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SUMMARY
Persons with HIV are at increased risk for diabetes mellitus compared with individuals without HIV. Adipose
tissue is an important regulator of glucose and lipid metabolism, and adipose tissue T cells modulate local in-
flammatory responses and, by extension, adipocyte function. Persons with HIV and diabetes have a high pro-
portion of CX3CR1+ GPR56+ CD57+ (C-G-C+) CD4+ T cells in adipose tissue, a subset of which are cytomeg-
alovirus specific, whereas individuals with diabetes but without HIV have predominantly CD69+ CD4+ T cells.
Adipose tissue CD69+ and C-G-C+ CD4+ T cell subsets demonstrate higher receptor clonality compared with
the same cells in blood, potentially reflecting antigen-driven expansion, but C-G-C+ CD4+ T cells have a more
inflammatory and cytotoxicRNA transcriptome. Future studieswill explorewhether viral antigens have a role in
recruitment and proliferation of pro-inflammatory C-G-C+ CD4+ T cells in adipose tissue of persons with HIV.
INTRODUCTION

Adipose tissue contains a diverse array of innate and adaptive

immune cells that defend against pathogens, aid removal of

apoptotic cellular debris, and modulate adipocyte homeostasis

and energy utilization.1 Human immunodeficiency virus (HIV) es-

tablishes a latent pro-viral presence in multiple tissue compart-

ments, including adipose tissue. This is accompanied by pro-

found shifts in the relative proportions of adipose tissue CD4+

and CD8+ T cells, immune cell surface marker phenotypes, anti-

gen receptor repertoire, adipocyte gene expression, and energy

homeostasis.2–7

Persons with HIV can now survive decades on effective antire-

troviral therapy, but this success is offset by a rising burden of

metabolic diseases.8–10 The altered innate and adaptive immune
This is an open access article under the CC BY-N
environment in adipose tissue of HIV-positive persons raises the

question of whether these immune cells contribute to metabolic

dysregulation, as observed in obesity. In obesity, progressive

weight gain is accompanied by recruitment of activated M1-

like pro-inflammatory macrophages into adipose tissue along

with infiltration of CD8+ T cells, a shift from anti-inflammatory

TH2 to pro-inflammatory TH1 CD4+ cells, reduced regulatory

T cells, increased local inflammatory cytokines, and reduced

glucose tolerance.11–14 Although HIV and obesity are both char-

acterized by an increase in the ratio of adipose tissue CD8+ to

CD4+ T cells,11,12,15 our group has shown recently that differ-

ences in adipose tissue CD4+ T cell populations, as opposed

to CD8+ T cells, are a defining feature of metabolic disease in

HIV-positive persons. We found that the phenotype of adipose

CD8+ T cell subsets (naive, central memory [TCM], effector
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memory [TEM], and effector memory CD45RA+ [TEMRA] cells) was

similar irrespective of metabolic health. However, adipose tissue

from HIV-positive diabetics was enriched significantly in several

distinct CD4+ T cell subsets compared with HIV-positive non-di-

abetics: CD69+ TEM cells and CD69� CX3CR1+ GPR56+ CD57+

TEM and TEMRA cells.7

The finding of greater CX3CR1, GPR56, and CD57 co-expres-

sion (hereafter referred to as C-G-C co-expression) on CD4+ TEM
and TEMRA cells in adipose tissue from HIV-positive diabetics

was notable because this marker combination may reflect anti-

viral activity. Virus-specific TEMRA cells are more frequently

GPR56+,16 and increased expression of GPR56 and killer-like re-

ceptors (KLRs) has been linked to higher CD4+ T cell cytokine

expression.17 Furthermore, cytotoxic GPR56+ CD4+ and CD8+

TEMRA cells have higher co-expression of the CX3CR1 recep-

tor,16,18,19 which is also a marker of anti-cytomegalovirus

(CMV) T cells.19–22 Given that adipose tissue serves as a reser-

voir for latently HIV-infected CD4+ T cells, free HIV RNA virus,

and CMV,2,3,6,23 greater C-G-C+ co-expression on CD4+

T cells in adipose tissue of HIV-positive diabetics may reflect a

cytotoxic response by virus-specific cells that adversely affects

bystander adipocytes and contributes tometabolic disease.24–26

In this study, we usedmultiparameter indexed flow cytometry,

bulk T cell receptor (TCR) sequencing and single-cell RNA

sequencing (scRNA-seq) to profile adipose tissue CD4+ T cells

in HIV-positive non-diabetics, diabetics, and a control group of

HIV-negative diabetics. We hypothesized that latent pro-viral

HIV/replicating HIV and other viruses, such as CMV, present in

subcutaneous adipose tissue promote recruitment and expan-

sion of pro-inflammatory and cytotoxic virus-specific CD4+

T cells, which may contribute to development of glucose intoler-

ance. Here we report that a larger proportion of total CD4+ T cells

co-express the C-G-C surface marker combination in adipose

tissue of HIV-positive diabetics compared with HIV-negative di-

abetics and HIV-positive non-diabetics. These C-G-C+ CD4+

T cells can be virus specific, as demonstrated by CMV tetramer

staining; fall largely within the TEM and TEMRA subsets; and have a

pro-inflammatory and cytotoxic RNA transcriptome signature. In

contrast, HIV-negative diabetics had a larger proportion of

CD69+ CD4+ T cells in adipose tissue that were largely TEM cells

and expressed gene transcriptomes that regulate metabolism

and inflammation. CD69+CD4+ andCX3CR1+CD4+ T cells in ad-

ipose tissue had more clonal TCR repertoires compared with the

same cells in blood, suggesting that these cells may undergo an-

tigen-stimulated expansion in the tissue compartment. Our find-

ings suggest that expansion of adipose tissue memory CD4+

T cells may be exaggerated in HIV-positive persons, a group

characterized by heightened chronic innate and adaptive im-

mune activation and a disproportionately higher risk of devel-

oping metabolic disease.

RESULTS

CX3CR1+ GPR56+ CD57+ (C-G-C+) CD4+ T cells are
enriched in adipose tissue of HIV-positive diabetics and
include CMV-specific cells
We first assessed the proportion of CD69+ and CD69� C-G-C+

CD4+ T cells in adipose tissue and blood from HIV-positive
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non-diabetic, pre-diabetic, and diabetic participants as per-

formed in our prior studies using multiparametric flow cytometry

(STAR methods; Figures S1A and S1B).7 Concatenated uniform

manifold approximation and projection (UMAP) and t-distributed

stochastic neighbor embedding (t-SNE) identified two distinct

subpopulations of CD69+ CD4+ and CD69� C-G-C+ CD4+

T cells in non-diabetic adipose tissue (14.7% and 7.1%, respec-

tively), which increased as a proportion of total CD4+ memory

T cells with progressive glucose intolerance in pre-diabetics

(26.6% and 6.0%, respectively) and HIV-positive diabetics

(30.6% and 14.5%, respectively; Figure 1A). There were far

fewer CD69+ CD4+ cells in paired blood samples (2.6% in non-

diabetics, 4.2% in pre-diabetics, and 4.1% in diabetics). In

contrast, the proportions of C-G-C+ CD4+ T cells in blood were

similar to adipose tissue and also increased with progressive

glucose intolerance (4.8% in non-diabetics, 7.7% in pre-dia-

betics, and 14.5% in diabetics; data not shown).

Adipose tissue CD69+ CD4+ T cells were predominantly TEM
(68.6%) and fewer TCM (21.7%) and TEMRA (6.1%) cells (Figures

1B and 1C). In contrast, adipose tissue CX3CR1+ GPR56+

CD4+ cells were predominantly TEMRA (54.7%) and TEM
(35.8%) cells (CD57 was not included in this analysis). Peripheral

blood CD69+ CD4+ T cells had a higher proportion of TCM
(43.4%) to TEM cells (25.0%). Peripheral CX3CR1+ GPR56+

CD4+ T cells averaged 4.4% TCM, 48.5% TEM, and 43.1% TEMRA

cells, respectively.

CX3CR1 and GPR56 expression has been described on CMV-

specific T cells.16,20,21,27–29. We used human leukocyte antigen

(HLA)-DR7 tetramers against human cytomegalovirus (HCMV)

gB217–227 | DYSNTHSTRYV (DYS) to identify T cells specific to

this CMV antigen in the peripheral blood of participants with

HLA-DR7 (adipose tissue T cells could not be assayed because

of a limited supply of adipose tissue samples). We found that

92%–98% of DYS tetramer+ CD4+ cells also expressed the

C-G-C surface marker combination (Figures 1D and 1E).

