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Abstract

Chickpea has a profound nutritional and economic value in vegetarian society. Continuous

decline in chickpea productivity is attributed to insufficient genetic variability and different

environmental stresses. Chickpea like several other legumes is highly susceptible to termi-

nal drought stress. Multiple genes control drought tolerance and ASR gene plays a key role

in regulating different plant stresses. The present study describes the molecular characteri-

zation and functional role of Abscissic acid and stress ripening (ASR) gene from chickpea

(Cicer arietinum) and the gene sequence identified was submitted to NCBI Genbank

(MK937569). Molecular analysis using MUSCLE software proved that the ASR nucleotide

sequences in different legumes show variations at various positions though ASR genes are

conserved in chickpea with only few variations. Sequence similarity of ASR gene to chick-

pea putative ABA/WDS induced protein mRNA clearly indicated its potential involvement in

drought tolerance. Physiological screening and qRT-PCR results demonstrated increased

ASR gene expression under drought stress possibly enabled genotypes to perform better

under stress. Conserved domain search, protein structure analysis, prediction and valida-

tion, network analysis using Phyre2, Swiss-PDB viewer, ProSA and STRING analysis

established the role of hypothetical ASR protein NP_001351739.1 in mediating drought

responses. NP_001351739.1 might have enhanced the ASR gene activity as a transcription

factor regulating drought stress tolerance in chickpea. This study could be useful in identifi-

cation of new ASR genes that play a major role in drought tolerance and also develop func-

tional markers for chickpea improvement.

Introduction

Chickpea (Cicer arietinum L.), one of the earliest food legume crop with a diploid chromosome

number of 16 is cultivated in the tropics all over the world [1] and belongs to the family Faba-

ceae [2]. India being the largest producer of chickpea produces 68% of the total world
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production and about 9.21Mha area is under chickpea cultivation producing 8.88Mt [3].

Chickpea, characterized by different desi and kabuli cultivars has a profound nutritional and

economic value [4]. A considerable decrease in chickpea productivity has been observed in the

last thirty years due to change from lower to higher temperature regions of cultivation in

South-East Asia and East Africa [5]. Presently, the world average productivity is about 995 kg/

ha which is very low [3] and has stagnated in recent years due to vulnerability of chickpea crop

to various abiotic (drought, terminal heat, high salt, cold stress), and biotic (Ascochyta blight,

Fusarium wilt,Helicoverpa) stresses [6]. Average losses upto 60% have been reported due to

abiotic stresses globally in chickpea [7]. Drought drastically affects the plant growth processes

and reduces plant yield [8]. Development of chickpea varieties tolerant to drought has been

very slow due to its narrow base and limited genomic resources [9] necessitate improving its

genetic potential [10]. Plants combat these stresses through a series of physiological mecha-

nisms controlled by several stress related genes which in-turn is regulated by specific transcrip-

tion factors [11–13].

Drought is a genetically complex trait [14]. Among various transcription factors, abscissic

acid is involved in signaling drought stress in general and their levels have a direct effect on

different parts of the plant or plant as a whole [15]. Drought tolerance may be governed by

some pathways that are ABA dependent [16] or pathways that are independent of ABA [17].

Particularly, transcription factors of the Asr (abscissic acid, stress, ripening) family of genes

are expressed only in plants that interact with ABRE elements as a regulatory mechanism of

ABA dependent pathways under stress [18, 19]. The major domain is of Pfam family which is

an ABA/WDS domain. This group of genes is a part of regulating complex wherein they play a

major role. Particularly in processes involving metabolism of sugars like in fruit ripening, mat-

uration of pollen, senescence and differential responses to various abiotic stresses like drought,

salinity, reduced light intensity, cold [20–25]. The protein products of this gene act like chaper-

ons and help in preventing thawing and freezing type denaturation [26]. ASR genes are

expressed in different organs viz., potato tubers [27], and fruits of tomato, apricot and pomelo

[28], pollen of lily [29], leaves and roots of tomato, rice, maize and pine [30,31]. All ASR genes

known till date have a DNA binding activity at the N-terminus that is sequence specific and

dependent on Zn2+ with a nucleus localization signal at the C terminus. Sub-cellular fraction-

ation studies also proved that ASR protein occur in the nucleus and cytoplasm. The potential

role of ASR1 gene in drought tolerance in common bean was studied and strong selection

pressures, lower gene diversity was found in the accessions [32]. Transgenic Arabidopsis with

over-expressed ASR gene showed an increase in tolerance to drought and salt and decrease in

sensitivity on exposure to exogenous ABA [33]. ASR3 gene was identified as a putative candi-

date gene for association mapping for tolerance to drought in rice [34]. So far, the characteriza-

tion studies on ASR genes in chickpea are limited.

Huge genome sequence information available online in public domains (http://www.ncbi.

nlm.nih.gov) have served as excellent sources for identification of important genes for insect

resistance, quality traits, resistance to different abiotic stresses viz., drought, salinity, heat. Such

computational studies are valuable in areas of comparative genomics and have enabled us to

identify and characterize chickpea ASR genes. In the present study, single ASR homologue was

identified in chickpea. Analysis of conserved domains, phylogenetic relationships, three

dimensional structure prediction and validation, and functional partners within the query

sequence identified a hypothetical protein NP_001351739.1, potentially involved in drought

tolerance. The drought responses and relative expression levels of chickpea ASR genes under

different treatments were also studied. Our study gives an idea about the role of ASR genes in

drought tolerance in chickpea and also indicates similarities with the already characterized

proteins which may be possibly used in improvement of chickpea and related pulse crops.
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Results

Relative water content, chlorophyll, protein content and membrane

stability index in control and water stressed plants

Ten genotypes were used to examine drought responses at different time points viz., control

(0day), 6day and 12day as defined for chickpea [35]. Susceptible checks (ICCV2, Pusa 1003

and Pusa 362) were also included in analysis for comparative study. Variations in relative

water content (RWC,%), chlorophyll index (CI, Spad Units), protein content (μg/ml) and

membrane stability index (MSI, mS/cm) were measured to test their responses for improved

drought tolerance and better understand their resistance mechanisms, presented in Table 1.

