}.



Proof of Theorem[I} We start the proof of eq. (ST) by splitting up the set X that occurs on its right
hand side as follows:

min  I(A;B|SUS4s) > min I(A;B|S S2

sy gy [A IO USuey) > nln | 1(A4: BIS) ©2

& min ~ I(A; B|SUSgey) > _ min min I(A; B|SU Q) (S3)
SCX*\{A,B} SCX*\{A,B} LESder

Note that for Q = Sy the right hand side equals the left hand side. Therefore, eq. (S3) becomes
trivially true when “>" is replaced by “>”, but as it stands with “>" it is equivalent to

min }I(A;B|S U Sgey) > min m I(A;B|SUQ), (S4)

in
SCX*\{A,B SCX*\{A,B} QCSdes, Q#Sdes

where Q is now restricted to be a proper subset of S. Let, as stated in the theorem, S be the set of
sets that make the left hand side minimal. A sufficient condition for eq. (S4) is then the existence of
S* € S such that

I(A; B|S*USgeyr) > min I(A;B|S*U Q). S5
( | d f) QCSadef, Q#Sdey ( ‘ Q) (55)
This implies eq. (S4) because the left hand side of eq. (S3) equals the left hand side of eq. (S4) by
definition of S and the right hand side of eq. (S3) is greater or equal than the right hand side of
eq. (S4) because of the additional minimum operation in eq. (S4). By subtracting the left hand side
of this inequality we get

min I(A;B|S*UQ)—I(A;B|S*UQU(S <0. S6
pes, i I(ABISTUQ) ~ I(A: BIS U QU (Sues \ Q)] (56
A difference of conditional mutual informations as in this equation defines a trivariate (conditional)
interaction information Z [[Abramson, 1963} Runge, 2015]], such that we can rewrite eq. as

Z(A; B; Saep \ QISTUQ) < 0. (87

min
QCSdef, QASdes

Contrary to conditional mutual information, the (conditional) interaction information can also attain
negative values. This happens when an additional condition, here Sgc 5 \ Q, increases the conditional
mutual information between A and B. The second assumption of the theorem states that there is a
proper subset Q C Sy for which Z(A; B; Sger \ Q|S* U Q) < 0. This implies eq. (S7) and hence
the main equation (ST). O

We now state a Corollary of Theorem[I] which details graphical assumptions that lead to an increase
in effect size as required by eq. (S7). Fig.[ST]illustrates these graphical criteria.

Corollary S1 (LPCMCI effect size). Let A+~ B (with A = X}__and B = X} ) be a link (— or
<) in M(G). Consider the default conditions Sqc;y = pa({A4, B}, M(G)) \ {A, B} and denote
X* = X\ Sges. Let S = argmingcx-\(a,5} [(A; B|S U Saey) be the set of sets that define
LPCMCT’s effect size.

1.) Assume the link is of the form A—B. If i) pa* (B, M(G)) = Sges \ pa(A, M(G)) is non-
empty (in words: B has parents other than A that are not at the same time also parents of A),
and it) there is S* € S with §* C adj(A, M(G)) \ Saey or S* C adj(B, M(G)) \ Saey, and iit)
B ¢ an(S*, M(G)), and iv) there is no path between A and pa* (B, M(G)) that is active given
pa(A, M(G)) US*, and v) faithfulness holds, then

min I(A; B|SUSger) > min  I(4; B|S). S8
SCX~\{4,B} ( | aef) SCX\{A,B} ( 15) (58)

2.) Assume the links is of the form A< B. The same inequality (S8)) holds if the same assumptions
1) — v) as stated in 1.) hold or if these assumptions hold with the roles of B and A exchanged.

3.) If neither the assumptions of 1.) nor of 2.) are fulfilled, then (trivially) ">" holds in (S8).
Proof of Corollary [ST} Note that eq. and eq. are the same. All manipulations that have

identified eq. as a sufficient condition for eq. (ST)) under the assumptions of Theorem [T] are still
valid under the assumptions of the corollary. Therefore, eq. is what remains to be shown.



Figure S1: Graph illustrating the two general cases of dependencies between A = X;__and B = X}
for proving Corollary [ST] namely (A) A — B and (B) A > B. The multiple connections are to be
understood between subsets of the respective sets such that the whole graph is still a MAG, i.e., that
no (almost) directed cycles occur and that maximality is not violated. We omit the links within each
subset. S* C X\ {pa({A, B}, M(G)), A, B} denotes the conditions that make the LPCMCI effect
size minimal. In panel (A) magenta connections are excluded by the assumptions of Corollary [ST]
in panel (B) at least all magenta or all blue connections are excluded (they may both be excluded).
These exclusions are, however, not sufficient to guarantee the assumptions of Corollary [ST]

Since the interaction information is symmetric in its arguments before the “|”, eq. (S7) can be cast

into the equivalent conditions:

i Z(A; B; Sae S*UQ) <0 $9
chdefm,lg;ésdef ( def \ Q| Q) (S9)

& omin o ABISTUQ) ~I(ABIS UQU(Sus\ Q) <0 (S0

s, it (ASis\ QISTUQ) —~ I(A:Sus \ QSTUQUBY <0 (81D

min (S ;BIS*UQ) - I(S :BIS*UQU{A})] <O0. S12
0cs, 8, H(Saes \ Qi BISTUQ) = [(Saep \ & BIS"UQU{A})] (S12)
First consider the case A— B in conjunction with eq. (STI). Independent of which Q minimizes the
left hand side of this equation, a sufficient condition for its validity is the existence of a proper subset
Q C S for which the following two conditions hold:

I(A;Saes \ QISTUQ) =0 <= AL Sgey \QISTUQ, (S13)

I(A;Sues \ QIS*UQU{B}) >0 < AWM S;;\ QIS UQU{B}. (S14)

We choose Q = pa(A, M(G)) and hence get Sgey \ Q = pa*(B, M(G)). Since by assumption

i) pa* (B, M(G)) = Sges \ Q is not empty, Q@ = pa(A, M(G)) is indeed a proper subset of Sy .

Further, eq. (ST3) is true by assumption 7v) and eq. (S14) is true by the assumption of faithfulness

together with the fact that the path A— B<—pa* (B, M(G)) is active given S* Upa(A4, M(G))U{B}.

Since both conditions in eq. (SI3) and eq. (ST4) hold for this valid choice of Q, part 1.) of the
corollary is proven.

We note that assumption #ii) is needed: Otherwise conditioning on S* opens the path
A— B<—pa* (B, M(G)) since B is an ancestor of a conditioned node, thus assumption iv) could not
be true. Assumption 4i7) would be violated by the magenta connections shown in Fig.

In the case A«»B we can either utilize eq. (STI)) or eq. (SI2), depending on whether B or A (or
both) contain non-empty non-shared parents for which eq. (S13) and eq. (S14) or the equivalent
assumptions with B and A exchanged hold. Lastly, the case A« B is covered by part 1.) of this
corollary with B and A exchanged. This proves part 2.) of the corollary.

Part 3.) follows because the minimum on the right hand side of eq. (S8) is taken over a superset of
the set that the minimum on the left hand side is taken over. ]

Lemma S4 (Inclusion of ancestors in separating sets). Let A and B be m-separated given S, and
let Sqey € an({A, B}, M(G)) \ {A, B} be arbitrary. Then, A and B are also m-separated given
S =8 USgey.
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Proof of Lemma @} Assume without loss of generality that Sq. ¢ is non-empty, else the statement is
trivial. First, consider the case Sgey C an(B, M(G)) and assume S’ did not m-separate A and B.
This requires the existence of a path p between A and B for which a1) at least one non-collider on p
is in S or a2) there is a collider on p that is not an ancestor of S, b) none of the non-colliders on p
is in &’, and ¢) all colliders on p are ancestors of S’. Since S is a proper subset of S’, al) conflicts
with b). This means a2) must be true, i.e, there is at least one collider on p that is an ancestor of
S'\8 = S4es \'S C an(B, M(G)) and hence of B. Among all those colliders, let C' be the one
closest to A on p. According to b) the sub-path pa¢ of p from A to C' is then active given S by
construction. Since C'is an ancestor of B there is at least one directed path pcp from C' to B. By
definition of C the path pop does not cross any node in S. Thus, pop is active given S.

