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Camel’s milk is an important part of staple diet in several parts of the world, particularly in the arid and
semi-arid zones. Camel’s milk is rich in health-beneficial substances, such as bioactive peptides, lactofer-
rin, zinc, and mono and polyunsaturated fatty acids. These substances could help in the treatment of
some important human diseases like tuberculosis, asthma, gastrointestinal diseases, and jaundice.
Camel’s milk composition is more variable compared to cow’s milk. The effects of feed, breed, age, and
lactation stage on milk composition are more significant in camel. Region and season significantly change
the ratio of compounds in camel’s milk. Camel’s whey protein is not only composed of numerous soluble
proteins, but also has indigenous proteases such as chymotrypsin A and cathepsin D. In addition to their
high nutritional value, these whey proteins have unique characteristics, including physical, chemical,
physiological, functional, and technological features that are useful in the food application. The hydrolysis
of camel’s milk proteins leads to the formation of bioactive peptides, which affect major organ systems of
the body and impart physiological functions to these systems. The camel’s milk has antioxidant, antimi-
crobial, angiotensin-I-converting enzyme (ACE)-inhibitory peptides, antidiabetic as well as anticholes-
terol activities.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Camel belongs to the family Camelidae in the request Artio-
dactyla. There are two types of camels, the Bactrian two humped
camel (Camelus bactrianus) and the Arabian or dromedary one
humped camel (Camelus dromedarius) (El-Agamy et al., 1992).
Camels play a significant role in the life way of numerous societies,
especially those in dry zones in the Middle East and the Arabian
territory (Kaskous, 2016). Camels can be adapted to various cli-
matic conditions. They are utilized in transport, sport, wellspring
of meat and milk; therefore, they contribute to raising the econ-
omy and food security for people (Suliman et al., 2019; Swelum
et al., 2020).

Camels world population is approximately 29 million, based on
the most recent food and agriculture organization (FAO) statistics,
of which around 95% are dromedary (one humped) camels
(Sikkema et al., 2019). The camels’ lactation period may vary from
9 to 18 months. The amount of obtained milk depends on many
factors such as breed, animal health, stage of lactation, living con-
ditions (Swelum et al., 2020). Camel’s milk yield is lower and
unstable than cow’s milk yield, however, enhanced feed, water
and veterinary practices may increase camel’s milk yield as the
udder structure of camel is similar (Park & Haenlein, 2013).

Millions of people around the world are daily consuming milk
due to its tremendous nutritional benefits such as the growth
and development of bones in young children, as milk is a good
source of calcium and vitamin D. It has also proven to be beneficial
for older people, especially in menopausal women where calcium
deficiency is a high-risk factor for the development of osteoporosis
(El-Hatmi et al., 2015).

Milk is not only a source of nutrition, but its production also
contributes to food security and income for most people in the
developing countries. Around 150 million households are engaged
in milk production across the globe (FAO, 2012). It is particularly
beneficial for small scale producers because of quick cash turnouts.
Camel’s milk provides the required human nutrition. In addition, it
offers therapeutic benefits (Bai & Zhao, 2015).

The current review highlights the composition and the health
benefits of camel’s milk as a natural source of bioactive
components.
2. Camel’s milk

Camel’s milk is white opaque, with a slightly salty taste with pH
ranges from 6.2 to 6.5 that is lower compared to that of cow’s milk
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(6.5–6.7) (El-Hatmi et al., 2015). Its fat content is very low, and has
96% triglycerides (Ereifej et al., 2011) and about 30 mg/100 g dry
matter of cholesterol (Salwa & Lina, 2010). Its fat has less short
chain fatty acids in comparison to cow’s milk (Ereifej et al.,
2011). Furthermore, the fat globules’ average size is smaller com-
pared to bovine, buffalo, and goat milk fat globules (Khalesi
et al., 2017). Because camel’s milk is highly digestible (Meena
et al., 2014); it may cause problems in the technological applica-
tions (Khalesi et al., 2017).

Camel’s milk is rich in vitamins including, B1, B2 and C (Ereifej
et al., 2011). Vitamin C is three to five times higher than in cow’s
milk, which makes it an important part of diet in arid areas where
green foods have limited accessibility (Zhao et al., 2015; Kamal &
Karoui, 2017).

It has been discovered that camel’s milk has antidiabetic, bacte-
ricidal activities, and hostile to hepatitis (Agrawal et al., 2009). To
various degrees, it resists the contamination with microorganisms
due to its characteristic inhibitory frameworks such as the lac-
toperoxidase/ thiocyanate/ hydrogen peroxide framework, lacto-
ferrins, lysozyme, immunoglobulins and free greasy acids (EL-
Fakharany et al., 2012).
3. Camel’s milk in comparison to Cow’s milk

There are some important differences between camel’s and
cow’s milk (Fig. 1). For instance, camel’s milk lacks b-
lactoglobulin (b-LG), a major protein in cow’s milk that can trigger
allergic reactions. Moreover, whey protein in camel’s milk has
higher contents of antimicrobial agents, like lactoferrin, lysozyme,
immunoglobulin, and lactoperoxidase than cow’s whey (Ahamad
et al., 2017).

These differences in camel’s milk proteins might reveal variable
biological activities upon hydrolysis such as mineral-binding prop-
erties and immunoglobulins (Farah & Atkins, 1992; Merin et al.,
2001). Camel’s milk is whitish in color with a slightly salty after-
taste and its density is a bit lower than cow’s milk, with average
value 1.029 g/cm3. The pH varies from 6.4 to 6.7. The water content
changes from 87 to 90%, and the freezing point is ranging between
�0.57 and �0.61 �C (Devendra et al., 2016).

