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ABSTRACT 

Muscle fatigue is characterised by a transient (reversible with sufficient rest) decline in force 

generating capacity of the active musculature. This deterioration in force production capacity 

is associated with impaired neuromuscular function integrity, which includes both central and 

peripheral factors. An oxygen-deprived environment (hypoxia) accelerates and/or exacerbates 

development of muscle fatigue and ultimately hampers exercise tolerance. However, it is 

unclear how hypoxia of different severity during an initial exercise bout may influence 

recovery and performance of a subsequent exercise bout. The overarching aim of this thesis 

was to assess the impact of graded hypoxia during an initial intermittent exercise bout, on 

subsequent performance and neuromuscular and perceptual responses during closed-loop (i.e., 

pre-determined number of repeated cycling sprints; Study 1) and open-loop (i.e., exhaustive 

intermittent cycling bouts; Study 2) tasks. Results from Study 1 (Chapter 3) showed that single 

sprint performance was restored during the subsequent set of repeated sprints despite 

substantial impairments in muscle contractility (~45% decrease in quadriceps potentiated peak 

twitch from baseline). The restoration of sprint performance during the subsequent sprint set 

coincided with the recovery in exercise-related sensations and quadriceps muscle activation, 

which suggests that the central nervous system plays an important role in the recovery of sprint 

performance. However, the relatively brief repeated sprint (with a known endpoint) may have 

consciously or subconsciously influenced participants’ pacing strategy to “overcome” the 

impaired neuromuscular function for short duration, and increase power output. Therefore, 

Study 2 (Chapter 4) investigated the effects of graded hypoxia during an exhaustive 

intermittent cycling bout on subsequent performance and associated neuromuscular fatigue 

characteristics. It was observed that the number of efforts performed during the second bout 

was substantially lower compared to the first bout at sea-level, despite 30 min of passive 

recovery. This suggests that the residual effect of fatigue may only become apparent when 
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exercise is performed until exhaustion during an “open-loop” exercise task. Increasing hypoxia 

severity reduced the number of efforts completed during the initial cycling bout, but did not 

influence performance or neuromuscular fatigue characteristics during the second bout. The 

effects of prior high intensity intermittent exercise at graded hypoxia on subsequent 

performance and neuromuscular fatigue characteristics were essentially minimal. The residual 

effect of fatigue was task dependent. Specifically, when the subsequent exercise is brief, 

compensatory process associated with central factors (e.g. perceptual recovery) may aid in 

sustaining exercise performance. However, where exercise is prolonged, for instance till 

exhaustion, performance decrements associated with residual fatigue becomes evident. An 

important and consistent finding across studies was that using the fraction of inspired oxygen 

as a marker of “hypoxic dose” elicited large inter-individual differences in response to hypoxia, 

and consequently performance. As such, Chapter 5 proposed an individualised approach to 

implementing hypoxia, using SpO2 to FiO2 ratio as a marker of dose. Collectively, our findings 

showed that neuromuscular fatigue during high intensity intermittent exercise in hypoxia and 

normoxia were largely peripheral in nature. However, prior high intensity exercise in graded 

hypoxia does not influence performance and associated neuromuscular functions during 

subsequent exercise. 
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CHAPTER 1  

INTRODUCTION 
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Introduction 

Repetitive high intensity efforts leads to development of fatigue, characterised by a transient 

exercise-induced reduction in force production capacity that is reversible with sufficient rest 

(Girard et al. 2011a; Bishop 2012). Strength loss is associated with impaired neuromuscular 

function integrity, resulting from biochemical changes within the active musculature (i.e., 

peripheral fatigue) and/or an suboptimal muscle activation (i.e., central fatigue) (Amann 2011). 

An experimental approach to understand the interplay between central and peripheral fatigue 

during high intensity intermittent exercise (HIIE) is to modify the prior level of fatigue. This 

can be achieved, for instance, by completing an initial exercise bout (Amann and Dempsey 

2008) or through hypoxic manipulation (Girard et al. 2015), and examining performance 

during a subsequent bout.  

Using this approach, limiting factors of performance can be identified during the subsequent 

bout of exercise. For instance, Mendez-Villanueva et al. (2007) showed that prior exercise 

(inducing pre-fatigue) exacerbates performance decrement during subsequent repeated cycling 

sprints. Larger decrements in total work (~20% vs. 14%) were observed during five successive 

repeated 6-s sprints after the completion of an initial set of ten sprints of similar duration 

(Mendez-Villanueva et al. 2007). This was accompanied by a ~12% decline in the Root Mean 

Square (RMS) of the electromyographic (EMG) signal of the vastus lateralis (VL) muscle 

during the initial effort of the second set of sprints. This suggests that neural factors may partly 

explain performance decrement during a subsequent set of sprints.  

Few studies have used hypoxic exposure during an initial set of exercise to manipulate fatigue 

levels incurred at the start of a subsequent exercise in order to identify key neuromuscular 

determinants of HIIE. The use of hypoxia is based on the premise that decreasing fraction of 

inspired oxygen (FiO2) exacerbates neuromuscular fatigue and perceptual responses (and 
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therefore recovery requirements). Specifically, the severity of hypoxia influences the 

contribution of central and peripheral factors to neuromuscular fatigue, and is likely an 

important determinant of exercise tolerance (Amann and Kayser 2009). During high intensity 

cycling with mild to moderate hypoxia (FiO2 ~0.17-0.15), neuromuscular fatigue development 

is predominantly of peripheral origin (Amann et al. 2007b; Amann et al. 2006a), presumably 

associated with accelerated muscle acidosis and phosphocreatine (PCr) hydrolysis (Bowtell et 

al. 2014; Hogan et al. 1999). Conversely, severe hypoxia (FiO2 <0.10, equivalent to arterial 

oxygen saturation [SpO2] of ~70-75%) imposes substantial cerebral deoxygenation  (Goodall 

et al., 2012), inducing earlier and greater down-regulation of skeletal muscle recruitment, and 

consequently larger performance decrements (Amann et al. 2007b).  

Current research using FiO2 as the “dose” marker to assess neuromuscular fatigue responses 

during high intensity performance, reports large variability in responses (Goodall et al. 2012; 

Mira et al. 2020). This is likely due to large inter-individual variation in response to hypoxia. 

Additionally, the design of the exercise bout is also likely to contribute to variability both 

within and between studies. Most studies manipulating hypoxia severity during an initial 

exercise bout have used a pre-determined number of efforts or a “closed-loop” design (Girard 

et al. 2016; Townsend et al. 2020). However, during such brief repeated sprints (where the 

exercise end-point is set), individuals may be able to “overcome” impaired neuromuscular 

function for brief duration and modulate their performance and the resulting neuromuscular 

fatigue via pacing strategy (Billaut et al. 2011). As such, to resolve the issue of pacing, an 

“open-loop” exercise task, where exercise is performed at a constant work-rate up to exhaustion 

should be considered.  

Collectively, the available evidence suggests that both peripheral and central alterations may 

contribute to the impairment of HIIE in graded hypoxia (i.e., hypoxia at different severity). 

Additionally, the relative contribution of central and peripheral factors is likely to be 
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determined by the severity of hypoxia. However, it is unclear how hypoxia of different severity 

during an initial exercise bout may influence performance recovery during a subsequent 

exercise bout. Furthermore, the type of exercise task (open- vs. closed-loop) may also 

consciously or subconsciously influence an individual’s pacing strategy, and in turn, alter 

neuromuscular characteristics and eventually exercise performance. Thus, the overarching aim 

of this thesis is to assess the impact of graded hypoxia during an initial intermittent exercise 

bout on subsequent performance as well as neuromuscular and perceptual responses during 

closed-loop and open-loop tasks. To achieve this aim, this thesis is divided into six chapters: 

Chapter 2 briefly reviews the available literature surrounding this research question; Chapter 3 

assesses the impact of graded hypoxia during an initial intermittent exercise bout on subsequent 

performance and neuromuscular/perceptual responses during a closed-loop task; Chapter 4 

assesses the impact of graded hypoxia during an initial intermittent exercise bout on subsequent 

performance and neuromuscular and perceptual responses during an open-loop task. Given the 

aforementioned inter-individual variability in response to hypoxia when using the conventional 

FiO2 as a “dose” metric, Chapter 5 discusses the use of a clinical index that integrates both the 

external (FiO2) and internal (SpO2) stimuli to characterise individual responses to hypoxia as 

an alternate approach. Finally, Chapter 6 summarise the findings and provide suggestions for 

future research as well as practical applications of the studies.  

.
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CHAPTER 2  

BACKGROUND 
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2.1 Exercise-induced fatigue 

Exercise-induced muscle fatigue can be defined as a decline in force generating capacity of the 

exercising muscle, and is evidenced by a decrease in exercise performance (e.g. reduced power 

output) (Gandevia 2001; Collins et al. 2018). Exercise-induced fatigue has been broadly 

attributed to central and/or peripheral factors. Central fatigue is characterised by an incomplete 

neural drive to the active musculature, whereas peripheral fatigue is caused by biochemical 

changes occurring within the exercising muscles (Amann 2011). The force generating capacity 

of a muscle group is restored with sufficient rest, although the degree and rate of recovery 

depend on the preceding activity (e.g. intensity of exercise) (Carroll et al. 2016). The 

manifestation of fatigue during exercise is complex – since changes occurring at any sites 

within the neuromuscular system may contribute to or compensate for fatigue (Carroll et al. 

2016) –  but is ultimately evidenced by a reduction in maximal voluntary force. 

2.2 Measuring neuromuscular fatigue of the quadriceps muscles 

Electrical and/or magnetic stimulations are typically used to assess the contributions of 

peripheral and central factors responsible for impaired neuromuscular function. Peripheral 

fatigue can be assessed by evoking a potentiated peak twitch (Qtw-pot) through supramaximal 

stimulation of a motor nerve in the relaxed state. A decrease in resting twitch from pre- to post-

exercise is indicative of impaired muscle contractility. Additionally, the muscle compound 

action potential (or M-wave) following nerve stimulation can be recorded using the surface 

electromyography technique with electrodes fixed over the contracting muscle. Studying M-

wave characteristics is used to determine if fatigue is associated with altered muscle excitability 

(Girard et al. 2011a). For instance, a reduction in M-wave amplitude suggests that action 

potential synaptic transmission may be impaired (Girard et al. 2011a). 

The contributions of central factors to impaired neuromuscular function can be examined using 

peripheral motor nerve (PMN) stimulations, for instance from the twitch interpolation 
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technique. Briefly, voluntary activation (VA) is quantified by comparing the amplitude of the 

superimposed twitch (evoked during a maximal voluntary contraction; MVC) to that of a twitch 

evoked from the same muscle at rest. The evoked twitch during MVC typically increases with 

fatigue, indicating that muscle activation capacity of the exercising muscle became incomplete. 

Recently, transcranial magnetic stimulation (TMS) over the motor cortex has also been used to 

determine if supraspinal factors contribute to fatigue. Specifically, a single TMS pulse is 

delivered via a concave double-cone coil over the vertex of the scalp, producing a 

superimposed twitch similar to that of PMN stimulation. In this instance, it is necessary to 

estimate, rather than measure directly, the resting twitch because corticospinal excitability 

increases during voluntary contraction (Rothwell 1997). Nonetheless, (Goodall et al. 2009) has 

shown that TMS provides highly reliable estimates of VATMS and resting twitch. Reductions 

in VATMS indicate impairments in neural drive that is located at or above the level of motor 

cortical output. 

2.3 Neuromuscular fatigue responses to high intensity intermittent exercise  

Generally, short duration, HIIE induces fatigue that is primarily of peripheral origin. For 

consistency in this thesis, we define high intensity exercise as maximal or near maximal efforts 

performed at an intensity that elicits at least 80% of maximal heart rate (HR) (MacInnis and 

Gibala 2017; Weston et al. 2014). An example of a HIIE is repeated sprint exercise (RSE). 

RSE is characterised by short duration, maximal sprints (<10 s) that are performed repeatedly 

with brief recovery (<60 s) between efforts. In this regard, Goodall et al. (2015) showed that 

most reductions in potentiated peak twitch (~15% after only 2 sprints) occur during the early 

stages of a RSE (12 × 30-m sprints with 30 s recovery). However, the magnitude of contribution 

of central fatigue to performance decrements during HIIE remains inconclusive. In this 

instance, relatively small decrements in VAPMN (~3-9%) (Goodall et al. 2015; Racinais et al. 

2007) typically occur during the latter stage of RSE. Further, studies (Girard et al. 2013; 
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Goodall et al. 2015) have attempted to determine if decreased muscle activation in response to 

repeated sprinting is associated with supraspinal factors. For instance, Goodall et al. (2015) 

demonstrated a ~9% decrease in VATMS of the knee extensors during brief MVC immediately 

after a repeated-sprint running protocol. Girard et al. (2013) reported that VATMS decreased 

substantially (from ~90% to ~70%) during 30-s sustained, but not during brief, MVC following 

ten 6-s sprints (interspersed with 30 s of recovery). These findings seem to highlight the task 

dependency of fatigue, where the impairments in supraspinal factors increases with the 

duration of contraction. Taken together, these findings suggest that muscle contractile function 

is substantially reduced during the early period of high intensity exercise, whereas central 

factors may also develop during the later stages.  

The concept of an “individual critical threshold” of peripheral muscle fatigue was first 

proposed by Amann (2011) to explain how exercise performance is regulated by the 

interactions between peripheral and central fatigue. Specifically, high intensity exercise results 

in the accumulation of intramuscular metabolites (e.g. hydrogen ions [H+], inorganic phosphate 

[Pi]), which increases group III/IV-mediated afferent feedback to the central nervous system 

(CNS) (Amann 2011). Consequently, it was hypothesised that descending neural drive to the 

active musculature is regulated to limit the development of peripheral fatigue beyond an 

“individual critical threshold” (i.e., to prevent long-lasting harmful consequences) (Amann 

2011). In other words, exercise performance could be regulated based on the magnitude of 

peripheral alterations (i.e., metabolic perturbation, impairments in contractile functions) of the 

exercising muscle.  

Ultimately, the active muscle mass engaged during exercise (rather than the magnitude of 

peripheral fatigue per se) and the associated disruption in homeostasis of the regulatory 

systems may influence fatigue tolerability and performance (Thomas et al. 2018; Hureau et al. 

2018). This is exemplified during high intensity exercise in hypoxia where elevated inspiratory 
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muscle work (and perceived exertion for breathing) increases competition between respiratory 

and exercising muscles for oxygen delivery (Amann et al. 2007a; Rodriguez et al. 2020). In 

the context of high intensity exercise, the exercise-induced stress is not restricted to the 

exercising muscle per se (e.g. cardiovascular strain). This is observed by a multimodal 

sensation of effort (e.g. breathlessness, heaviness of legs), which suggest that the regulation of 

high intensity exercise is determined by the summation of exercise demands on the 

physiological systems, rather than muscle contractile function per se (Morales‐Alamo et al. 

2015). 

2.4 Effect of hypoxia on high intensity exercise and neuromuscular fatigue  

It is well established that reduced tissue oxygenation (i.e., hypoxia) elicits detrimental effects 

(e.g. slower on-transient O2 response, failure to fully activate exercising muscle) (Girard et al. 

2017b), which impair HIIE performance (Billaut et al. 2013; Goods et al. 2014). In addition to 

exacerbating physiological (e.g. increased blood lactate, hyperventilation) (Goods et al. 2014) 

and perceptual responses (e.g. breathing difficulty) (Amann et al. 2007a), exercising in hypoxia 

also elevates exercise-induced demands on the CNS (Amann and Kayser 2009). Importantly, 

the severity of hypoxia influences the contribution of central and peripheral factors to 

neuromuscular fatigue, and is likely an important determinant of exercise tolerance (Amann 

and Kayser 2009) 

Reportedly, neuromuscular fatigue development during high intensity cycling at moderate 

hypoxia (FiO2 ~0.15) is predominantly of peripheral origin (Amann et al. 2007b; Amann et al. 

2006a). This is in part due to accelerated muscle acidosis and PCr hydrolysis as a consequence 

of reduced oxygen transport (Bowtell et al. 2014; Hogan et al. 1999). In this regard, findings 

from Amann et al. (2006a) showed that the magnitude of muscle contractility impairments 

following a 5 km time-trial was similar, despite varying FiO2 (0.15-1.0). This suggests that 
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peripheral muscle fatigue (via its effect on central neural drive) is the dominant determinant of 

exercise performance across normoxic to moderate hypoxic conditions. 

In contrast to moderate hypoxia, severe hypoxia (FiO2 <0.10, equivalent to SpO2 of ~70-75%) 

imposes substantial cerebral deoxygenation (e.g. assessed with near infrared spectroscopy; 

NIRS) (Goodall et al., 2012). Increases in systemic and tissue deoxygenation induce earlier 

and greater down-regulation of skeletal muscle recruitment, and consequently hampered 

performance (Amann et al. 2007b). For instance, Amann et al. (2007b) investigated the effect 

of hypoxic severity (FiO2 ~0.21, 0.15, and 0.10) on constant-load cycling and showed that 

muscle activation, and therefore performance, was prematurely down-regulated (with smaller 

extent of muscle contractile impairments) at severe hypoxia (i.e., FiO2 ~0.10). However, at task 

failure, acute O2 supplementation (FiO2 ~0.30) enabled participants to continue exercising 

(Amann et al. 2007b). In other words, severe hypoxia elicits a shift from a predominantly 

peripheral origin of fatigue to a hypoxia-sensitive source of inhibition within the CNS. That 

said, the proposed hypoxic threshold of FiO2 <0.10 or average SpO2 response of <75% (Amann 

et al. 2007b) for a shift toward a predominant CNS hypoxia on exercise performance has not 

been supported by recent findings (Goodall et al. 2012; Mira et al. 2020), possibly due to inter-

individual variations in response to hypoxia. 

2.5 Recovery after high intensity intermittent exercise hypoxia 

The reliance on anaerobic processes during HIIE induces metabolic strain, evident by 

substantial reductions in energy substrate availability, and increases in intramuscular H+ and Pi 

post-exercise (Girard et al. 2011a). As such, the concept of “residual fatigue” and the recovery 

of performance following HIIE has been linked to peripheral mechanisms including muscle 

blood flow and clearance of metabolic wastes (Minett and Duffield 2014; Mendez-Villanueva 

et al. 2012). However, indirect evidence also show an apparent differential rate of recovery for 

force generating capacity and neuromuscular (Pointon et al. 2012) and/or physiological 
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markers (Minett et al. 2014) following intermittent sprint exercise. In particular, force 

generating capacity is restored in the presence of impaired muscle contractile properties 

(Pointon et al. 2012). This may suggest that the recovery in performance is driven by 

compensatory mechanisms associated with central factors (Pointon et al. 2012). Accordingly, 

the importance and role of the CNS in the recovery of HIIE performance warrants further 

considerations. 

Surface EMG has been used to assess fatigue associated with muscle activation patterns (i.e., 

motor unit recruitment and/or firing frequency) in the neuromuscular system. The decrement 

in power output during HIIE is accompanied by decreases in EMG activity (Girard et al. 2015), 

and has been suggested to be due to reduced neural drive to the exercising muscles (i.e., central 

fatigue). Importantly, the decrease in surface integrated EMG of the VL correlates positively 

(r2 = 0.83; p < 0.05) with the reduction in mechanical work during a RSE (twenty 5-s sprints 

with 25 s recovery) (Billaut and Smith 2010). Thus, the recovery of performance following 

HIIE may well depend on central factors associated with descending neural drive and muscle 

activation.  

Additionally, the influence of hypoxia on central factors of fatigue highlights a context where 

the recovery of central factors might be equally important as the recovery of peripheral factors. 

In this regard, it has been proposed that subconscious or conscious factors at the start of 

exercise is integral to exercise regulation (e.g. muscle recruitment activity) and performance 

(Noakes 2012; Tucker 2009). Indeed, Billaut et al. (2011) demonstrated that when the number 

of sprints to be performed is known, muscle activation, and in turn sprint performance is higher. 

Accordingly, although yet to be verified, it is tenable that perceptual recovery (i.e., perception 

of recovery from exercise-induced fatigue), which in turn influence central factors, may be 

important for performance restoration. 
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2.6 Research studies, aims and hypotheses 

The aforementioned evidence suggests that both peripheral and central alterations may 

contribute to the impairment of HIIE in graded hypoxia. The relative contribution of central 

and peripheral factors is likely to be determined by the severity of hypoxia. In this instance, 

the influence of hypoxia on central fatigue highlights a context where the recovery of central 

factors might be equally important as the recovery of peripheral fatigue. That said, it remains 

unclear how hypoxia of different severity during an initial exercise bout may influence 

recovery and performance of a subsequent exercise bout. Furthermore, the type of exercise task 

(open- vs. closed-loop) may also consciously or subconsciously influence an individual’s 

pacing strategy, and in turn, alter neuromuscular characteristics and eventually exercise 

performance. Accordingly, two research studies (Chapter 3 and 4) are presented in this thesis. 

The titles, aims and hypothesis are listed below.  

Finally, a prominent finding from Chapter 3 and 4, as well as observations during pilot work 

(of the initial Master research) was the large inter-individual variation in response to hypoxia, 

and consequently exercise performance/tolerance. Accordingly, Chapter 5 highlights the large 

inter-individual variation in response to hypoxia when using the conventional FiO2 as a “dose” 

metric and proposes the use of a clinical index that integrates both the external (FiO2) and 

internal (SpO2) stimuli to characterise individual responses to hypoxia as an alternate approach. 
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1.1.1 Study 1 (Chapter 3) 

Title:  Neuromuscular and perceptual responses during repeated cycling sprints – 

Usefulness of a “hypoxic to normoxic” recovery approach. 

Aim:  To manipulate hypoxic severity during an initial set of repeated sprints (i.e., 

“closed-loop”), and to examine the effects on sprint performance, magnitude and 

aetiology of neuromuscular fatigue, as well as exercise-related sensations during 

a subsequent set of repeated sprints performed in normoxia.  

