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The use of sensors for monitoring livestock has opened up new possibilities for the man-

agement of livestock in extensive grazing systems. The work presented in this paper aimed

to develop a model for predicting the metabolisable energy intake (MEI) of sheep by using

temperature, pitch angle, roll angle, distance, speed, and grazing time data obtained

directly from wearable sensors on the sheep. A Deep Belief Network (DBN) algorithm was

used to predict MEI, which to our knowledge, has not been attempted previously. The

results demonstrated that the DBN method could predict the MEI for sheep using sensor

data alone. The mean square error (MSE) values of 4.46 and 20.65 have been achieved using

the DBN model for training and testing datasets, respectively. We also evaluated the influ-

ential sensor data variables, i.e., distance and pitch angle, for predicting the MEI. Our study

demonstrates that the application of machine learning techniques directly to on-animal

sensor data presents a substantial opportunity to interpret biological interactions in graz-

ing systems directly from sensor data. We expect that further development and refinement

of this technology will catalyse a step-change in extensive livestock management, as wear-

able sensors become widely used by livestock producers.

� 2021 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of

KeAi. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

Regular monitoring of livestock managed in extensive grazing

systems is essential for the animal’s welfare and productivity.

However, inspecting livestock routinely by direct observation

or measurement is a costly and onerous task for farmers

managing large herds across extensive agricultural land-

scapes [1]. It is widely accepted that relationships exist
between grazing behaviour and feed supply. However, factors

affecting this behaviour are still poorly understood, and rela-

tionships may be influenced by the characteristics of the pad-

dock environment, flock structure and type of livestock.

Livestock has been found to respond to decreased sward bio-

mass by increasing grazing time, reducing time idling,

increasing distance walked and lessening bites taken at each

feeding station [2]. Sward structure also affects animal daily

forage intake [3]. Thus, our understanding and use of this

information are likely to benefit substantially from develop-

ments in sensor technologies and new analytical methods.
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Fig. 1 – A flock of sheep grazing a wheat stubble field in

Australia.
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Studies on animal behaviour using sensor technologies

have emerged recently. For instance, the use of wireless tech-

nology, tracking collar, and satellite for monitoring animal

behaviour can be observed in the literature [4,5]. The use of

video camera and 3D accelerometers [6,7] to estimate grazing

time, grass intake and grazing behaviour using sensor tech-

nologies have also been reported [2,8]. Moreover, these mon-

itoring tools produce various forms of data, and

interpretation of the data can benefit significantly from the

development of suitable analytical techniques. Researchers

have evaluated the potential of machine learning techniques

to analyse animal behaviour data. The key to this is the devel-

opment of new analytical approaches to process large vol-

umes of sensor data into information that enables

management decisions to be implemented based on animal

characteristics and behaviour. Usually, the data collected are

non-linear and inconsistent. To deal with this kind of data,

machine learning techniques have shown to provide a better

analysis [9,10]. Liakos et al. [11] stated that machine learning

and especially Artificial Neural Networks (ANN) had become

one of the popular methods in agricultural domains. Despite

the opportunity, William et al. [12] observed that the study

on livestock behaviour using machine learning and data min-

ing approaches had been limited. Until recently, livestock

researchers have worked in conventional ways such as using

manual calculation and direct human observation to under-

stand livestock behaviour. One of the reasons was the high

cost of sensor devices. However, more recently, the price of

sensor devices has decreased, and many researchers have

realised the opportunity for using sensor data to investigate

livestock behaviour. Therefore, machine learning and data

mining have emerged as a potential analysis tool and some

researchers have undertaken study in livestock and animal

behaviour using machine learning techniques [12,13]. How-

ever, the analysis of the animal’s sensor data has typically

been used to classify animal behaviour, such as to assign time

spent in activities such as grazing, walking, ruminating, rest-

ing or camping [12,14]. To the best of our knowledge from the

literature, no model was built to provide a direct relationship

between input data from sensors and the animal’s metaboliz-

able energy intake (MEI) measurement. This is, therefore, one

of the primary objectives of this paper.
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In previous studies, MEI was estimated using the energy

content of the feed, digestibility of feed, feed intake, level of

production, age, gender, and environmental conditions [15].

Therefore, MEI can be derived if diets are accurately formu-

lated to meet weight gain targets in controlled conditions

[16]. Furthermore, some other studies have measured feed

intake using sensors to detect animal activities. Oudshoorn

et al. [17] applied 3-axis accelerometers for detecting animal

head and mouth movement to determine feed intake beha-

viour. Animal mouth acoustics have also been used to predict

feed intake [18,19]. Another approach was carried out by

Brosh et al. [20]. They studied the relationship between cows’

activities such as grazing, walking, resting, and lying with

energy costs. The cows were tracked by GPS collars equipped

with motion sensors. The results of Brosh et al. [19] showed

that the duration of the cows’ activity and its distance moved

correlated with the measured conditions of the pasture, such

as herbage Metabolisable Energy (ME).