The color of cow’s milk is opaque white with yellowish hue due
to the presence of carotene and depends on the breed, type of feed
and fat content (NPCS Board, 2012). The content of water in cow’s
milk varies from 79 to 90% (Chandan & Kilara, 2010). The pH of
cow’s milk varies from 6.4 to 6.6. Its density is about 1.030 g/cm3

and the freezing point is about �0.54 �C. Cow’s milk contains an



Fig. 1. The important differences between camel’s and cow’s milk.
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average of 3.6% fat, 3.0% protein, and 4.6% lactose (Chandan &
Kilara, 2010).

The composition of camel’s milk is more variable than cow’s
milk. Region and season significantly affect the ratio of compounds
in camel’s milk (El-Hatmi et al., 2015). Lactose content is stable in
camel’s milk, and varies between 3.5 and 4.5% (Devendra et al.,
2016). It is the main carbohydrate in camel’s milk. In addition, it
contains a small number of different oligosaccharides which pro-
tect infants against pathogens, promote the formation of Bifidobac-
terium environment and help in developing the nervous system
(Park & Haenlein, 2013).

Total protein of camel’s milk varies from 2.15 to 4.90%. Camel’s
and cow’s milk have similar content of casein (as1, as2, b, and j-
casein), but they differ in the content of whey proteins. Thus,
casein to whey proteins ratio in cow’s milk is higher than that of
camel’s milk. This affects the firmness of coagulum, and camel’s
milk forms softer gel than cow’s milk (Park & Haenlein, 2013).

Casein is the main protein in camel’s milk, and it represents
about 52–87% of total proteins, while whey proteins contribute
20–25% (Devendra et al., 2016). Casein in camel’s milk has four
fractions and accounts; the ratio of as1 to as2 to b to j-casein sig-
nificantly varies in camel’s milk, being 22:9.5:65:3.5 (Park &
Haenlein, 2013). Camel’s milk has more b-casein than a-casein,
65 and 21% of total casein, respectively (Devendra et al., 2016).

Cow’s milk compared to camel’s milk contains approximately
the same b-casein and a-casein percentages (36 and 38%, respec-
tively) and higher content of j-casein (13%), which is about four
times lower in camel’s milk (3.47%) (Devendra et al., 2016). The
b-casein is more digestible and less allergic for people, as it is more
susceptible to peptic hydrolysis in the gut. The higher b-casein per-
centage makes camel’s milk beneficial for human health (Devendra
et al., 2016).

Caseins micelles in camel’s milk have a wide range of sizes from
20 to 300 nm in diameter against 40–160 nm in cow’s milk (Park &
Haenlein, 2013). Overall, the average diameter of casein micelles in
camel’s milk is larger and its mineral charge is higher (Attia et al.,
2001). The a-lactalbumin is the main whey protein of camel’s milk.
It is more digestible and has higher antioxidant activity than
a-lactalbumin from cow’s milk, which encourages using camel’s
milk in the infant foods (Park & Haenlein, 2013).
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The b-lactoglobulin is deficient in camel’s milk, which makes it
less allergic, but the other whey proteins such as lactoferrin and
immunoglobulins are present (Devendra et al., 2016). Lactoferrin
is a glycoprotein that binds two ferric ions. Its content ranges from
0.02 to 2.1 g/L in camel’s milk (Park & Haenlein, 2013). It has
antimicrobial, anti-inflammatory, immunomodulatory, and antitu-
mor activities (Park & Haenlein, 2013).

Lysozyme, another milk antimicrobial agent, presents in camel’s
milk with a concentration around 150 lg/L that is higher than in
cow’s milk (70 lg/L). Immunoglobulins (IgG) are the whey proteins
that play the major role in neonates’ passive immunity. The dom-
inant immunoglobulin in camel’s milk is IgG. It is being secreted at
a concentration around 100 g/L in the colostrum but rapidly
decreases during lactation to less than 10 g/L as reported by Park
& Haenlein (2013).

It is worth noting that the differences in protein profile can
affect the composition of fermented camel and cow’s milk (Izadi
et al., 2019). Fermented camel’s milk has more antioxidant pep-
tides, probably, due to the structure of b-casein. So, b-casein in
camel’s milk is shorter and contains more proline. Its hydrolysis
results in the formation of bioactive peptides and release of amino
acids such as phenylalanine and tryptophan with antioxidant prop-
erties (Izadi et al., 2019).

The fat content varies from 1.2 to 4.5% in camel’s milk
(Devendra et al., 2016). However, Park & Haenlein (2013) reported
that the content of fat in camel’s milk may reach up to 6.4%, and its
profile is characterized with the presence of unsaturated and long
chain fatty acids at higher amounts. This helps in lowering the
level of lipids in human serum. The content of long-chain fatty
acids is 92–99%, and the percentage of unsaturated acids is 35–
50% (Izadi et al., 2019). These structural differences impart ‘‘waxy
texture” to the camel’s milk fat. The lower content of carotene
makes the color of camel’s milk whiter compared to cow’s milk
(Devendra et al., 2016).

Mineral content of camel’s milk is similar to cow’s milk, espe-
cially; in Ca, P, Mg, Na, and K content (Kaskous, 2016). The main
distinction is in the content of Zn, Cu, Fe, and Mn, as camel’s milk
has higher concentrations of these minerals. Increased iron con-
centration in camel’s milk may be useful for the prevention of
iron-deficiency anemia. In addition, lower concentration of citrate
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in camel’s milk than in cow’s milk increases lactoferrin antimicro-
bial activity, because it needs small levels of citrate to be beneficial
(Park & Haenlein, 2013). The total mineral content of camel’s milk
fluctuates from 0.60 to 0.90%. The salty taste of camel’s milk can be
explained by the enhanced content of chloride obtained from the
feed eaten by animals (Devendra et al., 2016).