There was a significant decrease in all the parameters measured from day 0–12 of drought

stress in all the genotypes (Table 2). Control plants maintained a higher RWC (%), CI, protein

content and MSI in comparison to drought stressed plants (Fig 1A–1D). Reduction in RWC

(%) ranged from 8% to 28.3% in all the genotypes at 12th day after imposing drought stress

(Fig 1A). Maximum decrease in RWC (%) was 28.3% in ICCV2; however, BGD72 (8.73%),

ICCV10 (9.29%) and ICCV3311 (10.81%) maintained the RWC (%) under drought stress

(Table 2 and Fig 1A). Drought stress affected the CI significantly, and the decrease was note-

worthy in ICCV2 (20.31%) (Fig 1B). On the contrary, resistant genotypes BGD72 (6.77%),

ICCV10 (7.5%) and ICCV3311 (7.57%), retained higher CI at 12th day of drought stress treat-

ment (Table 2 and Fig 1C). Our results also signified a substantial decrease in soluble protein

content (leaf) in all the chickpea genotypes under drought stress (Fig 1B). Though, BGD72

showed minimal decrease in protein content (7.89%) over the control, this decrease was prom-

inent in ICCV2 (24.3%) (Table 2 and Fig 1B). Decline in Membrane stability index (MSI) was

prominent in all the genotypes on imposition of drought stress (Fig 1D). BGD72 (7.69%),

ICCV10 (9.09%) and ICCV3311 (12%) showed minor decrease in MSI under stressed condi-

tions in comparison to control conditions. Conversely, the susceptible genotypes viz., ICCV2

(29.62%), Pusa362 (29.15%) and Pusa1003 (28.57%) displayed a much higher reduction in

MSI at 12th day of drought stress treatment (Table 2 and Fig 1D). Significant changes observed

from control to stressed samples demonstrate stress at morpho-physiological and biochemical

levels in all the genotypes.

Quantitative real-time PCR (qRT-PCR) analysis

To analyze the expression pattern of ASR gene under drought stress in selected genotypes of

chickpea, real time quantitative PCR was performed. The Beta Actin gene was used as the refer-

ence gene. Samplings were done in triplicates at each time point (0day, 6th day and 12th day

after drought stress treatment). The mean fold change in the ASR gene, normalized to Beta

Actin gene at different time points was calculated by Ct (cycle threshold) values (S1 Table of S1

File). Normalization with Actin gene produced more consistent and similar results in drought

Table 1. ANOVA for all the four physiological traits under study viz., relative water content (RWC, %), chlorophyll index (CI, Spad units), leaf protein content (μg/

ml), membrane stability index (MSI, mS/cm) in the ten chickpea genotypes under drought stress conditions. Measurements were taken at 0 day (control conditions),

6th day after imposition of drought stress, 12th day after imposition of drought stress.

Source of Variation df RWC CI Protein MSI F crit
Treatment 2 376.428�� 99.351�� 40.72�� 386.881�� 3.354

Error 27 111.155 15.891 8.771 114.133

F value 3.386 6.251 4.642 3.389

�� Significance at p�0.05

https://doi.org/10.1371/journal.pone.0234550.t001
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Table 2. Mean values of relative water content (RWC, %), leaf protein content, chlorophyll index (CI, Spad units) and membrane stability index (MSI, mS/cm) of

the ten chickpea genotypes under drought stress conditions.

Physiological parameters

Genotype RWC (%) Protein (leaf) (μg/ml) CI (Spad units) MSI (mS/cm)

C 12D C 12D C 12D C 12D

ICCV97309 73.80a 64.00a 28.10a 23.40a 52.30a 45.30a 74.00a 64.20a

ICCV3311 74.00a 66.00b 28.93a 25.53b 54.50b 50.36b 75.00b 66.00b

ICCV10316 66.00b 50.00c 25.69b 21.36c 53.10c 44.02c 67.00c 50.00c

ICCV9307 69.00c 54.00d 26.85c 22.96d 52.95a 47.11d 69.00d 60.00d

BGD 72 76.70d 70.00e 30.40d 28.00e 55.96d 52.16e 78.00e 72.00e

ICCV10 74.97e 68.00f 30.99e 27.00e 55.65d 51.46f 77.00f 70.00f

ICCV5313 69.00c 51.00g 26.05f 21.83c 51.53e 45.13a 68.00g 52.00g

Pusa 1003 55.00f 40.50h 25.48g 20.53f 47.00f 40.46g 56.00h 40.00h

Pusa 362 57.00g 42.00i 24.78h 20.95f 50.06g 43.66h 59.00i 41.80i

ICCV2 51.00h 38.00j 23.29i 17.62g 47.60f 37.93i 54.00j 39.00j

Mean 66.64 54.35 27.06 23.03 52.07 45.76 67.70 55.50

CV (%) 84.51 144.67 6.22 11.11 9.53 21.55 76.46 159.04

Means followed by different letters within a column are significantly different from each other according to Tukey’s Studentized Range (HSD) test at p�0.05; C: control

conditions; 12D: 12th day after imposition of drought stress; CV: coefficient of variation.

https://doi.org/10.1371/journal.pone.0234550.t002

Fig 1. Drought responses of selected chickpea genotypes measured after different periods of stress (0, 6 and 12 days

after drought stress treatment). Changes in relative water content (leaf) (A), Protein content (leaf) (B), Chlorophyll index

(CI), MSI (D) of selected genotypes of chickpea. Samplings were done at 0day (control), 6th day and 12th day after

imposition of drought stress. All the measurements were recorded in three replications and mean values were plotted

against the selected chickpea genotypes.

https://doi.org/10.1371/journal.pone.0234550.g001
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susceptible (ICCV2, Pusa1003 and Pusa362) and tolerant (BGD72, ICCV10 and ICCV3311)

genotypes that clearly illustrated differential expression of transcripts of ASR gene (Fig 2A). In

general, with the induction of drought stress, the expression of ASR gene was up-regulated in all

the chickpea genotypes over controls and reached maximum at 6th day, followed by a slight

decrease at 12th day. Expression patterns revealed high and significant expression of Abscissic

acid and stress ripening gene (ASR) in the drought tolerant genotypes (BGD72, ICCV10 and

ICCV3311) in comparison to the susceptible genotypes (ICCV2, Pusa1003 and Pusa362) indi-

cating its sensitivity to drought stress treatment (Fig 2B). Highest relative expression value was

observed for BGD72 (2.54 fold higher than the control) at 6th day after imposition of stress. The

increase in ASR gene expression was pronounced in ICCV10 (up to 1.86-fold change, 6th day)

and ICCV3311 (1.67-fold change, 6th day) followed by a small decrease in fold change to 1.49 by

12th day of drought stress. Decreased relative expression level was evident in ICCV2 (0.69-fold

change) at 12th day after stress imposition. No significant differences in the relative expression

level of ASR were observed from control and treated samples in Pusa1003 and Pusa362, though

the induction was higher in ICCV97309, ICCV9307 and ICCV10316.