Adipose tissue CD4+ memory T cell transcriptomes
differ by HIV status
The increasing proportion of adipose tissue C-G-C+ CD4+ T cells

with progressive glucose intolerance in HIV-positive participants

led us to ask whether this finding was specific to HIV infection. To

address this, we analyzed adipose tissue samples from five HIV-

negative diabetics and six closely matched HIV-positive dia-

betics (Table S1). All 11 participants were CMV positive. We

found that a larger proportion of adipose tissue CD4+ T cells

from HIV-positive diabetics expressed the C-G-C combination

compared with HIV-negative diabetics (23% versus 3%, p <

0.05; Figures 2A and 2B, column i). In contrast, CD69+ CD4+

T cells were more common in adipose tissue of HIV-negative di-

abetics (54% versus 28% in HIV-positive persons, p = 0.18).

Notably, there was no difference in the combined proportion of

CD69+ CD4+ and C-G-C+ CD4+ T cells between HIV-positive

and HIV-negative diabetics (Figure 2B, column iii).

We next performed scRNA-seq on index-sorted CD3+ mem-

ory T cells (adipose tissue and matched peripheral blood mono-

nuclear cell [PBMC] samples) from HIV-positive and HIV-nega-

tive diabetics, with good representation of CD4+ and CD8+

T cells from all study participants (Figures S2A and S2B), and



Figure 1. C-G-C+ CD4+ T cells are enriched in adipose tissue of HIV-positive diabetics and include CMV-specific cells

(A) Concatenated UMAP plots of adipose tissue CD4+ T cells show surface marker expression (CD57, GPR56, CX3CR1, and CD69) in HIV-positive non-diabetic

(n = 11), pre-diabetic (n = 7), and diabetic (n = 6) participants.

(B) Concatenated flow cytometry plots (n = 26) show the distribution of naive, central memory (TCM), effector memory (TEM), and effector memory CD45RA+

(TEMRA) cells within CD69+ CD4+ and CX3CR1+ GPR56+ CD4+ T cell subsets (pink) in adipose tissue and peripheral blood mononuclear cells (PBMCs); CD57

expression is not shown. These plots overlay the memory subset distribution of total CD4+ T cells (turquoise).

(C) The relative proportions CD69+ CD4+ TEM and CX3CR1+ GPR56+ CD4+ TEMRA cells were higher in adipose tissue compared with blood. PBMCs from HLA-

DR7+ HIV-positive persons were stained with a 12-antibody panel that included the human CMV tetramer (HCMV gB217–227 | DYSNTHSTRYV [DYS]).

(D) PBMCs from HLA-DR7+ HIV-positive persons were stained with a 12-antibody panel that included the human CMV tetramer (HCMV gB217–227 |

DYSNTHSTRYV [DYS]). Three representative samples of 5 total are shown.

(E) The distribution of DYS tetramer+ cells are displayed in a two-dimensional plot colored according to GPR56 expression, andCD4+ DYS tetramer+ cells are also

shown in visualization of t-distributed stochastic neighbor embedding (viSNE) plots, demonstrating co-expression of CX3CR1, GPR56, and CD57.

See also Figure S1.
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calculated differential gene expression (Table S2). Adipose tis-

sue CD4+ T cells from HIV-positive diabetics (n = 2, 190 cells)

andHIV-negative diabetics (n = 5, 483 cells) that were processed

and sequenced simultaneously were used for these compari-

sons to avoid differences due to batch effect. We first performed

differential expression analysis using a panel of immune genes
(Table S3; Figure 2C). The top genes highly expressed in CD4+

memory T cells from HIV-positive diabetics compared with

HIV-negative diabetics (p < 0.05) enriched for several pathways,

including the TCR signaling pathway; the Th1, Th2, and Th17 cell

differentiation pathways; and the nuclear factor kB (NF-kB)

signaling pathway (Figure 2D). There were too few immune
Cell Reports Medicine 2, 100205, February 16, 2021 3
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Figure 2. Adipose tissue CD4+ T cell transcriptomes differ by HIV status, and CD4+ T cells are more commonly C-G-C+ in HIV-positive versus

CD69+ in HIV-negative persons

(A) Adipose tissueCD4+ T cells from six HIV-positive and fiveHIV-negative diabetics were stainedwith the 12-antibody panel and analyzed by flow cytometry. The

bar chart shows the distribution of adipose C-G-C+ CD4+ T cells and CD69+ CD4+ T cells by HIV status.

(B) We quantified (i) C-G-C+ CD4+ T cells, (ii) CD69+ CD4+ T cells, and (iii) the combination of the two subsets.

(C) scRNA-seqwas performed on adipose tissue CD4+memory T cells fromHIV-positive (n = 2) versus HIV-negative diabetics (n = 5) on the same sequencing run,

and differential gene expression was assessed using a panel of immune genes.

(D) Gene enrichment pathway analysis was performed on differentially expressed genes higher in adipose tissue CD4+ T cells from HIV-positive diabetics with

p < 0.05. Genes higher in HIV-negative diabetics did not enrich for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (data not shown).

(E) Immunohistochemical stains of serial sections of perivascular adipose tissue show that CD4+ and CX3CR1+ cells are present in the adipose tissue of HIV-

negative and HIV-positive diabetics. The p values were determined by Mann-Whitney U test and differential gene expression by Kruskal-Wallis test. Pathway

enrichment analysis was performed using the web-based g:Profiler (version e100_eg47_p14_7733820, panel 1) and ShinyGO (v.0.61, panel 2). Analysis in

g:Profiler was performed using the g:SCS method for multiple testing correction with an experiment-wide threshold of a = 0.05; *p < 0.05.

See also Figures S1 and S2 and Table S2.
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genes with higher expression in adipose tissue CD4+ T cells from

HIV-negative diabetics to perform a similar pathway analysis.

Differential gene expression of all transcripts, including non-

immune genes, was also performed (Figure S3A). The genes

higher in adipose tissue CD4+ T cells from HIV-positive diabetics
4 Cell Reports Medicine 2, 100205, February 16, 2021
enriched for the Th17 differentiation pathway (Figure S3B). In

contrast, genes overexpressed in CD4+ T cells from HIV-nega-

tive diabetics did not enrich for any Kyoto Encyclopedia of Genes

and Genomes (KEGG) or Gene Ontology (GO) biological process

pathways. A similar analysis of PBMC CD4+ T cells from HIV-
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positive diabetics versus HIV-negative diabetics also enriched

for the interleukin-17 (IL-17) signaling pathway (Figure S3C).

Last, we obtained serial autopsy sections of coronary arteries

with adjacent perivascular fat from HIV-positive and HIV-nega-

tive donors to confirm the presence of immune cells in adipose

tissue by histology, and ensure that these cells did not represent

contamination from blood. CD4+ and CX3CR1+ cells were pre-

sent in perivascular adipose tissue in close contact with adipo-

cytes (Figure 2E). Because of immunohistochemical staining of

serial sections, there is no direct overlap between CD4 and

CX3CR1 staining in the images. However, the assay shows that

cells expressing both of these surfacemarkers are present in ad-

ipose tissue.

Insummary,we found thatC-G-C+CD4+Tcellsweremorecom-

mon in fat of HIV-positive diabetics. The CD4+memory T cell gene

transcriptomes enriched for pathways involved in IL-17 differenti-

ation and signaling.On the other hand, CD69+CD4+ T cells predo-

minated inHIV-negativediabetics andnoenrichedpathwayswere

observed.

Adipose tissue CD4+ T cells from HIV-positive non-
diabetics and diabetics cluster based on RNA
transcriptomes
We used the UMAP dimension reduction technique to visualize

adipose tissue CD4+ T cells from HIV-positive non-diabetics

and diabetics based on transcriptomic gene expression. These

appeared to separate by diabetes status, with areas of overlap

(Figure 3A). We performed unsupervised K-means clustering to

group cells using an iterative approach. Sevenwas themaximum

number of assigned clusters. Using one-way ANOVA, a number

of immune genes were differentially expressed by the cells in all

seven clusters (Figure 3B; Table S4). Cluster 5 had higher

expression of CD69, whereas CX3CR1 gene expression ap-

peared to be higher in cluster 6 but was not statistically signifi-

cant. Differential gene expression between cluster 5 and 6

confirmed higher expression of CD69 in the former, along with

IL7R, CCR7, CD27, CD55, and CD44. Genes higher in cluster 6

included CCL5, GNLY, NKG7, FGFBP2, GZMB, GZMH, IFITM1,

andCCL4 (Figure 3C; Table S4). The differential gene expression

between cluster 3 (predominantly HIV-positive diabetics) and

cluster 5 was notable for higher LCMT2, SOX11, CD47,

HSPA4, NCAM1, KCNJ2, and GZMA in cluster 5 compared

with higher TNFAIP3, CD69, CD55, TGFB1, FOS, and JUN in

cluster 3 (Figures 3D and 3E; Table S4).