In addition, the content of ascorbic acid is higher in camel’s
milk. Therefore, it can extend the shelf-life of its products and
increase its antioxidant and antiradical abilities (Izadi et al.,
2019). The concentrations of mineral salts and vitamins in camel’s
milk depend on breed, feed, water intake, and stage of lactation.
Besides, camel’s milk contains higher concentration of vitamin C
and niacin compared to cow’s milk. But it is deficient in B1, B2
and A vitamins, pantothenic acid and folic acid. Both camel’s and
cow’s milk have almost the same content of vitamins B6 and B12
(Devendra et al., 2016).

On the other hand, camel’s milk has better heat stability than
cow’s milk. The increase of camel’s milk temperature to 80 �C
causes a break-down of 32–35% whey proteins, while the increase
to 90 �C results in denaturation of 47–53% of its whey proteins
(Izadi et al., 2019). The heat treatment of cow’s milk at 80 �C results
in denaturation of 70% of whey proteins, while at 90 �C causes
denaturation of 81% (Farah, 1986).

Camel’s milk has more inhibitory structures than cow’s milk,
specifically, lysozyme and lactoferrins that are much higher than
those of cow’s milk. Therefore, it could be stored at room temper-
ature for a longer period (Korhonen and Pihlanto, 2001). Moreover,
it contains peptides and proteins that have valuable impact on
numerous bioprocesses like assimilation, ingestion, development
and immunity (Yagil, 1987). A heterogeneous collection of proteins
is included in camel’s whey, such as immunoglobulin, serum egg
whites, a-lactalbumin, lactophorin and peptidoglycan (Omar &
Eltinay, 2008).
4. Health benefits of Camel’s milk

For mammal’s newborns, milk is the most important source of
nutrients. Milk has biologically active substances and compounds
that are needed for the immunological protection and healthy
growth. Camel’s milk has many beneficial nutritional and thera-
peutic characteristics, antibacterial, anticarcinogenic, antioxidant,
anti-hypertensive, and anti-diabetic properties (Ayoub et al.,
2018).

Peptides from dietary proteins have been extensively studied to
investigate the health effects they may show in humans like
antioxidant activity, mineral binding, reduction in blood pressure,
immunomodulatory function and protective effects against various
bacteria and viruses (Salami et al., 2010). Such peptides from milk
proteins are widely acknowledged (Kitts & Weiler, 2003). Indige-
nous protease enzymes such as milk plasmin can hydrolyze pro-
teins and lead to the release of bioactive peptide fragments
during storage or processing (Mohanty et al., 2016). The bioactive
peptides can also be obtained via enzymatic hydrolysis with micro-
bial and digestive enzymes (Korhonen & Pihlanto, 2003). The activ-
ity of these peptides is based on their amino acid composition and
sequence (Meisel & Fitzgerald, 2003).

The health-related bioactive properties of camel’s milk protein
hydrolysates have recently been reported (Salami et al., 2010;
2011; Kumar et al., 2016a, 2016b; Nongonierma et al., 2017,
2018). These hydrolysates were obtained via enzymatic hydrolysis
of milk proteins, which are susceptible to proteolysis (Salami et al.,
2011). The enzymatic hydrolysis is known to improve the func-
tional properties of milk proteins, in addition to the enhancement
of the bioactive properties (Jrad et al., 2014b) However, camel’s
milk proteins in their intact form have bioactive properties like
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anti-hypertensive, hypo-allergic, anti-cancer and anti-diabetic
(Konuspayeva et al., 2009). Most of these properties have been
demonstrated in the in vivo (human or rat model) for intact camel’s
milk proteins. Recent research is being focused on generating
bioactive hydrolysates from camel’s milk proteins and exploring
their potential bioactive properties under in vitro and in vivo con-
ditions (Mudgil et al., 2018).

Traditionally, camel’s milk has been used for the treatment of
diseases like tuberculosis, asthma, dropsy, and jaundice owing to
its content of natural bioactive components (Abdelgadir et al.,
1998). Also, camel’s milk has better digestibility and nutritional
value than cow’s milk, making it one of the alternative sources
for human consumption (Salami et al., 2009). These bioactive com-
ponents can be produced from milk proteins by the probiotic bac-
teria during fermentation process (Devendra et al., 2016). Camel’s
milk can also be used in curing gastrointestinal disorders. It has a
good effect on the stomach and the intestinal diseases due to its
high level of anti-inflammatory proteins, polyunsaturated fatty
acids and vitamins which increase carbohydrate metabolism
(Kaskous, 2016).

Camel’s milk has antibacterial and antiviral properties due to
the presence of lactoferrin, lysozyme, lactoperoxidase, hydrogen
peroxide, and immunoglobulins. These compounds can suppress
both Gram-positive and negative bacteria, e.g. Staphylococcus aur-
eus, Listeria monocytogenes and Escherichia coli. The content of the
antibacterial components in camel’s milk is higher than cow’s milk.
However, the exposure of milk to 100 �C for 30 min completely
inactivates their beneficial properties. Moreover, whey proteins
of camel’s milk enhance the anti-rotaviruses functions to treat
non-bacterial gastroenteritis (Devendra et al., 2016).

Lactoferrin and IgG of camel’s milk can inhibit the hepatitis C
and B viruses and prevent their replication in cells. The IgG can rec-
ognize hepatitis C virus peptides in concentrations when human
IgG does not detect the presence of virus. Moreover, camel’s milk
can heal hepatitis B, as it increases the immune response and stops
the DNA replication of the virus (Kaskous, 2016). The abundance of
antimicrobial components in camel’s milk gives it a therapeutic
effect against drug resistant tuberculosis. Thus, camel’s milk may
relief symptoms such as cough, breathlessness and fever
(Devendra et al., 2016).

Many food proteins contain angiotensin-I-converting enzyme
(ACE)-inhibitory peptides in their primary structure, including
milk proteins. These peptides are also present in the fermented
camel’s milk. Probiotic bacteria, used in fermentation, break-
down proteins into peptides and amino acids (Devendra et al.,
2016).

