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Abstract  

Swine influenza (SI) can result in a significant economic loss for the pig industry and 

potentially lead to pandemic influenza in humans. Although SI is prevalent in south 

China, the epidemiological characteristics of its occurrence in this area were not 

known prior to the study described in this thesis. This study was mainly conducted in 

Guangdong Province to: estimate the prevalence of SI; identify risk factors for SI 

infection in pig farms; assess the knowledge, beliefs and practices (KBP) of pig 

industry workers towards SI; describe the movement network of live pigs via the 

wholesale live pig markets; identify anthropogenic, meteorological and geographical 

factors associated with swine, human and avian influenza viral infection in pigs in 

south China; and provide evidence of the benefit of risk-based surveillance to address 

the pandemic influenza threat in south China. 

A cross-sectional survey was conducted in 153 commercial pig farms in Guangdong 

Province. The farm-level prevalence of farmer-perceived SI during a six-month 

period was estimated to be 58% (95% CI: 48 - 68%). Statistically significant risk 

factors for SI were the presence of poultry on the farm (OR=3.24, 95% CI: 1.52-6.94), 

the ability of wild birds to enter the piggery (OR=2.50, 95% CI: 1.01-6.16) and failure 

to implement effective disinfection measures before workers entered the piggery 

(OR=2.65, 95% CI: 1.04-6.78).  

A KBP study on local pig industry workers comprising 153 pig farmers, 21 pig 

traders and 16 pig trade workers revealed that only 33.7% of those surveyed believed 

that SI could infect humans, and many undertook practices that were unsafe for SI. 

The lack of awareness about the zoonotic risk of SI (OR = 3.19, 95%CI: 1.67 - 6.21) 



   

iv 

 

was associated with not using personal protective equipment when having contact 

with pigs. 

Social network analysis on the movement of live pigs through four local wholesale 

live pig markets indicated that the source counties with the highest risk of having SI 

via the market trading system were in the central, northern and western regions of 

Guangdong Province. Risk-based control strategies were shown to result in a greater 

reduction of the magnitude of a potential epidemic of SI compared to a non-targeted 

control strategy.  

Analysis of three year’s sero-surveillance data on SI highlighted that pig farms from 

south China had exposure to multiple strains of influenza A, including human and 

avian strains. Spatial modelling identified determinants, such as elevation above sea 

level, chicken density and the human population density, as important predictors for 

avian and human influenza infection in pigs within counties. The counties in the delta 

area of the Pearl River in Guangdong Province and those surrounding Poyang Lake in 

Jiangxi province had a higher risk of infection with avian or human influenza strains 

in pigs than other counties in Guangdong, Guangxi, Jiangxi and Fujian provinces.  

It is concluded that SI is endemic in south China and, although there is the potential 

for the emergence of pandemic strains of porcine origin, improved on-farm 

biosecurity and changes to husbandry and trade practices could minimise the 

likelihood of a pandemic occurring. 
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CHAPTER 1： Introduction 

1.1 Swine influenza 

Swine influenza (SI) is a respiratory disease of swine caused by an influenza A virus 

that can result in significant economic loss to the pig industry (Kothalawala, 

Toussaint et al. 2006). Swine influenza is highly contagious and is one of the most 

prevalent diseases circulating within the global pig population (Choi, Goyal et al. 

2002, Liu, Wei et al. 2011, Corzo, Culhane et al. 2013, Kyriakis, Rose et al. 2013). In 

endemic areas over 90% of herds can be affected (Corzo, Culhane et al. 2013), with 

over 60% of animals being seropositive within infected herds (Er, Skjerve et al. 

2016). 

Based on serologic performances of the hemagglutinin (HA) and neuraminidase (NA) 

proteins, influenza A virus is further subdivided into 18 HA subtypes and 11 NA 

subtypes (Wu, Wu et al. 2014, David, David et al. 2020). In each HA subtype, there 

are different strains which may have different pathogenicities (Yang, Chen et al. 

2015). The dominant influenza subtypes that are currently circulating in pigs are H1 

and H3 (Brown 2000). However, bidirectional cross-species transmission of virus 

between pigs and birds or humans can occur occasionally (Grontvedt, Er et al. 2013, 

Nelson and Vincent 2015). Thus, swine influenza is also potentially a threat to public 

health. The influenza virus genome is segmented, and reassortment happens when two 

strains replicate within a single cell (Hause, Collin et al. 2014). The coexistence of 

different swine influenza virus (SIV) strains on a farm can result in the production of 

new strains with potentially diverse pathogenicities and even zoonotic capacities. 
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Spill-over infections of SIV to humans have been observed since 1918 (Bui, Chughtai 

et al. 2017). A triple-reassortant swine H1N1 influenza virus infected both people and 

pigs in an outbreak in 2007 in the United States of America (USA) (Killian, Swenson 

et al. 2013) and in China. Human cases resulting from infection with swine influenza 

H3N2 virus and European avian-like swine H1N1 influenza virus were also reported 

in 1999 and 2010, respectively (Gregory, Lim et al. 2001). Exposure to live pigs is the 

main reason for humans becoming infected with SIV (Lopez-Robles, Montalvo-

Corral et al. 2012) and understanding the zoonotic risk of influenza A at the pig-

human interface is vital for developing strategies to mitigate against the risk of 

zoonotic SIV infection in human. 

1.2 Pig industry in China 

China has the largest pig population in the world with 447.2 million pigs raised in 

2018, representing 31.4% of the world’s pig population at that time (Food and 

Agriculture Organization of the United Nations 2020). Subsequently this percentage 

has reduced due to an outbreak of African swine fever (ASF) which commenced in 

August 2018. At the end of 2017, the total number of Chinese pig farms was 37.8 

million, and there were 433.2 million pigs, including 43.93 million sows, in China 

(Ministry of Agriculture and Rural Affairs 2018). 

Small scale farms are reportedly the dominant pig production system in China with 

more than 90% of pig farms having an annual output of less than 50 head in 2017 – 

contributing approximately 25% of the annual pigs sold (Ministry of Agriculture and 

Rural Affairs 2018). In contrast, farms that sold more than 500 head in 2017 

contributed about 47% of the total pigs sold in that year (Figure 1.1). 
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Figure 1.1 Contributions of pig farms of different size to the total pig population 

in China in 2017 (Data sourced from Chinese livestock statistic book 2018, 

Ministry of agriculture and rural affairs (2018)).  

The pig population is not geographically evenly distributed in China. The provinces 

with the highest pig density are located in the central, eastern and southern regions of 

China, including the provinces of Henan, Shandong, Jiangsu, Hunan and Chongqing 

(Figure 1.2). 
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Figure 1.2 Pig density in different provinces in China in 2017 (Data sourced from 

Chinese livestock statistic book 2018, Ministry of agriculture and rural affairs 

(2018)).  

1.3 Swine influenza in China 

Swine influenza is prevalent in the Chinese pig population (Chen, Zhang et al. 2013). 

Several subtypes of influenza virus, including H1, H3, H4, H5, and H9, have been 

detected in the Chinese pig population (Ninomiya, Takada et al. 2002, Yu, Zhou et al. 

2011). 

South China has long been thought of as "an epicentre of influenza", because of the 

unique ecosystem containing vast wetlands, presence of live animal markets, and the 

contact between humans, pigs and poultry in this area. Some studies have offered 

evidence that SI is not evenly distributed throughout China and is more prevalent in 

south China than north China (Yu, Zhou et al. 2011). 
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There is a unique live pig market trading system in Guangdong Province, south 

China, and this market trading system may play a role in the spread of SIV among 

local farms. It has previously been observed that traders in livestock markets have a 

higher risk of being infected with SIVs (Ma, Anderson et al. 2015). However, 

previous studies have failed to address the human-pig contacts at the human-pig 

interface in Chinese live pig markets. Furthermore, contacts between poultry, pigs and 

pig industry workers potentially play a significant impact on the cross-species 

infection of influenza (Saenz, Hethcote et al. 2006, Gray and Kayali 2009, Dorjee, 

Revie et al. 2016). Therefore, conducting systematic surveillance on SIV in south 

China is not only valuable for potentially preventing new SI epidemics in the local pig 

industry, but is also critical for preparing for potential pandemic human influenza 

from swine-sourced influenza.  

1.4 Research Aims 

Studies on SI in China have mainly focused on the phylogenetic analysis of isolates 

with pig level prevalence summarized only from the results of passive surveillance 

data (Chen, Zhang et al. 2013, Li, Fu et al. 2015). However, currently SI is not a 

notifiable animal disease in China, and surveillance of SI in China hasn't provided 

adequate information on the epidemiological characteristics of the occurrence, 

distribution and spread of the disease. Both the herd prevalence of SIV infection in 

China and the biosecurity practices used on Chinese pig farms haven't been studied in 

detail in previous studies. For the purpose of controlling SI in China and preparing for 

a potential pandemic of human influenza from swine-sourced influenza, risk-based 

surveillance is required. Consequently the aims of the research included in this thesis 

were to:  
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Describe the husbandry and biosecurity practices in pig farms in Guangdong 

Province, south China; 

Evaluate the farm-level prevalence of SIV infection and identify relevant risk factors 

for SIV infection in pig farms in Guangdong Province; 

Describe the knowledge, beliefs and practices of pig industry workers on SI to 

evaluate the risk of zoonotic transmission of SIV at the human-pig interface in 

Guangdong Province; 

Describe the network characteristics of the live pig market trading system in 

Guangdong Province and identify the key source counties with higher connectivity in 

this trading network;  

Provide recommendations for risk-based disease control strategies in south China, 

based on the findings of the live pig market trading network. 

Describe multi-strain swine influenza coinfection and avian/human influenza 

infection in pigs and determine the environmental factors associated with these 

infection scenarios. 

