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Abstract

Peanut (Arachis hypogaea L.) is an important nutrient-rich food legume and valued for its

good quality cooking oil. The fatty acid content is the major determinant of the quality of the

edible oil. The oils containing higher monounsaturated fatty acid are preferred for improved

shelf life and potential health benefits. Therefore, a high oleic/linoleic fatty acid ratio is the

target trait in an advanced breeding program. The two mutant alleles, ahFAD2A (on linkage

group a09) and ahFAD2B (on linkage group b09) control fatty acid composition for higher

oleic/linoleic ratio in peanut. In the present study, marker-assisted backcrossing was

employed for the introgression of two FAD2 mutant alleles from SunOleic95R into the chro-

mosome of ICGV06100, a high oil content peanut breeding line. In the marker-assisted

backcrossing-introgression lines, a 97% increase in oleic acid, and a 92% reduction in lino-

leic acid content was observed in comparison to the recurrent parent. Besides, the oleic/lino-

leic ratio was increased to 25 with respect to the recurrent parent, which was only 1.2. The

most significant outcome was the stable expression of oil-content, oleic acid, linoleic acid,

and palmitic acid in the marker-assisted backcrossing-introgression lines over the locations.

No significant difference was observed between high oleic and normal oleic in peanuts for

seedling traits except germination percentage. In addition, marker-assisted backcrossing-

introgression lines exhibited higher yield and resistance to foliar fungal diseases, i.e., late

leaf spot and rust.
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Introduction

Peanut or groundnut (Arachis hypogaea L.) is one of the world’s most important legumes for

its valuable edible oil and protein content. It is a major cash crop and plays an essential role in

the livelihood of millions, especially in semi-arid tropics. It is cultivated globally in around

27.94 million ha with a total production of 47.09 million tons [1]. China, India, Nigeria, and

the United States of America are the leading groundnut producers that account for ~70% of

the global peanut production. Peanut is traditionally used for the extraction of oil for edible as

well as industrial purposes but the quality attributes vary with geographical region. In China,

India, and other Asian countries, half of the produce is crushed for oil extraction and the rest

is being used for confectionary and food purposes. While in the USA and other European

countries more than two-thirds of peanut production are used for confectionary and food pur-

poses and remaining one-third is used in the extraction of oil. Low oil content peanuts are pre-

ferred for table purposes and other food preparations of low caloric value.

Different proportions of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFA)

and polyunsaturated fatty acids (PUFA) determine the nutritional quality, shelf life, and flavor

of peanut oil as well as its products. The peanut oil contains 80% unsaturated fatty acids

(UFAs), mainly oleic (MUFA), and linoleic (PUFA) acids, whereas the remaining 20% SFAs

comprises of palmitic, stearic, arachidic, behenic and lignoceric acid. Palmitic acid alone con-

tributes half of the total SFAs while the rest five make up the remaining 50% [2]. SFAs are con-

sidered to increase serum low-density lipoproteins cholesterol level in the blood [3]. An

elevated level of palmitic acid in the oil also increases the risk of cardiovascular diseases (CVD)

[4]. A higher proportion of linoleic acid results in off flavors, rancidity, the short shelf life of oil

and its derived products, which makes it undesirable for cooking purpose [5]. From a nutri-

tional point of view, MUFA have been desirable in lowering plasma cholesterol levels and

reduced risk of CVD [6, 7]. Therefore, a diet with high oleic (HO) acid can reduce the risk of

heart diseases, inflammatory diseases tumorigenesis, and slow down atherosclerosis [8, 9]. In

addition, oleic acid has ten-fold higher auto-oxidative stability than linoleic acid [10]. There-

fore, there is a greater demand for the improved lines with higher oleic/linoleic (O/L) ratio in

the peanut oil.

In peanut, fatty acid desaturase enzyme catalyzes desaturation of oleic to linoleic acid. [11,

12]. It is controlled by two homeologous genes ahFAD2A and ahFAD2B, located on A-genome

(linkage group a09) and in B-genome (linkage group b09), respectively [13,14]. Mutations in

ahFAD2A and ahFAD2B genes results in reduced fatty acid desaturase enzyme activity that

leads to higher accumulation of oleic acid [13,15]. A single base pair (bp) substitution muta-

tion (G:C to A:T) in ahFAD2A gene at 448 bp position results in a missense amino acid from

aspartic acid to asparagine (D150N). While, an insertion mutation in A:T of ahFAD2B gene at