The bioactive peptides in the fermented camel’s milk may have
a positive effect on lowering the level of cholesterol (Devendra
et al., 2016). Camel’s milk also has orotic acid, which is known to
decrease cholesterol level in humans (Devendra et al., 2016). Raw
camel’s milk and fermented dairy products are a source of probi-
otic strains. Species of Lactobacillus, Bifidobacterium, Enterococcus,
and Streptococcus were isolated from camel’s milk and were used
in the dairy industry (Shori & Baba, 2014).

Camel’s milk can be used for the treatment of diabetes type 1
and type 2, due to the presence of insulin and insulin-like sub-
stances as well as immunoglobulins in a small size (Devendra
et al., 2016). The level of insulin in camel’s milk is high and com-
prises about 52 units/liter (Ayoub et al., 2018). Also, these compo-
nents influence the pancreas and liver, leading to improvement of
insulin secretion, so the required dose of insulin is reduced
(Kaskous, 2016). Along with the application for the diabetes treat-
ment, camel’s milk reduces blood sugar, decreases insulin resis-
tance, and improves lipid profiles (Ayoub et al., 2018).

Another possible health benefit of camel’s milk is decreasing
allergenicity, especially among children who are allergic to cow’s
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milk. Such allergy is caused due to the high content of a-casein and
low content of hypoallergenic b-casein along with the presence of
b- lactoglobulin. Especially, allergy to cow’s milk is of a big concern
among infants, as in the most severe cases, cow’s milk consump-
tion can cause anaphylaxis. Moreover, immunoglobulins of camel’s
milk are similar to human’s milk, which make it safe for children to
consume (Devendra et al., 2016; Izadi et al., 2019). In addition,
individuals with lactose intolerance can safely consume camel’s
milk. Camel’s milk has higher L-lactate content compared to cow’s
milk which is rich in D-lactate. The L-lactate decreases milk aller-
genicity. The IgE of children allergic to cow’s milk does not react
with camel’s milk; therefore, camel’s milk immunoglobulins
decreases allergic symptoms (Kaskous, 2016).

Furthermore, camel’s milk has a potential positive effect on
people with autism. In the intestines of patients with this autoim-
mune disease, the break-down of milk’s casein results in the for-
mation of casomorphin, this is a strong opioid responsible for the
brain damage. High level of b-casein content and b-lactoglobulin
in cow’s milk make it more likely to form opioids (Devendra
et al., 2016).

Moreover, camel’s milk has protective proteins (lactoferrin,
lysozyme, and immunoglobulins) that may improve the develop-
ment of brain (Devendra et al., 2016). Treating blood, lung, liver,
and breast cancer is another camel’s milk benefit. It inhibits the
proliferation of HepG2 and MCF7 cells as well as the stimulation
of death receptors in cell lines and mechanisms caused by oxida-
tive stress (Kaskous, 2016).

Camel’s milk improves the gut microbiota as its consumption
helps to develop a higher abundance of Allobaculum, Akkermansia,
and Bifidobacterium. The study by Wang et al., (2018) indicates that
camel’s milk could enhance the abundance of Allobaculum, which
may positively influence the physiological function of the organ-
ism. This genus produces short-chain fatty acids that improve
colon health, prevent obesity, and decrease inflammations. Akker-
mansia, a mucin-degrading probiotic, is well-known for its benefi-
cial effects on obesity, metabolic disorders, diabetes, and
inflammation (Wang et al., 2018).
5. Protein composition in Camel’s milk

Protein content in camel’s milk varies due to many factors like
breed and season. According to the study of Haddadin et al. (2008),
it reaches 2.9%, the highest content, in December and 2.48%, the
lowest content, in August. Camel’s milk whey protein is not only
composed of numerous soluble proteins, but also indigenous pro-
teases such as chymotrypsin A and cathepsin D (Alhaider et al.,
2013). Thus, camel’s milk proteins may be bioactive by themselves
or serve as precursors for bioactive peptides.
5.1. Casein proteins

Casein is the major protein in camel’s milk that constitutes 52–
87% of total protein content (Khaskheli et al., 2005). It is composed
of three main components: as1-casein, as2-casein, and b-casein,
and a fourth minor fraction j-casein. The major casein in camel’s
milk is b-casein (65% of total casein), it is higher than that of cow’s
milk (36%). b-casein is more easily hydrolyzed than as-casein
(El-Agamy et al., 2009). On the other hand, camel’s milk has lower
as1-casein (21%), in comparison to bovine as1-CN (38%)
(Khaskheli et al., 2005).

It has been reported that camel’s milk caseins have higher
molecular masses in contrast to bovine caseins, as b-casein and
a-casein which were found to be 28.6 kDa and 35 kDa, respec-
tively. Whilst, in bovine it is 24 kDa for b-casein and 22–25 kDa
for a-casein (Farah, 1986; Al Haj et al., 2018; El-Agamy, 2007;
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El-Hatmi et al., 2007). The j-casein in camel’s milk is only 3.47%
of total casein, whereas cow’s milk has 13% of j–casein. Studies
have shown that j-casein is relatively harder to be detected
because of its low concentrations in the camel’s milk (Farah &
Atkins, 1992). The hydrolysis sites for j-casein in both camel and
cow’s milk differ; chymosin hydrolyzes j-casein at the Phe97-
Ile98 bond in camel’s milk, while bovine j–casein is hydrolyzed
at the Phe105-Met106 bond (Kappeler et al., 1998). Furthermore,
Kappeler et al. (1998) observed an additional proline residue in
j-casein, which plays a critical role in the stability of camel’s milk.
The capillary electrophoresis was used to determine the concentra-
tion of each casein component, except aS2-casein, which consisted
of approximately 12.8 mg/mL of b-casein, 2.9 mg/mL of aS1-casein,
and 1.7 mg/mL of j-casein (Omar et al., 2016).
5.2. Whey proteins

Whey proteins represent about 30% of the total proteins in
camel’s milk (Zhao et al., 2015). The a-lactalbumin (a-LA), lac-
tophorin, immunoglobulins (Ig), lactoferrin (Lf), and serum albu-
min are fundamentally constructed (Merin et al., 2001; El-Hatmi
et al., 2006).

