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Abstract 
The port and maritime industry contributes significantly to global greenhouse gas 

emissions. As such, there is increasing pressure for ports to decarbonise their 

operations. Despite the availability of multiple port carbon inventory and emission 

reduction guidance documents, no published methodologies currently exist for the 

development of port energy consumption and carbon emission forecasting. To fill this 

information gap, a methodology was developed through the review and 

experimentation with established forecasting techniques. The ‘ISCA’ Base Case 

Approach was adopted as a scaffolding for model development, largely to test the 

usability of the approach, currently in pilot. The approach consists of a baseline 

scenario and an ‘actual case’ scenario. A combination of qualitative, quantitative - 

time series and quantitative - causal modelling techniques were incorporated into the 

methodology. Linear and non-linear regression analysis curve-fitting techniques were 

selected as the most appropriate time-series modelling method for long-term energy 

and emissions projections, with simple linear regression analysis used for causal 

models. The methodology was tested through its application in a case study for 

Fremantle Ports.  

As a result of obligations from the state government to reach net-zero emissions by 

2050, Fremantle Ports required the development of long-term energy consumption 

and carbon emission projections for its internal operations and container terminals to 

2050. Using a bottom-up strategy, categorising energy consumption and greenhouse 

gas emissions by trade type, energy type and facility, the methodology successfully 

developed long-term energy and emissions projections. As per this modelling, 

energy consumption at Fremantle Ports is expected to increase 53% under the 

baseline scenario and 46.5% under the actual case scenario (Figure 1). Despite 

increases of energy consumption at the port, greenhouse gas emissions are 

expected to decrease 71% and 74% under the baseline and actual case scenarios, 

respectively (Figure 2). These drastic emissions reductions are predominantly the 

result of projected scope 2 emission factor decreases as grid renewable electricity 

generation capacity increases. The usability of the ISCA Base Case Approach for 

energy and emissions modelling was found to be adequate, although issues were 

experienced distinguishing constant and variable energy use. Additionally, it is 

recommended that a third scenario is incorporated into the approach.  
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Figure 1: Fremantle Ports’ internal and container terminal energy consumption Base Case and Actual Case. 
Grey lines represent the contribution of different facilities within the port. 

Figure 2: Fremantle Ports’ internal and container terminal GHG emissions Base Case and Actual Case. Grey 
lines represent the contribution of different facilities within the port.  
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1 Introduction 

The international maritime industry is currently responsible for 2.5% of global 

greenhouse gas emissions (IMO, 2014); roughly 1.7 times greater than the total 

annual emissions of Australia (Department of the Environment and Energy, 2019). 

Whilst initially slow to enact emission reduction targets, the tide is changing for the 

industry and it is increasingly acknowledging its climate change responsibilities. In 

2018, the International Maritime Organisation (IMO) adopted a strategy to reduce 

greenhouse gas (GHG) emissions of the international shipping sector by 50% of 

2008 levels by 2050 (European Union, 2019). Later that year Maersk, the world’s 

largest shipping company, made a commitment to be carbon neutral by 2050 

(Maersk, 2019). This has been followed by numerous other ports and shipping 

companies around the world making similar commitments (IAPH, nd).  

This growing movement within the industry is putting greater pressure on ports and 

other maritime businesses to make emission reduction commitments. This pressure 

is not just from a desire to retain a positive brand image but pressure is often coming 

from parent organisations, including governments, that have made carbon neutrality 

commitments themselves, as well as from trading partners which provide attractive 

economic incentives for businesses to reduce their emissions (NSW Ports, 2019).   

Within the port industry, there is a growing number of organisations that have either 

made commitments for carbon neutrality or are actively reducing their GHG 

emissions. Ports of Auckland have set a target for decarbonisation by 2040 (Ports of 

Auckland, 2018); NSW Ports have not made public a decarbonisation plan, however, 

have begun reducing their GHG emissions, with a 20% reduction between 2015 and 

2019 (NSW Ports, 2019), and; Port of Brisbane has set a 24% emissions reduction 

target by 2024/25 (Port of Brisbane, 2019). Outside of the ANZ region, Europe’s 

largest port, the Port of Rotterdam, has committed to carbon neutrality by 2050 (Port 

of Rotterdam, 2020). The Port of Los Angeles and Port of Long Beach, the first and 

second largest ports in the USA, have set a target of an 80% emission reduction of 

1990 levels by 2050 (Vock, 2019; Pacific Ports Clean Air Collaborative, 2012).  
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Despite a growing list of ports having begun a transition towards decarbonisation, 

the industry is still largely lacking the required quantity of data to perform 

comprehensive asset-to-asset and network-to-network comparisons (ISCA, 2017). 

As such, facilities are required to develop their own energy and carbon emission 

modelling, often in-house. Multiple documents and methodologies are available for 

the development of carbon inventories for infrastructure entities and ports. Notable 

examples include the Carbon Footprinting for Ports: Guidance Document (WPCI, 

2010), the IAPH Toolbox for Greenhouse Gases (IAPH, nd) and the Port Emissions 

Toolbox (IMO & IAPH, 2018). In regard to the development of energy consumption 

and GHG emission forecasting, however, documentation is severely lacking. This is 

the case not just for the operations of ports but also for the operations of 

infrastructure assets more broadly. As such, there is a need in industry for the 

development of a long-term energy consumption and GHG emission modelling 

methodology and use-case. For this dissertation project, such a methodology has 

been developed and then tested using Fremantle Ports’ internal operations as a use-

case.  

 

1.1 The Port of Fremantle 
In 2019 the Western Australian government set a target of net carbon neutrality for 

all state-owned operations by 2050 (Government of Western Australia, 2019).  

As a wholly owned enterprise of the Western Australian Government, Fremantle 

Ports1 is obliged to mirror the state government’s target, noting in its Environmental 

Management Plan 2020-21 an objective to reduce their overall carbon emissions. As 

part of this objective, Fremantle Ports requires the development of Base-Case 

energy and carbon emissions modelling for their operational assets to 2050 to assist 

with the identification of potential carbon emission reductions, determine the risks 

and opportunities associated with such reductions, and ultimately develop a path 

towards decarbonisation in line with the State's commitment.  

 

 

 
1 The term Fremantle Ports and the Port of Fremantle is used to describe the Port Authority's 
operations in Fremantle and in Kwinana, approximately 20 km south of Fremantle, Western Australia, 
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1.2 Objectives and research questions 
The key objective of this project is to develop a simple yet robust long-term energy 

consumption and greenhouse gas emission projection methodology and use-case. 

The use-case will focus on the on-going operational activities of ports, but will also 

be largely be applicable to the operational activities of non-port related infrastructure 

and medium sized entities. The methodology will be tested through its utilisation in a 

case study for Fremantle Ports’ internal operations.  

To keep consistency with sustainable infrastructure ratings in the Australia/New 

Zealand region, the energy and GHG emissions modelling will follow the guideline of 

the ISCA (Infrastructure Sustainability Council of Australia) IS Operations Technical 

Manual and associated Base Case Approach (ISCA, 2017). This will enable 

infrastructure projects in Australia and New Zealand to utilise the methodology 

developed by this dissertation and be eligible for the associated IS Rating’s Ene 

(Energy and Carbon) credits. As the IS operations rating has only been awarded to a 

small number of assets, and is considered to be still in pilot, this dissertation project 

also offers the opportunity to provide an example and analysis of the usability of 

ISCA’s Base Case Approach.   

As such the ISCA Base Case Approach (ISCA, 2017) will also be tested for its 

usability in developing long-term energy and emissions projections for port 

applications. This will be conducted by incorporating the approach in the modelling 

methodology.  

 

Primary research question: 
- What is the best approach for developing long term energy consumption and greenhouse gas 

emission projections for Australian ports? 

Secondary research questions: 
- Why is energy consumption and greenhouse gas emission projections crucial for ports and 

infrastructure? 

- What are the long-term South West Interconnected System (SWIS) electricity network scope 2 

and 3 emission factors likely to be as renewable energy penetration increases? 
- Does the ISCA Base Case Approach provide adequate usability and function for the 

development of operational energy and GHG emission base case and actual case projections? 

- Is it possible for a port’s internal operational GHG emissions to reach net-carbon neutrality? 
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1.3 Rationale of the study 
Physical infrastructure assets for transport, energy, water, waste and 

communications directly contribute to 15% of Australia’s total greenhouse gas 

emissions, influencing an additional 55% of the country’s emissions via the activities 

they facilitate (ISCA, Climate Works, ASBEC, 2020). As part of Australia’s Paris 

Agreement commitment to reduce GHG emissions by 26-28% below 2005 levels by 

2030 (UNFCC, 2015), the nation’s infrastructure industries hold a direct responsibility 

for the reduction of the nation’s greenhouse gas emissions.   

To enable such reductions, infrastructure assets require an understanding of their 

‘business-as-usual’ and ‘actual’ energy consumption and GHG emissions into the 

future. At present, however, detailed operating data is largely not available to directly 

compare infrastructural assets’ energy and GHG emissions data (ISCA, 2017). As 

such, to allow future greenhouse gas emission reduction targets to be made, 

infrastructure assets and associated entities are required to develop their own 

energy consumption and GHG emission projections.  

Australia’s industry standard sustainable infrastructure council ‘ISCA’ (Infrastructure 

Sustainability Council of Australia) provides documentation outlining a process with 

which to develop energy and GHG emission projections; however, the 

documentation falls short of providing any technical methodologies to assist in its 

development. Additionally, publicly available literature is not readily available to 

guide the development of long-term energy and GHG emission projections for the 

operational activities of infrastructural assets, including ports.  

The maritime industry is responsible for transporting over 90% of the world’s trade 

(UN-Business Action Hub, 2020) and contributes to 2.5-3.5% of global GHG 

emissions. Whilst the majority of these emissions are released by ships directly, the 

world’s ports provide crucial infrastructure for the industry and hold large influence 

towards improved sustainability and maritime GHG emission reductions.  

This report aims to establish the methodology required to develop sound energy 

consumption and GHG emission projections for port infrastructure, in association 

with the ISCA Base Case Approach, and provide a use-case in the form of a case-

study with Fremantle Ports’ internal operations.  
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1.4 The necessity for long-term energy and GHG emission projections 
In 2013, the European Union developed a strategy to reduce the amount of 

greenhouse gas emissions released by the union’s shipping sector (European Union, 

2019). The strategy consists of 3 key steps: 
- Monitoring, reporting and verification of CO2 emissions from large ships using EU ports 

- Greenhouse gas reduction targets for the maritime transport sector 

- Further measures including market-based measures in the medium-to-long term 

The first step of the EU’s carbon emission reduction strategy highlights the 

importance of carbon emission knowledge gathering in the process of effective 

carbon management. To best position organisations to develop carbon management 

strategies and, ultimately, set targets for carbon emission reductions it is essential 

that energy and emission inventories are developed and projections generated.  

Whilst energy and carbon inventories are essential for the development of carbon 

neutrality strategies, they only provide organisations with an outlook of the past and 

present, leaving future energy consumption and GHG emissions unknown. To be 

able to begin carbon management and set realistic energy and emission reduction 

targets, an organisation must have at least a basic understanding of their future 

energy consumption and carbon emissions. Such projections help determine 

expected emissions growth rates, the quantity of emissions that will need to be 

abated in the future and, ultimately, what degree of abatement is practically and 

economically feasible over a given timeframe. As such, long-term energy and GHG 

emission projections provide a vital tool for making realistic and feasible, yet still 

ambitious, emission reduction targets. Additionally, robust projections can reduce the 

risk of embarrassing set-backs and readjustments of targets later down the line.  

The partial or entire reduction of an organisation’s greenhouse gas emissions is 

often a difficult task and can take years to decades to materialise, depending on the 

size and complexity of an organisation and its dependency on emission-intensive 

processes and energy sources. In the context of the port industry, an energy and 

carbon emission reduction strategy might involve overhauling diesel equipment, 

replacement of fossil fuel consuming vehicles, vessels and equipment with their 

electric or biofuel consuming counterparts and installing renewable energy 

infrastructure. Elements of such projects may take several years to implement, 
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where-as elements such as the large-scale use of bio-diesel and electric vessels 

may not be economically feasible or commercially available for much longer (APAC 

Biofuel Consultants, 2017; Gear, 2019). When considering the long-term nature of 

many of these projects, the necessity for long-term energy and emissions projections 

becomes clear. Projections can provide an effective management and reporting tool 

for organisations, allowing them to develop carbon management strategies and 

compare observed and expected energy and emissions reductions against modelled 

business-as-usual scenarios. This can empower an organisation’s management to 

focus on key areas of concern and develop strategies to lower their GHG emissions.  

 

1.5 Limitations 
As with all research projects, there will be some limitations associated to the 

research and development of this study. These limitations are identified below. 

Statistical limitations 

There exists a large range of techniques for determining correlations between data 

sets and developing forecasts and projections. The statistical methods to undertake 

these tasks vary greatly; from the simpler trend and regression analyses methods to 

the much more complex machine learning methods utilising neural networks and 

artificial intelligence. Whilst all effort will be made to equally understand and review 

all possible statistical modelling methods, the more complex modelling techniques 

utilising computer simulations, artificial intelligence and Support Vector Machines 

often require access to niche software and in some cases require computer 

programming abilities, tools and expertise which may not be readily available for this 

research. However; it is the opinion of the author that any statistical methods which 

require such niche statistical tools and expertise would likely be less favourable a 

method for infrastructure entities and medium size businesses, especially when 

adequate and more simple techniques are available.  

Focus on port infrastructure 

The methodology to be developed by this report will be focused primarily on a port 

infrastructure’s internal operations. As such, there may become a bias towards 

modelling methods which favour this kind of infrastructure. Whilst this may pose 

some barriers to the methodology’s wider integration with other infrastructure assets, 
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entities and medium sized businesses, it is expected that any barriers will only be 

slight and that the general methodology will still remain applicable.  

Limitations of time and data availability 

The thoroughness and completeness of the case study that will be developed with 

Fremantle Ports will ultimately be determined by the availability of Fremantle Ports’ 

operational data. Limitations of the availability of trade and business operational 

data, as well as the time span and frequency of historical energy data, may dampen 

the robustness and thoroughness of modelling. Additionally, the study will be 

constrained by time availability and the short study period of this dissertation. Whilst 

all effort will be made to ensure this study is as comprehensive as possible, time 

constraints must be acknowledged.  

 

1.6 Structure of the dissertation 
This dissertation contains five chapters.  

The first chapter contains the background of the project and relevant dissertation 

information, including general objectives and research questions. The requirement 

for long-term energy and GHG emission projections is introduced as a stepping 

stone towards setting carbon emission reduction targets.  

Chapter two contains a comprehensive literature review of port energy and carbon 

emission management documentation and existing energy projection methodologies. 

Statistical modelling techniques is researched and analysed, providing the basis of 

the development of this report’s energy consumption and GHG emission projection 

methodology.  

In Chapter three, the development of long-term energy consumption and GHG 

emission projections is developed for Fremantle Ports’ internal operations. This 

provides a case study for the report, and aids in testing and demonstrating the 

methodology. This chapter is broken down into sections based on the ISCA Base 

Case Approach; Base Case Proposal development; Base Case model development; 

and Actual Case model development, concluding with the findings of the case study.  

Chapter four provides a comprehensive discussion of the methodology developed by 

this project and utilised for the case study. An analysis of the usability and function of 
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the ISCA Base Case Approach is included, as well as a brief analysis of the 

opportunities for ports to reach net carbon neutrality.  

The dissertation is concluded in a fifth and final chapter, offering final 

recommendations and opportunities for future research. 
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2 Literature Review and Methodology 

A key objective of the literature review is to identify published methodologies to guide 

energy consumption and carbon emission modelling and inform the development of 

long-term projections at the multi-decadal level for an individual organisation or 

infrastructural facility. However, after a thorough investigation, it became apparent 

that there is very little literature and documentation publicly available.  

The majority of available literature on energy and GHG emission modelling, 

forecasting and projecting focuses predominantly on large scale scopes at the level 

of entire nations, or industries at the regional and national level (Abdullah & Pauzi, 

2015; Pao & Tsai, 2012). Additionally, there is a significant bias in the literature 

towards short- and medium-term forecasting, and where longer-term projections are 

developed, they are usually restricted to forecasts of just several years.  

Although not directly applicable to the scope of this dissertation, the literature was 

still able to offer notable insight into possible approaches and techniques for the 

development of long-term energy consumption and GHG emission projections 

 

2.1 Port-specific energy and carbon emission management 
The port industry provides the vital infrastructure to facilitate the transfer of maritime 

trade with terrestrial trade infrastructure such as road and rail transportation. With 

90% of the worlds trade passing through ports, port infrastructure is a crucial 

element of the global economy (UN-Business Action Hub, 2020). Whilst data 

specifically referring to the total GHG emissions of global port infrastructure is not 

readily available, the maritime industry as a whole contributes approximately 2.5% of 

global greenhouse gas emissions, equivalent to 1.7 times the total carbon emissions 

of Australia (IMO, 2014; Department of the Environment and Energy, 2019). Despite 

contributing significantly to global greenhouse gas emissions, maritime trade is 

currently the most emissions-efficient mode of trade transport, with a slightly lower 

emissions intensity than rail and significantly lower than truck and air freighting 

(Figure 3) (IPCC, 2014). The lower emissions-intensity and price competitiveness of 

shipping means its use as a primary mode of global trade transport will only continue 

to expand well into the future (UNCTAD, 2019) and with it the role of sustainability 
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initiatives and carbon emission management within the port industry. 