Adipose tissue CD4+ T cells from HIV-positive diabetics
have a cytotoxic RNA transcriptome signature
compared with those from HIV-negative diabetics
Our unsupervised UMAP analysis of adipose tissue CD4+ T cells

demonstrated clusters of transcriptionally distinct cells in HIV-

positive non-diabetics versus diabetics, so we next assessed

T cell differential gene expression and response to antigen in

these two groups. Overall, HIV-positive diabetics had a higher

combined proportion of adipose tissue CD69+ and C-G-C+

CD4+ T cells compared with non-diabetics (47.6% versus

21.2% of total CD4+ memory T cells, p = 0.03) (Figure 4A) as re-

ported previously.7 We then assessed differential expression of

immune genes expressed by adipose tissue CD4+ memory
T cells, irrespective of CD69 or C-G-C expression, fromHIV-pos-

itive non-diabetics versus diabetics (Figure 4B; Table S5). Genes

higher in HIV-positive diabetics included AGER, CD47, PRF1,

GZMA, GZMB, and GZMH. In contrast, adipose tissue CD4+

T cells from non-diabetics had higher levels of CD55, IL10R,

TGFB1, KLF3, and S1PR1. Immune genes expressed in both ad-

ipose tissue and blood CD4+ T cells of non-diabetics included

MX1, TGFB1, BIRC2, IL6R, IL23R, and PLOD1. However, adi-

pose tissue and blood CD4+ T cells from diabetics overex-

pressed a greater number of overlapping immune genes,

including TGFBR2, GNLY, GZMH, GZMB, GZMA, NCAM1, and

SOX11 (Figure 4C; Table S5), which enriched for cytolysis and

granzyme-mediated apoptotic pathways (Figure 4D).

We also assessed the functional response to antigen using

PBMCs from HIV-positive non-diabetics (n = 15) versus dia-

betics (n = 8); adipose tissue T cells could not be assayed

because of insufficient samples (Figure 4E; Figure S4). Similar

to the gene transcripts, CD4+ T cells from diabetics had higher

expression of granzyme B at baseline and expressed higher

levels of interferon-g and tumor necrosis factor alpha (TNF-a) af-

ter stimulation with a staphylococcal enterotoxin B (SEB) and

CMV phosphoprotein 65 (pp65) peptide pool (Figures 4F and

4G). Granzyme B is a serine protease that is expressed in cyto-

toxic lymphocytes contained in granules along with perforin.

Stimulation of T cells via TCR leads to formation of an immuno-

logical synapse and release of the contents of the granules.

Similar to a previous study,30 not all granzyme B+ T cells ex-

pressed inflammatory cytokines upon stimulation. Finally, we

obtained autopsy samples of coronary arteries with adjacent

perivascular fat from two HIV-positive donors, with and without

a recorded diagnosis of diabetes prior to death, for granzyme

B immunohistochemistry staining. Granzyme B+ cells were pre-

sent in the perivascular adipose tissue of HIV-positive diabetics,

and these appeared to be more numerous than in HIV-positive

non-diabetics (Figure 4H). Statistical analysis was not performed

because of the small number of samples available for each group

(Table S1).

Adipose tissue CX3CR1+ CD4+ T cells have pro-
inflammatory gene transcriptomes
To understand the contribution of CX3CR1+ CD4+ T cells to the

cytotoxic RNA transcriptome observed for total adipose tissue

CD4+ memory T cells in HIV-positive diabetics, we compared

adipose tissue CX3CR1+ and CX3CR1� CD4+ T cells stratified

by diabetes status. Applying p < 0.1 as a threshold, there were

124 genes higher in CX3CR1+ CD4+ T cells from HIV-positive

nondiabetics, including HLA-A, HLA-B, IFNGR1, PSMB9, and

CD52. These enriched for the Th17 differentiation, nucleotide-

binding oligomerization domain (NOD)-like receptor signaling,

and TCR pathways (Figure 5A; Table S5). A similar analysis of

HIV-positive diabetics identified 61 genes with higher expression

in CX3CR1+ CD4+ T cells, including IKBKB, PDGFA, AGER, and

CD160, which also enriched for the Th17 differentiation,

mitogen-activated protein kinase (MAPK), and FoxO signaling

pathways (Figure 5B; Table S5). Notably, HIV-negative diabetics

had fewer CX3CR1+ CD4+ T cells, but in comparison with

CX3CR1�CD4+ T cells, these enriched for the NOD-like receptor

signaling, focal adhesion program, and advanced glycation end
Cell Reports Medicine 2, 100205, February 16, 2021 5



Figure 3. Unsupervised analysis of adipose tissue CD4+ T cells from HIV-positive non-diabetics and diabetics reveals clusters of tran-

scriptionally distinct cells

(A) UMAPs showing adipose tissue CD4+ T cells from HIV-positive non-diabetics and diabetics and cell clusters using the K-means algorithm.

(B) Boxplots show gene counts that were significantly higher in different cell clusters, with adjusted p values indicated next to the gene.

(C and D) Volcano plot showing differential gene expression between cluster 5 (higher CD69 gene expression) and cluster 6 (higher CX3CR1 gene expression) (C)

and between cluster 3 (predominantly cells from HIV-positive diabetics) and cluster 5 (predominantly cells from HIV-positive non-diabetics) (D).

(E) Heatmaps of select genes differentially expressed in cluster 2 (predominantly non-diabetic HIV-positive) and cluster 3 (predominantly diabetic HIV-positive)

are shown in UMAPs.

Differential gene expression was performed by Kruskal-Wallis test. See also Figure S3 and Table S4.
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products and their receptors (AGE-RAGE) signaling pathways

(a contributor to diabetic complications).

CX3CR1+ CD4+ T cells from all three groups had higher LIM

and cysteine-rich domain protein 1 (LMCD1) gene transcripts

than CX3CR1� CD4+ T cells (Figure S5; Table S5). LMCD1 is a

transcriptional factor that represses GATA-6 mediated trans-

activation of cardiac and lung tissue-specific promoters and is

important for development of cardiac hypertrophy.31 Other

notable overlapping genes that were highly expressed in

CX3CR1+ CD4+ T cells from diabetics (HIV-positive and HIV-
6 Cell Reports Medicine 2, 100205, February 16, 2021
negative) were PDGFA, TGFB3, and RAB27A. The GO biological

processes enriched by these genes are blood coagulation/he-

mostasis and wound healing (false discovery rate [FDR] < 0.05

for both).32 These data suggest that CX3CR1+ CD4+ T cells are

pro-inflammatory irrespective of diabetes or HIV status.

We performed similar analyses to assess adipose tissue

CD69+ CD4+ T cell transcriptomes (Figures S6; Table S5).

CD69 is a marker of early activation, tissue residency, and T

helper cell differentiation.33 The core gene signature of CD69+

tissue resident memory cells has been well established and



(legend on next page)
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includes IL-2, IL-10, PD-1, RGS1,CXCR6, and ITGAE.34 None of

these previous analyses were of HIV-positive persons or adipose

tissue T cells. Using p < 0.1 as a threshold, genes higher in

CD69+ CD4+ T cells from HIV-positive non-diabetics enriched

for the apelin signaling (GNAQ, NOS2, and ITPR1) and arginine

biosynthesis (NOS2 andARG2) pathways (Figure S6A); HIV-pos-

itive diabetics enriched for the NF-kB signaling (MALT1,MYD88,

TRAF3, and TNFSF14) and MAPK signaling (KIT, MYD88, and

PDGFA) pathways (Figure S6B). Last, CD69+ CD4+ T cells from

HIV-negative diabetics expressed CD47, CD52, CDC42, OAZ1,

CD69,CD6, andNCF4. These did not enrich for any KEGG path-

ways (Figure S6C). There were three overlapping genes highly

expressed by adipose tissue CD69+ CD4+ T cells from HIV-pos-

itive non-diabetics and diabetics (CDH6 [cadherin 6 calcium-

dependent cell adhesion protein]; SLC25A37, also known as Mi-

toferrin-1 and a mitochondrial iron transporter; and KLRD1-

CD94, a receptor for recognition of major histocompatibility

complex [MHC] class I HLA-E molecules). In summary, these

findings suggest that CX3CR1+ CD4+ T cells in HIV-positive per-

sons have gene transcripts involved in Th17 differentiation irre-

spective of diabetes status. However, this was not the case for

CX3CR1+ cells from HIV-negative persons. CD69+ CD4+

T cells, on the other hand, had fewer genes that were overex-

pressed compared with CD69– CD4+ T cells in all three groups.