Amplification of ASR genes from chickpea

The ASR gene homologues (Fig 3) were isolated fromMedicago gene sequence available at NCBI

EST database (DbEST-http://www.Ncbi.nm.nih.gov/dbEST/) [36]. Sequences of the ASR genes

ranged from 680bp to 700bp nucleotides. Conserved region was observed in all the chickpea

genotypes with very minor variations (Fig 4). BLASTn results confirmed 99.32% similarity with

chickpea putative ABA/WDS induced protein (LOC101493413), mRNA with E value of 0.00.

Molecular analysis of chickpea ASR homologue with other legume plants

Comparison of the chickpea ASR homologue with other legume plants available at NCBI data-

base revealed conserved nucleotides at various positions (Fig 5A–5B). ‘A’ at position number

Fig 2. Differential expression of chickpea ASR genes under drought stress conditions. (A) Heat-map showing differential expression of chickpea ASR

genes during drought stressed periods (0day, 6th day and 12th day) in selected genotypes of chickpea. The scale at the top represents log2 fold change,

maximum value is displayed as dark red and minimum value is displayed as light green. (B) Real-time PCR analysis to validate the differential expression of

chickpea ASR genes during drought conditions. The Beta Actin gene was used as a reference. Expression was measured after 0, 6 and 12 days after

imposition of stress. In control, expression was recorded on day 0 of stress. The mean fold change in ASR gene expression at each time point was calculated

using the 2−ΔΔCT method where ΔΔCT = (CT,Target-C,Actin)Time x—(CT,Target-C,Actin)Time 0. Data are means ± SD of triplicate samples.

https://doi.org/10.1371/journal.pone.0234550.g002
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336, 345, 350, 351, 478, 606, 664, 669, 670, 691, 883, 886, 892, 895, 898, 900, 901, 904, 907, 909,

910, 916, 918, 928, 931, 940, 953, 999, 1008, 1017, 1019, 1023, 1029, 1032, 1061, 1063, 1064,

1068, 1071, 1076, 1107, 1191, 1205, 1208. ‘T’ at position number 340, 497, 499, 608, 610, 683,

690, 894, 926, 934, 942, 943, 947, 950, 959, 966, 972, 973, 1000, 1067, 1079, 1098, 1103, 1108,

1110, 1118, 1184, 1185, 1206. ‘G’ at position number 341, 484, 485, 494, 495, 500, 602, 603,

611, 682, 684, 685, 687, 688, 693, 694, 850, 882, 885, 888, 903, 906, 908, 927, 929, 936, 937, 939,

945, 946, 948, 951, 957, 963, 969, 974, 1003, 1034, 1065, 1078, 1102, 1106, 1120. ‘C’ at position

number 346, 349, 354, 609, 665, 673, 912, 915, 917, 930, 949, 955, 958, 960, 970, 1014, 1082,

1085, 1097, 1100, 1109, 1183, 1204, 1207 (S2 Table of S1 File).

Neighbour joining analysis

Multiple sequence alignment of ASR gene was done using MUSCLE software and a phyloge-

netic tree was constructed by Neighbour joining method with 1000 replications in bootstrap

test using Treedyne software. The Cicer arietinum gene encoding putative ABA/WDS domain

containing protein was grouped withMedicago trancatula glycine-rich cell protein encoding

gene with bootstrap value 21 and Phaseolus vulgaris Asr genes, Arachis hypogea glycine rich

TATA-binding protein encoding genes and Cajanus cajan POU domain class 4 transcription

factor-1 gene with 100 bootstrap value. The Glycine soja, Glycine max Asr genes were grouped

closer to Vigna ungiculata and Vicia faba sequences (Fig 6)

Target protein sequence analysis

Blastx results showed 99.44% similarity with putative ABA/WDS induced protein (Cicer arieti-
num) with accession ID NP_001351739.1 and E value 7e-22, the sequence of which was down-

loaded from NCBI database (Fig 7). The protein was reported from Cicer arietinum with 257

amino acids and has been found to encode a family of plant proteins induced by water deficit

stress or abscisic acid (ABA) stress and ripening.

Fig 3. PCR Amplification of seven chickpea genotypes using ASR gene specific marker. PCR amplification of seven

chickpea genotypes viz., ICCV97309, ICCV3311, ICCV10316, ICCV9307, BGD72, ICCV10, and ICCV5313 was done

using ASR gene specific primer and revealed a single amplicon ranging from 680-700bp; Marker-100 bp Banglore

Genei DNA ladder.

https://doi.org/10.1371/journal.pone.0234550.g003

PLOS ONE Characterization and functional role of ASR gene from chickpea

PLOS ONE | https://doi.org/10.1371/journal.pone.0234550 July 14, 2020 6 / 25

https://doi.org/10.1371/journal.pone.0234550.g003
https://doi.org/10.1371/journal.pone.0234550


Structural analysis of the protein NP_001351739.1

Conserved domains NCBI CDD tool identified pfam02496 ABA/WDS induced protein and

one superfamily ABA_WDS with an E-value of 9.03e-22 (Fig 8). Expasy Protparam tool

assessed different characteristics of the predicted protein. The molecular weight of the

Fig 4. Jalview of multiple sequence alignment of ASR gene homologues of seven chickpea genotypes. Conserved

region was observed in all the chickpea genotypes with very minor variations (www.ebi.ac.uk).

https://doi.org/10.1371/journal.pone.0234550.g004
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predicted protein was found to be 27.1 KDa and isolelectric point 5.05. This domain com-

prised mainly of glycine (G) and asparagine (D) with 22.6% and 9.3% respectively. The atomic

Fig 5. a. Jalview of chickpea ASR gene with different legumes ASR genes. Multiple sequence alignment of ASR gene was done using MUSCLE software and

revealed conserved nucleotides at various positions. b. Jalview of chickpea ASR gene with different legumes ASR genes Contd. Multiple sequence alignment of

ASR gene was done using MUSCLE software revealing conserved nucleotides at various positions.

https://doi.org/10.1371/journal.pone.0234550.g005

Fig 6. Phylogenetic tree of chickpea ASR gene with ASR genes in different legumes. Phylogenetic tree was constructed by Neighbour joining method with 1000

replications in bootstrap test using Treedyne software (https://www.phylogeny.fr/).

https://doi.org/10.1371/journal.pone.0234550.g006
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composition of ABA-WDS domain with formula C1151H1661N343O428S1 and 3584 atoms

showed presence of 25 positively charged residues (Arg + Lys) and 46 negatively charged resi-

dues (Asp + Glu). The instability index of 27.62 indicated stability of the ABA-WDS domain

induced protein.