 

 
Figure 3: Average carbon intensity of freight transport modes (IPCC, 2014).  

There has been a growing movement towards climate change awareness and 

energy and carbon management within the global port industry and, as such, an 

increasing number of ports are developing energy and emission inventories and 

committing to emission reduction targets. The growing interest and pressure for 

climate change mitigation and sustainability initiatives within the industry has led to 

the development of several organisations to offer guidance and provide a place for 

collaboration and information sharing.  

The leading organisations within this space are the International Association of Ports 

and Harbours (IAPH) and associated World Ports Climate Initiative (WPCI) group. 

WPCI began in 2008 under an initiative of IAPH to provide a mechanism for ports to 

better manage climate change mitigation requirements. After organising 55 ports 

from around the world to sign the C40 World Ports Climate Declaration, WPCI, in 

conjunction with IAPH, has developed the Air quality and Greenhouse Gas Toolbox 

to provide ports with the information they need to best address air quality and climate 

change issues (IAPH, nd). The toolbox includes recommendations for business 

policy changes and provides a business case for early climate change mitigation 

action for ports. Additionally, the toolbox includes a recommended six step process 

for port carbon management: 
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1. Develop Current Inventory 

2. Establish Emissions Baseline and Forecast 

3. Set Goals 

4. Develop Strategies 
5. Monitor Progress 

6. Adaptation Planning 

 Whilst this provides a useful strategy for port carbon management, the toolbox does 

not go into significant detail regarding each step and leaves much for interpretation. 

In regard to the development of carbon emission inventories for ports, two 

comprehensive guidance documents are available; Carbon Footprinting for Ports – 

Guidance Document by WPCI and IAPH (WPCI, 2010), and the more recent, 

updated version; Port Emissions Toolkit by the International Maritime Organization 

(IMO) and IAPH (IMO & IAPH, 2018). These documents detail the developmental 

process for greenhouse gas emission inventories and provide a list of available 

resources and information sources. The documents present three common 

approaches for developing a port carbon emissions inventory: 
- Activity-based: Utilising equipment specific activity data such as actual energy consumption, 

engine ratings and equipment or vessel operation hours. Energy consumption figures are 

converted into greenhouse gas emissions values through the use of emissions factors.  

- Surrogate-based: This approach uses use-cases to approximate an entity’s emissions source 
data, activity data, energy consumption data, or emissions per activity data.  

- Hybrid: This method utilises different aspects of both of the above methods. Hybrid 

methodologies commonly use the activity-based approach for the energy use of port 

infrastructure and equipment, and the surrogate-based approach for visiting ships; of which 

energy consumption data can be harder to quantify more precisely. 

- visiting ships; of which energy consumption data can be harder to quantify more precisely. 

Depending on the complexity required for the inventory, a hybrid approach appears 

to be the most common. A literature review of available port carbon emission 

inventories found five out of the six inventories analysed utilised a hybrid approach. 

A case study of the Port of Chennai’s carbon inventory found the port employed an 

activity-based approach for terrestrial port infrastructure and port-operated vessels 

and equipment, however, used a surrogate-based approach for visiting commercial 

vessels and non-port operated on-road vehicles (Misra, Panchabikesan, 

Gowrishankar, Ayyasamy, & Ramalingam, 2017). This division of inventory 

methodologies was also used by container terminal ports in Mumbai (Chowhan, 
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Hiremath, & Asolekar, 2012) as well as the Port of Vancouver (Port of Vancouver, 

2015), Port of Brisbane (PAE Holmes, 2010) and the Port of Los Angeles (Starcrest 

Consulting Group, 2019). The outlier of this review was the Port Authority of New 

York and New Jersey’s carbon inventory. It used a surrogate-based approach with 

an external surrogate to estimate emissions data for infrastructural electricity data, 

employing factors such as passenger counts and trade volumes to guide emissions 

estimates (Southern Research Institute, 2010). This method was chosen due to the 

high complexity of the port, with five electricity providers spanning two states.  

The scope of carbon management strategies changes on a port-by-port basis, 

although scope 1 and 2 emissions sources are always included (IMO & IAPH, 2018). 

The largest point of variance is for scope 3 emissions, with main differences 

regarding the inclusion of: 
- Port tenants’ and port contractors’ emissions 
- Visiting ship’s emissions 

- Trucks and rail transport emissions to and from the port 

The extent to which these scope 3 emissions are included is diverse, with some 

ports such as the Port of Rotterdam limiting its scope 3 emissions to activities it has 

direct operational control over (WPCI, 2010). On the contrary, some ports, such as 

the Port of Vancouver (Port of Vancouver, 2015) and the Port of Los Angeles, 

include scope 3 emissions for all cargo related emissions sources, such as; visiting 

ship movements and trade truck/rail movements at a geographical boundary beyond 

their administrative control (WPCI, 2010). It is to be noted, however, that according 

to the Carbon Footprinting for Ports – Guidance Document by WPCI and IAPH 

(WPCI, 2010) non-operational carbon emissions associated to a source’s life cycle 

analysis are usually not included in a port’s carbon management scope.   

In regards to establishing emissions baselines and projections, very little 

documentation is readily available. The aforementioned toolbox by IAPH highlights 

the importance of mid- and long-term GHG emission baselining and forecasting, 

however does not provide any methodology to develop such forecasting, beyond 

stating to “use the latest published cargo forecasts” (IAPH, nd). The IMO and IAPH’s 

Port Emissions Toolkit provides a slightly more detailed section on Port emissions 

forecasting, including a very short case study on the ports of Los Angeles Long 

Beach (IMO & IAPH, 2018). The importance of setting a base-line year to provide a 
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basis for forecasting is mentioned, as well as the necessity for the development of 

several scenarios, including high- and low-emission scenarios, and scenarios with 

differing levels of trade growth. Whilst the information provides a decent overview of 

emissions forecasting considerations and industry best-practise, it does not provide 

any detailed methodology to guide the technical development of emission projection 

modelling. In the requirement for long-term emissions projections, the port industry 

currently does not have any published and publicly available methodologies. 

 

2.2 Energy forecasting and projection methodologies 
Because of the lack of guidance documentation available for the development of 

energy and carbon emission projections within the port industry, a review of 

methodologies was conducted more broadly, beyond the maritime sector. This 

section summarises the literature review conducted for the research of energy 

consumption and GHG emissions model development methodologies.  

Energy consumption data can be reliably used to estimate greenhouse gas 

emissions using energy content and emission factor calculation methods, such as 

those developed by the Australian Government’s National Greenhouse and Energy 

Reporting scheme (Australian Government, 2008). As such, for operations where the 

majority of emissions are the result of energy consumption, emission values can be 

easily calculated from energy consumption models. Similar strategies of GHG 

emission forecasting have been used successfully in the past, including a study of 

shipping emissions in the Chongqing municipality of China (Wei & Zhao, 2010) as 

well as for a study calculating and forecasting the GHG emissions of diesel 

generators (Jakhrani, Othman, Rigit, Samo, & Kamboh, 2012).  

The technical methodologies used to develop energy and emissions projections and 

forecasts have evolved significantly over the years. Methods are usually categorised 

as either qualitative or quantitative (Singh, Ibraheem, Khatoon, & Muazzam, 2013), 

with quantitative methods further classified as either time series forecasts or 

explanatory forecasts (Makridakis, Wheelwright, & Hyndman, 1998).  
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2.2.1 Qualitative forecasting 

Qualitative forecasting uses methods based on opinion, capitalising on information 

provided by human expertise. Qualitative forecasting is usually used when 

quantitative data is incomplete or inexistent yet expert knowledge is readily available 

(Makridakis, Wheelwright, & Hyndman, 1998). Qualitative forecasting techniques can 

involve conducting surveys (Suganthia & Samuel, 2012), face-to-face meetings, as 

well as utilising the Delphi, or Estimate-Talk-Estimate, methodology amongst a 

panel/group of experts (Kauko & Palmroos, 2014). Additionally, these techniques are 

often used as a means of ‘triangulating’ or validating quantitative models and have 

been shown to improve the accuracy of quantitative energy projections when used in 

conjunction (Chen & Kung, 1984).  

2.2.2 Quantitative – Time series forecasting 

According to Forecasting Methods and Applications: Third Edition (Makridakis, 

Wheelwright, & Hyndman, 1998), quantitative forecasting can be applied when three 

conditions exist: 
- Historical information is available 

- This information can be quantified as numerical data 
- Aspects of the past pattern will continue into the future 

Quantitative methods utilise numerical data to discover past trends, using these 

trends to develop forecasts and projections. Time series forecasting is predominantly 

used when an explanatory (predictor) variable cannot be found, with statistical 

techniques utilised to extrapolate past trends into the future. (Makridakis, 

Wheelwright, & Hyndman, 1998).  

There exists several common conventional (traditional) time-series forecasting 

techniques. The most common techniques include autoregression models such as 

ARMA and ARIMA, and parametric trend analysis or curve fitting models.   

Autoregression models use a statistical technique to regress variables on their past 

values (Singh, Ibraheem, Khatoon, & Muazzam, 2013). Autoregressive-moving-

average (ARMA) models and Autoregressive Integrated Moving Average (ARIMA) 

models follow the same principal, however differ in that ARMA models require a 

stationary data set, whereas ARIMA models can be used on data with a moving 

mean (Daut, et al., 2017).  ARMA and ARIMA models can be very effective at 
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producing short- and medium-term forecasts and can handle seasonality and cyclical 

patterns very well. For this reason they are widely applied to electric load profile and 

weekly or annual electricity demand forecasting (Singh, Ibraheem, Khatoon, & 

Muazzam, 2013; Ghalehkhondabi, Ardjmand, Weckman, & Young, 2016).  

Parametric trend analysis, also known as curve fitting, uses linear and non-linear 

regression to match mathematical equations to observed data, using these 

equations to extrapolate forward (Abdullah & Pauzi, 2015). Statistical analysis 

between historical data and modelled data can provide p and R2 values to best 

determine the most statistically significant equation. This method can also utilise 

qualitative expertise to best determine the most appropriate equation, based on 

knowledge of future developments (Ghods & Kalantar, 2008). Within the literature, 

trend analysis methods were used by Kone and Buke (2010) to develop 20-year 

projections of 25 countries’ carbon dioxide emissions. Their study compared this 

method to more complex CO2 emissions projections developed by the US 

Department of Energy and found their projections fit within an acceptable range. 

Whilst not as commonly used as autoregression models, this forecasting technique 

can provide an effective qualitative/quantitative hybrid model for developing long-

term projections and forecasts. It also has the advantage of being relatively simple to 

conduct and does not require large quantities of historical data or complex 

parameters (Kone & Buke, 2010).  

2.2.3 Quantitative – Explanatory forecasting 

Explanatory forecasting methods are used when the values of a dependent variable 

can be explained by one or more independent variables. If such relationships are 

discovered, changes in the independent (or predictor) variable(s) will proportionately 

affect the output of the dependent (or response) variable to a predictable degree 

(Makridakis, Wheelwright, & Hyndman, 1998). Explanatory forecasting can provide 

very robust results when a strong explanatory relationship exists and reliable 

forecasts of explanatory data are available. There are two main conventional 

methodologies for developing explanatory models; simple linear regression and 

multiple linear regression. Other, more complex methods using artificial intelligence 

and machine learning will be explained in section 2.2.4 below.  
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Simple linear regression analysis is a statistical method of predicting a single y value 

based off a single x value. It determines a relationship between two variables in the 

form of a linear equation:  

𝑦 = 𝑎 + 𝑏𝑥 + 𝑒 

where a is the y-intercept, b denotes the slope of the line, and e is amount of error 

between the observed and expected values.  

Multiple linear regression models follow a similar process as simple linear regression 

models, however, differs in that it incorporates multiple independent/predictor 

variables. Multiple linear regression models can be more complex than those using 

simple linear regression, however, can provide more robust and powerful forecasting 

when more than one factor influences the response variable (Makridakis, 

Wheelwright, & Hyndman, 1998). Multiple linear regression follows the form:  

𝑦 = 𝑏( + 𝑏)𝑥) + 𝑏*𝑥* + ⋯+ 𝑏,𝑥, + 𝑒 

where a is the y-intercept, b denotes the slope of the line, and e is amount of error 

between the observed and expected values.  

For both techniques, the ordinary least squares method is used to calculate 

coefficients to best fit the equation to observed data (Makridakis, Wheelwright, & 

Hyndman, 1998). By assessing the quantity of error between the observed and 

expected data, R2 and p values can be analysed and the statistical fitness of the 

model determined.  

Simple and multiple linear regression analyses have been widely used for 

forecasting energy consumption and GHG emissions (Suganthia & Samuel, 2012; 

Daut, et al., 2017; Ghalehkhondabi, Ardjmand, Weckman, & Young, 2016; Abdullah 

& Pauzi, 2015). Examples include using weather, price, and consumer income to 

predict electricity consumption in the US (Harris & Lon-Mu, 1993); using per-capita 

consumption rates and population to predict electricity consumption in Turkey (Tunc, 

Camdali, & Parmaksizoglu, 2006) and determining a relationship between the 

number of customers, the price of electricity and the number of tourists and 

electricity consumption in Northern Cypress (Egelioglu, Mohamad, & Guven, 2001). 

2.2.4 Artificial intelligence modelling techniques 

A recent review of electrical energy consumption forecasting techniques (Daut, et al., 

2017) found artificial intelligence models have, in recent years, become the most 
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widely used energy forecasting methods. This conclusion was similarly reached by a 

2015 analysis of GHG emission forecasting methodologies (Abdullah & Pauzi, 2015). 

Complex and advanced computer learning methods are used to quantify past trends 

and develop explanatory modelling. The most common artificial intelligence 

techniques use artificial neural networks (ANN), and support vector machines (SVM).  

These methods have grown in popularity largely due to their powerful ability to solve 

and model nonlinear problems and data sets (Daut, et al., 2017). One of the 

downsides is their requirement for large quantities of input ‘training’ data, however 

the development of SVMs has provided improvements in this space. Developing AI-

based modelling can be time consuming and typically requires a higher level of 

expertise and greater computer resources than those required by traditional 

quantitative methods (Damborg, 1990). AI techniques have been found to be very 

accurate for developing energy demand forecasts with examples of its use including; 

using weather variables like temperature, humidity, wind speed, brightness of the 

sun, global radiation, precipitation and vapor pressure to predict monthly energy 

consumption (Islam, Al-Alawi, & Ellithy, 1995) and using temperature, hour, day, 

input load and output load to develop load predictions (González & Zamarreño, 

2005). Computer learning methods have also been used to develop accurate GHG 

emission forecasts by (Radojević, Pocajt, Popović, Perić-Grujić, & Ristić, 2013). A 

study by Ionescu & Candau (2007), however, found that by developing linear 

regression and AI models side-by-side that satisfactory predictions could be 

developed by more simple linear regression models when relationships were linear.  

2.2.5 Error Analysis 

Error analysis is an important tool to accompany energy and emissions model 

development. By calculating and comparing each model’s errors (the difference 

between observed and forecast values), an idea of the model’s accuracy can be 

materialised. This can help in ensuring the best model is chosen for the data. An 

effective method for determining a model’s error is by calculating its mean absolute 

error (MAE) and its mean absolute percentage error (MAPE). The difference 

between MAE and MAPE values is that MAE presents the mean error in terms of the 

actual units of the model, where-as MAPE presents the mean error as a percentage 

(Makridakis, Wheelwright, & Hyndman, 1998).  

MAE is calculated in the form: 
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𝑀𝐴𝐸 = |𝑌2 − 𝐹2| 

MAPE is calculated in the form: 

𝑀𝐴𝑃𝐸 = 6
𝑌2 − 𝐹2
𝑌2

6 

Where Y is the observed value, F is the forecast value and t represents the time 

period.  

 

2.3 GHG emission calculation methodologies 
In order for the calculation of greenhouse gas emissions, the first step involves the 

development of long-term energy consumption projections as described above. The 

second step involves the utilisation of appropriate greenhouse gas emission factors 

to convert projected energy consumption values to carbon emission values. This 

follows the process of GHG emission estimating that is widely used in the 

development of carbon emission inventories (IMO & IAPH, 2018). The third step 

projects any GHG emissions included in the scope that are not associated with the 

entity’s energy consumption, and can be projected independently using one of the 

forecasting techniques explained in the previous section. A version of this process 

was successfully demonstrated by Say and Yucel (2006) to project GHG emissions 

in Turkey, using energy consumption figures and emission factors provided by the 

IPCC, and also by a 2010 study using energy consumption forecasts to estimate the 

future GHG emissions of shipping in Wanzhou, China (Wei & Zhao, 2010).  

Energy based carbon emissions calculations typically follow the following form: 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 	=(𝐸𝑛𝑒𝑟𝑔𝑦	𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)F × 	𝐸𝐹
H

FI)

 

where n is the number of energy consumption sources and EF is the emission factor 

for that energy type. 