C-G-C+ CD4+ T cells and CD69+ CD4+ T cells have
distinct RNA transcriptomes that differ in HIV-positive
diabetics and non-diabetics
Using dimensional reduction analysis of adipose tissue CD4+

T cell surface marker expression, CD69+ and C-G-C+ CD4+

T cells are non-overlapping subsets (Figure 1A). We performed

differential gene expression of adipose tissue CD69+ and C-G-

C+ CD4+ T cells in HIV-positive diabetics (Figure 6A; Table S5);

genes shown in blue (n = 25) were higher in adipose tissue

CD69+ CD4+ T cells, whereas genes shown in red (n = 55)

were higher in C-G-C+ CD4+ T cells. The top three KEGG path-

ways enriched in CD69+ cells were the NOD-like receptor

signaling, NF-kB signaling, and retinoid acid-inducible gene-I

(RIG-I)-like receptor signaling pathways (Figure 6B). C-G-C+

CD4+ T cell genes enriched for the C-type lectin, FoxO signaling,

and MAPK signaling pathways (Figure 6C). The GO biological

processes enriched by the genes from CD69+ CD4+ T cells

(MALT1, TMEM173, PYCARD, KLRD1, LAG3, TRAF3, MYD88,
Figure 4. Adipose tissue CD4+ T cells in HIV-positive diabetics have a

(A) Bar plot and boxplot showing a higher combined proportion of CD69+ and C-G

diabetics (n = 5).

(B) Differential gene expression of immune genes by adipose tissue CD4+ T cells

cells).

(C) Venn diagram showing overlap of genes with higher expression (p < 0.05) in

diabetics.

(D) GO processes enriched by overlapping genes differentially expressed by adi

(E) Intracellular cytokine staining (ICS) showing the percentage of granzyme B+ b

unstimulated samples as well as co-expression of interferon g (IFN-g) and tumo

lococcal enterotoxin B (SEB).

(F and G) Percentage of IFN-g and TNF-a co-expression by CD4+ T cells (F) and

(H) Immunohistochemistry stains showing granzyme B+ cells in perivascular adip

Differential gene expression was determined by Kruskal-Wallis test. Mann-Whit

****p < 0.0001. See also Figure S4 and Table S5.
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RIPK1, NCAM1, and HLA-C) were in the innate immune

response process. Genes from C-G-C+ CD4+ T cells enriched

for leukocyte activation and immune system processes (CD4,

CD5, LEF1, ITGA4, CD40LG, CD160, IL15, RHOA, BCL3,

CTSC, LDLR, ITGB2, CASP3, CD6, NFATC2, IL21R, C3, CD53,

PLAC8, CTSS, PPIA, and IGF2R) (Figure 6D). Notably, Toll-like

receptors and NOD-like receptors have been implicated in the

pathogenesis of diabetes through activation by gut microbiota

and free fatty acids.35

We performed a similar analysis in HIV-positive non-dia-

betics and identified 76 genes that were higher in C-G-C+

CD4+ T cells versus 9 genes in CD69+ CD4+ T cells (Table

S5). Genes higher in C-G-C+ CD4+ T cells enriched for several

KEGG pathways, including NOD-like receptor signaling and

Toll-like receptor signaling (Figure S7A). Genes higher in

CD69+ CD4+ T cells did not enrich for any KEGG pathways.

The GO biological processes enriched in C-G-C+ CD4+

T cells were similar to those of HIV-positive diabetics,

including leukocyte activation (Figure S7B). Notably, gene

transcripts that were highly expressed in C-G-C+ CD4+

T cells from HIV-negative diabetics enriched for the RIG-I-re-

ceptor signaling and complement cascade pathways (Fig-

ure S7C). Similar to HIV-positive non-diabetic and diabetics,

the GO biological processes were related to immune activation

and defense processes (Figure S7D; Table S5).

Adipose tissue CD69+ and CX3CR1+ CD4+ memory
T cells are more clonal compared with CD69� CX3CR1�

CD4+ memory T cells and paired cells from blood
Previous studies have reported increased TCR clonality in CD4+

TEMRA subsets compared with TEM and TCM.
36 Greater clonality

is a feature of TCR-dependent expansion, and the higher propor-

tion of CX3CR1+ TEMRA suggests that these cells should bemore

clonal compared with CD69+ and other (e.g., CD69� CX3CR1�)
CD4+ memory T cells. Therefore, we next assessed TCR clonal-

ity in HIV-positive participants by sorting CD4+ memory T cells in

bulk from paired adipose tissue and blood (Figure S1A) into three

groups based on expression of CD69, CX3CR1, or a lack of

either marker (CD69� CX3CR1�) and performed DNA-based

TCR sequencing (Adaptive Biotechnologies). We included

CD8+ memory T cells for comparison.

CD69+ and CX3CR1+ CD4+ memory T cells in adipose tis-

sue were more clonal compared with those expressing the
cytotoxic RNA transcriptome signature

-C+ CD4+ T cells in adipose tissue of HIV-positive diabetics (n = 6) versus non-

from diabetics (n = 6, 354 cells) were compared with non-diabetics (n = 4, 273

matched adipose tissue and blood CD4+ T cells from diabetics versus non-

pose and blood CD4+ T cells from diabetics.

lood CD4+ T cells in HIV-positive non-diabetics (n = 15) and diabetics (n = 8) in

r necrosis factor alpha (TNF-a) with granzyme B after stimulation with staphy-

CD8+ T cells (G) after SEB and CMV-pp65 peptide pool stimulation.

ose tissue of HIV-positive diabetics (n = 2) versus non-diabetics (n = 2).

ney U test was used to compare cytokine expression. *p < 0.05, **p < 0.01,



Figure 5. Adipose tissue CX3CR1+ CD4+ T cells have a pro-inflammatory transcriptome profile regardless of diabetes or HIV status

(A–C) Differential gene expression of immune genes between index-sorted CX3CR1+ CD4+ and CX3CR1� CD4+ T cells. Top genes (p < 0.1) expressed in

CX3CR1+ CD4+ T cells were used for gene enrichment analysis. Two panels (1 and 2) show KEGG pathways enriched by top genes expressed by adipose tissue

CX3CR1+ CD4+ T cells from HIV-positive non-diabetics (n = 5, A), HIV-positive diabetics (n = 6, B), and HIV-negative diabetics (n = 5, C). Differential gene

expression was determined by Kruskal-Wallis test. Panel 1 enrichment analysis was performed using g:Profiler. Panel 2 enrichment analysis was performed using

ShinyGO based on hypergeometric distribution followed by FDR correction. See also Figure S5 and Table S5.
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same markers in blood (p < 0.05; Figure 7A), whereas there

was no difference in clonality between adipose tissue and

blood for CD69� CX3CR1� CD4+ (all other) memory T cells

and CD8+ memory T cells. In adipose tissue, CD69+ and

CX3CR1+ CD4+ memory T cells were significantly more clonal

compared with CD69� CX3CR1� CD4+ T cells. CX3CR1+

CD4+ T cells in blood were also more clonal than CD69�

CX3CR1� CD4+ T cells but CD69+ CD4+ T cells were not (Fig-

ure 7A). As expected, CD8+ memory T cells generally had a

higher degree of clonality than CD4+ memory T cells.37,38 Fig-

ure 7B shows clonality scores for matched pairs of adipose

tissue and blood CX3CR1+, CD69+, and CD69� CX3CR1�

CD4+ memory T cells.
We next assessed clonality scores by metabolic group (non-

diabetic, pre-diabetic, and diabetic). Clonality trended higher in

adipose tissue CX3CR1+ CD4+ T cells from diabetics compared

with non-diabetics and pre-diabetics (p = 0.06 and p = 0.07; Fig-

ure 7C). In contrast, there was little difference between adipose

tissue and blood CD69+ CD4+ memory T cell clonality between

metabolic groups (Figure 7D). The CDR3 amino acid sequences

from TCRs with a productive frequency greater than 5% and two

or more templates are shown in Table S6.39–51

The CX3CR1 receptor is important for leukocyte transit across

the endothelium, suggesting that CX3CR1+ CD4+ T cells may

represent a population trafficking through the tissue as opposed

to fixed or ‘‘resident.’’ We compared TCRs using the Morisita
Cell Reports Medicine 2, 100205, February 16, 2021 9



Figure 6. Characterization of C-G-C+ CD4+ T and CD69+ CD4+ T gene transcripts in HIV-positive diabetics

(A) Volcano plot showing differential gene expression of immune genes between CD69+ (blue) and C-G-C+ (red) CD4+ T cells from adipose tissue of HIV-positive

diabetics (n = 6). Top genes (p < 0.1) were used for gene enrichment analysis.