1.5 The layout and format of this thesis 

The overall aim of this thesis was to inform control of SI in south China, especially in 

Guangdong Province. The thesis comprises a series of studies that address different 

aspects of the epidemiology of SI in south China. All the results chapters (3 to 6) have 

already been published (3, 4 and 5) or have been submitted to and are presently under 

review (6) in international peer-reviewed journals. These result chapters contain the 

same text and structure as published or submitted to the respective journals. The 
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formatting and referencing have been altered to form a standard style for all chapters. 

In the final chapter, a summary and discussion of all findings are presented.  

The literature on swine influenza is reviewed in Chapter Two. The global distribution, 

diagnosis, risk factors, zoonotic mechanism of SI and gaps in the control of SI in 

China are introduced. Specific methods used in this thesis (social network analysis 

and machine learning) are also briefly outlined in this chapter. 

In Chapter Three, the results of a cross-sectional survey conducted to evaluate pig 

farmers’ perceived herd prevalence of swine influenza in Guangdong Province are 

presented. Risk factors for a farm being a case farm were analysed using logistic 

regression analysis. The routine husbandry and biosecurity practices adopted by pig 

farms in Guangdong Province are also described in this chapter.  

In Chapter Four, the results of a KBP (knowledge, beliefs and practices) study 

employed to describe the knowledge, beliefs and practices of pig industry workers on 

SI to evaluate the risk of zoonotic transmission of SI at the human-pig interface in 

Guangdong Province are presented. The risk factors for the pig industry workers’ low 

awareness of the zoonotic potential of SI and “not using personal protection 

equipment when contacting pigs in work” were investigated in detail.  

In Chapter Five, the results of social network analysis (SNA) undertaken to describe 

the live pig market trading network in south China are presented. The movement data 

in all of the wholesale pig markets in Guangdong Province were analysed to explore 

the structure of the network and to identify the source counties that had higher 

connectivities. A model was developed to illustrate the benefit of implementing a 

risk-based intervention in terms of decreasing the magnitude of a potential epidemic. 
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In Chapters Six, the results of comprehensive passive surveillance data of SI analysed 

to describe human and avian source influenza infection in pigs in south China are 

summarised. Anthropogenic, meteorological and geographical factors associated with 

SI infection scenarios were explored. Predicted risk maps were generated to inform 

future targeting surveillance on SI. 

Finally, in Chapter Seven, how the findings of the thesis would benefit SI control in 

south China and the limitations of the current study are discussed and summarised. 

Further studies were also proposed in this chapter. 
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CHAPTER 2： Literature Review 

2.1 Swine influenza 

Swine influenza is a respiratory disease of pigs caused by influenza A viruses. The 

typical clinical signs associated with the disease include coughing, laboured breathing, 

nasal discharge, sneezing and pyrexia (Kothalawala, Toussaint et al. 2006) and lesions 

of pneumonia may be observed in infected pigs at slaughter (Karasin, Brown et al. 

2000, Vincent, Lager et al. 2008, Rose, Herve et al. 2013). Reproductive problems, 

including abortion and stillbirths, have also been reported in sows infected with SIV 

(Wesley 2004). Subclinical infection is common, especially in herds with antibody 

against homologous SIV strains (Choi, Goyal et al. 2004, Rose, Herve et al. 2013, 

Hemmink, Morgan et al. 2016).  

Influenza A viruses belong to the Orthomyxoviridae family, which are enveloped 

viruses with eight single strand RNA segments. Subtypes of influenza A viruses are 

determined by the antigenic and genetic properties of the two major surface proteins, 

hemagglutinin (HA) and neuraminidase (NA) (Hause, Collin et al. 2014). Currently, 

there are 18 HAs (H1-H18) and 11 NAs (N1-N11) recognised, with the H17-18 and 

N10-11 types having only recently been isolated from bats (Mehle 2014).  

Influenza A viruses are the most clinical important influenza viruses as they can cause 

serious disease in a wide range of species, including humans, pigs, birds, horses, cattle, 

whales, seals, tigers, dogs, cats and ferrets (Mehle 2014). There are three other genera 

of influenza viruses: Influenza B, C and D. Influenza B viruses have mainly been 

isolated from humans and seals (Osterhaus, Rimmelzwaan et al. 2000). Influenza C 

viruses are primarily found in humans, pigs and dogs, and influenza D has recently 
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(2011) been detected in pigs and cattle (Hause, Collin et al. 2014, Luo, Ferguson et al. 

2017). 

Swine influenza was first observed in 1918 in the USA, Hungary and China (Brown 

2000) and today it is one of the most ubiquitous diseases circulating in the global pig 

population. Choi, Goyal et al. (2002) reported that 22.8% of individual pigs were 

seropositive in the USA using the hemagglutination inhibition (HI) test, while Corzo, 

Culhane et al. (2013) reported a much lower individual prevalence level (4.6%), 

although they did report a 90.6% herd prevalence using a real-time reverse 

transcription polymerase chain test (real-time RT-PCR). The difference in the 

individual animal level prevalence between studies could be due to the different 

sampling strategies adopted. The first study summarized data from a veterinary 

diagnostic laboratory, while the latter one used a random sampling approach. These 

two studies also used different tests, and the samples were collected from different 

regions in different years, all potentially influencing the findings. A cross-sectional 

study in northern Mexico reported that more than 50% of the samples from 

commercial farms (300-2500 sows) were seropositive to either H1 or H3 subtype SIV. 

However, the seroprevalence may have been overestimated because these authors 

primarily sampled pigs less than ten weeks of age and maternally derived antibody 

(MDA) can last up to ten weeks in pigs and potentially have resulted in false positive 

results (Cador, Herve et al. 2016). This assumption was also supported by the finding 

of decreasing antibody titres with the age of the sampled pigs. The authors also 

reported that 16.7% (25/150) of the sampled pigs were positive for type A influenza 

with a RT-PCR test (Lopez-Robles, Montalvo-Corral et al. 2014). 
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Swine influenza is also widespread in Europe. In a study in Belgium, France, Italy 

and Spain, 80 farrow-to-finish farms were monitored from 2006 to 2008. Ninety 

percent of the farms were classified as positive for SIV, with an individual level 

seroprevalence of 62%. Forty-nine percent of the farms were infected with one 

subtype, 38% with two subtypes and 3.9% with three subtypes of SIVs (Kyriakis, 

Rose et al. 2013). However in this study the sampling was also biased, resulting in 

potential overestimation of prevalence as farms sampled were selected from areas 

with a high density of pigs or contained pigs that had a history of respiratory problems. 

An analysis of historical surveillance data in Norway showed that the national herd 

seroprevalence of influenza A(H1N1)pdm09 virus, which is an influenza A virus 

strain circulating in both humans and pigs, was around 43%, and the individual pig 

prevalence of pandemic H1N1 in infected farms was more than 60% (Er, Skjerve et al. 

2016). Another study in Spain in 2009 that sampled pigs from 98 randomly selected 

pig farms, reported a farm-level seroprevalence of nearly 100% with an animal level 

seroprevalence of 62.3% (Simon-Grife, Martin-Valls et al. 2011). In England, a 52% 

herd prevalence was reported by Mastin, Alarcon et al. (2011), with the highest 

individual prevalence of 33% being reported in sows. 

Swine influenza is endemic in the Chinese pig population, with many subtypes 

contemporarily circulating on farms. Serological evidence indicates the presence of 

H1, H3, H4, H5, H7 and H9 influenza viruses in pig populations in the country 

(Ninomiya, Takada et al. 2002, Liu, Wei et al. 2011, Yu, Zhou et al. 2011). Liu, Wei 

et al. (2011) reviewed the data from 10 years of publications and concluded that the 

average individual seroprevalence to subtypes H1, H3, H5, H7 and H9 were 31.1, 

28.6, 1.3, 0 and 2.4%, respectively. Song, Xiao et al. (2010) reported an individual pig 
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prevalence of more than 50% for H1 and H3 in commercial farms in Fujian province. 

No H5N1 infection was detected in pigs in that study, and while infection with H9 

was detected, it was only at a low seroprevalence (1% in 2004 and 2.6% in 2007). Liu, 

Zhou et al. (2014) reported 52% of pigs were positive for H1N1, and 16.9% were 

positive for H3N2 in Tibet.  

Studies on SI in China have mainly focused on the phylogenetic analysis of isolates 

with individual prevalence summarized only from the results of passive surveillance 

data. The herd prevalence of SIV infection in China has previously rarely been 

reported, and it is likely that the reported individual animal prevalences are biased 

through the sampling methodology adopted.  

Pigs can be infected with more than one subtype of SIV, for example, two case 

studies in China reported that 8.8 and 24% of the tested pigs were positive for both 

H1 and H3, respectively (Song, Xiao et al. 2010, Liu, Zhou et al. 2014). Choi, Goyal 

et al. (2002) also reported that 7 out of 480 samples of pig lungs tested at a veterinary 

diagnostic laboratory in the USA contained both H1N1 and H3N2 viruses using RT-

PCR and sequencing. A study in Spain also reported that mixed infections of H1N1, 

H1N2 and H3N2 were detected in 60% of the sampled farms (Simon-Grife, Martin-

Valls et al. 2011). Takemae, Shobugawa et al. (2016) reported that a pig farm in 

Thailand with more than 1000 pigs was more likely to have reassortant SIVs 

infections. The authors speculated that larger herds were more likely to have multi-

strain infections compared with smaller herds due to greater opportunities for 

different circulating SIV. 