442 bp position generates premature stop codon [11, 12]. Thus the two mutant fatty acid desa-

turase alleles stop the conversion of oleic acid to linoleic acid in peanut [16, 17, 18]. Improved

breeding lines with HO and lower linoleic and palmitic acids in peanut oil are essential to

make peanut of superior quality. Norden et al., [19] first identified F435 as a natural peanut

mutant line with approximately 80% oleic acid and 2% linoleic acid. Later on, the first ever

HO peanut breeding line, SunOleic95R, was produced with the help of conventional breeding

method in the USA [16]. Chen et al., [20] and Chu et al., [13] developed linked allele specific-

polymerase chain reaction (AS-PCR) and cleaved amplified polymorphic sequence (CAPS)

markers, respectively for both of the ahFAD2 alleles. The development of the associated mark-

ers in peanut helped in the improvement of ‘Tifguard High O/L’ variety in the USA through

marker-assisted backcrossing (MABC) [21]. Recently, Janila et al., [22] introgressed ahFAD2
alleles from SunOleic95R into the elite breeding lines using MABC and marker-assisted
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selection (MAS) at ICRISAT, Patancheru, India. Further, Bera et al., [23] developed HO pea-

nut lines through MAS at ICAR-Directorate of Groundnut Research, Junagadh, India. Most of

these molecular breeding lines are under examination in All India Coordinated Research Proj-

ect on Groundnut (AICRP-G) and, recently, Girnar 4 and Girnar 5 genotypes have been iden-

tified for release in India.

Peanut is grown in both rainy and post-rainy (as winter and summer crop) seasons across

different states of India, varying largely in climatic and edaphic conditions. The chemical com-

position of peanut oil is influenced by several factors like genotype, geographic location, sea-

son, soil humidity, temperature and growing conditions [24, 25,26]. In general, lower

temperature (22˗29˚C) is associated with more linoleic acid synthesis due to increased activity

of oleate desaturase enzyme [27, 28] and high temperature (30˗33˚C) during pod filling to har-

vesting stage reduces the linoleic acid content in peanut oil [29, 30, 31]. Li et al., [32] also

reported that season and temperature had a significant influence on fatty acid content in Bras-

sica crops. Flagella et al., [33] reported a reduction in oleic and stearic acid while an increase in

linoleic and palmitic acid in sunflower under irrigated cultivation. Furthermore, healthy and

vigorous seedlings are one of the important criteria for making HO peanut cultivation profit-

able. The chemical composition of seed reserve might affect its germination and seedling vigor

as seed reserve content is correlated with germination percentage [34]. In oilseeds, the major

storage reservoir is lipid that provides essential energy to the growing embryo and thus affects

seed germination. The alterations in seed lipid affect membrane lipid composition in respect

to membrane function and permeability, which affects germination, vigor, and tolerance to

environmental stress [35]. In peanut, germination percentage decreases with increase in O/L

and unsaturated/saturated fatty acid ratios especially at lower (16˚C and 14˚C) temperatures

[36]. Sun et al., [35] found that seed vigor of high oleate lines was lower as compared with the

lines with normal oleic content in peanut. Upadhyaya et al., [37] reported a poor yield of ICG-

2381, a groundnut accession with high O/L ratio.

Considering the demand of peanut with HO both in domestic and international markets,

the present study was undertaken with three objectives: i) introgression of ahFAD2 alleles into

the higher oil content peanut variety through MABC; ii) multi-location testing of MABC

derived HO peanut lines over the two seasons for yield and impact of locations and seasons on

the oil quality and oil content iii) determining the effect of HO trait on seed germination and

other seedling traits.

Materials and methods

Plant material

For improving the oil quality, ICGV06100 was used as female/recurrent and SunOleic95R as

male/donor parents for MABC breeding program. ICGV06100 is a high yielding and high oil

containing (~55%) peanut line but with lower oleic acid (~39.3%), developed by ICRISAT,

Patancheru, India (ICRISAT, 2012; unpublished). It is a Virginia bunch (semi-spreading) cul-

tivar derived from the cross [(ICGV92069 × ICGV93184) × (NCAc-343 × ICGV86187) ×
S23]. SunOleic95R, having both ahFAD2 mutant homozygous alleles with HO (~80%) but

lower yield and oil contents (~45%) was used as a male/donor parent. It was developed by

Florida Experimental Agriculture Station, USA, from the mutant line F435 [16].