Because the precise value of the emission factor has such a strong influence on 

carbon emission calculations, it is crucial that these values originate from reliable 

sources. The UN’s IPCC has developed a comprehensive set of guidelines including 

a database of emission factors, as well as emission factors for non-energy related 

GHG emissions (Olivier & Peters, 2005). Within Australia, the Australian 

Government provides the annually updated National Greenhouse Accounts Factors 

document (Australian Government, 2008). Other reliable emission factor sources 
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include those published by the European Union and US EPA (IMO & IAPH, 2018). It 

is recommended by the IMO & IAPH (2018), however, that if available, emission 

factors should be sourced from documentation provided by the local country to 

provide the most locally accurate values.  

Emission factors can change over time, and depending on the energy type, these 

changes can have a significant impact on an entity’s emissions. For example, from 

1990 to 2019, the South West Interconnected System (SWIS) electricity grid of 

Western Australia scope 2 emission factor fell 39%; from 1.13 to 0.69 kg.CO2-e/kWh 

(Department of the Environment and Energy, 2019). As such, for the development of 

GHG emissions projections and forecasts, future emission factor assumptions and 

modelling needs to be developed for the span of the emissions projection. Some 

assumptions can include the future mix of renewable energy used for electricity 

generation, the timeline of such implementations and if the emission factor for fossil 

fuels such as diesel and petrol will change over time. There is very little literature 

available to guide the development of emission factor forecasts. However; national 

and state government climate change mitigation policy and emissions reduction 

targets, in collaboration with historical emission factor trends, can provide useful 

tools for the development of qualitative and quantitative emission factor projections.  

 
2.4 Long-term forecasting and scenario development  
 
For forecasting and projecting into the long-term, several considerations must be 

made. Firstly, long-term historical data becomes increasingly important the further 

into the future model is projecting, as past data can provide hints as to whether or 

not a current, shorter-term trend is likely to continue (Makridakis, Wheelwright, & 

Hyndman, 1998).  Additionally, qualitative, expert knowledge can help prevent the 

development of unrealistic projections, especially if such projections use time-series 

modelling techniques. For example, if an exponential curve provides the best fit for 

fuel consumption data from the past five years, the forecasted values may become 

unrealistically large over the span of a decade or two.   

A projection’s assumptions may only influence small variations in the short-term, 

however, can lead to large variations of values in the long-term. In order to account 

for such variability, scenarios can be built for the development of long-term 
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projections. Scenarios can allow alternative projections to be developed side-by-

side, providing insight into how different circumstances and assumptions influence 

the modelled data. They can also increase the robustness of models in the event 

that future observations align with one scenario more closely than another. 

Scenarios can be developed objectively by extrapolating historical megatrends, 

applying established correlations, or subjectively by making specific assumptions 

about certain aspects of the future (Makridakis, Wheelwright, & Hyndman, 1998). 

Different scenarios can consider social, political and economic changes, as well as 

the impact of technological developments. A case study on Portugal’s future energy 

supply (Fortes, Alvarenga, Seixas, & Rodrigues, 2015) considered two complex 

economic and political scenarios including one in which Portugal becomes 

increasingly unstable and is unable to invest significantly in future infrastructure; and 

an alternative scenario in which Portugal’s economy continues to grow, stimulating 

innovation and technological advancement, placing the country in a position to 

expand its renewable energy infrastructure significantly. Another approach is to 

focus on the price, and hence consumption, of a fuel source, as was done in a study 

by Gori, Ludovisi & Cerritelli (2007). This study developed three scenarios for the 

price of oil including parabolic, linear and chaotic behaviour. A study by Intarapravich 

et. al. (1996) used a simpler approach to scenario development, using three different 

energy demand scenarios including high, low and business-as-usual. Wei and Zhao 

(2010) similarly included a business-as-usual scenario for their study on CO2 

emission forecasting from shipping in Wanzhou, China.  

The inclusion of business-as-usual scenarios, also known as a base-case or 

baseline, can provide a projection of the energy consumption or carbon emissions of 

a business if they continue their current operational practices unchanged into the 

future. This approach can be very useful for comparing current and future 

sustainability initiatives against a scenario in which such initiatives are not 

implemented. The Infrastructure Sustainability Council of Australia (ISCA), the peak 

infrastructure sustainability organisation in Australia and New Zealand, includes such 

scenarios in its Base-Case Approach energy and carbon emission forecasting 

guidelines (ISCA, 2017).  
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The Base-Case Approach is a strategy developed as part of ISCA’s Infrastructure 

Sustainability rating scheme to provide assets with a mechanism to compare their 

actual sustainability performance against a business-as-usual, or Base Case, 

scenario. The approach consists of two scenarios:  
- A ‘Base-Case Footprint’ where-by consumption and emissions continue without any 

sustainability initiatives, using business-as-usual operational practices projected onwards from 

a baseline or ‘Base-Case’ period/year.  

- An ‘Actual Case Footprint’ which contains actual observed data from the Base-Case 
period/year onwards and includes consumption and emissions modelling assuming 

sustainability initiatives and more efficient operational activities are implemented.  

As per the IS Operations Technical Manual (ISCA, 2017), the scenarios above must 

include changes in asset utilisation and asset services demand like changes in trade 

or increases in local population. The scenarios must also consider any planned 

upgrades and expansions, and also include operational trends such as seasonal or 

periodic fluctuations (ISCA, 2017). An example of the Base Case and Actual Case 

scenarios can be seen in Figure 4. In this example, observed and expected energy 

efficiencies have resulted in the Actual Case scenario predicting lower energy 

consumption than the Base Case scenario. 

 

 
Figure 4: An example Base Case and Actual Case projection from the IS Operations Technical Manual (ISCA, 
2017). 



 22 

2.5 Projection methodology summary 
 
As mentioned in section 2.1, the IAPH has developed an effective carbon 

management guideline for the port industry. The case study in chapter 4 of this 

report will focus on step 2 of the IAPH guideline - Establish Emissions Baseline and 

Forecast - and assume that a current energy and carbon emission inventory has 

already been developed for the port. As has been detailed above, a variety of 

different techniques exists for the development of long-term energy and carbon 

emission projections. This section of the report will summarise the methodologies 

which will be followed for the development of the case study on Fremantle Ports in 

chapter 4.  

For the development of energy and emissions projections, this report will follow the 

general scaffolding, assumptions and scenarios as set out by the ISCA Base Case 

Approach in the IS Operations Technical Manual v1.2 (ISCA, 2017) and mentioned 

above in section 2.4. ISCA is an organisation which provides rating schemes and 

guidance for infrastructural sustainability within the Australia/New Zealand region. 

ISCA has developed a forecasting/projection strategy, known as the Base Case 

Approach, to help assets demonstrate reductions and measure performance 

changes for its Ene-1 (Energy and Carbon), Wat-1 (Water) and Mat-1 (Materials) 

Rating credits (ISCA, 2017). As per the objectives of this dissertation project, the 

ISCA Base Case Approach will be followed to test its usability for the development of 

energy consumption and GHG emission projections for ports.   

The ISCA Base Case Approach consists of three components, the first of which is 

the Base Case Proposal. This component establishes the basis for the modelling 

and includes a historical data analysis as well as definition of the scope and 

development of any predictive/modelled assumptions required for modelling.   

The second component of the approach comprises of the development of the “Base 

Case” – a projection following a business-as-usual scenario where-by consumption 

and emissions continue without any sustainability initiatives, using business-as-usual 

operational practices, projected onwards from a baseline or ‘Base-Case’ period/year.  
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The third component consists of the development of the “Actual Case” projection; 

combining actual observed data with energy and emissions projections, assuming 

sustainability initiatives and more efficient operational activities are implemented. 

The model development methodology is explained in more detail below.  

2.5.1 Base Case scenario model development 

As the ISCA Base Case Approach  (ISCA, 2017) does not contain information 

regarding specific forecasting/projection techniques, the approach was expanded 

and adapted as necessary to best align with port operations and the requirements of 

the project’s scope.  

The Base Case model was developed by analysing and projecting each facility’s 

energy and emission data by source type, using an activity-based, bottom-up 

approach. This helped discover historical macro and micro trends within the system 

and will ideally create more complex and accurate projections.  

For the development of the models, historical data was statistically compared against 

Key Performance Indicators (KPIs), historical trade data and other port operational 

data to uncover the existence of key influencing drivers. Traditional linear regression 

was conducted to determine the presence of any relationships. A relationship was 

considered statistically significant if its p-value is less than or equal to 0.05, as is 

common in scientific practice. Statistical calculations were conducted using the 

SPSS statistics software (IBM Corp, 2019). Different forecasting techniques were 

experimented with to best determine the most appropriate model type. Once a model 

was developed, it was tested using historical data, with predicted and actual values 

compared using error analysis techniques as described in section 2.2.5. If the values 

aligned adequately and the model met qualitative requirements, then it was 

considered as fit for purpose. 

For quantitative, explanatory models, future explanatory variable values were 

obtained from already developed forecasts. If not available, projections needed to be 

developed using qualitative and quantitative time-series modelling techniques.  

GHG emissions will be calculated using historical and projected energy consumption 

data as per methods outlined in section 2.3. The Australian Government’s National 

Greenhouse Account Factors will provide the emission factors used for GHG 
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emission calculations (Australian Government, 2008). These emission factors will 

provide the most locally accurate emission factors for fuel sources used by the port, 

as is recommended by IAPH (2018).  

As per the ISCA Operations Technical Manual Chapter A Guide to the Using 

Resources Theme (ISCA, 2017), the Base Case Footprint model was predominantly 

focused on constant energy consumption. Variable energy consumption was 

included in Base Case modelling if it is indiscernible from constant energy 

consumption or if it is of a relatively consistent amount year on year and hence for all 

intents and purposes can be considered constant.  

2.5.2 Actual Case scenario model development 

As mentioned above, the ISCA Base Case Approach needs to be expanded and 

adapted where appropriate for its use in developing modelling for the port.  

For the development of the Actual Case model, modelling developed for the Base 

Case scenario was adapted, incorporating the facility’s actual recorded energy 

consumption and GHG emission calculations onwards from the Base-Case 

year/period to the present. This allows for direct comparison between the observed 

and projected values, highlighting the facility’s recent performance against the Base 

Case. This also repositions the model to fit with recently observed changes in the 

facility’s energy use and emissions.  

For future years, the corresponding Base Case model was applied, but adapted to 

incorporate anticipated impacts of current or expected sustainability initiatives and 

efficiency improvements. Energy or emission reduction strategies that have been 

developed by the port will be incorporated into the modelling here.  

For current and future sustainability initiatives or operational efficiency 

improvements, the facility’s planned sustainability initiatives will need to be identified, 

including the expected start and end dates of the initiative’s implementation. Any 

expected reductions will need to be calculated and justified. This will create a 

material and quantitative means of projecting energy and GHG emission reductions 

for the facility over the coming years and provide the template for the development of 

any future energy or GHG emission reduction-strategy impact modelling.  
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3 Case study: Fremantle Ports 

3.1 Introduction to the port and context of the project 
Fremantle Ports is a Western Australian Government owned enterprise responsible 

for facilitating trade through the Port of Fremantle. The port is Western Australia’s 

largest general cargo port, Australia’s fourth largest container port and is the primary 

port for the Perth metropolitan region. Fremantle Ports provides and maintains 

shipping channels, cargo berths, navigation aids, the Fremantle Passenger terminal, 

trade handling equipment, storage sheds, road and rail transport infrastructure and 

other public amenities such as water and power within the port’s limits (Fremantle 

Ports, 2018).  Fremantle Ports operates four facilities across two harbours. The Inner 

Harbour, adjacent to the City of Fremantle, contains the facilities of Victoria Quay 

(VQ) and North Quay (NQ). The Outer Harbour lies 20km south of Fremantle 

contains the Kwinana Bulk Terminal (KBT) and Kwinana Bulk Jetty (KBJ) facilities 

(Figure 5) (Fremantle Ports, 2018). For more background information of these 

facilities, see Appendix 3: Fremantle Ports facilities information. 

 
Figure 5: Location of the Port of Fremantle and its declared waters (Fremantle Ports, 2018). 
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6.3 PORT LIMITS 
 
The regulations of the Port of Fremantle apply to all waters within the Port Limits. The Port limits are 
detailed in the Port Authorities Act 1999 and shown on charts relevant to the Port.  

 
 

 
Figure 1. Declared Port waters of Fremantle Port 
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3.1.1 Why use Fremantle Ports as a case study? 

Fremantle Ports was selected as the case study for this project for a number of 

reasons. One of the reasons comes down to a matter of timing. The port has 

developed energy and carbon emission inventories for its internal operations since 

FY 2011/12, however; with the release of the Western Australian Government’s net 

carbon neutrality target in 2019, Fremantle Ports was in need of long-term energy 

and carbon emission projections to 2050. This coincided with the early stages of this 

dissertation project in February 2020, providing a mutually beneficial opportunity for 

both parties.  

Fremantle Ports is a large and essential, well known infrastructural asset in the Perth 

metropolitan region. Due to the its size and relative complexity, including its 

facilitation of multiple trade types and consumption of multiple energy types, the port 

provides a great testing ground for energy and emissions modelling. Additionally, the 

necessity for qualitative, quantitative – time series, and quantitative – explanatory 

model types allowed for multiple modelling techniques to be developed and tested 

comprehensively with real-world data.  

 

3.2 Base Case Proposal development 
As per the ISCA Base Case Approach, the Base Case Proposal is the first stage in 

the development of Base Case and Actual Case energy and GHG emission 

modelling (ISCA, 2017). The Base Case Proposal provides an overview of the 

modelling process and sets the groundwork for model development. It consists of an 

analysis of historical data and identifies the model scope and assumptions. How 

these steps are contained within the Base Case Approach can be seen under the 

“Define assumptions” heading in the Base Case process diagram in Figure 6 below.  

3.2.1 Historical data analysis 

The analysis of historical data can identify changes and trends of past energy use 

and GHG emissions and uncover any relationships that might exist with operational 

and external factors. As with any historical analysis, the greater the quantity of data 

available, the greater the resolution of the findings. The IS Operations Technical 

Manual suggests 5 to 10 years of data is sufficient, although this figure depends on 

the requirements of the model and length of the projection (ISCA, 2017).  
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Figure 6: A brief overview of the Base Case Approach and how the Base Case process fits into the IS rating 
process (ISCA, 2017).  

 
Fremantle Ports has been compiling energy and carbon emission inventories 

annually since FY 2011/12 for all internal operations, with exceptions for Victoria 

Quay’s small craft pens, which have fuel use data going back to FY2002/03, and 

NQ’s container terminals, which only have electricity data available since 2017. 

Smart meters were installed at VQ, NQ and KBJ in December 2016, providing 

greater resolution of electricity consumption within the facilities. Energy consumption 

data was collected by recording diesel refill amounts at the KBT and VQ small craft 

pens diesel storage tanks, through fuel receipts and fuel cards for vehicle fuel 

consumption, and for electricity consumption; manual meter readings were 

conducted for all sites prior to December 2016, with smart meters providing 

electronic metering at VQ, NQ and KBJ thereafter.  

 
Figure 7: Energy consumption source categories, as per the Fremantle Ports energy and emissions inventory. 

Data was compiled into MS Excel (Microsoft Corporation, 2018) per facility, and 

categorised by energy type and operational source. These categories are shown 
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BASE CASE APPROACH 
Despite industry efforts, including the delivery of 
the IS rating scheme, there is only limited 
industry baseline data for Energy and Carbon, 
Water and Materials consumption, performance 
and impacts. 

With the outcomes of the COP21, also known 
as the 2015 Paris Climate Conference, there is 
now an initiative to use science based targets to 
help industry determine to what extent 
emissions must be reduced to prevent the worst 
impacts of climate change.  

Industry is not yet at the point where detailed 
operating data is available to compare the 

performance of infrastructure types to one 
another. Until such a time that the data for asset 
to asset or network to network comparison is 
available, a baseline or Base Case from which 
to measure performance changes is required.  

The Base Case is used to demonstrate 
reductions in the following credits: 

x Ene-1 (beyond Level 1) 
x Wat-1 (beyond Level 1) 
x Mat-1 (beyond Level 1) 

The development of a Base Case is only 
required for constant resource consumption. 

 
Figure A: Where the Base Case process fits into the IS rating process 

It is recognised that identifying a suitable Base 
Case for an operating asset/network may be a 
difficult task and will vary on a case by case 
basis. However, by consulting with your ISCA 
Case Manager a suitable data set can be 
identified. This will be used against which the 
asset/network performance can be measured. 
As the situations will vary from case to case, the 
ISCA Case Manager will work with the Assessor 
to identify the most effective way of establishing 
the Base Case.  

This chapter will provide guidance to assist in 
developing the Base Case proposal and 
associated footprint data sets. ‘Footprint’ is a 
term that means the quantified impact of a 
certain issue across the asset operational 
lifecycle. This term is used throughout these 
categories, except for the Materials category, 
where the term ‘impact’ is more appropriate. 

The Base Case comprises the following 
documents and data (refer to Figure A): 

x Base Case proposal – a description and 
explanation of the methodology that will be 
used to analyse, collate and model the 
usage data to make up the Base Case and 
actual footprints. This document also 
provides the assumptions that have been 
made for modelling energy use, water use 
and materials use across the forecast 
useful life.  

x Base Case footprint – the calculated/ 
collated data used as a comparison to 
measure reductions against. 

x Actual footprint – this is a combination of the 
actual measured data and modelled future 
data to use for comparison against the Base 
Case footprint.  
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diagrammatically in Figure 7, above. Historical data was analysed visually using 

graphing tools in MS Excel and statistically using IBM’s SPSS statistics software 

(IBM Corp, 2019).  