(B and C) A Manhattan-like plot summarizes the KEGG pathways enriched by top genes expressed by adipose tissue CD69+ CD4+ T cells (B) and C-G-C+ CD4+

T cells (C).

(D) Top Gene Ontology (GO) terms enriched for genes that are differentially expressed by CD69+ CD4+ and C-G-C+ CD4+ T cells.

Differential gene expression was determined by Kruskal-Wallis test. KEGGpathway enrichment analysis was performed using g:Profiler, andGO termswere from

ShinyGO. See also Figure S6–S8 and Table S5.
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overlap index range (0 [unique repertoires] to 1 [complete similarity

between two groups]) and found a higher degree of overlap be-

tween the TCR repertoire of adipose tissue and blood CX3CR1+

CD4+ T cells compared with CD69+ CD4+ T cells (Figure 7E).

We interpret this finding to suggest that many adipose CD4+

CD69+ T cellsmay be ‘‘clonally segregated’’ fromblood, reflecting

a tissue-resident status, which is supported by a recent report

showing clonal segregation of CD69+ T cell subsets between

blood and tissue (lung, spleen, tonsils, and salivary glands).34

Notably, there was a high degree of overlap in CD8+ memory

T cells between adipose tissue and blood, suggesting that these
10 Cell Reports Medicine 2, 100205, February 16, 2021
cells may also traffic between compartments (Figure 7E). The

Morisita indices did not differ by diabetic status (data not shown).

We next performed single-cell TCR sequencing (TCR-seq) on

index-sorted CD3+ memory T cells from 4 HIV-positive dia-

betics and 4 HIV-positive non-diabetics, followed by RNA tran-

scriptome analysis as outlined (Figure S1A). Circos plots show

TCR a/b pairs in adipose tissue and blood. In general, adipose

tissue samples had more clonal TCRs (Figure 7F; Table S7). Of

the individuals with TCR-seq data, 50% of HIV-positive non-di-

abetics had detectable HIV in adipose tissue by quantitative

PCR, whereas 75% of HIV-positive diabetics had detectable



Figure 7. Adipose CD69+ and CX3CR1+ CD4+ T cells are more clonal compared with CD69� CX3CR1� CD4+ memory cells and paired cells

from blood

(A) Productive T cell receptor (TCR) b clonality of bulk-sorted CD69+ CD4+ T cells, CX3CR1+ CD4+ T cells, all other (i.e., CD69� CX3CR1�) CD4+ memory T cells,

and CD8+ memory T cells (n = 23 participants) from paired adipose tissue (AT; yellow) and blood (red) samples.

(B) Comparison of productive clonality in matched pairs of adipose tissue and blood CD4+ T cells, color-coded based on metabolic status (non-diabetic, blue;

pre-diabetic, green; diabetic, red).

(C and D) Productive clonality compared by diabetes status (non-diabetic [non-DM], pre-diabetic [pre-DM], and diabetic [DM]) for CX3CR1+ CD4+ T cells (C) and

CD69+ CD4+ T cells (D).

(E) Morisita index for overlap of TCR repertoires between matched adipose and blood samples stratified by T cell subset.

(F) Circos plots of paired TCRb and TCRa genes of CD3+ memory T cells in adipose tissue and peripheral blood from HIV-positive non-diabetics (non-DM, n = 4)

and diabetics (DM, n = 4). Red bands represent dominant TCR pairs in adipose tissue (which may also be present in blood), and turquoise bands represent

dominant pairs in blood (which may also be present in adipose tissue). The HIV viral load (copies per million cells) in adipose tissue is shown in blue.

Statistical comparisons for paired samples (adipose tissue versus blood) were calculated using theWilcoxon signed-rank test. Differences between groups were

calculated using Mann-Whitney test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. See also Table S6.
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virus. There were a few shared/public TCRs with identical

CDR3 amino acid sequences on CD4+ T cells from different in-

dividuals, some of which have known epitopes. This included

the known mucosal-associated invariant T cell (MAIT)-like

rearrangements CAVMDSNYQLIW and CAVRDSNYQLIW

(Table S7).
Last, we compared the top genes expressed by adipose tissue

clonal versus nonclonal (i.e., occurring only once) TCRs on CD4+

T cells. We found that CD4+ T cells with clonal TCRs, defined as

having more than two cells with the same CDR3 or TCRs shared

between individuals, had higher expressionof several genes asso-

ciated with cytotoxic T cells. These included CCL5, GNLY, PRF1,
Cell Reports Medicine 2, 100205, February 16, 2021 11



Article
ll

OPEN ACCESS
KLRG1, GZMA, CX3CR1, TNFRSF1B, GZMB, and HLA-C (data

not shown). CD4+ T cells with non-clonal TCRs had higher expres-

sion of SELL, TNFRSF9, GPR183, IL7R, CCR7, PRDM1, TRAF3,

ROCK2, IRF8, IFIT3, RAPGEF2, CD55, and KIR3DL1. A recent

studyusingSELECT-seqperformeda similar analysis,which iden-

tified genes expressed by clonally expanded CD8+ T cells down-

stream of TCR signaling, including PRF1, GNLY, CCL5, KLRG1,

and TIGIT.52 The similarity in genes expressed by clonal adipose

tissue CD4+ T cells and those reported previously in CD8+ T cells

suggests a cytotoxic phenotype that needs to be explored further.

DISCUSSION

Despite advances in effective antiretroviral therapy and durable

suppression of plasma viremia, HIV-positive persons remain at

higher risk of metabolic disease compared with HIV-negative in-

dividuals with similar risk factors.8–10 Persistent inflammation is a

hallmark of treated HIV infection, and elevated circulating bio-

markers of inflammation are associated with an increased risk

of incident diabetes in HIV-positive and -negative persons. How-

ever, the mechanisms by which immune cells contribute to

development of metabolic disease are not well defined. This

study evaluates adipose tissue CD4+memory T cell phenotypes,

RNA transcriptomes, and receptor clonality in the context of HIV

infection and diabetes. We show that adipose tissue CD4+ T cell

profiles shift with progressive glucose intolerance in HIV-positive

persons, which is principally characterized by an increased pro-

portion of C-G-C+CD4+ T cells in HIV-positive diabetics. Further-

more, the enrichment of C-G-C+ CD4+ T cells in adipose tissue

appears to be a feature of HIV infection; in comparison, CD69+

CD4+ T cells predominate in adipose tissue of HIV-negative dia-

betics. Although CD4+ T cells expressing C-G-C+ were primarily

TEMRA cells and CD69+ cells were primarily TEM cells, both sub-

sets were more clonal than CD4+ T cells lacking both markers.

Furthermore, in each subset, we identified several public TCR

clones in more than one participant, in addition to previously re-

ported TCR sequences. We identified anti-CMV CD4+ T cells in

the C-G-C+ population (by design, all participants in our study

were CMV seropositive). Although CD4+ T cells had overlapping

genes and functions, adipose tissue C-G-C+ CD4+ T cells ex-

pressed gene transcriptomes enriched for leukocyte activation

and defense processes, whereas CD69+ CD4+ T cells had

more genes involved in regulation of immune and metabolic

processes.

Adipose tissue is a reservoir for HIV,2,3,6,53 CMV,23 and other

viruses and bacteria.54–57 Murine studies have demonstrated

that virus replication in adipose tissue is associated with recruit-

ment and expansion of lymphocytes independent of lymphoid

organs. For example, intraperitoneal infection with lymphocytic

choriomeningitis virus (LCMV) led to seeding of the adipose tis-

sue, followed by entry of virus-specific T cells that resolved the

infection but remained as a distinct memory cell population

that expanded with obesity.58 Upon re-challenge with LCMV,

these memory T cells activated and induced necrosis in the ad-

ipose tissue of obese mice. We hypothesize that viral antigens,

including CMV, in human adipose tissue could induce a similar

immune response, accompanied by adverse effects on adipo-

cyte function, with the exception that this immune response is
12 Cell Reports Medicine 2, 100205, February 16, 2021
chronic and indolent rather than sporadic and fulminant, as in an-

imal models of pathogen re-challenge.