Under the second objective, MABC lines were tested for pod yield in multiple seasons and

locations. Initial yield evaluation of MABC lines along with elite cultivars (Abhaya, CO-6, GG-

20, ICGS-1043, GPBD-4, JL-24, TMV-2, VRI-6, K-6, TAG-24, GJG-31, and TG-37A) was

done at a single location over two seasons. Subsequently, advanced yield evaluation of MABC

lines together with other breeding lines and elite cultivars was done at three different locations.
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Besides fatty acids profile, oil and protein contents of MABC lines, SunOleic95R and

ICGV06100 were also estimated at three locations.

For the accomplishment of the third objective, two separate panels of peanut genotypes were

studied for seed and seedling traits. The first panel consisted of normal oleic acid peanut geno-

types (GG-20, ICGV06100, ICGV05141, and ICGV06110), while the second panel had HO pea-

nut genotypes (NRCGCS-587, HOP-IL_MAS-191, HOP-IL_MAS-145and HOP-IL_MAS-130) [22,

23, 38].

Molecular markers

Two types of DNA-markers linked to ahFAD2 mutant alleles were used for genotyping. The

allele specific-polymerase chain reaction (AS-PCR) markers [20] were used to identify hetero-

zygous plants for the mutant alleles. The cleaved amplified polymorphic sequence (CAPS)

markers [13] were deployed to select homozygous plants for both the ahFAD2 alleles.

DNA extraction and marker genotyping

The DNA was extracted from tender fresh leaves of 10 to 15 days old field-grown seedlings

using modified cetyltrimethylammonium bromide (CTAB) extraction method [39]. The qual-

ity and quantity of DNA were checked [25] and genotyping of the target population was done

using AS-PCR and CAPS markers. The primer combination, F435-F and F435SUB-R, ampli-

fied 203bp fragment for the mutant allele (substitution from G:C!A:T, ahFAD2A) in the A-

genome, while the primer combination, F435-F and F435INS-R amplified 195bp fragment for

the mutant allele (A:T insertion, ahFAD2B) in the B-genome (Fig 1). In case of wild type

ahFAD2A allele, the 826bp fragment was digested to 598bp and 228bp, while the mutant geno-

types had the 826bp fragment intact. For B-genome, 2.0U of restriction enzyme Hpy188I

(New England Biolabs, UK) was used for digestion of 10μl of PCR amplicon for about 16

hours at 37˚C. The wild type ahFAD2B allele of 1214bp with five restriction sites cleaved into

five fragments i.e., 736, 263, 171, 32 and 12bp.While the mutant allele had one additional

restriction site in the 736bp fragment which was further cleaved into 550 and 213bp (all

together six restriction sites in mutant instead of five in wild type) [23, 25].

Estimation of background genome recovery and linkage drag

Eighty polymorphic single sequence repeats (SSRs) from 20 linkage groups (preferably two

from each arm of a linkage group) were deployed to determine recurrent parent genome

recovery in MABC lines [40, 41]. Furthermore, recurrent parent and MABC lines were

assessed based on the passport data. Subsequently, the desirable recombinant plants possessing

the smallest size of introgressed segments with minimum linkage drag among MABC lines

were identified. For the analysis, additional 10 SSRs, selected from the ~20cM genomic region

on either side of ahFAD2 loci from both a09 and b09 linkage groups, were used (S1 Table).

Hybridization and development of MABC lines

Hybridization was done at ICRISAT, Patancheru, India in 2011 during the rainy season. The

crossed seeds were planted at ICAR-DGR, Junagadh in post-rainy season in the same year. F1s

were genotyped with linked allele-specific markers to identify true F1 plants and plants hetero-

zygous for ahFAD2 alleles were used for backcrossing. The BC1F1 plants were planted in 2012

rainy season and were genotyped with allele-specific markers to identify heterozygous plants

at both the loci. Backcrossing and genotyping with AS-PCR markers were continued until the

development of BC3F1 generation. The BC3F1 seeds were planted in 2013 rainy season and
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plants having ahFAD2 alleles were advanced to BC3F2 generation. The BC3F2 seeds were

planted in 2013 post-rainy season and plants were genotyped with CAPS marker to identify

plants with both the homozygous mutant loci. The BC3F2–3 plants homozygous for ahFAD2
alleles were advanced to BC3F3–4 in 2014 rainy season. Phenotyping for oil content and fatty

acid composition was done in BC3F3–4progeny. Finally, introgression lines (ILs) were selected

based on oleic acid content and was coded as MABC introgression lines (MABC-ILs).