Alignment and neighbour joining analysis

Alignment of conserved ABA/WDS domain induced protein and phylogenetic tree was con-

structed using Neighbour joining analysis (Fig 9). The phylogram divided the ASR proteins

into three major clusters. Multiple sequence alignment showed Cicer arietinum ABA/WDS

induced protein belonging to cluster I grouped with Brachypodium distachyon abscissic stress

ripening protein 3 with boostrap value 71. Closely related ABA/WDS induced proteins from

other crop plants in the cluster II included Triticum uratu abscissic stress ripening protein

with bootstrap value 98, putative bundle sheath specific protein_1_Os01g0963600 and homeo-

tic protein female sterile protein Oryza sativa Japonica group with boostrap value 93, hypothet-

ical protein_Os1_15903_ Oryza sativa indica group with boostrap value 80, putative fruit

ripening protein_Os01g0959100_protein and unnamed protein_Triticum aestivum with boot-

strap value of 95.

Structural prediction and validation

The three-dimensional model of the hypothetical protein was constructed using Phyre2 data-

base (Fig 10A). The results revealed that the protein comprised of only alpha helixes and had

no β-sheets. Alpha helixes accounted for 35% of the total protein. The Psi-Phi plot showed that

72.2% amino acid with 184 residues were present in the most favored regions, 14.5% amino

acids with 37 residues in the allowed regions and 13.3% amino acids with 34 residues in the

Fig 7. Target protein sequence downloaded from NCBI (http://www.ncbi.nlm.nih.gov). Blastx revealed 99.44%

similarity with putative ABA/WDS induced protein (Cicer arietinum) with accession ID NP_001351739.1.

https://doi.org/10.1371/journal.pone.0234550.g007

Fig 8. Conserved domains in chickpea ASR gene homologue. NCBI tool for conserved domain search (CDD) identified ABA-WDS domain-containing protein and

ABA_WDS superfamily induced by water deficit stress.

https://doi.org/10.1371/journal.pone.0234550.g008
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disallowed regions (Fig 10B). ProSA-web revealed that the z-score of the protein was -3.59 and

within the range of scores found for proteins of similar size (Fig 11). The energy plot indicating

the energies as a function of amino acid position was also plotted (Fig 12A). The parts of the

predicted model that contribute to the overall bad score were also indicated (Fig 12B).

STRING analysis

Protein-protein interactions of the hypothetical protein NP_001351739.1 were analyzed using

STRING database and the network obtained is shown in Fig 13. The network analysis revealed

our target protein interacts with ten different proteins for carrying out its functions (Fig 14).

Discussion

Pulses have a great potential to improve human health as a rich source of protein, soil health

through nitrogen fixation and helps in attaining food and nutritional security. In recent years

pulses are consistently coming under the centre stage of research focus because of its impor-

tance. The up swinging prices of pulses and the nutritional importance have forced the policy

makers to pay attention towards pulses particularly in the vegetarian population and increas-

ing vegetarian community worldwide. Year 2016 has been declared by the UNO as the “Inter-

national year of Pulses”. There has been a reduction in the pulse availability per person per day

in the last 50 years from 70 grams/capita/day to 34 grams/capita/day (http://www.faostat3.fao.

Fig 9. Phylogenetic analysis of the conserved ABA/WDS domain induced protein with those of model plants available

in NCBI database. Sequence alignments were performed using phylogeny.fr web service and the circular phylogenetic tree

was constructed using the Tree Dyne software (https://www.phylogeny.fr/).

https://doi.org/10.1371/journal.pone.0234550.g009
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org). The major challenges impeding the pulse production and productivity are narrow base in

the cultivated varieties, genotype and environment interaction, multiple biotic and abiotic

stresses, difficulty in screening and precisely identifying the target traits [37].

Chickpea with nutritionally essential components and lesser anti-nutritional factors has the

best composition among legumes [38]. Chickpeas are the major source of protein in vegetarian

society [4]. Chickpea is also called as gram or Bengal gram in common language. It is self-polli-

nated crop with out-crossing rate less than 1%. Two chickpeas desi (dark coloured seed coat)

and kabuli (white coloured seed coat) are known having varied gene pool [39]. Chickpea pro-

ductivity remained stagnated and low since many years partly because of numerous environ-

mental stresses and insufficient genetic variability in various traits due to the domestication

process [40]. Drought is one of the major abiotic stresses affecting the crop productivity all

over the world and chickpea like several other legumes is highly susceptible to terminal

drought stress. Reduction in yield parameters has been linked to the adverse effects of drought

stress on growth processes of plants viz., cell growth, biomass, leaf area index and plant yield.

Plants survive the environmental stresses and overcome the harmful effects of drought stress

with the help of numerous mechanisms. Phenomics assisted with genomic approaches appear

to be a dependable solution to decipher these mechanisms and identify solutions for combat-

ing drought at a fast pace and improving yield [41]. The present study describes comprehen-

sively the isolation and characterization of ASR gene. The studies on this gene and its

molecular function in drought tolerance are very limited in chickpea.

In the present study, seven chickpea genotypes were selected to examine drought responses

at 0day, 6th day and 12th day after stress treatment and variations in their physiological param-

eters were assessed for speedy characterization of their drought tolerance (Table 1). All the

chickpea genotypes showed a significant decline in RWC(%), CI, protein content and MSI

under stressed conditions in comparison to control conditions (Table 2 and Fig 1A–1D).