We now construct a path from A to B that is active given S, thereby reaching a contradiction. To
this end, let D be the node closest to A on pac that is also on pcp (such D always exists, because
C is on both paths). Consider then the subpath p4p of pa¢ from A to D, and the subpath ppp on
pcp from D to B. Since pac and pep are active given S, also pap and pp p are active given S. By
definition of D the concatenation of p o p and ppp at their common end D gives a path p 4 g from A
to B. Since D is a non-collider on p o (because pppg is out of D) and D is not in S (because else C
would be an ancestor of S), p4p is active given S. Contradiction.

Second, since the Lemma does not make any distinction between A and B, it is also true in case
Saefr C an(A, M(G)). Third, write S = S4USp withS4 = SNan(A, M(G)) and S = S\S4 C
an(B, M(G)). The statement then follows from applying the already proven special cases twice. [

Lemma S5 (Exclusion of non-ancestors and future from separating sets). Let A and B be m-
separated given S, and let U be such that U N an({A,B,S \ U}, M(G)) = 0. Then, A and
B are also m-separated given S’ = S \ U. Two important special cases are: Special case 1.)
U =8\ an({A, B}, M(G)), which allows to restrict separating sets to ancestors. Special case 2.)
U = {all nodes that are in the future of both A and B}, which allows to restrict separating sets to
the present and past of the later variable.

Proof of Lemma [S5] Assume without loss of generality that { is non-empty, else the statement is
trivial. Assume S’ did not m-separated A and B. This requires the existence of a path p between A
and B for which al) at least one non-collider on p is in S or a2) there is a collider on p that is not
an ancestor of S, b) none of the non-colliders on p is in §’, and ¢) all colliders on p are ancestors
of §’. Since &’ is a proper subset of S, a2) conflicts with ¢). This means a1) must be true, i.e.,
there is a non-collider D on pin S \ &’ = S NU. In particular, D is in ¢/. All nodes on p are
ancestors of A or B or of a collider on p. If D is an ancestor of a collider on p, then by ¢) it is
also an ancestor of &’ = S \ Y. This shows that D is also in an({A4, B,S \ U}, M(G)). Since
UNan({A, B,S\U}, M(G)) = 0, this is a contradiction.

Special case 1.) For Y = S\ an({A4, B}, M(G)) we have &' = S N an({A, B}, M(G)) and
an({A, B,S\U}, M(G)) = an({A, B}, M(G)). Hence, the condition is fulfilled. Special case 2.)
For U4 = {all nodes that are in the future of both A and B} we have an({4, B,S \ U}, M(G)) C
{all nodes that are not after both A and B}. Hence, the condition is fulfilled.

Note that if ¢/ fulfills the above condition, a proper subset I’ of U/ does not necessarily fulfill the
condition as well. Consider the example A—C+<D+B. Here S = {C, D} m-separates A and B,
and Y = S fulfills the condition. However, ' = {C'} does not. This is why we need to require
UNan({A,B,S\U}, M(G)) = 0 and not just Nan({A, B}, M(G)) = 0. O

Lemma S6 (Some properties of D-Sep sets). Consider two distinct nodes A, B € M(G). Let
V € D-Sep(B, A, M(G)) and path py be as in Deﬁnition and denote with C' # B the node on
py that is closest to B. 1.) If A ¢ adj(B, M(G)), then py does not contain A. 2.) If B ¢ an(A, G)
and py contains two nodes only, then C' is a parent or spouse of B. 3.) If B ¢ an(A,G) and py
contains more than two nodes, then C'is a spouse of B and ancestor of A4.) If A € an(B,G), then

Proof of Lemma [S6] 1.) Assume py did contain A. The subpath of py from B to A is then
an inducing path between B and A. Since A and B are not adjacent, this violates maximality
of the MAG M. 2.) By construction V' = C' is adjacent to B. Assume C' was a child of B.
Since C must be an ancestor of A or B, C must be an ancestor of A. Then B is an ancestor
of A, contrary to the assumption. 3.) According to the second part C' is a parent or spouse of
B. If C was a parent of B, C' would be a non-collider on py. This contradicts the definition of
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pv, hence C' is a spouse of B. Moreover, since C' is an ancestor of A or B, C' is an ancestor
of A. 4.) The inclusion D-Sep(B, A, M(G)) 2 pa(B, M(G)) follows since if V is a parent of
B then V—DB is a path py as required by the definition. We now show the opposite inclusion
D-Sep(B, A, M(G)) C pa(B, M(G)) by showing that V' € pa(B, M(G)). Case 1: py has two
nodes only. By the second part of this Lemma V' is a parent or spouse of B. Assume it was a spouse.
Then V' must be an ancestor of A, which with A € an(B,G) gives C € an(B,G). But then C
cannot be a spouse of B. Case 2: py has more than three nodes. By the third part of this Lemma we
then get that C' is an ancestor of A, which agains leads to the contradiction C' € an(B, G). O

Proof of Lemma(S3} 1.) A € an(B, G) gives D-Sep(B, A, M(G)) = pa(B, M(G)) by part 4.) of
Lemma[S6] Consider C' € pa(B, M(G)). Then, C is adjacent to B in C(G) with a link that does
not have a head at C'. Moreover, C' cannot be after B. Since A and B are not adjacent, C' cannot
be A. Hence C in apds:(B, A,C(G)). 2.) Consider V € D-Sep(B, A, M(G)) and let the path py
be as in Definition Case 1: V is a parent of B in C(G). Then, as the proof of the first part
of this Lemma shows, V' € apds:(B, A,C(G)). Now assume V was a child of A in C(G). Then
A € an(B, G), contradicting the assumption. Hence V' € napds; (B, A,C(G)). Case 2: V is not
a parent of B in C(G). We now show that py is a path p as required in 3.) of Definition [S5| and
hence V' € napds?(B, A,C(G)). Let C be the node on py that is closest to B, which by 2.) and 3.)
of Lemma is a spouse of B. i) is true since all non end-point nodes on py are colliders on py
together with the fact that C' is a spouse of B. i) is true for the same reason as ¢) together with the
fact that rule R0’a has been exhaustively applied, which guarantees that if an unshielded triple is
a collider then it will be oriented as a collider. iii) is true by 1.) of Lemmal[S€] iv) is true since C
is an ancestor of A by 3.) of Lemma The second and third part of v) are true since all nodes
on py are ancestors of A or B. For the first part of v) observe that if V' is a descendant of A (or B)
in C(G), then since V' is an ancestor of A or B we would get A € an(B,G) (or B € an(A4,G)), a
contradiction. ]

Definition S6 (Weakly minimal separating sets of the second type). In MAG M (G) let A and B be
m-separated by S. The set S is a weakly minimal separating set of A and B of the second type if i)
there is a decomposition S = S1U Sy with 81 C an({A, B}, M(G)) such that ii) if there is S € Sy
such that S’ = S\ S is a separating set of A and B then S € an({A, B}, M(G)). The pair (81, S2)

is called a weakly minimal decomposition of S of the second type.

Lemma S7 (Selected properties of weakly minimal separating sets). 1.) S is a weakly minimal
separating set of the second type if and only if its canonical decomposition (T, Tz) defined by
Ti = Snan({A, B}, M(G)) and T = S\ T1 is a weakly minimal decomposition of S of the
second type. 2.) If S is a weakly minimal separating set of A and B of the second type then
S Can({A, B}, M(G)) C an({A, B},G). 3.) S is a weakly minimal separating set of the second
type if and only if it is a weakly minimal separating set. 4.) S is a weakly minimal separating set of A
and B if and only if it is a separating set of A and B and S C an({A, B}, M(G)) C an({4, B},G).
5.) If S is a non-weakly minimal separating set of A and B then there is a proper subset S' of S that
is a weakly minimal separating set of A and B.