Yield evaluation of MABC-ILs lines

The initial yield evaluation of MABC lines along with elite peanut cultivars was done in 2014

post rainy and 2015 rainy seasons. In both the seasons, genotypes were planted in a random-

ized block design (RBD) with three replications. The advanced yield evaluation of MABC-ILs

along with other breeding lines and elite cultivars was carried out at three different states,

namely Gujarat, Telangana, and Andhra Pradesh in both 2016 rainy and 2016 post-rainy sea-

sons. The crops were sown in RBD with two replications. Each genotype was planted on four-

meter beds in four lines. Recommended crop management practices were followed for raising

Fig 1. AS-PCR assay, (a) Amplification of ahFAD2A mutant allele-specific 203 bp amplification in 1 to 5 F1 plants; (b)

ahFAD2B mutant allele-specific 195 bp in3 to 4 while absent in 1 and 2 F1 plants; where SUN: SunOleic95R, M:100bp

DNA ladder.

https://doi.org/10.1371/journal.pone.0226252.g001
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a healthy crop. Pod yield per plot (7.2 m2) was recorded during the harvest on maturity of crop

(111–115) days after sowing.

Biochemical analysis for oil content and fatty acid profile

The harvested mature kernels were subjected to oil and fatty acid analysis using Gas chromato-

graph (model number GC-700, Thermo Fisher, USA) [42] with flame ionization detector

(FID) [23].

Seed and seedling traits

The matured kernels harvested from the plants of rainy season 2018 were subjected to the anal-

ysis. The pods harvested in the first week of October 2018 were sown in the third week of Feb-

ruary 2019. The experiment followed RBD and was conducted in a BOD incubator (San-134,

Sanco) under controlled temperature (32 ±2˚C), humidity (70 ±5%), and cooled LED lights

for 24 h. Each genotype was sown in five replications with 20 kernels per replication in ran-

domized complete block design (RCBD). Ten kernels were sown in a UV protected 7×8 inch

black-color plastic plant nursery bags, filed with normal soil (~2.3kg). Thus, two plastic plant

nursery bags constituted single replication. The kernels were treated with Bavistin1 (2 g per

kg of kernels) prior to sowing. After sowing, watering was done until saturation of the poly-

thene bags and kept in BOD for 15 days. Regular watering was maintained on every alternate

day. Plastic bags were removed carefully after 15 days so that there was no damage to the root

system. The individual plant was collected replication wise from each genotype after thorough

washing (Fig 2). Observations on the rate of germination, shoot length, root length, shoot

fresh weight, root fresh weight, plant dry weight, root dry weight, and vigor index were

recorded. The rate of germination was calculated using the formula: Germination (%) = (num-

ber of seeds germinated/total number of seeds sown) × 100. Vigor index was calculated using

the formula: Vigor Index = (Seedling dry weight× germination %) /100 [43].

Fig 2. Groundnut genotypes grown in BOD; a) Plants grown in polythene bags, b) Plants uprooted for recording

observations on seedling traits.

https://doi.org/10.1371/journal.pone.0226252.g002
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Characterization of genotype

The passport data of MABC-ILs and recurrent parent were recorded on the basis of 16 qualita-

tive and 17 quantitative traits, along with 6 special features, following peanut-descriptor [44]

from five plant samples collected from the field at vegetative, reproductive, and harvesting

stages.

Statistical analysis

Recurrent parent genome (RPG) recovery was analyzed using the formula: “RPG% = [{2 (R) +

(H)}/2N] × 100” [45]; where “R” is the number of loci homozygous for recurrent parent allele;

“H” is the number of loci still remaining heterozygous, and “N” is the total number of poly-

morphic markers used in the background analysis. The stability analysis for the pod yield was

performed using AMMI ANOVA and GGE biplot models using R package [46]. A t-test was

applied to assess the mean difference between oil, protein, moisture, oleic acid, linoleic acid,

and palmitic acid contents among the MABC-ILs and parents. The significant differences

between the mean values were determined by Duncan’s multiple range test (DMRT) (Duncan

1955) at a P� 0.05 using CropStat version 7.2 [47]. Significant differences if any, between

genotypes were compared using ANOVA.

Results

Development of advanced ILs through MABC

The crossed seeds received from ICRISAT, Patancheru, were planted at ICAR-DGR, Junagadh

and resulted in 15 F1 plants. Eight plants were identified as true hybrids carrying both the

mutant aFAD2 alleles. These eight F1 plants were used as pollen parents to make the first back-

cross with the recurrent parent. Out of 28 BC1F1 plants, six plants were found to carry both the

ahFAD2 alleles in a heterozygous condition. Second backcrossing resulted in 32 BC2F1 plants

and both the mutant alleles were found in nine plants. Third backcrossing resulted in 37

BC3F1 plants, among which six plants carried the ahFAD2 alleles. These six BC3F1 plants were

selfed and 67 BC3F2 seeds were harvested and sown in the next season. BC3F2 plants were gen-

otyped with the AS-PCR and CAPS markers, and three plants were finally identified as homo-

zygous for both the ahFAD2 alleles (Fig 3). Subsequently, the fatty acid analysis confirmed

single MABC-IL with ~80% oleic acid (which was later coded as NRCGCS-587).

