
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/347616516

Temporal-Based Intrusion Detection for IoV

Article in it - Information Technology · December 2020

DOI: 10.1515/itit-2020-0009

CITATION

1
READS

58

4 authors:

Some of the authors of this publication are also working on these related projects:

CONCORDIA View project

nIoVe project View project

Mohammad Hamad

Technische Universität München

27 PUBLICATIONS 104 CITATIONS

SEE PROFILE

Zain Hammadeh

German Aerospace Center (DLR)

20 PUBLICATIONS 117 CITATIONS

SEE PROFILE

Selma Saidi

Technische Universität Hamburg

34 PUBLICATIONS 290 CITATIONS

SEE PROFILE

Vassilis Prevelakis

Technische Universität Braunschweig

79 PUBLICATIONS 1,188 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mohammad Hamad on 28 May 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/347616516_Temporal-Based_Intrusion_Detection_for_IoV?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/347616516_Temporal-Based_Intrusion_Detection_for_IoV?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CONCORDIA-2?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/nIoVe-project?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad-Hamad?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad-Hamad?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische-Universitaet-Muenchen?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad-Hamad?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zain-Hammadeh?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zain-Hammadeh?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/German_Aerospace_Center_DLR?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zain-Hammadeh?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Selma-Saidi?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Selma-Saidi?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische-Universitaet-Hamburg?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Selma-Saidi?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vassilis-Prevelakis?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vassilis-Prevelakis?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Braunschweig?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vassilis-Prevelakis?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad-Hamad?enrichId=rgreq-cae4662bc030e25399e4847672b756d7-XXX&enrichSource=Y292ZXJQYWdlOzM0NzYxNjUxNjtBUzoxMDI4MzMzNDU4NDQwMTkzQDE2MjIxODUyMTA0MDM%3D&el=1_x_10&_esc=publicationCoverPdf

it – Information Technology 2020; aop

Mohammad Hamad*, Zain A. H. Hammadeh, Selma Saidi, and Vassilis Prevelakis

Temporal-based intrusion detection for IoV
https://doi.org/10.1515/itit-2020-0009
Received March 14, 2020; revised October 19, 2020; accepted Octo-
ber 20, 2020

Abstract: The Internet of Vehicle (IoV) is an extension of
Vehicle-to-Vehicle (V2V) communication that can improve
vehicles’ fully autonomous driving capabilities. However,
these communications are vulnerable to many attacks.
Therefore, it is critical to provide run-time mechanisms to
detect malware and stop the attackers before they man-
age to gain a foothold in the system. Anomaly-based detec-
tion techniques are convenient and capable of detecting
off-nominal behavior by the component caused by zero-
day attacks. One significant critical aspect when using
anomaly-based techniques is ensuring the correct defini-
tion of the observed component’s normal behavior. In this
paper, we propose using the task’s temporal specification
as a baseline to define its normal behavior and identify
temporal thresholds that give the system the ability to pre-
dict malicious tasks. By applying our solution on one use-
case, we got temporal thresholds 20–40% less than the
one usually used to alarm the system about security vio-
lations. Using our boundaries ensures the early detection
of off-nominal temporal behavior and provides the system
with a sufficient amount of time to initiate recovery ac-
tions.

Keywords: Real-time systems, Security, Safety, Intrusion
Detection

ACM CCS: Security and privacy→ Intrusion/anomaly de-
tection andmalwaremitigation→ Intrusion detection sys-
tems

*Corresponding author: Mohammad Hamad, Technical University of
Munich, Department of Electrical and Computer Engineering,
Munich, Germany, e-mail: mohammad.hamad@tum.de, ORCID:
https://orcid.org/0000-0002-9049-7254
Zain A. H. Hammadeh, Institute for Software Technology, German
Aerospace Center (DLR), Cologne, Germany, e-mail:
zain.hajhammadeh@dlr.de
Selma Saidi, Technical University of Dortmund, Department of
Electrical Engineering and Information Technology, Dortmund,
Germany, e-mail: selma.saidi@tu-dortmund.de
Vassilis Prevelakis, Technical University of Braunschweig, Institute
of Computer and Network Engineering, Braunschweig, Germany,
e-mail: prevelakis@ida.ing.tu-bs.de

1 Introduction

A modern car contains 70–100 small embedded comput-
ers, known as Electronic Control Units (ECUs). Most of
these ECUs rely on a set of sensors and actuators to serve
one or more of the Electrical and Electronic (E/E) systems
or subsystems in the vehicle. These (sub)systems range
from the mundane, such as controlling courtesy lights, to
highly critical applications, such as engine control. These
ECUs are grouped into various sub-networks based on
their functions. The sub-networks are interconnected via a
central gateway. The ECUs within each sub-network com-
municate via different bus systems. Modern vehicles are
also equippedwith various technologies, such asWiFi, 5G,
GPS, and Bluetooth, giving them the capability to collabo-
rate and communicate with roadside units to ensure a safe
and comfortable journey for drivers and passengers. The
increase in vehicle connectivity is a double-edged sword.
On the one hand, it extends the vehicle’s functionalities
and capabilities. On the other hand, it opens the door to
several cybersecurity threats and makes the car a more at-
tractive target for adversaries.

Using the traditional mechanisms to eliminate vul-
nerabilities and to ensure the vehicular system secu-
rity is insufficient by itself. As vehicle complexity grows,
the likelihood of hidden vulnerabilities and threats in-
creases. Therefore, it is critical to provide run-timemecha-
nisms to detect the malware and stop the attackers before
they manage to gain a foothold in the system. E. g., Us-
ing signature-based detection mechanisms is inadequate
since it cannot keep up with the successive and unknown
attackswhichmay target the vehicle during its operational
life.

Figure 1 depicts an exemplary distributed system of
in-vehicle components communication. In an idealistic
world, eachECU is running aRun-TimeEnvironment (RTE)
that hosts multiple (interacting) software components.
These components are safety and non-safety critical ap-
plications. The ECUs are sharing the bus system. Tradi-
tionally, internal vehicle bus systems have been devel-
oped to fulfill safety, cost, and efficiency requirements
without considering any security risks. Ignoring the se-
curity issues left the vehicle under a huge risk when-
ever an attacker can access the bus system. An attacker
can: interfere the communication and try to inject mali-
cious messages (e.g, m4 and m5) and makes the receiv-

https://doi.org/10.1515/itit-2020-0009
mailto:mohammad.hamad@tum.de
https://orcid.org/0000-0002-9049-7254
mailto:zain.hajhammadeh@dlr.de
mailto:selma.saidi@tu-dortmund.de
mailto:prevelakis@ida.ing.tu-bs.de

2 | M. Hamad et al., Temporal-based intrusion detection for IoV

Figure 1: System and threat model of in-vehicle communication.

ing node think that messages are originated from a legiti-
mate ECU (i. e.,masquerade attack), intercept all the mes-
sages exchanged between the different ECUs (i. e.,man-in-
the-middle attack), manipulate the transmitted data (i. e.,
spoofing attack), or fraudulently delay or re-transmit pre-
vious messages (i. e., replay attack). Besides, an attacker
can flood the bus with fake high priority messages to dis-
rupt other communications (i. e., Denial of Service (DoS)
attack).