Proof of Lemma[S7] 1.) if: The existence of a weakly minimal decomposition of the second type
implies weak minimality of the second type. 1.) only if: By assumption there is some weakly minimal
decomposition (Sy,Ss) of the second type. By definition of the canonical decomposition and by
condition %) in Deﬁnitionthe inclusions §; C 77 and hence S; O 7T hold. Assume the canonical
decomposition were not a weakly minimal decomposition of S of the second type. Then there is
some S € Ty such that S’ = &'\ S is a separating set. Since Sy 2O 75 then also S € Ss, contradicting
the assumption that (S, Ss) is a weakly minimal decomposition of the second type. 2.) Since S
is weakly minimal of the second type, its canonical decomposition (77, 73) is a weakly minimal
decomposition of S of the second type. We now show that 7o must be empty. Assume it was not and
let C1,...,Cy, be its elements. Since by construction Cy ¢ an({A, B}, M(G)) and since (T3, T3) is
weakly minimal decomposition of the second type, A and B are not m-separated by S’ = S\ C;. This
means there is a path p that is active given S” and blocked given S. Hence, C; must be a non-collider
on p. Together with Cy ¢ an({A, B}, M(G)) this shows that C is ancestor of some collider D; on
p, which itself is an ancestor of S’ (else p would not be active given S’). Hence, C is an ancestor S’.
Since C; ¢ an({A, B}, M(G)) and Ty C an({A, B}, M(G)), C1 is an ancestor of {Cy, ..., Cy, }.
If n = 1, this is a contradiction already. If n > 1 we may without loss of generality assume that
(1 is an ancestor of C5. Hence, Cs is not an ancestor of C;. By applying the same argument to
C3, we conclude that C5 is an ancestor of {Cs, ..., C,, }. Repeat this until reaching a contradiction.
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This shows 73 = () and hence S C an({A, B}, M(G)) C an({A, B}, G). 3.) if: Condition i) in
Definition is clearly stronger than 7) in Definition 3.) only if: Let S be a weakly minimal
separating set of the second type, for which by part 2.) of this Lemma S C an({4, B}, M(G)).
Therefore, (S, ) is a weakly minimal decomposition of S, showing that S is weakly minimal. 4.) if:
(S, D) is a weakly minimal decomposition 4.) only if: This follows from parts 2.) and 3.) of this
Lemma. 5.) According to (the first special case of) Lemma[S5|S" = S N an({A, B}, M(G)) is a
separating set. This S’ is weakly minimal according to part 4.) of this Lemma. (|

Lemma 1 (Ancestor-parent-rule). In LPCMCI-PAG C(G) one may replace 1.) A-»B by A—B, 2.)
A5 B for A > Bby A—B, and 3.) A% B for A < B by A—B.

Proof of Lemmal(ll 2.) By the fourth point in Definition[S3] A ¢ an(B,G) or there is no S C
pa(B, M(G)) that m-separates A and B in M (G). The first option contradicts A% B, so the second
option must be true. Since A € an(B, G) gives D-Sep(B, 4, M(G)) = pa(B, M(G)) according to
part 4.) of Lemma|[S6] Proposition[ST|then implies that A and B are not m-separated by any set. 3.)
Equivalent proof. 1.) Recall that if A+ B in C(G), then both A*“+B and A+ B would be correct.
The statement then follows since either 2.) or 3.) of this Lemma applies. ]

Lemma 2 (Strong unshielded triple rule). Let Ax*xBx*xC' be an unshielded triple in LPCMCI-PAG
C(G) and Sac the separating set of A and C. 1.) If i) B € Sac and ii) Sac is weakly minimal,
then B € an({A,C},G). 2.) Let Tap C an({A, B}, M(G)) and Tcp C an({C, B}, M(G)) be
arbitrary. If i) B ¢ Sac, i) A and B are not m-separated by Sac U Tap \ {4, B}, iii) C and B
are not m-separated by Sac U Top \ {C, B}, then B ¢ an({A, C}, G). The conditioning sets in ii)
and iii) may be intersected with the past and present of the later variable.

Proof of Lemma 2} 1.) This follows immediately from part 4.) of Lemma 2.) By the
contraposition of Lemmacondition 1) implies that A and B are not m-separated by S¢, and
similarly é7¢) implies the same for C' and B. The additional claims made in the last sentence of the
Lemma follow by the contraposition of Lemma[S5] The statement then follows from Lemma 3.1 in
[Colombo et al., 2012]]. Although there minimality of S4¢ is stated as an additional assumption, the
proof given in the supplement to [Colombo et al., 2012]] does not use this assumption. (|

Proof of the orientation rules given in subsection[S4 Whenever neither a rule consequent nor the
hypothetical manipulations involved in its proof require that a certain edge mark be oriented as head
or tail, the rule also applies when that edge mark is the conflict mark ‘x’. This explains the use of ‘x’
vs. ‘x” marks in the rule antecedents. We repeat that if X **xY s«*xZ is an unshielded triple and a rule
requires Y € Sxz with Sxz weakly minimal, the requirement of weak minimality may be dropped
if X+—Y*—xZ. This is true since when XY +—Z we can conclude Y € an({X, Z},G) from
Y € Sxz even if Sx 7 is not weakly minimal.

RO’a: This follows from the second part Lemma [2] Requirement 4i3) is irrelevant in the case of
perfect statistical decisions, it will then never be true given that ia) or ib) and 7ia) or id) are true.

RO'b: Assume B € an(C,G) were true. By Lemma([l|then B—C in C(G) and hence in M(G).
Since one of ia) or iia) is true by assumption, there is a path p4 5 from A to B that is active given
ﬁAC Upa({A, B},C(G))] \ {A, B, nodes in the future of both A and B}. Due to Lemmas [S4]and
and since B ¢ Sac, pap is also active given Sa¢. Since then every subpath of p4p is active
given S ¢ and since S ¢ is a separating set of A and C, C' cannot be on p 4 5. When appending the
edge B—C' to pap we hence obtain a path p4¢. Since B is a non-collider on pac and B ¢ Sac,
pac is active given S¢. Contradiction. Hence B ¢ an(C, G).

RO'c: Assume B € an(C,G) were true. By Lemma [I]then B—C in C(G) and hence in M(G).
Moreover A+ B or A<~B or A—B in M(G) by assumption. In either case A, B and C form
an unshielded triple in M(G) with its middle node B not being a collider. But then B € Sac.
Contradiction. Hence B ¢ an(C, G).

R0’d: Since all involved middle marks are empty this is just the standard FCI rule RO.

R1’: From the first part of Lemma2]we get B € an({A, C},G). Due to the head at B on its edge
with A we know B ¢ an(A, G). Hence B € an(C,G).

R2': Assume C' € an(A, G) were true. Case 1: A% B+=>C'. Due to transitivity of ancestorship then
also C' € an(B,§G). This contradicts the head at C on its edge with B. Case 2: A+ B-%C. Then
B € an(A, G), contradicting the head at B on its link with A. Hence C' ¢ an(A,G).
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R3': Assume B € an(D,G) were true. By applying the first part of Lemma 2] to the unshielded
triple Ax*o Do*xC' we deduce that D € an({A4,C},G). Thus B € an({4, C},G), contradicting at
least one of the heads at B in the triple As>B+«=C'. Hence B ¢ an(D, G).

R4': This follows from Lemma 3.2 in [Colombo et al., 2012]] together with i) the contrapositions
of Lemmas and and 4) that a pair of variables which in C(G) is connected by an edge with
empty middle mark then this pair of variables is also adjacent in M(G).

R8': Transitivity of ancestorship gives A € an(C,G), hence also C' ¢ an(A4, G).

RY': Assume A; ¢ an(A,,, G) were true, such that A, ¢ A,,. From ¢a) or from ib) for k = 1 together
with the first part of Lemma applied to the unshielded triple A,, = Ag<> A1 +x*+ Ay we then conclude
A% As. By successive application of Lemmato the unshielded triple Ay 1= A+ A1 together
with ia) or from ib) for k = 2,...,n — 1 (in this order) we further conclude A, Ay 1. This gives
A; € an(A,,G), a contradiction to the assumption. Hence A; € an(4,,G).

R10’: Application of the first part of Lemmato the unshielded triple By+*xAx*«(C gives A €
an({B1,C1},G). Say, without loss of generality, A € an(Bj,G). By successive application
of Lemma [2[ to the unshielded triple By Bjy1+*+By1o together with ia) or from ib) for k =
0,...,n — 2 (in this order) we further conclude By, 1- Bj.to. This shows that A € an(D, G).

APR: These are the replacements specified in Lemma|[I] which was already proven above.

MMR: This follows immediately from the causal meaning of middle marks ‘L’, ‘R’, and ‘! given in
Definition O

Lemma S8 (Symbolic middle mark update). Middle marks can be updated by the symbolic rules
K?7+ (*}:(*J’ K*}+ (’:(’and (L)+ (R):(.,I.

Proof of Lemma [S_g} The first rule follows since the middle mark ‘?” does not make any statement,
hence it is consistent with all other middle marks. The second rule follows since the statement made
by the empty middle mark ** implies the statements made by all other middle marks. The third rule
follows from the definition of the middle mark ‘!’. |

Lemma S9 (Algorithm . Assume Algorithm|S2|is being passed a LPCMCI-PAG C(G) as well as
the assumptions stated in Theorem 1.) C(G) remains a LPCMCI-PAG at any point of the algorithm.
2.) The algorithm converges.