Recurrent parent genome recovery and linkage drag

Eighty SSRs were polymorphic between the recurrent parents and NRCGCS-587. Homozygos-

ity was found with 73 SSRs in NRCGCS-587 indicating 91.87% recurrent parent genome

(RPG) recoveries. However, a genomic segment carrying the ahFAD2 alleles was present in

NRCGCS-587. Out of the 10 polymorphic SSRs tested between SunOleic 95R and NRCGCS-

587, nine SSRs were amplified only in NRCGCS-587 and not amplified in SunOleic 95R (S1

Table) indicating a linkage drag of additional segments away from the ahFAD2A and

ahFAD2B alleles. Therefore, introgression of additional genomic regions in NRCGCS-587

resulted in some linkage drag but it showed no decrease in high oleic content.

Fatty acid profile analysis and estimation of oil content in MABC-IL

(NRCGCS-587) and parents

Fatty acid profile analysis of NRCGCS-587 with its parents was done in two seasons (S2

Table). In 2014 post-rainy season plantations, oleic acid and linoleic acid contents in
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NRCGCS-587 were recorded as 78.8% and 4.0%, respectively. Whereas the same were 42.0%

and 35.0% in the recurrent parent, respectively, and as 77.0% and 6.0% in the donor parent,

respectively. The O/L ratio in NRCGCS-587 was 19.7, while it was 1.2 in the recurrent parent.

The palmitic acid content was 6.8% in NRCGCS-587 as compared to 13.0% and 7.0% in the

recurrent and donor parent, respectively (Fig 4). NRCGCS-587 contained 53% oil and 24%

protein as compared to 54% oil and 26% protein in the recurrent parent and 48% oil and 26%

protein in the donor parent (Fig 5). Further analysis of the oil content and fatty acid composi-

tion was done in 2015 rainy season. NRCGCS-587 showed 54% oil and 23% protein content,

ICGV-06100 contained 54% oil and 24% protein, and SunOleic95R recorded 50% oil and 25%

protein contents. So, there was no significant differences in oil and protein content of

NRCGCS-587 with its parents. (Fig 5). In NRCGCS-587, oleic acid, linoleic acid, and palmitic

acid contents were 81%, 3%, and 6%, respectively, as compared to 39%, 39%, and 9% in

ICGV06100, and 80%, 3.0%, and 6.0%, in SunOleic95R, respectively (Fig 4). The O/L ratio was

27.0 in NRCGCS-587, while it was 1.0 in the recurrent parent and 23.25 in the donor parent.

Pod yield of MABC-IL

NRCGCS-587, along with 12 elite cultivars, was tested for yield and related traits. The analysis

of variance revealed significant differences among the genotypes and genotype × environment

interaction for pod yield. In 2014 post-rainy season, pod yield of NRCGCS-587 was 1464 kg/

ha that was significantly higher than the check cultivars Abhaya, CO-6, GG-20, ICGS-1043,

JL-24, TMV-2 and VRI-6; on par with K-6, TAG-24 and GJG-31; and lower than TG-37A

(Table 1). During 2015 rainy season, pod yield of NRCGCS-587 (1714 kg/ha) was significantly

higher than check cultivars except for TG-37A and GG-20. The pooled pod yield of NRCGCS-

587 (1589 kg/ha) was significantly higher than all the check cultivars except TG-37A. Shelling

Fig 3. CAPS assay; (a) Heterozygous and homozygous plants for ahFAD2A mutant allele; (b) Heterozygous and homozygous plants for ahFAD2B mutant allele;

where M: 100bp DNA ladder, 1–6: MABC-ILs, P1: ICGV06100, P2: SunOleic95R, C: Control, ‘AA, BB’: homozygous wild alleles, ‘Aa, Bb’: heterozygous alleles

and ‘aa, bb’: indicates homozygous mutant alleles.

https://doi.org/10.1371/journal.pone.0226252.g003
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percentage (73%) and hundred-kernel weight (50g) of NRCGCS-587 were higher with the

check cultivars. Besides, NRCGCS-587 was tested at three different states over two seasons.