An increase in specific adipose tissue immune cell subsets

could be due to increased recruitment and migration from the cir-

culation or local clonal expansion. We demonstrated that the

CD69+ and CX3CR1+ CD4+ T cell subsets in adipose tissue are

clonally expanded compared with CD69� CX3CR1� CD4+ T cell

subsets in adipose tissue and all subsets in circulation. CX3CR1

is expressed by cytotoxic virus-specific T cells.20,21,27,59 Further-

more, CX3CR1+ CD4+ T cells are found in tissue or blood in many

autoimmune diseases, including primary sclerosing cholangitis,60

multiple sclerosis,61 systemic lupus erythematosus, and rheuma-

toid arthritis.62,63 CX3CR1+ cells are typically CD28�, which

serves as a marker of increased replicative history and oligoclon-

ality but reduced susceptibility to apoptosis.64–66 In contrast,

CD69 has been shown to reflect tissue residency, and expression

of this marker can also indicate engagement of the TCR.33 The

predominance of C-G-C+ CD4+ T cells in HIV-positive diabetics

and CD69+ CD4+ T cells in HIV-negative diabetics suggests that

HIV infection serves to shape the T cell profile in the adipose tissue

compartment, perhaps by promoting an inflated response to spe-

cific antigens, such as CMV, and expansion of an inflammatory

and apoptosis-resistant CX3CR1+ TEMRA population. At present,

this is speculation and further studies are needed to characterize

the epitopes driving clonal proliferation of adipose tissue T cells in

different disease states.

We show that adipose tissue C-G-C+ CD4+ T cells have an

RNA transcriptome characterized by genes associated with

leukocyte activation and cytotoxicity. We also demonstrate

that adipose tissue and blood CD4+ T cells from HIV-positive

persons, irrespective of diabetes status, are enriched for genes

in the IL-17 differentiation pathway, as shown previously.67,68

These cells may contribute to an adipose tissue environment

high in proinflammatory cytokines that can have adverse effects

on adipocyte insulin signaling and energy storage through

reduced expression of several genes, such as insulin receptor

substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K/p85a),

and glucose transporter type 4 (GLUT4).69,70 Although further

human data in this area are needed, recent animal studies sug-

gest that antigen-specific memory T cell responses in adipose

tissue can contribute to adipocyte dysfunction and alteredmeta-

bolic function. Mice exposed to Yersinia pseudotuberculosis es-

tablished a population of pathogen-specific adipose tissue

T cells that persisted after clearance of the initial infection. Sub-

sequent injection with a Y. pseudotuberculosis peptide led to

proliferation of adipose tissue memory cells and downregulation

of several lipid metabolic pathways, including lipid biosynthesis

and triglyceride, cholesterol, and long-chain fatty-acyl-CoA

metabolic processes.71 A similar study using LCMV, described

above, reported establishment of virus-specific memory T cells

in adipose tissue.58 Upon re-challenge with LCMV, these cells

expanded and induced necrosis and calcification in adipose tis-

sue of obese mice. A study of rhesus macaques infected intra-

rectally with simian immunodeficiency virus (SIV; a virus similar

to HIV) found detectable virus in adipose tissue stromal vascular

fraction cells after acute and chronic infection.72 Macaques

chronically infected with SIV had increased adipocyte expres-

sion of peroxisome proliferator-activated receptor gamma-2
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(PPARg2) and decreased expression of cytosine-cytosine-aden-

osine-adenosine-thymidine (CCAAT)/enhancer-binding protein

alpha and beta (C/EBPa and C/EBPb, respectively), leptin, and

GLUT4.

Our results propose that expansion of memory CD4+ T cells in

adipose tissue may contribute to alterations in adipocyte energy

storage and metabolism and, ultimately, development of dia-

betes. This phenomenon may be exaggerated in HIV-positive

persons, a group with a disproportionately high prevalence of

metabolic disease, and may be driven in part by a response to

the presence of viral antigens in the local environment. Further

studies will determine the cognate antigens of dominant TCRs

identified in adipose tissue and quantify the tissue reservoir of

HIV, CMV, and other viruses in relation to immune cell popula-

tions, adipocyte energy-handling pathways, and metabolic

fitness. Further studies building on our current findings may illu-

minate new avenues to leverage immunomodulation as a means

to reduce the burden of metabolic disease, including diabetes,

among persons with and without HIV.

Limitations of study
Our study has several limitations. The sample sizewas small, and

our analysis did not include other adipose tissue immune cells,

such as macrophages, dendritic cells, natural killer (NK), or NK

T cells, that have been shown to interact with T cells and modu-

late adipocyte function. Although we identified CMV-specific

T cells, our study did not quantify the burden of CMV transcripts

in whole adipose tissue. Furthermore, our study used stromal

vascular fraction cells obtained by small-volume fat aspiration,

which limited our cell yield and was insufficient to perform

ex vivo experiments to corroborate differential gene expression

through protein expression studies. Last, our cross-sectional

design precluded an assessment of causality, and future clinical

studies will enroll pre-diabetic participants for longitudinal as-

sessments to clarify the temporal relationships between the adi-

pose tissue immune environment and metabolic health.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD3-BV786 (Clone SK7) BD Biosciences #563800, RRID: AB_2744384

CD4-PcPCy5.5 (Clone RPA-T4) BD Biosciences #560650, RRID: AB_1727476

CD8-A700 (Clone PRA-T8) BD Biosciences #557945, RRID: AB_396953

CD57-FITC (Lot 4182924) BD PharMingen #555619, RRID: AB_395986

CX3CR1-PE (Clone 2A9-1) BD Biosciences #565796, RRID: AB_2739360

CD45RO-PECF594 (Clone UCHL1) BD Biosciences #562299, RRID: AB_11154398

CD14-V500 (Clone M5E2) BD Biosciences #561391, RRID: AB_10611856

CD19-V500 (Clone HIB19) BD Biosciences #561121, RRID: AB_10562391

LIVE/DEAD Fixable Aqua ThermoFisher L34957

CD69-APC (Clone FN50) BD Biosciences #560711, RRID: AB_1727507

CCR7-BV421 (Clone 150503) BD Biosciences #562555, RRID: AB_2728119

GPR56-PECy7 (Clone CG4) BioLegend #358205, RRID: AB_2562089

HLA-DR APC Cy7 (Clone G46-6) BD Biosciences #561358, RRID: AB_10611876

HLA-DR7: EPDVYYTSAFVFPTK (EPD) Tetramer, APC NIH Tetramer Core N/A

HLA-DR7: DYSNTHSTRYV (DYS), APC NIH Tetramer Core N/A

HLA-DR7: FRDYVDRFYKTLRAEQASQE (FRD), APC NIH Tetramer Core N/A

CD4 (Immunohistochemistry) Roche #790-4423, RRID: AB_2335982

CX3CR1 (Immunohistochemistry) Abcam #ab8021, RRID: AB_306203

Granzyme B (Immunohistochemistry) LifeSpan Biosciences #LS-B7602

Biological samples

Peripheral Blood Mononuclear Cells (PBMCs) Vanderbilt University

Medical Center – HATIM

cohort

N/A

Stromal Vascular Fraction (SVF) Vanderbilt University

Medical Center – HATIM

cohort

N/A

Perivascular Adipose Tissue (Formalin Fixed Paraffin

Embedded)

CVPath Institute https://www.cvpath.org/#OurResearchCapabilities

andFacilities

Chemicals, peptides, and recombinant proteins

Collagenase D Roche 1088866001

RNase inhibitor Invitrogen Lot 1983725

Critical commercial assays

ImmunoSEQ hsTCRB Kit Adaptive Biotechnologies ISK10101

Agencourt AMPure XP Beckman Coulter NC9933872

KAPA Universal qPCR Library Quantification Kit Kapa Biosystems Inc. KK4601

NEBNext� UltraTM II FS DNA Library Prep Kit New England Biolabs NEB # E6177

QIAGEN Multiplex PCR Plus Kit QIAGEN 206152

Illumina NextSeq using a 2 3 75 paired-end chemistry kit Illumina 20024906

Deposited data

Raw Data This Paper GSE159759

GRCh38 human reference genome (Ensembl rel. 92) Genome Reference

Sequence

https://www.ncbi.nlm.nih.gov/grc/human

(Continued on next page)

Cell Reports Medicine 2, 100205, February 16, 2021 e1

https://www.cvpath.org/#OurResearchCapabilitiesandFacilities
https://www.cvpath.org/#OurResearchCapabilitiesandFacilities
https://www.ncbi.nlm.nih.gov/grc/human


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

OdT Primer: 50-5Biosg/AAG CAG TGG TAT CAA CGC

AGA CAA CAC CCA GAC ATT CCA TTT TTT TTT TTT

TTT TTT TTT TTT TTT TTT*V*N-30

Integrated DNA

Technologies (IDT)