The IgG is the main immunoglobulin in camel’s milk and the
molecular weights of camel IgG differ to those of bovine, sheep,
goat and human (Alavi et al., 2018). The a-LA and b – lactoglobulin
(b-LG) are the major difference between camel’s and bovine’s
whey. Camel’s whey lacks b–LG which is the main component in
bovine whey (50%) (El-Agamy et al., 2009). The b–LG induces heat
stability; hence the stability of camel’s milk is poor at tempera-
tures up to 140 �C in contrast to cow’s milk (Farah & Atkins,
1992; Al-Saleh, 1996). The a-LA is the major component of camel’s
whey, while bovine whey has only 25% of this protein (Farah, 1986;
Farah & Atkins, 1992; Merin et al., 2001; Laleye et al., 2008). The
molecular mass of a-LA in camel’s milk is 14.6 kDa with 123 resi-
dues, similar to bovine, goat and human milk (Beg et al., 1986).
However, the amino acid sequence of camel’s milk a-LA largely dif-
fers from that of bovine, goat, and other species (Al Haj and Al
Kanhal, 2010). Both camel and human milk are known to contain
high contents of a-LA and lactoferrin (Lf) (Hinz et al., 2012).

Shortage of b-lactoglobulin in cow’s milk proteins makes
camel’s milk a good substitute, with a potential to be used in infant
formula. Whey proteins such as IgGs, Lf, lactoperoxidase, lysozyme,
and other enzymes are potent antimicrobial components in
camel’s milk (El-Agamy et al., 1992; Konuspayeva et al., 2005).
The antimicrobial activities of camel’s milk are due to the high con-
tent of protective proteins in the whey fraction that are known to
be more thermostable (El-Agamy et al., 2009). Therefore, camel’s
whey proteins present a novel source of proteins which can gener-
ate bioactive peptides with potential health benefits.
6. Functional properties of Camel’s milk proteins

Whey proteins have unique characteristics (Parodi, 2007). Apart
from their significance in nutrition, they have physical, chemical,
physiological, functional, and technological features which could
be useful in food applications (McIntosh et al., 1998).

Whey proteins have nutritional importance as they supply
energy and essential amino acids and functional importance as
they help in texture, structure modification and improvement of
the overall appearance of food e.g., foam stability, gel formation
and water retention (Panyam & Kilara, 1996). A study by Al
Shamsi et al. (2018) produced camel’s milk protein hydrolysates
using proteolytic enzymes alcalase, bromelain and papain. The
techno-functional properties like emulsifying activity index, sur-
face hydrophobicity, and protein solubility were investigated. It



Fig. 2. Hydrolysis of camel milk proteins and its antimicrobial mechanism.
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was found that these properties were higher in the protein hydro-
lysates compared to unhydrolyzed camel’s milk proteins. Also,
their antioxidant potential was assessed in real food and in vitro
systems (Al Shamsi et al., 2018). Thus, the potential application
of camel’s milk protein hydrolysates as a functional food ingredient
due to their enhanced techno-functional properties could be a
novel approach.
7. Milk protein hydrolysates, bioactive peptides and their
production

Milk proteins are great source of essential amino acids. In addi-
tion, research studies documented other functionalities and bioac-
tive properties of milk protein’s biologically active peptides (Fig. 2).
These peptides remain in an inactive state within the parent pro-
tein molecule and demonstrate bioactive potential only when
released from the native protein (Khalesi et al., 2017).

Bioactive peptides are defined as peptides that consist of speci-
fic protein fragments showing biological activity and may be ben-
eficial in promoting health (Kitts &Weiler, 2003). There are various
sources to get these peptides by hydrolysis (or breakdown) of pro-
teins, but at present, milk-derived peptides are the most important
source (Korhonen, 2009).

Many studies have reviewed the production and properties of
peptides from milk proteins (Clare & Swaisgood, 2000; Korhonen
& Pihlanto, 2003; Meisel, 2005; Silva & Malcata, 2005; Korhonen
& Pihlanto, 2006). Several bioactive peptides have good health
effects on digestive, immune, cardiovascular and nervous systems
(Korhonen & Pihlanto, 2006; Hernández-Ledesma et al., 2011).

Three different ways can be used to produce biologically active
peptides from camel’s milk, the first one is enzymatic hydrolysis
(using digestive or microorganisms and plant derived enzymes),
the second is fermentation (using proteolytic starter cultures),
and the third is heating under alkali/acid conditions (Pihlanto-
Leppälä, 2000; Muro Urista et al., 2011). Sometimes, the combina-
tion of the above methods also helps in obtaining highly potent
peptide fractions with diverse bioactive properties (Korhonen,
2009).
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7.1. In vitro enzymatic hydrolysis

The controlled enzymatic hydrolysis is critical in producing
hydrolysates for three reasons: (i) to preserve the generated prod-
ucts properties, peptides and amino acids (Tavano, 2013), (ii) to
avoid excessive hydrolysis of protein which can (a) result in bitter
flavored peptides (Jung et al., 2005) and (b) hinder functionality,
and (iii) to maintain the improved solubility in the protein as a
result of the hydrolysis process (Tavano, 2013). Thus, by control-
ling the degree of hydrolysis, it will be possible to explain the
potential bioactive and/or functional properties of the protein
hydrolysates. In this process, whole protein molecule undergoes
hydrolysis (or breakdown) by enzymes like pepsin, trypsin, and
chymotrypsin. These enzymes can mimic gastrointestinal diges-
tion effects on the food peptides (Tavano, 2013).