Adopting security mechanisms that ensure data in-
tegrity, confidentiality, authenticity, and authorization
can protect the in-vehicle network system from most of
these attacks and facilitate the detection of infected mes-
sages (such as m5) [9, 8]. However, a malicious software
component (such as τ2) might remain able to emit mali-
cious packets (e. g., m6) to its remote peer(s), if it is au-
thorized. Some solutions proposed using the period of the
transmitted messages over the bus as a reference to detect
any off-nominal behavior, including dropping and inject-
ing malicious messages [21, 19]. But it is crucial to know
that the in-vehicle messages do not follow consistent tim-
ing intervals all the time. The changes in regular driving
operation can change these timing intervals [24]. Also,
sporadic messages, by its nature, do not have such a fixed
period between any two consecutive messages. These two
cases make many of the network-based IDSs that depend
on the period not reliable. Therefore, in this paper, we de-
cided to consider the component’s behavior that emits the
maliciousmessages insteadof looking at themessages’ be-
havior over the network.

Anomaly-based detection techniques seem to bemore
convenient and capable of detecting the off-nominal
behavior, which could be caused by zero-day attacks.
Anomaly-basedmechanismsmonitor the component’s be-
havior to identify any misuse that falls outside the pre-
defined profile representing the nominal behavior of that
component. A software component’s nominal behavior
can be determined based on different component proper-

ties suchas systemcalls,memory consumption, etc. In this
paper, we propose using the component’s temporal speci-
fication a baseline to define its nominal behavior. Attacks
such as code injection or DoS attacks will usually cause a
breach of this temporal specification, and thus it will be
detected.

The most critical aspect when using anomaly-based
techniques is ensuring the correct definition of the com-
ponent’s nominal behavior. Using inaccurate or wrong
behavior as a reference for off-nominal behavior detec-
tion may cause a high rate of false-positive and false-
negative errors. One example of an improper nominal be-
havior definition, as we will see in this paper, is the use
of safety-driven boundaries that are used to define nomi-
nal behavior from a safety perspective to identify security-
based nominal behavior. This paper extends our previous
work [7].

Contribution: in this paper:
– We introduce the Red-Zone principle, which aims

to relax of a predefined boundary in case they are
very tight or to tight them in case they are over-
approximated (see section 2.1). Also, we present the
required steps to adopt this principle (see section 2.2).

– We show how a safety-based temporal specification is
not useful to detect the malicious behavior of the ob-
served software component (see section 3).

– We identify the proper temporal thresholds which can
be used to adopt Red-Zone Principle which give the
system the ability to predict the presence of malicious
tasks (see sections 4 and 5).

– We present the design and the implementation of the
intrusion prediction schema based on the Red-Zone
principle (see section 6).

– We explain the adoption of our proposed systemusing
a real use case (see section 7).

2 Foundation

2.1 Red-Zone principle

Every task, in a given system, is usually designed to ac-
complish a particular work and behave in a well-defined
way. However, at run-time, a task may not exercise all the
intended functionality and, in some circumstances, a task
may stray outside its planned operational profile for many
reasons such as it could be under an attack or it is already
taken over and it is carrying out the attacker’s commands,

M. Hamad et al., Temporal-based intrusion detection for IoV | 3

Figure 2: Red-Zone principle and the different possible operational
zones of a task [7].

the task has encountered an error due to a hidden software
bug as a result of insufficient testing, etc.

However, straying outside the predefined policy is not
always a sign of malicious behavior. The task may attempt
to perform an action that is legal but not permitted by the
existing policy. This circumstance occurs when an incom-
plete security policy is adopted. Such security policies are
typically defined using under-approximated or very lim-
ited rules due to the preliminary test, which did not cover
all the implemented functionalities. The security policy
in many systems is defined as binary actions (authorized,
not authorized). The system keeps a task running while
it behaves correctly by staying within its designated op-
erational profile; otherwise, it is terminated. Terminating
a perfectly functional component because of a violation,
such as an overflow, may have spectacularly unintended
consequences.

Therefore, rather than terminating the task, we intro-
duce the Red-Zone principle to permit the task to over-
run its designed operational profile until an ultimate limit
but in an observed mode. This window of observation is
called the Red-Zone. Whenever the task exceeds the ulti-
mate limit, it will be terminated (or other option can be
adopted based on recovery policy), leaving behind it an
audit trace with potential information about the vulnera-
bility or the fault. Figure 2 illustrates the possible opera-
tional behaviors of a task. The four main areas represent:
the intended behavior, the actual behavior, the Red-Zone,
and the termination zone for a given task.

An essential benefit of red-zoning is that, by assum-
ing the attack is detected, it allows an attack to be moni-
tored in real-time while the subverted application cannot
cause problems to the system. Another critical goal of red-
zoning is to provide early detection of off-nominal behav-
iors that will give the system the ability to respond effec-
tively.

2.2 Adopting the Red-Zone principle

To adopt the Red-Zone principle, the following three-stage
process needs to be accomplished for each task:
– Establish the nominal behavior of the task.
– Formulate a security policy which defines the vari-

ous execution areas for the task based on observations
made in the previous step. Moreover, the security pol-
icy should determine the appropriate actions within
each zone.

– Implement a framework to enforce the security policy
while the state of the task is changing, reflecting the
execution zones (nominal, red-zone, off-nominal).

Many mechanisms were used to monitor the nominal be-
havior of a task based on different program properties
such as power consumption [13], system call distribution
[23], system calls sequences [1], and so forth. Applying
these mechanisms in the vehicular domain entails sev-
eral challenges, including the limited computing and en-
ergy resources of most ECUs. In this work, we investi-
gate the use of another property. The modern vehicle con-
tains safety-critical and non-safety-critical applications.
One of the main characteristics of safety-critical applica-
tions is that they have strict temporal constraints. The
safety-critical system’s timing behavior could be used by
an anomaly-based detection mechanism to detect various
attacks against such systems.