Pigs are believed to act as a "mixing vessel" for swine, avian and human influenza 

viruses allowing the production of reassortant influenza viruses. Most avian influenza 
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viruses only bind via an α-2, 3-galactose sialic acid linkage, which is abundant in the 

epithelial cells of the avian trachea, while most human influenza viruses prefer α-2, 6-

galactose sialic acid linkage, which is abundant in epithelial cells of the human 

trachea. However the epithelial cells of the pig trachea have both α-2, 3- and α-2, 6-

galactose sialic acid linkages, and so pigs can be susceptible to both avian and human 

influenza viruses (Ito, Couceiro et al. 1998). 

Despite the potential impact of SIV on public health, SI is often neglected by the pig 

industry and also by researchers. The main reason for this is that many of the 

infections in pigs are subclinical or mild and hence easily overlooked (Detmer, 

Gramer et al. 2013). Furthermore although the morbidity of SIV infection in a herd 

can be as high as 100%, mortality is usually extremely low (Er, Lium et al. 2014). 

2.2 Swine Influenza Viruses 

2.2.1 The characteristics of swine influenza viruses 

As a member of the influenza A virus group, SIV is an enveloped virus with eight 

segments of RNA (HA, NA, PA, PB1, PB2, NP, M and NS) (Reeth, Brown et al. 

2012). The infectivity of the virus is mainly determined by the two surface proteins, 

HA and NA, because these are the proteins that bind receptors in the host and 

facilitate virus invasion into the host cell (Hause, Collin et al. 2014). 

Influenza viruses are sensitive to environmental conditions. Chemical disinfectants 

such as 0.1 mol/L NaOH, 70% ethanol, 70% 1-propanol and ethylene oxide can 

effectively inactivate the virus (Jeong, Bae et al. 2010). One study reported that even 

a powdered laundry detergent with peroxygen (bleach) was sufficient to kill the virus 

(Lombardi, Ladman et al. 2008). However, it is worth noting that the inactivating 

efficiency of many disinfectants is reduced at low temperatures and in environments 
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contaminated with organic material, and consequently caution is needed when 

disinfecting SIV-infected premises during winter and organic matter should be 

removed prior to disinfection (Botner and Belsham 2012). 

Influenza A virus can remain stable and infectious for months under natural 

conditions, particularly at low temperatures and in the existence of organic matter 

(Haas, Ahl et al. 1995). One study reported that in slurry at 5℃, the infectivity of SIV 

was retained for more than six weeks, whilst at 20 ℃ the virus still remained viable 

for approximately 14 days (Botner and Belsham 2012).  

2.2.2 Subtypes and genetic recombination among strains 

Many subtypes of influenza A virus have been isolated from pigs all over the world. 

Among these subtypes, the most common SIVs circulating in pig populations are 

subtypes H1N1, H3N2 and H1N2. The dominant strains in the USA are classic H1N1, 

triple reassortant H3N2 and pandemic A/H1N1 2009 (H1N1pdm09) virus (Bowman, 

Workman et al. 2014). In Europe, the dominating strains are avian-like swine H1N1, 

human-like reassortant swine H1N2, human-like reassortant swine H3N2, and 

H1N1pdm09 virus (Simon, Larsen et al. 2014). In China, all of the lineages from both 

the USA and Europe are circulating in the pig population (Chen, Fu et al. 2014, Xie, 

Zhang et al. 2014, Yang, Chen et al. 2016). 

Co-circulation of different SIV strains is commonly seen in pig farms. Active 

surveillance undertaken in the USA reported simultaneous infection with influenza 

H3N2 and H1N1pdm09 virus in 8 different age categories of pigs from four to over 

24 weeks of age (Corzo, Culhane et al. 2013). Another study in Italy reported 

infection with multiple reassortant genotypes of H1N2 in one local commercial 

breeding farm during the two-month study period (Beato, Tassoni et al. 2016). It has 
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also been reported that 24% of the tested pigs in South China were positive for both 

H1 and H3, and such cases were discovered in seven out of the nine counties surveyed 

(Song, Xiao et al. 2010).  

The coexistence of different SIV strains facilitates frequent gene reassortment on pig 

farms. A cohort study in three selected farrow-to-finish pig farms in France found that 

H1N1 and H1N2 viruses could simultaneously exist in the same farm, batch or even 

individual pigs, and reassortants between viruses from these lineages could be isolated 

from infected herds (Rose, Herve et al. 2013). After the pandemic of "swine flu" in 

2009, gene reassortment between H1N1pdm09 viruses and local endemic swine 

viruses were identified in many countries, including the USA, Brazil, Germany, Italy, 

UK, Vietnam, Thailand, Japan, Korea and China (Abe, Mine et al. 2015, Kong, Wang 

et al. 2015). Whole-genome phylogenetic analysis of 368 influenza A viruses 

circulating in the USA demonstrated the presence of 44 different genotypes of H3N2 

in that country from 2009 to 2016, with the majority of these genotypes containing at 

least one gene segment from H1N1pdm09 (Rajao, Walia et al. 2017). 

Swine influenza virus reassortants can become endemic in pig farms and potentially 

transmit to humans resulting in pandemic circulation. The best-known example is the 

2009 H1N1 pandemic influenza A virus which is a reassortment of three different 

influenza strains circulating in pigs, birds and humans (van der Meer, Orsel et al. 

2010). Shortly after the outbreak of H1N1 in the USA, the H1N1pdm09 virus was 

found in the pig and human population all over the world. A survey undertaken in 

North Vietnam in 2009 reported a maximum seroprevalence of H1N1pdm09 of 55.6% 

(95% CI: 38.1-72.1) in pigs sampled at a slaughterhouse, with a farm-level 

seroprevalence of 29% (95% CI: 23.2-35.7) (Trevennec, Leger et al. 2012). In China, 
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the H1N1pdm09 virus was also first isolated in pigs in 2009, and reassortants with 

internal genes from the pandemic 2009/H1N1 viruses were found in pigs in the 

following years (Chen, Zhang et al. 2013, Chen, Zhang et al. 2014, Qiao, Liu et al. 

2014). H3N2 variants containing genes from the H1N1pdm09 influenza virus were 

subsequently isolated from at least seven countries between 2009 and 2013, and 

H3N2 seems to be the most commonly emerging SIV subtype (Kong, Wang et al. 

2015). It was suspected that the H1N1pdm09-origin internal gene segments appeared 

to have an advantage over the segments of other SIV’s in terms of contributing genes 

for new reassortants (Kong, Wang et al. 2015).  

Although gene reassortants and variants of H1N1pdm09 and other SIVs have been 

reported in China, the prevalence, geographical and population distribution, and 

relevant risk factors for their occurrence are still not clear.  

2.3 Diagnosis of swine influenza 

2.3.1 Serological methods 

Serological tests for SIV mainly refer to tests targeting host antibodies against the 

virus. The most commonly used serological tests are the hemagglutination inhibition 

(HI) test and the enzyme-linked immunosorbent assay (ELISA). Many commercial 

ELISA kits have been developed to detect antibody to the influenza A nucleoprotein 

(NP) because NP is highly conserved in influenza A viruses (Goodell, Prickett et al. 

2016). Several studies have shown that an NP blocking ELISA kit for testing 

antibodies in birds can also be used to detect NP antibodies in pigs (Nava, Merino et 

al. 2013, Goodell, Prickett et al. 2016). In general, HI tests are simpler to operate, 

cheaper and quicker than ELISAs; however only one subtype can be identified with 

each HI test. In addition, the sensitivity of the HI test can be low if used solely for 
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SIV surveillance when heterologous viruses are present (Goodell, Prickett et al. 2016), 

although they do offer the advantage that they can be used for subtyping the viruses 

(Van Reeth, Labarque et al. 2006). 

Serological surveys/tests often take advantage of existing collections of serum 

samples, as collecting blood samples involves significant cost, time and labour inputs 

(De Lucia, Rambaldi et al. 2019). To overcome the issues with collecting blood 

samples, a new method targeting the antibody in the oral fluid of swine, using a NP-

blocking ELISA, has been developed (Panyasing, Goodell et al. 2014). With 

experimentally infected pigs, the NP antibodies in the oral fluid were detected 7 to 42 

days post-infection in all challenged groups. The oral fluid versus serum sample-to-

negative (S/N) ratios from pigs in the same pen showed a correlation of 0.796, 

indicating good agreement between results for testing oral fluid samples compared 

with serum samples (Panyasing, Goodell et al. 2014). In contrast, another study that 

used field-collected oral samples found that the NP blocking ELISA had a much 

lower sensitivity in 10–14-week-old pigs compared with matched serum samples (19% 

for oral fluid and 93% for serum - P < 0.01) (Priscilla, Lorna et al. 2017). 

There are several advantages with using serological tests: firstly, they are often 

inexpensive; secondly, they are easier to perform compared with PCR tests or virus 

isolation; and thirdly, serological tests are more sensitive in detecting exposure of pigs 

to influenza A virus than PCR tests or virus isolation because the antibodies can last 

for at least 1.5 months post-infection, and consequently, serological tests are less 

sensitive to the sampling time (Goodell, Prickett et al. 2016, Priscilla, Lorna et al. 

2017). However serological tests have limitations which include: they only provide 

information on historical exposure to SIV and do not provide viral genetic 
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information or the live viruses which are vital for evaluating the potential pandemic 

threat of strains; cross-reactions can occur between different lineages within one 

subtype, or even among different subtypes; and maternally derived antibodies may 

interfere with the accuracy of the test (Allerson, Deen et al. 2013, Detmer, Gramer et 

al. 2013). 

2.3.2 Polymerase chain reaction methods 

Polymerase chain reaction (PCR) tests are mainly used in surveillance to detect the 

presence of SIV genes and to produce amplicons for further gene sequencing. The 

conventional RT-PCR targets the M gene of influenza virus and amplifies cDNA from 

the viral RNA. For subtyping, specific primers need to be designed to detect different 

subtypes. Universal primers can also be used to amplify cDNA, which is then 

sequenced (Inoue, Wang et al. 2010). 