RWC was considered as the best measure for water status of a plant in mid 80s as it indicates

the balance between water absorbed and consumed through transpiration. Under stressed

conditions, reduction in RWC has been established at various stages of growth in chickpea

Fig 10. Structure modelling of the hypothetical protein NP_001351739.1. (a) Structure prediction of ABA/WDS domain containing

protein constructed by using Phyre2 (http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index); (b) Structure validation

(Ramachandran Plot) of ABA/WDS domain containing protein through Swiss-Pdb Viewer v4.1.0.

https://doi.org/10.1371/journal.pone.0234550.g010
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viz., seedling stage, early flowering and podding. Higher retention of water in tolerant geno-

types under stress has been confirmed by many workers [42, 43]. Under drought stress, signifi-

cant reduction in RWC (%) was observed in all the genotypes at different time points in

comparison to controls (Table 2 and Fig 1A). Per cent decrease in RWC was found to be high-

est in ICCV2 (28.3%) followed by Pusa1003 (26.36%). BGD72 (8.73%), ICCV10 (9.29%) and

ICCV3311 (10.81%) maintained a considerably higher RWC (%) in both control and stressed

conditions enabling them to perform better in terms of physiological processes under stress.

In contrast, ICCV2 (28.3%), Pusa1003 (26.36%) and Pusa362 (26.31%) showed maximum

decrease in RWC signifying their vulnerability to drought stress. MSI indicates the cell mem-

brane damage by measuring electrical conductivity of cell leachates under drought. Membrane

injuries and leakage of electrolytes from the membrane triggers programmed cell death in

plants and also assist in remobilization for seed development [44]. Reduction in membrane

stability index (MSI) at different stages under moisture stress has also been confirmed in ear-

lier studies [42]. The per cent decrease in MSI in the chickpea genotypes under stressed condi-

tions ranged from 7–30% (Table 2 and Fig 1D). Many workers have also reported severe

influence of drought stress on membrane thermo-stability, canopy temperature depression

and yield traits mainly filled pods and seeds per plant [45]. Increased temperature under

Fig 11. Protein structure analysis (ProSA) of the target protein NP_001351739.1. ProSA tool z-scores computed by

NMR spectroscopy (indicated in dark blue) or X-ray crystallography (indicated in light blue) with regard to length.

The z-score is indicated by with a black dot.

https://doi.org/10.1371/journal.pone.0234550.g011
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drought stress damages the cell walls and increases leakage of electrolytes [44, 46]. Relatively

lesser decrease in MSI was observed in BGD72 (7.69%), ICCV10 (9.09%) and ICCV3311

(12%) with higher RWC (%) signifying their tolerance to drought. RWC and MSI have been

suggested for screening the germplasm for drought tolerance [2]. Drought stress also hinders

photosynthetic machinery of plants by bringing about changes in the chlorophyll content [47].

Modification in total chlorophyll, phenolics and proteins of the plants may govern their

drought tolerance [48, 49]. Significant reduction was observed in chlorophyll content of all the

selected chickpea genotypes under stressed conditions. The percent decrease in chlorophyll

index under stress ranged from 6–21%. The tolerant genotypes BGD72 (52.16), ICCV10

(51.46) and ICCV3311 (50.36) maintained high SPAD values in contrast to Pusa362 (43.66),

Pusa1003 (40.46) and ICCV2 (37.93) that showed significant decrease under stressed condi-

tions (Table 2 and Fig 1C). Diversity studies among 43 lentil genotypes confirmed significant

variations for twelve different phenotypic traits and positive correlation between stable lines

and SPAD index establishing use of chlorophyll index as a standard measure for tolerance to

drought [50]. Considerable reduction of soluble proteins has been seen in chickpea varieties

viz., Bivaniej and ILC482 and Pirouz under stressed conditions [51]. Remarkable changes in

quantity and quality of soluble proteins under stress have been detected in chickpea [52]. The

percentage reduction in soluble protein content (leaf) ranged from 7–25% in the selected geno-

types of chickpea. Maximum soluble protein was found in BGD 72 (28 mg/ml) followed by

ICCV10 (27mg/ml) and ICCV3311 (25.53mg/ml) having higher SPAD values whereas mini-

mum protein was found in ICCV2 (17.63 mg/ml) followed by Pusa 362 and Pusa 1003 (20.96

mg/ml and 20.53 mg/ml, respectively) with lower SPAD values (Table 2 and Fig 1B). Progres-

sive increase in water stress significantly decreased net photosynthesis rate and protein content

in moong bean genotypes [53].

PCR amplicons were then isolated from seven chickpea cultivars and sequenced by gene

specific markers [36] using an ABI3500xL genetic analyser (Applied Biosystems, USA). These

Fig 12. Energy plot of the target protein NP_001351739.1. (a) Erroneous parts of the model; (b) Regions that contribute to the overall bad

score of the predicted model indicating the local model quality.

https://doi.org/10.1371/journal.pone.0234550.g012
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gene sequences were subjected to sequence alignment using MUSCLE software. The chickpea

ASR homologue was compared with other legumes and the conserved nucleotides were identi-

fied. Jalview results proved that all the ASR nucleotide sequences in comparison with other

legumes show evidence of variations at various positions in the sequence region and the

Fig 13. Protein-protein interactions of the target protein NP_001351739.1. STRING network analysis was done to

study the interactions of our target protein (indicated in red) with other proteins (http://string-db.org/) for its

functioning.

https://doi.org/10.1371/journal.pone.0234550.g013

Fig 14. Predicted functional partners of the target protein NP_001351739.1. Functional partners required for its functioning of the target protein were predicted

using STRING database signifying its role in drought tolerance.

https://doi.org/10.1371/journal.pone.0234550.g014
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conserved sequence region comprising possibly the ABA/WDS domain (Fig 5A and 5b). The

phylogenetic tree showing relatedness with other legumes was generated using Treedyne soft-

ware by neighbor joining method. Cicer arietinum gene encoding putative ABA/WDS domain

containing protein mRNA showed high similarity with Phaseolus vulgaris Asr genes, Arachis
hypogea glycine rich TATA-binding protein encoding genes and Cajanus cajan POU domain

class 4 transcription factor-1 gene with maximum bootstrap value 100. Glycine soja, Glycine
max Asr genes were grouped in a different cluster closer to Vigna ungiculata and Vicia faba
sequences (Fig 6) with high bootstrap values. Similar findings confirmed that Cicer arietinum
gene family was closely related toMedicago tranculata while soybean, pigeonpea and common

bean sharing a common ancestor grouped in a separate cluster [54].