2.3 Properties of real-time systems

In real-time systems the correctness of the systemdepends
not only on the functional results of the computations,
but also on the time at which the results are produced
[20]. A reaction that occurs too late could be useless or
even dangerous. For example, the anti-lock braking sys-
tem (ABS) on a vehicle needs to react to the sensor on
the wheels and prevent the wheels from being locked up
within a specified period; after this period, the vehiclemay
skid or crash into something.

Real-time systems’ performance has to be validated
against timing constraints to guarantee that the results are
available when they are needed. Timing analysis is often
used to provide off-line safe upper bounds on the tasks ex-
ecution and response times to cover the set of all possible
executions, including corner-cases, which are the small-
est (best) and largest (worst) values that can be observed
at runtime. Before we go further, let us look in details at
real-time tasks and their different properties and timing
constraints.

4 | M. Hamad et al., Temporal-based intrusion detection for IoV

Figure 3: Timing properties of real-time tasks. Dashed rectangle represents the effect of SPP scheduling policy [3] where τ1 (has the highest
priority) takes over the CPU previously allocated to τ2 (has the lowest priority), thereby interrupting its execution.

2.3.1 Real-time tasks

Each real-time task has number of execution requirements
illustrated in Figure 3. Every real-time task τi is defined by
a tuple τi = ⟨C+i ;Di;Ti⟩ where C+i refers to the worst case
execution time (WCET), Di refers to the relative deadline,
andTi refers to theminimum interarrival timewithDi ≤ Ti.
Each task is assigned a priority πi, if a task is activated reg-
ularly,we call itperiodic, otherwisewe call it sporadic, and
βi is used to characterizing theminimumdistance between
two consecutive activation. Every instance of τi is called a
job Ji j. When a job of τi is activated and becomes ready for
execution, it occupies the resource (typically the CPU) for
a duration no longer than C+i of execution. The longest ex-
ecution time (i. e., C+i) can be derived using worst-case ex-
ecution time analysis. The point of time when the task fin-
ishes its execution called completion time. The idle time
between the completion of a job of τi and its deadline is
called a slack Si. Such a slack can be used for the compu-
tation of that jobwithout causing it tomiss its deadline [6].
Real-time task executions are constrained in time to guar-
antee the correctness of the system. This time constraint is
the relative deadline Di which is the maximum allowable
time for a given task to complete its execution. The conse-
quences ofmissing the deadline can be used to distinguish
between two types of real time tasks:
– Soft real-time tasks:Missing a deadline of such tasks

is tolerable. It may cause a degradation in the quality
of service. In most cases, non-safety-critical tasks are
considered as soft real-time tasks.

– Hard real-time tasks: Missing a deadline of such
tasks is intolerable. It could lead to catastrophic sit-
uations. All the safety-critical tasks are considered as
hard real-time tasks.

Similar to that, a (sub-)system of a vehicle is considered
as a Hard real-time system when it contains at least one

Hard real-time task. On the other hand, when all the
(sub)system’s tasks are Soft real-time task, we refer to that
(sub-)system as a Soft real-time system.

2.3.2 Worst-case response time

When multiple real-time tasks are mapped to the same
ECU, they share and compete for the same hardware re-
source, e. g., CPU. The execution of these tasks is con-
trolled by a scheduler which decides at each time which
task canbe executedon theCPU.Different schedulingpoli-
cies are adopted by the scheduler to arbitrate between
the various tasks [4]. SPP scheduling [3] is a well-known
scheduling algorithm in which the scheduler will always
allocate the resource to the ready job of the highest prior-
ity task (see Figure 3). Therefore, a lower priority task may
be preempted by a higher priority one.

The response timeRi then characterizes the timewhich
spans between the activation of a job and its completion.
Response time analysis [18] is used to determine theworst-
case response time (WCRT), it computes an upper bound
on the response time of a task and validate it against its
deadline Di. The busy-window analysis is a well estab-
lished technique for computing theWCRT. It computes the
maximumprocessing timeB+i (q)which is necessary to pro-
cess q jobs of a task τi. B+i (q) under an SPP scheduler is
defined as follows:

B+i (q) := q.C
+
i + ∑

j∈hp(τi)
⌈
B+i (q)
Tj
⌉.C+j (1)

where, hp(τi) is the set of taskswith higher priority thanπi.
⌈B
+
i (q)
Tj
⌉ is the maximum number of jobs from interfering

tasks τj during a time window of size B+i (q). For sporadic
tasks, Tj should be replaced by βj. Note that, the compu-
tation of the busy-window is a fixed point computation as
B+i (q) appears in both sides of the equation, which can be

M. Hamad et al., Temporal-based intrusion detection for IoV | 5

solved iteratively, starting with B+i (q) := q.C
+
i . The compu-

tation of B+i (q) is proven to converge for some Qi ∈ ℕ and
the length of the busy-window is computed as B+i (Qi) [3].
The q-th job is activated at (q − 1)Ti, considering t = 0 at
thebeginningof thebusy-window. Therefore, the response
time of the q-th job is B+i (q)−(q−1)Ti. R

+
i , theWCRT of task

τi, is then computed as follows:

R+i := max
1≤q≤Qi
{B+i (q) − (q − 1)Ti} (2)

We will use a motivational example which represents
a hard real-time system that includes three periodic tasks
τ2 = (1, 4, 4), τ3 = (1, 5, 5), and τ4 = (2, 8, 8) ordered from
the highest to the lowest priority. The system also con-
tains one sporadic task τ1 with execution time C+1 = 1ms
and β1 = 20. The task τ1 has the highest priority but is
rarely activated. By using Equation (2), we can compute
the WCRT for every task of the system as follow (see Fig-
ure 7-b): R1 = 1, R2 = 2, R3 = 3, R4 = 7.

This work considers that the studied system is a hard
real-time systemwith sporadic andperiodic tasks anduses
a uni-processor and SPP scheduling policy. Also, deter-
mining and exploring the required action that needs to be
appliedwhen a task’s execution exceeds its deadline is be-
yond the paper’s scope.

3 Time-based intrusion detection
approach

As the vehicle increasingly becomes more interconnected
with the Internet, the different hard real-time (sub-)sys-
tems become an attractive target of various attacks. How-
ever, these systems have the advantage that they are pre-
dictable by design, as they should comply with temporal
constraints.

Therefore, from the security point of view, we refer to
any malicious activity which alters the predefined tempo-
ral behavior of a real-time task and causes it to miss its
deadline as a temporal attack. The temporal attack could
be caused by deliberate attacks, such as the code injection
attack, when an attacker tries to exploit an existing vul-
nerability (e. g., buffer overflow [2]) to execute injected or
preexisting malicious code to break or force the system to
domalicious actions [14]. The deadlinemissmay be the ul-
timate objective of the attack (e. g., a denial-of-service at-
tack (DoS)), or only a side-effect of the attack as the pro-
cess now needs to carry out both its normal tasks and the
actions of the attacker. If the resources allocated are tight,

Figure 4: Using the WCRT and deadline miss as an indicator of com-
promise could lead to false identification of malicious tasks.

the extra effort will result in slower response time and po-
tentially missed deadlines.