Real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assays 

for the detection of SIVs were developed in 2004 (Richt, Lager et al. 2004). 

Compared with conventional RT-PCR, the real-time RT-PCR assay can be performed 

in a shorter time (within a few hours) and can differentiate SIV subtypes. It can also 

be less expensive than virus isolation (VI) and conventional RT-PCR assays. Most 

importantly, real-time RT-PCR doesn't require post–PCR sample handling, thus 

reducing the potential for cross-contamination (Richt, Lager et al. 2004). 

For public health purposes, detection of coinfection with different virus strains in a 

pig herd would be very valuable in SIV surveillance. Multiplex RT-qPCR assays can 

differentiate the H1, H3, N1 and N2 SIV subtypes. These multiplex RT-qPCR assays 

can also identify different lineages within the H1 subtype, such as "av" (European 

avian-derived), "hu" (European human-derived) and "pdm" (H1N1pdm09). Henritzi, 
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Zhao et al. (2016) reported that the multiplex RT-qPCR assays that they developed 

could detect double infections with different lineages in one clinical sample. However, 

the efficiency of the RT-qPCR relies heavily upon the specific primers used, with 

outdated primers resulting in low test sensitivity (Yang, Kuo et al. 2014). Since the 

primers used by Henritzi, Zhao et al. (2016) were designed specifically for the SIV 

strains circulating in Europe, whether these RT-qPCR assays could be used in SIV 

surveillance in other regions/continents requires further study. 

2.3.3 Virus isolation 

Isolation of SIV is undertaken routinely in embryonated chicken eggs (ECEs) and 

various cell lines, including the Madin-Darby canine kidney (MDCK) and the CACO-

2 cell line (Chiapponi, Zanni et al. 2010). It has been reported that the sensitivity of 

SIV isolation with different methods is dependent upon the virus strains present. A 

study using strain A/Swine/Indiana/1726/88 (H1N1) showed that ECE was more 

sensitive than an MDCK cell line (Clavijo, Tresnan et al. 2002). In contrast in another 

study with clinical samples, use of the MDCK cell line resulted in recovery of more 

isolates of H1N2 and H3N2 than with ECE (Bowman, Nelson et al. 2013), whilst the 

CACO-2 line was shown to be more sensitive (Fisher's exact test, p<0.01) for the 

isolation of H1N1 and H1N2 subtypes in Italy compared to both MDCK cells and 

ECEs (Chiapponi, Zanni et al. 2010). However for influenza A H3N2 virus, isolation 

in ECE has been demonstrated to be better than in cultured cells (p<0.01) (Chiapponi, 

Zanni et al. 2010). 

Virus isolation is often difficult, expensive and time consuming, but it is necessary 

when the live virus is required for further research, such as evaluating the 
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pathogenicity of new SIVs and screening for vaccine candidate strains (Detmer, 

Gramer et al. 2013). 

2.4 Epidemiology 

Swine influenza is endemic in many countries in North and South America, Europe, 

Asia and Africa (Almeida, Storino et al. 2017). Infection in pig farms can be seen 

throughout the year, although an increased number of cases are often seen in spring 

and winter (Beaudoin, Johnson et al. 2012, Kyriakis, Rose et al. 2013). It is believed 

that commercial pig farms have a higher risk of infection compared to backyard farms, 

especially for infection with new SIV reassortants (Gonzalez-Reiche, Ramirez et al. 

2017). Farrow-to-finish pig farms are more susceptible to SIV infection than fattener 

enterprises because they continuously produce naïve piglets (Loeffen, Nodelijk et al. 

2003, Kyriakis, Rose et al. 2013). In an infected herd, sows have the highest risk of 

being seropositive, most likely linked to their older age resulting in greater 

opportunity for exposure to the virus, while the greatest chance of isolating live 

viruses is from piglets (Mastin, Alarcon et al. 2011, Takemae, Parchariyanon et al. 

2011, Ozawa, Matsuu et al. 2015, Er, Skjerve et al. 2016). 

Virus transmission between pigs is mainly through direct pig-to-pig contact. Aerosol 

transmission is one of the common ways of indirect transmission of SIV (Brown 2000, 

Corzo, Romagosa et al. 2013, Hemmink, Morgan et al. 2016). A pig farm can become 

infected through the introduction of carrier pigs or entry of the virus on contaminated 

visitors, vehicles or fomites (Simon-Grife, Martin-Valls et al. 2011, Allerson, 

Cardona et al. 2013, Er, Skjerve et al. 2016).  

In infected pigs SIV is excreted in oral and nasal secretions, with no virus shed in the 

faeces (Choi, Goyal et al. 2004, Botner and Belsham 2012). Pigs can start to shed 
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virus within 2 days of infection. Although the duration of shedding is usually 8 to 10 

days, shedding for more than 30 days has been reported (Choi, Goyal et al. 2004, 

Botner and Belsham 2012). The reason for a long shedding period has been postulated 

to be linked to the suppression of immunity in infected pigs (Choi, Goyal et al. 2004). 

Between individual pigs within a herd, the transmission of SIV can be rapid. Rose, 

Herve et al. (2013) reported that in farrow-to-finish pig farms with recurrent influenza 

outbreaks the basic reproduction value (R0) was high, between 2.5 and 6.9. 

2.5 Interspecies transmission 

The HA subtypes circulating between birds, pigs and humans include H1-H16, with 

different subtypes predominantly circulating in individual species. Wild waterfowl are 

the natural reservoir of H1-H16, while domestic chickens are mainly infected by H5, 

H7 and H9 subtypes. For humans and pigs the most common circulating subtypes are 

H1-H3 and H1 and H3, respectively (Short, Richard et al. 2015). Pigs can contract 

influenza A viruses from other species, especially from infected humans and birds 

(Karasin, Brown et al. 2000, Grontvedt, Er et al. 2013, Nelson and Vincent 2015). 

Avian influenza viruses have been isolated from pigs in many countries and regions. 

In Canada, H4N6 influenza A isolates were isolated from pigs with pneumonia on a 

commercial swine farm and similarly an avian-origin H4N6 was isolated from pigs 

displaying clinical respiratory signs in the USA in 2015 (Karasin, Brown et al. 2000, 

Abente, Gauger et al. 2017). A study in Nigeria reported that 22 of 129 samples 

collected from apparently healthy pigs were positive to H5N1 while there was an 

epidemic of highly pathogenic avian influenza (HPAI) H5N1 in local poultry 

(Meseko, Globig et al. 2018). In addition, both avian H9N2 and H5N1 viruses were 

detected in pigs in Egypt in 2014 and 2015 (Gomaa, Kandeil et al. 2018). In China, 28 
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isolates of H9N2 were detected in pigs from 1998 to 2007 (Yu, Zhou et al. 2011). The 

isolates of H9N2 AIVs recently detected circulating in poultry farms in south China 

have shown increased ability to replicate in pigs than did earlier isolates (Sun, Lin et 

al. 2019), highlighting the greater risk of new viral reassortants appearing in this 

location. 

In pigs, infection with human source influenza A appears to be more common than 

that from avian-sourced influenza A (Nelson and Vincent 2015). Introductions of 

human seasonal influenza viruses into pigs during the period from 1965 to 2013 has 

been summarized by Nelson, Stratton et al. (2015), and the authors concluded that 

more than 40 cases of human-origin H1N1 viruses in pigs had been reported in the 5 

years after H1N1pdm09 was initially detected in humans. A study in the Czech 

Republic reported the presence of antibodies against the human influenza virus 

isolated during the 1995 epidemic in the local pig population. It is possible that the 

human virus was introduced to the pig herds by infected animal attendants, in whom 

antibodies against this virus were also found (Pospisil, Lany et al. 2001). H3N2 

viruses closely related to human viruses that circulated in 2010 have also been found 

in pigs from Central America in 2010 (Gonzalez-Reiche, Ramirez et al. 2017). In 

China, former prevailing human H1N1 strains have also been found to be circulating 

within the pig population (Yu, Zhou et al. 2009) and phylogenetic analysis indicated 

that these viruses arose through transmission from humans to pigs. It was interesting 

that in that study 4 out of 5 virus isolates were from Guangdong province. This may 

be either because Guangdong actually had more pig infections arising from human 

influenza than other provinces, or that Guangdong had contributed more of the 500 

tested samples. Although the samples were sourced from 8 different provinces, 



   

23 

 

unfortunately the actual sample size from each province was not given (Yu, Zhang et 

al. 2007).  

Many researchers believe that most subtypes of influenza A viruses from other 

species are capable of transiently infecting pigs. However as the majority of these 

strains have not been repeatedly detected in the same pig farms or in samples 

collected from pigs processed at slaughterhouses it is assumed that they are not able to 

establish in the pig population (Pospisil, Lany et al. 2001, Vijaykrishna, Smith et al. 

2011, Li, Zhou et al. 2015). 