However, in this study, we estimated the animal’s

(sheep) energy intake based on established relationships

between measured changes in the animal’s body weight

and its energy requirements, these were then related to

animal grazing behaviour and the activities recorded by

the sensors. Deep Belief Network (DBN) was used to analyse

sensor data to directly predict MEI, which in the conven-

tional approach was derived from measurements of live-

stock live weight and rate of weight gain. As DBN has not

been used widely in the agriculture area, it is one of the

purposes of this paper to investigate the possibility of using

DBN for such prediction. Furthermore, we also addressed

the problem of identifying the most important independent

sensor derived variables for predicting the MEI. A Random

Forest technique was applied to the six selected variables

of our dataset, i.e. ambient temperature, changes in pitch

of the animals’ neck associated with head movements

(Dpitch angle), side to side neck movement (Droll angle),

distance, speed and daily grazing time for determining

the importance of the predictors.

The objectives of this study were (i) to test the hypothe-

sis that machine learning, in particular, DBN analytics, can

predict the energy intake of sheep grazing a wheat crop resi-

due directly from the animal mounted sensor data, and

identify a sensor data derived signature associated with

the depletion of the feed supply from the paddock and (ii)

to identify which sensor data variables are more important

in predicting the energy intake. Informing the question of

which variables have more influence in predicting the MEI

result is an essential step toward developing a monitoring

tool that would alert livestock managers when the feed sup-

ply of grazing animals is low. Our study contributes to the

understanding of animal behaviour through sensor data in

relation to the animals feeding conditions, and the predic-

tion of energy intake.
2. Materials and methods

Data for this study were taken from a previous field experi-

ment that was conducted near Tammin (31�30019.130’S, 117�
33033.820’E) in the mixed cropping and livestock farming
al., The use of animal sensor data for predicting sheep metabolisable
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Fig. 2 – The GPS devices used to track sheep behaviour.

Fig. 3 – Two angle definition: Roll and Pitch angle [26].
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region of southern Western Australia. The average daily tem-

perature was 27.6 �C with a maximum of 45.6 �C, and a min-

imum of 9.6 �C during the experiment.

The sheep were grazed in an 88-ha paddock containing

wheat crop residue (stubble) for 55 days, from 31 January to

25 March 2008 (see Fig. 1). Four sheep were selected randomly,

namely animal ID280, animal ID285, animal ID286, and ani-

mal ID291, and GPS tracking collars (model: WildTrax, manu-

factured by Bluesky TelemetryTM Ltd, Aberdeen, Scotland UK)

were attached to their necks (see Fig. 2). The tracking collars

recorded their position and activities (roll and pitch angle)

at 5-minute intervals.

The number of sheep in the flock that were fitted with sen-

sors was relatively small, owing to the price of the sensors at

that time, similar to other early livestock monitoring research

[21]. Further, only data from three sheep were available for

our analyses because one device was defective. Anderson

et al. [22] stated that more research is still needed on what

the adequate number of the data sample is, but this would

vary widely depending on the nature of the hypotheses

tested. For example, studies on the effect of transferring a

watering-place on the home range were performed by Sugi-

moto et al. [23], where two cows were used to find out their

grazing and drinking behaviour. A similar study was con-

ducted by Mansbridge et al. [24], where six sheep were

selected using stratified random sampling from a flock of

140 animals. In our experiment, an additional subset of 20

sheep was weighed weekly, including the four with tracking

collars. At all times, the sheep had access to water ad libitum

from a single dam located in the paddock. The sheep weighed

62 kg on average and were aged 4.5 years at the commence-

ment of the study.

Australia’s Commonwealth Scientific and Industrial

Research Organization (CSIRO) Floreat Laboratory Animal

Ethics Committee approved the protocol for the experimental

work undertaken and monitored the welfare of the animals

(organisational approval reference #0715).

2.1. Data collection

Two sets of field data were used in this study, namely sheep

weight and sheep monitoring datasets. The first dataset

(sheep weight) included eight weeks of the weight measure-

ments of the sheep recorded every week. The second dataset

(sheep monitoring) included data collected from the elec-

tronic collars (i.e. sensors) of three sheep (monitoring data

of the fourth sheep was not suitable to be used due to a high

proportion of missing data). The second dataset had 27 vari-

ables and time-stamped attributes, including data on the

sheep’s location. However, only five attributes related to the

sensor information on animal activities, i.e. ambient temper-

ature, Dpitch, Droll, distance and speed, were used in the DBN

analysis. Distance and speed were derived from the animals’

location.

The importance of distance and speed variables can be

found in some previous studies on animal behaviour. Weber

et al. [25] have employed distance and speed variables

obtained from GPS tracking collars. The variables were used

to recognise the grazing behaviour of sheep related to the

presence of livestock guardian dogs in the paddock. Other
Please cite this article as: H. Suparwito, D. T. Thomas, K. W. Wong et
energy intake using machine learning, Information Processing in Agricult
variables, i.e. Angle movement (Dpitch and Droll) variables,

were related to the neck movement activities of livestock

when they were active (see Fig. 3). The Dpitch (y coordinate)

value measures the degrees of movement of the livestock’s

neck when it is rotating on the backward and forward plane

while the Droll value quantifieswhen it is rotating on the right

and left plane. For example, the difference between the sheep

is walking with the head up and grazing with the head down.

The Dpitch value also detects back-forwardmovement associ-

ated with grazing (prehensile movements associated with bit-

ing forage). In term of this, roll angle was represented by

rotation around x coordinate and pitch angle was indicated

by rotation around y coordinate. For accuracy, the sensors

were on the underside of the collar.