Other proteolytic enzymes such as alcalase, subtilisin, and ther-
molysin are used in conjunction with pepsin and trypsin to gener-
ate peptides with known biological activities (Agyei & Danquah,
2011). Liberation of peptides with a wide range of actions can thus
be achieved using different enzymes (Tavano, 2013).

The bioactivity of peptides was extensively reported in litera-
ture, although the mechanism of actions is not well-understood.
Few studies hypothesized it as a structure–activity relationship,
while others suggested that the enzyme can be chosen to get the
desired fragment and effect (Tavano, 2013). The milk protein
hydrolysates can be produced from casein or whey proteins
(Meisel & FitzGerald, 2003; Yamamoto et al., 2003). Casein hydro-
lysates have been reported to produce good angiotensin-I-
converting enzyme (ACE)-inhibitory peptides (Otte et al., 2007),
while whey peptides with sequence Ile-Leu-Pro Met-His-Ile-Arg
from b-LG have also been identified to have strong antihyperten-
sive activity (Maes et al., 2004).
7.2. Bioactive properties of whey protein hydrolysates

Whey is a good source of nutrients and important peptides
(Kishawy et al. 2018; Ashour et al., 2019). To concentrate whey
proteins and obtain nutritional value, several technologies like
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heating, drying, reverse osmosis, and membrane separation have
been applied. Another approach is hydrolysis of whey to produce
hydrolysates containing bioactive peptides. These peptides can
be released by enzymatic hydrolysis in vitro as discussed previ-
ously. Thereafter, bioactive peptides from whey protein can act
on major organ systems of the body and impart physiological func-
tions to these systems (Sharma, 2014). Milk protein hydrolysates
are known to possess various bioactive properties as following:

7.2.1. Antioxidant activity
Food oxidation is a major concern in food industry (Abd El-Hack

et al., 2020a; Ashour et al., 2020). Lipid oxidation not only deteri-
orates the food quality, but also shortens the shelf life and gener-
ates free radicals that can in turn cause decomposition of fatty
acids, which may decrease the safety and nutritional value of the
food. Thus, it is critical to hinder lipid oxidation process and forma-
tion of free radicals (Peng et al., 2009).

Synthetic antioxidants have been incorporated into food prod-
ucts and prove to be cost-effective and efficient, but their potential
toxic effects to human health have led manufacturers to seek nat-
ural antioxidants (Ito et al., 1985). Enzymatic hydrolysis of milk
proteins and whey proteins, particularly those from bovine has
been widely explored for generation of bioactive peptides with
potential antioxidant properties. For example, antioxidant peptides
from bovine as-casein showed properties like free-radical scaveng-
ing and inhibition of enzymatic and non-enzymatic lipid peroxida-
tion (Rival et al., 2001). In addition, hydrolysis of bovine whey
proteins have resulted in peptides that may have antioxidant activ-
ity (Zhang et al., 2016).

The principal mechanism behind antioxidant activity of pep-
tides is not very well understood, but studies have shown that they
are free radical scavengers metal ions chelators and inhibitors of
lipid peroxidation (Wu et al., 2003; Rajapakse et al., 2005; Moure
et al., 2006; Qian et al., 2008). The peptides antioxidant effect are
influenced by their structure, composition, hydrophobicity, and
peptide sequence (Rajapakse et al., 2005). Other factors affecting
antioxidant activity of bioactive peptides include the type of pro-
tease, peptide structure, degree of hydrolysis and peptide concen-
tration (Peñta-Ramos et al., 2002; Saito et al., 2003; Gibbs et al.,
2004; Chen et al., 2007).

Several studies explored camel’s milk as a potential protein sub-
strate for generating bioactive protein hydrolysates with antioxi-
dant activities (Al-Saleh et al., 2014; Shori & Baba, 2014). Studies
of Salami et al. (2011) and Jrad et al. (2014a) reported elevated
antioxidant activity of camel’s milk casein hydrolysates when
digested with gastrointestinal enzymes. The assays determining
the antioxidant capacity can be categorized into two groups, based
on the chemical reactions, the first group includes the methods
based on electron transfer (ET), like ferric ion reducing antioxidant
power (FRAP) and 2,2-diphenyl-1- picrylhydrazyl (DPPH) radical-
scavenging assay (Jrad et al., 2014b). The second group includes
the methods based on hydrogen atom transfer (HAT) like oxygen
radical absorbance capacity (ORAC) and total radical trapping
antioxidant parameter (TRAP) assay (Sarmadi & Ismail, 2010).

7.2.2. Antimicrobial activity
Contamination of food products by pathogenic and spoilage

bacteria is of significant concern in the food industry (Abd El-
Hack et al., 2020b; Abd El-Hack et al., 2021). To enhance the safety
of food products and its shelf life several methods have been
employed, which include use of natural antimicrobial and syn-
thetic agents. Due to the detrimental impact of synthetic agents
on the human health and the environment, manufacturers are
incorporating more natural sources of antimicrobial agents in the
food, but there is a need for novel antimicrobial agents (Brandelli
et al., 2015; El-Saadony et al., 2019; Abdelnour et al., 2020a;
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Abdelnour et al., 2020b; Akl et al., 2020; El-Saadony et al., 2020;
Reda et al., 2020; Sheiha et al., 2020).

Past literature showed a few strategies to improve the antimi-
crobial activities of proteins such as enzymatic hydrolysis
(Korhonen & Pihlanto, 2006; Théolier et al., 2013). In addition,
Hayes et al. (2006) studied the hydrolysis of casein proteins during
fermentation with proteolytic bacterial strains to produce antimi-
crobial peptides. Furthermore, antimicrobial peptides have also
been extracted from different cheese varieties (Rizzello et al.,
2005; Lignitto et al., 2012). Whey proteins like lactoferrin, lyso-
zyme, lactoperoxidase and immunoglobulins are the most studied
till date (Chatterton et al., 2006).