2.6 Risk factors for SIV infection on pig farms 

2.6.1 Husbandry factors 

Some management and husbandry practices are associated with SIV infection in pig 

farms. Larger farms have been reported to have an increased risk of infection than 

smaller herds (Mastin, Alarcon et al. 2011, Takemae, Shobugawa et al. 2016, 

Gonzalez-Reiche, Ramirez et al. 2017). A high density of weaners has also been 

shown to increase the risk of infection in herds (OR: 2.9; 95% CI: 1.2–7.0) as has 

failure to adopt an all-in all-out practice in the fattening room (OR = 2.4, 95% CI: 

1.0–5.8) (Fablet, Simon et al. 2013). Another study reported that herds with a high 

number (>18) of finishers per water space had an increased risk of infection (OR 5.22; 

95%CI: 1.57 – 17.43) compared to herds with lower numbers of pigs (≤ 18) per water 

space (Mastin, Alarcon et al. 2011). Another study also found that the presence of 

open partitions between pens increased the risk of infection (Simon-Grife, Martin-

Valls et al. 2011), most likely associated with increased contact opportunities between 

pigs. Other factors which have also been linked with an increased risk of SIV 

infection in pig herds include increased replacement rates in pregnancy units, farm 
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type (farrow-to-finish and breeder herds had a higher risk of SI infection than finisher 

farms), having a suckling period of less than 28 days (for prevalence in weaners) and 

a fully slatted floors in pens (Simon-Grife, Martin-Valls et al. 2011, Baudon, Peyre et 

al. 2017). Low room/ambient temperature (<25℃) in the farrowing room has also 

been reported to increase the risk of infection (Fablet, Simon et al. 2013). In the 

United Kingdom, intensively housed (indoors) pigs had a higher risk of SIV infection 

than farms with extensive or outdoor housing (Mastin, Alarcon et al. 2011). In 

contrast the use of straw yards in UK farms has been shown to reduce the risk of 

infection (Mastin, Alarcon et al. 2011, Fablet, Simon et al. 2013).  

In conclusion, the husbandry practices that would facilitate interactions between naïve 

pigs and introduce stress to pigs are potential risk factors for SI infection in pig farms.   

Although extensive research on the risk factors for SI infection has been carried out in 

many countries, no single study existed addressing this topic in Chinese pig farms 

prior to the studies presented in this thesis. 

2.6.2 Biosecurity factors 

Poor biosecurity nearly always leads to a higher risk of a range of diseases, including 

SI (Filippitzi, Kruse et al. 2018). At least three biosecurity factors have been reported 

to be associated with increasing the risk of SIV infection in pig farms. Firstly, 

frequent human-pig interaction is a factor as human influenza viruses can spillover to 

pigs. One study demonstrated that the presence of farm staff with influenza-like 

illness was significantly associated with the presence of SIV on pig farms in Norway 

(OR = 4.15, 95%CI 1.5–11.4, p = 0.005) (Grontvedt, Er et al. 2013). A lower herd-

level seroprevalence in Norwegian fattening herds was believed to be associated with 

fewer close human-pig interactions, in contrast to sow (breeding) herds which had the 
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highest seroprevalence because sows frequently had contact with many different 

people (Er, Skjerve et al. 2016). Secondly, uncontrolled access to the farm by vehicles 

or visitors can increase the chance of introducing diseases through contaminated 

vehicles, clothing, footwear and fomites. Uncontrolled access to farms has been found 

to be a risk factor for H1N1 seropositivity (OR = 2.44, 95% CI: 1.01–5.87) in a study 

conducted in Spain (Simon-Grife, Martin-Valls et al. 2011). A third factor is disease 

management within the farms. Mastin, Alarcon et al. (2011) reported that the 

management of the sick pen was important; stating that the location of sick pens in a 

separate building to those housing healthy pigs may help reduce SIV infection, 

although this was not confirmed through a formal study. However, as with most 

infectious diseases, isolation of affected animals is a key management procedure to 

minimise transmission to other animals and contamination of the environment (Cui 

and Chen 2017). 

Most of the studies on risk factors for infection with SI have found agreement in risk 

and protective factors, although some studies did generate conflicting results. For 

example, Simon-Grife, Martin-Valls et al. (2011) reported that the presence of other 

species, such as cats, dogs, birds or cattle, on the farm increased the infection risk, in 

contrast Takemae, Shobugawa et al. (2016) found that the presence of other animals 

on the farm was potentially protective. These conflicting results may be due to the 

different ecosystems and the different husbandry practices adopted in the surveyed 

herds, different populations under study or differences in the case definitions in the 

individual studies.  
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2.6.3 Environmental factors 

Environmental factors for SIV infection have rarely been studied; however, the 

density of pig farms in an area appears to be a risk factor for SIV infection. Pasma 

(2008) analysed H3N2 SI outbreaks in Canada during the autumn of 2004 and found 

clustering of outbreaks in a region with a high pig density. It was hypothesized that 

the density of pig farms was a factor in the clustering and spread of this outbreak, 

although the data didn't show statistical significance for this factor. Couacy-Hymann, 

Kouakou et al. (2012) also thought the low pig density in Côte d'Ivoire, Benin, and 

Togo might be the reason for the low prevalence of avian and swine influenza in those 

three African countries. 

Some studies on avian influenza have highlighted the role of environmental and 

meteorological factors in avian influenza outbreaks. Potential risk factors, such as 

monthly average rainfall in the preceding 3-7 months, being close to rivers, lakes or 

seacoasts, low ambient air temperature, and high relative humidity have been reported 

to be linked with avian influenza outbreaks (Fang, Cao et al. 2005, Si, de Boer et al. 

2013, Zhang, Liu et al. 2014, Ferenczi, Beckmann et al. 2016). Since pigs may also 

contract avian-source influenza viruses, these environmental and meteorological 

factors could also be potentially associated with outbreaks of SI and require further 

investigation. 

2.7 Impact of swine influenza on the pig industry 

2.7.1 Morbidity and mortality 

Swine influenza is a highly contagious disease with almost 100% of exposed pigs 

becoming infected, although the mortality rate is usually very low. Even with 

infection in a naïve pig population, clinical signs may only be observed in a small 
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proportion of pigs with Er, Lium et al. (2014) reporting that less than 7% of pigs 

displayed clinical signs in an outbreak in a boar testing station in Norway. 

However serious losses can occur when SIV simultaneously infects pigs with other 

swine diseases or when infection occurs in sows during the late stages of pregnancy 

(Fablet, Marois-Crehan et al. 2012). A study reported that co-infection with 

Mycoplasma hyopneumoniae (Mhp) exacerbated the clinical effects of H1N1 

infection (Deblanc, Robert et al. 2013). Wesley (2004) observed stillbirths in naturally 

infected gilts after challenge with live H3N2 SIV at 80 to 82 days of gestation. The 

average percentage of stillbirths was 22% per litter while the control gilts (also 

naturally infected but not challenged with live H3N2 SIV) had no stillbirths. 

Furthermore, abortions can also occur when sows are infected with new emerging 

strains of SIV (Gumbert, Froehlich et al. 2020). 

2.7.2 Productivity losses 

The productivity losses caused by SIV infection include decreased feed conversion 

efficiency (FCE) and slower growth in pigs. Er, Lium et al. (2014) recorded an 

outbreak of H1N1pdm09 in a Norwegian boar station and analysed the infection on 

production performance in the resident pigs. Their study showed that seropositive and 

virus-positive pigs had overall reduced (P <0.05) growth performance compared to 

seronegative pigs, even though the feed intake was not decreased. For seropositive 

pigs, the negative effect on growth performance was seen during growth from 81 to 

100 kg (GF3), whereas feed conversion efficiency (FCE) was reduced requiring an 

extra 0.029 kg of feed for every 1 kg of weight gain and the average daily growth 

(ADG, weight gain in kg/day) decreased an average of 0.015 kg/day. For virus-

positive (with RT-PCR test) pigs, infection reduced the ADG by 0.058 to 0.015 
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kg/day and also reduced the FCE (an extra 0.058 to 0.125 kg of feed required for each 

kg of weight gain). Thus, infection resulted in an additional 2.3kg and 5.9-8.0kg feed 

for seropositive pigs and virologically positive pigs to reach 100kg bodyweight, 

respectively. The virus-positive pigs also took an extra 1.6 to 2.4 days to reach 100 kg 

bodyweight. This delay in reaching market weight would also increase the cost of the 

disease. 

Er, Skjerve et al. (2016) also evaluated the marginal effects of infection of 

H1N1pdm09 in Norwegian pigs. They estimated that a batch of 150 infected pigs 

would consume an extra 835 (fifth percentile) to 1,350 kg (95th percentile) feed and 

take 194 (fifth percentile) to 334 (95th percentile) more pig days to reach expected 

body weights than for an uninfected batch of 150 pigs. They also found that infection 

in the late stage of fattening could induce the greatest losses since a pig infected 

during GF3 required more feed and had a protracted production time compared to 

pigs infected when they were younger. 

2.8 Impacts on public health 

2.8.1 Swine-source influenza outbreaks and its prevalence in human 

Swine influenza viruses have a distinct impact on the potential for pandemic influenza 

in humans with 19 influenza A reassortants emerging in humans since 1918. Of these, 

three were predominantly zoonotic swine influenza variants (Bui, Chughtai et al. 

2017). Several swine-to-human spillover infections have been reported in China, as 

well as in other countries. One child infected with swine influenza H3N2 virus was 

reported in Hong Kong in 1999 (Gregory, Lim et al. 2001). Zu, Dong et al. (2013) 

reported a human case infected by European avian-like swine H1N1 influenza virus in 

Jiangsu province, with the same virus being isolated from the patient’s backyard pigs. 
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Killian, Swenson et al. (2013) investigated an outbreak of H1N1 at an Ohio county 

fair in the USA in 2007 and detected a triple-reassortant swine H1N1 influenza virus 

that had infected both people and pigs. 

Human-adapted SIVs can result in pandemic circulation. The H1N1pdm09 affected 

10-20% of humans globally and was commonly seen as the “seasonal flu” in humans 

(Short, Richard et al. 2015). In Mexico in the period 2007-2008 12.9 and 3.22% of pig 

farm workers were positive to H3N2 and H1N1 SIV, respectively (Lopez-Robles, 

Montalvo-Corral et al. 2012). Ma, Anderson et al. (2015) reported that in China 17.3 

and 7.0% of workers in piggeries and elsewhere, respectively were also seropositive 

to the swine H3N2 virus. However, cross-reactions between antibodies against human 

seasonal H3N2 and swine H3N2 may have introduced bias into these studies/findings. 