For the facilities’ vehicle fleet fuel consumption data, records were only available at 

an annual resolution. Data was analysed visually, with fuel consumption changes 

and trends explained qualitatively with expert knowledge of the fleets’ historical 

operations. No quantitative explanatory factors were identified for vehicle fleet fuel 

consumption trends, with internal vehicle policy changes and a general shift from 

petrol- to diesel-fuelled vehicles denoted as the likely driving motives for observed 

changes. Such trends be seen for Victoria Quay’s vehicle fleet fuel consumption in 

Figure 8.   

Where monthly energy use data was available, tests were conducted to determine if 

seasonal trends existed year-on-year. Whilst medium-term cycles will likely only 

have a small influence on long-term data projections, they can offer hints of the 

existence of possible causal relationships. A mild seasonal trend can be seen in 

Victoria Quay’s internal electricity consumption in Figure 9,  with on average slightly 

lower electricity consumption during the summer months. No quantitative 

explanatory factor was able to be identified to explain this trend.  

 

 
Figure 8: The Victoria Quay vehicle fleet saw a trend of decreasing petrol consumption over the historical years, 
compared to steady diesel consumption.  
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Figure 9: Seasonal trends as observed in Victoria Quay’s internal electricity consumption.  

When month-to-month energy consumption data was highly variable, data smoothing 

techniques were employed to help identify larger-scale trends. A 12-month moving 

average was used to smooth historical electricity consumption data at KBJ, as is 

seen in Figure 10, assisting the identification of consumption trends and changes 

that would otherwise have been difficult to determine from the noise.  

 

 
Figure 10: Data smoothing: a 12-period moving average was used uncover underlying trends for KBJ’s electricity 
consumption data.  

Where causal relationships were visually suspected, ANOVA (analysis of variance) 

statistical tests were run to determine the statistical significance of relationships. 

Causal relationships were mostly identified for energy consumption sources that are 

highly dependent on trade volumes. This includes KBT’s electricity, KBT’s trade-

handling-equipment diesel consumption, KBJ’s electricity consumption and the 

electricity use of North Quay’s container terminals. The general process started with 

visual relationship identification, followed by statistical analysis to determine the 

statistical significance of the relationship, as can be seen in Figure 11. 
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Figure 11: Left: A relationship was visually identified between KBT’s electricity use and trade throughput.  
Right: This relationship was confirmed to be statistically significant using ANOVA tests in SPSS with a p-value of 
less than 0.002 (IBM Corp, 2019). 

A statistically significant relationship was also found between Victoria Quay’s small 

craft diesel consumption (primarily pilot vessel operations) and the quantity and size 

of commercial ships visiting the port. The link between pilot vessel fuel consumption 

and ship visits is clear; commercial ships require pilot guidance into port. Qualitative 

research of vessel operations determined the connection between fuel use and ship 

size, pilot vessels must meet large ships further offshore (Figure 12).  

 

 
Figure 12: Left: A statistically significant relationship was found between VQ’s small craft diesel consumption 
and the quantity and size of commercial ships visiting the port. The statistical analysis determined a p-value of 
less than 0.002. Right: The relationship between fuel consumption and ship size was explained qualitatively as 
larger ships require pilot vessel guidance from further offshore (Outer Pilot Boarding Ground) than smaller ships 
which only required guidance from the Inner Pilot Boarding Ground.  

 
3.2.2 Base Case year selection 

As per the ISCA Base Case Approach, a Base Case year is a period which 

adequately represents a business’s ‘typical’ operational year and is representative of 

energy combustion and carbon emissions prior to any significant sustainability or 
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energy efficiency implementations. With this in mind, a Base Case year was selected 

for each facility;  
- VQ – FY 2015/16. In December 2016, Fremantle Ports installed an energy management 

system across VQ, NQ and KBJ, thereafter implementing energy efficiency measures such as 

switch timers and widespread LED lighting replacements. FY 2015/16 represented a year of 

typical energy consumption for VQ, prior to the implementation of these energy efficiencies.  

- NQ – FY 2017/18. Whilst the implementation energy efficiency measures began at NQ at the 

beginning of 2017, electricity meter recordings for NQ’s container terminal only began with the 

installation of smart meters and the energy management system. For this reason, the earliest 

year available, FY 2017/18, was chosen. 
- KBT – FY 2018/19. KBT’s energy consumption has been largely inflated over the last several 

years as a result of above average iron-ore exports. With the termination of iron-ore exports at 

the beginning of FY 2018/19, this year best represented ‘normal’ use.  

- KBJ – FY 2016/17. Considering energy efficiency implementations beginning in 2017 and 

above average energy consumption in FY 2015/16, FY 2016/17 constituted the most typical 

year prior to the establishment of energy efficiency measures. 

3.2.3 Project scope and assumptions 

The second part of the Base Case Proposal is focused on defining the project’s 

scope and any underlying assumptions required for modelling. 

Organisational scope 

Modelling will account for energy consumption and GHG emissions under Fremantle 

Ports’ direct operational control in the Port of Fremantle’s Inner and Outer Harbour. 

Energy consumption and GHG Emissions attributed to Fremantle Ports’ tenant 

operations and visiting ships are not within the organisation’s direct control and are 

excluded from the Base Case and actual case projections. This is with the exception 

of the North Quay container terminals, which have been included due to their high 

operational importance to the port. Locomotive and truck movements not directly 

operated by Fremantle Ports are also excluded from energy and carbon projections.  

Whilst this organisational scope is significantly narrower than many of those 

described in IAPH’s Tool Box for Greenhouse Gases (IAPH, nd), this scope was 

developed by Fremantle Ports because it only covers emissions sources that they 

have direct operational control over. Fremantle Ports consider that this scope will 

provide a more accurate projection of their organisation’s direct emissions.    
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Operational scope 

As per the IS Operations Technical Manual (ISCA, 2017), in accordance with 

Australian and International Standards AS ISO 14064.1 (ISO, 2006), scope 1 and 2 

emissions must be included in Base Case projections and estimations. Hence, this 

project’s modelling will include all quantifiable energy consumption and scope 1 and 

scope 2 GHG emissions from sources as mentioned in Figure 7.  The Technical 

Manual notes that “energy use or GHG emissions that is likely to account for more 

than 5% of the total consumption from Scope 1 and 2… in constant energy 

consumption is considered significant and must be included”. As such, energy 

consumption and GHG emissions associated with the consumption of natural gas 

will not be included in the operational scope as it represents less than 0.0001% of 

the port’s total energy consumption and less than 0.001% of the port’s GHG 

emissions, far below ISCA’s 5% threshold as described above.  

Scope 3 emissions that will be included in the operational scope are those 

associated with: 
- Electricity; Emissions attributed to extraction, production and transport of fuel burned at 

generation and to electricity lost in delivery and transmission in the distribution network. 

- Transport Fuel; Emissions attributed to extraction, production and transport of fuel burned at 
the facilities. 

Other scope 3 GHG emissions are considered inconsequential; with combined 

values on average less than 1.1% of the port’s total greenhouse gas consumption. 

Additionally, much of the excluded scope 3 emissions have limited historical data 

available and, in some cases, have arbitrary emissions factors, creating difficulties 

for developing assumptions and GHG emission projections. 
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Business and operational assumptions 
Table 1: Key business operational assumptions made for the development of Fremantle Ports’ energy 
consumption and GHG emissions Base Case and actual case projections.  

Assumption Notes and potential sources to support the assumption 

 
The general purpose of the 
facilities will remain the same 
and Fremantle Ports will not 
develop or acquire any other 
facilities and place it under the 
operational control of the VQ, 
NQ, KBT or KBJ facilities 
throughout the forecast period. 

 
As of the time of writing, the Western Australian Government’s 
Westport taskforce is investigating strategies for the Port of Fremantle 
to handle future increases in trade. A recent announcement proposed 
a move of Fremantle Ports’ Inner Harbour facilities to a new purpose-
built port in Kwinana, as early as 2032 (Shepherd, 2020). Whilst this 
would result in drastic changes to Fremantle Ports’ future energy 
consumption and GHG emissions, the proposal is currently only at the 
business-case level. With no current plan for construction or 
development, there are presently too many unknowns for any specific 
Westport strategy to be incorporated within Fremantle Ports’ Base 
Case projections. As such, it has been decided that Fremantle Port’s 
Base Case projections will assume facilities remain in their present 
form and function for the extent of the forecast period.  
 

 
There will be no supply 
constraints or port capacity 
limitations for the duration of 
the Base Case forecast period, 
besides those otherwise 
identified. 

 
Trade and Base Case forecasts are presented on an unconstrained 
basis, meaning they represent the projected volume of energy 
consumption, GHG emissions and import and export flows without 
taking into account port capacity limitations or supply constraints, 
besides those otherwise identified. This is in line with trade forecasts 
created for the port by Deloitte Access Economics (Westport, 2018). 
 

 
The Base Case forecasting will 
assume that there are no major 
GHG emission or energy policy 
changes, new 
economic/environmental 
incentive developments or 
significant technological 
advances.  
 

 
This assumption addresses the uncertainty and difficulty inherent in 
forecasting the impact of ‘known unknowns’ (E.g. forecasting for the 
introduction of a national carbon tax or for widespread adoption of 
electric vehicles).  
As the Base Case provides, by definition, a ‘business-as-usual’ 
projection, any policies, economic/environmental incentives, 
technologies or the like that are not implemented or do not exist at the 
time of the Base Case year will not be included in the projections. 
 

 
The rate of voluntary emissions 
reductions and energy 
efficiencies in the Base Case 
year will remain constant in 
future years.  

 
Base Case projections reflect ‘business-as-usual’ trends and hence 
rely on the assumption that future voluntary emissions reductions and 
energy efficiencies are not included in the projection. Voluntary 
emissions reduction and energy efficiency programmes that are in 
place as of the Base Case year will, however, be included in Base 
Case projections (U.S. Environmental Protection Agency, 2013). 

 
There will not be any major 
change in electricity and fuel 
costs per unit, and any 
changes that do occur will not 
have a significant impact on 
energy consumption.  

 
The variability and uncertainty of future electricity and fuel prices 
makes this factor difficult to include in the modelling. Additionally, the 
variability of behavioural and business responses to fluctuations in 
energy prices adds further complexity. To reduce the risks inherently 
involved in forecasting these changes, and to maintain relative 
simplicity in modelling, changes in energy costs will be assumed to 
have no significant effect on energy use and carbon emissions.  
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Constant and variable energy consumption 

The IS Operations Technical Manual describes constant energy use as consumption 

which is relatively constant year-on-year, including; stationary uses, mobile usage, 

normal asset utilisation and standard preventative and reactionary maintenance. 

Variable consumption is considered as energy use related to significant unplanned 

works, capital enhancements/upgrade works and abnormal asset utilisation. All 

energy data provided by the port was considered by internal port energy managers 

as constant energy use. A lack of qualitative and quantitative information from the 

port prevented any further identification of historical variable energy consumption.  

Design life 

For the purpose of the energy and emissions projections, Fremantle Ports and its 

material components are expected to operate beyond the 2050 timeframe of the 

modelling. It must be noted, however, that in preparation for future population growth 

and an increase of maritime trade, an external taskforce was set up in 2018 by the 

Western Australian Government to investigate potential expansion strategies for the 

Port of Fremantle. As the investigation is still ongoing, for the purpose of the Base 

Case and actual case projections, it will be assumed that there will be no major 

changes to the function of this port’s facilities within the timeframe of the modelling.  

3.2.4 Emission factor forecasting and assumptions 

A sensitivity analysis was conducted to determine the influence that changes in 

emissions factors will have on the port’s calculated GHG emissions. It found that for 

Victoria Quay, a scope 2 emission factor drop from its current level of 0.69 kg.CO2-

e/kWh to zero would result in a 42% reduction of the facility’s emissions. As such, it 

was deemed essential that scope 2 emission factor projections be developed.  

To better understand what renewable electricity capacity may look like in 2050 on 

Western Australia’s South West Interconnected System (SWIS), current renewable 

energy policies were analysed. In August 2019, the Western Australian Government 

announced a target to achieve net carbon neutrality across all sectors of the Western 

Australian economy by 2050 (Government of Western Australia, 2019). This brought 

Western Australia in line with carbon neutrality targets of other Australian states, 

however, behind; South Australia, the ACT and Tasmania, whom have announced 

targets for 100% renewable energy generation between the 2020 and 2040, and; 
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Victoria and Queensland, which have committed to 50% renewable energy 

generation by 2030 (Weisbrot, Baxter, Bourne, Stock, & Ivit, 2019). In March 2020, a 

private member’s bill entered into the Parliament of Western Australia proposing a 

renewable energy target of 100% by June 2030, although as of September 2020, the 

bill has not yet progressed beyond its second reading and its future is unknown 

(Clifford, 2020). Renewable electricity generation is considered to release null or 

negligible scope 2 greenhouse gas emissions. As such, it is assumed that under a 

scenario where-by the SWIS generates electricity from 100% renewable sources, the 

scope 2 emissions of SWIS connected infrastructure would be zero. Using the above 

information and extrapolating historical scope 2 emission factors for the SWIS 

(Australian Government, 2008), four scenarios were developed (Figure 13).  

 

 
Figure 13: Scope 2 SWIS emission factors; historical and projected. Four scenarios were developed. The WA 
2019 policy scenario was selected as the most robust scenario.  

 

Recent research by the Australian National University (Lu, Blakers, & Stocks, 2016) 

found electricity generation from 100% renewable energy sources is currently 

possible for the SWIS using existing technology. Considering this research, 

interstate targets, Western Australia’s existing targets and the uncertainty of the 

future progress of the private member’s bill, the year at which Western Australia’s 

electricity generation is sourced from 100% renewable sources will be assumed to 

be 2050. This may be a conservative assumption, although provides, in the author’s 

opinion, the most robust scenario. It will be assumed that the SWIS scope 2 

emission factor will decline linearly until it reaches zero.  
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A sensitivity study was also conducted to determine the influence of emission factor 

changes on scope 3 electricity GHG emissions. The analysis found that whilst the 

port’s total emissions were only marginally sensitive, a drop from the current 

emission factor to zero had a large impact on scope 3 emissions, resulting in Victoria 

Quay’s scope 3 emissions dropping 58%. Therefore, it was considered important to 

develop scope 3 electricity emission factor projections for the SWIS to 2050.  

The Australian National University study (Lu, Blakers, & Stocks, 2016) developed a 

renewable energy generation mix that would be feasible for the state by 2030. Their 

proposed generation mix was used to develop a potential scope 3 emission factor for 

electricity generation in the SWIS in 2050. Unlike with scope 2 emissions, scope 3 

emissions for renewable energy projects consist of those released indirectly by 

electricity generation and can include emissions released during the manufacturing, 

construction, maintenance, transportation and end-of-life periods of renewable 

energy infrastructure. As each renewable energy technology has different indirect 

environmental impacts, a literature review was conducted to determine the likely 

scope 3 emission factor for each technology. Afterwards, the generation mix 

proposed by Lu, Blakers & Stocks (2016) was used to predict a 2050 S3 electricity 

emission factor for the SWIS. Results of these calculations can be seen in Table 2.  

 
Table 2: Projected electricity generation mix and scope 3 emission factors for the SWIS in 2050.  

 
 
Renewable energy technology emission factors were estimated using the following 

resources: for wind and large-scale solar PV (Nugent & Sovacool, 2014); and for 

pumped hydro and rooftop solar PV (Amponsah, Kington, Aalders, & Hough, 2014). 

For biogas-fuelled OCGTs (Open Cycle Gas Turbines), emission factors vary 

drastically depending on the type of biogas combusted. South-western Western 

Australia currently has seven biogas electricity generation facilities, all of which use 

gas generated from landfills (AEMO, 2017). The life-cycle emission factor of landfill 

Generation Type Annual Electricity Penetration (TWh) Percent Mix Estimated EF
(g.CO2-e/kWh)

Wind 8.2 45% 34.1 0.01527978 kg.CO2-e/kWh
Biogas-fuelled OCGTs 1.7 9% 58.24 0.00541027 kg.CO2-e/kWh
Pumped Hydro 1.9 10% 20 0.0020765 kg.CO2-e/kWh
Large-scale Solar PV 2.3 13% 49.9 0.00627158 kg.CO2-e/kWh
Rooftop Solar PV 4.2 23% 53 0.01216393 kg.CO2-e/kWh
Total 18.3 100% 215.24 2050 SWIS S3 EF 0.04120208 kg.CO2-e/kWh
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gas was estimated to be 65 g.CO2-e/MJ of un-combusted gas by Jury, Benetto, 

Koster, Schmitt, & Welfring (2010). Using this value and assuming a thermal 

efficiency of OCGTs of 31% (Lu, Blakers, & Stocks, 2016), a scope 3 emission factor 

for biogas-fuelled OCGTs in the SWIS was calculated as 58.24 g.CO2-e/kWh (Table 

2). For the sake of this emission factor forecast, it is assumed that Western Australia 

will continue to only use biogas sourced from landfills to 2050. However, it is entirely 

possible, perhaps even necessary, that other types of biogas are used in the future. 

Results of the scope 3 SWIS emission factor projection is provided in Figure 14. 