Ambient temperature values were obtained from the GPS

collar, and which was local temperature from sunrise to sun-

set for the location.

Using latitude and longitude data collected from GPS col-

lars, animal movement was calculated as distance and speed

variable values. The distance variable value can be obtained

by the Haversine formula [27]:

a ¼ sin2 Du
2

� �
þ cosu1� cosu2� sin2 Dk

2

� �
ð1Þ
al., The use of animal sensor data for predicting sheep metabolisable
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c ¼ 2� atan2
ffiffiffi
a

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� að Þ

p� �
ð2Þ

d ¼ R� c ð3Þ
where u is latitude, k is longitude, R is earth’s radius (mean

radius = 6,371 km); u1 and u2 are the two latitude points that

would be measured; c is the angular distance, and a is the

square of half the chord length between the points. Ifi atan2 s

not available, c could be calculated from

2 � asin min 1;
ffiffiffi
a

p� �� �
. All angle measurements are in radian

units. The speed was the directional speed from an animal’s

recorded position to the animal’s next recorded position.

The variables were defined as:

V ¼ d
t

ð4Þ

where the distance value (d) was from the distance calcula-

tion from (3) and t (time) was the recording time interval of

5 min.

These five attributes were considered to have higher bio-

logical relevance used for livestock behaviour analysis.

Another attribute was added, which is the active livestock

time, where sheep were determined to be walking and graz-

ing. Location data was collected across 24 h. However, day-

time data were selected (~6 AM to 7 PM) because sheep were

mostly inactive at night. During the night sheep typically

stayed within a small area, camping at selected locations

for extended periods. At daytime, sheep were mostly active

in the early morning and late afternoon. For that reason, we

restricted data used for our analyses between sunrise and

sunset local time.

2.2. Measurement of MEI

Accurate estimation of MEI can be determined using actual

livestock weight measurement and then performing the cal-

culation of MEI. However, in practice, regular weight mea-

surement is a costly and onerous task for farmers. To obtain

accurate MEI values, we can use what Thomas et al. [28]

had observed and calculated in their study. The daily Metab-

olizable Energy Intake (MEI) of the sheep was calculated based

on the formula:

MEI ¼ MEmaintenance þMEgainorloss ð5Þ
The ME maintenance value was calculated based on the

prediction of the medium-sized sheep breed with standard

reference ewes’ live weight at maturity of 50 kg:

MEmaintenance ¼ 1:42þ 0:15� animalliveweightð Þ ð6Þ
Eq. (6) is derived from GrassGro [29] predictions for a

medium-sized sheep breed with a standard reference ewe live

weight at maturity of 50 kg.

Furthermore, MEgainorloss was obtained by the formula:

Y ¼ aþ b 1� EXP �c LWT� fð Þð Þf

�d= dþ eð Þ 1þ cEXP � dþ eð Þ LWT� fð Þð Þ½ð

� dþ eð ÞEXP �c LWT� fð Þð Þ�= dþ e� cð ÞÞg ð7Þ
where Y is MEgainorloss [MJ/kg LWT change(kg)]. For weight gain,

a = 51.02, b = 20.62, c = 0.056, d = 0.035, e = 0.044, f = 29.8 while
Please cite this article as: H. Suparwito, D. T. Thomas, K. W. Wong et
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for weight loss, a = 27.4, b = 11.08, c = 0.056, d = 0.035, e = 0.044,

f = 29.8.

There are previous studies that try to understand the rela-

tionship between the animal behaviours and the feeding

management, which contributed to the factors that impact

on live weight gain (LWG) and MEI. For example, Thomas

et al. [30] studied MEI and animal live weight gain (LWG)

intending to evaluate its potential contribution to improving

feeding management practices in extensive livestock

production.

2.3. The proposed MEI prediction model

There are two steps in this MEI analysis (see Fig. 4). The first

step in this study was to use the sheep weight information

to estimate the energy intake of the sheep throughout the

grazing trial. The calculated MEI per week was obtained by

using Thomas et al. [28] formula. However, the sensor data

from collars were in 5-minute intervals. Due to the difference

in the resolution between the calculated weekly MEI and the

sensor data, we have performed interpolation to the MEI val-

ues to obtain daily MEI values.

As shown in Fig. 4, the 5-minute resolution sensor data

were aggregated to daily values so that both predictors (sen-

sor data) for MEI and the predicted MEI had the same daily

time frame. The second step was to apply DBN for predicting

whether there is a relationship between sensor data and the

MEI values.

2.4. Pre-processing data

The sensor data from three animals, with animal ID280, ani-

mal ID285, and animal ID291, were used. A dataset from the

aggregated sensor data values and the interpolated MEI val-

ues was constructed for each animal and analysed using

DBN methods. The sensor data were the independent vari-

ables, and the interpolated MEI data were the dependent

variables.