The changes in the expression of chickpea ASR gene relative to the β-actin gene at different

points (control, 6th day and 12th day after drought stress treatment) were studied using

qRT-PCR. Results confirmed that drought stress significantly increased the ASR gene expres-

sion that possibly elicited increased responsiveness towards drought tolerance in chickpea.

Expression patterns revealed high and significant expression of ASR gene in all the genotypes

under drought stress. Expression of ASR gene was prominent in BGD72, ICCV10 and

ICCV3311 at 6th day of stress compared with controls with a slight decrease at 12th day of

stress, however, there was no major change in its expression in ICCV2, Pusa1003 and Pusa362

under stressed conditions. It has been proposed ASR1 gene expression increases under stress

in a variety of species [55].The results of qRT-PCR analysis of OsASR1 and OsASR3 expression

revealed that drought stress mainly regulates the expression of all ASR genes in rice and their

over-expression in transgenic plants improved their drought and cold stress tolerance. Trans-

genic Brachypodium distachyon L. plants over-expressing BdASR4 gene retained more water

and displayed higher tolerance to drought and antioxidant activities in comparison to the wild

plants [56]. Physiological studies also proved the involvement of ASR1 gene in stress tolerance

in transgenic tobacco, tomato, maize and rice [57].

The ASR gene sequences were confirmed at protein level using BlastX and Expasy server

(http://expasy.org/cgi-bin/protparam). BlastX results showed 100 per cent similarity with

chickpea hypothetical ABA/WDS induced protein (NP_001351739.1) with highest score of

486 and lowest Evalue of 0.00. The conserved domain search tool in NCBI identified a

pfam02496 ABA/WDS induced protein and an ABA/WDS superfamily with a low E-value of

9.03e-22. Expasy tool revealed that the ABA/WDS domain of the 27.1KDa predictive protein

(pI 5.05) was primarily composed of 25 positively charged residues and 46 negatively charged

residues. The instability index value of 27.62 also confirmed that the predicted protein is stable.

All ASR proteins largely have Glu, Ala, His, Lys and Gly residues and a continuous ABA/WDS

domain [58].

Tomato ASR1 protein with DNA binding activity and pI 7.3 is a chromatin bound protein

that interacts directly with DNA or indirectly by interacting with other proteins. ASR1 pro-

teins may be nuclear or may be dispersed in the cytoplasm. In general, 40-60KDa molecules

diffuse passively through nuclear pores depending on their concentration gradient, whereas

other molecules are transported actively [59] through the nuclear localization signals. These

NLS (rich in basic amino acids) are recognized by certain docking molecules viz., receptor

molecules at the nuclear pore [60]. Sub-cellular localization studies proved ASR1 being smaller

in size can pass through the nuclear pore with ease and contains a signal sequence KKDAK-

KEEKKKLR near the C-terminus [26]. Maize ASRs also have a Zn-binding domain at the N-

terminal and a nuclear targeting signal with two abscissic acid/water deficit stress domains

(ABA/WDS) at the C-terminal. Hybrid assays and sub-cellular fractionation studies confirmed

the role of ZmASR proteins as transcription factors or molecular chaperons in different plant

species [61].
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Multiple sequence alignment of the chickpea conserved ABA/WDS domain containing

protein (NP_001351739.1) with those of model plants available in NCBI was also done using

Treedyne software and a phlogenetic tree was generated using neighbour joining method. The

Cicer arietinum ABA/WDS induced protein grouped with Brachipodium distachyon ASR pro-

tein3 with bootstrap value 71. The Cicer arietinum ASR protein was found to be closely related

to monocotyledonous Gramineae species, Zea mays andOryza sativa, Sorghum bicolor in com-

parison to other plant species including cottonwood, banana species. Similar phylogenetic

relationships were found while comparing the apple ASR genes with those of other plant spe-

cies [58].

Three-dimensional structure of the hypothetical protein NP_001351739.1 was predicted

using homology modeling in Phyre2 database (http://www.sbg.bio.ic.ac.uk/~phyre2/html/

page.cgi?id=index). The protein comprised of alpha helixes accounting for 35% of the total

protein (Fig 10A). ASR proteins adapt two different conformations viz., alpha helical or a poly-

proline type II under different environmental stresses. Polyethylene glycol (PEG) and glycerol

stabilize the α-helical conformation in general while lower temperature, lower pH and

increased NaCl stabilize the PII conformation. This structural plasticity is critical for plant

stress resistance, facilitating their response to drought and interaction with target proteins

[62]. The predicted model was then evaluated through Ramachandran plot using Swiss-Pdb

Viewer v4.1.0 program by plotting the Psi-Phi angles of the amino acid residues against each

other. The Psi-Phi pairs had 72.2% residues in the most preferred regions, 14.5% residues in

allowed regions and 13.3% residues in outlier regions as shown in Fig 10B.

Protein Structure Analysis (ProSA) tool identifies the regions that contribute to an overall

bad score in the predicted model and has long been used for their refinement and validation.

The energy plots and the Z-scores indicate the problems in the predicted structure of the target

protein. The z-score of NP_001351739.1 was found to be -3.59 indicating the high quality of

the predicted protein model as shown in Fig 11. Energy plot of NP_001351739.1 is shown in

Fig 12A. The positive values indicate the erroneous parts of the model in general. Residual

error plots indicating reliability of the local model were also plotted and visualized by color

gradients. Blue colored regions indicate more reliable regions and red regions indicate the

probable unreliable regions. Models that slide towards blue regions from light red color are

considered to be of high quality (Fig 12B).