Hypothesis:  It is hypothesised that severe hypoxia during an initial set of repeated sprints 

exaggerates neuromuscular, physiological and perceptual responses, resulting in 

larger recovery requirements. In turn, this would lead to larger decline in RSA 

as a consequence of higher-than normal exercise-related sensations and muscle 

fatigability, during a second set of repeated sprints in normoxia. 

1.1.2 Study 2 (Chapter 4) 

Title:  Effects of graded hypoxia during prior exhaustive intermittent cycling on 

subsequent exercise performance and neuromuscular responses. 

Aim:  To examine the effects of hypoxia severity during an initial exhaustive 

intermittent cycling exercise (i.e., “open-loop”) on subsequent performance and 

associated neuromuscular fatigue characteristics in normoxia.  

Hypothesis:  It is hypothesised that the most severe hypoxic condition will limit exercise 

capacity during the initial exercise bout due to CNS alterations, thus minimising 

the extent of peripheral fatigue development when compared to normoxia or less 

severe hypoxia. It is further anticipated that the premature fatigue (i.e., less 

mechanical work), due to an initial exercise bout at severe hypoxia, may in turn 

increase subsequent exercise performance in normoxia and the magnitude of 

accompanying muscle fatigue. 
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CHAPTER 3  

NEUROMUSCULAR AND PERCEPTUAL RESPONSES DURING REPEATED 

CYCLING SPRINTS – USEFULNESS OF A “HYPOXIC TO NORMOXIC” 

RECOVERY APPROACH 

The following Manuscript has been published in the European Journal of Applied Physiology 

(2020), and has therefore been drafted according to the guidelines of the journal. 

Author Contribution: This project was completed within the Athlete Health and Performance 

Research Center, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar. Olivier 

Girard, Ryan Christian, David Bishop and François Billaut conceived and designed the 

research. Ryan Christian and Olivier Girard conducted the study. Jacky Soo wrote the first draft 

of the manuscript and analysed the data. All co-authors provided their own expertise in 

analysing and interpreting the data, and providing critical commentary during the writing of 

the manuscript. All co-authors provided final approval before submission of the manuscript. 
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3.1 Abstract 

Purpose: The aim of this study was to investigate the consequence of varying hypoxia severity 

during an initial set of repeated cycling sprints on performance, neuromuscular fatigability and 

exercise-related sensations during a subsequent set of repeated sprints in normoxia. 

Methods: Nine active males performed ten 4-s sprints (recovery = 30 s) at sea level (SL; FiO2 

~0.21), moderate (MH; FiO2  ~0.17) or severe normobaric hypoxia (SH; FiO2  ~0.13). This was 

followed, after 8 min of passive recovery, by five 4-s sprints (recovery = 30 s) in normoxia.  

Results: Mean power decrement during Sprint 10 was exacerbated in SH compared to SL and 

MH (-34 ± 12%, -22 ± 13%, -25 ± 14%, respectively, p < 0.05). Sprint performance during 

Sprint 11 recovered to that of Sprint 1 in all conditions (p = 0.267). Compared to SL, the 

averaged MPO value for Set 2 was 5.5 ± 3.0% (p = 0.003) lower in SH. All exercise-related 

sensations at Sprint 11 recovered significantly compared to Sprint 1, with no difference for Set 

2 (p > 0.05). Ratings of overall perceived discomfort, difficulty breathing, and limb discomfort 

were exacerbated during Set 1 in SH versus SL (p < 0.05). Maximal voluntary force (-12.1 ± 

8.5%) and twitch torque (-46.6 ± 17.7%) decreased similarly in all conditions immediately 

after Set 1 (p < 0.05), without further alterations after Set 2.  

Conclusion: Exercise-related sensations, rather than neuromuscular function integrity may 

play a pivotal role in influencing performance of repeated sprints and its recovery.
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3.2 Introduction 

A consequence of repetitive “all-out” efforts is the development of fatigue, defined as the 

inability to reproduce performance during subsequent efforts (Girard et al. 2011a). Fatigue is 

typically characterized by disabling symptoms in which physical and cognitive functions are 

limited by interactions between performance-induced fatigability and brain-perceived 

fatigability (i.e., sensations that regulate the integrity of the athlete) (Enoka and Duchateau 

2016). Previous studies have largely discussed the role of peripheral disturbances in the 

aetiology of fatigue when sprinting repeatedly, while decreased neural drive to active 

musculature is more circumstantial (Collins et al. 2018). However, it is less clear how exercise-

related sensations (e.g. limb discomfort, difficulty breathing) may interact, via feedforward and 

feedback pathways, with the neuromuscular function, and eventually influence performance of 

repeated sprints (Noakes 2012).  

An important determinant of repeated-sprint ability (RSA) is the initial power output (i.e., first 

sprint) that correlates significantly with power decrement during sprint repetitions (Bishop et 

al. 2003; Billaut and Bishop 2012). In the RSA literature, it has been demonstrated that prior 

exercise (inducing pre-fatigue) exacerbates performance decrement during subsequent 

sprinting (Mendez-Villanueva et al. 2012; Mendez-Villanueva et al. 2007). When sprint 

performance was matched for initial power output, Mendez-Villanueva et al. (2007) reported 

larger decrement in total work (~20% vs. 14%) during five successive repeated sprints after the 

completion of an initial set of ten, 6-s repeated cycling sprints. This was accompanied by a 

~12% decline in the Root Mean Square (RMS) of the electromyographic (EMG) signal during 

the initial effort of the second set of sprints, suggesting that neural factors may also be involved 

in impaired RSA during the subsequent set of sprints.  

Attempts to explain decreased muscle activation in response to repeated sprinting have 

included an evaluation of the supraspinal factors, demonstrating a reduction in voluntary 
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activation (VA) measured with transcranial magnetic stimulation (TMS) after exercise (Collins 

et al. 2018). For instance, following a repeated-sprint running protocol (12 × 30-m sprints, rest 

= 30 s), Goodall et al. (2015) reported that over half of the decline in maximal voluntary 

contraction (MVC) force of the knee extensors could be explained by factors acting from 

upstream of the motor cortex. To date, it is unclear if the magnitude of neuromuscular 

adjustments would be larger during a subsequent set of sprints if pre-existing fatigue is 

exacerbated, for instance, by manipulating oxygen availability during an initial set of sprints. 

Few studies have utilized hypoxic exposure during an initial set of sprints to experimentally 

incur different fatigue levels when starting a subsequent set of sprints in order to shed more 

light on key neuromuscular RSA determinants. This reasoning is based on the premise that 

reduction in inspired oxygen fraction (FiO2) may exacerbate fatigue development and induce 

higher than normal exercise-related sensations (Girard et al. 2017a; Christian et al. 2014a), 

consequently leading to impeded performance. Accordingly, it has been proposed that the 

perceived effort during exercise has an important influence on central motor drive, and 

consequently, in the regulation of exercise performance (Noakes 2012). During an initial set of 

repeated sprints (8 × 5-s sprints with 25 s of recovery) under severe hypoxia, Girard et al. (2015) 

reported reductions in neural indices and running performance compared to sea level or 

moderate hypoxia. Hypoxia had no negative “carry-over” effects during the subsequent set of 

sprints in normoxia since EMG indices and performance outcomes did not differ across 

conditions. However, the contribution of central versus peripheral factors dictating 

neuromuscular fatigability and perceptual cues, which may well be altered by the severity of 

hypoxia (Billaut et al. 2013), was not assessed in this later study. Accordingly, the use of non-

invasive measures such as TMS or exercise-related sensations might provide further insights 

about the role of the brain in the regulation of neuromuscular fatigue, and consequently 

performance, during repeated sprints.  
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Therefore, our aim was to manipulate hypoxia severity during an initial set of repeated sprints, 

and examine the effects on cycle performance, the magnitude and aetiology of neuromuscular 

fatigue, as well as exercise-related sensations during a subsequent set of repeated sprints 

performed in normoxia. We hypothesized that severe hypoxia during an initial set of repeated 

sprints exaggerates neuromuscular, physiological and perceptual responses, resulting in larger 

recovery requirements. In turn, this would lead to larger decline in RSA as a consequence of 

higher-than normal exercise-related sensations and, to a lesser extent, larger muscle fatigability 

of knee extensors, during a second set of repeated sprints in normoxia. 

3.3 Methods 

3.3.1 Participants 

Nine physically active men volunteered for this study (mean ± SD age 31.3 ± 4.1 y, stature 

1.81 ± 0.05 m, body mass 81.9 ± 6.8 kg). Each participant completed a minimum of three 

individual 90-min sessions of high-intensity intermittent exercise training per week. They gave 

written informed consent before the commencement of the study after all the experimental 

procedures, associated risks, and potential benefits of participation had been explained. The 

study was approved by the Victoria University Human Research Ethics Committee (HREC 

11/173). All procedures conformed to the Declaration of Helsinki.  

3.3.2 Experimental protocol 

All participants performed one familiarization session and three experimental trials in a 

randomized, single-blind design (Figure 1). The efficacy of the blinding procedure was 

evaluated after each experimental session by questionnaires in which participants were asked 

whether they believed to be exercising in NM, MH or SH. The observation that only 13 out of 

a possible 27 sessions were correctly identified indicates that the blinding procedure was 

effective. All trials (including the familiarization session) were completed in a normobaric 

hypoxic chamber (Colorado Mountain Room System: Colorado Altitude Training, Boulder, 
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CO). Trials were separated by at least 5 days and performed at the same time of day. 

Participants were asked to avoid vigorous exercise for 24 h, caffeine for 12 h, and food for 2 h, 

before each trial. All testing procedures were conducted in temperate ambient conditions (air 

temperature: ~23 °C; relative humidity: 40%). 

3.3.3 Familiarization session 

During the first visit, participants were accustomed with the testing procedures [i.e., habituation 

of the electrical stimulation to the peripheral motor nerve (PMN) and TMS of the motor cortex] 

used to assess muscle function. Optimal levels of stimulation intensities to the motor cortex 

and femoral nerve were then determined (see below), and these levels remained constant during 

the rest of the protocol. Participants also performed the complete neuromuscular function test 

procedure.  

Thereafter, participants were familiarized with cycling on the cycle ergometer (SRM, 

Schoberer Rad Meßtechnik, Jülich, Germany) and had their optimal cycling sprint cadence 

determined (i.e., the pedalling rate that would allow participants to produce the greatest amount 

of mechanical work during the maximal sense of effort 4-s bout; (Martin and Spirduso 2001). 

The procedure for the determination of optimal cycling sprint cadence has been previously 

reported (Christian et al. 2014a).  

Finally, participants were familiarized with the various modified Borg CR10 scales which 

include ‘sense of effort’ (i.e., for the perceptually regulated warm-up) and perceptual responses 

(i.e., rating of overall perceived discomfort, perceived lower-limb heaviness and perceived 

difficulty breathing after each sprint). Briefly, the ‘sense of effort’ scale was assessed from the 

question: ‘How hard are you trying?’ (i.e., with the anchor points provided ranging from 0 or 

“no effort” to 10 or “maximum effort”). Furthermore, participants were instructed that the 

perceptual scales were used to evaluate their “degree of heaviness and strain experienced in the 
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task” or subjective perception of (1) overall perceived discomfort, (2) specific lower limb 

(quadriceps only) heaviness and (3) difficulty breathing. The questions: “What is your overall 

perceived exertion?”, “How difficult does it feel to breathe?” and “How heavy do your legs 

feel?” were printed above modified Borg CR10 scales (i.e., with the anchor points provided 

ranging from 0 or “nothing at all” to 10 or “maximal”) and visible to participants at all times 

(Christian et al. 2014a). 

3.3.4 Experimental session 

3.3.4.1 Warm-up procedure 

Following entry to the hypoxic chamber, participants rested in a seated position for 10 min 

(wash-in period) while all equipment was attached. Afterwards, they completed a warm-up 

consisting of 5 min of continuous cycling on the SRM ergometer in the open-end mode at a 

subjective ‘sense of effort’ of 3 using a modified Borg CR10 scale (Christian et al. 2014a). 

This was followed after 1 min of rest in a seated position by five progressive 4-s submaximal 

cycling bouts in the isokinetic mode at the individual pre-determined optimal sprinting cadence 

(group average: 120 ± 2 rpm). For each of the five submaximal bouts participants were 

instructed to work at a subjective ‘sense of effort’ of 4, 5, 6, 7 and 8 on the modified Borg 

CR10 ‘sense of effort scale’ (Christian et al. 2014a), respectively, with 40 s of recovery 

interspersing each bout (15 s of passive rest and 25 s of cycling at ~100 W). Following the 

warm-up procedure, participants rested passively for 2 min. After an additional 3 min of 

recovery (2 min of passive rest and 1 min of cycling at ∼100 W), two 4-s cycling bouts at a 

subjective “sense of effort” of 10 (i.e., maximal) were completed, with each bout separated by 

3 min of recovery (2 min of passive rest and 1 min of cycling at ∼100 W). After 2 min of rest, 

the repeated-sprint exercise was completed. Strong verbal encouragement was given during all 

maximal efforts. 
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3.3.4.2 Repeated-sprint exercise 

The exercise protocol consisted of performing first ten, 4-s isokinetic “all out” cycle sprints 

interspersed with 30 s of recovery (15 s of passive rest and 15 s of cycling at ~100 W), and 

randomly conducted near sea level (SL; simulated altitude/FiO2 ~0.21), at moderate and severe 

simulated altitudes (normobaric hypoxia) of 2000 m (MH; FiO2 ~0.17) and 4000 m (SH; FiO2 

~0.13), respectively (Set 1). This was followed, after 8 min of passive rest by five, 4-s sprints 

also interspersed by 30 s of recovery (similar to first set) but always performed at SL (Set 2). 

Cycle sprints were completed in the isokinetic mode at the individual pre-determined optimal 

sprinting cadence. The isokinetic mode allows the participant to pedal without resistance up to 

the fixed cadence, while resistance is automatically and proportionally increased when 

participants try to overcome it (Fernández-Pena et al. 2009). All bouts were initiated from a 

rolling start, with participants instructed to progressively increase to a cadence within 2-5 rpm 

of their optimal sprinting cadence 10 s prior to each bout. This procedure was used to ensure 

that all bouts began with the same kinetic energy, while minimizing any jolting sensation as 

participants reached their optimal sprint cadence and the breaking resistance of the ergometer 

was applied.  

Participants were routinely provided (∼15 s before each bout) with identical instructions to 

perform “all-out” exercise bouts. Heart rate (HR), arterial oxygen saturation (SpO2), as well as 

difficulty breathing, lower-limb heaviness and overall perceived exertion were reported and 

recorded in an invariant order at exactly 10 s following each 4-s bout. Participants were 

instructed to reflect on their subjective perceptions during the preceding exercise bout. 

3.3.4.3 Neuromuscular evaluation 

The neuromuscular assessment consisted first of a 4-s MVC of the knee extensors with a 

superimposed 80 Hz doublet (Db) applied to the PMN during the isometric plateau. This was 

followed after 3 s by (1) one 80 Hz Db, (2) one 20 Hz Db and (3) three single twitches on the 
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relaxed state (all separated by 3 s). Afterwards, one set of three brief contractions (∼5 s, MVC, 

50% MVC and 75% MVC, recovery = 6 s) of the knee extensors was also used with application 

of TMS. The intensities for the sub-maximal contractions were calculated from the preceding 

MVC, and the feedback of the target force was provided via a computer monitor. During brief 

contractions, PMN or TMS stimulations were alternatively delivered ∼1.5 s after the plateau.   

This neuromuscular test sequence was conducted three times pre-exercise (Pre 1) under SL 

conditions, once beginning ~45 s after Set 1 (Post 1) under the same environmental conditions 

as the exercise bout, once ~2 min prior to Set 2 (i.e., 6 min after the first set of sprints; Pre 2) 

bout under SL conditions, twice beginning ~45 s after Set 2 (Post 2) under SL conditions and 

twice at 10 min following Set 2 (Post 10) under SL conditions. Prior to the Pre 1 neuromuscular 

assessment participants were warmed-up by completing 5 × 4-s voluntary isometric 

contractions with progressively increasing subjective effort (starting at 50% of subjective effort 

with increments of 10%; 15 s of passive rest separated each contraction) followed by 2 × 4-s 

MVC (separated by 30 s of passive rest).  

3.3.4.4 EMG and force recordings 

Isometric knee extensor force of the right leg was measured during both voluntary and evoked 

contractions on a custom-made dynamometric chair. Participants were seated with both the hip 

and the knee at 100º (full extension represents 180º), one strap around the chest and one other 

around the hip, and the ankle tied to a strain gauge (Captels, St Mathieu de Treviers, France) 

connected to a stationary bench. Participant position information was recorded to ensure 

identical positioning for each test occasion. 

During the repeated-sprint exercise, EMG signals from superficial vastus lateralis (VL), vastus 

medialis (VM) and rectus femoris (RF) muscles of the left lower limb were recorded using pre-

amplified bi-polar surface EMG (Delsys, Trigno Wireless, Boston, Massachusetts, USA) with 
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an inter-electrode (center-to-center) distance of 20 mm and placed according to SENIAM’s 

recommendations. During tests of neuromuscular function, surface EMG activity of the right 

VL, VM and RF muscles were recorded using bipolar Ag/AgCl electrodes (Ambu Blue sensor 

T, Ambu A/S, Denmark; diameter = 9 mm; inter- distance electrode = 30 mm) fixed lengthwise 

over the muscle belly. Before electrode placement, the skin was lightly abraded and washed to 

remove surface layers of dead skin, hair, and oil. The reference electrode was attached to the 

right wrist. The position of the EMG electrodes was marked with indelible ink (and pictures of 

the locations were taken) to ensure that they were placed in the same location during subsequent 

trials. The myoelectric signal (sampling frequency = 2000 Hz) was amplified (gain = 1000 ×) 

and filtered (bandwidth frequency = 30–500 Hz) to minimize extraneous noise and possible 

movement artefacts in the low-frequency region and to eliminate aliasing and other artefacts 

in the high-frequency region. EMG signals were recorded by i) using a dedicated analysis 

system (Spike2 v3.21; Cambridge Electronic, Cambridge Design, Cambridge, UK) during 

repeated-sprint exercise and ii) commercially-available hardware (Biopac MP35, systems Inc., 

Santa Barbara, CA) and its dedicated software (Acqknowledge 3.6.7, Biopac Systems Inc., 

Santa Barbara, CA) during tests of neuromuscular function.  

3.3.4.5 Motor nerve stimulation 

Single supramaximal electrical stimuli (max voltage 400 V, rectangular pulse of 200 ms) were 

delivered to the right femoral nerve using a high-voltage, constant-current, stimulator 

(Digitimer DS7AH, Welwyn Garden City, Hertfordshire, UK). The cathode ball electrode was 

manually pressed into the femoral triangle (i.e., 3–5 cm below the inguinal ligament) by the 

experimenter (Verges et al. 2009) and the anode (5 × 9 cm) was located in the gluteal fold 

opposite the cathode. The intensity of stimulation was determined at the beginning of the 

session by delivering single stimuli with increments of 10 mA until plateaus occurred in twitch 
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amplitude and M-wave. Supramaximal stimulation was ensured by increasing the final 

intensity by 30% (mean current: 123 ± 31 mA; range 60–140 mA). 

3.3.4.6 Transcranial magnetic stimulation 

A magnetic stimulator (Magstim 200, The Magstim Company, Dyfed, UK) was used to stimulate the motor cortex. 

A single TMS pulse (1-ms duration) was delivered via a concave double-cone coil (13 cm diameter) maintained 

manually over the vertex of the scalp. The procedure for the determination of motor threshold is similar to the 

protocol by Girard et al. (2013). Motor threshold occurred at 54 ± 4% of maximum stimulator output, and during 

each of the experimental trials TMS was delivered at 140% of the motor threshold (76 ± 6% of maximum 

stimulator output; range: 70–85%). 

 

 

Figure 3.1: Schematic diagram of the repeated sprint protocol.  
 

Participants performed 10 × 4-s sprints (recovery = 30 s) in either normoxia near sea level (SL; 
FiO2 ~0.21), moderate (MH; FiO2 ~0.17) or severe normobaric hypoxia (SH; FiO2 ~0.13). 
This was followed, 8 min later, by 5 × 4-s sprints (recovery = 30 s) always performed in 
normoxia. Neuromuscular testing was performed pre-exercise (Pre 1) under SL conditions, ~45 
s after the first set of ten sprints (Post 1) under the same environmental conditions as the 
exercise bout, ~2 min prior to the second exercise (Pre 2) bout under SL conditions, ~45 s after 
the second set of five sprints (Post 2) under SL conditions and 10 min following the second set 
of sprints (Post 10) under SL conditions. Blood lactate measurements were assessed before the 
warm-up, 4 min after the first set of 10 sprints and 4 min after the second set of 5 sprints. HR, 
SpO2, and ratings of difficulty breathing, limb discomfort and overall perceived exertion, were 
recorded at exactly 10 s following each 4-s bout. 
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3.3.5 Data analysis  

3.3.5.1 Repeated-sprint exercise 

While participants performed a total of 15 sprints, only responses to exercise, power output 

and surface EMG data collected for sprint number 1, 5, 10, 11, and 15 were considered for the 

main analysis. The average of sprints 1–5, 6–10, and 11–15 have also been compared. 

All power data were analyzed using SRM torque analysis software (SRM Torque Win 1.1.0, 

SRM, , Jülich, Germany), while all torque and EMG data (repeated-sprint exercise and 

neuromuscular function test) post-processing was performed in Spike2 (Version 3.21; 

Cambridge Electronic, Cambridge Design, Cambridge, UK). 

During the maximal 4-s cycle efforts, mean power output (MPO) and RMS EMG activity for 

the 8 highest cycle revolutions was calculated for each muscle. The average sum of RMS EMG 

activity of the VL, VM and RF muscles was calculated (i.e., quadriceps RMS EMG activity) 

to provide an index of overall quadriceps neural drive, and was expressed as a percentage of 

the maximal RMS EMG activity produced during the initial sprint bout achieved in each 

condition (Billaut et al. 2013).  