It was assumed that the SWIS scope 3 emission factor will transition linearly from its 

current value to its value in 2050. Additionally, it is assumed that the S3 emission 

factor of each renewable technology will not decrease between now and 2050.  

 
 
Figure 14: Historical and projected SWIS Scope 3 Emission Factor. A linear trend has connected the current 
value of 0.040 to the projected value of 0.041 kg.CO2-e/kWh. 

 
In regard to the scope 2 and 3 emission factors for diesel and petrol liquid fuels, 

historically these values have remained relatively stable (Australian Government, 

2008). As such, the assumption has been made that these values will not change 

from their value in 2019 through to the year 2050.  

0

0.05

0.1

0.15

0.2

0.25

1990 2000 2010 2020 2030 2040 2050

Em
iss

io
n 

Fa
ct

or
 (k

g.
CO

2-e
/k

W
h)

 

Financial Year (Ending)

SWIS Scope 3 Electricity Emission Factor

Historical RE Mix Projection



 38 

3.3 Base Case model development 
This part of the Base Case Approach focuses on the development of energy and 

emissions projections using a business-as-usual scenario. This projection, hereafter 

denoted as the ‘Base Case’, is intended as a mechanism to compare actual and 

expected energy and emissions reductions against, providing an effective tool to 

measure the impact of energy efficiency improvements and emission reduction 

targets. As was described in section 2.5.1 of this report, Base Case modelling was 

developed with a bottom-up approach and utilised a combination of time-

series/qualitative models and causal/explanatory models.  

3.3.1 Time-series/qualitative models 

As described in section 2.2.2 and 2.5.1, for instances where explanatory variables 

were not able to be identified for historical energy data, time-series models were 

used. This was the case for Fremantle Ports’ vehicle fleet energy consumption, as 

well as Victoria Quay and North Quay’s internal electricity consumption.  

Autoregressive techniques such as ARMA and ARIMA models are commonly used 

time-series based models, widely used for forecasting short- and medium-term 

electricity demand. This is largely due to the tool’s strengths in predicting seasonal 

and cyclical patterns (Makridakis, Wheelwright, & Hyndman, 1998). For the 

development of vehicle fleet projections, autoregressive techniques were 

experimented with to determine their usability. ARIMA modelling with exponential 

smoothing was used because of its compatibility with the data sets’ non-stationary 

mean. As can be seen in Figure 15, the model’s five-year forecast appears 

adequate, however, when forecast out to 2050, several issues with the ARIMA 

modelling can be identified. Firstly, due to the highly variable nature of the data sets, 

with no distinguishable cycles or patterns, the ARIMA model struggled to fit the data-

set. This negated one of the strengths of autoregressive modelling, replicating cycles 

into the future. As such, the ARIMA model developed simple linear projections, often 

with low R2 values. This created a significant issue for data-sets with a negatively 

sloping mean, as is the case for ARIMA modelling of Victoria Quay’s leased petrol 

vehicle fleet, as seen in Figure 16. In this instance, the model projected negative 

petrol consumption from approximately FY 2021/22 onwards. One of the other key 
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Figure 15: ARIMA modelling for Victoria Quay’s leased diesel vehicle fleet with a low R2 value of 0.376. The 
chart on the left displays forecasting to 2025, the chart on the right displays forecasting to 2050.  

issues found with ARIMA modelling was its inability to consider qualitative factors. 

For example, expert qualitative knowledge expects VQ’s leased vehicle fleet petrol 

consumption to level out shortly after 2020 which is information that can’t be 

incorporated in ARIMA modelling. Ultimately the lack of flexibility, inability to 

incorporate qualitative forecasts and non-cyclical nature of the historical data proved 

autoregressive models inadequate for the development of energy projections for 

Fremantle Ports.  

 

 
Figure 16: ARIMA modelling for Victoria Quay’s leased petrol vehicle fleet with a high R2 value of 0.908. The 
modelling projected negative fuel consumption shortly after 2020.   

Linear and non-linear regression analysis was also experimented with. This 

technique uses the least squares method to fit equations to observed values. 

Regression analysis was run using SPSS statistics software (IBM Corp, 2019) for 

values prior to and including the base case year, with values regressed against the 
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year. Models were chosen according to R2 and p values. Qualitative forecasts from 

internal port expertise helped guide the selection of models when multiple fit to a 

statistically adequate degree. The results of a regression analysis of VQ’s leased 

petrol vehicle fleet can be seen in Table 3. For this data-set, four models returned 

satisfactory R2 and p values. These models were graphed using MS Excel (Microsoft 

Corporation, 2018) to FY 2049/50 and are shown in Figure 17. The equation for this 

particular model is:  

𝐹𝑢𝑒𝑙	𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	(𝐺𝐽) = 	2324.7668 ×	(𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙	𝑌𝑒𝑎𝑟	(𝐸𝑛𝑑𝑖𝑛𝑔) − 2011)X(.YZ[[ 
 
 
Table 3: Results of a regression analysis of VQ’s leased fleet petrol consumption.  

 
 
 

 
Figure 17: Statistically adequate models were graphed using MS Excel (Microsoft Corporation, 2018) to help 
align models with qualitative forecasts.  

 

This modelling method, whilst less objective than auto-regressive models, offered a 

powerful means of combining quantitative and qualitative forecasting techniques. 

Additionally, the added flexibility allowed models to be tailored as required. As such, 

linear and non-linear regression analysis techniques were adopted for all non-causal 

models. The statistical summaries and model choice justifications for all time-series 

based models can be seen in Appendix 5: Base Case time-series model statistical 

summaries. 

 

Dependent Variable:   Pet_SG_GJ_BCyrs 
Equation Model Summary Parameter Estimates Chosen Model Justification

R Square F df1 df2 Sig. Constant b1
Linear 0.924 36.246 1 3 0.009 2384.42 -364.117
Logarithmic 0.998 1221.154 1 3 0 2193.561 -941.507
Power 0.986 214.585 1 3 0.001 2324.767 -0.699 X
Exponential 0.987 221.188 1 3 0.001 2765.692 -0.281

All models have a very high R2 value. The 
power model offers the best middle 
ground between alignment with historical 
data and alignment with qualitative fuel 
consumption forecasts from the port. 
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3.3.2 Causal/explanatory models 

Where causal relationships were identified, explanatory (independent) variables 

were used to predict energy consumption (dependent variable) values. As mentioned 

in section 2.2, explanatory models can include conventional models, such as basic 

and multiple linear regression models, and more complex computer-learning models 

such as artificial neural networks (ANN), and support vector machines (SVM).  

Support vector machine (SVM) models were investigated for the development of 

explanatory energy modelling because of their ability to run using a relatively small 

amount of observed data points, compared to ANN models. Weka 3 SVM software 

(University of Waikato, 2019) was experimented with, however, as a result of 

limitations in the quantity of ‘learning’ data available and the complexity and intricacy 

of the software, was ultimately abandoned. Whilst support vector machines may be 

able to offer significant statistical power for forecasting, linear regression techniques 

have been shown to provide comparably robust modelling using a simpler 

development process, when relationships are linear (Ionescu & Candau, 2007). As 

such, with causal relationships identified as linear, simple linear regression modelling 

techniques were pursued.   

Simple linear regression analysis was conducted using SPSS statistics software 

(IBM Corp, 2019) to determine the statistical significance of any relationships 

identified. For Kwinana Bulk Jetty and Kwinana Bulk Terminal, relationships were 

identified between trade volumes and trade-handling-equipment electricity and diesel 

consumption. Because of variations in handling methods, the quantity and type of 

energy consumed for the movement of trade differed significantly depending on the 

commodity. To get a snapshot of the quantity of energy consumed per commodity, 

historical energy consumption ratios were calculated, with each commodity given an 

‘energy per tonne’ value. Energy consumption ratios used for the modelling can be 

seen for KBT in Table 4 and KBJ in Table 5, below. The ratios were then used to 

develop adjusted annual trade throughputs for the two facilities per energy type. 

Linear regression analysis was run between adjusted trade values and observed 

energy consumption values. This provided a more accurate representation of each 

commodity’s energy consumption and allowed for more robust energy modelling 

when using commodity trade forecasts. Figure 18 demonstrates the accuracy 
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improvement after adjusting trade volumes respective of each commodity’s electricity 

consumption, with the model’s R2 value improving from 0.915 to 0.980.  

Table 4: KBT energy consumption ratios per commodity.  

Commodity Electricity (kWh/t) Diesel (L/t) 
Clinker 2.236935804 0.032286196 
Granulated Slag 2.535219913 0.529337687 
Gypsum 1.750105483 0.149278403 
Nutcoke 2.535219913 0.529337687 
Bauxite 0.9 0.096698901 
Silica Sand 1.477773328 0.223303838 
Iron Ore 0.590508077 0.35474843 
Spodumene & Non-Metallic Mineral 
Product 0.652012318 0.223303838 
Black Coal 0.590508077 0.35474843 
LPG 0 0 

 
Table 5: KBJ energy consumption ratios per commodity. 

Commodity Grouping Electricity Use Rating 

Silica Sands Export - Mobile Conveyor 0 
Phophates, potash, urea, 
ammonium sulphate 

Import - Bulk Material 
Hoppers 1 

Sulphur Import - Siwertell 1 
Coal, cement clinker, gypsum, slag 
residue, soy bean meal, phophates, 
potash, urea 

Import - Small Mobile 
Hoppers 0 

Liquid Petroleum Gas (LPG) Pipeline 0 
 
The handling method used for commodities traded through KBJ was not as 

consistent as for KBT, and so commodities were grouped per handling method prior 

to the adjustment of trade values (Table 5). For the development of energy 

projections, commodity trade forecasts (provided by Fremantle Ports) were adjusted 

as per the energy consumption ratios above and then run through the energy model 

to calculate dependent variable (energy consumption) values. The result can be 

seen in the KBT electricity consumption Base Case projection, Figure 19, below. The 

linear equation developed for this model is: 

𝑦	 = 	2004013	 + 	0.824954	 ×	(𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦	𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝑡𝑟𝑎𝑑𝑒	𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡) 
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Figure 18: Actual (left) and adjusted (right) trade volumes for KBT, regressed against electricity consumption. 
After adjusting trade volumes respective of each commodity’s electricity consumption, the R2 value of the model 
improved from 0.915 to 0.980. The model had a p value of less than 0.000.  
 

 
Figure 19: KBT electricity consumption Base Case projection to FY 2049/50. This explanatory model utilised 
trade forecasts developed by Fremantle Ports to project future energy consumption. 

  

Table 6: Linear regression models developed for KBT and KBJ. 

 
 

KBT Electricity Consumption (kWh):
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant trade (adjusted) (t) Equation
Simple linear 0.98 299.31 0.000 2004013.34 0.824954 y = 2004013 + 0.824954 * (Electricity adjusted trade throughput)
KBT Diesel ST Consumption (L):
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant trade (adjusted) (t) Equation
Simple linear 0.783 21.674 0.003 289842.663 0.139 y = 289842.7 + 0.139 * (Diesel adjusted trade throughput)
KBJ Electricity Consumption (kWh):
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant trade (adjusted) (t) Equation
Simple linear 0.896 25.89 0.015 613814.264 0.706 y = 613814.264 + 0.706 * (Electricity adjusted trade throughput)
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An explanatory relationship was also identified for North Quay’s container terminal. 

In this instance, however, container trade throughput shared a similar form and 

handling method and did not need to be adjusted, with raw trade data able to be 

regressed directly against container terminal electricity consumption. Fremantle 

Ports’ internal container trade forecast AAGR (average annual growth rate) of 3% 

was used to develop future explanatory variable values. The statistical details of this 

model can be seen in Table 7, below.  

 
Table 7: Linear regression model developed for NQ’s container terminal electricity consumption. 

 
 

For the explanatory relationship identified between VQ’s small craft diesel 

consumption, visiting commercial vessel size and the number of commercial vessels 

arriving per year, a statistically significant model was developed ( 

Table 8). As no commercial ship data projections were available from the port, these 

were developed using the time-series and qualitative modelling technique described 

in section 3.3.1. Projected values were then used as the explanatory variable in the 

small craft diesel consumption model. The commercial ship forecasts and Base 

Case energy model developed for VQ’s small craft diesel consumption can be seen 

in Figure 20 and Figure 21, respectively.  

 

 
Figure 20: Projected commercial ship summed gross tonnage (ship visits * average size (GT))  
 

NQ Container Terminal Electricity Consumption (kWh):
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant trade (TEUs) Equation
Simple linear 0.187 8.964 0.005 344773.073 6.516139 y = 344773.0734 * 12 + 6.516139 * (Projected Container Trade in TEUs)
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Figure 21: Base Case projection for Victoria Quay’s small craft diesel consumption to FY 2049/50.  

 

Table 8: Linear regression model developed for VQ’s small craft diesel consumption. 

 
 
3.3.3 Error analysis 

An error analysis was conducted for each model to ensure their adequate fitness to 

observed data (see section 0 for more information). For each model, the Absolute 

Percentage Error of each observed data point is calculated against the 

corresponding forecast value, as is explained in Forecasting Methods and 

Applications (Makridakis, Wheelwright, & Hyndman, 1998). The Mean Absolute 

Percentage Error (MAPE) was then calculated to present an error value for the 

model. An example can be observed for KBJ’s electricity consumption model in 

Table 9 and Figure 22, below. MAPE values for all models developed are listed in 

Table 10. MAPE values for explanatory models range between 3.3 and 7.1%, with 

time-series models ranging between 4 and 21%. The exception is the high MAPE 

values for KBT’s and KBJ’s Fremantle Ports owned vehicles, a result of high fuel use 

variability and low initial fuel use values during early years of the historical period.  

 

 

VQ Small Craft Diesel Consumption (GJ):
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant Summed annual com ship GT (TEUs)
Simple linear 0.608691 8.964 0.00165 140369.802 0.003595
Equation
y = 140369.801707 + 0.003595 * (Projected Ship Visits * Projected Average Gross Tonnage) + 2398.371686
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Table 9: Error Analysis and Mean Average Percentage Error (MAPE) of KBJ’s electricity consumption model.  

 
 
 

 
 
Figure 22: KBJ’s electricity consumption model - observed and expected values.    

 
Table 10: Mean Absolute Percentage Errors (MAPE) for all models developed, by model type.  

 
 

3.3.4 Conversion from Energy Base Case to Emissions Base Case 

Historical energy consumption values were converted into scope 1, 2 and 3 

greenhouse gas emission values using emission factors sourced from the Australian 

National Greenhouse Accounts Factors documents (Commonwealth of Australia, 

2019). Future GHG emissions were calculated using forecast emission factors as 

described in section 3.2.4 of this report.   

 

Error Analysis (all historical years)

Associated FY (Ending) Observed (kWh) Expected (kWh) Absolute Percent Error

2011 1 447 943 1 207 754 16.59%

2012 1 523 134 1 252 182 17.79%

2013 1 348 581 1 239 265 8.11%

2014 1 375 993 1 384 913 0.65%

2015 1 337 480 1 339 442 0.15%

2016 1 208 616 1 238 581 2.48%

2017 1 262 601 1 244 289 1.45%

2018 1 322 805 1 300 574 1.68%

2019 1 161 041 1 330 099 14.56%

MAPE 7.05%
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Dependent Variable Model Type MAPE Dependent Variable Model Type MAPE
VQ Vehicle Fleet Leased Petrol Time Series 4.29% KBT Vehicle Fleet Owned Diesel Time Series 50.46%
VQ Vehicle Fleet Owned Petrol Time Series 20.77% KBJ Vehicle Fleet Owned Petrol Time Series 124.67%
VQ Vehicle Fleet Leased Diesel Time Series 11.64% KBJ Vehicle Fleet Owned Diesel Time Series 77.97%
VQ Vehicle Fleet Owned Diesel Time Series 11.34%
VQ Internal Electricity Time Series 6.34% VQ Small Craft Diesel Explanatory 7.10%
NQ Internal Electricity Time Series 11.05% NQ Container Terminal Electricity Explanatory 3.33%
KBT Vehicle Fleet Leased Petrol Time Series 9.98% KBT Handling Equipment Diesel Explanatory 6.47%
KBT Vehicle Fleet Leased Diesel Time Series 17.92% KBT Electricity Explanatory 4.39%
KBT Vehicle Fleet Owned Petrol Time Series 80.45% KBJ Electricity Explanatory 7.05%
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3.4 Actual Case model development 
 
The Actual Case scenario largely builds off the models developed for the Base Case, 

however, differs in that actual values observed from the Base Case year to the 

present are incorporated into the model. Additionally, for future years, the Actual 

Case model includes sustainability initiatives and operational efficiency 

improvements. The Actual Case model provides an effective tool to compare actual 

and expected energy/emissions reductions to a ‘business-as-usual’ scenario.  

Once observed data is incorporated into the Actual Case model, qualitative 

information is gathered regarding current and planned sustainability initiatives and 

energy efficiency improvements. Information such as the expected start and end 

date of initiatives can help estimate how the impacts of sustainability measures will 

be spread over time. If enough data is available, sustainability and energy efficiency 

impacts can be quantitatively calculated. As an example, VQ’s internal electricity 

consumption Actual Case is shown in Figure 23, below. For this example, observed 

energy data is included in the Actual Case to FY 2019/20. Fremantle Ports is 

currently planning to replace metal halide floodlighting with LED floodlighting along 

four of Victoria Quay’s berths. The expected energy use reduction per bulb was 

calculated and then multiplied by the number of bulbs that will be replaced. As this 

project is expected to take two years to complete, the energy reduction was divided 

by two to equal 119 136 kWh energy reduction per year from FY 2020/21 to 2021/22.   