As indicated earlier, these two datasets had a different

time resolution, the MEI values were weekly, and the sensor

data were at a five-minute interval. In order to predict the

energy intake of the sheep each day, all datasets were

matched daily. To obtain the daily MEI values, the polynomial

interpolation approach was applied to the MEI dataset. A

polynomial curve was applied to create a line of best fit

through the calculated weekly MEI values result. To obtain

an optimal polynomial for interpolation, testing was per-

formed by using the 2nd, 3rd, 4th, 5th, and seventh order

polynomial, and the 2nd order polynomial interpolation pro-

vided the best trend line for most of the calculated weekly

MEI values. The 2nd order polynomial curve was then used

to interpolate the weekly MEI values to construct the daily

MEI values for use as the dependent variable.

Six variables from the sheep monitoring dataset, i.e. tem-

perature, Dpitch, Droll, distance, speed, and grazing time were

used as independent variables (predictors) after aggregation

into daily values. In this analysis, we included the active live-

stock time from sunrise to sunset local time, where it was

identified as the periods when a large majority of grazing

and walking activities occur. During the experiment, the
al., The use of animal sensor data for predicting sheep metabolisable
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Fig. 5 – DBNs are a stack of RBM forming deep (multi-layer)

architecture [33]

Table 1 – The combination list of training and testing
dataset.

Training dataset Testing dataset

Animal ID 280285 Animal ID 291
Animal ID 280291 Animal ID 285
Animal ID 285291 Animal ID 280
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active time of the sheep was calculated for each day. For the

temperature and the speed, average data values from the sen-

sors were used for the whole day period (data available in 5-

minute intervals) to represent the temperature of the day

and the daily travel speed of the sheep. The sum of each of

Dpitch, Droll, and distance was used during the daytime per-

iod as the value for the day. Thus, each animal has the same

number of data in one data frame, i.e. 50 rows of data with six

features: temperature, Dpitch, Droll, distance, speed, and

grazing time as independent variables and one feature that

is MEI measurement as the dependent variable.

To increase the number of observations in each dataset,

we combine the datasets from two animals in turn. Conse-

quently, besides the three original datasets, we used three

new datasets as the results of the combinations of two data-

sets, i.e. animal ID280285 dataset, animal ID280291 dataset,

and animal ID285291 dataset. Now in every combination of

datasets, we have 100 rows of data as a result of combining

two datasets.

2.5. Training and testing data

After the pre-processing stage, the DBN was then applied to

train the dataset that consisted of the six independent vari-

ables (temperature, Dpitch, Droll, distance, speed, and grazing

time) and one dependent variable, i.e. the MEI values. DBN

was first introduced by Hinton et al. [31]. It was intended to

solve three problems that occur when a back-propagation

algorithm is applied to deep layer Neural Network, i.e. a slow

learning time, a poor parameter selection technique that

leads to poor local optima, and necessity of substantially

labelled data set for training [32]. The architecture of DBN

was formed by a stacked Restricted Boltzmann Machine

(RBM) as shown in Fig. 5.

The advantage of RBM in the pre-training process of DBN

has been evaluated in some studies. Since the pre-training

process (initialisation) uses RBM instead of random weight,

the performance of DBN has shown in many papers to be bet-

ter than conventional Neural Network. Salakhutdinov and
Fig. 4 – The steps in MEI

Please cite this article as: H. Suparwito, D. T. Thomas, K. W. Wong et
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Hinton [34], in their study, claimed that using RBM, learning

would be more efficient and effective because there is no con-

nection between the hidden units in the same layer. For the

DBN, we established three main layers, i.e. input – hidden –

output layers for the generation of the prediction model. Six

independent variables from the sensor data were used as

the input. The hidden layer consisted of three layers, and

the output layer value was the MEI values.

In order to validate the proposed approach and the devel-

oped model, we have used cross-validation between animals,

i.e. we will always keep the data from one animal to be used

purely for testing. For example, if the training dataset was

formed by combining the data from animal ID280 and animal

ID285 (dataset 280285), then the testing dataset would be from

animal ID291. Table 1 shows the combinations of datasets
analysis using DBN.

al., The use of animal sensor data for predicting sheep metabolisable
ure, https://doi.org/10.1016/j.inpa.2020.12.004
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used for the different training and testing validation cycle. We

performed cross-validation by mixing all dataset into one and

did re-sampling with two datasets as a training dataset and

one dataset as a testing dataset (Table 1).

Cross-validation provides a measure of how good the

model fit is, both for accuracy (bias), and variance. Cross-

validation is applied to assess the predictive performance of

the models and to find out how they work outside the sample

to a new dataset. Using this method, we checked our model to

determine how well the model performs against a relevant

performance metric. In this case, a possible scenario is that

we have several learning algorithms and just want to select

the best among them by adjusting the parameters. The com-

bined data sets are needed in cross-validation so that we do

not get biased results. Ideally, we would like to see how the

model performswhen we have new data in terms of the accu-

racy of its predictions.

Next, the parameter of the DBN was selected and adjusted.

Table 2 summarises the parameters of DBN that have been

selected and adjusted. The best mean square error result

(the smallest error value) was obtained by selecting and

adjusting the predictive model parameters. In this case, we

are referring to the selection of the best predictive model from

the experiments that can provide the smallest mean square

error by deploying the best-selected parameters. Table 2

below showed the optimal parameters used to obtain the best

result of MEI.

The optimal parameters in Table 2 were obtained using the

grid search method shown in Table 3.
Table 2 – DBN Parameters for training data and generating
the prediction model.