To prevent pacing effects occurring during the repeated-sprint exercise protocol, participants 

were required to achieve at least 95% of their criterion score (determined from the best of the 

two reference sprints at the end of the warm-up procedure). Mean power during the best of the 

reference sprints was 1164 ± 152, 1162 ± 142 and 1124 ± 140 W for the SL, MH and SH 

conditions, respectively). All participants satisfied the 95% criteria during the first sprint of the 

repeated-sprint exercise protocol for each testing session (see below), which suggests the 

participants did not adopt an anticipatory pacing prior to exercise in both trials. 
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Heart rate and SpO2 were monitored and estimated, respectively, via a wireless monitoring 

system (Polar Electro Oy, Kempele, Finland) and non-invasive pulse oximetry using a finger 

probe (Palmsat 2500, NONIN Medical Inc., Plymouth, MI, USA). A capillary blood sample 

was taken from a fingertip and analyzed for lactate concentration ([La]) using an automated 

analyzer (Lactate Pro LT-1710, Arkray, Japan) before the warm-up, 4 min after Set 1 and 4 

min after Set 2. 

3.3.5.2 Neuromuscular function test 

Voluntary torque and EMG activity (RMS) were recorded during 1-s of plateau before 

delivering PMN or TMS stimulation for all maximal contractions. For VL, VM and RF muscles, 

raw RMS data were also were normalized to the resting M-wave as an index of neural drive 

(i.e., RMS/M ratio). 

Peripheral VA was assessed using twitch interpolation. Briefly, the force produced during a 

superimposed twitch during the MVC was compared with the force produced by a potentiated 

twitch: Peripheral VA (%) = (1 – [superimposed twitch/potentiated twitch]) × 100. Cortical 

VA was assessed by measuring the force responses to motor cortex stimulations during 

submaximal and maximal contractions (Todd et al. 2007). Because corticospinal excitability 

increases during voluntary contraction (Rothwell 1997) it was necessary to estimate, rather 

than measure directly, the amplitude of the resting twitch evoked by motor-cortex stimulation. 

During the sets of brief maximal and submaximal contractions (100% MVC followed by 50% 

and 75% MVC), TMS was delivered, and the resting twitch was estimated by extrapolation of 

the linear relation between the amplitude of the superimposed twitch and voluntary force. 

Cortical VA (%) was subsequently quantified using the equation: (1 – [superimposed 

twitch/estimated resting twitch]) × 100. The reliability of TMS for the assessment of cortical 

VA and estimated resting twitch for the knee extensors has been established elsewhere 

(Goodall et al. 2009). 
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Muscle contractility was assessed from the electrically-evoked resting twitch as peak twitch 

amplitude (e.g. the highest value of twitch tension production), time to peak twitch (e.g. the 

time from the origin of the twitch to the peak twitch amplitude), one half-relaxation time (e.g. 

the time to obtain half of the decline in maximal force), maximal rate of force development 

(e.g. maximal value of the first derivative of the force signal) and maximal rate of force 

relaxation (e.g. the lowest value of the first derivative of the force signal). The estimated resting 

twitch evoked by TMS was also used as an index of the force-generating capacity of the knee 

extensors. When several neuromuscular test sequences were performed (Pre, Post 2 and Post 

10), trials were averaged for further data analysis. 

3.3.6 Statistical Analysis  

Values are expressed as means ± SD. Two-way repeated-measures analysis of variance 

(ANOVAs) [Time (Sprints 1, 5, 10, 11 and 15 or Sprints number 1-5, 6-10 and 11-15) × 

Condition (SL, MH and SH)] were used to compare sprint-related variables. Two-way 

repeated-measures analysis of variance (ANOVAs) [Time (Pre 1, Post 1, Pre 2, Post 2 and Post 

10) × Condition (SL, MH and SH)] were used to compare neuromuscular variables. To assess 

assumptions of variance, Mauchly’s test of sphericity was performed for all ANOVA results. 

A Greenhouse-Geisser correction was performed to adjust the degree of freedom if an 

assumption was violated, while post hoc pairwise-comparisons with Bonferroni-adjusted P 

values were performed if a significant main effect was observed. For each ANOVA, partial 

eta-squared was calculated as measures of effect size. Effect size values of 0.01, 0.06 and 

values above 0.14 were considered as small, medium and large, respectively. All statistical 

calculations were performed using SPSS statistical software V.24.0 (IBM Corp., Armonk, NY, 

USA). Statistical significance was set at P ≤ 0.05. 
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3.4 Results 

3.4.1 Repeated-sprint performance  

Changes in MPO and EMG activity are presented in Figure 2. MPO at Sprint 1 did not differ 

between conditions (SL: 1113 ± 122 W; MH: 1092 ± 143 W; SH: 1071 ± 136 W; p > 0.05). 

MPO decreased to a larger extent in SH as compared to SL and MH, as evidenced by larger 

decline in MPO at Sprint 5 (SL: -13.7 ± 9.6%; MH: -13.8 ± 7.4%; SH: -22.7 ± 14.9%; p < 0.05) 

and Sprint 10 (SL: -22.2 ± 12.9%; MH: -25.0 ± 13.6%; SH: -34.0 ± 11.6%; p < 0.05) in 

reference to Sprint 1. MPO at Sprint 11 did not differ between conditions (pooled conditions: 

1027 ± 140 W) and was not significantly different from Sprint 1 (p > 0.05). Average sprint 

performance of the five sprints of Set 2 was comparable to that of the first five sprints (i.e., 

Sprint 1-5 vs. Sprint 11-15; SL: 1027 ± 139 vs. 972 ± 166 W; MH: 1006 ± 148 vs. 950 ± 175 

W; SH: 925 ± 150 vs. 917 ± 156 W; p > 0.05) in all 3 conditions. Sprint decrement score for 

Sprints 11-15 was 15.7 ± 8.7%, 12.5 ± 11.3% and 17.8 ± 8.0% for SL, MH and SH, respectively. 

Compared to SL, MPO for the five sprints of Set 2 was on average 5.5 ± 3.0% and 2.3 ± 5.8% 

lower in SH (p = 0.003) and MH (p = 0.729), respectively.  

3.4.2 Electromyography responses during repeated sprints 

There was a significant global reduction in RMS activity at Sprint 5 (pooled conditions: -8.9 ± 

9.6%; p = 0.036) and a further reduction at Sprint 10 (-16.2 ± 12.4%; p = 0.009) in reference 

to Sprint 1, irrespective of condition (Figure 2-A). After 8 min of passive rest, RMS activity 

for Sprint 11 demonstrated significant recovery (+8.6 ± 9.9%; p = 0.05) when compared to 

Sprint 10 with no further change thereafter (p = 0.762). When all conditions were compounded, 

the decrement in RMS activity for Sprints 11-15 was 4.2 ± 6.9%. 
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Figure 3.2: Mean power output (MPO; A) and root mean square surface 
electromyographic activity (RMS; B).  
 

Values are means ± SD, n = 9. The repeated sprint protocol included a first set of ten sprints 
performed at sea level (SL), moderate (MH) or severe hypoxia (SH), while the second set of 
five sprints was always performed at SL. C, T and I, respectively, refer to ANOVA main effect 
of condition, time and interaction between the two factors with p-value and partial eta-squared 
in brackets. a, b, c and d significantly different from sprint 1, 5, 10 and 11, respectively (p ≤ 0.05). 
1 and 2 significantly different from SL and MH, respectively (p ≤ 0.05) 
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3.4.3 Physiological responses  

Heart rate was significantly higher at Sprint 5 (163 ± 4 bpm; p = 0.002), Sprint 10 (167 ± 3 

bpm; p = 0.004) and Sprint 15 (165 ± 3 bpm; p = 0.009) in reference to Sprint 1 (147 ± 6 bpm), 

irrespectively of conditions (Figure 3-A). Following 8 min of passive rest, heart rate at Sprint 

11 (149 ± 5 bpm) was significantly lower compared to Sprint 5, 10 and 15 (p < 0.001). SpO2 

for Sprints 1-10 was significantly reduced with increasing severity of hypoxic exposure (SL: 

95.4 ± 0.6%, MH: 91.9 ± 0.8%, SH: 86.6 ± 0.5%; p < 0.001). Following 8 min of passive rest, 

SpO2 values were similar between conditions during Set 2 (all conditions compounded: 94.7 ± 

6.4%; p > 0.05) (Figure 3-B). Changes in blood lactate values were similar across conditions 

(p = 0.096; η2 = 0.296). When the results from the 3 conditions were pooled, blood lactate 

concentration increased from pre-exercise (1.5 ± 0.4 mmol L-1) to post-Set 1 (10.8 ± 2.4 

mmol.L-1; p < 0.001), with no further changes at post-Set 2 (10.1 ± 2.6 mmol.L-1; p = 0.059).  

3.4.4 Perceptual responses  

Following Set 1, perceptual responses (i.e., ratings of overall discomfort, breathing difficulty 

and limb discomfort) increased significantly, irrespective of conditions (p ≤ 0.04) (Figure 4). 

During Sprint 5, values for exercise-related sensations in SH were significantly higher 

compared to SL (p ≤ 0.005). During Sprint 11, following 8 min of passive rest, exercise-related 

sensations recovered significantly in relation to Sprint 10 (p ≤ 0.01). Ratings of overall 

discomfort, breathing difficulty and limb discomfort increased significantly from Sprint 11-15, 

irrespective of conditions (p ≤ 0.03). The increase in exercise-related sensations for Sprints 11-

15 was not significantly different to that for Sprints 1-5 (p > 0.05).   
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Figure 3.3: Heart rate (HR; A) and arterial oxygen saturation (SpO2; B).  
 

The repeated sprint protocol included a first set of ten sprints performed at sea level (SL), 
moderate (MH) or severe hypoxia (SH), while the second set of five sprints was always 
performed at SL. Values are expressed as means ± SD, n = 9. C, T and I, respectively, refer to 
ANOVA main effect of condition, time and interaction between the two factors with p-value 
and partial eta-squared in brackets. a, b, c and d significantly different from sprint 1, 5, 10 and 
11, respectively (p ≤ 0.05). 1 significantly different from SL (p ≤ 0.05). 
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Figure 3.4: Overall discomfort (A), difficulty breathing (B), and limb discomfort (C). 
  

The repeated sprint protocol included a first set of ten sprints performed at sea level (SL), 
moderate (MH) or severe hypoxia (SH), while the second set of five sprints was always 
performed at SL. Values are expressed as means ± SD, n = 9. C, T and I, respectively, refer to 
ANOVA main effect of condition, time and interaction between the two factors with p-value 
and partial eta-squared in brackets. a, b, c and d significantly different from sprint 1, 5, 10 and 
11, respectively (p ≤ 0.05). 1 significantly different from SL (p ≤ 0.05). 
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3.4.5 Neuromuscular functions 

Compared to Pre 1, MVC torque values decreased at Post 1 (all conditions compounded: -12.1 

± 8.5%; p = 0.013), with no further modifications at Pre 2 (-13.3 ± 9.3%; p = 0.007), Post 2 (-

16.4 ± 10.3%; p = 0.008) and Post 10 (-12.1 ± 9.3%; p = 0.022).  

At Pre 1, VA measured via PMN and TMS was 97 ± 2% and 99 ± 1%, respectively. Neither 

peripheral nor cortical VA values differed between conditions (p = 0.673 and p = 0.391, 

respectively) or changed significantly with time (p = 0.062 and p = 0.007, respectively) (Figure 

5-B). Compared with Pre 1 values, Qtw-pot (-46.6 ± 17.7%) along with maximal rate of force 

development (-46.2 ± 17.3%) and relaxation (-38.6 ± 23.9%) were significantly reduced at Post 

1 (p ≤ 0.017) and remained depressed at Pre 2 and Post 2 in all conditions (p > 0.05) (Figure 

5-D, Table 2). Torque associated with 20 Hz and 80 Hz stimulations was significantly reduced 

following Set 1 (-27.4 ± 15.4% and -36.6 ± 19.6%, respectively; p ≤ 0.006), with no further 

changes across time in all conditions (p > 0.05) (Table 2). 

Maximal M-waves for VL and VM muscles (all conditions compounded: 5.1 ± 0.4 and 4.2 ± 

1.2 mV, respectively) did not differ between conditions (p > 0.05) or changed with time (p > 

0.05). Changes in M-waves for RF muscle displayed a main effect of time (p < 0.001; η2 = 

0.573) but not of condition (p = 0.701; η2  = 0.044). Compared to Pre 1, a significant decline in 

M-wave for the RF muscle was observed at Post 1 (-9.5 ± 13.5%; p = 0.033), Post 2 (-11.7 ± 

15.8%; p = 0.016) and Post 10 (-10.4 ± 15.9%; p = 0.028).  
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Figure 3.5: Maximal voluntary control (MVC; A), peripheral motor nerve voluntary 
activation (PMN VA; B), transcranial magnetic stimulation (TMS VA; C) and quadriceps 
potentiated twitch (Qtw-pot; D).  
 

The repeated sprint protocol included a first set of ten sprints performed at sea level (SL), 
moderate (MH) or severe hypoxia (SH), while the second set of five sprints was always 
performed at SL. Values are expressed as means ± SD, n = 9. MVC and Qtw-pot are expressed 
as a percentage of Pre 1 values. C, T and I respectively refer to ANOVA main effect of 
condition, time and interaction between the two factors with p-value and partial eta-squared in 
brackets. a and d significantly different from Pre 1 and Post 2, respectively, (p ≤ 0.05). 
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Table 3.1: Effects of repeated sprints on quadriceps neuromuscular fatigue 

 

Qtw-pot, quadriceps potentiated twitch force; Ct, contraction time; HRT, one-half relaxation time; 
MRTD, maximal rate of force development; MRTR, maximal rate of force relaxation; DB20Hz, 
doublets at 20Hz; DB80Hz, doublets at 80Hz; 20/80Hz, ratio of 20Hz to 80Hz measured pre-
exercise (Pre 1), 45 s after the first set of ten sprints (Post 1), 6 min after the first set of sprints 
(Pre 2), 45 s after the second set of five sprints (Post 2) and 10 min following the second set of 
sprints (Post 10). All variables are expressed in absolute units. Values are mean ± SD, n = 9.  
a, significantly different from Pre 1 (p < 0.05) 
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Table 3.2: Effects of repeated sprints on surface EMG responses  

 

RMS VL, Root mean square EMG activity of the vastus lateralis; RMS VM, Root mean square 
EMG activity of the vastus medialis; RMS RF, Root mean square EMG activity of the rectus 
fermoris; RMS/M wave VL, normalized root mean square of the vastus lateralis/M wave ratio; 
RMS/M wave VM, normalized root mean square of the vastus medialis/M wave ratio; RMS/M 
wave RF, normalized root mean square of the rectus femoris/M wave ratio measured pre-
exercise (Pre 1), 45 s after the first set of ten sprints (Post 1), 6 min after the first set of sprints 
(Pre 2), 45 s after the second set of five sprints (Post 2) and 10 min following the second set of 
sprints (Post 10). Values are mean ± SD, n = 9.  
a significantly different from Pre 1 (p < 0.05) 

 

3.5 Discussion  

The aim of this study was to manipulate hypoxia severity during an initial set of repeated 

cycling sprints and investigate the effects on performance, muscle contractility and activation, 

as well as exercise-related sensations, during a subsequent set of repeated sprints performed in 

normoxia. As expected, SH resulted in larger performance decrement during the first set, which 

was accompanied by exaggerated sensations of overall peripheral discomfort, difficulty 

breathing and limb discomfort, although significant differences were only observed at Sprint 

5. Conversely, muscle contractility at the end of Set 1 was similar across conditions, whereas 
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VA reductions – estimated from both PMN stimulation and TMS – were not meaningful. 

Following 8 min of passive rest, single-sprint performance (i.e., Sprint 11) and accompanying 

exercise-related sensations recovered almost completely in all conditions, despite persistent 

muscle contractility impairments. However, compared to SL, when Set 1 was performed in SH, 

this resulted in a negative “carry-over” effect as shown by a decline in RSA during Set 2. 

Accordingly, our novel observation was that recovery of exercise-related sensations, rather 

than neuromuscular function integrity per se, has an integral role in influencing subsequent 

sprint performance. 

3.5.1 Effects of O2 availability on repeated-sprint performance and exercise responses (Set 

1) 

In line with previous studies that have examined the effects of graded hypoxia on repeated 

cycling (Billaut et al. 2013; Girard et al. 2017a) and running (Goods et al. 2014; Sweeting et 

al. 2017) sprints, our Set 1 results demonstrate that short-term (40 s of sprinting) RSA was 

significantly impaired with 13% O2 compared to normoxia and moderate hypoxia (i.e., 17% 

O2). Additionally, the decline in RMS EMG across sprints in all conditions suggest that reduced 

neural drive to the active musculature probably contributed to the progressive decline in sprint 

performance. A reduced RMS EMG would indicate that less motor units were recruited and/or 

firing rates of the recruited motor units were lower, without the possibility to distinguish 

between the two mechanisms.  

Our study also highlights that neural drive – estimated from peripheral (PMN stimulation) and 

cortical (TMS) VA values before and after each set of sprint – was minimally affected by sprint 

repetitions and/or exposure to hypoxia. Available literature regarding whether suboptimal 

cortical output contributes to a decline in performance during repeated cycling sprints under 

varying severity of hypoxia remains limited and inconclusive. For instance, Goodall et al. 

(2015) reported a ~9% decrease in cortical VA of knee extensors immediately after completion 
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of twelve, 30-m sprints with 30 s of recovery. Conversely, Girard et al. (2013) reported that 

cortical VA decreased substantially (from ~90% to ~70%) during 30-s sustained, but not during 

brief, MVC when ten 6-s sprints interspersed with 30 s of recovery followed 6 min later by 

five 6-s sprints were performed. In our study, however, both peripheral and cortical VA 

findings obtained during brief contractions indicate that no meaningful changes in muscle 

activation were evident.  

There was a substantial yet similar decline in Qtw-pot (~46 ± 18%) across all conditions after Set 

1. A similar magnitude of Qtw-pot reductions has been reported following repeated-sprint cycling 

protocols (Billaut et al. 2013; Hureau et al. 2016). This is consistent with the view that muscle 

disturbances account for a greater proportion of performance decreases that occur rapidly after 

the first few repetitions of a repeated-sprint bout (Pearcey et al. 2015). For instance, Hureau et 

al. (2016) reported that Qtw-pot decreased by ~47%  and ~50 %, respectively, after the sixth and 

tenth sprints of a series of ten, 10-s sprints with 30 s of recovery. Our results are also consistent 

with previous evidence showing that acute hypoxia (i.e., even more severe than in the present 

study) has minimal influence on muscle contractility (Amann and Kayser 2009; Perrey and 

Rupp 2009). Taken together, this suggests that the decrease in sprint performance during Set 1 

was predominantly of peripheral origin and that factors other than muscle contractility would 

explain the larger RSA decrements observed with more severe hypoxia (e.g. a more hypoxic 

brain effect on cerebrovascular adjustment) (Millet et al. 2012; Amann et al. 2007b). 

Decreasing O2 availability resulted in lower SpO2 values, while cardiovascular responses (i.e., 

heart rate) did not increase proportionally. This may be due, at least partially, to the lower work 

performed under SH and/or the “all-out” nature of the exercise protocol minimizing potential 

cardiovascular differences between conditions (Girard et al. 2015). Yet, sensations of overall 

peripheral discomfort, difficulty breathing, and limb discomfort tended to be exaggerated under 

SH compared to SL during Set 1, although significant differences were only observed at Sprint 
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5. Despite being constantly reminded to produce a maximal effort for each sprint, we cannot 

exclude the possibility that participants in SH may have progressively “disengaged” from the 

task as they perceived the effort required to exceed their individual perceived ability (Marcora 

and Staiano 2010). Accordingly, exercise-related sensations are undoubtedly not the only 

potential source of inhibitory influence on RSA. Although not examined here, factors such as 

increased respiratory muscle work (Amann et al. 2007a) resulting in reduced muscle blood 

flow and tissue oxygenation (via sympathetic vasoconstriction of the exercising limb) may also 

have a significant impact on performance of repeated sprints.  

3.5.2 Consequence of pre-existing locomotor muscle fatigue on recovery of single sprint 

performance (Set 2- Sprint 11) 

The recovery of single sprint performance (i.e., Sprint 11) in all conditions occurred in parallel 

with the restoration of quadriceps EMG. This is consistent with the results previously reported 

by Girard et al. (2015) using a similar sprint protocol, reaffirming that neural drive to active 

muscles plays a role in dictating performance recovery from repeated sprinting (Amann and 

Dempsey 2008). Additionally, the recovery of single sprint performance coincided with 

significant recovery in all exercise-related sensations, whereas muscle contractile impairments 

showed no sign of recovery. Specifically, Qtw-pot remained depressed during Set 2 (i.e., Pre 2 

and Post 2 time points), following 8 min of passive recovery, despite alleviation in SpO2 values 

(Sprint 11: ~95%, all conditions compounded). These data question the influence that the 

magnitude of change in muscle contractile impairments (Qtw-pot; from neuromuscular function 

test batteries using PMN stimulations) may have on RSA. Nonetheless, the importance of 

peripheral recovery in influencing sprint performance was previously demonstrated by 

Mendez-Villanueva et al. (2012) who observed a positive correlation between phosphocreatine 

re-synthesis and performance recovery during repeated-sprint exercise. 
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3.5.3 Effects of neuromuscular fatigue and exercise-related sensations on subsequent 

repeated-sprint performances (Set 2 – Sprint 11-15) 

Whilst MPO at Sprint 11 (i.e., initial sprint of Set 2) was not significantly different to that of 

Sprint 1 in all conditions, a novel finding of this study was the lower RSA performance during  

subsequent sprint performance (i.e., Sprints 11-15) in SH versus SL. This suggests that prior 

repeated cycling exercise in SH had a negative “carry-over” effect during a subsequent sprint 

performance in normoxia. It has been suggested that reductions in O2 availability during 

repeated sprints in more severe hypoxia may attenuate the sensitivity of type III/IV muscle 

afferents, thereby increasing preferential recruitment of type II muscle fibers (Karatzaferi et al. 

2001; Arbogast et al. 2000). Such a greater and earlier reliance on type II muscle fibers may 

cause the larger decline in subsequent sprint performance despite of the similar EMG responses.  