These studies did not rule out this possibility, and in another study, the authors found 

seropositivity against seasonal H3N2 virus was a significant risk factor for 

seropositivity to swine H3N2 virus (Ma, Anderson et al. 2015). 

2.8.2 Pathogenicity and transmission to humans 

Although several human deaths have resulted from SIV infection (Tang, Shetty et al. 

2010, Short, Richard et al. 2015), the majority of the SIV human infections are mild 

and indistinguishable from other seasonal influenza virus infections. The influenza 

H1N1pdm09 and the H3N2 variants in the USA are the most recent swine-origin 

influenza viruses. Human mortality of influenza H1N1pdm09 was approximately 29 

deaths per 100,000 infections, and among the 350 human cases of the H3N2 variants, 

only one patient with unspecified concurrent diseases died (Tang, Shetty et al. 2010, 

Short, Richard et al. 2015).  
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2.8.3 Infection pathways: risk factors for human infection 

The most common pathway for the swine-to-human spread of SIV is exposure to live 

pigs. A study reported that exposure to pigs increased the chance of humans being 

infected with H3N2 SIV (OR=3.05, 95%CI: 1.65–5.64) and working in large breeding 

herds also increased the likelihood of detecting anti-SIV antibodies in pig farm 

workers (OR=3.98, 95%CI: 1.00–15.86) (Lopez-Robles, Montalvo-Corral et al. 2012). 

A study in the USA reported that there were spatio-temporal associations between the 

number of pig farms within counties and the timing of human flu cases, with peak 

number of cases during years when SIV was present, indicating transmission between 

pigs and humans (Lantos, Hoffman et al. 2016). 

2.8.4 Prevention of spillover of SIVs to humans 

As the circulation of influenza A viruses among pigs and humans is very complicated 

in terms of the interaction of the two species in different ecosystems, it is difficult to 

recommend effective measures to prevent the transfer of infection from pigs to 

humans. Dorjee, Revie et al. (2016) used mathematical modelling to demonstrate that 

minimizing influenza transmissibility at the pig-human interface through good 

personal hygiene, avoiding direct contacts with sick pigs, and targeted vaccination of 

swine workers with protective vaccine strains had significant beneficial effects on 

reducing spillover to humans. They also evaluated different strategies to minimize the 

duration and size of outbreaks if a spillover event happened, and they suggested that 

early detection and effective quarantine in humans had the greatest impact on the 

control of influenza spread. Their findings support putting more emphasis on the early 

detection of SIVs with pandemic potential in pigs, and hence the need for 

strengthening the monitoring of gene recombination among SIVs. 
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2.9 Control measures for influenza in pigs  

2.9.1 Vaccination 

Vaccination against SI may protect pigs from infection and is commonly used in sows 

because it is believed piglets are protected through maternal immunity to homologous 

influenza A strains (Pardo, Wayne et al. 2019). Allerson, Deen et al. (2013) 

demonstrated that vaccination of sows could significantly reduce SIV transmission 

among piglets; however, there are several challenges with SIV vaccination. Firstly, as 

homologous antibody against circulating strains is vital for the efficacy of vaccination 

in the field, it is critical to vaccinate with the current circulating strains. However, as 

different strains are commonly found in herds throughout the world, the failure of 

vaccination to induce protective immunity by not incorporating homologous local 

infecting strains in the vaccine cannot be ignored. Secondly, MDA may interfere with 

immunity against infection with homologous SIV strains in piglets. A study reported 

that MDA in piglets could result in a prolonged shedding period of the virus when the 

piglets were subsequently infected with homologous SIV strains (Rose, Herve et al. 

2013). 

2.9.2 Surveillance for swine influenza viruses  

Surveillance programs for SIV have been developed and implemented in many 

countries. In the USA, the aims of SIV surveillance include the protection of public 

health. However, detection, discovery, and sharing of virus isolates to facilitate 

updates for vaccines, refine diagnostic assays, and determine the distribution of new 

influenza strains in pigs to inform further policy decisions are also advantages of this 

surveillance (Corzo, Culhane et al. 2013, Kaplan, DeBeauchamp et al. 2015). In 

Europe, the European Surveillance Network for Influenza in Pigs (ESNIP) was 
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established in 2001. This was designed to "increase the knowledge of the 

epidemiology and evolution of swine influenza virus in European pigs''. Most of the 

funds associated with this network have been directed towards undertaking research 

on the antigenic and genetic characterization of field isolates of SIV (Detmer, Gramer 

et al. 2013). 

For the purpose of preventing potential pandemic human influenza, it is valuable to 

monitor genetic drift, co-infection with different SIV subtypes on pig farms and 

emerging new reassortants of SIVs (Simon, Larsen et al. 2014, Rajao, Walia et al. 

2017). Thus, subtyping and gene sequencing of field strains and isolation of live 

strains is required.  

Virological tests are often not sensitive in the field because excretion of SIV is 

transient in infected pigs (Van Reeth, Gregory et al. 2003, Hemmink, Morgan et al. 

2016) resulting in many affected pigs returning a virus-negative outcome. 

Furthermore it is often difficult to culture SIVs and therefore subtype them when the 

viral load in samples is low. For example, Lopez-Robles, Montalvo-Corral et al. 

(2014) reported that even when clinical signs were present in 22 of 25 pigs that were 

positive to the matrix gene of influenza A, only isolates from 6 affected pigs were 

able to be subtyped by RT-PCR.  

It is recommended that risk-based surveillance strategies are implemented to improve 

the efficiency of SIV surveillance. Risk-based surveillance is designed to detect 

pathogens or infections in the most likely places, herds or individuals, and thus can 

improve the sensitivity of the surveillance system leading to more efficient use of 

resources and time (East, Wicks et al. 2013). Risk-based surveillance relies on 

knowledge about the diseases’ epidemiological characteristics, including the 
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determinants for its spread and transmission (Stark, Regula et al. 2006, Oidtmann, 

Peeler et al. 2013).  

Surveillance for influenza A viruses, including surveillance for SI, is in place in many 

countries (Kaden, Lange et al. 2008, Simon, Larsen et al. 2014, Vincent, Awada et al. 

2014, Kaplan, DeBeauchamp et al. 2015). However, there is still room for 

improvement of SIV surveillance. Firstly, SI surveillance in key areas is insufficient. 

The surveillance capacity varies between countries, with many undeveloped countries 

having limited resources hindering their surveillance capacity. Secondly, the existing 

surveillance programs have not generated sufficient knowledge on the 

epidemiological features of SIV in different ecosystems. Thirdly, although passive 

surveillance is common in many countries, well-designed active surveillance is still 

rare. Passive surveillance may introduce bias in evaluating the presence and 

distribution of SIVs. Lastly, while more reassortants have been confirmed and 

compared with phylogenetic analysis, the relevant risk factors for infection remain 

unclear (Trevennec, Cowling et al. 2011, Vincent, Awada et al. 2014, Nelson, Viboud 

et al. 2015). 

2.10 Social network analysis (SNA) and its role in SI 

Social network analysis has been used to investigate animal movements allowing 

implementation of more effective disease control in livestock populations (Dubé, 

Ribble et al. 2011). Social network analysis involves a multidisciplinary approach that 

focuses on investigating the relationships between interacting units (Wasserman and 

Faust 1994). The idea of the social network was firstly explored by psychologists in 

their studies on the flow of information through groups. Similar to the spread of news 

between people, contagious pathogens can be transmitted between animals, premises 
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and places via the contacts between them (Earley, Buckham Sporer et al. 2017, Lee, 

Polson et al. 2017, Rossi, De Leo et al. 2017).  

Due to the mathematical nature of SNA, some of the terms are abstract notions. The 

definitions of some terms used in SNA in epidemiology are introduced in Table 2.1. 
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Table 2.1 Definitions of social network analysis terms used in epidemiology* 

Parameter 

 

Definition 

 

Node A node refers to a unit of interest in a network (Dube, Ribble et al. 2009).  

Edge An edge represents a contact between individuals in the susceptible population (Shirley and Rushton 2005).  

Small-world When the nodes in a network are highly clustered, and the nodes are connected with each other with short 

paths in general, the network can be defined as a small-world network (Watts and Strogatz 1998).  

One-mode network The nodes in the network are considered as belonging to the same category (Wasserman and Faust 1994). 

For example, a group of farms having animal movement between them. 

Two-mode network The nodes in the network are considered as belonging to two different sets, and the structure of the network 

can be measured on these two sets (Wasserman and Faust 1994). For example, a group of farms having 

animal movement between them, but the farms are owned by different companies. 
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Parameter 

 

Definition 

 

Edge density A value reflecting the density of the network that can be calculated using the equation: L/k(k - 1), where L 

is the number of exiting edges and k is the number of nodes in the network (Wasserman and Faust 1994). 

Diameter 

 

The longest geodesic between any pair of nodes in the network (Wasserman and Faust 1994). 

Average path length For any two given nodes, the shortest path between them over the paths between all pairs of nodes in the 

network (Dube, Ribble et al. 2009) 

Degree The total number of contacts of a county to other counties in the network. A higher degree means more 

connection to other nodes in the network (Marquetoux, Stevenson et al. 2016). 

Betweenness The frequency by which a node falls between pairs of other nodes on the shortest path connecting them 

(Dube, Ribble et al. 2009). Betweenness is a measure of centrality used to quantify a node’s potential to 

‘control’ the flow or curtail paths within a network (Marquetoux, Stevenson et al. 2016). 
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Parameter 

 

Definition 

 

Closeness  The sum of the shortest distances (not geographical, but path length) from a source livestock operation to 

all other reachable operations in the network (Shirley and Rushton 2005). 

Clustering coefficient This measure assesses the degree to which nodes tend to cluster together. It represents the proportion of one 

node's neighbours, who are also neighbours to another (Watts and Strogatz 1998).  