Proof of Lemma Write A = X;_, and B = Xj. 1.) Given faithfulness and perfect statistical
decisions, edges are removed if and only if the corresponding nodes are m-separated by some subset
of variables. The for-loop in line 3 considers ordered pairs (A, B) only if A < B with respect to the
adopted total order < . According to Lemma [S4]the default conditioning on parents as described
by lines 5 and 10 does not destroy any m-separations. The algorithm therefore updates the edge
between A and B with middle mark ‘R’ only if A and B are not m-separated by any subset of
apds(B, A,C(G)). Since pa(B, M(G)) C apdsi(B,A,C(G)) holds, A and B are then not m-
separated by any subset of pa(B, M(G)) and the update is correct. Similarly the update with middle
mark ‘L’ is correct. Note that the algorithm resets p = 0 once any edge marks have been updated, i.e.,
once some default conditioning sets may potentially change. Therefore, all separating sets found by
the algorithm are weakly minimal. More formally: The default conditioning set Sy corresponds
to 87 in Deﬁnition and S corresponds to S. Whenever S; changes, the algorithm restarts with
|S2| = p = 0 and keeps increasing p by steps of one. If the algorithm finds that some pair of variables
is conditionally independent given Sg. ¢ U S, this pair of variables is not conditionally independent
given Sg.r US’ for a proper subset S” of S. This is because CI given Sger US’ was tested before and
rejected, if it would not have been rejected the edge would have been removed already. The statement
then follows from correctness of the orientation rules, which is already proven. 2.) If A and B are
connected by a link with middle mark ‘?” or ‘L, the algorithm keeps testing for CI given subsets
of apds;(B, A,C(G)) until the link has been removed or updated with middle mark ‘R’. Similarly,
if A and B are connected by a link with middle mark ‘?” or ‘R’, the algorithm keeps testing for
CI given subsets of apds;(A, B,C(G)) until the link has been removed or update with middle mark
‘L’. There is no orientation rule that turns a middle mark ‘!’ back into ‘?’, ‘L’, or ‘R’, and there is
no orientation rule that modifies an empty middle mark. With the update rules given in Lemma[S§]
this shows that all remaining edges will eventually have middle marks ‘!” or ¢’ (empty). Then, the
algorithm converges. ]
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Lemma S10 (An implication of middle mark ‘!"). Assume A+*«B in LPCMCI-PAG C(G) but
A ¢ adj(B, M(G)). Then: 1.) A ¢ an(B,G) and B ¢ an(A,G). 2.) Assume further that R0'a has
been exhaustively applied to C(G). Then, A and B are m-separated by a subset of napds;(B, A,C(G))
and by a subset of napdsi(A, B,C(G)).

Proof of Lemma [S10] Without loss of generality we can assume that A < B. 1.) Assume A €
an(B,G) were true. Then A and B would be m-separated by some subset of D-Sep(B, A, M(G))
for which D-Sep(B, A, M(G)) = pa(B, M(G)) by 4.) of Lemma|[S6| This contradicts A+"+B and
hence Ax'«B. Similarly B € an(A,G) contradicts A*™xB and hence A+'«B. 2.) This follows
from the first part together with Lemma|[S3] |

Lemma S11 (LPCMCI without Algorithm [S3). Consider modifying the LPCMCI algorithm 1] by
skipping line 6 of its pseudocode, i.e., by not executing Algorithm Denote the graph returned
by this modified algorithm as C(G)'. Then: 1.) C(G)" is a LPCMCI-PAG. 2.) If A% B in C(G)’
then A € adj(B, M(G)). 3.) If Ax*«B in C(G) and A ¢ adj(B, M(G)) then A ¢ an(B,G) and
B ¢ an(A,G).

Proof of Lemma 1.) According to the MMR orientation rule the initialization of C(G) in
line 1 of Algorithm|[I]produces an LPCMCI-PAG C(G). Since Lemma|[S9|proves that C(G) is still
an LPCMCI-PAG after line 3, this remains true when some parentships are carried over after the
re-initialization in line 4. The statement thus follows from Lemma|[S9] 2.) The proof of the second
part of Lemma [S3|implies that all edges in C(G)’ have middle marks ‘!’ or ** (empty). If A—B
in C(G)', then A € adj(B, M(G)) by the seventh point in Definition [S3] If A~>B in C(G)’, then
A € adj(B, M(G)) by the APR orientation rule, see Lemmal[l} 3.) According to the proof of the
previous point A+—B or A+«B, and since A ¢ adj(B, M(G)) the seventh point in Definition [S3]
further restricts to A«'+B. The statement then follows from the first part of Lemma[S10} ]

Lemma S12 (Algorithm|[S3). Assume Algorithm[S3|is being passed a LPCMCI-PAG C(G). 1.) C(G)
remains a LPCMCI-PAG at any point of the algorithm. 2.) The algorithm converges.

Proof of Lemma Write A = X} __ and B = X]. 1.) An edge between A and B is updated
with the empty middle mark only if A and B are not m-separated by a subset of napds;(B, A,C(G))
or 7 = 0 and A and B are not m-separated by a subset of napds;(A, B,C(G)). Note that R0'a is
exhaustively applied in line 22 of Alg.[S2]as well as in line 23 of Alg.[S3] According to Lemma
[S10]the update is then correct. Apart from this the proof parallels the proof of 1.) of Lemma[S9] 1.)
If A and B are connected by a link with middle mark ‘!’, the algorithm keeps testing for CI given
subsets of napds(B, A,C(G)) and if 7 = 0 also given subsets of napds;(A, B,C(G)) until the link
has been removed or updated with the empty middle mark. There is no orientation rule that turns
a middle mark ‘!’ back into ‘?’, ‘L, or ‘R’, and there is no orientation rule that modifies an empty
middle mark. With the update rules given in Lemma [S§] this shows that all remaining edges will
eventually have empty middle marks. Then, the algorithm converges. (]

Theorem 2 (LPCMCI is sound and complete). Assume that there is a process as in eq. (I) without
causal cycles, which generates a distribution P that is faithful to its time series graph G. Further
assume that there are no selection variables, and that we are given perfect statistical decisions about
CI of observed variables in P. Then LPCMCI is sound and complete, i.e., it returns the PAG P(G).

Proof of Theorem Soundness: According to the MMR orientation rule the initialization of C(G)
in line 1 of Algorithm [I] produces an LPCMCI-PAG C(G). Since Lemma [S9 proves that C(G) is still
an LPCMCI-PAG after line 3, this remains true when some parentships are carried over after the
re-initialization in line 4. Stationarity both with respect to orientations and adjacencies is always
enforced by construction. The statement then follows from Lemmas[S9|and [S12]together with the
first, second, third, and seventh point in Definition Completeness: Note that after convergence
of the while loop in Alg.|S3|all middle marks in C(G) are empty. Since according to Lernmam this
C(G) is a LPCMCI-PAG, the skeleton of C(G) agrees with that of M(G). Note again that stationarity
both with respect to orientations and adjacencies is always enforced by construction, and that rules
R5 through R7 do not apply due to the assumption of no selection variables. Completeness then
follows since the orientation applied in line 27 of Algorithm[S3]contain the FCI orientation rules R0
through R4 and R8 through R10 as special cases. (|

Theorem 3 (LPCMCl is order-independent). The output of LPCMCI does not depend on the order
of the N time series variables X7 (the j-indices may be permuted).
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Proof of Theorem 3| Both Algorithms[S2]and[S3|remove edges only after the for-loop over ordered
pairs has been completed. The ordering of ordered pairs imposed by the outer for-loop is order-
independent. Note that the sets Ssearch, Sepqpen and 82, are ordered by means of 1™, Since
this is an order-independent ordering, the break commands do not introduce order-dependence. The
application of orientation rules is order-independent by construction of Algorithm [S4} Orientations
and removals are only applied once the rule has been exhaustively applied, and conflicts are removed
by means of the conflict mark ‘x’. Lastly, as discussed at the end of Sec.[S5] also the decision of

whether a node is in a separating sets are made in an order-independent way. (]

S9 Further numerical experiments

On the following pages we present various further numerical experiments for evaluating and compar-
ing the performances of LPCMCI and the SVAR-FCI and SVAR-RFCI baselines. For each setup
we show results for significance levels o = 0.01, 0.05 and, depending on the setup, for different
autocorrelation values a, numbers of observed variables [N, maximum time lag 7y,,x, fraction of
unobserved variables A, and sample sizes 7. We focus the discussion on orientation recall and
precision, runtimes, and control of false positives.