Parameters Values

Hidden layers 8 – 17 – 9
Activation function Tanh
Learning rate 0.1
Learning rate scale 1
Momentum 0.5
Number of epochs 5000
Output function Linear
Batchsize 10
Hidden dropout 0.1
Visible dropout 0.1
CD 1

Table 3 – Grid search method to obtain parameters values.

Parameters values

Hidden layers 6 - 8 - 10 ; 8 - 17 - 9 ; 10 - 14 - 18
Activation function Sigmoid ; Tanh
Learning rate 0.1 ; 0.01 Figs. 4 and 5
Learning rate scale 1 ; 0.1
Momentum 0.5 ; 0.6 ; 0.8
Number of epochs 1000 ; 5000 ; 7000
Batchsize 2 ; 6 ; 10
Hidden dropout 0.1 ; 0.4 ; 0.5
Visible dropout 0.1 ; 0.4 ; 0.5

Please cite this article as: H. Suparwito, D. T. Thomas, K. W. Wong et
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The hidden layers, momentum, and the number of epochs

were repeatedly adjusted by increasing or decreasing values

in each layer to get the best result.

After training the DBN with one animal dataset to estab-

lish the prediction model, testing of the established DBN

model was carried out by applying the model to the different

animal dataset, which was not included in the training pro-

cess, i.e. blind testing.

Furthermore, The Mean Squared Error (MSE) value was

used to find the difference between the estimator and what

is estimated. The MSE is calculated using the following

formula:

MSE ¼ 1
n

Xn

1
Yi � Ŷi

� �2
ð8Þ

where bY is a vector of n prediction and Y is the vector of

observed values corresponding to the input to the function

which generated the predictions. Yi is the ith value of the

vector.

2.6. The variable importance analysis

Wei et al. [35] stated that it is essential to know the more sig-

nificant factor or variable in the regression or prediction anal-

ysis to be used to establish the model. Whereas Grömping [36]

argued that predictive analysis would be more convincing

when the most influential predictor variable obtained. To

identify which variables are more significant in predicting

MEI, Random Forest analysis [36] was used in this paper.

The percentage of Mean Square Error (MSE) was measured

by the Random Forest analysis, which indicates which vari-

able has a more significant influence compared with other

variables in predicting the MEI values. The parameters used

in Random Forest analysis are shown in Table 4.

The steps to calculate the variable importance values or

the increased value in MSE (%incMSE) of prediction estimated

with out-of-bag-CV as a result of variable j being permuted

(values randomly shuffled) are as follow. First, we computed

out-of-bag MSE by creating a regression forest and name this

as MSE0. Second, for 1 to j variables, permute values of col-

umn j and then predict and compute out-of-bag MSE(j). Fur-

thermore, we determined the formula of %incMSE of jth is

MSE jð Þ �MSE0ð Þ
MSE0

x100% ð9Þ

Where MSE is Mean Square Error (8) and the out-of-bag is the

estimated error in Random Forest.
Table 4 – Six attributes of the independent variable were
examined by Random Forest analysis to find the variable
importance.

Parameters Values

nTree 2000
Independent variable temperature, Dpitch,

Droll, distance, speed,
grazing time

Dependent variable MEI
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3. Results and discussion

Deep Belief Network (DBN), which is one of the machine

learning techniques, was used to establish the prediction

model of the Metabolizable Energy Intake of sheep directly

from on-animal (electronic collar) sensor data. In this study,

two datasets were used for training, while the third dataset

was used for testing. Table 5 presents the results of experi-

ments using different combinations of training and testing

datasets.

The best result showed that by using the 2nd order polyno-

mial interpolation, the combined training data from animal

ID280 and animal ID285 (Animal ID 280285) could predict

the testing data from animal ID291 better than other two

combinations dataset. The MSE results were 4.46 and 20.65

for the training and testing data, respectively. All three sheep

were in the same paddock. Sensors were mounted on each

sheep. These sheep produced different sensor data based on

the behaviour of each individual sheep. Therefore, we can

observe behavioural differences between different sheep.

We tested different combinations and found the combination

of 280 and 285 produced the best prediction results for the

third sheep. One possibility is that this combination captured

the variance of the differences in the individual sheep beha-

viours and the machine learning technique we used can cap-

ture the underlying behaviour.

Based on Fig. 6c, in the testing data for animal ID291 we

interpreted and concluded that the figure showed in the first

two weeks, the feed supply was still sufficient, and therefore

the MEI values increases. However, in the following weeks,

the feed started to decrease so that the needs of energy intake

decreased. This was depicted by the decreased in the MEI val-

ues after the first two weeks. In this controlled study, no food

is resupplied in the paddock through feed supplements.

When the feed supply is low, the sheep needed to travel to

another area to look for feed supply or eat forage that was

previously overlooked. Two reasons that the MEI values

decreased are as follows. First, the overall quality of the feed

was reduced as higher-quality components (such as grains)

were consumed, resulting in the sheep eating poorer quality

feed and cause the MEI values to reduce. Second, as food sup-

ply was reduced in a specific area, and sheep started to move

in a larger area to look for new feed supply. Consequently,

sheep travelled further and had a higher energy requirement.