In hard real-time systems, a task is considered off-
nominal whenever it violates its temporal constraint (i. e.,
deadline). Therefore, an intuitive approach is to use the
deadline as a demarcation line that indicates the task’s off-
nominal temporal behavior. However, using the deadline
miss as a sign to predict the off-nominal behavior is insuf-
ficient for many reasons. Firstly, waiting for the task to ex-
ceed its deadline to trigger an alarm about the off-nominal
state is useless, especially in critical-safety hard real-time
systems, because it turns to be too late for the system to
avoid the attack, we refer to this as belated detection. Sec-
ondly, the deadline miss of one task may cause a cascad-
ing deadline misses for lower priority tasks as shown in
Figure 4, where the deadline miss of τ3 causes τ4 to miss
its deadline too. Finally, the use of deadline-based mon-
itoring may not always identify the off-nominal task cor-
rectly. Indeed, the interference on a high priority task may
lead the lower priority tasks to miss their deadline. In this
case, the deadline-based detection will report an issue in
the lower priority tasks without any sign about the high
priority task’s misbehaving. In Figure 4, monitoring sys-
temwill report both τ3 and τ4 asmalicious tasks since they
miss their deadline although τ2 is the one should be iden-
tified since it is the actual task which causes this issue.

AUTOSAR, for instance, also recognized the problems
associated with the deadline-based monitoring approach.
Therefore, it chose to monitor the execution time of tasks
rather than the deadline to ensure the time protection.
This mechanism’s goal is to prevent fault propagation by
killing the task which exceeds the WECT [5]. However, as
mentioned previously, this extreme solution may not be
suitable for hard-real-time systems, as it may cause the
system to enter an unstable state. Zimmer et al. [25] use
the WCET timing bound to detect code injection attacks
by comparing theWCET value with the elapsed time along
the return path. Petal et al. [15] proposed an approach to
monitor the execution time of the running tasks. They use

6 | M. Hamad et al., Temporal-based intrusion detection for IoV

a dedicated security processor to supervise the application
processors. They change the task’s binary file by inserting
instructions at the start and the endof eachblock to instru-
ment the execution time for each block. At run time, the
security processor will determine whether a given block
takes longer than its defined WCET.

Therefore, defining other reasonable temporal bound-
aries to delimit the off-nominal behavior of real-time tasks
is required to prevent the propagation of the temporal con-
straints violations between tasks and support the early de-
tection of the system’s malicious tasks. We aim to define
these boundaries by adopting the Red-Zone principle.

4 Red-zone boundaries for
real-time systems

We extend the use of the Red-Zone principle to establish
appropriate prediction configurations that can be adopted
by real-time systems. These configurationsdefine themon-
itoring boundaries that are used later by the prediction
scheme to detect the task’s off-nominal behavior. The
adoption of the Red-Zone principle is achieved by an of-
fline analysis to define for each real-time task the next
properties:
– The nominal temporal behavior of each task.
– AMonitoringPoint (MP): it is a point in time that rep-

resents the border line between the nominal temporal
behavior and the potential off-nominal one; see Fig-
ure 5. The temporal behavior of a task becomes suspi-
cious whenever this point is passed.

– A Killing Point (KP): it is another point in time (see
Figure 5); the temporal behavior of a task becomes cer-
tainly off-nominal whenever this point is exceeded.

Within each zone, different response strategies can be
adopted such as terminating the malicious task whenever
it exceeds the KP [10].

Two key features determine the efficacy of any pro-
posed mechanism for off-nominal behavior detection,
namely the False Positives Rate (FPR) and the precision
values. FPR,which is defined inEquation (3), identifies the
number of suspicious tasks that complete their jobs before
the killing point over the number of total monitored ones.
Any effective prediction technique should ensure a mini-
mum value of its FPR.

FPR = #{Ri | Ri ≥ MP & Ri < KP}
#{Ri | Ri ≤ KP}

(3)

Figure 5: Linking the Red-Zone areas to the temporal line of the real-
time task [7].

Theprecision,which is defined inEquation (4), is used
to determine the accuracy of the off-nominal behavior de-
tection scheme. The higher value of this factor, the more
accurate the prediction schema. The next equation defines
the precision:

Precision = #{Ri | Ri ≥ KP}
#{Ri | Ri ≥ MP}

≤ 1 (4)

As mentioned previously, the Red-Zone principle de-
fines a time zonewherewe can startmonitoring the system
to safely detect a possible malicious behavior and act on-
time accordingly, before we consider the extreme solution
of terminating a task or a system.

5 Response time-based prediction
configuration

As we described in Section 4, we need to define the re-
sponse time-based temporal nominal behavior of the hard
real-time task. Consequently, we need to determine both
MP and KP.

5.1 Defining temporal nominal behavior and
MP

In real-time systems, the WCRT can be used to character-
ize the system. An intuitive approach to designate the Red-
Zone is to use WCRT as an MP. Starting the monitoring at
the WCRT allows detecting attacks that solely push the re-
sponse time of the system to be larger than the worst-case.
However, waiting until the WCRT to start tracing the task
is, in many cases, too late. Allowing the response time to
exceed the WCRT may cause a cascading deadline miss

M. Hamad et al., Temporal-based intrusion detection for IoV | 7

Figure 6: Execution trace of τ1, τ2, τ3, and τ4.

for lower priority tasks as shown in Figure 4 where the re-
sponse time of τ2 has exceeded R+2 which causes both τ3
and τ4 to miss their deadlines sequentially.

Furthermore, in a real-time system, which contains
periodic and sporadic tasks, theWCRT does not reflect the
ordinary nominal behavior boundary of the system’s tasks.
WCRT analysis takes into account the worst-case scenario
where themaximum interference (i. e., load) is considered.
However, in many cases, particularly in the presence of
a transient overload (i. e., sporadic tasks), the frequency
of activation of these tasks is very low, and therefore the
worst-case scenario with maximum load may never hap-
pen. But, it is nevertheless considered, which results in
very large (pessimistic) bounds on the response time.

Figure 6 shows the execution trace of the four tasks in
our example for a period. The figure shows that the tem-
poral transient overload does not exist (as in the dashed,
green rectangle) most of the time.