Nonlinear experiments with GPDC CI test: Results for the nonlinear conditional independence
test GPDC [Runge et al., 2019] are shown in Figures [S2] (I" = 200) and [S3] (" = 400). Each
figure depicts the results for N = 3,5,10 observed variables and o« = 0.01,0.05 with varying
autocorrelation on the x-axis. In these experiments we employ a variant of the model in eq. (3] that

features half linear and half nonlinear functions of the form f;(z) = (1 + 5ze"/ 20)x, chosen
because these tend to yield stationary dynamics. Further, a third of the noise distributions are
randomly chosen to be Weibull distributions with shape parameter 2 (instead of Normal distributions).

We find that also here LPCMCI has much higher adjacency and orientation recall than the SVAR-FCI
and SVAR-RFCI baselines, especially for contemporaneous links. Precision is overall comparable,
but lagged precision often higher for LPCMCI. For N = 3 we observe partially not controlled false
positives for all methods.

Linear experiments for varying number of variables N: In Figures [S4}{S6| we depict results
for varying numbers of observed variables N and 7' = 200, 500, 1000, a = 0,0.5,0.95,0.99, and
a = 0.01,0.05. Since the fraction of unobserved variables is kept at A = 0.3, an increasing number

of observed variables IV also corresponds to an increasing number of total variables N.

For the case of no autocorrelation LCPCMI has slightly higher recall and slightly lower precision at a
higher runtime. For intermediate autocorrelation (a = 0.5) the results are similar to those for a = 0,
but SVAR-FCI’s runtime is higher. For N = 3, T = 200, a = 0.01 false positives are not controlled,
but less so for LPCMCI. For higher autocorrelation LPCMCI has 0.2-0.4 higher contemporaneous
recall and also substantially higher lagged recall throughout. In the highly autocorrelated regime we
observe inflated false positives for SVAR-FCI and SVAR-RFCI due to ill-calibrated CI tests, similar
to the PC algorithm as discussed in [Runge et al., 2019]].

Linear experiments for varying maximum time lag 7,,,: Figures show results for vary-
ing maximum time lags 7, and 7' = 200, 500, 1000, a = 0,0.5,0.95,0.99, and o = 0.01, 0.05.

For no autocorrelation all methods have almost constant contemporaneous recall, only lagged recall
shows a slight decay. Note that the true PAG changes with 7,,,x. Contemporaneous precision is also
largely constant, while lagged precision decreases for all methods. Runtime increases and sharply
rises for LPCMCI with k£ = 0, indicating that the edge removal phase of Algorithm [S3]is faster for
higher £k, i.e., after several preliminary phases have been run. SVAR-FCI similarly features exploding
runtimes for large 7,.x, both intermediate and higher autocorrelations. Again, false positives in
SVAR-FCI and SVAR-RFCI are not well controlled for small 7, and o = 0.01.

Linear experiments for varying sample size 7': In Figures[STOHSI2|we depict results for varying
sample sizes T'and N = 3,5,10, a = 0,0.5,0.95,0.99, and o = 0.01, 0.05.

As expected, both recall and precision increase with 7. Also runtime increases, but only slowly,
except for LPCMCI with £ = 0 where it explodes for N = 10. The higher the autocorrelation, the
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better the increase in recall and precision for contemporaneous links. For N = 3 lack of false positive
control (less so for LCPCMI) is visible for all sample sizes. For strong autocorrelations there is a
minor decrease in the orientation precision of contemporaneous links when increasing the sample
size from T' = 500 to 7" = 1000. Since at the same time there sometimes is a slight increase in the
orientation precision of lagged links, we do not see a straightforward explanation of this observation.

Linear experiments for varying the fraction of unobserved variables \: In Figures[S13 we
show results for varying fractions of unobserved variables A and 7' = 200, 500, 1000, N = 3, 5, 10,
a =0,0.5,0.95,0.99, and o = 0.01, 0.05.

For no autocorrelation both recall and precision decay, while runtime is almost constant. For
intermediate and strong autocorrelation we observe a strong decay in recall (even stronger for
contemporaneous links), and a less stronger decay in precision. Runtime is almost constant.

Linear experiments for the non-time case: The previous experiments already cover non-
autocorrelated time series, see the various results for ¢ = 0. In these cases LPCMCI shows a
performance similar to the baselines. Here, we additionally analyze the truly non-time series case.

The numerical experiments are based on a purely contemporaneous variant of the model in eq. (3),
namely

Vi =S.eVi+n for je{l,...,N}. (815)

Note that the time index ¢ could equally well be dropped, such that the samples here conform to the
i.i.d. case. Contrary to the previous setup we randomly choose L = |0.3N (N — 1)/2] linear links
(corresponding to non-zero coefficients c;). This results in a graph with a constant link density of
30%, which was not feasible in the time series case since it would lead to non-stationary dynamics.
As before, the fraction of unobserved variables is A = 0.3.

In Figure[ST9| we show results for varying numbers of observed variables N = 10, 20, 30, 40, sample
sizes T = 100, 200, 500, and significance levels « = 0.01,0.05. While in the non-time series
case SVAR-FCI and SVAR-RFCI respectively reduce to FCI and RFCI, we keep the naming for
consistency.

SVAR-FCI, SVAR-RFCI, and LPCMCI(k = 0) all perform very similar with a slight advantage for
SVAR-RFCI, which also has the lowest runtimes. LPCMCI(k = 4) shows higher recall but also lower
precision and partly inflated false positives. A more detailed analysis of this drop in performance of
LPCMCI with higher £ is subject to future research. We hypothesize that with additional preliminary
iterations LPCMCI determines increasingly many false ancestorships, which are then used as default
conditions and thereby prevent some true conditional independencies from being found.

Linear experiments for models with discrete variables: Recall that LPCMCI is designed to
increase effect sizes (with the aim to in turn increase the detection power of true causal links) by using
known causal parents as default conditions (and by avoiding to condition on known non-ancestors).
The higher-dimensional conditioning sets come, however, at the price of an increased estimation
dimension. This has a counteracting negative effect on detection power. As supported by the various
experiments in the main text and above, for continuous variables loosing O(1) degrees of freedom
by default conditioning is negligible to, e.g., @(100) sample sizes. In this case the positive effect of
increased effect sizes prevails. We now study the models with discrete-valued variables, where the
increased cardinality of conditioning sets is expected to have a much stronger effect on the estimation
dimensions.

The numerical experiments are based on a linear and discretized variant of the model in eq. (3) of the
form

VP = g (05Vi + SV, + (M = 22)) for je{l,...N}, (16

where b{ ~ Bin(npin, 0.5) with ny;y, € 27 are Binomial noises. The function g,,,,, decomposes as
Gnpsn = gfllb)n 0 ¢@, where g(® rounds to the nearest integer and gfllb)ﬂ (z) = x for |z| < nppn /2 and
g,(le)m (z) = sign(x) - npin/2 else. This implies that each variable can take at most ny;, + 1 values.
The choice of parameters a; and ¢; as well as the choice and fraction of unobserved variables are

unaltered, i.e., as explained below eq. (3) in the main text.
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Statistical tests of (conditional) independencies are performed with a G-test, see e.g. section 10.3.1
of [Neapolitan, 2003||. The details of our implementation are as follows: When testing for CI of X
and Y given Z1, ..., Z,, a separate contingency table of X and Y is made for each unique value
(2%, ...,2%) that is assumed by the conditions. Rows and columns in these contingency tables that
consist of zero counts only are removed. For each such table we calculate the degrees of freedom
and the test statistic as for an unconditional G-test and sum those values up. If the total number of

degrees of freedom falls below one, the test judges independence.

Figure [S20]shows the results for N = 4 observed variables, sample size 7' = 2000, and significance
levels av = 0.01, 0.05 with varying autocorrelation on the x-axis.

The bottom row depicts the case with ny;,, = 4. SVAR-FCI, SVAR-RFCI, and LPCMCI(k = 0)
perform largely similar in terms of adjacency and orientation recall. LPCMCI(k = 0) has slightly
higher lagged recall but also lower precision. LPCMCI(k = 4) has much lower recall (both regarding
adjacencies and orientation) for contemporaneous links and autodependency links, but higher recall
for lagged links. It further shows uncontrolled false positives and lower precision. One reason for
this loss in performance can be found in the much higher cardinalities of CI tests in LPCMCI(k = 4).
These seem to not only lead to lower power but also ill-calibrated CI tests. For ny;, = 2, depicted in
the top row of Fig.[S20] the overall results are similar.