The MEI value recorded after the sheep were moved to new

feed supply (a new paddock) was not measured in this study,

but would be expected to return to a similar level as at the

beginning of this study.

After predicting the MEI values, Random Forest analysis

was carried out to observe which variable is more significant

in predicting the MEI values. It is used to select the variable
Table 5 – Training and testing data results.

Training dataset MSE training results

Animal ID 280285 4.46
Animal ID 280291 15.62
Animal ID 285291 9.88
Average MSE 9.98

Please cite this article as: H. Suparwito, D. T. Thomas, K. W. Wong et
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importance of the six independent variables. The full list of

the results is shown in Table 6.

The higher the %incMSE value, the better [37]. It means

variables with the highest %incMSE is the most important

variable.

From this analysis, it can be observed that the MEI value is

mostly affected by the distance variable followed by the

Dpitch variable. Therefore, the most influential variable is dis-

tance. Grazing ruminants walk many kilometres each day to

cover adequate grazing sites so that they can meet their

energy requirements. Umemura [38] revealed that there is a

linear correlation between the number of walking steps of

livestock and its grazing behaviour. By recording the back-

forth and right-left movement, the number of grazing bites

and the number of walking steps can be estimated. However,

this technique uses pedometers and requires calibration to

relate the pedometer values to the number of grazing bites.

Other studies by Krachun et al. [39], and Odadi and Ruben-

stein [40] also indicated that the livestock activities and dis-

tance walking are correlated to energy intake and live

weight gain.

Moreover, the results of this study are in line with other

research regarding pitch and head angles measurement to

be used to estimate grazing activity [41,42]. Other studies of

livestock grazing behaviour and forage intake were also

implemented by analysing the jawmovement and bites count

rather than on the pitch and head angles [6,17,38]. These

studies revealed that jaw movement and bite count or pitch,

and head degrees of angles could depict movements associ-

ated with feed intake. Therefore, these movements, while for-

aging was indicative of the energy intake of the animal. Our

study confirmed that the pitch (Dpitch) value is a good indica-

tor of feed intake.

We have shown that the two variables, distance and

Dpitch, may be used to predict the energy intake of sheep.

Our results suggest that if sheep are grazing in an area with

abundant food, they may travel only a short distance initially,

but then increase their activity as feed becomes less available.

However, over time if the supply of feed becomes severely

restricted (for example, food is depleted to a point where

the sheep are not able to meet their energy intake require-

ments to maintain their body weight), their grazing activity

decreases. Since the grazing behaviours of herbivores relate

to the circumstances they encounter when foraging, we

expected that this would be influenced by the ease or diffi-

culty of meeting their energy requirements. Relationships

between livestock grazing activity and the availability of feed

(pasture) and their live weight have also been reported in

other studies [43].

In this study, we interpolated the MEI weekly data to daily

data due to the limited number of data available for MEI val-
Testing dataset MSE testing results

Animal ID 291 20.65
Animal ID 285 173.49
Animal ID 280 64.04

86.06
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Fig. 6 – (a) The diagram of the best MSE result of the animal ID280 training dataset, (b) The diagram of the best MSE result of

the animal ID285 training dataset, (c) The diagram of the best MSE result of the animal ID291 testing dataset.
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Table 6 – Variable importance results.

Variables MSE values (%)

Distance 37.22
DPitch 34.65
DRoll 28.23
Grazing time 28.01
Temperature 26.87
Speed 13.24
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ues, derived from theweekly weighing of sheep in the field for

the duration of the study. Interpolation is necessary for this

research and can also be observed in other research when

exact values are not available, and we need to convert from

weekly data to daily data before any regression analysis type

work can be performed [44]. The interpolation of geolocation

data has been used previously in an animal tracking study in

a fluid environment [45]. They observed albatrosses, pen-

guins, boobies, sea lions, fur seals and elephant seals tracking

data and used six mathematical algorithms to interpolate

animal tracking data. As a result, they recommended using

curvilinear interpolation techniques. They also provided the

guidelines for choosing the algorithms for different types of

marine vertebrates.

The use of the interpolation data to get the higher resolu-

tion data showed that in term of machine learning algo-

rithms, the number of data is crucial [46,47] even though

Hilbert [48] argued that not only the number of data but also

the selected algorithms could affect the accuracy of the pre-

diction results. Dealing with this constraint, Morota et al.

[49] showed that the use of fully automated devices, high-

throughput data recording including digital images, sensor

and sound data, unmanned systems and information

obtained from real-time non-invasive could increase the

accuracy of the prediction. As has beenmentioned previously,

the solutions suggested the use of a walk-over weighing sys-

tems to obtain the higher resolution live weight data. Accord-

ing to Aldridge et al. [50], the systems could be considered as a

tool for improving the resolution and number of data.

4. Conclusions

Determining the energy intake of grazing animals has been a

long-held ambition of researchers and livestock managers

alike. This new research approach provides a major opportu-

nity to overcome this problem. It is common to estimate

metabolisable energy intake, based on the amount and qual-

ity of pasture and supplements that are offered to livestock.