Other whey proteins such as a-LA and b-LG also have antibac-
terial effects (Atanasova & Ivanova, 2010). The antimicrobial
potential of whey protein hydrolysates and peptides were in vitro
assessed through the identification of the peptide sequence which
is then synthesized and tested against strains of bacteria to affirm
the antimicrobial activity (Brandelli et al., 2015).

The antimicrobial efficacy of the bioactive peptides was influ-
enced by several factors such as structural diversity, the load,
specific amino acid composition, and hydrophobicity (Gennaro &
Zanetti, 2000; Kustanovich et al., 2002). Meanwhile, the hydroly-
sates of goat whey were produced using alcalase from Bacillus
licheniformis (Osman et al., 2016) and fractionated by size exclu-
sion chromatography (SEC). The hydrolysates showed enhanced
antibacterial activity when compared to unhydrolyzed goat whey.
Another study on goat whey proteins used pepsin enzyme which
produced peptides with considerable antibacterial activity (El-
Zahar et al., 2004).

Théolier et al. (2013) assessed whey protein hydrolyzed by gas-
trointestinal enzymes. They concluded that trypsin and chy-
motrypsin hydrolysates did not show antimicrobial activity,
while pepsin derived peptides exhibited considerable activity
despite their weak degree of hydrolysis. Furthermore, goat whey
proteins digested by gastric and duodenal juice were investigated
and their inhibition against pathogenic bacteria was reported
(Almaas et al., 2008).

Limited studies have been conducted on camel’s milk proteins
and their hydrolysates for their antimicrobial activities. Camel
caseins were enzymatically digested, and the digested sample
were evaluated for its antibacterial activities against Gram-
negative (Escherichia coli) and Gram-positive bacteria (Listeria
monocytogenes, Bacillus cereus, and Staphylococcus aureus) (Kumar
et al., 2016b). Casein hydrolysate produced by alcalase showed
highest inhibitory activity (17.93 ± 0.82) against E. coli. Salami
et al. (2010) reported that enzymatic hydrolysis of camel and
bovine whey proteins improved the antimicrobial effects against
E. coli. However, the degree of hydrolysis with chymotrypsin and
trypsin was low, and thus the antimicrobial activity was not
enhanced.

There is a need for in-depth exploration of antimicrobial prop-
erties of camel’s milk whey protein hydrolysates using different
proteolytic enzymes and experimental conditions and test them
against a wide range of pathogenic microorganisms in vitro as well
as in vivo.

7.2.3. Angiotensin-I-converting enzyme (ACE)-inhibitory activity
Among the bioactive properties demonstrated by the milk

bioactive peptides, ACE inhibitory activities were widely reported
(Phelan & Kerins, 2011). A dipeptidyl carboxypeptidase, ACE cat-
alyzes the conversion of inactive angiotensin I peptide into angio-
tensin II peptide which is a potent vasoconstrictor. Angiotensin II is
responsible for increasing the salt levels which raises the blood
pressure. The ACE inhibitor drugs are commonly prescribed in indi-
viduals suffering from hypertension or related cardiovascular dis-
orders (Acharya et al., 2003).



A.A. Swelum, M.T. El-Saadony, M. Abdo et al. Saudi Journal of Biological Sciences 28 (2021) 3126–3136
Peptides that inhibit ACE have been reviewed and reported after
enzymatic hydrolysis of milk proteins and after fermentation of
milk with Lactobacillus sp. (Hernández-Ledesma et al., 2014). The
most studied ACE-inhibitory peptides are valine-proline-proline
[VPP; b-casein f (84e86)] and isoleucine-proline-proline [IPP; b-
casein f (74e76)] which have been derived from bovine caseins fol-
lowing fermentation with Lactobacillus sp. (Solieri et al., 2015).
Moreover, a bovine whey protein concentrate hydrolyzed with
alcalase showed potent antihypertensive effect (da Costa et al.,
2007).

Al Haj and Al Kanhal (2010) used two types of strains (Lacto-
bacillus helveticus or Lactobacillus acidophilus with Streptococcus
thermophilus) to ferment camel’s milk and determined the ACE
activity of fermented and unfermented camel’s milk. Likely,
Pihlanto et al. (2010) investigated the fermented camel’s milk inhi-
bitory activity towards ACE. They used lactic acid bacteria (LAB)
strains and found seven fermented camel’s milk samples that
showed highest ACE inhibitory activity, along with a correlation
between degree of hydrolysis and ACE inhibition. The ACE-
inhibitory peptides can be identified using reversed-phase HPLC
(RPHPLC) or be quantified using triple mass spectrometry
(HPLCMS3) (Bütikofer et al., 2007).

7.2.4. Antidiabetic activity
Diabetes mellitus affects millions of people around the globe. It

is a chronic condition in which the body is either unable to produce
enough insulin, can not use the produced insulin or a combination
of both. Clinical studies and murine models have demonstrated
that consumption of camel’s milk by type 1 diabetes patients low-
ered the blood glucose level (Agrawal et al., 2005; Agrawal et al.,
2007a). Although the mechanism is not fully understood, camel’s
milk appeared to have an insulin-like protein that resists intestinal
digestions, absorbs faster into blood, possesses larger lipid micelles
and has different casein content. Agrawal et al. (2007a, 2007b)
showed that the weak coagulation of camel’s milk in the human
stomach and the influence of small size immunoglobulins of
camel’s milk on b-cells have also added to the possible hypo-
glycemic effect. A recent in vitro study reported a potentiating
effect of camel’s milk proteins on insulin receptor activity
expressed in HEK293 cells, which may be a possible mechanism
of action (Abdulrahman et al., 2016).