These results can only be regarded as preliminary since there are different choices regarding the
implementation of the G-test of conditional independence as well as a number of other ways to design
discrete-variable models.

Comparison of LPCMCI to residualization approaches: The previous results demonstrate that
LPCMCI shows strong gains in recall for autocorrelated continuous variables. One might wonder
whether in the autocorrelated case SVAR-FCI benefits from a data preprocessing that is targeted at
removing autocorrelation.

We test this idea by employing two residualization approaches: First, by fitting independent AR(1)
models to each times series and then running SVAR-FCI on the residuals (SVAR-FCI-prewhite).
This approach was also tested in the causally sufficient case with no contemporaneous links in
[Runge, 2018|| [Appendix B, Section 3]. Second, by using Gaussian process regression as proposed
in [Flaxman et al., 2015]] instead of the AR(1) models (SVAR-FCI-GPwhite). More precisely, for
every time series X’ we fit a Gaussian process model of X7 on the time index variable (t = 0,...,n
where n is the sample size) and apply SVAR-FCI on the residuals. As a kernel we used the Radial
Basis Function with an added unit variance White kernel. The RBF hyperparameters are optimzed as
part of the default Python scikit-klearn implementation. These results are compared to standard
LPCMCI run without prior residualization.

Figure shows the results for NV = 5 observed variables, sample sizes 7' = 200, 500, and
significance levels a = 0.01, 0.05 with varying autocorrelation on the x-axis.

Both SVAR-FCI-prewhite and SVAR-FCI-GPwhite increase adjacency and orientation recall as
compared to SVAR-FCI. SVAR-FCI-prewhite yields larger gains than SVAR-FCI-GPwhite, but
both are still well below LPCMCI. Both SVAR-FCI-prewhite and SVAR-FCI-GPwhite have lower
precision than SVAR-FCI, lead to inflated false positives, and excessively increase runtime. We
further note that it is not clear what the ground truth MAG and PAG should be after residualization.
This seems to require a substantially different theory.
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Figure S2: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with GPDC CT test [Runge et al., 2019])) for varying autocorrelation a for T = 200 . The left
(right) column shows results for significance level & = 0.01 (o = 0.05). The rows depict results for
N =3, 5, 10 (top and bottom). All parameters are indicated in the upper right of each panel.
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Figure S3: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with GPDC CT test [Runge et al., 2019])) for varying autocorrelation a for ' = 400 . The left
(right) column shows results for significance level & = 0.01 (o = 0.05). The rows depict results for
N =3, 5, 10 (top and bottom). All parameters are indicated in the upper right of each panel.
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Figure S4: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying number of variables IV for 7' = 200 . The left (right) column
shows results for significance level & = 0.01 (o« = 0.05). The rows depict results for increasing
autocorrelation (top to bottom). All parameters are indicated in the upper right of each panel. Some
experiments did not converge within 24hrs and are not shown.
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Figure S5: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying number of variables IV for 7' = 500 . The left (right) column
shows results for significance level & = 0.01 (o« = 0.05). The rows depict results for increasing
autocorrelation (top to bottom). All parameters are indicated in the upper right of each panel. Some
experiments did not converge within 24hrs and are not shown.
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Figure S6: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying number of variables N for 7' = 1000 . The left (right) column
shows results for significance level & = 0.01 (o« = 0.05). The rows depict results for increasing
autocorrelation (top to bottom). All parameters are indicated in the upper right of each panel. Some

experiments did not converge within 24hrs and are not shown.
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Figure S7: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying maximum time lag 7y, for 7' = 200 . The left (right) column
shows results for significance level & = 0.01 (a = 0.05). The rows depict results for increasing
autocorrelation (top to bottom). All parameters are indicated in the upper right of each panel.
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Figure S8: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying maximum time lag 7y, for 7 = 500 . The left (right) column
shows results for significance level & = 0.01 (a = 0.05). The rows depict results for increasing
autocorrelation (top to bottom). All parameters are indicated in the upper right of each panel.
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Figure S9: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying maximum time lag 7y,ax for 7" = 1000 . The left (right) column
shows results for significance level & = 0.01 (a = 0.05). The rows depict results for increasing
autocorrelation (top to bottom). All parameters are indicated in the upper right of each panel.
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Figure S10: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying sample size 7" for N = 3. The left (right) column shows results
for significance level a = 0.01 (o = 0.05). The rows depict results for increasing autocorrelation
(top to bottom). All parameters are indicated in the upper right of each panel.
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Figure S11: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying sample size 7" for N = 5 . The left (right) column shows results
for significance level a = 0.01 (o = 0.05). The rows depict results for increasing autocorrelation
(top to bottom). All parameters are indicated in the upper right of each panel.
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Figure S12: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-
RFCI (all with ParCorr CI test) for varying sample size 7' for N = 10 . The left (right) column
shows results for significance level & = 0.01 (a = 0.05). The rows depict results for increasing
autocorrelation (top to bottom). All parameters are indicated in the upper right of each panel.
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Figure S13: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying fraction of unobserved variables A for 7' = 200 and N =5 .
The left (right) column shows results for significance level a = 0.01 (o = 0.05). The rows depict
results for increasing autocorrelation (top to bottom). All parameters are indicated in the upper right