AMMI analysis of variance (Table 2) revealed a significant interaction effect of

genotype × location on pod yield followed by location and genotype, individually. Stability

analysis in all the three locations by GGE biplot showed that pod yield of NRCGCS-587 was

higher (Fig 6) with local check cultivars in Telangana (ICGS76) and Andhra Pradesh

(TCGS˗157) and superior to common check cultivar (GG˗20).

Oil content and fatty acid profile of MABC-IL in three different states

The pod samples of NRCGCS-587 were collected from three different states viz., Andhra Pra-

desh, Telangana and Gujarat in 2016 post-rainy season and subjected to biochemical analysis

Fig 4. Oleic acid, linoleic acid, and palmitic acid in NRCGCS-587 and parents grown in ICAR-DGR during 2014 post rainy and 2015 rainy; “�” indicates

significance at 5%; “ns” indicates non-significant.

https://doi.org/10.1371/journal.pone.0226252.g004

Fig 5. Oil, protein, and moisture in NRCGCS-587 and parents grown in ICAR-DGR during 2014 post rainy and 2015 rainy seasons; “�” indicates significance at

5%; “ns” indicates non-significant.

https://doi.org/10.1371/journal.pone.0226252.g005
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(S2 Table). Oil content in NRCGCS-587 did not differ much across the states, i.e., 54.7%,

54.5%, and 55.1% in Telangana, Andhra Pradesh, and Gujarat, respectively. Oleic acid content

was almost the same in the pods of the two states, viz., Telangana (79.8%) and Andhra Pradesh

(79.6%), while it was slightly higher in Gujarat (81.2%). Furthermore, linoleic acid (Telangana-

3.0%, Andhra Pradesh-3.5%, and Gujarat-3.2%) and palmitic acid contents (Telangana-6.5%,

Andhra Pradesh-6.4%, and Gujarat-7.8%) across the locations were similar (Figs 7 and 8).

Likewise, oleic to the linoleic ratio in NRCGCS-587 also remained almost the same.

Passport data of NRCGCS-587 (MABC-IL) and recurrent parent

NRCGCS-587 is a Virginia bunch genotype characterized by decumbent-3 growth habit, alter-

nate branching, green color, ovate leaf, and simple inflorescence. It takes about 23 days after

Table 1. Yield and the related traits of NRCGCS-587 grown in ICAR-DGR, Gujarat, during 2014 post rainy and 2015 rainy season.

Genotypes Pod Yield (kg/ha) Shelling (%) 100 kernel weight (g)

2015 rainy 2014 post rainy Mean

Abhaya 1418.4 c-d 1376.3 b-d 1397.3 b-d 72.1 a-c 49.3 b-d

Co-6 1485.4 c-d 1062.5 d-e 1274.0 b-e 70.7 a-d 57.3 a-b

NRCGCS-587 1714.0 b-c 1463.9 b-c 1588.9 b 72.1 a-c 59.0 a-b

GG-20 1883.0 a-b 967.9 e 1425.4 b-d 74 a-b 65.7 a

GJG-31 1488.2 c-d 1354.8 b-e 1421.5 b-d 66.4 d 51.3 b-d

GPBD-4 1485.0 c-d 1569.5 b 1527.2 b-c 74.1 a-b 52.7 b-d

ICGS-1043 1450.8 c-d 1178.5 c-e 1314.7 b-e 71.7 a-c 54.3 b-c

JL-24 1385.6 c-e 964.1 e 1174.9 c-e 69.7 b-d 46.0 c-e

K-6 1336.5 c-e 1499.4 b-c 1417.9 b-d 74.5 a 53.3 b-d

TAG-24 1271.6 d-e 1575.9 b 1423.8 b-d 70.9 a-d 49.3 b-d

TG-37A 2163.8 a 2105.5 a 2134.7 a 70.4 a-d 45.3 c-e

TMV-2 866.0 f 1122.4 c-e 994.2 e 72.8 a-c 44 d-e

VRI-6 1042.0 e-f 1038.1 d-e 1040.1 d-e 68.7 c-d 39.0 e

CV% 15.08 14.97 14.28 13.90 18.61

Means followed by same letter are not significantly different (less than or equal) at P = 0.05.

https://doi.org/10.1371/journal.pone.0226252.t001

Table 2. AMMI Analysis of variance for pod yield evaluated at the three locations.

df MSS Pr

(>F)