Software packages available online offer great opportunities for analyzing biological sys-

tems. AraNet, GeneMania, and STRING being user-friendly [63–65] have been used for study-

ing the protein interactions, regulatory networks, gene associations and their biological

pathways [66–68]. STRING database was used to predict the direct and indirect interactions of

NP_001351739.1 (http://string-db.org/). The hypothetical protein was found to interact with

ten different proteins (Fig 13) for its functioning viz., XP_004497781.1 late embryogenesis

abundant protein 1-like (90 amino acid), XP_004508082.1 embryonic protein DC 8-like (424

amino acid), XP_004500781.1 Dehydrin ERD 14 like (225 amino acid), XP_004485799.1

uncharacterized protein ECU09_1610-like (225 amino acid), XP_004509086.1 uncharacterized

protein LOC101513321 (89 amino acid), XP_004504366.1 uncharacterized protein

LOC101493439; upstream in-frame stop codon (89 amino acid), XP_004509025.1 uncharac-

terized protein LOC101490213, protein LE25-like (116 amino acid), XP_004506901.1 late

embryogenesis abundant protein 2; upstream in-frame stop codon (155 amino acid), CapLEA-

1 late embryogenesis abundant protein 1-like (177 amino acid) and XP_004506729.1 protein

SLE2; upstream in-frame stop codon (98 amino acid). The predicted functional partners of the

hypothetical protein NP_001351739 confirm its role in drought tolerance in chickpea (Fig 14).

Integrated high-throughput approaches employing molecular networks with phenomics

together may provide assumptions and address precise biological queries [69].
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Drought QTLs have been identified using different approaches viz., QTL mapping [70],

sequence similarity based candidate gene allele diversity analysis [36] and genome wide

association study (GWAS) [71] by some workers. Ten genes were found to express under

abiotic stresses [36]. Functional validation was also done for these genes using the already

reported genes from model plants. Linkage analysis and association mapping approach

was also used to identify and validate the chickpea genes and QTLs for moisture stress tol-

erance based on sequence similarity approach [72]. Candidate genes identified may be

used to develop cultivars with desired tolerance to drought and ensure greater genetic

gains and also enhance the probability of breeding widely adapted high yielding hybrids in

chickpea. ASR is the most widely reported drought stress responsive gene [73]. The ASR

gene family has evolved from Spermatophyta. ASR gene is regulated by water deficit, salin-

ity stress and hormone Abscisic acid (ABA), low temperature and intensity of light [74].

ASR genes were first recognized in tomato [75] and consequently, in different plant spe-

cies Zea mays (nine), Sorghum bicolor (seven), Oryza sativa (six), Brachypodium distach-
yon (six), Pinus taeda (four), Phaseolus vulgaris (two) and Vitis vitifera (one) [76,77,18].

Transgenic studies confirmed ASR genes could be involved in ABA signalling pathways

enabling the plants to respond to external stresses [78,79] and transgenic plants with over-

expressed ASR gene were found to be more tolerance to water and salt stress [26]. During

late embryogenesis accumulation of tomato ASR1 was observed. Electrophoretic assays

and direct visualization also confirmed formation of homodimers in DNA by ASR1 in

response to water stress [23, 80]. In contrast, activity of tomato ASR2 promoter was

enhanced in response to ABA in papaya and tobacco, while reduction was observed in

tomato and potato [81]. Transgenic Arabidopsis lines over-expressing maize ASR genes

exhibited better growth performance and higher survival rates as compared to wild type

under drought conditions. These lines had lower malondialdehyde content and higher

ABA and proline content improving their drought tolerance. The results thus, proved Zm

ASR3 enhance drought tolerance via an ABA dependent pathway [82]. Their precise role

in conferring improved tolerance to drought and salt has also been established in tomato,

rice and lily [33, 34, 26]. Consequently, reports on involvement of ASR gene in legumes in

drought responses are insufficient.

Material and methods

Experimental material, soil selection, drought stress treatment

Seven promising genotypes of chickpea (Cicer arietinum) viz., ICCV97309, ICCV3311,

ICCV10316, ICCV9307, BGD72, ICCV10, and ICCV5313 were selected from Pulse Research

Laboratory, Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New

Delhi. The amalgamated soil (peat to vermiculite, 1:1) with pH 7.6 and conductivity 0.4 ds/m

was taken from the IARI field and each genotype was sown in 13cm diameter plastic pots in

three replications under glasshouse conditions at the National Phytotron Facility, Indian Agri-

cultural Research Institute, New Delhi (28˚08’N 77˚12’) with a photoperiod of 12h in a

completely randomized design (CRD) design in the year 2019–20. The temperature was main-

tained at 24˚C in the day and 18˚C in the night. These pots were irrigated with 200 ml water

on daily basis. Drought stress was imposed on 12 day old plants by withholding water for 6

days and 12days respectively [35]. Control plants were watered regularly for the same duration.

Leaf tissues of the control and drought stressed plants were collected at different time points

viz., 0d (control), 6d and 12d and fixed in liquid nitrogen and stored at -80˚C for RNA isola-

tion. These genotypes were identified on their relative basis of tolerance to drought [83].
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Determination of relative water content

Relative water content (RWC) of selected chickpea genotypes was measured at different time

points (0 day, 6th day and 12th day) as per the standard method [84]. Young leaf tissues of

chickpea were collected and their fresh weights were recorded. The leaf tissues were then incu-

bated in petriplates containing distilled water for 4 hours for calculating their turgid weights.

Oven drying of the leaves was done for 72 hours at 60˚C and then the plant dry weights were

recorded. RWC was calculated using the following formula:

RWC ð%Þ ¼ ðFW � DW=TW � DWÞ � 100

Where, FW- Fresh weight; DW—Dry weight; TW—Turgid weight

Estimation of chlorophyll index and protein content

Konica Minolta SPAD 502 Plus chlorophyll meter was used for measuring the chlorophyll

index of the selected chickpea genotypes at three different time points (0 day, 6th day and 12th

day). For estimating protein content (leaf) at different time points, crushing of leaves was done

in 50mM phosphate buffer with pH 7.8. The protein content was estimated by colorimetric

method [85]. Absorbance of the samples was recorded on Beckman DU1 640 spectrophotom-

eter at 595 nm [86]. The Bovine Serum Albumin (Sigma, USA) was used as a standard. The

protein content was expressed in μg ml-1.

Determination of membrane stability index

400 mg fresh leaf sample was taken and added to test tubes containing 10ml of distilled water.

The test tubes were kept in a water bath maintained at 45˚C for 30 minutes and conductivity

(C1) was noted using a portable conductivity meter. These test tubes were again placed in

water bath maintained at 100˚C for 10 minutes and then conductivity was noted again (C2)

[87]. The MSI was calculated using formula:

MSI ¼ 1 � ðC1=C2Þ � 100

Statistical analysis

The data for all physiological parameters were subjected to standard method of statistical anal-

ysis such as analysis of variance (ANOVA) using XLSTAT software. The mean values and coef-

ficient of variation (CV) were calculated for each parameter. The standard errors of the mean

were presented in the figures as error bars. The mean comparisons were performed using

Tukey’s Studentized Range (HSD) test. The Tukey’s Studentized Range (HSD) test at p = 0.05

was employed to test the differences among the treatment means for the measured parameters

at 0 (control), 6th day and 12th day after imposing drought stress.