The study of Jakubowicz and Froy (2013) suggested that whey
proteins and their hydrolysates may stimulate the secretion of
gut hormones in vivo by releasing bioactive peptides and amino
acids, thereby helping mediate glycaemia. Furthermore, these pep-
tides can act as dipeptidyl peptidase-4 (DPP-IV) inhibitors in vivo.
Since, DPP-IV inhibition has helped in managing type-2 diabetes,
several DPP-IV inhibitory peptides have been isolated and identi-
fied from bovine casein (Lacroix & Li-Chan, 2012a, 2013, 2014;
Uenishi et al., 2012; Nongonierma & FitzGerald, 2013a; 2013b;
Silveira et al., 2013) and caprine casein (Zhang et al., 2016).

Brandelli et al. (2015) concluded that DPP-IV inhibitory pep-
tides usually have molecular masses below 2 kDa and most of
them have hydrophobic amino acid residues (Lacroix & Li-Chan,
2012a). Much work has been done on diabetic rats treated with
raw or fresh camel’s milk. There was significant reduction in
plasma glucose levels (Agrawal et al., 2005a; 2005b; Kamal et al.,
2007; Al-Numair & Alsaif, 2011). Camel’s milk whey protein caused
a significant decrease in blood glucose levels from 411 ± 37 mg/dL
to 261 ± 25.5 mg/dL in streptozotocin (STZ)-induced diabetic mice
(Badr, 2013). The same study also reported that the treated group
with camel’s milk whey protein showed higher levels of insulin
compared to untreated diabetic mice.

Mahmoud et al. (2016) found that camel whey protein has pro-
tective effects on STZ-induced diabetic pregnant mice’s off-springs.
It was found that when camel’s whey protein was orally
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administered as a supplement to diabetic pregnant mice, several
postpartum complications were occurred to the offspring; like
increased levels of pro-inflammatory cytokines, reactive oxygen,
overexpression of activating transcription factors, and other
immune-related functions were significantly reduced. Intact pro-
teins from camel’s milk and camel whey have been reported to
possess anti-diabetic property. However, there is no conducted
study on bioactive peptides produced from camel whey proteins
possessing anti-diabetic properties. The study of Nongonierma
et al. (2017) identified novel DPP-IV inhibitory peptides (Leu-Pro-
Val-Pro-Gln and Trp-Lys) from camel’s milk protein hydrolysates,
which were not found in cow’s milk protein hydrolysate. An in-
silico approach was undertaken where camel’s milk protein was
hydrolyzed with trypsin to obtain potent DPP-IV inhibitory pep-
tides (Nongonierma et al., 2017). Another study identified nine
novel DPP-IV inhibitory peptides from trypsin digested camel’s
milk proteins, of which two LPVP and MPVQA had IC50 values
<100 lM (Nongonierma et al., 2018). These studies on camel’s milk
protein hydrolysates provide a strong indication that the camel’s
whey protein fraction upon hydrolysis might possess effective
antidiabetic activities (Abd El-Hack et al., 2020b).

7.2.5. Anticholesterol activity
Studies on the dietary proteins derived from soybean and fish

have been proposed to improve blood lipid profile in humans
and animal experiments (Potter, 1995; Hori et al., 2001). Milk-
derived bioactive peptides from whey were reported to have sim-
ilar effects. For instance, Nagaoka et al. (2001) identified a novel
hypocholesterolemic peptide from tryptic digestion of b-LG and
tested it in Caco-2 cells and animal studies. Liver and serum
cholesterol levels were markedly lower in rats administered with
the tryptic hydrolysate. The inhibition of cholesterol micellar solu-
bility was attributed to be the reason for declining cholesterol
absorption. In another study, it was found that the water-soluble
lactostatin was able to increase cholesterol mechanism by activat-
ing the transcription of cholesterol 7a-hydroxylase (CYP7A1) gene
(Morikawa et al., 2007).

Previous studies reported that bovine casein can elevate blood
cholesterol level due to its high lysine-arginine and methionine-
glycine ratios, but the mechanism is not understood yet
(Jacobucci et al., 2001). By comparing casein with other proteins
like soy, fish and whey, it was suggested that these proteins could
alter the plasma profile by decreasing atherogenesis and having a
cardio-protective effect (Erdmann et al., 2008).

A study on the effects of fermented camel’s milk (gariss G) and
gariss containing Bifidobacterium (G + Bb + 12) on plasma and liver
cholesterol levels in rats was performed (Elayan et al., 2010). A
decrease in plasma low-density lipoprotein (LDL) and plasma
triglycerides was observed. Also, liver cholesterol levels were much
lower in rats fed on (G) and (G + Bb + 12) diets as compared to rats
fed the positive control (cholesterol-enrich) diets.

Few studies on fermented bovine and camel’s milk cholesterol-
lowering activity have been reported. Damodharan et al. (2016)
postulated that Lactobacillus helveticus strains (KII13 and KHI1.
KII13) isolated from fermented cow’s milk displayed a greater
cholesterol-lowering activity (47%) than KHI1 (28%) in vitro. The
strain was then selected for in vivo study in atherogenic diet-fed
hypercholesterolemic mice. Serum total cholesterol and LDL levels
showed a decrease in mice fed with fermented cow’s milk
(Damodharan et al., 2016).

In the same context, Abushelaibi et al. (2017) investigated
selected some LAB strains from raw camel’s milk. They reported
that among the isolated strains, Lactococcus lactis KX881768,
Lactobacillus plantarum KX881772, Lactococcus lactis KX881782
and Lactobacillus plantarum KX881779 were found to be highly
effective on cholesterol removing abilities.
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8. Conclusion

Camel’s milk is rich in health-beneficial substances, for exam-
ple, bioactive peptides, lactoferrin, zinc, and mono and polyunsat-
urated fatty acids. Whey proteins have nutritional importance as
they supply energy and essential amino acids, and functional
importance as they help in in texture, structure modification and
improvement of the overall appearance of food. Camel’s milk whey
is a good source of nutrients and important bioactive peptides.
Antioxidant, antimicrobial, Angiotensin-Converting Enzyme (ACE)
inhibitory, antidiabetic as well as anticholesterol activities are all
representing the major value for these bioactive peptides.
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