% Sum of Squares

Locations (L) 5 4758501 <0.001 36.8

Rep (L) 6 125004 0.22 1.2

Genotype (G) 9 968802 <0.001 13.5

G�L 45 594607 <0.001 41.3

PC1 13 1174680 0 57.1

PC2 11 539693.9 0 22.2

PC3 9 349655.6 <0.001 11.8

PC4 7 241216.7 0.015 6.3

PC5 5 142883.3 0.165 2.7

Residuals 54 87212 7.3

PC1, PC2 . . .PC5 indicates principal components 1, 2. . ..5 (denotes variation accounted by each components); df–

Degrees of freedom; MSS- Mean sum of squares. P- value at 5%.

https://doi.org/10.1371/journal.pone.0226252.t002
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germination for 50% flowering and 115 days for maturity. Average plant height, leaf length

and leaf width are 42.6 cm, 40.1 mm, and 13.2 mm, respectively. It produces an average of five

primary branches per plant and 2–3 flowers per inflorescence. Pods are mostly two seeded and

the average length and width of pods are 26.0 mm and 12.4 mm, respectively. The mean length

and width of kernels are 13.8 mm and 6.8 mm, respectively and it is rose in color (Fig 9). It

yields 108.0 g of pods per square meter with 20% harvest index, 70% shelling-out-turn, ~55%

oil content,~80% oleic acid, and ~4% linoleic acid content (S3 Table). Most importantly,

NRCGCS-587 has also shown resistance to rust and late leaf spot, i.e., 1 and 3 disease severity

scores, respectively in 1–9 modified scale (data not shown).

Seed and seedling traits

Average seed germination of 93.3% was found in normal oleic peanut, while it was 81.7% in

HO peanut. A significant difference in germination percentage was recorded between normal

and HO peanut (Table 3). There were no significant differences between normal and HO pea-

nut for vigor index, fresh and dry plant weight, shoot and root length, fresh shoot and root

weight, dry shoot and root weight, shoot length/root length, fresh shoot weight/fresh root

weight, dry shot weight/dry root weight, and plant fresh weight/plant dry weight. However,

the genotypic difference was observed within the normal and HO peanut groups. In both, the

Fig 6. Average environment coordination (AEC) views of the GGE-biplot based on environment-focused scaling

peanut genotypes evaluated for pod yield in Andhra Pradesh, Telangana, and Gujarat, India.

https://doi.org/10.1371/journal.pone.0226252.g006

Fig 7. Oil, protein, and moisture in NRCGCS-587 and parents grown in Andhra Pradesh, Telangana, and Gujarat, India during 2016 rainy season.

https://doi.org/10.1371/journal.pone.0226252.g007
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groups shoot length, fresh shoot biomass, and dry shoot biomass were higher than fresh root

length, fresh root biomass, and dry root biomass.

Discussion

Peanut with HO is preferred over normal peanut due to its extended shelf life and multiple

health benefits. High oil and oleic acid content in the peanuts are necessary for producing

superior quality of oil to meet the nutritional needs and for industrial purposes. Moreover, the

high oil containing peanuts can be used to combat malnutrition due to its higher caloric value

over normal peanut. [48]. Therefore, improvement of oleic acid content in peanut for higher

oxidative stability and better dietary properties is one of the important breeding objectives

worldwide. Availability of molecular markers linked to the ahFAD2 gene has facilitated

marker-assisted breeding for HO. MABC breeding further ensures the transfer of desirable

gene together with maximum genome recovery of the recurrent parent [49, 50]. Previously,

nematode resistance [51], rust resistance [52], and high oleic acid [22, 23] traits were trans-

ferred to elite peanut cultivars using MABC breeding. The use of CAPS and SNP markers has

considerably reduced the time and volume of breeding material in different backcross genera-

tions [25]. In the first objective, a high oil content peanut genotype, ICGV06100, was targeted

to improve oleic acid content using MABC breeding. The studies reported the development of

a peanut genotype, NRCGCS-587, with high oil and HO content. The HO trait was intro-

gressed from SunOleic95R into the genetic background of ICGV06100 through MABC

approach and developed an improved version of ICGV06100 with 97% increase in oleic acid

content over the recurrent parent.