Custom made

TSO:: 50-5Biosg/AAGCAGTGGTATCAACGCAGAGTA

CAXXXXXXGrGrG+G-30
Exiqon Custom made

cDNA Amp: AAG CAG TGG TAT CAA CGC AGA

(Biotin Labeled)

IDT Custom made

INTLINK_Top: G*CAGCGGATAACAATTTCACG

GCGCGCC ACTGCAGGACGTAC*T*G*T*T

IDT Custom made

INTLINK_Bot: A*CAGTACGTCCTGCAGTGGCG

CGCCTTGACTGAGCTTTA (50 Phosphorylated/30

dideoxycytosine)

IDT Custom made

1st Link_Primer: GCAGCGGATAACAATTTCACG IDT Custom made

2nd Link Primer: CACTGCAGGACGTACTGTT IDT Custom made

OdT end: AAG CAG TGG TAT CAA CGC AGA CA IDT Custom made

TSO end: AAG CAG TGG TAT CAA CGC AGA GT Exiqon Custom made

TCRA: GTCACTGGATTTAGAGTCTCTCAG IDT Custom made

TCRB: GAGATCTCTGCTTCTGATGGCTC IDT Custom made

Software and algorithms

FlowJo software (version 10.4.1) FlowJo LLC https://www.flowjo.com/

Cytobank (version 6.3.1) Cytobank https://www.cytobank.org

Seurat Satija et al., 2015 https://github.com/satijalab/seurat/

Visual genomics analysis studio (VGAS) iiiD contact@iiid.com.

au@IIIDPerth

https://www.iiid.com.au/software/vgas

R R Development Core

Team

https://www.r-project.org/

R Studio N/A https://rstudio.com/

ImmunoSEQ Adaptive Biotechnologies https://www.immunoseq.com/

ShinyGO v0.61 South Dakota State

University Bioinformatics

http://bioinformatics.sdstate.edu/go/;32

g:Profiler University of Tartu https://biit.cs.ut.ee/gprofiler/gost

Venn Diagram Maker VIB / UGent Bioinformatics

& Evolutionary Genomics

http://bioinformatics.psb.ugent.be/webtools/Venn/

PRISM 7 and 8 Graphpad Software N/A

BioRender BioRender https://biorender.com
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact John R.

Koethe (john.r.koethe@vumc.org).

Materials availability
This study did not generate new reagents.

Data and code availability
The gene expression data generated from this study are deposited in the NIH Gene Expression Omnibus. The accession number for

the sequences reported in this paper is GenBank: GSE159759. The data analysis was performed using a custom software, VGAS,

which is available upon request (contact@iiid.com.au@IIIDPerth).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study population and design
Participants in this study were members of the HIV, Adipose tissue Immunology, and Metabolism (HATIM) cohort on long-term an-

tiretroviral treatment enrolled from the Vanderbilt Comprehensive Care Clinic between August 2017 and June 2018. This study is

registered with clinicaltrials.gov, # NCT04451980. Matched HIV-negative participants with diabetes were recruited from the Vander-

bilt primary care clinic within the same time frame. Hemoglobin A1c (HbA1c) and fasting blood glucose (FBG) were used to classify

participants as non-diabetic, pre-diabetic, and diabetic. All HATIM participants had sustained viral suppression (HIV-1 RNA < 50

copies/ml) for the 12 months prior to adipose tissue biopsy, no known inflammatory or rheumatologic conditions, and no immuno-

modulatory medications. Participants were classified as non-diabetic (HbA1c < 5.7% and FBG < 100 mg/dL), pre-diabetic (HbA1c

5.7%–6.5% and/or FBG 100–125 mg/dL) and diabetic (HbA1cR 6.5% and/or FBGR 126 mg/dL or on anti-diabetic medications).7

Blood samples were collected from the study participants after at least 8 hours of fasting and used to measure clinical laboratory

values including low- and high-density lipoprotein and triglycerides. The age, gender, race and other characteristics of participants

included in this study are provided in Table S1, and the experimental workflow is outlined in Figure S1A.

All subjects provided written informed consent, in accordance with the Helsinki Declaration of 1975, as revised in 2000. The study

was carried out in accordance with the human experimentation ethical standards of, and approved by, the Vanderbilt Institutional

Review Board.

Adipose T cell extraction and PBMC isolation
Peri-umbilical subcutaneous adipose tissue was aspirated from each subject and processed within 30 minutes of the biopsy as pub-

lished.7 In brief, we anaesthetized the skin 3cm to the right of the umbilicus using 2% lidocaine. A 2mm incision was made in the skin

and we infused 40ml of sterile saline into the subcutaneous adipose tissue layer. We then used a 2.1 mm blunt, side-ported liposuc-

tion catheter (Tulip CellFriendly GEMS system Miller Harvester, Tulip Medical Products, San Diego, CA, USA) to extract viable ad-

ipocytes and stromal vascular fraction cells. The tissue was placed in approximately 50cc of cold saline. Visible clots were removed

and the tissue was rinsed repeatedly with cold saline over a 70 mm mesh filter. For single cell isolation, the adipose tissue was ho-

mogenized using a gentleMACS Dissociator (Miltenyi Biotec, Bergisch Gladbach, Germany) and then incubated with collagenase

(Roche Catalog #11088866001) and DNase. The adipose stromal vascular fraction was separated using a Ficoll-Paque Plus density

gradient. Samples were cryopreserved in fetal bovine serum with 10% DMSO in liquid nitrogen.

Fasting bloodwas collected in vacutainers containing EDTA at the same time as the adipose tissue biopsy. PBMCswere separated

using a Ficoll-Paque Plus density gradient. Samples were cryopreserved in fetal bovine serum with 10% DMSO in liquid nitrogen.

Paired PBMC and adipose samples from each subject were thawed and run for flow cytometry and sorting on the same day.

METHOD DETAILS

Flow cytometry analysis
Matched cryopreserved PBMC and adipose tissue samples were quickly thawed in a water bath (37�C) and resuspended in 12ml of

RPMI 1640 medium with 10% fetal bovine serum (FBS). Cells were centrifuged and resuspended in 12ml PBS for one more wash.

Pelleted cells were resuspended in 200 mL PBS and stained on the same day with the multiple panels of fluorescently tagged anti-

bodies (CD3, CD4, CD8, CD45RO, CCR7, CD57, CD69, GPR56, CX3CR1, HLA-DR, CD14, CD19, and LIVE/DEAD fixable aqua).7

CX3CR1 and CCR7 stains were first performed at 37�C for 15minutes, followed by staining with the rest of the antibodies as amaster

mix for 20 minutes at room temperature. We washed samples with 2ml PBS and resuspended them in 300 mL PBS with RNSase later

and placed on ice until samples were sorted on the same day using a 4-laser FACSAria III cell sorter (BD Biosciences). Samples were

sorted in a BSL2 laboratory and were not fixed prior to this. Single-cell sorts were performed using a 100uM nozzle into individual 96-

well plates containing 4ul of phosphate buffered saline (PBS) and RNase later, bulk-sorts were performed using a 100uM nozzle into

Eppendorf tubes. Sorted cells were immediately frozen on dry ice and stored at �80�C until processing below. Data analysis was

performed using FlowJo software (version 10.4.1) and Cytobank (version 6.3.1).73 UMAP embeddings were calculated with the

uwot R package using default settings.

Bulk TCR sequencing
Bulk sequencing was performed using an assay to sequence the TCRb. CD4 and CD8 T cells that had been bulk sorted into Eppen-

dorf tubeswere pelleted and resuspended in about 20ul of PBS and frozen until analysis. The cells were resuspended in 2x lysis buffer

(final concentration in lysis buffer are 10mMTris.Hcl, ph8.0, 0.1% Triton X-100, 400UG/ml Proteinase K) and incubated at 55�C for 10

hours and then 95�C for 5minutes to inactivate proteinase K. This was performed in a programmed PCRmachine. The cell lysate was

used for bulk TCR sequencing immediately after lysis or stored at�20�C until use. Working dilutions of DNA samples were prepared

per hsTCRb immunoseq protocol (https://www.immunoseq.com/assays/). All possible recombined receptor sequences in a sample

were amplified using a proprietary mix of multiplexed V- and J-gene primers in a first round of PCR amplification. High-throughput

sequencing and unique identification of each library were made possible through the addition of universal adaptor sequences and

DNA barcodes unique to each PCR replicate in a second round of PCR. Following the second PCR amplification, sequencer-ready
Cell Reports Medicine 2, 100205, February 16, 2021 e3
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libraries were pooled for sequencing on an Illumina NextSeq. Data analyses including Clonality, V(D)J segments, andMorisita indices

analyses were performed using the ImmunoSEQ Analyzer v3.0. We did not purify DNA for this assay to reduce chances of cross-

contamination. Quality control did not show excessive sharing of TCRb clones. One TCR that was identified as a probable contam-

inant was excluded from the analysis.