RNA extraction and quantitative real-time PCR (qRT-PCR) analysis

RNA isolation was done by using NucleoZOL (Takara Bio). Genomic DNA and other contam-

inants were removed by precipitation. One phase RNA extraction was followed by conversion

to first strand cDNA using the Accuscript high fidelity cDNA synthesis kit (Agilent). Brilliant

III ultra fast SYBR Green was used to measure the relative changes in the expression of chick-

pea ASR genes under water stressed conditions. The cDNA from leaf tissues were used as tem-

plate. The Beta Actin gene was used as the reference gene. The qRT-PCR was conducted on a

CFX 96 Real Time PCR (Biorad) in a reaction volume of 25μL, that comprised of 2μL chickpea
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samples cDNA, 0.5 μL each ASR specific forward and reverse primer, 12.5 μL Brilliant III ultra

fast SYBR Green QPCR master mix (Agilent), and 9.5 μL nuclease-free molecular biology

grade water. The qRT-PCR reaction cycle included 95˚C for 3 min followed by 40 cycles at

95˚C for 5 s, 60˚C for 12s. The relative expression levels of chickpea ASR genes under different

treatments were then calculated using the 2−ΔΔCT method [88].

DNA extraction and PCR amplification

The genomic DNA of seven chickpea genotypes was extracted from young leaves using the

CTAB method [39]. Purified DNA was used for PCR amplification using ASR gene specific

forward 5’-GGGAACTAATCCTTTCCAAACA-3’ and reverse 5’-CTGCAGCACCTAACT-
CACCA-3’ primer custom synthesized by G-Biosciences, USA [83]. PCR was carried out in

the Chickpea Molecular Breeding Laboratory, Division of Genetics, ICAR-IARI using a

G-STORM thermal cycler (Labtech, France). The PCR master mix comprised of 20ng of the

template DNA, 1.6μl of 10X Tris borate-ethylenediamine-tetra acetic acid (TBE), 1μl of 10mM

dNTP mix (Genei, Banglore), 1μl each of 5μM forward and reverse primer and 0.3μl of 3U Taq

Polymerase (Genei, Banglore). The PCR cycling reaction consisted of three steps, starting with

initial denaturation (90˚C for 3min) followed by 38 cycles of denaturation (94˚C for 20sec),

annealing (55˚C for 50sec) and elongation (72˚C for 50sec) followed by final elongation (72˚C

for 7mins) [89]. The PCR amplicons were visualized on a 3% 1X TBE buffer using 100bp DNA

ladder (Thermo Scientific, USA). The gel image was documented using UV light gel documen-

tation system (UVITECH Imaging System, UK).

Nucleotide sequence analysis

PCR amplicons of the seven chickpea genotypes were purified using BigDye terminator v3.1

kit (Applied Biosystems, USA) and were sequenced using an ABI3500xL genetic analyser

(Applied Biosystems, USA). Sequencing data was analyzed in Sequencing Analysis v 5.4. Raw

sequences were assembled using the forward and reverse sequences of each genotype in KB v

1.4.1.8(KB base caller) tool. The assembled chickpea ASR gene sequence was submitted to

NCBI GenBank (MK937569) using the web-based submission tool Sequin from the NCBI

home page (https://www.ncbi.nlm.nih.gov/Sequin/). A comparison BLAST tools (blastn) were

used determine the sequence identities of the assembled sequence (http:// www.ncbi.nlm.nih.

gov). Sequence alignments were performed using MUSCLE software and phylogram of Cicer
ASR gene with ASR gene sequences of different legumes available at NCBI database was con-

structed by neighbor joining method.

Computational protein analysis

The ASR sequences were also verified at the protein level using blastx and Expasy server

(http:// expasy.org/cgi-bin/protparam) and their conserved domains were identified using the

NCBI tool for conserved domain search (CDD). Common characteristics of the predicted pro-

tein including molecular weight, isoelectric point (pI), amino acid composition, aliphatic and

instability index were assessed using protparam tool. The amino acid sequences for the ABA/

WDS conserved domain from different crop plants were retrieved from NCBI CDD tool.

Sequence alignments were performed and a circular phylogenetic was constructed using Tree-

dyne software (https://www.phylogeny.fr/). The three dimensional structure was predicted by

homology modeling using the Phyre2 database and validated with Swiss-PDB Viewer

(SPDBV). The target protein model was further refined by the Program structure Analysis

(ProSA) program that predicts the structure of the target protein using the molecule viewer

Jmol in order to find out the regions that contribute to errors in the protein model. Network
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analysis was done using the STRING database (http://string-db.org/.) to find out functional

and physical interactions of the predicted protein.

Conclusion

Present study reveals that increased expression of ASR gene under drought stress possibly

enabled the tolerant chickpea genotypes to perform better under stressed conditions. The

results show a close relationship between qRT-PCR data and physiological characterization of

the genotypes under drought stress conditions which displayed higher RWC(%), MSI, CI and

protein content in BGD72, ICCV10 and ICCV3311 in comparison to the susceptible genotypes

ICCV2, Pusa1003 and Pusa362. Modifications have occurred at various nucleotides in gene

sequence of ASR genes during evolution. The NCBI CDD tool, Expasy Protparam, Phyre2,

Swiss PDB viewer and ProSA tool revealed important features viz., primary structure, second-

ary structure, z-scores of hypothetical protein NP_001351739. NP_001351739 with Arginine,

lysine, glutamic acid, Asparagine and ABA/WDS conserved domain that might comprise the

nuclear localization signals (NLS) and pass through the nuclear pores inducing different plant

stress inducible genes. The predicted functional partners identified by STRING network analy-

sis also proved that NP_001351739 interacts with various LEA proteins, dehydrins for its func-

tioning and is likely to play an important role in drought tolerance in chickpea. This

hypothetical ASR protein might have enhanced the ASR gene activity as a transcription factor

mediating drought responses in chickpea. This study could be useful in identification of new

ASR genes that play a major role in drought tolerance and also develop functional markers for

chickpea improvement.
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