 

Giant weakly connected 

component (GWCC) 

 

The weakly connected component is the undirected subgraph in which all nodes are linked, not taking into 

account the direction of the links (Robinson and Christley 2007). GWCC is the largest weak component in 

the network (Dube, Ribble et al. 2009).  

* Part of this table has been published in the manuscript outlined in full in Chapter Four of this thesis: Li, Y., Huang, B., Shen, C., Cai, 

C., Wang, Y., Edwards, J., Zhang, G., & Robertson, I. D. (2020). Pig trade networks through live pig markets in Guangdong Province, 

China. Transboundary and emerging diseases, 67(3), 1315–1329. https://doi.org/10.1111/tbed.13472.
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Animal movement plays a significant role in the spread of most infectious diseases 

(Martin, Zhou et al. 2011, Guinat, Relun et al. 2016). A study on bovine tuberculosis 

(bTB) in East Africa demonstrated that the network of cattle movement had a 

significant impact on the TB infection status of cattle herds. The analysis of associations 

indicated that the herd's degree, betweenness, and closeness were positively correlated 

to infection. In contrast, the fragmentation index was negatively related to a herd’s bTB 

infection status (Sintayehu, Prins et al. 2017). Focusing on animal movement and farm-

level parameters derived from animal movement, Scharrer, Widgren et al. (2015) 

developed a framework to select farms for risk-based surveillance for contagious 

diseases such as bovine viral diarrhoea (BVD) in cattle farms, and they validated its use 

with data collected from a BVD surveillance programme in Switzerland. Another study 

on cattle movements in the Uruguayan cattle industry found an extreme high level of 

heterogeneity in movement patterns. The study suggested disease control and 

surveillance should target specific farms to contain disease outbreaks (VanderWaal, 

Picasso et al. 2016). 

Social network analysis was used in veterinary epidemiological studies for the first time 

in 2002 (Webb and Sauter-Louis 2002). Since then, it has been used in several aspects 

of animal disease control. One of the most significant purposes of SNA is to identify the 

key players in an animal movement network. A study on pig and pork movement in 

border areas between Kenya and Uganda (a trading network) identified several key 

nodes for ASF spread between the two countries (Lichoti, Davies et al. 2017). A study 

of the cattle movement network in Denmark demonstrated a large degree of 

heterogeneity and the authors suggested that the livestock markets had a higher risk of 

receiving pathogens than did farms and recommended that network analysis should play 

an important role in disease control programs (Bigras-Poulin, Thompson et al. 2006). 
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Social network analysis has also been applied in modelling the potential for 

transmission of a pathogen within a network (Marquetoux, Heuer et al. 2016). 

Modelling can be used to predict how many premises would become infected if an 

epidemic was to spread through the studied network (Dube, Ribble et al. 2011), as well 

as to evaluate the effects of different interventions on the control of the epidemic and 

hence SNA can be used to identify the most effective methods to apply to control the 

disease of interest (Gates and Woolhouse 2015, Marquetoux, Stevenson et al. 2016).  

Animal movements, including the introduction of live animals for breeding or fattening, 

transporting livestock to slaughterhouses, selling animals in livestock markets and 

attending livestock shows, are the most commonly used data for SNA (Kiss, Green et al. 

2006, Martin, Zhou et al. 2011, Marquetoux, Stevenson et al. 2016, Lee, Polson et al. 

2017). Besides the movement of live animals, contaminated personnel, vehicles and 

feed can also be involved in the spread and introduction of new diseases into premises 

(Rossi, De Leo et al. 2017). Some SNA studies (Brennan, Kemp et al. 2008, Rossi, De 

Leo et al. 2017) have explored the indirect contacts between premises, including sharing 

equipment and visiting personnel, and have highlighted that SNA may help in the 

development of disease control and prevention measures.  

The movement network of live pigs in China is complicated. The provinces in the centre, 

southwest and northeast of China, such as Henan, Sichuan and Liaoning, have large 

areas of intensive cropping and massive pig populations (Ministry of Agriculture and 

Rural Affairs 2018), whilst the majority of the big cities are located in the provinces in 

the east and south of China. This separation of the pig and human populations results in 

the need for long-distance transport of live pigs between provinces. Furthermore as 

Chinese people have a preference for meat from freshly slaughtered animals, as opposed 

to chilled or frozen meat (Lin, Zhang et al. 2017), live pigs are usually slaughtered in 
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slaughterhouses located in or near the large cities. In south China there are live pig 

markets in cities, such as Guangzhou and Foshan. Pigs sourced from distant farms are 

traded in these markets. The movement network of live pigs via these markets and the 

trade practices in these markets are largely unknown, even though it is well known that 

live animal markets can play a key role in the rapid spread of epidemics in animals in 

China (He, Liu et al. 2014, Zhou, Li et al. 2015, Cao, Jin et al. 2018). To better 

understand the risk of spreading SI and other diseases between areas via these live pig 

markets, SNA on the movement of pigs in the local market trading system is needed and 

this formed one aspect of the research reported in this thesis (Chapter Five). 

Establishing an effective control strategy for SI in China requires a detailed 

understanding of the epidemiology of the disease. However, very little was known about 

the prevalence and risk factors of SI, and the biosecurity gaps in local pig farms before 

this study. Given the zoonotic risk of SI, it is vital to understand the interactions 

between pigs and pig industry workers. Previous studies have indicated that the 

movement of livestock and environmental and meteorological factors impact upon the 

spread of animal diseases (Gilbert, Golding et al. 2014, Sintayehu, Prins et al. 2017). 

However, no previous studies had explored the roles of these factors on SI in south 

China, where influenza is prevalent in the massive populations of pigs, poultry and 

humans. In the next chapter the findings of a study to determine: the husbandry and 

biosecurity practices adopted, and the farm-level prevalence, spatial distribution and 

farm-level risk factors for SI infection in pig farms in Guangdong Province are reported. 
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CHAPTER 3： Prevalence, distribution and risk 

factors of farmer reported swine influenza infection 

in Guangdong Province, China 
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Preface 

Swine influenza is endemic in the Chinese pig population; however most studies 

conducted in China on SI have previously only focused on monitoring the changes in 

the gene sequences of SIV isolates. Prior to the research reported in this thesis there was 

little information available on the prevalence of the disease in China, and factors linked 

to its spread between Chinese pig farms. This lack of epidemiological knowledge about 

SI in China has been a critical obstacle to the control of SI in the country. In this chapter, 

the husbandry, management and biosecurity practices adopted by pig farmers in 

Guangdong Province are described. Guangdong Province in south China was selected 

for this research as it has been considered as a hot spot for influenza containing large 

areas of wetlands, live animal markets and large human and pig populations, and 

previous studies have shown that there are many SIV reassortants circulating in the pig 

population of this province (Yang, Chen et al. 2016). The prevalence of farmer 

perceived SI infection at the farm-level and the associated risk factors were also 

explored to address the identified deficits in the understanding of SI in Guangdong 

Province, China.  

This manuscript was presented as a poster at the Second Murdoch University Annual 

Research Symposium on the 3rd June 2019, Perth, Australia. 

The text of this chapter is identical to that in the manuscript published in ‘Preventive 

Veterinary Medicine’ except for the reference list which has been combined with 

references of other chapters and incorporated as one list at the end of the thesis.  

This chapter can be found published as:  

Li Y, Edwards J, Wang Y, Zhang G, Cai C, Zhao M, Huang B, Robertson ID. 

Prevalence, distribution and risk factors of farmer reported swine influenza infection in 

Guangdong Province, China. Preventive Veterinary Medicine. 2019 Jun 1;167:1-8.  
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Abstract 

A cross-sectional study was undertaken to better understand the husbandry, 

management and biosecurity practices of pig farms in Guangdong Province (GD), 

China to identify risk factors for farmer reported swine influenza (SI) on their farms. 

Questionnaires were administered to 153 owners/managers of piggeries (average of 7 

from each of the 21 prefectures in GD). Univariable and multivariable logistic 

regression analyses were used to identify risk factors for farmer’ reported SI in 

piggeries during the six months preceding the questionnaire administration. The ability 

of wild birds to enter piggeries (OR 2.50, 95% CI: 1.01-6.16), the presence of poultry 

on a pig-farm (OR 3.24, 95% CI: 1.52-6.94) and no biosecurity measures applied to 

workers before entry to the piggery (OR 2.65, 95% CI: 1.04-6.78) were found to 

increase the likelihood of SI being reported by farmers in a multivariable logistic 

regression model. The findings of this study highlight the importance of understanding 

the local pig industry and the practices adopted when developing control measures to 

reduce the risk of SI to pig farms. 
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3.1 Introduction 

Swine influenza (SI) is a respiratory disease of pigs caused by swine influenza virus 

(SIV) – a type A influenza virus (Brown 2000). Typical clinical signs include 

coughing, labored breathing, nasal discharge, sneezing and pyrexia (Kothalawala, 

Toussaint et al. 2006). Since SI is a highly contagious disease, the morbidity on 

infected farms is often nearly 100%, although mortality is usually very low. The 

infection is often mild, resulting in low direct losses from the disease (Er, Lium et al. 

2014), although serious losses can happen when SIV simultaneously infects pigs with 

other pathogens or when infection occurs in sows during late pregnancy (Fablet, 

Marois-Crehan et al. 2012). Wesley (2004) reported 22% stillbirths in naturally 

infected gilts after infection with H3N2 SIV at 80 to 82 days of gestation. Abortions 

can also occur when sows are infected with new strains of SIV (Choi, Goyal et al. 

2002). Swine influenza is also a potential threat to human health (Ito, Couceiro et al. 

1998). 