Typical Worst-Case Analysis [17] (TWCA) was intro-
duced to take into account the activation frequency of spo-
radic tasks and therefore define a much smaller/tighter
bound on the response time accompanied by the fre-
quency atwhich this boundmight be violated based on the
frequency of the sporadic load [11]. Consequently, the pur-
pose of the typical worst-case is to get as close as possible
to the most probable case to occur at the run-time lead-
ing to typical (and not worst-case) performance. In other
words, it is used to define the nominal behavior boundary
of the tasks.

By applying TWCA analysis for every task τi in the sys-
tem, we get:
– a typical worst-case response time bound TWCRTi

which could be used asMPi for the task τi, along with
– for every k ∈ ℕ+, a bound on the number of execu-

tions of τi (let us say m) which may have a response
time larger than TWCRTi in a window of k consecutive
executions.We refer to it asmout of k. This bound rep-
resents themaximumpermitted FPRi of our prediction
schema for the task τi.

In more formal and generic way, we can define the
mout of k as follows: in any sequence of k jobs of τi (k con-

secutive execution of τi) there are at most (at least)m jobs
(do not) satisfy a given property. In the context of TWCA,
the given property is R+i ≤ TWCRTi. We look to the se-
quence of k as a sliding window where its size is finite and
fixed, containing k jobs. This window slides along to the
infinity and always there must be no more than m jobs in
this window with R+i ≤ TWCRTi.

Indeed, we can define the nominal temporal behavior
of task τi based on this analysis that the nominal response
time of task τi is between]0,TWCRTi].

TWCA refers to the response time of the task τi without
the transient overload (i. e., ignoring the sporadic tasks)
as a typicalworst-case response time TWCRTi for this task.
Figure 7 shows the two relative response times; left part of
the figure shows the TWCRT of the tasks while the right
part shows the WCRT which we already calculated. From
the same figure we can see the difference between the
TWCRT of τ4, which is equal to 4ms, and the R+4 , which
is equal to 7ms.

By unfoldingmultiple executions of the periodic tasks
(i. e., τ2, τ3, and τ4), one can observe an upper bound
of how many times out of the observed executions when
those tasks may coincide with τ1 and have a response time
larger than itsTWCRT. For example, by considering the ex-
ecution trace presented in Figure 6 and by calculating the
response time of the three periodic tasks during the trac-
ing period, we find that out of 20 consecutive executions
of τ2, only 4 observed R2 were longer than TWCRT2. And,
out of 16 consecutive executions of τ3, only 2 observed
R3 were longer than TWCRT3. For task τ4, out of 10 con-
secutive executions, only 2 observed R4 were longer than
TWCRT4.

5.2 Defining KP

After defining the MP, we need to determine the other
boundwhich encloses the Red-Zone area (i. e., KP). In hard
real-time systems, a task becomes malicious whenever its
response time exceeds its deadline. Therefore, the dead-
line is one potential candidate to be adopted as KP. How-
ever, using the deadline as KP is not suitable; keeping
the task running until its deadline will cause a cascading
deadline miss of the low priority tasks, as we have seen
before.

Another proposal is using the WCRT of the task as a
KP. However, the task will be under observation as soon as
it enters its Red-Zone area. This observation will introduce
some overhead. We refer to it as the Monitoring Overhead
(MOV).

8 | M. Hamad et al., Temporal-based intrusion detection for IoV

Figure 7: The TWCRT andWCRT for the τ2, τ3, and τ4.

Definition 5.1 (Monitoring Overhead (MOV)). The extra
time that task needs to consume as result of being in its Red-
Zone area (i. e., under monitoring).

MOVi = C
rz
i × fi (5)

where, Crzi represents themaximum execution time that task
τi still need to consume during its Red-Zone area (i. e., R+i −
TWCRTi), and fi is a factor which represents, for each task,
the factorized overhead. F By considering the worst-case ex-
ecution time of the task τi when the task is fully monitored
is C̄+i , then the fi can be calculated as fi =

C̄+i −C+i
C+i . It is worth

to mention that the real-time system’s monitoring is a vast
topic by itself, and there is much research about how to im-
plement and optimize such a mechanism [16, 22].

The monitoring overhead MOVi is different for every
task τi and is proportional to the size of its Red-Zone.
With the presence of MOV, using WCRT as a KP may cause
killing (if the security policy requires the terminationof the
task when it passes its KP) a benign task since the WCRT
of this task was calculated without considering such an
overhead. Thus, we defined another time point for each
task to represent its KP, called the Early-warning Deadline
(ED).

Definition 5.2 (Early-warning Deadline (ED)). EDi of task τi
is themaximum time for τi to complete its executionwith the
presence of the monitoring overheadMOVj from all interfer-
ing tasks.

EDi = C
+
i +MOVi + ∑

j∈hp(τi)
⌈
EDi
Tj
⌉.(C+j +MOVj) (6)

with initial value EDi = Ci.

We constraint the monitoring overhead by the avail-
able idle time (i. e., slack) to safely monitor the tasks with-

out jeopardizing the schedulability of the task or lower pri-
ority tasks:

∑
j∈H
⌈
maxi∈H Di

Tj
⌉.MOVj ≤ min

l∈H
Sl (7)

where Sl represents the slack of task τl, and H represents
the set of all hard real-time tasks in the system.

Lemma 1.

R+i ≤ EDi ≤ Di (8)

Proof. ∀i ∈ H : MOVi ≥ 0. Substituting in Equation (6) we
get R+i ≤ EDi. Also we know that for each real-time task [6]:

R+i + Si ≤ Di

From Equation (7) and (6), we get EDi ≤ Di.

Corollary 1. If τi and all higher priority tasks entered the
Red-Zone, the presentedmonitoring overheadwill not cause
deadline misses in the lower priority task.

Figure 8 shows the ED of each task in our example
based on Equations (6) and (7). Note that for the sake
of simplifying the calculation of ED4, we assumed that
the overheads sum is equal to the minimum slack (i. e.,
∑k∈H MOVk = mink∈H Sk = 1) and f = 1/5 for all tasks.

6 Design and implementation

To implement our prediction schema, we need to con-
sider two main concepts: (1) the new task state (i. e., Mon-
itored Running) and (2) the monitoring policy, which is in-
tegrated into the scheduler. In the remainder of this sec-
tion, we elaborate on these concepts in more detail.

M. Hamad et al., Temporal-based intrusion detection for IoV | 9

Figure 8: The ED for the τ2, τ3, and τ4.