Interestingly, the larger decline in sprint performance in SH during Set 2 was not met with 

worsened exercise-related sensations. Indeed, the increase in all exercise-related sensations 

from Sprints 11-15 were similar across all conditions, with no discernible differences to the 

changes from Sprints 1-5. Remarkably, absolute values for exercise-related sensations reached 

at Sprint 15 (i.e., 7 and 8 on a CR10 Scale for overall or limb discomfort and difficulty 

breathing) were relatively similar to those achieved at Sprint 10. Nevertheless, these values are 

considered submaximal despite the “all-out” nature of our exercise protocol involving a total 

of 15 sprints.  

The finding that peripheral VA and cortical VA remained unchanged following both sets of 

sprints suggests that the muscle contractile impairments had minimal influence on central 

motor output and subsequently on sprint performance in normoxia. This is in agreement with 

a study by Hureau et al. (2014) demonstrating minimal reductions in VA after a repeated-sprint 

cycling protocol (ten, 10-s sprints with 30 s recovery in between) even when the quadriceps 

muscle was pre-fatigued by neuromuscular electrical stimulation. Conversely, previous studies 
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(Billaut et al. 2013; Hureau et al. 2016) have also shown reductions in VA in response to 

repeated cycling sprints, which has been interpreted by these authors to reflect neural 

adjustments to limit the development of locomotor muscle fatigue. Further research is required 

to delineate the interaction between central and peripheral factors and how this influences the 

regulation of sprint performance and its recovery.  

Our finding of a negative “carry-over” of SH on subsequent repeated sprints is in contrast to 

the results of Girard et al. (2015). When eight 5-s sprints with 25-s recovery were performed 

at FiO2 0.21, 0.17 or 0.13, followed 6 min later, by four 5-s sprints at normoxia, these authors 

observed that recovery of sprint performance at Sprint 9 was accompanied by higher RPE 

values as compared to Sprint 1 (Girard et al. 2015). Of note, exercise-related sensations were 

limited to the assessment of overall peripheral discomfort. Although methodological 

differences (i.e., number of sprints) may have contributed to the overall perceived exertion or 

RPE values, this also likely highlights the task dependency of fatigue. For instance, the larger 

decline in sprint performance at the end of Set 1 (-34.0% vs. -11.7%) compared to the 

aforementioned study by Girard et al. (2015) may have also been due to adoption of different 

exercise modes (i.e., cycling vs. running) (Girard et al. 2011a).  

3.5.4 Additional considerations and limitations 

This study is not without limitations. The use of EMG as an index of neural drive to active 

musculature should be interpreted with caution given that previous studies have suggested a 

weak association between EMG estimates and motor unit recruitment (Del Vecchio et al. 2017). 

Additionally, there is an on-going debate with regards to the validity of the twitch interpolation 

technique for the assessment of peripheral and/or cortical VA and thus central fatigue. Whilst 

VA (as measured from twitch interpolation technique) does quantify the drive by the 

motoneurons to the muscle (Taylor (2009), it does not take into account the nonlinear input-

output relationship of the motoneuron pool (Herbert and Gandevia 1999). Nevertheless, the 
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use of twitch interpolation (with TMS) has been shown to be a valid and reliable method for 

the assessment of VA in the knee extensors (Sidhu et al. 2009). However, further studies using 

concomitant measurements of TMS-induced cortical and/or cervico-medullar motor evoked 

potentials would be required for the purpose of distinguishing fatigue of spinal and supraspinal 

origins and their relationship with exercise-related sensations (e.g. perceptions of overall 

discomfort, breathing difficulty and limb discomfort).  

In this study, fatigue measurements were assessed ~45 s after the completion of exercise, which 

is notably quicker than most of neuromuscular assessments in other similar studies that usually 

only start 2-3 minutes after exercise cessation. Ideally, such neuromuscular function integrity 

measurements should be performed during the actual exercise and/or within few seconds 

immediately after termination of exercise since previous studies have indicated substantial 

recovery of corticospinal excitability after less than 1 min of rest (Goodall et al. 2012). 

Assessment of neuromuscular function should also be extended beyond 10 min of recovery 

since both MVC and muscle contractile impairments were still depressed at Post 10 in all 

conditions. 

Finally, our conclusions are likely confined to the specificities of this study and should be 

verified with different RSA protocols and participants with specific training backgrounds. 

Whilst closed-loop RSA protocols have been used here and in previous experiments (Girard et 

al. 2015; Mendez-Villanueva et al. 2007), further investigations including exercise performed 

to failure tasks (i.e., open-loop design) and involving more than two sets of repeated sprints 

are needed. Given the increasing popularity of repeated-sprint training in hypoxia interventions 

typically involving 3-5 sets of sprints (Brocherie et al. 2017), shedding more light on the 

fatigue-causing mechanisms may be useful to refine best practice in this area.  
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3.6 Conclusion 

In this study, we manipulated hypoxia severity during an initial set of repeated sprints, and 

examined the residual effects on alterations in performance, neuromuscular, physiological and 

perceptual responses during a subsequent set of sprints performed in normoxia. Although a link 

of causality cannot be established, our novel findings suggest that recovery of exercise-related 

sensations of fatigue and discomfort, rather than neuromuscular function integrity per se, may 

play a pivotal role in influencing subsequent sprints performance. 
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CHAPTER 4  

EFFECTS OF GRADED HYPOXIA DURING PRIOR EXHAUSTIVE INTERMITTENT CYCLING 

ON SUBSEQUENT EXERCISE PERFORMANCE AND NEUROMUSCULAR RESPONSES 
The following Manuscript will be submitted to the Experimental Physiology, and has therefore 

been drafted according to the publication guidelines (APPENDIX). 

Author Contribution: This project was completed within the Athlete Health and Performance 

Research Center, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar. Olivier 

Girard and Sebastien Racinais were involved in conception and design of the work as well as 

data collection. All authors were involved in data analysis and interpretation of results. Jacky 

Soo, Timothy Fairchild, Mohammed Ihsan, Martin Buchheit and Olivier Girard drafted the 

manuscript. All authors read and approved the final version of the manuscript. 
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New findings:  

• What is the central question of this study? 

Does hypoxia severity during a prior exhaustive intermittent cycling exercise alter subsequent 

performance and neuromuscular responses during identical exercise in normoxia? 

• What is the main finding and its importance? 

Increasing hypoxic severity limits performance during an initial exhaustive intermittent cycling 

exercise task. However, hypoxic severity had no influence on performance and neuromuscular 

fatigue characteristics during a subsequent exercise of similar nature in normoxia. 

Understanding how hypoxic severity influences performance and neuromuscular responses 

will be useful in improving training periodization. 
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4.1 Abstract 

Purpose: This study examined the effect of graded hypoxia during exhaustive intermittent 

cycling on subsequent exercise performance in normoxia and associated neuromuscular fatigue 

characteristics.  

Methods: Fifteen well-trained cyclists performed an exhaustive intermittent cycling exercise 

(EICE; 15 s at 30% of anaerobic power reserve [618 ± 32 W] interspersed with 45 s of passive 

recovery) at sea level (SL; FiO2 ~0.21), moderate (MH; FiO2 ~0.16) and severe hypoxia (SH; 

FiO2 ~0.12) (i.e., EICE 1). This was followed, after 30 min of passive recovery (in normoxia), 

by an identical exercise bout in normoxia (EICE 2). Neuromuscular function of the knee 

extensors was assessed at baseline, and after EICE 1 (Post-EICE 1) and 2 (Post-EICE 2).  

Results: The number of efforts decreased with increasing hypoxic severity during EICE 1 (SL: 

39 ± 30, MH: 22 ± 13, SH: 13 ± 6; p £ 0.02). A larger number of efforts was performed in SH 

during EICE 2 than EICE 1 (p = 0.01), yet there was no statistical difference between 

conditions for EICE 2 (SL: 16 ± 9, MH: 20 ± 14, SH: 24 ± 17; p ³ 0.09). Compared to baseline, 

maximal torque during brief and sustained contractions (–8.5 ± 10.3% and –7.9 ± 14.0%; p = 

0.01), peripheral (–1.9 ± 3.0% and –1.3 ± 1.3; p £ 0.02) and cortical voluntary activation (-3.8 

± 3.7% and –8.6 ± 6.5%; p < 0.001), and twitch torque (–53.2 ± 10.0%; p < 0.001) were reduced 

post-EICE 1, independent of conditions. Maximal torque (brief contractions) and peripheral 

voluntary activation (sustained contractions) declined in all conditions at post-EICE 2 in 

reference to post-EICE 1, whereas twitch torque was further reduced only in SH (p = 0.02).  

Conclusion: Increasing hypoxia severity during exhaustive intermittent cycling decreased 

exercise performance. However, exercise performance and associated neuromuscular 

responses did not differ between conditions during a subsequent bout of exercise in normoxia. 

Keywords: Altitude, neuromuscular fatigue, intermittent exercise, exhaustion.
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4.2 Introduction 

Muscle fatigue can be defined as a decline in force generating capacity of the exercising 

musculature that is reversible with sufficient rest (Gandevia 2001). The decrease in force can 

be attributed to the interaction between the biochemical changes within the exercising muscle 

(i.e., peripheral fatigue) and an incomplete neural drive to the active musculature (i.e., central 

fatigue) (Amann 2011). An experimental approach to understand the interplay between central 

and peripheral factors is to manipulate the fatigue level, either by completing an initial exercise 

bout (Amann and Dempsey 2008) or through hypoxic manipulation (Girard et al. 2016; Soo et 

al. 2020).  

Most studies manipulating hypoxia severity during an initial exercise bout have selected 

exercises with a pre-determined number of efforts or a “closed-loop” design (Girard et al. 2016; 

Soo et al. 2020). However, when the exercise end-point is set (e.g., number of “all-out” efforts 

[Townsend et al. (2020); Girard et al. (2015)] or distance [(Girard et al. 2016)] to be completed), 

participants may modulate their power production, through the use of pacing strategies, and 

the resulting neuromuscular fatigue (Billaut et al. 2011). In this instance, using an “open-loop” 

design, in which exercise is performed at a fixed work rate until exhaustion (Amann et al. 

2007b) may resolve the issue of pacing.  

Reductions in oxygen availability negatively influence fatigability during the completion of 

exhaustive “open-loop” whole body exercise (i.e., cycling time to exhaustion at a constant 

work-load), with severe hypoxia triggering earlier exercise cessation (Amann et al. 2007b; 

Goodall et al. 2012). Specifically, concomitant increases in hypoxic severity (fraction of 

inspired oxygen [FiO2] <0.10, equivalent to arterial oxygen saturation [SpO2] of ~70-75%) and 

cerebral deoxygenation (e.g., assessed with near infrared spectroscopy; NIRS) (Goodall et al. 

2012) may elicit a shift from predominantly peripheral origins of fatigue to a hypoxia-sensitive 
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source of inhibition within the central nervous system (Amann et al. 2007b). Since 

neuromuscular fatigue characteristics resulting from exhaustive exercise likely differ according 

to the severity of hypoxic conditions, this makes the expectation tenable that it will also 

influence the requirement for recovery, and ultimately subsequent exercise performance.  

Therefore, this study examined the effects of hypoxia severity during an initial exhaustive 

intermittent cycling exercise on subsequent performance and associated neuromuscular fatigue 

characteristics in normoxia. We hypothesized that the most severe hypoxic condition will limit 

exercise capacity during the initial exercise bout due to central nervous system alterations, thus 

minimizing the extent of peripheral fatigue development when compared to normoxia or less 

severe hypoxia. We further anticipated that the premature fatigue (i.e., less mechanical work) 

due to an initial exercise bout at severe hypoxia may in turn, increase subsequent exercise 

performance in normoxia and the magnitude of accompanying muscle fatigue.  

4.3 Methods 

4.3.1 Ethical approval 

The experimental protocol was conducted according to the Declaration of Helsinki, and 

approved by Shafallah Medical Genetics Center Ethics Committee, Doha Qatar (institutional 

review board project number no. 2011-011). All participants gave their informed, written 

consent prior to the commencement of the experiment. 

4.3.2 Participants 

Fifteen well-trained male cyclists (38.4 ± 7.1 years; 181.7 ± 7.7 cm; 81.9 ± 13.8 kg; 8.1 ± 2.5 

h cycling per week) participated in the study. All participants were born and raised at <1500 m 

and had not travelled to elevations >1000 m in the 3 months prior to investigation.  
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4.3.3 Experimental design 

Each participant completed one familiarization session and three experimental trials in a 

randomized, double-blind design. All tests were completed in a normobaric hypoxic chamber 

(Colorado Mountain Room System; Colorado Altitude Training, Boulder, CO). The 

experimental trials were separated by at least 5 days, performed at the same time of the day  

(±2 h), and conducted in temperate ambient conditions (air temperature: ~24°C; relative 

humidity: 40%). Participants avoided vigorous exercise for 24 h, caffeine for 12 h, and food 

for 2 h, before each trial. They were permitted to drink ad libitum during testing.  

The experimental session was conducted as follows: (1) participants were seated for 15 min to 

rest and allow for instrumentation; (2) standardized warm-up (i.e., 5 min of continuous cycling 

at 50% of power associated with V̇O2max, immediately followed by 2 min at 100% of power 

associated with V̇O2max [357 ± 46 W] and, after 2 min of rest, 15 s of cycling at 30% of the 

anaerobic power reserve [618 ± 123 W] with a fixed pedalling frequency of 110 rpm) in 

normoxia; (3) climatic chamber entrance and 2 min seated rest on the cycle ergometer (wash-

in period) prior to the beginning of exercise; (4) an exhaustive intermittent cycling exercise 

(EICE 1) conducted near sea level (SL; simulated altitude/FiO2 0 m/~0.21), at moderate (MH; 

~2200 m/~0.16) or severe (SH; ~4200 m/~0.12) simulated altitudes (normobaric hypoxia) in 

random order (see below), (5) 30 min of passive rest (normoxia) including neuromuscular 

function assessment (post-EICE 1) initiated 7 min after exercise cessation of EICE 1 (5) 

completion of an identical exercise test (EICE 2) always performed in normoxia (6) 

neuromuscular function assessment (post-EICE 2) initiated 7 min after exercise cessation of 

EICE 2.  
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4.3.4 Familiarization session 

During the first visit, participants were accustomed to all neuromuscular testing procedures. 

Optimal levels of stimulation intensities to the motor cortex and femoral nerve were determined 

(see below), and kept constant during the subsequent experimental sessions. Baseline 

neuromuscular function assessment was subsequently performed after ~15 min of rest, and 

served as the pre-tests (Baseline) assessment for all conditions. Thereafter, participants 

performed an incremental cycling test on an electromagnetically braked cycle ergometer 

(Excalibur Sport, Lode, Groningen, The Netherlands), while breathing room air for the 

determination of maximal aerobic power output (last completed stage in full) and maximal 

oxygen uptake (V̇O2max). Workload increased at a ramped rate of 25 W.min−1 until participants 

reached exhaustion, as indicated by volitional cessation of exercise, or failure to maintain a 

pedal cadence of 70 rpm despite strong verbal encouragement. Finally, after 20 min of passive 

rest, participants performed three single 10-s cycling sprints (peak power output = 1202 ± 262 

W), with 2 min of rest between efforts.  

4.3.5 Exhaustive intermittent cycling exercise 

The exercise protocol for EICE 1 and EICE 2 consisted of performing intermittent cycling until 

exhaustion at supra-maximal intensity; 15 s at 30% of the anaerobic power reserve (618 ± 123 

W) with a pedalling frequency of 110 rpm (visual and verbal feedback and reached after ~3-4 

s), interspersed with 45 s of passive rest. A 30-min recovery period was allowed between EICE 

1 and EICE 2. This duration was chosen to allow significant perceptual recovery from EICE 1, 

whilst keeping recovery time short enough for only a partial recovery of neuromuscular 

function, both likely to influence completion of subsequent efforts (Minett and Duffield 2014). 

Exercise was terminated by the investigators when pedal cadence dropped below 70 rpm for > 

5 s. Unfinished sprints (participants not being able to turn the pedals) were not taken into 

consideration.  
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4.3.6 Responses to exercise 

Heart rate (HR), monitored via a wireless monitoring system (Polar Electro Oy, Kempele, 

Finland), pulse oxygen saturation (SpO2), estimated non-invasively via pulse oximetry using a 

finger probe (Palmsat 2500, NONIN Medical Inc., Plymouth, MI, USA) and rating of perceived 

exertion (RPE), obtained using the 6-20 Borg scale, were recorded at exactly 10 s following 

each exercise bout. Exercise data were time-normalized over the individual total exercise 

duration for each trial because the total exercise duration of the exhaustive intermittent cycling 

test was different between participants and condition. For each individual, HR, SpO2 and RPE 

were time normalized on a scale 0-100% using 20% intervals (1-20, 21-40, 41-60, 61-80 and 

81-100% of the time to exhaustion).  

4.3.7 Prefrontal cortex and muscle oxygenation responses  

Uninterrupted measurements of cerebral and muscle tissue oxygenation trends were obtained 

via NIRS (Oxymon MkIII, Artinis, The Netherlands). One NIRS emitter-detector pair was 

placed over the left prefrontal lobe, between Fp1 and F3 (international EEG 10–20 system). A 

second emitter-detector pair was placed on the distal part of the right vastus lateralis (VL), 

approximately 15 cm above the proximal border of the patella. Spacing between optodes was 

fixed at 45 mm using a black, plastic spacer held in place via double-sided tape. A modified 

form of the Beer–Lambert Law was used to assess muscle oxygenation as the percentage of 

tissue saturation index (TSI; oxyhemoglobin/[oxyhemoglobin + deoxyhemoglobin] × 100). For 

each individual, NIRS signals were determined at the beginning of exercise and near task 

failure (1-20 and 81-100% of the time to exhaustion, respectively) for EICE 1 and EICE 2. 

Differential path length factors were fixed at 5.93 for cerebral and at 3.83 for muscle tissues. 

NIRS data were acquired at 10 Hz and down sampled to 1 Hz for analysis.  
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4.3.8 Neuromuscular function  

4.3.8.1 Neuromuscular test battery 

Isometric knee extensor force of the right leg was measured during both voluntary and evoked 

contractions on an isokinetic dynamometer (Biodex; Isokinetic Dynamometer, Shirley, NY). 

Participants were seated with their hip joint angles set at 90° (0° is full extension) and their 

chest and working leg tightly fixed against the chair. The axis of the dynamometer was aligned 

with the knee flexion-extension axis, and the lever arm was attached to the shank around the 

ankle with a strap. Participant position information was recorded to ensure identical positioning 

for each test occasion. 

Neuromuscular assessment included six sets (recovery = 1 min) of three brief contractions  

(~5 s, MVC, 50% MVC and 75% MVC, recovery = 6 s) of the knee extensors (Girard et al. 

2013). The intensities for the sub-maximal contractions were calculated from the preceding 

MVC, and the feedback of the target force was provided via a computer monitor. During brief 

contractions, transcranial magnetic stimulations (TMS) or peripheral motor nerve (PMN) 

stimulations were alternatively delivered ~1.5 s after the plateau (3 sets with TMS and 3 sets 

with PMN). In addition, a potentiated twitch was evoked 5 s after each MVC with PMN. 

Thereafter, participants performed a 30-s sustained MVC including PMN and TMS, delivered 

2 s apart, at the beginning and the end of the sustained MVC (~5 and ~25 s, respectively) 

(Girard et al., 2013).  

4.3.8.2 Torque recordings   

Isometric knee extensor force of the right leg was measured on an isokinetic dynamometer 

(Biodex; Isokinetic Dynamometer, Shirley, NY). Participants were seated with their hip joint 

angles set at 90° (0° is full extension) and their chest and working leg tightly fixed against the 

chair. The axis of the dynamometer was aligned with the knee flexion–extension axis, and the 
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lever arm was attached to the shank around the ankle with a strap. Participant position 

information was recorded to ensure identical positioning for each test occasion.  

4.3.8.3 Motor nerve stimulation  

Single supramaximal electrical stimuli (max voltage 400 V, rectangular pulse of 200 ms) were 

delivered to the right femoral nerve using a high-voltage, constant-current, stimulator 

(Digitimer DS7AH, Welwyn Garden City, Hertfordshire, UK). The cathode ball electrode was 

manually pressed into the femoral triangle (i.e., 3–5 cm below the inguinal ligament) by the 

experimenter and the anode (5 × 9 cm) was located in the gluteal fold opposite the cathode. 

The intensity of stimulation was determined during the familiarization session by delivering 

single stimuli with increments of 10 mA until plateaus occurred in twitch amplitude and M-

wave. Supramaximal stimulation was ensured by increasing the final intensity by 50% (mean 

current: 116 ± 54 mA; range: 40–220 mA).  

4.3.8.4 Transcranial magnetic stimulation  

A magnetic stimulator (Magstim 200, The Magstim Company, Dyfed, UK) was used to 

stimulate the motor cortex. A single TMS pulse (1-ms duration) was delivered via a concave 

double-cone coil (13 cm diameter) maintained manually over the vertex of the scalp. The coil 

was slightly moved to preferentially activate the left motor cortex (contralateral to the right leg) 

until the largest motor evoked potential (MEP) in the VL during 50% MVC contractions were 

observed with a stimulation intensity of 60% of the maximal stimulator power output Girard 

et al. (2013). Motor threshold occurred at 41 ± 10% of maximum stimulator output, and during 

each of the experimental trials, TMS was delivered at 140% of the motor threshold (61 ± 10% 

of maximum stimulator output; range: 49–77%). 
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4.3.9 Analysis of neuromuscular parameters  

Voluntary torque were recorded during 1-s of plateau. Peripheral motor nerve voluntary 

activation (VAPMN) was assessed using the twitch interpolation method. Briefly, the force 

produced during a superimposed twitch during the MVC was compared to the force produced 

by a potentiated twitch: VAPMN (%) = (1 – [superimposed twitch/potentiated twitch]) × 100. 

Voluntary activation was also assessed using transcranial magnetic stimulation (VATMS) by 

measuring the force responses to motor cortex stimulations during submaximal and maximal 

contractions (Goodall et al. 2009). VATMS (%) was subsequently quantified using the equation: 

(1 – [superimposed twitch/estimated resting twitch]) × 100. Muscle contractility was assessed 

from the electrically-evoked resting potentiated twitch as peak twitch amplitude (Qtw-pot; the 

highest value of twitch tension production).  