 

 
Figure 23: Actual Case projection for VQ’s internal electricity consumption.  
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When precise quantitative energy reduction data was not available a qualitative 

approach was required. This was the case for Victoria Quay’s small craft diesel 

consumption and GHG emissions Actual Case. At the end of FY 2019/20, Fremantle 

Ports replaced their primary pilot vessel Berkeley with the more fuel-efficient Genesis 

vessel. Precise fuel consumption data was not available for the Genesis at the time 

of writing, however; internal expertise expects a fuel efficiency improvement of 

approximately 10%. A quantitative estimation for the fuel consumption of the 

Genesis was calculated by finding 10% of the average annual fuel consumption of 

the Berkeley vessel over its operational years (FY2015/16 to FY2019/20) and 

reducing current and projected fuel consumption values by this amount from 

FY2020/21 onwards. The result can be seen in Figure 24, below.  

 

 
Figure 24: Actual Case projection for VQ’s small craft diesel consumption. Observed data is included to FY 
2019/20, with expected energy efficiencies calculated for future years.  
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3.5 Case study results 
Case study results are presented graphically below, with the Base Case projection in 

red, the Actual Case projection in green and historical data up until the Base Case 

year in blue. The Actual Case projections of the subsets of each facility are displayed 

in grey on the chart. This is to provide information on the ‘break-up’ of each facility’s 

energy consumption and GHG emissions, in regard to energy consumption source.  

3.5.1 Victoria Quay 

Base Case modelling expects Victoria Quay’s energy consumption to increase to 

2050, most notably a result of increasing small craft diesel consumption. Actual case 

modelling identified that medium-term small craft and internal-electricity energy-

efficiency measures will largely counteract energy use increases, keeping VQ’s 

energy consumption below Base Case year values well into the future (Figure 25).  

Energy efficiencies and a dropping scope 2 emissions factor are expected to 

decrease VQ’s scope 2 emissions to zero by 2050. GHG emissions from the facility’s 

small craft are expected to increase and become the single largest contributor from 

FY 2023/24 onwards. The facility’s vehicle fleet contributes miniscule amounts of 

GHG emissions compared to other sources (Figure 26).  

 

 
Figure 25: VQ’s energy Actual Case. Grey lines represent a break-down of the facility’s energy use sources.  
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Figure 26: VQ’s emissions Actual Case. Grey lines represent a break-down of the facility’s emission sources.  

 
3.5.2 North Quay 

Base Case and Actual Case modelling for North Quay project stable energy 

consumption for internal use and exponential growth for the facility’s container 

terminals electricity use. Container terminal electricity consumption is expected to 

increase 59% from FY 2019/20 to FY 2049/50. The container terminals are the 

dominant consumer of electricity at the facility, with 6.5 times greater consumption 

than internal use in 2019 and will likely reach 10 times the size by 2050 (Figure 27).  

 

 
Figure 27: NQ’s energy Actual Case. Grey lines represent a break-down of the facility’s energy use sources. 
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As NQ’s energy use is predominantly electricity based, emissions for the facility will 

be heavily influenced by decreases in the SWIS scope 2 emission factor (Figure 28). 

This will counteract notable increases of the facility’s electricity consumption (Figure 

27). Residual GHG emissions towards mid-century are expected to be entirely 

comprised of scope 3 electricity generation emissions.  

 

 
Figure 28: NQ’s emissions Actual Case. Grey lines represent a break-down of the facility’s emission sources. 

 

3.5.3 Kwinana Bulk Terminal 

Modelling projected a significant increase in electricity consumption and a mild 

increase of trade-handling-equipment diesel consumption for KBT to FY 2031/32. In 

this year, the facility’s trade is expected to reach a maximum capacity of 6.5 million 

tonnes throughput. From then onwards, assuming no major infrastructural upgrades, 

KBT’s energy use is expected to remain stable till 2050. Despite relatively equal 

energy consumption between electricity and diesel in historical years, commodities 

requiring electric powered trade-handling-equipment are expected to increase in 

volume compared to commodities requiring diesel powered equipment (Figure 29). 

Electricity use is the largest source of GHG emissions for KBT. SWIS emission factor 

decreases will counteract electricity consumption growth to the end of the projection 

period. Diesel-powered trade-handling-equipment is expected to become the largest 

GHG emission source for the facility in the mid-2040s (Figure 30).  
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Figure 29: KBT’s energy Actual Case. Grey lines represent a break-down of the facility’s energy use sources. 

 

 
Figure 30: KBT’s emissions Actual Case. Grey lines represent a break-down of the facility’s emission sources. 

 

3.5.4 Kwinana Bulk Jetty 

As a result of forecast trade increases to 2050, KBJ’s electricity Base Case projects 

a notable increase in consumption. Because of changes in the facility’s operational 

practises in early 2018, however, KBJ’s Actual Case suggests a less energy 

intensive future for the facility (Figure 31). KBJ’s vehicle fleet fuel consumption is 

miniscule compared to electricity consumption and is expected to remain stable.    
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Figure 31: KBJ’s energy Actual Case. Grey lines represent a break-down of the facility’s energy use sources. 
 

KBJ’s GHG emissions are expected to decrease almost entirely by 2050, despite 

increases in electricity consumption. This is mostly the result of projected reductions 

of the SWIS scope 2 emission factor. Remaining emissions in 2050 are expected to 

be from the facility’s vehicle fleet and scope 3 emissions from electricity use.  

 

 
Figure 32: KBJ’s emissions Actual Case. Grey lines represent a break-down of the facility’s emission sources. 
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3.5.5 Total port energy consumption 

In Financial Year 2018/19, the energy consumption of Fremantle Ports’ internal 

operations and container terminals was 103 768 GJ. Whilst the port’s energy 

consumption decreased by 1 200 GJ in FY 2019/20, it is expected to increase 53% 

to 159 258 GJ by FY 2049/50 under the Base Case scenario. Modelling suggests the 

majority of this growth will be the result of increases in electricity use at KBT and 

North Quay’s container terminals, although increases of Victoria Quay’s small craft 

diesel use and KBT’s trade handling equipment diesel use will also likely contribute.  

KBT, VQ and NQ’s container terminals are the port’s largest consumers of energy 

and have the greatest influence over the port’s total energy consumption. Modelling 

expects KBT’s energy use to grow substantially compared to VQ in coming years. 

The energy consumption of KBJ is considerably less than the aforementioned 

facilities, 11-14% of the energy consumption of other facilities in FY 2018/19. The 

port’s vehicle fleet is miniscule relative to total facility energy use, representing 4-

10% of total energy consumption and is expected to remain steady to 2050. 

 

 
Figure 33: Fremantle Ports’ internal and container terminal energy consumption Base Case and Actual Case. 
Grey lines represent the contribution of different facilities within the port. 

  

The result of current and planned sustainability and energy efficiency measures 

across the port is expected to result in a 6.5% (10 358 GJ/year) decrease of energy 
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consumption by 2050, relative to the Base Case. A graphical representation of 

Fremantle Ports’ Base Case and Actual Case energy projections can be viewed in 

Figure 33, below.  

3.5.6 Total port GHG emissions 

In Financial Year 2018/19, Fremantle Ports calculated that they released 16 389 

t.CO2-e (tonnes of carbon dioxide equivalent) as a result of internal operational 

activities and electricity use at NQ’s container terminals. This is down from a high of 

19 018 t.CO2-e in FY 2013/14. Looking forward, GHG emissions are expected to rise 

slightly over the next couple years as a result of increased trade-related electricity 

use at KBT. This is not expected to continue, however, as SWIS scope 2 emission 

factor reductions will largely counteract any further energy consumption increases. 

By 2050, the port’s emissions are expected to decrease by 71% to 4 756 t.CO2-e 

under the Base Case scenario and by 74% to 4 322 t.CO2-e under the Actual Case 

scenario (Figure 34).  

In FY 2018/19, Fremantle Ports’ scope 2 emissions represented 82% of the port’s 

total GHG emissions. Assuming electricity generation of the SWIS becomes 100% 

renewable by 2050 (see section 3.2.4), Fremantle Port’s scope 2 greenhouse gas 

emissions will drop to zero by mid-century. As a result, modelling suggests 

Fremantle Ports’ total emissions will decrease drastically without any major 

operational or infrastructural changes. In 2050, the largest sources of GHG 

emissions are expected to be from the operation of diesel-powered small craft and 

trade handling equipment. These are expected to contribute 1612 t.CO2-e (44%) and 

1081 t.CO2-e or 29% of total port emissions, respectively. Additionally, the modelling 

projects that the vehicle fleet will contribute 324 t.CO2-e (8.8%) of the port’s GHG 

emissions by 2050. These operations will need to be the focus of decarbonisation 

efforts if the port is to meet their 2050 goal for net carbon neutrality.  

Scope 3 emissions are projected to contribute the remainder of the port’s 2050 

emissions, with scope 3 liquid fuel emissions contributing 461 t.CO2-e or 13% of total 

port emissions and scope 3 electricity emissions contributing 587 t.CO2-e or 16%.  
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Figure 34: Fremantle Ports’ internal and container terminal GHG emissions Base Case and Actual Case. Grey 
lines represent the contribution of different facilities within the port.   
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4 Discussion 

The United Nation’s International Panel on Climate Change (IPCC) has warned that 

a global temperature increase above 1.5°C will worsen the severity of climate 

change impacts and the frequency at which impacts occur (IPCC, 2018). Many 

recent devastating environmental and social events, including Australia’s 

catastrophic ‘black summer’ bushfires in 2019/20, mass bleaching events on the 

Great Barrier Reef in 2016, 2017 and 2020 and unprecedented locust swarms in 

east Africa, have been determined to be either caused or exacerbated by climate 

change (Flannery, 2020; Great Barrier Reef Marine Park Authority, 2020; Munang, 

2020). Considering such severe impacts are already being experienced at only 

1.15°C of warming (NOAA, 2019), there is widespread concern of what further 

temperature increases will entail. Greenhouse gas emissions have increased on 

average 1.5% per year over the last decade. To meet the 1.5°C target of the Paris 

Climate Agreement, global emissions will need to decrease by 7.6% per year to 25Gt 

(gigatonne) annual global emissions by 2030. This is the equivalent of the estimated 

CO2 emissions reduction resulting from the Covid-19 pandemic in 2020, repeating 

annually (Le Quéré, et al., 2020). For every year that global climate action lags, the 

more intense emissions reductions will need to be. If countries began acting 

sufficiently in 2010, annual emission reductions would only need to be 3.3%. 

Conversely, if action is delayed to 2025, the annual emissions reductions necessary 

to keep global warming below 1.5°C will rise to 15.4% per year (United Nations 

Environment Programme, 2019). The result of emissions reduction gaps on global 

temperature increases can be seen in Figure 35. If current emission rates continue, 

we will reach a point where-by a smooth transition towards global decarbonisation is 

not feasible and either the global economy or emissions reduction targets will need 

to be sacrificed. For the mean-time, limiting global warming to 1.5°C is still possible, 

however, requires urgent and large-scale action.  

The case study presented in Chapter 3 of this report has displayed the feasibility for 

infrastructural assets to attain net carbon neutrality by mid-century. Base line 

modelling developed as part of this report expects Fremantle Ports’ internal 

operations and container terminal GHG emissions to decline 71% of current levels 

by 2050, predominantly as a result of increased renewable electricity generation on  
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Figure 35: Global GHG emissions under different scenarios and the emissions gap by 2030 (United Nations 
Environment Programme, 2019). 

the grid. Recent and upcoming energy and operational efficiency improvements are 

modelled to provide an additional 3% emissions reduction. Whilst under the Actual 

Case modelling Fremantle Ports will still contribute 4 322 t.CO2-e, the port’s 

projected decrease of emissions, despite only small climate change mitigation 

actions, highlights the attainability of carbon neutrality for ports and infrastructure 

assets over a long time-span. This is, of course, under the assumption that other 

facets of the economy similarly work towards decarbonisation. The global uptake of, 

and investment in, renewable energy and carbon-neutral technologies will in turn 

increase the feasibility of organisational carbon neutrality. Whilst not included in this 

report’s Actual Case scenario, it is likely that as renewable electric, hydrogen and 

biofuel technologies become more affordable and available in the mainstream 

market, they will begin to phase out carbon-intensive alternatives. Under such a 
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scenario, organisations and infrastructure assets will be able to decarbonise 

smoothly, cost effectively and with only small direct internal action. With carbon 

neutral technology advancing rapidly, and affordability increasing year-on-year 

(United Nations Environment Programme, 2019), the question is no longer if 

decarbonisation of an organisation’s operations is possible, but rather how quickly it 

can happen and for what cost. The answer to these two questions will likely be the 

deciding factor as to whether the world’s challenge to limit global warming to 1.5°C is 

successful.  

 
4.1 The robustness and usability of this methodology  
The modelling methodology used for this report successfully developed long-term 

energy consumption and GHG emission projections for Fremantle Ports. Whilst the 

true robustness of the modelling will not be known until several years down the line, 

error analyses indicated an acceptable level of fitness between modelled values and 

observed/validation values for most models. 

The use of linear and non-linear regression analysis methods for the development of 

time-series modelling provided a flexible and statistically sound technique. Whilst 

autoregression techniques such as ARMA and ARIMA would likely provide more 

robust forecasting in the short- and medium-term, especially where seasonal or other 

patterns exist, the ability to incorporate qualitative forecasts in the modelling proved 

to be vital for projecting into the long-term. Qualitative information, for example 

surrounding government regulations and business policy changes, can have large, 

long-term influences on a facility’s energy consumption and emissions. Such 

qualitative information is not easily incorporated into autoregressive models, besides 

being used to validate qualitative fitness after development. Whilst it is possible that 

complex artificial intelligence modelling may provide more powerful and robust 

projections, the linear and non-linear regression analysis methods conducted in this 

report provide a simple yet statistically and qualitatively sufficient means of 

developing long-term energy consumption and GHG emission projections.  

Error analyses of the time series models developed for this report consistently found 

Mean Absolute Percentage Error (MAPE) values of less than or equal to 20%. Whilst 

this value is higher than what would be considered ideal, it still resembles an 

adequate level of fitness considering the highly variable nature of the historical data 
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(Lewis, 1982). Four of the twelve time-series models displayed MAPE values 

significantly higher than 20%, however, this is predominantly a result of the scale 

sensitivity of the MAPE technique and the tendency for its values to become extreme 

when dealing with low-volume data. This highlights one of the weaknesses of the 

Mean Absolute Percentage Error analysis technique, and perhaps the ‘Mean 

Absolute Deviation / Mean’ error analysis method would be better suited for this 

application (Stellwagen, 2019). It is to be noted that time-series modelling techniques 

are typically considered less robust that causal models, and that causal models 

should be used where statistically significant explanatory relationships are present 

(Makridakis, Wheelwright, & Hyndman, 1998).  

Where causal relationships were discovered, the use of simple linear regression was 

found to be an effective and powerful method to model energy consumption to 

explanatory variables and develop long-term energy consumption and GHG 

emissions projections. The MAPE values of causal models developed in Chapter 4 

were all less than or equal to 7%, indicating strong fitness of modelled data to 

observed values. Limitations of data availability posed the largest barrier to model 

robustness, especially for the development of North Quay’s container terminal 

energy model, of which historical energy data was only available for two years prior.  

The energy-consumption-by-commodity-type techniques used for KBT and KBJ 

proved to be an effective method to incorporate complex variations of energy 

consumption into simple linear equations. Multiple regression analysis was 

experimented with, however, it was found that the adapted simple regression method 

used above provided for greater fine-tuning of commodity energy use data (both 

quantitatively and qualitatively). The weaknesses of these models are based around 

the accuracy of historical and predicted commodity-energy-consumption ratios. 

Whilst the energy consumption ratios quantitatively developed for commodities that 

have been historically traded through the facilities are likely considerably reliable, 

those qualitatively predicted for commodities yet to be traded may be inaccurate. If 

new commodities become key imports/exports in the future, small inaccuracies in 

predictions can lead to large errors in energy and emissions projections down the 

line. Additionally, unlike with time-series projections, causal projections rely heavily 

on explanatory-variable forecasts. This opens up a key vulnerability for the method; if 

explanatory variable forecasts materialise into poor representations of reality, energy 
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and emissions projections will similarly become inaccurate. These shortcomings are 

mostly the result of limitations of historical data availability and explanatory variable 

forecast robustness and not a reflection of the modelling technique itself. Whilst 

complex computer learning based modelling techniques may provide more robust 

projections where non-linear relationships are present (Ionescu & Candau, 2007), for 

the modelling of linear-causal relationships, simple linear regression using the least 

squares method was found to provide a simple yet powerful method for developing 

long-term energy consumption and GHG emissions projections.  

Some of the notable benefits of this methodology include the low expertise and 

software requirements necessary for the development of projections. Whilst SPSS 

statistics software (IBM Corp, 2019) was used for the development of this report’s 

case study projections, Microsoft Excel (Microsoft Corporation, 2018) can similarly 

be used for linear regression analysis using the free Analysis Toolpak add-on. This 

prevents the necessity for organisations to purchase and learn expensive and often 

complex statistics software, increasing the accessibility of this methodology 

drastically.  