6.1 Task states

Basically, each real-time task is designed to have a recur-
rent nature. During its life cycle, it can be in one of three
different states: either it is Ready to run, it is already Run-
ning, it is Blocked (i. e., it is waiting for some resources,
or it is Idle waiting for a specific timeout). In our pro-
posed scheme, we introduced another state called Moni-
tored Running state, as shown in Figure 9. Whenever the
task exceeds its monitoring point, it will enter to theMoni-
tored Running state where it is running under observation.
During its running in this state, the task could be blocked
waiting for a resource, or another task could preempt it. It
could complete its execution before the killing point (KP),
or it may breach its KP, which would force it to perform
certain actions based on the applied security response pol-
icy.

The implementation of such a state requires the mod-
ification of the task’s TCB by adding a new field to iden-
tify the state of the task. This Boolean field will be checked
whenever the task exceeds its monitoring point.

6.2 Monitoring policy

Whenever a new task is created, the defined prediction
configurations for this task should be added to its TCB.
Therefore, we need to modify the task’s TCB to include an-
other five fields: The first field is called Monitoring Time
(MT), which holds the value of the monitoring point. The
second field, called Killing Time (KT), contains the value
of the killing point. The third field will holdm. The fourth
one will hold k, and the last field will contain an array of k
integer values (task_window), which will be used to trace
how many tasks have exceeded the MT in the last k jobs.

All these values are used by the integrated monitor-
ing policy, as described in Algorithm 1. Whenever the task
is scheduled to run, the system checks whether the run-
ning task is a new job, so the number of jobs (t_c) needs

Figure 9:Monitored Running state and its relation with other
states [7].

to be increased (line 4). After that, the MT value is loaded
into a timer (line 6). The task is kept executing normally
without any tracing (lines 9–14) while its execution time
does not exceed the MT (i. e., the timer is exhausted). In
the meantime, if a task with higher priority shows up, the
context switching takes place to replace the current task
(lines 11–13).

Whenever the timer reaches its limit (i. e., task’s exe-
cution time passed the MT), the task’s state is changed to
‘monitored’, and the value in the task_window cell, which
refers to the current task, is updated with value 1. When-
ever the number of the cells that include 1s is larger than
m, the system needs to be informed that an attack occurs
since the task violated itsmoutofk condition (lines 19–22).
The task is kept under monitoring until it finishes, or it ex-
ceeds its KT, and at that point, the system needs to be in-
formed about the breach (lines 23–30).

7 Evaluation

To evaluate our approach,we use the Adaptive Cruise Con-
trol (ACC) system as a use case. ACC is a common andwell-
known automotive driver assistance that keeps the vehicle
at a steady speed entered by the driverwithout keeping the
accelerator pedal pressed down continuously and main-
tains a safe headway distance between cars in the same
lane. Internal sensors such as LiDAR and a camera are
used to provide information about the car’s speed ahead,
which helps the ACC system adjust its distance from it by
controlling the engine and brakes.

10 | M. Hamad et al., Temporal-based intrusion detection for IoV

Algorithm 1 LoadTask: using the prediction configuration
while loading the ready task.
Require:
1: TIMER timer
2: procedure LoadTask(TASK cur_t)
3: if (cur_t is new_job) then
4: t_c = t_c + 1
5: task_window[t_c%k] = 0
6: timer.value = cur_t.TCB.MT
7: end if
8: if (cur_t.TCB.monitored == False) then
9: while (timer.value >0 & cur_t not Done) do
10: run_without_tracing(cur_t)
11: if (Preemption) then
12: context_switching()
13: end if
14: end while
15: cur_t.TCB.monitored = True
16: GoTo 18
17: else
18: timer.value = cur_t.TCB.KT − cur_t.TCB.MT
19: task_window[t_c%k] = 1
20: if (sumof (task_window) > m) then
21: apply_recovery_policy()
22: else
23: while (timer.value >0 & cur_t not Done) do
24: monitored_running(cur_t)
25: if (Preemption) then
26: context_switching()
27: end if
28: end while
29: apply_recovery_policy()
30: end if
31: end if
32: end procedure

Figure 10 shows the various software components
which collaborate to achieve the ACC functionality be-
sides the security monitoring component (Sec Monitor).
All these software components are mapped to the same
ECU (i. e., ECU1), and require information delivered by
other components within different ECU and sensors (e. g.,
Radar and internal sensors). The Radar sensor is used to
monitor the road ahead and inform the Object Recogni-
tion task. As long as there is no object ahead, ACC main-
tains the speed value was set by the driver through HMI
input. Otherwise, ACC reacts based on the speed of the de-
tected object. If an ahead vehicle slowed down, the speed

Figure 10: ACC software components based on [12]. The color of
arrows within ECU1 refer to the source of the information which has
the same color and mapped to ECU2.

Table 1:WCETs and Deadlines of software components of ACC sys-
tem. Values for τ2–τ6 are based on [12].

Task Task Name T WCRT

τ0 Sec Monitor 150 4
τ2 Speed Controller 20 5
τ1 NIC 10,200 6
τ3 Distance Controller 100 20
τ4 HMI Output 100 2
τ5 Mode Logic 100 1
τ6 Object Recognition 100 30

controller reduces the car’s speed by releasing the accel-
erator and/or by activating the brake control system. If the
road becomes clear again, ACC accelerates to reach the de-
sired speed. In both cases, HMI output is used to inform
the driver about the current speed and other statues. The
vehicle’s driver can, at any time, disable or enable the sys-
tem, which is captured by the Logic mode component.

Table 1 illustrates the real-time properties of ACC tasks
which are mapped on the ECU1. Within this system, there
are two sporadic tasks (i. e., T0 and T1), and the rest have
periodic activations. Note that in this system, the peri-
odic task deadlines are defined to be equal to the peri-
ods (Di = Ti). The tasks are ordered in the table from the
highest priority to the least one. We are interested in com-
paring the defined MP with the calculated WCRT for each
critical task and see how early we could alarm the system.
Moreover,we are concerned about howoften our approach
could indicate a false off-nominal behavior of each moni-
tored task (i. e., FPR value).

In Table 2, we show the computed bounds on each
task, namely: the worst-case response time (WCRT), the
typical worst-case response time which is considered as
the monitoring point in our scheme (i. e., MP), the killing
point (overall monitoring overhead is considered to be
equal to minimum slack), and the false-positive ratio.
By comparing the WCRTs with the MPs, we observe that
we alarm the system (putting the task in the monitoring

M. Hamad et al., Temporal-based intrusion detection for IoV | 11

Table 2: Red-Zone response time based prediction configuration
and FPR.

Task Mp WCRT ED FPP

τ0 4
τ2 5 9 9,33 2%
τ1 16
τ3 30 51 52,75 8%
τ4 32 53 56,17 8%
τ5 33 54 58,58 8%
τ6 73 94 100 8%

mode) early enough – in this example, the MP is ranging
betweenmost 20% to 40% less than theWCRT-with a very
low FPR (in average 8%). A one has to be aware that the
killing points KP are fair enough to let the task finishing its
execution in case of false positive monitoring (normal ex-
ecution). Simultaneously, to prevent any deadlinemiss for
the lower priority tasks, whichmay cause a degradation in
the system’s QoS.