4.3.10 Statistical analysis 

Values are expressed as means ± SD. Two-way repeated-measures analysis of variance 

(ANOVA) was used to compare (1) changes in the number of cycling efforts completed [Time 

(EICE 1 and EICE 2) × Condition (SL, MH and SH)]; (2) changes in neuromuscular variables 

[Time (Baseline, post-EICE 1 and post-EICE 2) × Condition (SL, MH and SH)] and (3) 

differences in cerebral and muscle oxygenation [Time (Beginning of exercise-EICE 1, Task 

failure-EICE1, Beginning of exercise-EICE 2, and Task failure-EICE 2) × Condition (SL, MH 

and SH)]. Three-way repeated-measures ANOVAs [Time (baseline, post-EICE 1 and post-

EICE 2) × Contraction duration (onset and end) × Condition (SL, MH and SH)] were used to 

assess neuromuscular variables during the 30-s sustained MVCs. To assess assumptions of 

variance, Mauchly’s test of sphericity was performed for all ANOVA results. A Greenhouse-

Geisser correction was performed to adjust the degree of freedom if an assumption was violated, 

while post-hoc comparisons with Bonferroni-adjusted p values were performed if a significant 

main effect was observed. For each ANOVA, partial eta-squared (h2) was calculated as 
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measures of effect size (presented in parentheses in figures). Effect size values of 0.01, 0.06 

and >0.14 were considered as small, medium and large, respectively. All statistical calculations 

were performed using SPSS statistical software V.24.0 (IBM Corp., Armonk, NY, USA). The 

significance level was set at P £ 0.05. 

 

 

Figure 4.1: Schematic diagram of the exhaustive intermittent cycling protocol. 
 

Participants performed EICE 1 (15 s of cycling at 30% of anaerobic power reserve, interspersed 
with 45 s of passive recovery) in either normoxia (SL; FiO2 ~0.21), moderate (MH; FiO2 ~0.16) 
or severe hypoxia (SH; FiO2 ~0.12). This was followed, after 30 min of passive recovery, by 
an identical exercise bout in normoxia (EICE 2). Neuromuscular function of the knee extensor 
was assessed 7 min after EICE 1 and 2.

4.4 Results 

4.4.1 Exercise capacity 

Compared with SL (39 ± 30), a smaller number of cycling efforts were completed during EICE 

1 in MH (22 ± 13; p = 0.02) and SH (13 ± 6; p = 0.003) (Figure 2). The total number of efforts 

completed in EICE 2 did not differ between conditions (SL: 16 ± 9, MH: 20 ± 14, SH: 24 ±17; 

p ³ 0.09). The total number of efforts completed during EICE 2 with reference to EICE 1 was 

lower for SL (–23 ± 25; p = 0.003), unchanged in MH (–2 ± 6; p = 0.13) and higher in SH (+11 

± 15; p = 0.01). The overall total number of efforts (i.e., sum of EICE 1 and EICE 2) was 
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significantly lower in SH than SL (36 ± 21 vs. 55 ± 36; p = 0.02), whereas it was not different 

in MH (42 ± 27; p ³ 0.08) compared to the other conditions.  

4.4.2 Muscle contractility 

Compared with baseline (40.5 ± 9.3 Nm), Qtw-pot was equally reduced (pooled values: –53.2 ± 

10.0%; p < 0.001) post-EICE 1 in all conditions (Figure 2). There was a further decline in Qtw-

pot at post-EICE 2 compared with post-EICE 1 in SH (–12.7 ± 17.5%, p = 0.02), but not in SL 

(p = 0.68) and MH (p = 0.17).  

4.4.3 MVC torque 

Compared with baseline (290.4 ± 69.2 Nm), voluntary torque (Figure 4 A) during brief MVC 

was significantly reduced in all conditions at post-EICE 1 (pooled values: –8.5 ± 10.3%; p = 

0.01). Voluntary torque declined further at post-EICE 2 when compared with post-EICE 1 (–

3.6 ± 7.7%; p = 0.05). When maximal contraction was prolonged, mean torque produced ~5 s 

and ~25 s into the sustained contraction was significantly reduced below baseline in all 

conditions at post-EICE 1 (all conditions compounded, onset: 263.5 ± 55.5 Nm, end: 204.5 ± 

56.3 Nm; –7.9 ± 14.0%; p = 0.01) and post-EICE 2 (onset: 255.4 ± 56.1 Nm, end: 194.2 ± 60.0 

Nm; –11.8 ± 14.9%; p = 0.001). The magnitude of decline in voluntary torque from the onset 

to the end of the 30-s MVC (268.5 ± 61.4 vs. 210.0 ± 63.3 Nm) was similar in all conditions 

(pooled values: –23 ± 11%; p < 0.001). 

4.4.4 Voluntary activation 

With reference to baseline (VAPMN: 97.7 ± 3.4%; VATMS: 98.8 ± 1.5%), both VAPMN (–1.9 ± 

3.0%; p = 0.02) and VATMS (-3.8 ± 3.7%; p < 0.001) during brief contractions were globally 

reduced post-EICE 1 (Figure 4 B). When contraction was prolonged, VAPMN (99.2 ± 0.8%) 

and VATMS (98.3 ± 2.2%) were reduced below baseline at post-EICE 1 (–1.3 ± 1.3% and –8.6 
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± 6.5%; p < 0.001) with no further changes in VATMS at post-EICE 2 (–2.0 ± 2.2%; p < 0.001). 

VAPMN was further decreased at post-EICE 2 (–0.7 ± 2.0; p = 0.04) compared with post-EICE 

1. Reduction in VAPMN from the onset to end of the 30-s MVC were of similar magnitude (–

3.9 ± 2.0%; p < 0.001) across all time-points. Contrastingly, the magnitude of decline from the 

onset to the end of the 30-s MVC for VATMS was significantly larger at post-EICE 1 and post-

EICE 2 compared with baseline (–9.4 ± 6.8% and –8.9 ± 9.9% vs. –4.1 ± 3.7 %; p £ 0.04) 

(Figure 4 C). 

 

 

Figure 4.2: Number of high intensity intermittent cycling efforts completed until 
exhaustion during EICE 1 (at sea level [SL], moderate [MH] and severe hypoxia [SH]) 
and EICE 2 (always at SL).  
 

Participants performed EICE 1 (15 s of cycling at 30% of anaerobic power reserve, interspersed 
with 45 s of passive recovery) in either normoxia (SL; FiO2 ~0.21), moderate (MH; FiO2 ~0.16) 
or severe hypoxia (SH; FiO2 ~0.12). This was followed, after 30 min of passive recovery, by 
an identical exercise bout in normoxia (EICE 2). Neuromuscular function of the knee extensor 
was assessed 7 min after EICE 1 and 2. 
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* significantly different from SL (p < 0.05). g significantly different from MH (p < 0.05) for 
EICE 1. ‡significantly different from EICE 1 performance in SL (p < 0.05). #  significantly 
different from EICE 1 performance in SH (p < 0.05). 

 

 

Figure 4.3: Quadriceps potentiated twitch torque (Qtw-pot) at baseline, after the first (post-
EICE 1 at sea level [SL], moderate [MH) or severe hypoxia [SH]) and the second (post-
EICE 2 [always at SL]) exhaustive intermittent cycling exercise.  

C, T, and C×T, respectively refer to ANOVA main effects of condition, time, and interaction 
between these two factors with p-value and partial eta-squared presented in the brackets. Data 
are mean ± SD for 15 participants.  

* significantly different from SL (p < 0.05). g significantly different from MH (p < 0.05) for 
EICE 1. ‡significantly different from EICE 1 performance in SL (p < 0.05). #  significantly 
different from EICE 1 performance in SH (p < 0.05). 
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Figure 4.4: Voluntary torque (A), peripheral motor nerve (VAPMN; B) and transcranial 
magnetic stimulation (VATMS; C) voluntary activation during brief (5-s; left panels) and 
sustained (30-s; right panels) maximal isometric voluntary contractions (MVC) at 
baseline, after the first (post-EICE 1 at sea level [SL], moderate [MH] or severe hypoxia 
[SH]) and the second (post-EICE 2 [always at SL]) exhaustive intermittent cycling 
exercise.  
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Neuromuscular function tests were performed 7 min after EICE 1 and EICE 2, always in 
normoxia near SL. During the 30-s sustained MVC, measurements were obtained at the 
beginning (~5 s) and at the end (~25 s) of the contraction. C, T, CD, C×T, C×CD, T×CD and 
C×T×CD, respectively refer to ANOVA main effects of condition, time, contraction duration 
and interaction between the factors with p-value and partial eta-squared presented in the 
brackets. Data are mean ± SD for 15 participants. 

 * and † significantly different from baseline and post-EICE 1 (p < 0.05), respectively. + 
significantly different between 5 s and 25 s (p < 0.05). d magnitude of decrease from 5 s to 25 
s significantly different from SL (p < 0.05). 

 

4.4.5 Cerebral and muscle oxygenation  

At the beginning of EICE 1, cerebral TSI was significantly lower with increasing hypoxia 

severity (67.9 ± 9.2%, 61.9 ± 6.7% and 52.9 ± 12.3% in SL, MH and SH, respectively; p £ 

0.04) (Figure 5 A). Cerebral TSI was significantly lower in MH and SH compared with SL at 

near task failure in EICE 1 (45.0 ± 10.0% and 36.7 ± 13.7% vs. 54.4 ± 12.5%; p £ 0.04), with 

no difference between MH and SH (p = 0.20). Cerebral TSI declined from the beginning of 

EICE 2 to near task failure (62.3 ± 11.1% vs. 49.5 ± 15.3%; p £ 0.01), with no differences 

between conditions (p > 0.05). 

Muscle TSI at the beginning of EICE 1 did not differ between conditions (pooled values: 79.7 

± 4.9%, p > 0.05) (Figure 5 B). However, muscle TSI near task failure became significantly 

lower in SH compared with SL (54.6 ± 14.8% vs. 62.0 ± 11.6%; p = 0.02). During EICE 2, 

muscle TSI decreased from the beginning of EICE 2 to near task failure (pooled values: 80.6 

± 5.6% vs. 64.3 ± 10.5%, p < 0.001), with no differences between conditions (p > 0.05).  

4.4.6 Physiological and perceptual responses 

At the beginning of EICE 1, SpO2 was significantly lower with increasing hypoxia severity 

(SL: 96.1 ± 2.0%, MH: 90.7 ± 1.2%, SH: 82.5 ± 3.3%; p < 0.001) (Figure 6 A). During EICE 

2, SpO2 remained unchanged across all time points in all conditions (p > 0.05). During EICE 

1, HR increased similarly at each time point, except for the 21-40% interval where HR was 
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significantly lower in SH (121 ± 15 bpm) than in SL (138 ± 18; p = 0.003) and MH (136 ± 17 

bpm; p = 0.03) (Figure 6 B). During EICE 2, HR significantly increased similarly at each time 

point from the beginning to near task failure (pooled values: 113 ± 20 vs. 152 ± 15 bpm). 

Higher RPE occurred at each time point from the beginning to near task failure during both 

EICE 1 (pooled values: 13.0 ± 1.9 vs. 19.5 ± 0.5) and EICE 2 (14.1 ± 2.2 vs. 19.6 ± 0.4), with 

no significant differences between conditions (p = 0.88) (Figure 6 C).

 

Figure 4.5: Cerebral (A) and muscle (B) tissue saturation index (TSI) during EICE 1 (at 
sea level [SL], moderate [MH] and severe hypoxia [SH]) and EICE 2 (always at SL).  
Data were obtained at the beginning of exercise and near task failure (1-20% and 81-100% of 
time to exhaustion, respectively). C, T, and C×T, respectively refer to ANOVA main effects 
of condition, time, and interaction between these two factors with p-value and partial eta-
squared presented in the brackets. Data are mean ± SD for 12 participants.  

* significantly different from sea level (p < 0.05). g significantly different from MH (p < 0.05). 
+ and a significantly different from the beginning of exercise (EICE 1) in SL and SH, 
respectively.
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Figure 4.6: Arterial oxygen saturation (SpO2; A), heart rate (HR; B) and ratings of 
perceived exertion (RPE; C) during EICE 1 (at sea level [SL], moderate [MH] and severe 
hypoxia [SH]) and EICE 2 (always at SL).  
 

Data were time normalized on a scale 0-100% using 20% intervals (1-20, 21-40, 41-60, 61-80 
and 81-100% of total exercise duration). C, T, and C×T, respectively refer to ANOVA main 
effects of condition, time, and interaction between these two factors with p-value and partial 
eta-squared presented in the brackets. Data are mean ± SD for 11 participants. 
* significantly different from sea level (p < 0.05). g significantly different from MH (p < 0.05).
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4.5 Discussion  

This study examined the effects of graded hypoxia during prior exhaustive intermittent cycling 

on subsequent performance and associated neuromuscular consequences during an identical 

normoxic exercise. Our main findings were: (1) despite shorter exercise duration with graded 

hypoxia during EICE 1, the magnitude of central and peripheral alterations post-EICE 1 did 

not differ across conditions; (2) the number of efforts completed during EICE 2 were not 

different between conditions; (3) with the exception of a slightly (and significantly) larger 

peripheral fatigue level in SH, muscle fatigue characteristics were essentially similar between 

EICE 1 and 2. Despite differences in the relative and absolute number of cycling efforts 

completed across conditions, the associated neuromuscular fatigue characteristics between 

conditions at post-EICE 1 and post-EICE 2 were remarkably similar. 

4.5.1 Graded hypoxia limits exercise performance during exhaustive intermittent cycling 

exercise  

As expected, increasing hypoxic severity limited exercise capacity during EICE 1. Interestingly, 

the reduction in Qtw-pot (–53 ± 10%) post-EICE 1 was similar between conditions. This may 

appear, at first sight, to support the concept of an individual critical threshold of peripheral 

fatigue (Thomas et al. 2018; Amann 2011). That said, it should also be noted that the challenge 

to homeostasis (decrease in SpO2 to ~80%) during exhaustive intermittent exercise in O2-

deprived conditions likely exert disruptions to other physiological regulatory systems (e.g., 

respiratory). Indeed, we observed larger decrease in muscle TSI values at task failure in SH 

compared with SL and MH during EICE 1. This is indicative of the accentuated competition 

between respiratory and exercising muscles for oxygen delivery, caused by increased 

inspiratory muscle work and metabolic demands (Rodriguez et al. 2020). The increased 

physiological solicitation to restore homeostasis during exercise when oxygen availability is 
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challenged would then combine to increase the sensations of fatigue (Thomas et al. 2018). This 

is evidenced in our study by near maximal RPE values (i.e., ~19) reached at task failure in all 

conditions. Since hypoxia exerts an additional systemic stress during exhaustive intermittent 

cycling, it is likely that both physiological (e.g., HR) and perceptual factors (higher-than-

normal exercise sensations), rather than peripheral fatigue per se, influenced an individual’s 

tolerance limit and exercise capacity during EICE 1 (Thomas et al. 2018).  

Despite a significant decline in SpO2 and cerebral TSI during EICE 1 in SH, the decrease in 

VAPMN and VATMS from baseline to post-EICE 1 were not different between conditions during 

both brief and sustained MVCs. Of note, central factors significantly contributed to fatigue 

following post-EICE 1 in SH despite significantly shorter exercise duration. It was previously 

reported that decreased cerebral oxygenation, induced by hypoxic exposure, during constant 

load cycling (at ~80% of maximal work rate) is associated with an increased component of 

supraspinal fatigue (Thomas et al. 2018). Contrastingly, recent studies also found no 

differences in muscle activation capacity (i.e., VAPMN and VATMS) during the course of an 

exhaustive continuous cycling task when exercise was performed at different hypoxic severity 

(SpO2 clamped at ~98%, ~85% and ~70%) (Mira et al. 2020). This uncertainty regarding the 

influence of hypoxia on central fatigue may be due to the severity of hypoxemia (Amann et al. 

2007b), the type and/or intensity of exercise. Consequently, the magnitude of reduction in 

cerebral oxygenation and physiological demands imposed on the locomotor muscles and 

cardiorespiratory system determine the magnitude of central fatigue (Amann et al. 2007b). In 

this instance, decrements in VATMS and VAPMN during brief and sustained MVCs at post-EICE 

1 were generally modest. Nonetheless, this implies that exhaustive intermittent cycling exercise 

(duration of exercise excluding passive rest: ~3 min) induced central fatigue consisting of a 

supraspinal component, independent of hypoxia severity. 
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4.5.2 Exhaustive intermittent cycling at graded hypoxia does not influence exercise 

performance in normoxia  

We observed that the number of efforts completed during EICE 2 in SH was greater relative to 

EICE 1, but not different between conditions. This is in contrast to our hypothesis that, 

compared to either normoxia or moderate hypoxia, earlier exercise termination (less work 

being completed) in severe hypoxia during EICE 1 would in turn increase the number of 

cycling efforts completed during EICE 2. Our initial assumption was based on previous work 

showing that increasing hypoxic severity shifts the primary locus of neuromuscular fatigue 

from the muscle to the central nervous system (Goodall et al. 2010), explaining earlier task 

failure in severer hypoxic conditions. In support, Amann et al. (2007b) demonstrated that 

constant load cycling to exhaustion was prematurely terminated (as a result of a direct effect 

of lower SpO2 values, likely <70-75%, on central motor output) in severe hypoxia (FiO2 0.10) 

when compared with normoxia. In our study, however, although SpO2 were on average slightly 

greater than 80% throughout exercise in SH, the significant decrease in cerebral TSI (as a proxy 

for cerebral hypoxia) was not accompanied by additional central and supraspinal fatigue 

development. Additionally, HR, RPE (i.e., close to maximal values) and Qtw-pot values in SH 

were not different than either SL or MH, suggesting that participants terminated EICE 1 at or 

close to their maximal limit of tolerance. It should be highlighted, however, that unlike the 

aforementioned study (Amann et al. 2007b), our exercise protocol was intermittent in nature. 

In particular, exercise interspersed with rest periods tends to be performed for longer duration 

compared with continuous exercise of the same intensity (Grossl et al. 2012). Thus, compared 

with continuous exercise where the severe strain in SH during EICE 1 would have stopped 

exercise earlier, the rest intervals (i.e., partial recovery) between efforts might have allowed 

participants to persist longer. Consequently, the greater than anticipated physiological strain 
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and neuromuscular fatigue, minimized differences in exercise performance between conditions 

during EICE 2.  

In the SL condition, the number of efforts completed during EICE 2 (always in normoxia) was 

lower than during EICE 1. This suggests that the 30-min recovery period was insufficient to 

fully restore exercise capacity. Whilst HR, RPE, SpO2 and muscle TSI had fully recovered to 

values similar to the beginning of EICE 1, cerebral TSI remained lower in SL at the start of 

EICE 2. It is, however, unlikely that the decrease in cerebral TSI (near task failure) per se 

limited exercise capacity during EICE 2 since participants were able to exercise in SH during 

EICE 1 at comparable (i.e., lower) cerebral TSI values. Recently, we examined the effect of 

ten, 4-s repeated-sprint cycling at graded hypoxia (FiO2 of 0.21, 0.16 and 0.13) on a subsequent 

set of five, 4-s sprints (Soo et al. 2020). We showed that maximal power output was restored 

during the first sprint of the second set, after 8 min of rest, regardless of hypoxic severity of 

the initial set of sprints. Following prior exercise in severe hypoxia, however, repeated sprint 

ability was impaired compared with sea level and moderate hypoxia. In this instance, the 

recovery duration would likely influence exercise performance during EICE 2. Additionally, 

the present findings also suggest that the relative effect of residual fatigue may only become 

more prominent when the subsequent exercise task is performed to the limit of exhaustion, 

using an “open-loop” design as in this study. 

4.5.3 Central and peripheral fatigue patterns following EICE 2 

Despite lower absolute mechanical work (i.e., sum of the number of efforts completed during 

EICE 1 and EICE 2) performed in MH and SH, the magnitude of peripheral fatigue was similar 

in all conditions post-EICE 2. This finding supports previous studies (Amann et al. 2013; 

Amann et al. 2007b) suggesting that peripheral fatigue is regulated to a task specific individual 

critical threshold. That said, our finding also showed that the number of efforts completed 

during EICE 2 in SH (when compared with EICE 1) was twice greater, concomitant with an 
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additional decrease in Qtw-pot that averaged ~12%. Similar observations have been reported by 

Christian et al. (2014b) showing that evoked peak twitch was reduced to a greater extent in 

severe hypoxia (FiO2 0.10) than normoxia and moderate hypoxia following the completion of 

intermittent, maximal intensity leg extensions. Accordingly, these findings question the extent 

to which peripheral fatigue influences exercise performance since factors including 

cardiovascular strain (as evident by near maximal HR values near exhaustion) may also be 

implicated during such whole-body exhaustive cycling. Nevertheless, whether peripheral 

fatigue is regulated to an individual critical threshold, and its influence on exercise performance 

remains contentious. Nonetheless, our finding of a substantial decrease in Qtw-pot at post-EICE 

2 do suggest that neuromuscular alterations were largely of peripheral origins.  

4.5.4 Additional considerations and limitations 

A limitation of conducting muscle assessments during whole body exercise is the difficulty in 

measuring neuromuscular function integrity during and/or immediately (within seconds) after 

exercise completion. In this study, the intermittent cycling test was performed to the limit of 

exhaustion. As such, additional time was required to allow participants to move from the cycle 

ergometer to the neuromuscular test ergometer that was located outside the climatic chamber 

in normoxia. Nonetheless, the time taken (exactly 7 min after reaching exhaustion) to assess 

neuromuscular fatigue was consistent between the first and second exercise trial in all 

conditions. Whilst a partial recovery of neuromuscular parameters cannot be overlooked 

(Krüger et al. 2019), we were still able to detect significant central and peripheral alterations 

after completion of the two exercise tasks.  

There has been increased interest in the use of high intensity intermittent training in 

combination with hypoxia to maximize physical performance and/or health benefits (Li et al. 