One thing to be considered regarding the application of this methodology to the case 

study is the limited size of the project’s scope. Fremantle Ports’ energy and 

emissions projections were limited to the boundary of the organisation’s internal 

operations and the port’s container terminals. This is in contrast to the often much 

broader operational scope of ports’ carbon inventories (IAPH, nd). Additionally, only 

scope 3 emissions related to energy use are included in the projections. Despite this, 

it is believed that the methodology developed by this report will be able to be 

adequately adapted for larger scopes within the port and greater infrastructure 

industries.  

 

4.2 Analysis of the ISCA Base Case Approach 
The modelling methodology developed as part of this dissertation project followed 

the general baselining process laid out by the Infrastructure Sustainability Council of 

Australia’s (ISCA) Base Case Approach (ISCA, 2017). By following the ISCA Base 

Case Approach, infrastructure assets are using what could become an industry 

standard energy and carbon forecasting methodology, providing easy model 
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comparisons throughout the infrastructure industry. Additionally, modelling 

developed by infrastructural assets that follow the Base Case Approach have the 

potential to become eligible for IS Rating Scheme Ene-1 and Ene-2 (Energy and 

Carbon) credits (ISCA, 2017).  For these reasons, the use of ISCA’s Base Case 

Approach has become increasingly attractive. However, despite providing an 

adequate scaffolding for the development of energy and carbon emissions baselines 

and projections, the Base Case Approach contains major information gaps, 

especially regarding the provision of specific modelling techniques, for which none 

are mentioned. For this reason, as well as to acknowledge the increasing desirability 

of its use, the Base Case Approach was incorporated into the modelling 

methodology, ultimately testing its usability for the development of long-term energy 

consumption and GHG emissions projections. A critical analysis of the approach is 

written below.  

4.2.1 Variable/constant energy consumption 

For the purpose of the IS rating scheme, ISCA has specified two types of energy 

consumption (ISCA, 2017); 
- Constant consumption: “Resource use which is relatively consistent year on year.”  

- Variable consumption: “Resource use caused by activities that are relatively unplanned and/or 
change year to year depending on upgrades, budget/funding, responses to incidents or reactive 

maintenance.” 

The definition of these two terms in the IS Operations Technical Manual is arbitrary. 

Firstly, both terms include energy and emissions related to ‘reactive maintenance’. 

Secondly, intermittent and abnormal demand and utilisation is considered as variable 

consumption; not to be included in the Base Case modelling. The point at which 

consumption is considered as intermittent or abnormal is subjective and may lead to 

the development of projections which distort the actual consumption of the facility.  

Further, the ability for organisations to retrospectively identify the specific energy 

usage of variable consumption sources to an accurate degree can be very difficult. In 

the Fremantle Ports case study, for example, construction work was undertaken at 

North Quay during the historical period. As a capital enhancement, this energy 

consumption would be considered as ‘variable’ under ISCA’s definition. However, 

whilst electricity consumption did increase in the year that works were undertaken, 

sufficient data was not available for the facility to determine what proportion of the 
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electricity use was a result of construction work and what was from standard 

operational practises. As such, all internal electricity consumption at North Quay was 

decided to be considered as ‘constant consumption’.  

As a result of difficulty distinguishing variable from constant energy consumption, 

both quantitatively and qualitatively, as well as to include what was considered a 

more accurate representation of the port’s total energy consumption and emissions, 

all historical energy consumption from Fremantle Ports was considered as ‘constant’ 

energy consumption and included in model development. 

4.2.2 Baselining: Setting a Base Case year 

The setting of a baseline or ‘Base Case’ year is an essential part of developing 

baseline forecasts and projections. For the designation of a Base Case year, the 

Base Case Approach states to choose a period which is “representative of the 

asset’s performance prior to the implementation of efficiency initiatives”. Whilst this 

brief sentence on the topic should be elaborated in the documentation, the general 

approach presented is credible. By selecting a period prior to the implementation of 

energy efficiencies and emissions reductions, the facility can include previous 

sustainability improvements in their Actual Case and compare these to their Base 

Case projection. One difficulty experienced when developing the Fremantle Ports 

case study was the selection of a Base Case year when there were different 

‘standard’ operating years amongst energy consumers within a single facility. 

Ultimately, compromises had to be made, with the facility’s largest energy 

consumers typically dictating the Base Case year selection.  

4.2.3 Use of the term ‘footprint’ 

A small drawback of the Base Case Approach is the frequent misuse of the term 

‘footprint’. As defined by the International Organisation for Standardisation (ISO) 

documentation on carbon foot-printing (ISO/TS 14067:2018); a carbon footprint 

refers to an asset’s life cycle greenhouse gas emissions, including emissions 

released during the manufacture, construction and disposal of the materials, 

equipment and infrastructure of an asset (ISO, 2018). As operational emissions 

inventories are typically not concerned with such broad a scope and depth of 

analysis, the term that would more appropriately describe what is developed using 
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the Base Case Approach is a ‘carbon inventory’ forecast/projection (IMO & IAPH, 

2018).  

4.2.4 Scenario inclusion 

The Base Case Approach’s incorporation of a base line scenario and an actual case 

scenario provides powerful projections, allowing the comparison of observed and 

expected energy consumption and emissions to a situation under business-as-usual. 

As is noted in the IS Operations Technical Manual (ISCA, 2017), this provides a 

quantifiable means to demonstrate past and planned reductions of energy 

consumption and GHG emissions.  

However, despite these strengths, the approach may benefit greatly with the 

inclusion of an additional scenario. A third scenario diverging from Base Case and 

Actual Case assumptions would provide greater flexibility and robustness to the 

projections. One such scenario, for example, may assume a low-carbon future 

where-by electric vehicles and hydrogen-powered vessels are the norm by 2040. 

Alternatively, a scenario may be developed under the assumption that the scope 2 

emission factor of the electricity grid does not decrease to zero in the coming 

decades as projected, and as such the facility is responsible for high levels of 

emissions. The use of three different scenarios for energy forecasting has been 

demonstrated by Intarapravich et. al. (1996), incorporating; high, low and business-

as-usual energy demand scenarios. It is believed that a similar scenario approach, 

adapted for carbon intensity, would benefit the Base Case Approach significantly.  

4.2.5 Recommendations 

The general process of the Base Case Approach, comprises of three sections; the 

Base Case Proposal, Base Case footprint and Actual Case footprint. Whilst this 

approach was considered adequate for the development of long-term energy 

consumption and GHG emissions projections, as tested in Chapter 3, there are 

several recommendations to its use which would improve its general usability.  

The book Forecasting Methods and Applications by Makridakis et. al. (1998) 

includes a five-step process for the development of forecasts and projections: 
1. Problem definition – developing a deep understanding of the problem at hand, how the 

forecasts will be used and definition of any assumptions required for modelling. 

2. Gathering information – gathering qualitative and quantitative information, historical analysis.  
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3. Preliminary (exploratory) analysis – data smoothing, trend and relationship discovery. 

4. Choosing and fitting the models – experimenting with different models and choosing the best 

technique. 

5. Using and evaluating a forecasting model – forecasts/projections are developed using the 
methods chosen in step 4 and an evaluation of the models is conducted.  

This process provides a clear and streamlined approach to forecasting, consisting of 

a more grounded and easily followed strategy, with a greater focus on model 

development, than what is presented in ISCA’s Base Case Approach. To gain the 

benefits of both model development approaches, it is recommended that Makridakis 

et. al.’s five-step strategy (1998) is aligned with and incorporated into the Base Case 

Approach, as demonstrated in Figure 36, below.  

 

 
Figure 36: Alignment of Makridakis et. al.’s five-step strategy (1998) with ISCA’s Base Case Approach (2017). 

Additionally, it is recommended that a third scenario is developed alongside the Base 

Case and Actual Case scenarios, as described in section 4.2.4 above, to allow for 

greater flexibility and usability of projections.  

 

4.3 Opportunities for ports to reach net carbon neutrality 
Ports, businesses and infrastructure assets around the world are facing increasing 

pressure to implement climate change mitigation policies, reduce greenhouse gas 

emissions and actively work towards attaining net carbon neutrality. To achieve 

carbon emission reductions, a number of mechanisms can be used by ports. These 

include: programmes and policies to reduce emissions from internal operations; 

lease requirements and tariff charges to encourage emissions reductions from port 
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tenants; outreach and climate change education programs; incentive schemes to 

incentivise tenants, customers and partner organisations to improve their 

sustainability; and the purchase of carbon offsets (IAPH, nd).  

One of the largest causes of emissions from ports’ internal operations are scope 2 

emissions. However, as was demonstrated in the Fremantle Ports case study, 

increasing grid renewable electricity capacity will continue to result in declining scope 

2 emission factors for much of the developed world’s electricity networks. As a result, 

port and infrastructure assets will very likely see drastic scope 2 emission reductions 

in the coming decades. However, if a port’s requirement to mitigate scope 2 

emissions outpaces increases of grid renewable energy penetration, scope 2 

emission mitigation measures may need to be employed directly by the organisation. 

Many ports have significant potential for the installation of on-site renewable 

electricity generation using technologies such as solar-PV, wind turbine, tidal-stream 

and battery storage. This can provide a financially attractive and low carbon 

alternative to grid supplied electricity (Amponsah, Kington, Aalders, & Hough, 2014; 

IRENA, 2019). Large capacities of onsite renewable energy infrastructure have been 

installed in many European ports, including 200MW of wind energy at the Port of 

Rotterdam, 45MW of wind energy at the Port of Antwerp and 11GWh per year of 

solar PV generated electricity at the Port of Amsterdam (Sdoukopoulos, Boile, 

Tromaras, & Anastasiadis, 2019). Fremantle Ports has the ability to generate its own 

renewable energy within the area of its facilities, and has investigated options to 

install wind turbines on the breakwaters and solar PV on its buildings and truck 

waiting/parking areas.  

Besides the carbon emission reduction benefits mentioned above, the installation of 

onsite renewable energy can provide several other opportunities for ports which may 

be beneficial regardless of emission reduction targets. These opportunities include: 

• Increased resilience and power security (whether climate change is induced as a risk or not). 

• Cost benefits associated to self-generation of electricity. 

• Potential to sell excess electricity to tenants or the grid, creating an additional revenue stream.  

•  Customer/stakeholder pressure or reputational/ business benefits due to the use of renewable 

energy. This may be an important consideration where there are cruise ship and ferry terminals. 
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If the installation of renewable energy infrastructure is not feasible for a specific port, 

Corporate Renewable Power Purchase Agreements with renewable electricity 

generation projects can provide an effective means for obtaining carbon neutral 

electricity (Business Renewables Centre-Australia, 2019).  

In regard to demand-side scope 2 emissions mitigation, this can largely be achieved 

by improving a port’s energy efficiencies. Electricity energy efficiency opportunities 

for ports include; implementing energy management systems and smart meters to 

provide more accurate, real time electricity monitoring; switching traditional lighting to 

LED lighting; installing berth lighting sensors and dimming switches; utilising electric 

motor speed switching and controlling, such as switching electric motors in trade 

handling equipment to idle to when not in use (PEMA, 2011); implementing the 

‘passive house concept’ on buildings and warehouses to reduce HVAC (heating, 

ventilation and air conditioning) energy requirements (Sdoukopoulos, Boile, 

Tromaras, & Anastasiadis, 2019), and; improving container trade handling 

efficiencies (Dulebenets, Moses, Ozguven, & Vanli, 2017).  

The most difficult challenge for ports striving for carbon neutrality is the mitigation of 

their scope 1 emissions released from the combustion of fossil fuels. As the use of 

renewably sourced electricity increases, scope 1 emissions will likely become the 

dominant source of a port’s internal operational emissions. In order to achieve 

carbon neutrality, ports will need to undertake significant changes to vessels, 

vehicles and diesel-powered trade-handling equipment. Emission reduction 

opportunities for port vessels such as tugboats and pilot vessels include 

hybridisation and the use of alternative fuels (Table 11). Hybrid tugboats using 

diesel-electric-hybrid technology are increasingly being developed, with several in 

use in the Port of Rotterdam, Port of Luleå and ports of Los Angeles and Long 

Beach (Sdoukopoulos, Boile, Tromaras, & Anastasiadis, 2019; Bojarski, 2019). In 

2019, the world’s first fully electric powered tugboat was purchased by Ports of 

Auckland, with delivery expected in 2021 (Foster, 2019). Hydrogen cells offer a 

promising carbon neutral fuel source, depending on the energy used for its 

production. Whilst currently in its early stages, there is growing interest in the future 

of hydrogen powered vessels, with the Port of Antwerp recently purchasing the 

world’s first hydrogen powered tugboat in 2019 and Japan’s largest tugboat 
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manufacturer Tokyo Kisen aiming to release its first hydrogen-electric-hybrid 

tugboats in 2022 (Port of Antwerp, 2019; Tokyo Kisen, 2019).  

 
Table 11: Main alternative fuel and energy sources for vessels, and associated fuel savings potential (Halim, 
Kirstein, Merk, & Martinez, 2018). 

 
 
As seen in Chapter 3, diesel-powered trade-handling equipment represents one of 

the largest sources of emissions from a port’s landside operations. To mitigate these 

emissions, the most common methods currently implemented involve the full 

electrification of the equipment and diesel-electric hybrid solutions. The use of 

alternative fuels, such as LNG and hydrogen fuel cells, will likely become available in 

the future, however, are currently in the piloting and testing phase (Sdoukopoulos, 

Boile, Tromaras, & Anastasiadis, 2019). The transition of a port’s vehicle fleet to low 

carbon alternatives is currently possible for small vehicles, with petrol-electric hybrid 

and full electric options available on the market. Options for utility and industrial 

vehicles, however, are very limited, although several electric and hydrogen variants 

are expected to be released over the next couple years (Guthrie, 2020).  

Whilst there are many significant merits to reducing the greenhouse gas emissions 

of a port, it is to be noted that the emissions released by ships between ports is of a 

much greater magnitude (Halim, Kirstein, Merk, & Martinez, 2018). As such, the 

impact that a port can have on reducing global GHG emissions can be greatly 

increased by encouraging and facilitating the sustainability of visiting ships. 

Mechanisms such as providing discounted berthing rates for more sustainable ships 

can incentivise vessels to reduce their overall emissions. Such a mechanism is 

currently being employed by NSW Ports (NSW Ports, 2019). Additionally; providing 

an onshore power supply (cold-ironing) can reduce a vessel’s in-port emissions 

(depending on the emission factor of the local grid electricity); as can increasing 

trade loading/unloading efficiencies; and reducing the time a ship is required to idle 

in port. Fremantle Ports is also proposing to facilitate a hydrogen-powered heavy-
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vehicle trial, providing hydrogen refuelling in the Inner Harbour to encourage the 

uptake of hydrogen-powered on-road trade transport technologies (Western Roads 

Federation, 2018).  

As the impacts of climate change become more evident, the pressure and necessity 

for ports to decarbonise their operations will only increase. Through the utilisation of 

the methods detailed above, ports can very readily begin their transition to a carbon 

neutral future. Whilst it may be difficult for ports to decarbonise their mobile 

operations completely using currently available and affordable technology, 

continuing technological developments and price decreases will increase 

accessibility in the coming years. With the IMO announcing plans in 2018 for a 50% 

reduction of global shipping emissions by 2050 (European Union, 2019) and many 

ports around the world having begun the process towards decarbonising their 

stationary and mobile operations (Sdoukopoulos, Boile, Tromaras, & Anastasiadis, 

2019), the maritime industry faces a powerful opportunity to protect their assets and 

decarbonise the sector. 
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5 Conclusions 
With the impacts of climate change intensifying every year, there is growing pressure 

and necessity for the maritime industry to decarbonise their emissions. Being the 

gateway between terrestrial and maritime trade operations, ports hold a powerful 

position to not only reduce their own greenhouse gas emissions, but also those of 

the ships, trucks and locomotives on which global trade depends. Highlighted by the 

progressive contributions of IAPH and WPCI, as well as by notable sustainable ports 

including the Ports of Auckland, ports of Long Beach and Los Angeles, and the 

European ports of Rotterdam and Antwerp, ports are increasingly identifying 

themselves as the drivers for climate action within the maritime industry.  

To assist ports with identifying and reporting their energy consumption and 

greenhouse gas emissions, several guidelines have been developed, including 

WPCI’s Carbon Footprinting for Ports: Guidance Document (2010) and IAPH/IMO’s 

Port Emissions Toolkit (2018). Despite the comprehensiveness of these documents, 

there is currently no publicly available methodologies guiding the development of 

long-term energy consumption and greenhouse gas emissions projections for ports 

or infrastructure assets. As per this requirement, this dissertation report has 

successfully developed and tested a methodology utilising qualitative and 

quantitative forecasting techniques, using curve fitting, linear and non-linear 

regression models for time-series models and linear regression analysis using the 

method of least squares for causal/explanatory models. The baselining scaffolding 

and scenario development technique provided by ISCA’s Base Case Approach was 

successfully integrated into the methodology and was demonstrated to be 

adequately usable for developing long-term energy and emissions baselines and 

projections.  