One other significant concern in the proposed scheme
is its performance overhead. Our monitoring algorithm is
integrated into the system scheduler; thus, it is applied for
each hard and critical task. The added overhead of this
modified scheduler comes from the use of the timers and
the required time to save its value later during the context
switching. Another overhead comes from the tracer; This
overhead directly proportional to the type of the logging
mechanism and the logging details. In our current pro-
posal, we traced only the application’s system calls.

8 Summary and discussion

The early detection of off-nominal behaviors in safety-
critical systems is an important goal. It gives the system
the ability to recover efficiently and prevents fault prop-
agation. In this paper, we proposed prediction configura-
tions for real-time tasks with temporal constraints to pre-
dict these tasks’ off-nominal behavior. The defects of us-
ing the deadline and the worst-case boundaries as abnor-
mality signs for real-time tasks have promoted us to define
other limits. In particular, we used the TWCRT to define a
bound that represents the least privileged temporal bound
for each real-time task. Whenever a given task’s response
time exceeds these bounds, an alarm is triggered to no-
tify the system about a potential off-nominal behavior that
may be caused by the execution of malicious code. Such
configuration allows the task to execute outside its desig-
nated profile under carefully controlled conditions. More-

over, we discussed the prediction scheme’s design, which
uses the prediction configuration to monitor the taskś be-
havior. Our approach depends on tight temporal bounds,
making it applicable to be adopted by existing schedula-
ble hard real-time systems. It is well known that determin-
ing precise prediction bounds is always a challenge. How-
ever, the accurate definition of the Red-Zone bounds will
improve the efficacy of the prediction scheme.

It is essential to understand the decoupling between
theRed-Zoneprinciple and themethod todefine its bound-
aries (mainly the monitoring point), which depends on
the studied system’s charismatics. Defining the monitor-
ing bound can be achieved via multiple methods. One of
these methods is using the TWCA, which considers the
system sporadically overloaded (i. e., systemmust contain
sporadic tasks), which is the case with automotive sys-
tems. Consequently, this method will not be applicable
for a system without sporadic tasks. However, any other
method that gives us a monitoring bound that is less than
the WCRT can be adopted. For example, someone can use
the probabilistic analysis, which is applicable for a full pe-
riodic system, to define such amonitoring point. As future
work, we could use different methods to define Red-Zone
bounds and compare the efficacy of using the produced
bounds with our current method.

Funding: Thiswork is partially supportedby theEuropean
Commission through the following H2020 projects: nIoVe
under Grant Agreement No. 833742, THREAT-ARREST un-
der Grant Agreement No. 786890, CONCORDIA under
Grant Agreement No. 830927, and SmartShip under Grant
Agreement No. 823916.

References
1. Faraz Ahmed, Haider Hameed, M. Zubair Shafiq, and

Muddassar Farooq. Using Spatio-temporal Information in API
Calls with Machine Learning Algorithms for Malware Detection.
In Proceedings of the 2nd ACM Workshop on Security and
Artificial Intelligence, pages 55–62. ACM, 2009.

2. James P. Anderson. Computer Security Technology Planning
Study. Volume 2. Technical report, DTIC Document, 1972.

3. Neil C. Audsley, Alan Burns, Robert I. Davis, Ken W. Tindell,
and Andy J. Wellings. Fixed Priority Pre-emptive Scheduling:
An Historical Perspective. Real-Time Systems, 8(2-3):173–198,
1995.

4. Felice Balarin, Luciano Lavagno, Praveen Murthy, Alberto
Sangiovanni-Vincentelli, et al. Scheduling for Embedded
Real-time Systems. IEEE Design & Test of Computers,
15(1):71–82, 1998.

5. Dominique Bertrand, Sébastien Faucou, and Yvon Trinquet. An
Analysis of the AUTOSAR OS Timing Protection Mechanism.

12 | M. Hamad et al., Temporal-based intrusion detection for IoV

In IEEE Conference on Emerging Technologies & Factory
Automation, 2009 (ETFA 2009), pages 1–8. IEEE, 2009.

6. R. I. Davis, K.W. Tindell, and A. Burns. Scheduling Slack Time
in Fixed Priority Pre-emptive Systems. In Real-Time Systems
Symposium, 1993, Proceedings, pages 222–231, Dec. 1993.

7. Mohammad Hamad, Zain A. H. Hammadeh, Selma Saidi,
Vassilis Prevelakis, and Rolf Ernst. Prediction of Abnormal
Temporal Behavior in Real-time Systems. In Proceedings of
the 33rd Annual ACM Symposium on Applied Computing, pages
359–367, 2018.

8. Mohammad Hamad and Vassilis Prevelakis. Implementation
and Performance Evaluation of Embedded IPsec in Microkernel
OS. In 2015 World Symposium on Computer Networks and
Information Security (WSCNIS), pages 1–7. IEEE, 2015.

9. Mohammad Hamad, Johannes Schlatow, Vassilis Prevelakis,
and Rolf Ernst. A Communication Framework for Distributed
Access Control in Microkernel-based Systems. In 12th Annual
Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT16), 2016.

10. Mohammad Hamad, Marinos Tsantekidis, and Vassilis
Prevelakis. Red-Zone: Towards an Intrusion Response
Framework for Intra-vehicle System. In Proceedings of the 5th
International Conference on Vehicle Technology and Intelligent
Transport Systems, VEHITS 2019, Heraklion, Crete, Greece, May
3–5, 2019, pages 148–158. SciTePress, 2019.

11. Moncef Hamdaoui and Parameswaran Ramanathan. A Dynamic
Priority Assignement Technique for Streams with (m, k)-Firm
Deadlines. IEEE Trans. Computers, 44(12):1443–1451, 1995.

12. Hans Hansson, Mikael Åkerholm, Ivica Crnkovic, and Martin
Torngren. SaveCCM-a Component Model for Safety-critical
Real-time Systems. In Proceedings. 30th Euromicro Conference,
2004, pages 627–635. IEEE, 2004.

13. Grant A. Jacoby, Randy Marchany, and Nathaniel J. Davis.
Battery-based Intrusion Detection a First Line of Defense.
In Proceedings from the Fifth Annual IEEE SMC Information
Assurance Workshop, 2004, pages 272–279. IEEE, 2004.

14. Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel,
Tadayoshi Kohno, Stephen Checkoway, Damon Mccoy, Brian
Kantor, Danny Anderson, Hovav Shacham, and Stefan Savage.
Experimental Security Analysis of a Modern Automobile. In
Proceedings of IEEE Symposium on Security and Privacy, 2010.

15. Krutartha Patel and Sri Parameswaran. SHIELD: a Software
Hardware Design Methodology for Security and Reliability of
MPSoCs. In 45th ACM/IEEE Design Automation Conference,
2008 (DAC 2008), pages 858–861. IEEE, 2008.

16. Martin Pohlack, Björn Döbel, and Adam Lackorzynski. Towards
Runtime Monitoring in Real-time Systems.

17. Sophie Quinton, Matthias Hanke, and Rolf Ernst. Formal
Analysis of Sporadic Overload in Real-time Systems. In 2012
Design, Automation & Test in Europe Conference & Exhibition
(DATE 2012), Dresden, Germany, March 12–16, 2012, pages
515–520, 2012.

18. Lui Sha, Tarek Abdelzaher, Karl-Erik Årzén, Anton Cervin,
Theodore Baker, Alan Burns, Giorgio Buttazzo, Marco
Caccamo, John Lehoczky, and Aloysius K. Mok. Real Time
Scheduling Theory: A Historical Perspective. Real-Time
Systems, 28(2-3):101–155, 2004.

19. Hyun Min Song, Ha Rang Kim, and Huy Kang Kim. Intrusion
Detection System Based on the Analysis of Time Intervals of
CAN Messages for In-vehicle Network. In 2016 International

Conference on Information Networking (ICOIN), pages 63–68.
IEEE, 2016.

20. John A. Stankovic and Krithi Ramamritham. What is
Predictability for Real-time Systems?, 1990.

21. A. Taylor, N. Japkowicz, and S. Leblanc. Frequency-based
Anomaly Detection for the Automotive CAN Bus. In 2015 World
Congress on Industrial Control Systems Security (WCICSS),
pages 45–49, Dec. 2015, doi:10.1109/WCICSS.2015.7420322.

22. Hideyuki Tokuda, Makoto Kotera, and Clifford Mercer.
A Real-time Monitor for a Distributed Real-time Operating
System. In Proceedings of the 1988 ACM SIGPLAN and SIGOPS
Workshop on Parallel and Distributed Debugging, pages
68–77, 1988.

23. Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu,
and Lui Sha. Learning Execution Contexts from System Call
Distribution for Anomaly Detection in Smart Embedded System.
In Proceedings of the Second International Conference on
Internet-of-Things Design and Implementation, pages 191–196.
ACM, 2017.

24. Clinton Young, Habeeb Olufowobi, Gedare Bloom, and Joseph
Zambreno. Automotive Intrusion Detection Based on Constant
CAN Message Frequencies Across Vehicle Driving Modes. In
ACMWorkshop on Automotive Cybersecurity (AutoSec ’19),
2019.

25. Christopher Zimmer, Balasubramany Bhat, FrankMueller, and
Sibin Mohan. Intrusion Detection for CPS Real-time Controllers.
In Cyber Physical Systems Approach to Smart Electric Power
Grid, pages 329–358. Springer, 2015.

Bionotes
Mohammad Hamad
Technical University of Munich, Department of Electrical and
Computer Engineering, Munich, Germany
mohammad.hamad@tum.de

Dr.-Ing. Mohammad Hamad is a Postdoctoral Researcher in the Em-
beddedSystems and Internet of Things group in the Faculty of Electri-
cal Engineering and Information Technology at the Technical Univer-
sity of Munich (TUM). Mohammad received his Ph.D. from the Insti-
tute for Data Technology and Communication Networks at TU Braun-
schweig in 2020. Mohammad ’s research interests are in the area of
Autonomous vehicle and IoT security.

Zain A. H. Hammadeh
Institute for Software Technology, German Aerospace Center (DLR),
Cologne, Germany
zain.hajhammadeh@dlr.de

Dr.-Ing. Zain A. H. Hammadeh a research scientist at the German
Aerospace Center (DLR). In 2019, he received his Ph.D. degree
(Dr.-Ing.) in real-time systems from TU Braunschweig, Germany with
Prof. Rolf Ernst. Since Feb. 2019 he joined the Institute for Software
Technology as a research scientist.

https://doi.org/10.1109/WCICSS.2015.7420322

M. Hamad et al., Temporal-based intrusion detection for IoV | 13

Selma Saidi
Technical University of Dortmund, Department of Electrical
Engineering and Information Technology, Dortmund, Germany
selma.saidi@tu-dortmund.de

Prof. Dr. SelmaSaidi SelmaSaidi is a Professor of EmbeddedSystems
in TU Dortmund. Her research focus involve the design, implemen-
tation and validation of innovative intelligent embedded systems.
Key aspects are the development of novel hardware and software de-
sign methods for embedded and autonomous systems where per-
formance, predictability and self-adaptability play an important role.
Domains of applications are avionics, autonomous driving and Inter-
net of Things. Selma Saidi received in 2013 a Ph.D. degree in com-
puter sciences from the University of Grenoble in France conducted
together with STMicroelectronics. After her PhD, She joined the Tech-
nical University of Braunschweig as a Postdoctoral researcher.

Vassilis Prevelakis
Technical University of Braunschweig, Institute of Computer and
Network Engineering, Braunschweig, Germany
prevelakis@ida.ing.tu-bs.de

Prof. Dr. Vassilis Prevelakis is the professor of embedded computer
security at the Technical University, Braunschweig, in Germany. He
holds B.Sc. degrees with Honours in Mathematics and Computer Sci-
ence andM.Sc. in Computer Science from university of Kent at Canter-
bury, U.K. and a Ph.D. in Computer Science from university of Geneva,
Switzerland. He has worked in various areas of security in Systems
and Networks both in his current academic capacity and as a free-
lance consultant. Prevelakis current research involves issues related
to vehicular automation security, secure processors, security aspects
of software engineering, auto-configuration issues in secure VPNs,
etc.

View publication statsView publication stats

https://www.researchgate.net/publication/347616516

	Temporal-based intrusion detection for IoV
	1 Introduction
	2 Foundation
	2.1 Red-Zone principle
	2.2 Adopting the Red-Zone principle
	2.3 Properties of real-time systems
	2.3.1 Real-time tasks
	2.3.2 Worst-case response time

	3 Time-based intrusion detection approach
	4 Red-zone boundaries for real-time systems
	5 Response time-based prediction configuration
	5.1 Defining temporal nominal behavior and MP
	5.2 Defining KP

	6 Design and implementation
	6.1 Task states
	6.2 Monitoring policy

	7 Evaluation
	8 Summary and discussion
	References