However, in this study, we predict the MEI value directly from

wearable sensors using a machine learning method. The find-

ings that we have presented demonstrates the successful use

of sensor data, i.e., pitch, roll, distance, speed, temperature,

and grazing time to predict the MEI of sheep. We have also

identified the sensor data variables that were the most influ-

ential in predicting the MEI value, being distance and pitch.

Based on this, we expect this model is suitable to be applied

to new sensor data with the same variables. However, to get

the best model performance, the model parameters should
Please cite this article as: H. Suparwito, D. T. Thomas, K. W. Wong et
energy intake using machine learning, Information Processing in Agricult
be tested and re-trained for any new datasets to ensure the

new grazing conditions are adequately represented.

Our research demonstrates that with the aid of modern

sensor technology, quantifying the energy intake of grazing

animals is now possible, which has the potential to catalyse

the next generation of precision livestock management

resulting in improvements in both welfare and productivity

outcomes, as we have discussed. By predicting the MEI using

sensors data, the cost and need for human intervention to

estimate energy intake may be considerably reduced. With

knowledge of when the MEI value starts decreasing below a

significant threshold, the livestock manager could plan more

effectively to provide a new grazing location to better meet

live weight targets for the livestock.

In future studies, addressing the variability among individ-

ual animals and the opportunity to use alternative behaviour

measures remains an open and active research topic. More-

over, this study could be used as the development of the

machine learning algorithm by implementing the model in

different grazing systems or using data from one flock to pre-

dict similar patterns in sheep in a completely different flock

to reveal the underlying factors in predicting the MEI value.

Given the current issues in climate change and environmen-

tal sustainability, improving our ability to observe and under-

stand behaviours expressed in extensive livestock systems

will also provide an important area of application for this

research.

Declaration of Competing Interest

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by CSIRO Australia. We are

grateful for their cooperation and permission to use their

data. We are also grateful for the generous support of farmers

Simon and Tony York for hosting the grazing experiment for

this study.

Funding

This research did not receive any specific grant from funding

agencies in the public, commercial, or not-for-profit sectors.
R E F E R E N C E S
[1] Castelán-Ortega O, Martinez-Gracia E, Mould F, Dorward P,
Miranda-de La lama G, Cruz-Monterrosa R, Rayas-Amor A.
Grazing behaviour of dairy cows and body condition score
associated with sward characteristics of four pasture types.
Experimental Agriculture. 2018;54(2):214–26. DOI:10.1017/
S001447971600020X.

[2] Manning J, Cronin G, Gonzales L, Hall E, Merchant A, Ingram
L. The behavioural responses of beef cattle (Bos taurus) to
al., The use of animal sensor data for predicting sheep metabolisable
ure, https://doi.org/10.1016/j.inpa.2020.12.004

http://refhub.elsevier.com/S2214-3173(20)30233-X/h0010
http://refhub.elsevier.com/S2214-3173(20)30233-X/h0010
https://doi.org/10.1016/j.inpa.2020.12.004


10 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e x x x ( x x x x ) x x x
declining pasture availability and the use of GNSS technology
to determine grazing preference. Agriculture 2017;7(5):45.

[3] Da Trindade JK, Neves F, Pinto C, Bremm C, Mezzalira J, Nadin
L, et al. Daily forage intake by cattle on natural grassland:
response to forage allowance and sward structure. Rangeland
Ecol Manage 2016;69(1):59–67.

[4] Manning JK, Cronin G, Gonzales L, Hall E, Merchant A, Ingram
L. The effects of global navigation satellite system (GNSS)
collars on cattle (Bos taurus) behaviour. Appl Anim Behav Sci
2017;187:54–9.

[5] Nóbrega L, Goncalves P, Antunes M, CorujoD. Assessing sheep
behavior through low-power microcontrollers in smart
agriculture scenarios. Computers and Electronics in
Agriculture. 2020;173:105444.

[6] Rayas-Amor AA, Morales-Amaraz E, Licona-Velasques G,
Vieyra-Alberto R, Garcia-Martinez A, Martines-Garcia C, et al.
Triaxial accelerometers for recording grazing and ruminating
time in dairy cows: An alternative to visual observations. J
Veter Behav: Clin Appl Res 2017;20:102–8.

[7] Giovanetti V, Decandia M, Molle G, Acciaro M, Mameli M,
Cabiddu A, et al. Automatic classification system for grazing,
ruminating and resting behaviour of dairy sheep using a tri-
axial accelerometer. Livestock Sci 2017;196:42–8.

[8] Andriamandroso A, Bindelle J, Mercatoris B, Lebeau F. A
review on the use of sensors to monitor cattle jaw
movements and behavior when grazing. BASE 2016;20
(S1):273–86.

[9] Neethirajan S. The role of sensors, big data and machine
learning in modern animal farming. Sens Bio-Sens Res
2020;29 100367.

[10] Fogarty ES, Swain D, Cronin G, Moraes L, Trotter M. Behaviour
classification of extensively grazed sheep using machine
learning. Comput Electron Agric 2020;169 105175.

[11] Liakos K, Busato P, Moshou D, Pearson S, Bochtis D. Machine
learning in agriculture: A review. Sensors 2018;18(8):2674.

[12] Williams M, Mac Partalain N, Brewer P, James W, Rose M. A
novel behavioral model of the pasture-based dairy cow from
GPS data using data mining and machine learning
techniques. J Dairy Sci 2016;99(3):2063–75.