of each panel

30



LPCMCI(k =0) [l SVAR-FCI [ SVAR-RFCI N=5.T=500,8=00, Fraz=5 LPCMCI(k=0) [l SVAR-FCI 1] SVAR-RFCI W=5,T=500,0=0.0, e =3
B LPCMCl(k = 4) ParCorr, a=0.01 B LPCMCl(k = 4) ParCorr, @ = 0.05
is Adj. TPR id Orient. recall Effect size Runtime [s] i Adj. TPR i Orient. recall Effect size Runtime [s]
. 04 % L . 0.4 . B
08 T L S 2 g PRI LI S "
06 s 0 L o o S o L ; e e % o a
3
04 # 04 i 0 g4 ¥ 04 N 9z
m H H H - ™ 2
00 00 00 00 o0 00 00 0
Adj. FPR Orient. precision Cardinality True PAG Adj. FPR Orient. precision Cardinality True PAG
1.00 10 175 w0 10 10 10
o Lagged + Auto % - » directed o Lagged + Auto LI »> directed
= Contemp. os] ¥ C - " # bidirected o0& = Contemp. 08 bol ™ g # bidirected 0.8
010 B - 125 ?‘ L] , © unorleed Log 564 o - . ¥ . , o unoriensed Lo
° °
0.4 ) L 100 ? L] > 04 04 L .. o~ L5 . ? L > 0.4
0.01: 0.2 o7 * . > 02 02 + il * K L= 02
Y ¥ 10
[ 0350 + - () LY i S
0.00 - ~ 0.0 -0 * & 0.0 0.0 L ﬁ 0.0 <o * * 0.0
oo o3 05 0o 03 05 oo 03 05 oo 03 05 oo 03 o5 oo o3 o5 oo 03 05 00 03 05
Frac. unobserved Frac. unobserved
LPCMCI(k=0) [l SVAR-FCI [ SVAR-RFCI N=5,T=500,8=0.5Tmix =3 LPCMCI(k=0) [l SVAR-FCI [ SVAR-RFCI N=5,7=500,=0.5, Tyay =3
[l LPCMCi(k = 4) ParCorr, a=0.01 W LPCMCI(k = 4) ParCorr, a=0.05
16 Adj. TPR Orient. recall Effect size Runtime [s] b Adj. TPR Orient. recall Effect size Runtime [s]
LW N 0e]® G v . 0ad ® 80
0a] * 081 % o 56 08 0] 8. -
04 o 04 02 = 10 oa ot Mge 04 02 . a0
. LT v e o B = N
02 0.2 0.1 - 5 0.2 02 Ry 01
- - . il YW, e o - & U, u
0.0 0.0 0.0 D 0.0 0.0 0.0 o
i i Adj. FPR i Orient. precision Cardinality True PAG i i Adj. FPR i Orient. precision Cardinality True PAG T
o Lagged + Auto ‘e b Y » directed o Lagged + Auto . | — » directed
» Contemp N 3= * fidirected 03 = Contemp ‘o e . N * directed 08
0.10 oo B o ¥ w ¥ 3 o unoriented | o6 os{ o LI o unoriented  |o6
L ] . 01 . = oy
04 4. 04 04 H 04
I
| . -m > 02 T e . > 02
1
* S ¢ ¥ 00 ool 88 W 00 - « * s 00
00 03 o5 00 03 os 00 03 05 00 03 o5 00 o3 os o0 o3 o0s 00 03 o5
Frac. unobserved Frac. unobserved
LPCMCI(k=0) [ll SVAR-FCI [ SVAR-RFCI N=5,T=500,a=0.95, Tmax =5 LPCMCI(k=0) [l SVAR-FCI [ SVAR-RFCI N=5.T=500,a=0.95, Tmax =5
W LPCMCl(k = 4) ParCorr, @=0.01 W LPCMCl(k = 4) ParCorr, @ =0.05
o Adj. TPR , Orient. recall Effect size Runtime [s] . Adj. TPR , Orient. recall Effect size Runtime [s]
! - 06] %4 & 069 2,
08 o8] * 05 . 0.8 . 084 * 05 30
o il oo e o os o oo o
[} - & o2 L] ™ o . 02 L] 10
02 -, 02 - 01 {tm oy B 02 o 02 - 01l =
' L F ° w
00 ¥ L 00 L L 0
4.6 Adj. FPR 16 2nent, precision Cardlnah:y True PAG 5 b Adj. FPR ) Orient. precision : Cardlnall.ty True PAG id
o Lagged e« Auto 5 - » directed ® Lagged e+ Auto v L » directed
u Contemp. o~ i . . « tdirecfed %8 = Contemp. v . L - 3 3 * gidirecttd o8
010 06 % g alw . © unoriented 08 i i' - s1e . © unoriented 5
& . L % o ' 4
3 04 04 3 04
2 ' -, > 02 ‘_"'.~ - _—.‘ 02 O . > 02
o — o« * L o0 oodvBs ~Ml M oo 1 L 2 & 00
oo 03 o5 oo 03 o5 oo 03 05 oo 03 o5 o o3 o5 oo o3 os 00 03 o5
Frac. unobserved Frac. unobserved
LPCMCI(k =0) [l SVAR-FCI SVAR-RFCI N=5,T=500,a=0.99, Tmax =5 LPCMCI(k =0) [l SVAR-FCI SVAR-RFCI N=5,T=500,a=0.99, Tmax =5
W LPCMCli(k =4) ParCorr, @=0.01 W LPCMClI(k = 4) ParCorr, a = 0.05
o Adj. TPR 1o, Orient. recall Effect size Runtime [s] 1o Adj. TPR , Orient. recall Effect size Runtime [s]
: - 064 15.0 - 0.6 X
08 o8] * - s 08 . 08 * - 30
L ] .
06 . 06 04 100 o5 I 06 04 o
TS R * - LR
04 2 o ey 03 - 5 oa LAY O NPT - *
i 02 - 50 v e . 02 w 10
021 e —an— [ oY s 02 i B S B
0.0 - L 0.0 - L 0.0 0.0 s - 0.0 i L 0.0 0
266 Adj. FPR 16 Snent. precision Cardinality > True PAG - 1 Adj. FPR e Orient. precision Cardinality True PAG 16
o Lagged o+ Auto . " > directed o Lagged « Auto » 7 " » directed
u Contemp. Lo & ° ° °  Gdirecfed o8 = Contemp. 0317w, D 6 . o * bidirecd a
o oy * . © unoriented LR 0sd " i. *; 5 ; . © unoriented b6
. L/ L)
. 3 04 0ad ® a : 04
. —te
2 5 > 02 n 02 ¥ e w > 02
" vy 2
- ]
1 o . + " oo ooliME el Tm oo 1 ——— o o & 00
oo o3 o5 oo 03 o5 oo o3 o5 oo o3 o5 oo 03 o5 oo o3 o5 oo o3 o5 00 03 05

Frac. unobserved Frac. unobserved

Figure S14: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying fraction of unobserved variables A for T’ = 500 and N =5 .
The left (right) column shows results for significance level a = 0.01 (o = 0.05). The rows depict
results for increasing autocorrelation (top to bottom). All parameters are indicated in the upper right
of each panel.
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Figure S15: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying fraction of unobserved variables A for 7= 1000 and N =5 .
The left (right) column shows results for significance level a = 0.01 (o = 0.05). The rows depict
results for increasing autocorrelation (top to bottom). All parameters are indicated in the upper right

of each panel
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Figure S16: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying fraction of unobserved variables A for " = 200 and N = 10 .
The left (right) column shows results for significance level a = 0.01 (o = 0.05). The rows depict
results for increasing autocorrelation (top to bottom). All parameters are indicated in the upper right
of each panel.

33



LPCMCI(k =0) [ll SVAR-FCI SVAR-RFCI N=10,T=500,a=0.0, Tyax =5 LPCMCI(k=0) [l SVAR-FCI SVAR-RFCI N=10,T=500,a=0.0, Tmax =5
B LPCMCl(k = 4) ParCorr, a=0.01 B LPCMCl(k = 4) ParCorr, @ = 0.05
Adj. TPR Orient. recall Effect size Runtime [s] Adj. TPR Orient. recall Effect size Runtime [s]
10 10 N 10 10 N %
04 - 04
08 a 00 == LS T L - L 5000
o ™ - = % - L
o~ 03 o 6 = 03 . 4000
06 06 - C 06 o 06 C
o - o = i 3000
o 04 02 4 0.4 04 0z - 2000
02 b — 02 T — o ST 4 l 2 02 HE w02 Wiy, 02 b L 1000
0.0 0.0 0.0 o 0.0 0.0 0.0 - e v
oo Adj. FPR 1o, Orient. precision Cardinality True PAG o 1o Adj. FPR 1o, Orient. precision Cardinality True PAG -
¥ B ¥ ¥
o Lagged + Auto . » directed o Lagged + Auto : [ »> directed
u Contemp. - - P # bidirected e m Contemp. 1 . 30 . # bidirected 0.8
010 oe]’e sgte B [ . " o unoriented | o P 2s{entu o unoriented |06
. > o © 01 i 20 - > o ©
" 4 10 * L — 04 oafs® o LI — .
b fo, N o G e 1S 5 .
0,01 me— 0.2 4 0z 02 S 10 02
05 B ¥
+ . ] - -
omitin e [ - - os u o, o0
oo o3 05 0o 03 05 oo 03 05 oo 03 05 oo 03 o5 oo o3 o5 oo 03 05 00 03 05
Frac. unobserved Frac. unobserved
LPCMCI(k=0) [l SVAR-FCI SVAR-RFCI N=10,T=500,a=0.5, Tmax =5 LPCMCI(k=0) [l SVAR-FCI SVAR-RFCI N=10,T=500,a=0.5, Tmax =5
[l LPCMCi(k = 4) ParCorr, a=0.01 W LPCMCI(k = 4) ParCorr, a = 0.05
16 Adj. TPR i Orient. recall Effect size Runtime [s] b Adj. TPR 3 Orient. recall Effect size Runtime [s]
oy N oe] 8 200 u . el ® s000
08 08 %, o o8 0s{ -
) 0344 150 03] oF
06 06 B 06 06, B
= » ] L] 3000
v 02 . 100 ks 02 >
04 o 04 < Cr 04 5 04 3 4 Cr 2000
i e,
02 B o2 L o1 = *® o2 Y 01 - l 1000
o o de e N, |, o o, - e *ta %e |o
00 00 00 00 00 00
Adj. FPR Orient. precision Cardinality True PAG Adj. FPR Orient. precision Cardinality True PAG
1.00 10 . »> 10 10 10 . 1.0
o Lagged * Auto . ad e n - cted o Lagged ¢ Auto St 1e - - » directed
= Contemp. T . # bidirected %8 = Contemp. .- . 5] # bidirected 08
010 oo e % g 3 | o @noriented [0 06 2 i L o Gnoriented |6
.- [ 01 -
0.4 2 L 04 04 - 3 0.4
% o o e W ) :
4 .. > ¥ . ¥ L »
0,01 { et 0.2 N R 3o 02 _. T . 02 . ¥l S 3 02
oood 80 "W 0o s 00 oollm e "M s . 00
o0 o3 o0s 00 03 o5 00 03 os 00 03 05 00 03 o5 00 o3 os o0 o3 o0s 00 03 o5
Frac. unobserved Frac. unobserved
LPCMCI(k =0) [l SVAR-FCI SVAR-RFCI N=10,7=500,a=0.95, Tmax =5 LPCMCI(k =0) [l SVAR-FCI SVAR-RFCI N=10,T=500,a=0.95, Tmax =5
W LPCMCl(k = 4) ParCorr, @=0.01 W LPCMCl(k = 4) ParCorr, @ =0.05
o Adj. TPR i Orient. recall Effect size Runtime [s] . Adj. TPR R Orient. recall Effect size Runtime [s]
! 2 06 % “Ta 06] %
0.8 o8] * 05 B 0.8 08 * 05 125
50
06 & 06 ol ® w06 ———— 6 oal® b
e 20 03 e » 2 0.3 < 0 75
04 04 i e - o o4 04 L .
. 02 20 » L] 02 50
021 ® 029 w - L) 0.2 024 ® w L] 25
o . e L 10 e e b Bl T
00 o W, v o 0o - B o e o o
4.6 Adj. FPR 16 (.)nent, precision Cardinality True PAG 5 b Adj. FPR ) Orient. precision Cardlnalllty True PAG id
o Lagged + Auto % 6 . " » directed o lagged « Auto . s = »> directed
u Contemp. PO . # bidirected o2 ul Contemp o ¥ . # bidirected o8
010 06 o ;’ : r - o @noriented |06 . o8t 2 o @noriented [
. o
B 0ad © ] 04 ® o a 4 04
+
s 0.2 240 . .. > 02 . - » » 02
E 8 oo o * 00 . 00
03 05 oo 03 o5 oo 03 o5 oo 03 05 o o3 o5 oo o3 os 00 03 o5
Frac. unobserved Frac. unobserved
LPCMCI(k=0) [l SVAR-FCI [l SVAR-RFCI B=10,T=500,8=0:99, Tpgy =5 LPCMCI(k =0) [l SVAR-FCI |1 SVAR-RFCI N=10.T=500.8=099, T, 5
W LPCMCli(k =4) ParCorr, a=0.01 W LPCMClI(k = 4) ParCorr, a = 0.05
o Adj. TPR 1on , Orient. recall Effect size Runtime [s] 1o Adj. TPR , Orient. recall Effect size Runtime [s]
i 2 0] " o0 (] 0.6 % i
08 0.8 . 05 0.8 08 2 05
06 = . 06 04 ® = @ 06 ~ 06 04l ® . -
04 04 e 2 . 0 o4 04 & e 03 ik
M 02 L 02 50
02 02 L] 20 0.2 - . 02 - L]
e P 01{sm % em -0 el O gy e
0o LR Y ¥ % o 0o R ¢ 'w o
266 Adj. FPR 16 (‘)nent. precision Cardinality > True PAG - 1 Adj. FPR e Orient. precision Cardinality True PAG 16
o Lagged + Auto R, & . »> directed o Lagged  * Auto - & L] > directed
u Contemp. -, T & - . # bidirected 08 = Contemp. . & 0 R s # bidirected a
010 6 CR . e+ - o @noriented |06 TS BRI o 8 : o @noriented |6
LI o 4 01 o
B 04d ® o P 04 . 04{ % % a 4 04
0,01 et 0.2 24 = . . > o 02 - NS 02 " & 3 > o 02
* 2 *
) > L] >
oolil T T o0 1M = te . 00 ool m w 00 ¥ =w s . 0.0
oo o3 o5 oo 03 o5 oo o3 o5 oo o3 o5 oo 03 oo o3 o5 oo o3 o5 00 03 05