Single-cell TCR sequencing
The single cell RNA-sequencing (scRNA-seq) method used in this study is an adapted version of the SMARTseq2 and MARS-seq

approach in which single cells from the target population are FACS-sorted into 96- or 384-well plates containing 3mL of lysis buffer

inclusive of a ribo-nuclease inhibitor.74,75 Sorted plates were stored at �80�C. The method described here is not restricted by cell

size, shape or number. The assay utilized uniquely tagged primers for reverse transcription and template switching with a pre-ampli-

fication step to increase the yield and transcript length of the single cell cDNA library. During the initial reverse transcription step,

cDNAwas taggedwithwell-specific barcodes coupledwith a uniquemolecular identifier (UMI) to allow formultiplexing and increased

sample throughput. Samples were then pooled and amplified using the KAPAHiFi HotStart ReadyMix (Roche, Basel, Switzerland), as

per the manufacturer’s instructions. UMIs enabled quantitation of individual gene expression levels within single cells, thereby

reducing technical variability and bias introduced during the amplification step.76–78 Nested PCRs were performed to target TCR re-

gion specifically or 30and 50 transcriptome. See STAR methods for primer sequences.

Two microlitres of pooled cDNA was enriched for TCR alpha and beta genes using the TSOend primer and the constant region

primers, TCRA or TCRB. PCR products were purified using Agencourt AMPure XP (Beckman Coulter, CA, UWA) and pooled in equi-

molar amounts. Indexed libraries were created for sequencing using Truseq adapters and quantified using the KAPA Universal qPCR

Library Quantification Kit (Kapa Biosystems Inc., MA, USA), as per the manufacturer’s instructions. Samples were sequenced on an

Illumina MiSeq using a 2 3 300bp paired-end chemistry kit (Illumina Inc., CA, USA), as per the manufacturer’s instructions. Reads

were quality-filtered and passed through a demultiplexing tool to assign reads to individual wells and mapped to the TCRA and

TCRB loci. TCR clonotypes were assigned using the MIXCR software79 prior to analysis using the Visual genomics analysis studio

(VGAS), an in-house program for visualizing and analyzing TCR data (https://www.iiid.com.au/software/vgas).

30 and 50 RNaseq
Up to 100ng of pooled cDNA was randomly digested and end-repaired for 30 minutes at 37�C, followed by 30 minutes at 65�C using

the NEBNext� UltraTM II FS DNA Library Prep Kit (New England Biolabs, Ipswich, MA), as per the manufacturer’s instructions. The

resultant short 200–400bp fragments were end-repaired, and A-tailed products were ligated with 10pmol of linker using End-repair

ligation module (New England Biolabs), as per the manufacturer’s instructions. After purification, products were amplified using a

nested approach. Initially, products were amplified using the biotinylated primer cDNA Amp and the linker primer 1stLink_Primer

(10mM). Cycling conditions were 98�C for 3 minutes, followed by 15 cycles of 98�C for 1 minute, 62�C for 30 s and 72�C for 1 minute,

followed by 72�C for 10minutes. This step allowed for the enrichment of both 50 and 30 ends of the cDNA fragments. After purification

using Agencourt AMPure XP (Beckman Coulter), nested PCRwas performed in duplicate with the same cycling conditions but for 30

cycles using either theOdTend and 2ndLink_Primer or the TSOend and 2ndLink_Primer to capture the 30end and 50end cDNA targets,

respectively. Nested PCRwas performed using the GoTaq�Hot Start PolymeraseM5006 chemistry (Promega, MDN,WI), as per the

manufacturer’s instructions.

Purified amplicons from the 30 and 50 were pooled to equimolar amounts and indexed libraries were created for sequencing using

Truseq adapters and quantified using the Kapa universal qPCR library quantification kit (Kapa Biosystems Inc., MA, USA). Samples

were sequenced on an Illumina NextSeq using a 23 75 paired-end chemistry kit (Illumina Inc., CA, USA), as per the manufacturer’s

instructions. Readswere quality-filtered and passed through a demultiplexing tool to assign reads to individual wells and to the 30 end
and 50 end. Reads for the individual single-cells were demultiplexed using plate-id (30 nt), and cell barcode (6 nt). The reads were

further demultiplexed as either 30 or 50 using primer sequence (30 nt) and the remainder 45 nt sequences were aligned to the

GRCh38 human reference genome (Ensembl rel. 92) using the CLC Genomics Workbench (CLC Bio) (v.11, QIAGEN Bioinformatics).

An eight nucleotide UMI tag and mapping coordinates were used to remove PCR-duplicate reads. Gene-specific read counts were

calculated using HTSeq-count using the latest Gencode annotations and the 30 and 50 counts were summed. Cells with less than 200

genes and more than 5% mitochondrial content were removed, to filter out lower quality or dying cells based on Satija lab (https://

satijalab.org/seurat/v3.1/pbmc3k_tutorial.html). Furthermore, genes with > 0 counts in fewer than three cells were also removed.

Downstream analyses (normalization, PCA, differential expression and visualization) were performed in Seurat v.2.3.4 R package

and the VGAS program described below.

VGAS Data Analysis
VGAS is an integrative analysis program with self-standing modules that we used for single cell RNA-seq and TCR analysis (https://

www.iiid.com.au/software/vgas). It is a Windows-based analysis and visualization software that is written in C sharp programming

language using the .NET framework. Themodules have been designed so that the end-user can query genes after quality control has

removed cells that do not meet the gene threshold. For differential gene expression analysis, we uploaded metadata files and gene

expression data from the 30 and 50 RNA sequencing in CSV format. Differential gene expression analysis was performed using the

Wilcoxon rank-sum test to compare two groups or one-way ANOVA to compare more than two groups. Multiple testing correction
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where indicated was performed using the Benjamini-Hochberg correction. The fold change, p-values and adjusted p-values are pro-

vided as supplemental data in excel sheets. TCR analysis from single-cell sequencingwas performed using the TCRmodule in VGAS.

These modules use R-tools including VDJtools and circlize.80,81 TCR clonotypes were assigned using the MiXCR software as

described above. CSV files with TCRab pairs assigned through MiXCR software were uploaded into VGAS to generate circos plots.

We performed gene enrichment analysis using g:Profiler82 and ShinyGO v0.61 (FDR cutoff 0.05, showing the top significant terms).32

Immunohistochemical staining
Human coronary artery autopsy samples with adjacent perivascular adipose tissue from an HIV-positive and an HIV-negative donor

with a similar degree of atherosclerosis, and from two HIV-positive donors with and without a recorded diagnosis of diabetes prior to

death, were obtained from CVPath Institute Registry for immunohistochemical staining as previously published.83 Briefly, the artery

segments were fixed in formalin, and 2 to 3millimeter segments were embedded in paraffin. Sections of 5microns thick were cut from

each of the segments andmounted on slides. Immunohistochemistry for CD4, CX3CR1 and granzyme Bwere performed on the sec-

tions using Ventana DISCOVERY Ultra system (Roche). Slides were incubated with CX3CR1 antibody (Abcam ab8021, 1:1000 dilu-

tion), CD4 (Roche, 790-4423, pre-diluted) or anti-granzyme B (LifeSpan Biosciences LS-B7602) and developed by the NovaRed kit

(Vector Laboratories). The images were captured by Axio Scan. Z1 (Zeiss, Germany) using a 20X objective, and images were pro-

cessed and prepared on the HALO image analysis platform (Indica Labs, Corrales, NM).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical differences between two groups were calculated using Mann-Whitney U test, and differences between paired samples

using Wilcoxon signed rank test (Graphpad prism version 7 and 8). A p value < 0.05 is denoted by * in the images and considered

statistically significant. Other details are included in the figure legends. Differential gene expression for the RNA transcriptome an-

alyses were analyzed using Kruskal-Wallis test or one-way ANOVA, depending on the number of groups compared, with Benjamini

Hochberg correction for multiple comparisons (Visual genomics analysis studio, VGAS). Statistical analysis is shown in supplemental

Excel tables referenced in each figure. Pathway enrichment analysis was performed by applying p < 0.1 as a threshold and performed

in ShinyGo based on hypergeometric distribution followed by FDR correction and g:Profiler.
Cell Reports Medicine 2, 100205, February 16, 2021 e5
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