Development and Simulation of a High-Temperature Heat Pump based on the Reverse Brayton Cycle

Göksel Özuylasi, Anh Phong Tran, Enrico Jende, Jens Gollasch, Leander Schleuss

Institute of Low-Carbon Industrial Processes

Cottbus / Zittau

15.09.2020

Overview

- · Short introduction of the institute
- The High-Temperature Heat Pump (HTHP) "Pilot CoBra"
- Simulation and Pre-Design of HTHP
- Summary / Outlook

DLR Institute of Low-Carbon Industrial Processes

Challenge: CO₂-emissions from industry

- Energy-related CO₂ emissions
 - From the production of the electricity used
 - Use of fossil fuels to provide energy → process heat, steam, work
- Direct process-related CO₂ emissions
 - From non-energetic use of carbonaceous raw materials or from process-related release

Our mission

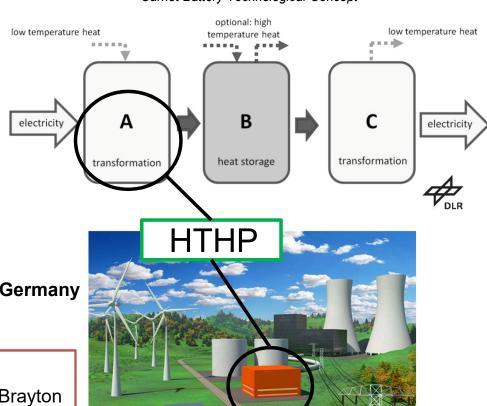
- Offering solutions in the field of energy research and energy system transformation for industry
- Reduction of CO₂ and pollutant emissions from industrial processes and power plants

Research Fields / Departments

High Temperature Heat Pumps
Simulation and Virtual Design
Low-Carbon Reducing Agents

© Stockwerk-Fotodesign/www.stock.adobe.com

Why High Temperature Heat Pumps?


- High demand for process-heat >100 °C in the industry
 - → process heat at 100 500 °C accounted for 30 % of total heating and cooling energy demand in Europe *
- Key Component in Carnot Battery concepts
 - → improving round trip efficiency of Carnot Battery
- Transformation of Coal Fired Power Plants in Lusatia region / Germany

Goals of the institute

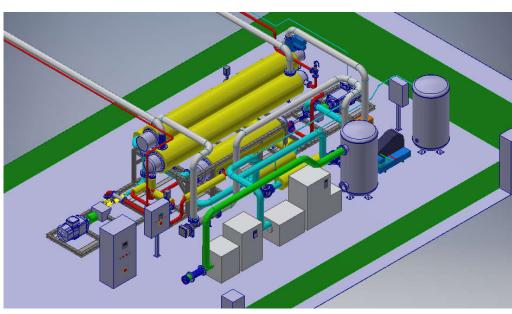
Midterm: Development of large scale HTHPs (>500 °C) based on Brayton and Rankine Cycle

First step: pilot scale HTHP "Pilot CoBra"

Carnot Battery Technological Concept

Third Life Coal-Fired Power Plant

Development of "Pilot CoBra" Cottbus Brayton

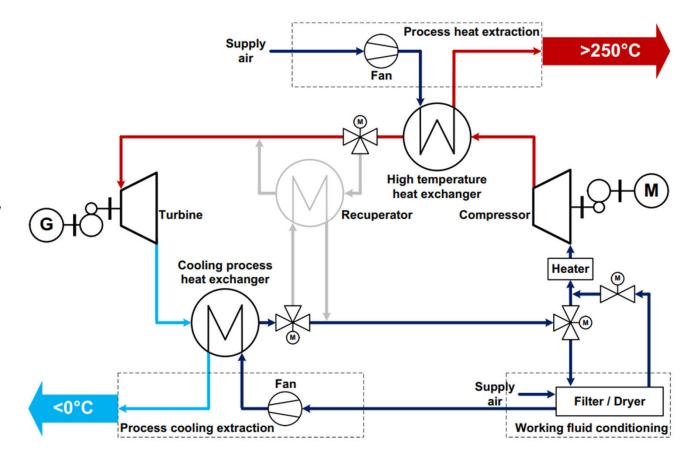

Concept for prototype

- Fully functional HTHP-System
- Reverse Brayton Cycle
- Modular design
- Extensive measurement and control equipment
- Pilot scale