2020). As such, a better understanding of the neuromuscular consequences associated with 
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different exercise designs (e.g., number of efforts, exercise-to-rest ratio) and methods of 

administering the hypoxic stimulus (i.e., SpO2 vs. FiO2) will be useful to optimize training 

periodization (Buchheit and Laursen 2013b). In particular, while we defined moderate and 

severe hypoxia severity based on FiO2, the large interindividual variability in SpO2 to a given 

FiO2 (Hamlin et al. (2010) may have influenced exercise performance (Chapman et al. 2011) 

and possibly neuromuscular responses.  

4.6 Conclusion 

This study examined the effect of graded hypoxia during prior exhaustive intermittent cycling 

exercise on subsequent performance and associated neuromuscular responses during exercise 

of an identical nature in normoxia. Neuromuscular fatigue pattern (with large peripheral fatigue 

development) was not different across conditions at post-EICE 1, despite performance being 

hypoxia severity-dependent (less work being completed) during EICE 1. Exercise performance 

during EICE 2 in SH was greater relative to EICE 1, but not different between conditions. 

Additionally, neuromuscular fatigue characteristics (except for a larger peripheral fatigue in 

the most severe hypoxia condition) following EICE 2 were essentially similar between 

conditions. We conclude that prior exhaustive intermittent cycling performed at increasing 

hypoxia severity did not influence performance, and associated neuromuscular responses, 

during completion of a subsequent exercise of similar nature in normoxia.
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CHAPTER 5  

THE USE OF THE SpO2 TO FiO2 RATIO TO INDIVIDUALIZE THE HYPOXIC 

DOSE IN SPORT SCIENCE, EXERCISE AND HEALTH SETTING 

The following Manuscript has been published in the Frontiers in Physiology, and has therefore 

been drafted according to the guidelines of the journal (APPENDIX).  

This project was completed within the Murdoch University Exercise Physiology Laboratory, 

Perth, Australia. Jacky Soo, Olivier Girard, Mohammed Ihsan and Timothy Fairchild 

conceived and designed the research. Jacky Soo conducted the study and analysed the data. All 

authors were involved in interpretation of results. Jacky Soo, Olivier Girard, Mohammed Ihsan 

and Timothy Fairchild drafted the manuscript. All authors read and approved the final version 

of the manuscript. 
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5.1 Background 

Human responses to hypoxia (i.e., reduced O2 supply) range from immediate adjustments 

(minutes to hours) to prolonged adaptations (several weeks) within various physiological 

regulatory systems (Guillemin and Krasnow 1997). Over the last 50 years, numerous 

altitude/hypoxic training modalities have been developed to capitalize on these hypoxic 

responses, with a view to improve athletic performance. Today, the use of hypoxia extends to 

therapeutic interventions (also known as ‘hypoxic conditioning’) (Millet et al. 2016b), an 

application dating back to the former Soviet union era (Serebrovskaya 2002).  

Traditional forms of altitude training include live high-train high, live high-train low and live 

low-train high (LLTH) (Wilber 2007). With the widespread availability of hypoxic chambers 

and portable hypoxicators, the LLTH paradigm has gained significant popularity over the last 

decade. This model involves exposure to hypoxia at rest or combined with exercise, while 

residing near sea level (Girard et al. 2020; Wilber 2007). Altitude simulation (normobaric 

hypoxia) with the LLTH method is typically achieved by reducing the inspired oxygen fraction 

(FiO2), while atmospheric pressure remains unchanged. An example in professional sport, is 

repeated-sprint training sessions with multiple athletes, conducted at a fixed FiO2 of 0.145 to 

simulate an altitude equivalent to 3000 m (Faiss et al. 2013).  

Responses to hypoxia vary in magnitude between individuals (Friedmann et al. 2005; Chapman 

et al. 2011). For example, Friedmann et al. (2005) showed in 16 elite junior swimmers that the 

increase in erythropoietin concentration after 4 h in normobaric hypoxia (FiO2 0.15) averaged 

~58%, but remarkably ranged from 10% to 185%. In this regard, alternative approaches to 

implementing hypoxia have been proposed (Bassovitch and Serebrovskaya 2009; Mira et al. 

2020). For instance, the ‘arterial oxygen saturation (SpO2) clamp’ approach (Mira et al. 2020), 

whereby SpO2 is clamped to a target/range by altering the FiO2 presented to each individual 

has been proposed as a step towards reducing variability in the responses to hypoxia.  
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This paper first discusses the inter-individual variability in response to hypoxic stress when 

using ‘fixed FiO2’ as a marker of ‘dose’, and then examines the ‘SpO2 clamp’ as an alternate 

approach. We then consider the usefulness of a clinical index that integrates both the external 

(FiO2) and internal (SpO2) stimuli to characterize individual responses to hypoxia  (Rice et al. 

2007), and propose its application in exercise and sport science settings.  

5.2 Defining the hypoxic ‘dose’ 

The fundamental variables that define the hypoxic ‘dose’ include the severity, duration, 

frequency, type (normobaric or hypobaric hypoxia) and pattern of hypoxic presentation 

(Navarrete-Opazo and Mitchell 2014a; Wilber et al. 2007). An optimal ‘dose’ should maximize 

chronic physiological benefits, whilst minimizing potential harmful consequences (e.g., 

headaches, dizziness). Currently, there are limited quantitative means to describe the optimal 

hypoxic ‘dose’ required for planned physiological responses. Further, there is an incomplete 

understanding of the link between the immediate and chronic responses to hypoxia.  

The environmental stress (e.g. elevation) has often been used as a predictor of the total 

physiological stress imposed on an individual. For example, Garvican-Lewis et al. (2016) 

introduced the metric termed ‘kilometre hours’ to quantify the overall ‘external stress’ during 

altitude sojourns based on the terrestrial/simulated altitude level and duration of exposure. One 

critique is that external load metrics does not consider the physiological stress or internal load 

imposed on an individual. In response, the ‘saturation hours’ metric was suggested as a measure 

reflecting internal load (i.e., SpO2) which considers the duration at which a particular SpO2 is 

sustained during hypoxic exposure (Millet et al. 2016a).  

5.3 Nature of the problem 

A typical LLTH hypoxic training session entails a group of athletes exercising at a simulated 

altitude of 2500 – 3500 m (through manipulation of FiO2). Whilst it is tenable to expect that 
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reduced ambient oxygen availability should decrease in vivo oxygenation, regulatory responses 

to hypoxia (e.g. increased ventilation) can influence events along the oxygen cascade to 

attenuate the decline in SpO2 (Richardson et al. 2006). Reductions in SpO2 at a fixed FiO2 vary 

widely due to differences in hypoxic chemosensitivity, pulmonary ventilatory limitation, 

hypoxic ventilatory response, arterial-venous shunting, ventilatory perfusion mismatch and/or 

diffusion limitation (Chapman 2013; Weil 2003). Furthermore, determining an ideal hypoxic 

severity based on FiO2 per se is challenging since the hypoxic range falls on the steep portion 

of the oxyhemoglobin curve (Chapman 2013). In other words, a small decline in partial 

pressure of oxygen (PO2) would result in a disproportionate SpO2 decrease. Remarkably, the 

variability in SpO2 response becomes more pronounced with increasing hypoxia severity. For 

instance, the SpO2 response of 15 healthy individuals decreased from 95 – 98% to 74 – 95% 

when FiO2 was lowered from 0.21 to 0.12 (Albert and Swenson 2014). The heterogeneity in 

response to a given FiO2 may also result in disparity in exercise performance. For example, at 

an altitude of 2100 m, elite athletes who demonstrated greater reductions in SpO2 also 

experienced larger declines in performance compared with athletes with smaller SpO2 

fluctuations (Chapman et al. 2011). Collectively, the variability in SpO2 response at a given 

FiO2 suggests that some individuals may attain the planned hypoxia-induced response (i.e., 

those close to the average), whereas others may receive a stimulus either ‘too small or ‘too 

large’. From a training perspective, a stimulus that is ‘too large’ may inadvertently diminish 

beneficial gains (i.e., catabolic effect of hypoxia) from exercise training (Etheridge et al. 2011). 

Further, this variability in hypoxic response is reported within relatively homogenous groups 

(i.e., healthy and trained). It stands to reason that greater variability in hypoxic responses would 

be expected in clinical cohorts. This includes type 2 diabetes mellitus and chronic pulmonary 

obstructive disease, where varying degrees of mitochondrial dysfunction (Sangwung et al. 

2020; Lowell and Shulman 2005) and hypoxic ventilatory response (Weil 2003) are evident, 
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respectively. Considering the adoption of hypoxia training in clinical cohorts (Verges et al. 

2015) along with the established variability in SpO2 responses to hypoxia in non-clinical 

cohorts, the use of FiO2 as a marker of ‘dose’ requires reconsideration.  

5.4 Hypoxia exposure – towards an individualized approach  

Support for the use of SpO2 in setting the hypoxic ‘dose’ comes from research demonstrating 

that many hypoxia-induced outcomes (e.g. angiogenesis, neuromuscular adaptations) are 

ultimately governed by downstream events of the oxygen cascade (Ameln et al. 2005; 

Manimmanakorn et al. 2013). Consequently, these physiological outcomes occur in response 

to decreased arterial oxygen saturation, measured using SpO2, rather than FiO2 per se 

(Manimmanakorn et al. 2013).  Indeed, elevated skeletal muscle adaptations (e.g. transcript 

expression of mitochondria biogenesis) to hypoxic training are proportional to the magnitude 

of SpO2 decrease (Schmutz et al. 2010). Methods of clamping SpO2 include prior oxygen 

titration to predetermine the optimal FiO2 (McKeown et al. 2019) and manual (Mira et al. 2020) 

or automatic adjustments (Ng et al. 2016; Bayer et al. 2017) (requiring a biofeedback mode) 

during the actual session. A possible concern of the ‘SpO2 clamp’ approach – particularly when 

oxygen delivery is manually adjusted – is the accuracy of SpO2 responses. This is because 

SpO2 does not decrease proportionally with FiO2, due to the sigmoidal relationship between 

PO2 and SpO2. That said, studies which have attempted to clamp SpO2 to a specific target, or 

within a 3 – 10% range, report standard deviation values of less than 5% during both passive 

(Törpel et al. 2019) and active (Törpel et al. 2020; Mira et al. 2020) hypoxic exposure.  

5.5 SpO2 to FiO2 index  

Oxygen therapy is routinely prescribed for patients with lung conditions (e.g. in severe 

COVID-19 cases) experiencing hypoxemia (Alhazzani et al. 2020). To mitigate risks 

associated with hypoxemia and hyperoxia-related lung injury, oxygen delivery is individually 

titrated within a tight range. The calculation of the pulmonary shunt fraction is the preferred 
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clinical assessment of the oxygenating capacity of the lungs, although the arterial partial 

pressure of oxygen (PaO2) and SpO2 have been proposed as surrogate measurements of 

oxygenation (Zetterstrom 1988). In order to assess the severity of hypoxemia in ventilated 

patients (where supplemental oxygen is used to maintain SpO2 within a normal/safe range) the 

PaO2 to FiO2 ratio, and later the SpO2 to FiO2 ratio (SF), were proposed (Horovitz et al. 1974; 

Rice et al. 2007). To illustrate, a healthy individual at sea level with a SpO2 of 98% would have 

a SF value of 467 (i.e., 98/0.21). Lower SF values are indicative of reduced oxygenating 

capacity, and is used, for instance, to diagnose patients with acute respiratory distress syndrome 

(SF values £ 235) and acute lung injury (SF values £ 315) (Rice et al. 2007). Unlike previous 

approaches, the SF ratio considers both the internal and external stimuli which allows for 

comparison between individuals/groups. Furthermore, the SF index is readily accessible and 

easy to interpret, which therefore represents an appealing tool for the early assessment of 

patients with potential respiratory disorders. 

5.6 Future directions 

Moving beyond the conventional ‘fixed FiO2’ approach, an individualized approach to 

administering hypoxia may consist of a combination of strategies such as 1) a prior hypoxia 

test to elucidate variability in responsiveness to hypoxia, 2) altering severity of hypoxia 

individually to regulate SpO2 within a tightly defined range and 3) reporting the inter-

individual variability based on the SF index.  

A hypoxia test can be used to estimate the trajectory of SpO2 to hypoxia, and in turn, inform 

decisions on the hypoxic ‘dose’. Figure 1 depicts the hypothetical SpO2 responses of 

participants A, B and C during a decremental titration using FiO2  of 0.17, 0.15, and 0.13. As 

illustrated, the corresponding responses form an abbreviated individual-specific 

oxyhemoglobin curve. In this example, with a lower SpO2 response to a given FiO2, participant 
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C displays the highest response to hypoxia compared to participants A and B; this is represented 

by rightward and downward shifts of the abbreviated oxyhemoglobin curve. Participant C 

would likely require a higher FiO2 (i.e., milder hypoxia) to record similar SpO2 values as 

participants A and B. For instance, if the target SpO2 is 85%, the approximate FiO2 for 

participants A, B and C would be 0.11 (SF: 85/0.11 = 773), 0.15 (85/0.15 = 567) and 0.16 

(85/0.16 = 531), respectively. The corresponding SF values may then provide clarity on the 

inter-individual variability in response to hypoxia, wherein a low SF value indicates a high 

sensitivity to hypoxia. 

 

Figure 4.1: Individual arterial oxygen saturation (SpO2) response of participants A, B 
and C at fractional inspired oxygen (FiO2) of ~0.11.  
 

Hypothetical SpO2 response to a hypoxia test at FiO2 of 0.13, 0.15 and 0.17. Corresponding 
SpO2 to FiO2 ratio (SF) are presented at each data point.
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Where a ‘fixed FiO2’ approach is used to administer hypoxia, the SF index may also provide 

similar information about inter-individual variability. At a FiO2 of ~0.11, for instance, the SpO2 

response of participants A, B and C are 85%, 78% and 71%, equating to SF values of 773, 709 

and 645, respectively (Figure 1). By establishing threshold values for SF, distinct groups can 

be identified and clustered for training purposes, to increase likelihood of achieving similar 

physiological responses.  

5.7 Challenges for implementation 

The appeal of the ‘fixed FiO2’ approach, is the ease of implementation, for example, in an 

environmental chamber where a group of athletes can train together. Comparatively, whilst an 

individualized approach may produce a more consistent hypoxic response, such an approach 

would likely require personalized equipment and/or prior preparations (e.g. titration of ‘dose’). 

That said, an individualized approach to administering hypoxia would be applicable across the 

spectrum from clinical cohorts to elite-level athletes. However, it should be highlighted that 

the SF index is a measurement that does not consider the type of hypoxia exposure (i.e., 

hypobaric vs. normobaric). Since greater desaturation is associated with hypobaric than 

normobaric hypoxia for a matched inspired PO2 (Saugy et al. 2014), SF values may not be 

strictly equivalent between terrestrial and simulated hypoxia, and therefore should not be used 

interchangeably. 

5.8 Conclusion  

Traditionally, hypoxic training has adopted a universal approach, wherein all individuals 

receive the same absolute hypoxia stress (i.e., FiO2). Whilst highly practical, substantial inter-

individual variability in response to a given FiO2 is indisputable. The implication being, that 

some individuals attain the appropriate hypoxia-related adaptations, whereas others may 

receive potentially harmful or ineffective stimuli. Similar to the individual tailoring of training 

variables, we suggest that the administration of hypoxia requires an individualized approach. 
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We therefore propose that the SF index (i.e., SpO2 to FiO2 ratio) – which is already widely 

adopted in clinical settings – can also be used by exercise physiologists and sport scientists to 

gauge an individual’s response to hypoxia. This may ultimately offer a more pragmatic 

approach towards defining physiologically distinct groups of individuals and enable a tailored 

level of FiO2. 
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CHAPTER 6  

GENERAL DISCUSSION  
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6.1 Main findings 

The overarching aim of this thesis was to examine the effect of graded hypoxia during an initial 

HIIE bout on subsequent exercise performance and associated neuromuscular and perceptual 

responses. Specifically, the aim of the first study (Chapter 3) was to manipulate hypoxic 

severity during an initial set of repeated sprints (pre-determined number of efforts or “closed-

loop”) and examine the effects on sprint performance, magnitude and aetiology of 

neuromuscular fatigue, as well as exercise-related sensations during a subsequent set of 

repeated sprints performed in normoxia. Since individuals may be able to transiently 

“overcome” impaired neuromuscular function and increase power output during short bouts of 

exercise, Study 2 (Chapter 4) adopted an “open-loop” exercise task. Hypoxic severity was 

manipulated during an initial intermittent cycling exercise task to exhaustion, and subsequent 

cycling performance and neuromuscular responses during an exhaustive intermittent cycling 

exercise in normoxia were assessed. Finally, a prominent finding from Chapter 3 and 4, as well 

as observations during pilot work (of the initial Master research) was the large inter-individual 

variation in response to hypoxia, and consequently exercise performance/tolerance. 

Accordingly, Chapter 5 highlights the large inter-individual variation in response to hypoxia 

when using the conventional FiO2 as a “dose” metric and proposes the use of a clinical index 

that integrates both the external (FiO2) and internal (SpO2) stimuli to characterise individual 

responses to hypoxia as an alternate approach. 

High-intensity exercise in hypoxia exacerbates physiological (Goods et al. 2014) and 

perceptual responses (Amann et al. 2007a). Further, the influence of hypoxia on the CNS 

highlights a possibility that the recovery of central factors may be as important as the recovery 

of peripheral factors for subsequent exercise performance. In Chapter 3, our novel findings 

showed that sprint performance was restored during the subsequent set of repeated sprints 

despite substantial impairments in muscle contractility (~45% decrease in Qtw-pot from baseline). 
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Interestingly, the restoration of sprint performance coincided with the recovery of exercise-

related sensations and quadriceps muscle activation. This finding seems to support the 

aforementioned assumptions that the CNS plays an important role in the recovery of sprint 

performance. That is, the recovery in muscle activation (possibly due to improved exercise-

related sensations) compensated for the impairments in muscle contractility and facilitated 

recovery in sprint performance. However, it should be noted that an association between 

muscle activation patterns and perceptual recovery was not examined. Furthermore, it is 

possible that knowledge of the relatively brief (five, 4-s sprints) exercise bout in Set 2 may 

have consciously or subconsciously influenced the participants’ pacing strategy to “overcome” 

the impaired neuromuscular function and increase power output (Amann 2011; Billaut et al. 

2011).  

Accordingly, to resolve the issue of pacing, Chapter 4 sought to examine how graded hypoxia 

during an initial HIIE bout may influence subsequent performance and neuromuscular 

responses during an exhaustive intermittent cycling exercise. It was observed that the number 

of efforts performed during the second bout was substantially lower than the first bout in SL 

despite 30 min of passive recovery. This suggests that the residual effect of fatigue may only 

become apparent when exercise is performed until exhaustion during an “open-loop” exercise 

task. It was also observed that varying hypoxic severity during exhaustive intermittent cycling 

had minimal influence on subsequent performance (i.e., number of efforts completed) and 

associated neuromuscular fatigue characteristics. This finding did not align with the initial 

hypothesis. That is, prior exhaustive intermittent cycling in severe hypoxia would result in 

earlier and greater down-regulation of muscle recruitment, and consequently hampered 

performance. The reduced mechanical work performed (and possibly smaller extent of muscle 

contractile impairment) would in turn increase subsequent performance and magnitude of 

muscle fatigue in normoxia. However, our results did demonstrate a trend for increased efforts 



 86 

completed (during the second bout) in SH as compared to SL and MH. The large inter-

individual differences in response to hypoxia may explain why statistical significance was not 

reached. Specifically, when exposed to a “fixed FiO2” (~0.12), underlying differences in 

regulatory responses (e.g. hypoxic ventilatory response) (Chapman 2013) may result in varying 

SpO2 (and tissue desaturation) and associated neuromuscular responses across participants. 

Additionally, participants with greater reductions in SpO2 are likely to experience larger 

declines in performance compared with participants with smaller SpO2 fluctuations (Chapman 

et al. 2011). Indeed, the previously proposed hypoxic threshold of FiO2 <0.10 or average SpO2 

response of <75% (Amann et al. 2007b) for a shift toward a predominant CNS hypoxia on 

exercise performance has not been supported by recent findings (Goodall et al. 2012; Mira et 

al. 2020). Accordingly, the conventional method of implementing hypoxia (i.e., based on a 

“fixed FiO2”) requires further considerations. 

In Chapter 5, the usefulness of SpO2 (in contrast to FiO2) as a marker to individualise the 

“hypoxic dose” was discussed. The use of SpO2 is based on the premise that physiological 

outcomes are induced in response to decreased oxygen saturation, rather than FiO2 per se. In 

addition, Chapter 5 proposed using the SpO2 to FiO2 (SF) index to quantify the “hypoxic dose”. 

As mentioned above, determining a hypoxic threshold based on FiO2 generates large variation 

in SpO2 and associated neuromuscular responses. The SF index, which takes into account both 

the internal and external stimuli, may be a useful tool for determining if a hypoxic threshold 

truly exists.   

Collectively, our findings suggest that neuromuscular fatigue during HIIE in hypoxia and 

normoxia was largely peripheral in nature, as evident by the 40-50% reductions in Qtw-pot. The 

effects of prior HIIE at graded hypoxia on subsequent performance and neuromuscular fatigue 

characteristics were limited. It was apparent that the residual effect of fatigue was task 
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dependent. That is, when the subsequent exercise is brief, central factors (possibly associated 

with perceptual responses) may aid in sustaining exercise performance. However, during 

prolonged exercise, an increasing contribution from central motor drive (which ultimately 

plateau or decline) is required to compensate for the progressive peripheral muscle contractile 

impairment. Accordingly, residual fatigue elicited from the previous exercise bout was 

evidenced by an earlier termination of exercise. 