Fig 8. Oleic acid, linoleic acid, and palmitic acid in NRCGCS-587 and parents grown in Andhra Pradesh, Telangana, and Gujarat, India during 2016 rainy

season.

https://doi.org/10.1371/journal.pone.0226252.g008
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The increase in oleic acid content in NRCGCS-587 led to a reduction in linoleic acid. There

was a 90% and 24% reduction in linoleic acid and palmitic acid, respectively, in NRCGCS-587

as compared to the recurrent parent. Moreover, linoleic acid content ranged from 3.0% to

Fig 9. Plant, pod, and kernels of ICGV06100 and NRCGCS-587.

https://doi.org/10.1371/journal.pone.0226252.g009
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4.0% and palmitic acid ranged from 6.1% to 7.8% over different locations indicating their sta-

ble expression. The O/L ratio was increased to 27 in NRCGCS-587 from 1.2 in the recurrent

parent. A similar trend of increase in oleic acid and O/L ratio, as well as a reduction in linoleic

acid and palmitic acid, has already been reported [22, 23]. Commonly, an alteration in any of

the metabolite biosynthesis also has a negative feedback effect on the production of other

metabolites in a related pathway. Likewise, a significant reduction in palmitic acid level in

NRCGCS-587 was recorded. Several previous studies have also reported a similar effect of

ahFAD2 alleles on palmitic acid content [14, 22, 23, 53].

Generally, variation in oil content and fatty acid composition was reported in different

environments due to the quantitative nature of these traits that are controlled by complex

pathways [25, 26, 54]. However, limited or no variation was observed in NRCGCS-587 regard-

ing oil, oleic, linoleic, and palmitic acid contents over locations indicating the minimal envi-

ronmental effect on oil and HO traits. It seems that only a few independent genes, with the

major effect, control oil and oleic acid production in NRCGCS-587. The selection for

improved fatty acid composition would not affect the oil content of seed since there was no sig-

nificant correlation between percent oil and any of the fatty acids or related variables [55].

Although fatty acid composition showed variation with the growth habit and environment,

the oil content remained constant [56, 57, 58]. As a result, NRCGCS-587 with stable oil con-

tent across locations would be a better choice for use as a parent in the future breeding pro-

gram on enhancing oleic acid and oil content in peanut.

NRCGCS-587 had more than 90% background genome recovery as well as precise intro-

gression of ahFAD2 alleles. Moreover, identical passport data of NRCGCS-587 and

ICGV06100 except oleic acid content corroborate maximum genome recovery from recurrent

parent and precise introgression of ahFAD2 alleles in NRCGCS-587. Thus, NRCGCS-587 is an

improved version of ICGV06100 having ~80% oleic acid content. The combined approach of

both genotypic and phenotypic selections was found appropriate and effective in selecting

improved lines [23, 59]. High oleic acid content did not affect seedling traits except the rate of

germination. Significant variation in the rate of germination between HO and normal oleic

peanut groups might be due to the alteration in lipid composition of seeds leading to changed

membrane function and permeability. The germination decreased as O/L and unsaturated/sat-

urated ratios increased in peanut, especially at lower (16˚C and 14˚C) temperatures [35]. Jung-

man and Schubert [36] reported that HO lines had lower seed vigor than their paired lines

with normal oleic content. In general, the processes of germination initiates at a temperature

below 15˚C in peanut. Lower germination rate observed in HO peanut in this research might

be due to the change in fatty acid composition since the temperature was maintained constant

at 32˚C. In sorghum, the α-amylase activity of seeds and subsequent seed germination percent-

age were affected by long-chain fatty acid composition [60].

In Pinus pinea, an increase in caprylic or oleic acids retarded the seed germination. The

inhibition was dependent on fatty acid concentration and chain-length [61]. Short-chain fatty

acids could infiltrate membrane lipids and change the physical properties that lower the seed

germination [62].

In conclusion, there was a narrow but significant difference in seedling establishment

between HO and normal oleic peanut under optimum temperature. Poor seed germination

rate in HO peanut than normal peanut could be a cause of concern if a significant difference is

more and needs further investigation to overcome it. A perfectly stable genotype having con-

stant yield across geographical locations is a key to a successful variety [63]. The higher pod

yield in the post-rainy season than a rainy season in NRCGCS-587 indicated that it might be

more remunerative under irrigation than rain-fed conditions. It yielded either significantly

higher or on par with all check cultivars except TG-37A indicating the potential to excel the
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local elite varieties from different peanut-growing states in India. Shelling percent and hun-

dred-kernel weight were also on par with elite cultivars. Furthermore, NRCGCS-587 recorded

maximum pod yield (2445 kg/ha) in Telangana and Andhra Pradesh that makes it suitable for

these states. Stable pod yield, oil content, and HO content of NRCGCS-587 over the locations

make it more rewarding for the peanut growing farmers. NRCGCS-587 is an improved version

of ICGV06100 having genotypically 91% RPG and ahFAD2 alleles, and phenotypically high oil

and yield. Thus, improved nutritional qualities would fetch premium price to the farmers

without compromising the yield and meet the demand of peanut oil for industrial purposes.
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