Frac. unobserved

Frac. unobserved

Figure S17: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying fraction of unobserved variables A for 7" = 500 and N = 10 .
The left (right) column shows results for significance level a = 0.01 (o = 0.05). The rows depict
results for increasing autocorrelation (top to bottom). All parameters are indicated in the upper right
of each panel.
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Figure S18: Results of numerical experiments for LPCMCI compared to SVAR-FCI and SVAR-RFCI
(all with ParCorr CI test) for varying fraction of unobserved variables A for 7" = 1000 and N = 10 .
The left (right) column shows results for significance level a = 0.01 (o = 0.05). The rows depict
results for increasing autocorrelation (top to bottom). All parameters are indicated in the upper right
of each panel.
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Figure S19: Results of numerical experiments in the non-time series case (see eq. (S13))) for LPCMCI
compared to SVAR-FCI and SVAR-RFCI (all with ParCorr CI test) for varying number of variables
N . The left (right) column shows results for significance level & = 0.01 (a = 0.05). The rows
depict results for 7' = 100, 200, 500 (top to bottom). All parameters are indicated in the upper right
of each panel. Some experiments did not converge within 24hrs and are not shown.
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Figure S20: Results of numerical experiments with the discrete-variable model in eq. for

LPCMCI compared to SVAR-FCI and SVAR-RFCI (all with G-test of conditional independence)
for varying autocorrelation a for 7' = 2000 and N = 4 . The left (right) column shows results
for significance level o = 0.01 (o = 0.05). The top (bottom) row depicts the case with ny;, = 2

(Npin = 4) In

eq. (ST6).
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Figure S21: Results of numerical experiments for LPCMCI compared to SVAR-FCI, SVAR-FCI-
prewhite, and SVAR-FCI-GPwhite (all with ParCorr CI test) for varying autocorrelation a for N = 5.
The left (right) column shows results for significance level & = 0.01 (o« = 0.05). The top (bottom)
row depicts results for sample size T' = 200 (T' = 500). All parameters are indicated in the upper
right of each panel.
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S10 Figures illustrating the application to the real data example

This section shows the results that underlie the discussion of the application to the real data example
in Sec. 5] of the main text. Figure[S22]shows the PAGs estimated by LPCMCI(k) for k = 0,...,3
and o = 0.01,0.05. The results of LPCMCI(k = 4), although mentioned in the main text, are not
shown because they agree with those of LPCMCI(k = 3) for both considered values of «. Figure

shows the PAGs estimated by SVAR-FCI for o = 0.01,0.03,0.05,0.08,0.1,0.3,0.5,0.8. All
results are based on ParCorr CI tests and 7,,, = 2. The link colors encode the absolute value of the
minimal ParCorr test statistic of all CI tests for the respective pair of variables.

a=0.01, k=0 a=0.05, k=0
t-2 t-1 t t-2 t—1 t
Y Y
X X
7 e T 7 . e e
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Figure S22: PAGs estimated by LPCMCI(k) on the real data example as described in Sec. [5 of the
main text. The respective values of k£ and « are shown above each individual plot.
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Figure S23: PAGs estimated by SVAR-FCI on the real data example as described in Sec. [5]of the
main text. The respective values of « are shown above each individual plot.
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S11 Non-completeness of FCI with majority rule

In Sec. [S5]it was mentioned that FCI becomes non-complete when its orientation rules in the final
orientation phase are modified according to the majority rule of [Colombo and Maathuis, 2014].
While this is probably known, we have not found it spelled out in the literature. Therefore, we here
illustrate this point by the example given in Fig.

A A B @

Figure S24: Example to illustrate the non-completeness of FCI with majority rule. (A) MAG M.
(B) Maximally informative PAG for M, output of FCI without majority rule. (C) Output of FCI with
majority rule.

The left and middle part of the figure respectively show the true MAG and its fully informative
PAG. As proven in [Zhang, 2008]], the latter will be found by the standard FCI algorithm without
modification according to the majority rule. Note that the two heads at node F' are put by the collider
rule RO: Since F is not in the separating set Spg = {A, B,C} of D and E, the unshielded triple
Dx—o Fo— FE is oriented as collider Ds— F'«—E. The output of FCI with modification according to
the majority rule is shown in the right part of the figure. There, the two heads at F' are not found.
The reason is that the majority rule instructs R0 to base its decision of whether Dx—o Flo— F is
oriented as a collider not on the separating set found during the removal phases (this is Spg) but
rather on a majority vote of all separating sets of D and F in the adjacencies of D and E. However,
in the example there are no such separating sets since neither D nor F is adjacent to A. Therefore,
Ds—o Fo— E is not oriented as collider by R0 but rather marked as ambiguous. The heads can
also not be found by R2, R3 and R4, the other rules for putting invariant heads, because these only
oriented edges that are part of a triangle. Since neither F'o— D nor Flo—FE is part of a triangle, the
orientations are not found. As described at the end of Sec. [S5] we employ a modified majority rule in
LPCMCI to guarantee both completeness and order-independence.
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