6.2 Practical implications 

High intensity intermittent training is one of the most effective intervention for enhancing 

cardiorespiratory and metabolic functions, and ultimately exercise performance (Buchheit and 

Laursen 2013a). The manipulation of exercise characteristics (e.g. open- vs. closed-loop task, 

sprints interval vs. high intensity interval) and hypoxia severity not only influences acute 

physiological and perceptual responses, and by extension chronic adaptations, but also 

implicates careful daily and weekly training periodisation. In this regard, the findings from 

Study 1 and 2 show that increasing hypoxic severity reduces exercise performance. Specifically, 

severe hypoxia (FiO2 ~0.12) substantially reduces performance (i.e., lower external load) 

during repeated sprints as well as intermittent exhaustive cycling, while incurring relatively 

similar cardiometabolic stimulation (i.e., similar internal load) and neuromuscular fatigue 

characteristics compared to sea-level. The reduced power output at severe hypoxia (observed 

in Study 1) suggest that the physiological adaptations are not as strong (as compared to exercise 

at sea-level)  due to hypoxia-induced reduction in external load (Faiss et al. 2013; Levine 2002). 

Additionally, the large inter-individual variation in response to hypoxia observed from Study 

1 and 2 suggest that certain athletes are able to better maintain performance in hypoxia (similar 

to sea-level), while others perform poorly. In this instance, it is possible that the training quality 

can be optimised (for individuals responding less efficiently) if hypoxia is implemented based 

on an individualised approach. This may include a hypoxic test (prior to training) where 
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athletes are exposed to hypoxia at decreasing FiO2 (e.g. 0.17, 0.15 and 0.13) to assess their 

response to hypoxia. The athlete’s response to hypoxia can be assessed using the SF ratio, and 

hypoxic “dose” can then be fine-tuned during training sessions based on a “SpO2 clamp” 

approach (i.e., by manipulating FiO2) to ensure a more consistent physiological response. 

Elite athletes training twice a day typically perform HIIE towards the end of the training session 

(i.e., in a fatigued state) (Buchheit and Laursen 2013b). As such, understanding the 

neuromuscular load incurred when training in hypoxia becomes important, since any potential 

carry-over effect (fatigue) may negatively affect subsequent training quality. Although our 

original findings show that prior HIIE in hypoxia does not exaggerate neuromuscular fatigue 

or performance reduction, it should be noted that substantial peripheral fatigue (elicited from 

prior HIIE) impedes subsequent exercise performance. As such, it is likely that HIIE in hypoxia 

should be undertaken in an “unfatigued” state for achieving optimal training adaptations.  

6.3 Future directions 

Most studies examining the effects of hypoxia on exercise performance and neuromuscular 

function have implemented hypoxia using a “fixed FiO2” approach (Goodall et al. 2012; 

Amann et al. 2006a). However, a “fixed FiO2” generates individual variations in SpO2, exercise 

performance  and associated neuromuscular response. As such,  future studies investigating the 

effects of graded hypoxia on HIIE should consider defining hypoxia severities based on an 

individual’s SpO2 response.  

Our findings demonstrated that sprint performance recovered after 8 min of passive rest 

(Chapter 2), whereas endurance performance during the exhaustive intermittent cycling 

exercise remained depressed despite 30 min of rest (Chapter 3). This suggests that the rate of 

recovery of sprint performance may be faster than endurance performance. That said, we did 

not monitor the time-course changes in neuromuscular function and exercise performance. 
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Furthermore, while neuromuscular fatigue characteristics were not impacted by the severity of 

hypoxia immediately after exercise, it remains unclear if performing HIIE in hypoxia hampers 

recovery kinetics of neuromuscular function. Accordingly, understanding the time-course 

recovery in peripheral and central factors of fatigue would be valuable for optimising training 

periodization. 

Numerous studies have investigated the influence of locomotor muscle fatigue on performance 

during high intensity exercise in hypoxia based on the hypothesis that peripheral factors of 

fatigue are the predominant determinants of exercise performance (Amann et al. 2006b; Billaut 

et al. 2013). However, active muscle mass such as the respiratory muscles may also contribute 

to fatigue and performance decrements (Amann et al. 2007a). Indeed, elevated work of 

breathing during high intensity exercise in hypoxia contributes to fatigue development and 

performance decrements (Amann et al. 2007a). Additionally, pre-induced respiratory muscle 

fatigue may impair performance (Mador and Acevedo 1991) and breathing patterns (i.e., 

excessive ventilation) (Sliwinski et al. 1996) during subsequent high intensity exercise. That 

said, fatigue development of the respiratory muscles is often assessed based on perceptual 

responses and may not be representative of respiratory muscle function and fatigue status. 

Accordingly, assessments of ventilatory responses and inspiratory muscles via phrenic nerve 

stimulation (Millet et al. 2011) may shed light on the influence of respiratory muscle fatigue 

on HIIE performance in hypoxia and normoxia.  

These studies demonstrated how graded hypoxia during an initial exercise bout may acutely 

influence subsequent exercise performance and associated neuromuscular responses in 

normoxia. Acclimatisation or exercise training in hypoxia may enhance regulatory systems 

(e.g. hypoxic ventilatory response, muscle blood flow and oxygenation) (Twomey et al. 2017; 

Goodall et al. 2014) that may attenuate the magnitude of neuromuscular fatigue during exercise 
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in normoxia. Accordingly, future studies should examine if high intensity training in hypoxia 

induces neuromuscular adaptations (e.g. attenuated central fatigue associated with increased 

corticospinal excitability), and the extent to which these adaptations depend on hypoxic 

severity. In this context, the SF index (i.e., SpO2 to FiO2 ratio) could be used to monitor or 

prescribe hypoxia based on an individualised response to hypoxia. 
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8.2 Literature Review of Proposed Master Research 

1. Introduction 

Short duration, maximal sprints (<10 s) interspersed with brief recovery (<60 s) are an inherent 

characteristic of most team sports (Girard et al. 2011b). Consequently, a substantial decrease 

in performance is inevitable during repeated-sprint exercise (RSE) due to the incomplete 

recovery periods between sprints. Fatigue during RSE is associated to an exercise-induced 

decrease in maximal force production capacity, manifested externally by longer sprint times 

for a given distance (running) (Girard et al. 2015; Perrey et al. 2010) or lower power outputs 

for a given effort duration (cycling) (Girard et al. 2013; Hureau et al. 2016), that is reversible 

with sufficient rest (Gandevia 2001).  

Previous research suggests that underpinning mechanisms contributing to neuromuscular 

fatigue are complex (Amann 2011). This include biochemical changes within the exercising 

muscle (peripheral fatigue) and incomplete neural drive to the active musculature (central 

fatigue) (Amann 2011). This makes the expectation tenable that interventions that can 

upregulate neuromuscular and metabolic regulatory systems may improve fatigue tolerance 

during RSE (Weavil and Amann 2018). Here, recent studies (Aebi et al. 2019; Wiggins et al. 

2019) have explored whether exposure to a pre-conditioning stimulus prior to RSE may confer 

subsequent protection (to a similar stress) or acutely enhance repeated-sprint ability (RSA).  

One pre-conditioning stimulus is intermittent hypoxia (IH). IH is characterized by repeated 

intervals of transient reduction in oxygen availability (systemic hypoxia) interspersed with 

normoxic recovery. Promising functional benefits including increased cortical transmission 

(Christiansen et al. 2018) and ankle flexion strength (Trumbower et al. 2012) have been 

reported with moderate-to-severe acute IH exposure (5-15 hypoxia/normoxia cycles of 1-5 
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min). Whether such favorable physiological alterations can be harnessed to enhance RSA 

remains unclear.  

The engagement in warm-up activities prior to exercise as a ‘physiological primer’ is almost 

universal to every athlete. Reportedly, a prior high intensity (i.e., above lactate threshold) 

exercise bout increases muscle oxygen utilization during a subsequent high intensity exercise 

bout (DeLorey et al. 2007). Arguably, it is possible that IH exposure and whole body exercise 

(cycling) when combined may act as an effective pre-conditioning modality by inducing more 

favorable adjustments in muscle hemodynamic (e.g. increased muscle flow and oxygen 

availability) compared to exercise (in normoxia) or IH (passive condition) interventions alone. 

However, the application of these strategies has not been previously explored in RSE.  

The aim of this literature review is to provide evidence for the potential benefits of IH exposure 

and/or prior exercise as pre-conditioning strategies to improve subsequent RSA.  

2. Determinants of repeated-sprint exercise performance 

2.1 Central factors 

During exercise involving maximal efforts, failure to fully activate the exercising musculature 

[as assessed indirectly by electromyogram (EMG)] would likely reduce force production and 

consequently decrease RSE performance (Girard et al. 2011b). When fatigue is mild (<10% 

sprint decrement score), studies suggest that neural activation during RSE can be sustained 

(Girard et al. 2011b). However, with substantial fatigue (>10%), a concomitant decrease in 

power and amplitude of EMG activity has been consistently observed (Perrey et al. 2010; 

Girard et al. 2013). Taken together, when substantial fatigue is incurred during RSE, a failure 

to fully activate exercising musculature may contribute to the decrease in RSE performance. A 

proposed explanation is that an accumulation of exercise-induced intramuscular metabolites 
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[e.g. hydrogen ions (H+), inorganic phosphate (Pi)] would increase group III/IV-mediated 

afferent feedback to the central nervous system (CNS) (Amann 2011). Consequently, 

descending neural drive to the active musculature is regulated to limit the development of 

peripheral fatigue beyond an ‘individual critical threshold’ (i.e. long-lasting harmful 

consequences) (Amann 2011). While it may seem evident that the decreased power output 

during RSE is a consequence of reduced EMG activity, whether the decreased power is also a 

cause of reduced EMG activity remains unclear.   

2.2 Peripheral factors 

The peripheral factors limiting sprint performance originate from the metabolic pathways 

supporting RSE, implicating substrate availability and metabolites accumulation (Girard et al. 

2011b). Phosphocreatine (PCr) degradation predominates in the contribution of energy supply 

(i.e. adenosine triphosphate [ATP]) in short maximal bouts of exercise (Gaitanos et al. 1993). 

Furthermore, due to the brief recovery intervals  (usually not exceeding 60 s) during RSE, PCr 

stores typically do not restore fully before the onset of the following sprint (Gaitanos et al. 

1993). Observations of a similar recovery time course of PCr and power output suggest that 

RSE performance is primarily limited by PCr availability (Mendez-Villanueva et al. 2012). 

Taken together, it is possible that sprint performance can be better maintained with a faster rate 

of PCr resynthesis during recovery intervals between sprints. 

When sprinting repetitively, an increasing aerobic contribution as much as 40% of the total 

ATP supply is recorded during the final sprint of a 5 x 6-s repeated sprint bout (McGawley and 

Bishop 2015). As such, previous studies have highlighted the importance of oxidative 

phosphorylation in modulating PCr resynthesis (Haseler et al. 1999), implicating muscle 

oxygen availability. In this regard, muscle oxygen availability during RSE would likely dictate 
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the relative contribution of oxidative metabolism to energy supply, and consequently, RSE 

performance.  

Muscle hemodynamic status during exercise (i.e. muscle blood flow and oxygenation) can be 

non-invasively estimated using near-infrared spectroscopy technique (NIRS). Briefly, the 

combined concentration changes in oxy- and deoxy-haemoglobin can be used to infer changes 

in tissue oxygenation and oxygen extraction capacity, respectively. Additionally, the 

summation of oxy- and deoxy-haemoglobin values (i.e., total haemoglobin concentration) 

provides an estimate of changes in muscle blood flow. A concurrent decrease in sprint 

performance and muscle oxygenation have been observed during RSE (Racinais et al. 2007; 

Smith and Billaut 2010). In particular, Smith and Billaut (2010) reported an earlier and larger 

decrement in muscle oxygenation and sprint performance. 

Subsequent studies (Dupont et al. 2010; Dupont et al. 2005) have also evaluated the influence 

of oxygen uptake (VO2) kinetics (i.e. the rate at which VO2 adjusts to the new energy demands 

with the onset of exercise) on muscle fatigue development and RSE performance. Arguably, 

the rate of VO2 would influence the magnitude of the ‘oxygen deficit’, and thereby 

perturbations to the muscle homeostasis (Jones et al. 2003). In partial support, Dupont et al. 

(Dupont et al. 2005) reported a significant correlation between VO2 kinetics (i.e., time constant 

of the primary phase; τ1) and the relative decrease in speed during fifteen 40-m sprints with 25 

s of recovery between sprints (r = 0.8, p<0.01). 

3. Pre-conditioning 

Pre-conditioning is a procedure whereby repeated bouts of potentially deleterious (but non-

lethal) stimulus are applied to a target tissue (Dirnagl et al. 2009; Franz et al. 2017). 

Consequently, the conditioned target tissue develops tolerance or resistance to a similar 
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noxious stimulus that is beyond the threshold of damage (Dirnagl et al. 2009; Franz et al. 2017). 

An example is the use of ischemic pre-conditioning (IPC), a technique whereby brief periods 

of ischemia are administered to a limb to increase the muscle tissue’s tolerance to subsequent 

ischemic stress. It is purported that IPC improves muscle blood flow (Bailey et al. 2012) and 

tissue oxygen extraction (Wiggins et al. 2019), while also reducing blood lactate accumulation 

(Bailey et al. 2012). Despite increased oxygen extraction following IPC, a recent study 

investigating the effect of IPC on RSE, however, showed no difference in sprint performance 

(Aebi et al. 2019).  

Another possible pre-conditioning stimulus is the use of IH. Whilst both IH and IPC induce 

physiological stress by reducing oxygen concentration in tissues, a distinct feature of IH is its 

systemic effect, implicating physiological responses from multiple regulatory systems (e.g. 

cardiovascular and nervous systems). The following paragraphs discuss the effects of IH and 

prior exercise as pre-conditioning strategies for subsequent exercise performance. 

3.1 Intermittent hypoxia – dose effect 

IH protocols are characterized by repeated episodes of exposure to low oxygen (i.e., hypoxia) 

interspersed with intervals of normal air breathing (Navarrete-Opazo and Mitchell 2014b). 

Currently, there is no consensus regarding best practice when implementing IH protocols. In 

the literature, protocols vary widely in terms of severity of hypoxia (frequently reported as the 

fraction of inspired oxygen, i.e. FiO2), duration of hypoxia within episodes, number of 

hypoxia/reoxygenation cycles and regulation of accompanying physiological responses (e.g. 

PCO2, acidosis/alkalosis) (Navarrete-Opazo and Mitchell 2014b). Specifically, the severity of 

hypoxia typically vary between 2% to 16% O2, with the duration and number of 

hypoxia/reoxygenation cycles of hypoxia ranging from 30 s to 12 h and 3 to 2400 cycles, 
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respectively (Navarrete-Opazo and Mitchell 2014b). Importantly, the manipulation of these 

factors determines the treatment ‘dose’ and therefore physiological consequences of IH.  

Most studies have typically refrained from protocols of severe IH (<8% O2) with high number 

of cycles, known to induce discomforts (e.g. dizziness) (Navarrete-Opazo and Mitchell 2014b). 

For instance, high dose of IH (e.g. 2-8% O2 and 40-2400 cycles/day) causes profound 

dysregulations in multiple systems including systemic hypertension and increased oxidative 

stress and systemic inflammation (Lavie 2005; Navarrete-Opazo and Mitchell 2014b). In 

contrast, mounting evidence indicates that a moderate dose of IH (9-12% O2 and  <15 

cycles/day) may result in beneficial health outcomes (Navarrete-Opazo and Mitchell 2014b). 

This includes reduced arterial hypertension (Serebrovskaya et al. 2008), increased respiratory 

control (i.e., hypercapnic ventilatory sensitivity) in patients with chronic obstructive 

pulmonary disease (Haider et al. 2009) and facilitated recovery of respiratory and non-

respiratory motor functions (Trumbower et al. 2012; Lovett-Barr et al. 2012). Importantly, 

studies using low-moderate dose of IH (e.g. eliciting arterial oxygen saturation of ~80% for 

1h/day) did not report any adverse effects such as systemic inflammation (Querido et al. 2012). 

Taken together, current evidence indicates that low dose IH interventions are safe and likely 

effective therapeutic interventions for enhancing physiological functions and improving 

symptoms of numerous clinical disorders. 

3.1.1 Effects of IH on neuromuscular responses – neural plasticity 

Neuroplasticity is defined as a long lasting functional change in the neural system as a result 

of prior experience such as injury, neural activity and physiological stress (hypoxia) (Mitchell 

and Johnson 2003). In this instance, one neuroplasticity model that is often studied is phrenic 

long term facilitation, defined as a sustained increase in phrenic nerve activity after exposure 

to IH (Hayashi et al. 1993). Hayashi et al. (1993) first demonstrated that IH exposure increased 
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ventilatory activity and its neural correlates (i.e., phrenic neural discharge), which was 

sustained for at least 30 min after the IH stimulus was removed. Subsequent studies have shown 

that the IH-induced long term facilitation requires activation of the spinal serotonin receptors 

(Gonzalez-Rothi et al. 2015). It was further hypothesized that the induced plasticity can also 

be manifested in other non-respiratory motor systems given that hypoxia activates raphe 

serotonergic neurons, which are projected throughout the spinal cord. This includes non-

respiratory regions where most motoneurons express the same serotonin receptors (Gonzalez-

Rothi et al. 2015). The lasting neural changes induced by IH raises the possibility that such a 

strategy can be used to attenuate the impact of neuromuscular fatigue development during RSE 

performance.  

It was first demonstrated by Trumbower et al. (2012) that patients with spinal cord injuries 

(SCI) who received a single IH presentation (15 cycles of 1 min 9% O2 with 1 min of ambient 

air breathing) reported increased ankle plantar flexor strength and gastrocnemius EMG activity 

of ~80% and ~40% (as compared to baseline), respectively. Increase in muscle strength was 

maintained for at least 30 min after IH exposure leading these authors to suggest that the 

observed functional improvement implied underlying IH-induced neural plasticity. Current 

evidence suggests that the recovery of motor function is a result of enhanced synaptic strength, 

motor excitability and consequently improved muscle activation (Trumbower et al. 2012). This 

claim is supported by Christiansen et al. (2018) who demonstrated that an acute IH session (15 

cycles of 1 min 9% O2 with 1 min of ambient air breathing) resulted in an increase in neural 

transmission in the corticospinal pathway (i.e. increased amplitude of cortically evoked motor 

evoked potentials), which was sustained for 75 min. Collectively, these results would indicate 

that IH is a promising therapeutic intervention for improving muscle functions as well as 

driving neural plasticity. 
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In a subsequent study by Hayes et al. (2014), it was demonstrated that daily IH exposure (5 

consecutive days of 15 cycles of 1 min 9% O2 with 1 min of ambient air breathing) in SCI 

patients improved 10-m and 6-min walk abilities. Importantly, greater improvements in 

walking speed and endurance were observed when IH was followed by a 30-min walking bout. 

This reinforces that functional improvements (i.e., walking) are task-dependent (i.e., dependent 

on the specificities of the training regimen). In other words, the observed plasticity (i.e. long 

lasting neural and functional changes) to the walking task was a result of repetitive training, 

which actively engaged the neural circuits involved in walking (Wolpaw and Tennissen 2001; 

Kleim and Jones 2008). 

Taken together, these studies suggest that prior IH exposure improves efficiency in neural 

transmission along the corticospinal pathways that consequently enhances muscle activation 

patterns. Yet, to maximize performance of more complex motor skills, task specific training 

seems to be crucial in eliciting plasticity to the specific neural circuits. In the context of RSE, 

it is possible (but unknown) that prior IH exposure may induce favorable neural responses 

helping to mitigate the decrease in neural efficiency (as aforementioned) during sprints 

repetition.  

3.2 Prior exercise  

The performance of warm-up activities prior to exercise performance is a common and 

necessary routine for athletes in most sports.  In this instance, warm-up activities act as a 

‘physiological primer’ to ensure optimal performance. However, it is unclear how a prior 

exercise may alter the associated physiological mechanism(s) that influence muscle VO2 

response during subsequent bout of exercise.  

During the early phases of exercise, PCr degradation accounts for most of the energy demands 

(Jones and Burnley 2009). Consequently, an ‘oxygen deficit’ is produced (Jones and Burnley 
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2009). The term ‘oxygen deficit’ is defined as the difference between oxygen uptake during 

the initial phase and an equal time period after steady state has been achieved (Medbo et al. 

1988). Accordingly, the magnitude of ‘oxygen deficit’ is used to estimate the extent to which 

ATP is produced anaerobically (Medbo et al. 1988). A faster VO2 response reduces the 

magnitude of ‘oxygen deficit’ and hence ATP supplied anaerobically. As a result, there is a 

reduced accumulation of fatigue-associated metabolites including Pi and H+ stemming from 

PCr degradation and glycolysis, respectively. The extent of metabolites accumulation would 

then influence exercise tolerance (Jones and Burnley 2009). For instance, increases in H+ and 

Pi have been associated to impaired contractile properties of the exercising muscle (Allen et al. 

2008). During RSE, this may explain why larger performance decrement typically occurs with 

an increasing number of sprint repetitions (Girard et al. 2011b). The following paragraphs 

attempt to discuss the effects of prior exercise on the gas exchange and metabolic responses 

during subsequent exercise and the potential mechanisms underpinning these effects.  

3.2.1 Oxygen uptake response to exercise – VO2 kinetics 

During the onset of exercise, the increase in ATP turnover is supported by acceleration in PCr 

degradation and glycolytic rate (Jones and Burnley 2009). Consequently, changes in the muscle 

phosphorylation potential [increased adenosine diphosphate (ADP) and Pi] stimulate an 

increase in oxidative phosphorylation rate, and hence VO2 response (Jones and Burnley 2009). 

In this instance, the extent of contribution from oxidative phosphorylation would thus 

determine the magnitude of ‘oxygen deficit’ and perturbations to muscle homeostasis (Jones 

and Burnley 2009). 