[13] Halachmi I, Guarino M, Bewley J, Pastell M. Smart animal
agriculture: application of real-time sensors to improve
animal well-being and production. Annu Rev Anim Biosci
2019;7:403–25.

[14] Greenwood P, Paull D, McNally J, Kalinowski T, Ebert D, Little
B, et al. Use of sensor-determined behaviours to develop
algorithms for pasture intake by individual grazing cattle.
Crop Pasture Sci 2017;68(12):1091–9.

[15] Thomas DT, Toovey AF, Hulm E, Mata G. The value of stubbles
and chaff from grain crops as a source of summer feed for
sheep. Animal Production. Science 2020. https://doi.org/
10.1071/AN20127. in press.

[16] Burnett V, Jacobs J, Norng S, Ponnampalan E. Feed intake,
liveweight gain and carcass traits of lambs offered pelleted
annual pasture hay supplemented with flaxseed (Linum
usitatissimum) flakes or algae (Schizochytrium sp.). Animal
Production. Science 2017;57(5):877–83.

[17] Oudshoorn FW, Cornou C, Hellwig A, Hansen H, Munksgaard
L, Lund P, et al. Estimation of grass intake on pasture for dairy
cows using tightly and loosely mounted di-and tri-axial
accelerometers combined with bite count. Comput Electron
Agric 2013;99:227–35.

[18] Chelotti JO, Vanrell S, Galli J, Giovanini L, Rufiner H. A pattern
recognition approach for detecting and classifying jaw
movements in grazing cattle. Comput Electron Agric
2018;145:83–91.

[19] Galli JR, Milone D, Cangiano C, Martinez C, Laca E, Chelloti J,
et al. Discriminative power of acoustic features for jaw
movement classification in cattle and sheep. Bioacoustics
Please cite this article as: H. Suparwito, D. T. Thomas, K. W. Wong et
energy intake using machine learning, Information Processing in Agricult
2019;29(5):602–16. https://doi.org/10.1080/
09524622.2019.1633959.

[20] Brosh A, Henkin Z, Ungar E, Dolev A, Shabtay A, Orlov A, et al.
Energy cost of activities and locomotion of grazing cows: a
repeated study in larger plots. J Anim Sci 2010;88(1):315–23.

[21] Oudshoorn FW, Kristensen T, Nadimi ES. Dairy cow
defecation and urination frequency and spatial distribution
in relation to time-limited grazing. Livestock Sci 2008;113
(1):62–73.

[22] Anderson DM, Estell RE, Cibils AF. Spatiotemporal cattle
data—a plea for protocol standardization. Positioning 2013;4
(1):115–36.

[23] Sugimoto Y, Matuoka Y, Moriya K. Affect of transferring
watering place on the home range of grazing cattle in forest.
Anim Sci J (Japan) 2005;76(1):39–49.

[24] Mansbridge N, Mitsch J, Bollard N, Ellis K, Miguel-Pacheco G,
Dottorini T, et al. Feature selection and comparison of
machine learning algorithms in classification of grazing and
rumination behaviour in sheep. Sensors 2018;18(10):3532.

[25] Webber BL, Webber K, Clark P, Moffet C, Ames D, Taylor JT,
et al. Movements of domestic sheep in the presence of
livestock guardian dogs. Sheep Goat Res J 2015;30(July):18–23.

[26] Al-Rubaye Z, Al-Sherbaz A, McCormick W, Turner S.
Lameness detection in sheep through the analysis of the
wireless sensor data. In: Graduate School Postgraduate
Researcher (PGR) Conference. Northampton: The University
of Northampton. UK. 2016.p.5

[27] Veness C. Calculate distance, bearing and more between
Latitude/Longitude points. link: http://www.movable-type.co.
uk/scripts/latlong.html. 2010.

[28] Thomas DT, White C, Hardy J, Collin J, Ryder A, Norman HC.
An on-farm evaluation of the capability of saline land for
livestock production in southern Australia. Anim Prod Sci
2009;49(1):79–83.

[29] GrassGro. link: https://www.hzn.com.au/grazfeed.php. 2005.
[30] Thomas DT, Finlayson J, Moore A, Robertson M. Profitability

of grazing crop stubbles may be overestimated by using the
metabolisable energy intake from the stubble. Anim Prod Sci
2010;50(7):699–704.

[31] Hinton GE, Osindero S, Teh YW. A fast learning algorithm for
deep belief nets. Neural Comput 2006;18(7):1527–54.

[32] Arel I, Rose DC, Karnowski TP. Deep machine learning-a new
frontier in artificial intelligence research [research frontier].
IEEE Comput Intell Mag 2010;5(4):13–8.

[33] Rosebrock A. Getting Started with Deep Learning and Python.
link:https://www.pyimagesearch.com/2014/09/22/getting-
started-deep-learning-python/. 2014.

[34] Salakhutdinov R, Hinton GE. Deep Boltzmann Machines. In:
Proceeding of the 12th AISTATS. Florida, USA; 2009. p. 448–55.

[35] Wei P, Lu Z, Song J. Variable importance analysis: A
comprehensive review. Reliab Eng Syst Saf 2015;142
(10):399–432.
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