Focus on Know-How and How-To

- Controlling overall HTHP process
- Part-load and transient operation
- Testing of various types of components

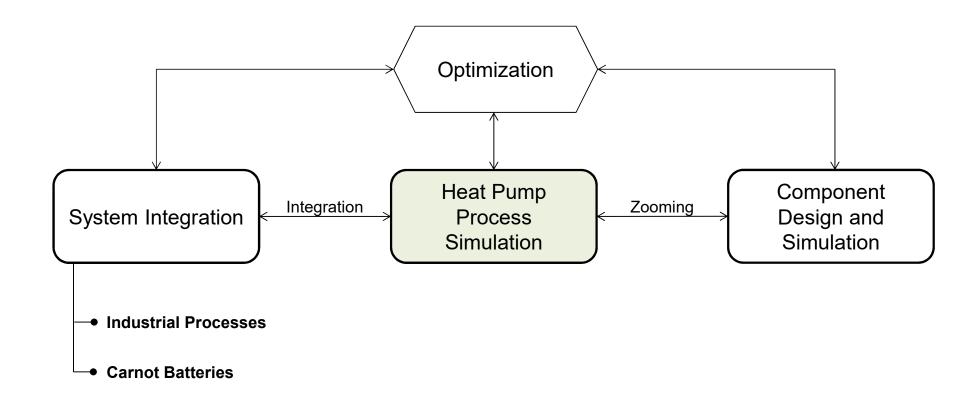
CAD model of Pilot CoBra



- → Prototype
- → Experimental tool
- → Preparation for large scale plant

Pilot CoBra - Design

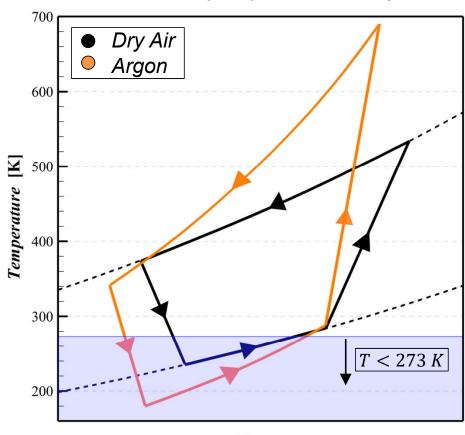
- Initial working fluid: Air
- Main components
 - Axial compressor
 - Pressure ratio = 6 to 7
 - Power consumption: 200 kW
 - Heat exchangers
 - Turbine
 - Power recovery: 80 kW
 - Recuperator



Topics to be addressed

- **Development** of innovative heat pump concepts
- Optimization of the heat pump process and its components
- Integration of HTHPs in large scale industrial processes and Carnot Batteries

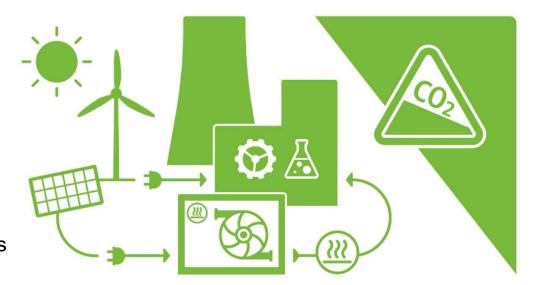
Integrated Simulation Framework



Process-level simulationPreliminary results of working fluid analysis

- Performance simulation of inverted brayton cycles with dry air and argon as working fluids
- Higher temperature differences when argon is used
- Low temperatures for cooling processes achievable
- → Argon should be considered for future heat pump applications e.g. for Carnot Batteries

Inverted Brayton cycles for air and argon



Entropy

Summary / Outlook

- Establishment of the institute: summer 2019
 - Institute is developing well almost 50 % of desired number of employees reached
- Pilot CoBra:
 - → Reached "design freeze"
 - → Main components are being procured
- Scientific work started in all research fields / departments