The case study on Fremantle Ports found that baseline energy use is expected to 

increase 53% by 2050. Baseline GHG emissions, however, are expected to 

decrease by 71% over the same time frame as a result of projected increases of grid 

renewable electricity generation and the associated drop of scope 2 emission 

factors. The Actual Case model identified a 6.5% decrease of energy consumption 

and 3% decrease of GHG emissions by 2050, relative to the Base Case scenario.  
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As with Fremantle Ports, increases of renewable electricity generation in coming 

decades will likely result in scope 1 emissions sources becoming the dominant form 

of emissions from facilities’ internal operations. These will likely become the focus of 

emissions mitigation strategies moving forward, as ports join the global economy in 

decarbonisation efforts. Whilst the immediate and complete decarbonisation of a 

port’s internal operations would currently be challenging and expensive, ongoing 

technological advancements regarding stationary and mobile energy use 

electrification and the uptake of carbon neutral alternative fuels such as hydrogen 

fuel cells and biofuels are making the transition to net carbon neutrality an 

increasingly achievable, affordable and attractive goal.  

 

5.1 Final recommendations  
This report has developed a practical methodology for the development of long-term 

energy consumption and GHG emission projections for port operations. As part of 

this report’s case study, several recommendations were deduced that will assist with 

any port energy and emissions projections developed in the future. Firstly, to 

represent a more comprehensive view of the total emissions released as part of port 

infrastructure and trade operations, a port’s scope 3 emissions should include 

emissions from tenants, visiting ships and land-side trade transport to a certain 

degree within the port’s administrative boundary, as is identified in the Port 

Emissions Toolkit (IMO & IAPH, 2018). Secondly, if using the ISCA Base Case 

Approach, its integration with the five-step forecast development process created by 

Makridakis, Wheelwright, & Hyndman (1998) is recommended, as discussed in 

section 4.2.5 and Figure 36 above. Finally, it is recommended for model 

development that at least a third scenario is included, to provide greater usability, 

flexibility and robustness to the projections and cover a wider range of possible 

futures.  

 

5.2 Future research 
This report focused primarily on developing long-term energy consumption and 

emissions projections for the internal operations of ports, using conventional 

forecasting techniques. Possible future research includes experimentation with 

artificial intelligence and machine learning forecasting methods in the context of 
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infrastructure and port operations. Whilst these techniques can provide increased 

model robustness, it is not known whether such benefits are great enough to justify 

the trade-offs of time, model complexity and statistical/programming expertise when 

applied to the development of port energy consumption and GHG emissions 

projections. Additional future research opportunities include widening the scope of 

the current project and adapting it for use with broader infrastructure related assets 

as well as non-infrastructure related private businesses. Additionally, further 

research is required to develop specific carbon management strategies for ports. 

This includes determining the economic feasibility and abatement impacts of 

emission mitigation strategies and investigating the transitional risks of 

decarbonising a port’s operations, including any business fiscal impacts.   
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Appendices 

Appendix 1: Emissions forecasts versus emissions projections 
It is important to note the difference between emissions forecasts and emissions 

projections.  

    

Emissions projections are concerned with estimations of future data on the scale of 

years to decades. As long-term data estimations can be very hard to predict, 

differing scenarios are often formulated. Projections provide estimations under the 

expectation that sets of assumptions (such as future trade growth rates, emission 

factor change rates etc.) continue for the period of the projection. They do not 

typically attempt to account for unknown future impacts such as those that are the 

result of future policy or economic changes, or technological developments 

(Department of Industry, Science, Energy and Resources, 2019).  

 

Emissions forecasts, on the contrary, are typically estimations of future data at a 

shorter time-scale, although long-term forecasts can also exist. Forecasts attempt to 

speculate more-so on how emissions are impacted by incidents such as changes of 

technology, human behaviour and government policies. This can mean that 

forecasts offer higher detail estimations, however at the expense of increased risk if 

such speculations turn out to be incorrect. For this reason, forecasts are usually 

suited better for short-term periods where highly detailed speculations are more 

reliable (Department of Industry, Science, Energy and Resources, 2019). 

 

As the scope of this project involves developing energy and emissions modelling at 

the scale of decades, as well as to best utilise time, data and resource restraints, the 

energy and emission modelling methodology that was developed as part of this 

project was be more closely aligned to an ‘emissions projection’.  
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Appendix 2: Emission scopes 
 
In GHG emission accounting and reporting, emissions are usually broken up into 

three different scopes. Scope 1 emissions are those released as a direct result of an 

activity at the facility level. Scope 2 emissions reflect those released as an indirect 

consequence of the use of electricity (or other energy type) generated off-site. Scope 

3 emissions consists of indirect emissions, other than scope 2, that are released in 

the broader economy as a result of the activities of a facility. How these scopes are 

adapted for ports and port operations is demonstrated in Figure 37, below. 

 

 
Figure 37: The three different categories of GHG emissions scopes, as the pertain to port operations (IAPH, nd).   
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Appendix 3: Fremantle Ports facilities information 

Victoria Quay 

Located on the southern bank of the Inner Harbour, Victoria Quay is a mixed-use 

facility with varying infrastructural requirements. The facility contains six common 

user berths, four for cargo handling and two for vessel lay-up. Adjacent to the 

common user berths is secure storage for break-bulk trade and up to 800 motor 

vehicles (Fremantle Ports, n.d.). At the north-eastern end of Victoria Quay, the Small 

Craft Pens contain berths for the port’s pilot and emergency vessels, as well as a 

10kL-diesel-tank refuelling station. Other infrastructure includes multiple carparks, 

the Fremantle Passenger Terminal, ferry terminal, Fremantle Ports Administration 

Building and several other port sheds and buildings. The facility currently has a 

tenant occupancy rate of around 50%, with 59% of the facility’s electricity 

consumption attributable to tenants in financial year 2018/19.  

 

North Quay 

On the northern bank of the Inner Harbour, lies the mixed-use facility; North Quay. 

NQ contains four common user berths with secure storage for break-bulk trade and 

motor vehicles. The container terminals at North Quay contain four berths and 

specialised container handling equipment. A train line links the North Quay container 

terminals to key sections of the greater Perth rail network. There is also a light to 

medium industrial area, utilised predominantly by trade and maritime based 

businesses (Fremantle Ports, n.d.). Fremantle Ports operates very little of North 

Quay directly, with around 93% of the facility’s electricity use attributed to external 

businesses, including the two container terminals.  

 

Kwinana Bulk Terminal  

Kwinana Bulk Terminal, located in the Outer Harbour, is primarily a bulk material 

import/export facility. The KBT facility contains storage sheds and silos, rail tippler 

infrastructure, two grab loaders for the movement of material to/from ships, hopper 

systems, conveyor systems, an LPG pipeline, stockpile storage areas as well as a 

small, single storey workshop/office building (Figure 39). The main materials 

historically traded through KBT are cement clinker, gypsum, spodumene, bauxite 
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and iron ore. Fremantle Ports currently operates 100% of the facility, although it has 

been wholly leased in the past (Department of Environment Regulation, 2012).  

 

 
Figure 38: The Fremantle Inner Harbour, home to Victoria Quay and North Quay. Yellow shades represent 

Fremantle Ports land (Fremantle Ports, 2019). 

Kwinana Bulk Jetty 

Similar to KBT, Kwinana Bulk Jetty facilitates the loading and unloading of bulk 

material products. The facility contains two berths along a single jetty and has trade 

handling infrastructure including a conveyor system, self-contained fully enclosed 

auger-type continuous unloader, a hopper system (Figure 40). Material storage and 

processing facilities are not internally operated at KBJ. Fremantle Ports operates 

around 60% of the facility (in regards to electricity consumption), with the remainder 

attributed to tenant operations. The main materials historically traded through KBJ 

are fertilisers, potash, slag residue, sulphur, urea, cement clinker, and more recently; 

silica sands (Department of Environment Regulation, 2012).  
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Figure 39: A labelled satellite image of Kwinana Bulk Terminal. The dashed purple line denotes the boundary of 
the facility (Department of Environment Regulation, 2012). 

 

 

Figure 40: A labelled satellite image of Kwinana Bulk Jetty. The dashed purple line denotes the boundary of the 
facility (Department of Environment Regulation, 2012).  
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Schedule 1:  Maps  

Premises Map 
The Premises are shown in the map below. The purple line depicts the boundary to the Premises.  

   

 

 
L4474/1976/14 
File No: DER2015/002745 
 
 

9 
 

Schedule 1:  Maps  

Premises Map 
The Premises are shown in the map below. The purple line depicts the boundary to the Premises. 
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Appendix 4: Projected SWIS Emission Factor values 
 
See Figure 13 and Figure 14 for a graphical representation of these projections. 
 

 
  

Historical SWIS Scope 2 Emission Factor Historical SWIS Scope 3 Emission Factor

Linear Equation: y=-0.022258064516129x + 45.629032258065 Linear Equation: y=0.000038776677419354704x−0.038290111709677145

Historical Projected Historical Projected

FY ending EF (kg.CO2-e/kWh) EF (kg.CO2-e/kWh) FY ending EF (kg.CO2-e/kWh) EF (kg.CO2-e/kWh)

1990 1.13 1990 0.2

1995 1.11 1995 0.15

2000 1.14 2000 0.14

2005 0.88 2005 0.09

2006 0.88 2006 0.08

2007 0.86 2007 0.1

2008 0.86 2008 0.11

2009 0.83 2009 0.12

2010 0.81 2010 0.1

2011 0.79 2011 0.08

2012 0.77 2012 0.07

2013 0.76 2013 0.07

2014 0.74 2014 0.07

2015 0.71 2015 0.06

2016 0.7 2016 0.06

2017 0.7 2017 0.05

2018 0.7 2018 0.05

2019 0.69 0.69 2019 0.04 0.04

2020 0.67 2020 0.0400

2021 0.65 2021 0.0401

2022 0.62 2022 0.0401

2023 0.60 2023 0.0402

2024 0.58 2024 0.0402

2025 0.56 2025 0.0402

2026 0.53 2026 0.0403

2027 0.51 2027 0.0403

2028 0.49 2028 0.0403

2029 0.47 2029 0.0404

2030 0.45 2030 0.0404

2031 0.42 2031 0.0405

2032 0.40 2032 0.0405

2033 0.38 2033 0.0405

2034 0.36 2034 0.0406

2035 0.33 2035 0.0406

2036 0.31 2036 0.0407

2037 0.29 2037 0.0407

2038 0.27 2038 0.0407

2039 0.24 2039 0.0408

2040 0.22 2040 0.0408

2041 0.20 2041 0.0409

2042 0.18 2042 0.0409

2043 0.16 2043 0.0409

2044 0.13 2044 0.0410

2045 0.11 2045 0.0410

2046 0.09 2046 0.0410

2047 0.07 2047 0.0411

2048 0.04 2048 0.0411

2049 0.02 2049 0.0412

2050 0.00 2050 0.0412
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Appendix 5: Base Case time-series model statistical summaries 
 
Time-series based models developed as part of this case study’s Base Case 
projections are listed in Table 12, below. Equations take the form as described online 
in IBM Statistics V24.0 documentation (IBM, 2016). 
 
Table 12: Time-series regression-analysis model statistical summaries, parameter estimations and model choice 
justifications developed for Fremantle Ports Base Case energy consumption projections. 

 

VQ Electricity Consumption (kWh): Base Case Years (2010 - 2016)
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant (b0) b1 Equation
Logarithmic 0.033 0.169 0.698 2415181.221 58228.7 Y = b0 + (b1 * ln( [Financial Year Ending] - 2009 ))
Justification

NQ Internal Electricity Consumption (kWh): Base Case Years (2012 - 2019)
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant (b0) b1 Equation
S 0.012 0.075 0.794 14.153 0.05 Y = e^(b0 + (b1 / ([Financial Year Ending] - 2011)))
Justification All models had a very low R2 value and a very poor p value. This indicates highly variable data over time. Despite this, a slight downward trend is identifiable in all models. This is 

likely due to energey efficiencies undertaken since 2016. NQ internal electricity consumption is not expected to be affected by port trade. For a business as usual projection, 
assuming no new energy efficiencies, electricity consumption is expected to flatten off and not change over time. 

The Logarithmic model provided the best balance between qualitative forecasts and statistical analysis values. Qualitative forecasting expects VQ internal electricity consumption 
to remain steady into the future. For this reason, Linear, Compound and Exponential models are not compatible, despite having the best p-value.

VQ Leased fleet petrol consumption (GJ): Base Case Years (2012 - 2016)
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant b1 Equation

Power 0.986 214.585 0.001 2324.767 -0.699 Y = b0*(([Financial Year Ending] - 2011)^(b1))
Justification All models have a very high R2 value. The power model offers the best middle ground between alignment with historical data and qualitative fuel consumption forecasts. 
VQ Fremantle Port owned fleet petrol consumption (GJ): Base Case Years (2012 - 2016)
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant b1 Equation

Power 0.062 0.198 0.687 30.966046 -0.1318 Y = b0*(([Financial Year Ending] - 2011)^(b1))
Justification All models have a low R2 value. This model offers the best mix  between alignment with historical data and alignment with qualitative fuel consumption forecasts from the port. 

VQ Leased fleet diesel consumption (GJ): Base Case Years (2012 - 2016)

Model Type Model Summary Parameter Estimates

R Square F Sig. Constant b1 Equation

S 0.659 5.794 0.095 7.699557 -0.7519 Y = e ^ (b0 + (b1 / ([Financial Year Ending] - 2011)))

Justification

VQ Fremantle Port owned fleet diesel consumption (GJ):  Base Case Years (2012 - 2016)Parameter Estimates

Model Type Model Summary Parameter Estimates

R Square F Sig. Constant b1 Equation

Power 0.533 3.424 0.161 1587.79141 -0.2206 Y = b0*(([Financial Year Ending]-2011))^(b1))

Justification

The S Curve Model has the lowest P value, highest R2 value, and fits qualitative fuel consumption forecasts from the port the adequately. This was consistent when modelling 

with all historical years and also for pre-base case years.

Of the models tested, only four had appropriate values when extrapolated to 2050: Inverse, logarithmic, power, S Curve. Other models either went into negative values or very 

high positive values before 2050. Th Power model offers the best middle ground between alignment with historical data and alignment with qualitative fuel consumption 

forecasts from the port. The Power Model has the lowest P value and highest R2 value of the four models deemed appropriate.

KBT Leased fleet petrol consumption (GJ):  Base Case Years (2012 - 2019)

Model Type Model Summary Parameter Estimates

R Square F Sig. Constant b1 Equation

Power 0.949 112.799 0 1815.273621 -0.7432 Y = b0*(([Financial Year Ending]-2011))^(b1))

Justification

KBT Fremantle Ports owned fleet petrol consumption (GJ): Base Case Years (2012 - 2019)

Model Type Model Summary Parameter Estimates

R Square F Sig. Constant b1 Equation

Inverse 0.171 0.824 0.415 23.145146 -18.234 Y = b0 + (b1 / ([Financial Year Ending] - 2011))

Justification All models had very low R2 values and very low P values. The Inverse curve had slightly better statistical significance. All three models correlated reasonably well with qualitative 

fuel consumption forecasts made by the port. 

All non-linear models had very high R2 values and very low P values (except for S Curve Model). The Power curve had a very high statistical significance and correlated well with 

qualitative fuel consumption forecasts made by the port. 

KBT Leased fleet diesel consumption (GJ): Base Case Years (2012 - 2019)
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant b1 Equation
Logarithmic 0.139 0.968 0.363 829.679839 150.64 Y = b0 + (b1 * ln(([Financial Year Ending] - 2011)))
Justification

KBT Fremantle Ports owned fleet diesel consumption (GJ): Base Case Years (2012 - 2019)
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant b1 Equation
Logarithmic 0.465 5.212 0.063 -8.300113 89.6724 Y = b0 + (b1 * ln(([Financial Year Ending] - 2011)))

Justification
KBJ Fremantle Ports owned fleet petrol consumption (GJ): Base Case Years (2012 - 2017)
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant b1 Equation
Logarithmic 0.727 10.629 0.031 -1.72046 4.91435 Y = b0 + (b1 * ln(([Financial Year Ending] - 2011)))
Justification

KBJ Fremantle Ports owned fleet diesel consumption (GJ): Base Case Years (2012 - 2019)
Model Type Model Summary Parameter Estimates

R Square F Sig. Constant b1 Equation
Inverse 0.782 14.314 0.019 239.796224 -263.86 Y = b0 + (b1 / ([Financial Year Ending] - 2011))
Justification

All models had very low R2 values and very low P values. From qualitative knowledge of the facility's diesel fuel consumption, consumption growth predicted by the linear model 
is considered too large. Out of the remaining models, the logarithmic model provided the best R2 value and P value and best fit fuel consumption growth expectations and 

All models had very low R2 values and very low P values. When considering qualitative fuel consumption forecasts from the port (increasing slightly then levelling off), the 
logarithmic and power curves offered the best fit. Of these, the logarithmic model has the better R2 and P values. This dataset includes the FY 2018/19 anomaly. 

All models had adequately strong R2 and  P values. The logarithmic model had the best R2 and P values of all models tested, however the inverse model best fit with qualitative 
fuel consumption forecasts made by the port (fuel use will flatten offl) and had the lowest normalised error outside of the variable period from FY 2011/12 to FY 2012/13. 

Logarithmic and Linear models had adequately strong R2 and  P values. The linear model fitted the data the best, however when considering qualitative fuel consumption 
forecasts made by the port (fuel use will flatten off, see proposal), the logarithmic model was considered the best fit for the Base Case.