During moderate exercise (i.e., work rate that does not induce significant increase in blood 

lactate), the VO2 response can be characterized by a mono-exponential curve with three distinct 

phases. Phase I represents the early increase in VO2 that is mainly attributed to an increase in 
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cardiac output and pulmonary blood flow (Whipp et al. 1982; Xu and Rhodes 1999). Phase II 

(primary phase) is described as the exponential increase in VO2 to steady state level (i.e., Phase 

III) and is typically used to infer the rate of VO2 in the muscles (Xu and Rhodes 1999; Whipp 

et al. 1982). During exercise at higher intensities (e.g. 70-80% VO2max), the VO2 response is 

supplemented by a delayed onset ‘slow component’, elevating VO2 above values expected for 

the given work rate and delaying the attainment of steady-state values (Jones and Burnley 2009; 

Xu and Rhodes 1999). The slow component appears to coincide with the onset of accumulation 

of blood lactate and indicates that an increasing energy turnover is required to maintain the 

same work rate (Jones et al. 2003; Xu and Rhodes 1999). As such, the ‘slow component’ has 

been linked to the development of muscle fatigue (Jones and Burnley 2009). In this instance, 

increasing the rate of VO2 response and/or attenuating the ‘slow component’ would likely lead 

to improved exercise tolerance and RSE performance. 

3.2.2 Effects of prior exercise on VO2 kinetics 

Results from several studies suggest that prior exercise, when performed at sufficiently high 

intensity (e.g. above lactate threshold), significantly accelerates VO2 kinetics during 

performance of a subsequent high intensity exercise (Gerbino et al. 1996; Rossiter et al. 2001). 

Gerbino et al. (1996) demonstrated that participants who performed prior heavy intensity 

exercise exhibited accelerated VO2 kinetics during subsequent heavy exercise.  Importantly, a 

faster VO2 kinetics implied a greater ATP contribution from oxidation metabolism (i.e. reduced 

reliance on non-oxidative metabolism), a smaller ‘oxygen deficit’, and consequently a reduced 

increase in blood lactate concentration (i.e., muscle disturbances) during the second exercise 

bout. In support, a study from Rossiter et al. (2001) showed that a faster phase II VO2 kinetics 

facilitated a ~10% ‘sparing’ in intramuscular PCr concentration, as assessed by magnetic 

resonance spectroscopy. Taken together, current evidence suggests that prior exercise 

accelerates VO2 kinetics during a subsequent bout of exercise. Potentially, an accelerated VO2 
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kinetics during RSE may reduce reliance on anaerobic contributions and thereby, attenuate an 

increase of fatigue-associated metabolites. 

3.3 Potential mediators that accelerates VO2 kinetics 

3.3.1 Muscle lactic acidosis 

On the assumption that improved muscle perfusion accelerates VO2 kinetics, it was initially 

proposed that prior exercise should be of a sufficiently high intensity to facilitate acidosis-

induced vasodilation (Gerbino et al. 1996; Macdonald et al. 1997). Furthermore, a rightward 

shift in the haemoglobin dissociation curve as a result of metabolic acidosis (i.e., Bohr effect) 

might also increase oxygen availability of the active musculature (Gerbino et al. 1996). 

However, isolated studies (Koppo and Bouckaert 2000; Koppo and Bouckaert 2002) showing 

that prior moderate exercise (that does not significantly increase blood lactate) may also reduce 

the VO2 ‘slow component’ amplitude suggest that metabolic acidosis may not be necessary to 

speed the VO2 response (Campbell-O'Sullivan et al. 2002). 

3.3.1 Improved muscle oxygen availability 

Previous studies suggest that the performance of a prior exercise increases muscle blood flow 

and oxygenation (as assessed by NIRS) during the subsequent exercise bout (Fukuba et al. 

2002; DeLorey et al. 2007). For instance, Fukuba et al. (2002) showed that prior leg cycling 

resulted in a reduction of the ‘slow component’ concomitant with increased muscle blood flow 

at the onset of the second bout of exercise. DeLorey et al. (2007) extended these findings by 

demonstrating that prior high intensity knee extension exercise increased oxygen extraction 

(~20%) and muscle blood flow during a subsequent exercise bout. Taken together, prior high 

intensity exercise increases oxygen extraction and/or induces a better matching of oxygen 

availability and demand at the onset of subsequent exercise. Consequently, the faster VO2 

kinetics results in the development of a smaller VO2 ‘slow component’ amplitude. 
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3.3.2 Changes in motor unit recruitment patterns 

It is generally accepted that, compared to type II fibers (i.e., fast twitch), type I fibers (i.e., slow 

twitch) contain a larger number of oxidative enzymes with large capacity for aerobic 

metabolism and have high resistance to fatigue. In this instance, Barstow et al. (1996) reported 

that the percentage of type I fibers is negatively correlated to the VO2 slow component 

amplitude and positively correlated to the fast component during high intensity exercise. Prior 

exercise may influence motor unit recruitment patterns during the subsequent exercise bout, 

contributing to alterations in VO2 kinetics (Burnley et al. 2000). For instance, prior high 

intensity exercise may induce an increase in muscle fibers recruitment that better represent the 

workload demands at the onset of the subsequent bout. Hence, there is reduced requirements 

to recruit more muscle fibers as exercise proceeds so that a smaller ‘slow component’ is the 

result of an increased in amplitude of the phase II VO2 response (Jones et al. 2003). 

By recording integrated electromyogram (iEMG) of the gluteus maximus, vastus lateralis and 

vastus medialis muscles during two bouts of exercise, Burnley et al. (2002) demonstrated that 

previous high intensity exercise (i.e. above lactate threshold)  resulted in a 19% increase in 

iEMG during the first 2 min of the subsequent bout, with reduced motor unit recruitment during 

the latter stage. In this instance, the increase in iEMG was accompanied by an increase in 

amplitude of phase II VO2 kinetics. Accordingly, the faster VO2 response during the 

subsequent exercise bout was likely facilitated by an increase in oxygen extraction rate due to 

the increase in motor unit recruitment.  

In summary, evidence suggests that the mediators accelerating VO2 response tend to share 

similar pathways of increased muscle blood and/or oxygen extraction rate. In this instance, the 

performance of prior high intensity exercise appears to be a necessary stimulus to accelerate 

VO2 kinetics. This is facilitated by acidosis-induced vasodilation and greater oxygen extraction 
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as a result of increased motor unit recruitment. Yet given an athlete’s finite exercise capacity 

(e.g. limitations in energy supply), whether such strategies (i.e. prior high intensity exercise) 

are meaningful for improving subsequent intense exercise performance (i.e., RSE) requires 

further evaluation. Alternatively, it is possible that an additional physiological stimulus (e.g. 

hypoxia) when paired with lower intensity exercise may provide similar changes in muscle 

blood flow and/or oxygen extraction rate. For example, increased muscle blood flow can also 

be induced by other vasodilatory factors (e.g. nitric oxide) that is triggered when muscle 

oxygen homeostasis is challenged (Verges et al. 2015).  

4. Conclusion 

The use of pre-conditioning offers a practical strategy in the ‘real world’ sport settings. 

Reportedly, passive moderate IH (e.g. 10-15% O2, 5-15 cycles) produces functional health 

benefits. Specifically, IH can improve neural transmission, facilitating increase in ankle plantar 

flexion strength and walking performance in patients with spinal cord injuries. In the context 

of RSE, it is possible that prior IH exposure may induce favorable neural responses that may 

help mitigate the decrease in neural efficiency as neuromuscular fatigue develops.  

The performance of prior exercise as a ‘physiological primer’ for subsequent exercise 

performance is universal to most athletes. Numerous studies suggest that prior exercise when 

performed at high intensity significantly accelerates the VO2 response during a subsequent 

exercise bout. Consequently, the faster VO2 response results in a smaller magnitude of ‘oxygen 

deficit’, and therefore, reduced perturbations to the muscle homeostasis. However, the 

accompanying fatigue with high intensity exercise means that such a strategy may not be 

applicable for RSE. Alternatively, by combining a hypoxic stimulus with lower intensity 

exercise, it is possible that similar hemodynamic responses (e.g. increase muscle blood flow), 

as observed with high intensity exercise, can be achieved. Taken together, the use of IH and 
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exercise may therefore facilitate both central and peripheral adjustments that enhance force 

production as well as better maintenance of performance during RSE (as compared to one 

stimulus alone). However, application of these strategies has never been tested before to 

eventually improve RSE performance. Importantly, understanding the separate and combined 

physiological effects of IH and prior exercise may provide further information on how pre-

conditioning strategies may be optimized for maximizing RSE performance.  

(3605 words)
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Figure 8.1: A summary of central and peripheral factors which may be upregulated by 
pre-conditioning (i.e., intermittent hypoxia with prior exercise).  
 
PCr, Phosphocreatine.  
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8.3 Research Proposal of Proposed Master Research 

Introduction 

Repeated-sprint exercise (RSE) induces biochemical disturbances within the exercising 

muscles (peripheral fatigue) and incomplete neural drive to active musculature (central fatigue) 

(Amann 2011). Additionally, the increasing dependence on aerobic energy-yielding pathways 

when short/incomplete recovery periods occur between sprints highlights the importance of 

muscle tissue reoxygenation capacity (Billaut and Buchheit 2013; McGawley and Bishop 

2015).  

Exposure to a physiologic stress prior to RSE (i.e. pre-conditioning) may confer subsequent 

protection (to a similar stress) or acutely enhance performance (Aebi et al. 2019; Wiggins et 

al. 2019). Hypothetically, pre-conditioning strategies that acutely enhance neuromuscular and 

metabolic regulatory systems may improve RSE performance (Weavil and Amann 2018).  

Intermittent hypoxia (IH) is characterised by repeated episodes of exposure to low oxygen (i.e. 

hypoxia) interspersed with intervals of normoxia (Navarrete-Opazo and Mitchell 2014b). 

Factors including the pattern, duration and severity of hypoxia determine the nature/magnitude 

of accompanying physiological adjustments and ultimately the effectiveness of IH (Navarrete-

Opazo and Mitchell 2014b). Moderate-to-severe acute IH exposure (5-15 hypoxia/normoxia 

cycles of 1-5 min) increases corticospinal drive (Christiansen et al. 2018) and muscle strength 

(Trumbower et al. 2012). However, whether these IH-induced responses can be harnessed to 

improve RSE performance remain undetermined.  

The engagement of warm-up activities as a ‘physiological primer’ is almost universal to 

athletes. Reportedly, a prior heavy intensity (i.e. above lactate threshold) exercise bout 

increases muscle oxygen utilisation, detected by near-infrared spectroscopy (NIRS), during 
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subsequent exercise (DeLorey et al. 2007). Whilst most RSE studies have incorporated various 

forms of warm-up protocols, surprisingly, the underlying physiological responses and/or 

effectiveness of warm-up have received little attention. 

Collectively, it is possible that IH and whole body exercise (cycling) when combined, may act 

as a more effective pre-conditioning by inducing favourable adjustments in muscle 

haemodynamic (e.g. increased muscle flow) and neuromuscular responses compared to 

exercise (in normoxia) or IH (passive condition) interventions alone.  

Research question 

To determine the separate and combined effects of IH and exercise on RSE performance and 

accompanying neuromuscular and muscle haemodynamic responses.  

Hypothesis 

The combination of two stressors (IH and exercise) will induce a greater challenge to 

homeostasis, in the form of metabolic (muscle oxygenation; blood lactate) and neuromuscular 

(muscle activation) functions, leading to improved RSE performance in reference to each 

stressor alone.  

Methods 

Participants 

The sample size was determined using the G*Power software. Sixteen participants will provide 

sufficient power (0.8) to detect a small-moderate (f = 0.15) effect of the intervention at α = 

0.05. Due to the short time frame of the study, we do not anticipate any dropouts. Consequently, 

sixteen moderately trained male, aged between 18 to 40 years old will be recruited from the 

university in this study. Before commencement of the study, participants will be informed of 

the risks associated with participation. They will also be required to give their written informed 
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consent. This study will be approved by the Research Ethics Committee of the Murdoch 

University. 

Experimental design  

A randomised, crossover, counterbalanced and single-blind design will be used. Participants 

will visit the lab on five occasions, consisting of a familiarisation session and four experimental 

sessions, all separated by at least 4-7 days, conducted at the same time of day (± 2 hours). Each 

experimental session will include a 30-min pre-conditioning intervention where participants 

will be exposed to IH or normoxia at rest (passive) or during exercise (active), followed by a 

warm-up and a repeated-sprint cycling protocol. The four pre-conditioning interventions will 

be: 1) passive/hypoxia (P+H), 2) passive/normoxia (P+N), 3) active/hypoxia (A+H) and 4) 

active/normoxia (A+N). Participants will be instructed to avoid vigorous physical activity, 

alcohol and caffeine 24 h before the experimental sessions. Further, they will be asked to record 

and maintain their normal diet on the day preceding each experimental session. 

Familiarisation 

During the preliminary visit, participants will be habituated to breathing through the mask, 

albeit with the hypoxic system turned off (i.e. ambient air) to ensure participants remain blinded 

to the condition. They will also perform three to four maximal single cycle sprints on an air-

braked cycle ergometer (Wattbike Nottingham, UK), during which optimal resistance will be 

determined (i.e. air resistance that would achieve maximal power output). Seat and handlebar 

configurations will be recorded and replicated for the subsequent experimental sessions. 

Additionally, an incremental test will be performed on an electro-magnetically braked cycle 

ergometer (Velotron, Racermate, USA) in normoxia. This test will start with 3 min of baseline 

cycling at 50W, after which work rate will be increased by 25W every minute until volitional 

exhaustion. Pulmonary gas exchanges will be measured breath-by-breath, while VO2peak and 



 135 

ventilatory threshold 1 (VT1) and 2 (VT2) will be determined. All subsequent exercise tests 

will be performed using the Wattbike cycle ergometer.  

Participants will be familiarised with the various modified Borg CR10 scales. Participants will 

be instructed that the “sense of effort” scale is used to set the level of subjective awareness of 

mental or physical effort expended during the exercise task (Abbiss et al. 2015) and will be 

assessed from the question: ‘How hard are you trying?’ (with 0  = “no effort” to 10  = 

“maximum effort”). Sense of effort as well as rating of overall perceived exertion, perceived 

lower-limb heaviness, and perceived difficulty breathing, will be recorded using a modified 

Borg CR10 scales (Christian et al. 2014a). Specifically, the questions: “What is your overall 

perceived exertion?”, “How difficult does it feel to breathe?” and “How heavy do your legs 

feel?” will be printed above modified Borg CR10 scales (i.e., with 0 = “nothing at all” to 10 

= “maximal”) and visible to participants at all times (Christian et al. 2014a). 

Pre-conditioning 

Participants will be fitted with a facemask connected to a portable hypoxic generator and will 

breath either normoxic (N; FiO2 = 20.9%) or hypoxic (H; FiO2 = 11.0%, equivalent to ~4500m 

above sea level) air. The hypoxic exposure consists of 6 episodes of alternating 3-min bouts of 

hypoxia with 2-min bouts of normoxia exposure. During the passive conditions, participants 

will seat quietly on the cycle ergometer. During the active pre-conditioning treatment, 

participants will perform a low intensity cycling exercise at power corresponding to 30% 

VO2peak at a cadence of ~80 rpm throughout the IH exposure period (i.e. 30 min).  

Warm-up 

Participants will perform a standardised warm up 5 min after the pre-conditioning session. The 

warm-up will commence with two 6-min cycling trials: one at a constant power output 

corresponding to 15% below the VT1 and one at 95% of VT2, with 8 min passive recovery in 
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between. After 3 min of passive rest, participants will perform five, 5-s submaximal cycling 

bouts at incremental intensity (~40%, 50%, 60%, 70% and 80% of perceived maximal effort 

with 30-s rest). Following another 3 min of passive rest, participants will perform two 5-s 

maximal sprint bout with each bout separated by 2 min of passive recovery for the 

determination of the criterion sprint score. 

Repeated-sprint protocol 

The RSE protocol will consist of four sets of five, 5-s “all-out” sprint efforts, interspersed with 

25 s of passive recovery between sprints and 3 min of passive recovery between sets. To 

prevent pacing, participants will be required to produce a power output of at least 95% of the 

criterion sprint score on the first sprint of Set 1. If this criterion is not reached, participants will 

be required to rest for a further 2 min before restarting Set 1. All sprints will be initiated from 

a similar initial pedal position (i.e. front pedal crank approximately 45° to the horizontal). 

Strong verbal encouragements will be provided throughout the sprints. Water will be provided 

ad libitum throughout the protocol.  

 

Figure 8.2: Schematic representation of the repeated sprint cycling protocol.  

Physiological responses 

Heart rate (HR) response will be continuously monitored with a HR monitor (Polar 810i, Polar, 

Finland). Additionally, HR values will be averaged over the final 30 s of each hypoxic and 
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normoxic phase during the pre-conditioning session. During the RSE, HR response will be 

recorded at exactly 10 s following each 5-s sprint bout. 

The arterial oxygen saturation (SpO2) will be recorded from a finger probe at 5-s intervals with 

an oximeter (8000Q2 Sensor, Nonin Medical Inc., The Netherlands). Measurements will be 

analysed at the final 30 s of each hypoxic and normoxic phase during the pre-conditioning 

phase. Additionally, during RSE, SpO2 will be recorded at exactly 10 s following each 5-s 

sprint bout.  

Near-infrared spectroscopy 

Vastus lateralis tissue oxygenation will be monitored continuously with a NIRS probe 

(Portalite, Artinis Medical System, Netherlands). The probe will be secured on the skin surface 

of the right vastus lateralis with tape and then covered with an optically dense strap to minimize 

movement and intrusion of extraneous light. Changes in oxygenated haemoglobin (O2Hb), 

deoxygenated haemoglobin (HHb) and total haemoglobin (tHb = O2Hb + HHB) will be 

assessed together with tissue saturation index (TSI; %) expressed as (O2Hb/tHb) × 100. Test-

retest reliability [Coefficient of variance (CV): ~4%] of NIRS-derived parameters (e.g. tHb) 

during rest/exercise has been previously reported (Lucero et al. 2018). 

Ventilatory and pulmonary gas exchanges 

Pulmonary gas exchanges will be measured breath-by-breath during the two bouts of constant 

load cycling (i.e. warm up). Participants will wear a facemask connected to an automated 

system (TrueOne, Parvomedics) for the measurement of pulmonary gas variables. During the 

6-min warm-up cycling, VO2 response will be modelled using non-linear least-squares 

regression techniques using previously described methods (Barstow and Molé 1991). For the 

first 6-min exercise bout (i.e. 15% below VT1), phase II VO2 kinetics will be plotted using a 
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single-exponential model (Equation 1). For the second 6-min bout (i.e. 95% of VT2), a double-

exponential curve (Equation 2) model will be used: 

VO2 (t) = VO2 (b) + A1[1 – e – (t – TD1)/ τ1] [Equation 1],  

VO2 (t) = VO2 (b) + A1[1 – e – (t – TD1)/ τ1] + A2[1 – e – (t – TD2)/ τ2] [Equation 2], 

where A1 and A2 represent the asymptote amplitudes for the exponential curves; , τ1 and τ2  are 

the time constants and TD1 and TD2 represent the time delays. The mean response time (MRT) 

will be determined for each exercise. MRT is defined as the time it takes to reach ~63% of the 

total amplitude of the response from baseline to the final plateau value (Whipp and Ward 1990). 

The NIRS-derived HHb (as an indicator muscle oxygen extraction) will also be fitted with the 

exponentials model of the form in Equation 1 and 2. Additionally, cycling economy during the 

6 min warm-up cycling will be calculated using the following equation: 

Cycling economy = Workload / VO2  [Equation 3],  

with VO2 measured in l/min. 

Blood lactate concentration ([La]). A capillary blood sample will be taken from the fingertip 

and analysed for [La] with a lactate analyser (Lactate Pro, Arkray, Tokyo, Japan) before the 

pre-conditioning session, immediately before and after each bout of constant load cycling 

(during warm-up), immediately before and 2 min after the first set of sprints, and 2 min after 

the completion of the last sprint set. The test-retest reliability (CV: ~5%) and validity (CV: 

~9%) of the Lactate Pro analyser has been previously reported for [La] value between 1.0 to 

18.0 mmol/L (Tanner et al. 2010). 

Perceptual responses. Perceptual ratings of breathing difficulty will be obtained after each 

cycle during the pre-conditioning. During the RSE, participants’ perceptual ratings of breathing 
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difficulty, limb discomfort and overall perceived discomfort (i.e. RPE) will be recorded before 

the start and 10 s after each set of sprints using a modified Borg CR10 scale. 

Repeated-sprint exercise: Peak and mean power output (W) will be determined for each sprint. 

Mean values for each set of sprints will then be calculated for each condition. Sprint decrement 

score will be calculated using the formula: (Sprint decrement score (%) = [1 – ((S1 + S2 + S3 

+ S4 + S5)/(Sbest × 5)) × 100], where S corresponds to sprint performance (e.g. mean power 

output) and Sbest is the best sprint time (usually the first repetition). 

Electromyography 

Surface EMG of the right vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) 

muscles will be recorded using bipolar Ag/AgCL electrodes. The root mean square (RMS) 

EMG activity for each of the muscle will be calculated. The average sum of the VL, VM and 

RF will be used as an index of overall quadriceps neural drive (i.e. quadriceps RMS EMG 

activity). RMS EMG activity will be expressed as a percentage of the maximal values achieved 

during the initial sprint bout (i.e. Sprint 1) in each condition.  

 

Figure 8.3: Schematic representation of an experimental session including a pre-conditioning 
session, a warm-up and a repeated-sprint exercise.  
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Statistical analysis 

Value will be expressed as mean ± standard deviation (SD). For the pre-conditioning phase, a 

one-way repeated measures analysis of variance [ANOVA; 4 Conditions (P+H, P+N, A+H, 

A+N)] will be applied on single (i.e., averaged) dependent variables (i.e. SpO2, HR and 

perceptual variables). Two-way repeated measures ANOVAs [Time (Set 1, 2, 3, and 4) × 

Condition (P+H, P+N, A+H, A+N)] will be used to compare sprint-related variables. To assess 

assumptions of variance, Mauchly’s test of sphericity will be performed for all ANOVA 

analysis. A Greenhouse-Geisser correction will be performed to adjust the degree of freedom 

if an assumption was violated, while post hoc pairwise-comparisons with Bonferroni-adjusted 

p-values will be performed if a significant main effect was observed. For each ANOVA, partial 

eta-squared calculation will be use as a measure of effect size. All statistical calculations will 

be performed with the SPSS software V.24.0 (IBM Corp., Armokn, NY, USA). Statistical 

significance will be set at p ≤ 0.05.  

(2181 words) 

 



 141 
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