Swine influenza is one of the most ubiquitous diseases circulating in the global pig 

population. Corzo, Culhane et al. (2013) reported a 90.6% herd prevalence in USA 

using a real-time reverse transcription polymerase chain test and a cross-sectional 

study in northern Mexico reported that more than 50% of pigs from commercial farms 

were seropositive to H1 or H3 subtype SIV (Lopez-Robles, Montalvo-Corral et al. 

2014). Swine influenza is also widespread in Europe. An analysis of historical 

surveillance data in Norway showed that the national herd seroprevalence of influenza 
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A(H1N1)pdm09 virus was around 43%, and the individual pig seroprevalence of 

pandemic H1N1 on infected farms was more than 60% (Er, Skjerve et al. 2016). 

Another study in 2009 reported almost 100% herd-seroprevalence against SIV in 98 

randomly selected piggeries in Spain, with 62.3% of individual animals seropositive 

(Simon-Grife, Martin-Valls et al. 2011). In England, a 52% herd prevalence was 

reported by Mastin, Alarcon et al. (2011) with the highest individual seroprevalence 

being 33% in sows. 

Swine influenza is endemic in the Chinese pig population, with many subtypes 

contemporaneously circulating in pig farms. Serological evidence of H1, H3, H4, H5, 

and H9 influenza viruses has been found in the Chinese pig population (Ninomiya, 

Takada et al. 2002, Yu, Zhou et al. 2011). Liu, Wei et al. (2011) reviewed the data 

from 10 years of publications and concluded that the average individual pig 

seroprevalence to subtypes H1, H3, H5, H7 and H9 were 31.1, 28.6, 1.3, 0 and 2.4%, 

respectively. Song, Xiao et al. (2010) reported an individual pig seroprevalence of 

more than 50% for H1 and H3 in commercial farms in Fujian Province. However, no 

antibody against H5N1 was detected in pigs in Fujian, and while H9 infection was 

detected it was only at a very low seroprevalence (1% in 2004 and 2.6% in 2007). In 

Tibet, 52 and 16.9% of pigs were seropositive to H1N1 and H3N2, respectively (Liu, 

Zhou et al. 2014). Infection with more than one subtype of SIV often occurs in the 

Chinese pig population. For example, 8.8 and 24% of the pigs tested in Fujian 
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Province and Tibet, respectively were seropositive for H1 and H3 (Song, Xiao et al. 

2010, Liu, Zhou et al. 2014). 

China, particularly south China, is considered by some as "the epicenter of influenza" 

(Liu, Ji et al. 2011), because of the unique ecosystem containing vast wetlands, live 

animal markets, and one of the largest human and pig populations in the world. Other 

studies have shown that SI is not evenly distributed in China and is more prevalent in 

south China (Yu, Zhang et al. 2009). Unfortunately, husbandry, management and 

biosecurity practices adopted on pig farms in China are rarely described and no 

information is available on potential risk factors for SI infection in pig farms in China. 

The objectives of this study were to describe: the herd level prevalence in pig farms 

reporting SI infection; the distribution of infection; the husbandry, management and 

biosecurity practices adopted on the surveyed pig farms; and the putative risk factors 

for SI in Guangdong Province. 

3.2 Materials and methods 

3.2.1 Sample strategy 

he study was conducted in Guangdong Province in July and August 2015. The 

sampling frame was the client lists of 10 private consultants who were offering 

veterinary services to pig farms in all 21 prefectures within the province. The average 

number of clients (piggeries) per prefecture for the consultants was 80. The veterinary 

consultants used a random number process to randomly select piggeries from their 

complete client lists for sampling. On average 7 farms were randomly selected from 
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each of the 21 prefectures in the province (total of 153 pig farms surveyed) (Fig. 3.1). 

Four of the consultants provided details on the number of farms serviced and the 

number of pigs on these farms in 15 prefectures. 

 

Figure 3.1 Sampled pig farms in Guangdong Province 
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3.2.2 Data collection 

A questionnaire was designed and administered to collect information about 

husbandry, management, trade and biosecurity practices, and interfaces between pigs 

and other animal species, including humans. The farmers were asked if a swine flu-

like syndrome, such as coughing, nasal discharges or sneezing, had been seen in their 

pigs in the six months prior to the questionnaire being administered. Data were 

collected on when this event occurred, its duration, mortality levels, and whether it 

was confirmed by diagnostic tests and/or by a veterinarian. The questionnaire was 

pretested on 12 farms and subsequently revised. The final questionnaire contained 84 

questions and the average response time to complete was 30 minutes. The 

questionnaires were administered to piggery owners/managers by the consultants in a 

face-to-face setting. The consultants were trained in delivering the questionnaire by 

the authors before administering the survey. The questionnaire and its delivery had 

been approved by the South China Agriculture University Human Ethics Committee. 

3.2.3 Data analyses 

Using information collected from the piggery and from the consultants, a case was 

defined as a farm that had contained pigs with SI-like clinical signs in the six-months 

preceding the questionnaire administration and which also met at least one of the 

following criteria: 

• The outbreak lasted less than 30 days on the farm; 

• The morbidity was higher than 10%; 
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• The case fatality rate was less than 5%; 

• The outbreak was diagnosed as SI infection by a veterinarian or from 

laboratory samples. 

70 farms that met the criteria were defined as case farms. Among these, 19 had the 

epidemic diagnosed by a professional (12 by a on–farm veterinarian and 7 by a 

diagnostic laboratory). The remaining 51 case farms all had SI-like clinical signs in 

pigs and met at least 1 of the first 3 criteria (19 farms met 1 of the criteria; 29 met 2 of 

the criteria; and 3 case farms met all of the first 3 criteria). 

The herd prevalence was estimated only in the 15 prefectures with a known sampling 

frame by weighting in each stratum (prefecture) in Microsoft Excel (Redmond, WA, 

USA) using the method of Dohoo, Martin et al. (page 35-37, 2010). Maps were 

developed with ArcGIS 9.3 (ESRI Inc., Redlands, CA, USA) to show the location of 

the affected and non-affected piggeries. Statistical descriptions of the husbandry, 

management, trading and biosecurity practices were conducted with Microsoft Excel 

(Redmond, WA, USA) and R software (version 3.0.2). The total number of cases per 

month was calculated and the number of cases in each month was illustrated by 

constructing a histogram using Microsoft Excel. 

Data collected from the 153 pig farms were used to identify putative risk factors for 

SIV infection in the 6 months preceding the administration of the questionnaire. 

Univariable and multivariable logistic regression analyses were done using SPSS 

(SPSS Inc., IBM Corporation, Somers, NY) version 19 to identify risk factors for 
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farmer’ reported SI infection in their piggery. Ten risk factors were excluded from the 

multivariable logistic regression analysis due to collinearity and two risk factors were 

excluded due to similarity to other risk factors. Factors (12) with P-values < 0.2 in the 

univariable logistic regression analyses were offered to a multivariable model. A 

stepwise backward method was used to generate a final model with variables retained 

when the P-value of the likelihood ratio test was < 0.05. Interactions between factors 

in the final model were examined for statistical significance. The goodness of fit of the 

final model was tested using the Hosmer-Lemeshow test. Area under the curve (AUC) 

was also calculated with SPSS. 

3.3 Results 

3.3.1 Herd prevalence 

Of 153 surveyed farms, 70 (46%) were defined as cases. Using the data from the 15 

prefectures where the total number of farms in the sampling list was known, the herd 

prevalence of farmer’ reported SI infection in the preceding 6 months was 58% (95% 

CI: 48 - 68%), after adjusting for the sample weights in each stratum. 

Temporal distribution of SI infection 

Fifty-nine of the 70 case farms reported the onset dates or months of the SI-like 

infection. For the data collected (January to August, 2015) the most cases of SI-like 

infection were observed from March to May (Fig. 3.2). 
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Figure 3.2 Temporal distribution of farmers-perceived SI cases between January 

and August 2015 in Guangdong province 

3.3.2 Demographic, management and husbandry practices of pig farms 

The demographic profile of farms participating in the study and the on-farm husbandry 

and management practices are summarized in Table 3.1. 

The majority (86%) of the farms involved in this study were farrow to finish pig farms 

(breed, grow and fatten pigs and then send them to a slaughterhouse), 11% were 

farrow to wean farms (sell gilts or weaners to other farms for breeding or fattening 

purposes), and 3% of the surveyed farms were fattening farms (purchased weaners to 

fatten). Approximately half (46%) were categorized as small farms (< 2000 head). 

Farrow to wean farms had larger populations than farrow to finish and fattening farms 

and were more likely to record production information and employ a veterinarian as a 

full-time worker on the farm. 
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Table 3.1 Demographic profile and husbandry practices of the 153 pig farms participating in the study categorized by herd size and 

farm type 

Explanatory variable  

  

Level 

  

farm type   farm size (head) 

Total farrow to 

finish 

farrow to 

wean 
fattening  < 2000 ≥ 2000 

N (%)  131 (86%) 18 (11%) 4 (3%)  71 (46%) 82 (54%) 

 
         

Total pig population (mean ± 

SD) 
 

2810 ± 

2690 
12511 ± 17029 1260 ± 424 

 
1098 ± 970 6347 ± 17673 

 

         

Duration of operation (Years) 
=< 10 76% 83% 100%  76% 78% 77% 

> 10 24% 17%   24% 22% 23% 

        
 

Keep production records 
Yes 76% 100% 75%  72% 85% 79% 

No 24%  25%  28% 15% 21% 

         

Total employees (mean ± SD)   12.0 ± 15.0 54.9 ± 63.8 3.8 ± 1.0  5.3 ± 5 26.8 ± 73.8 

        
 

Full-time veterinarian employed 

on farm 

Yes 47% 94% 25%  34% 68% 52% 

No 53% 6% 75%  66% 32% 48% 
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Explanatory variable  

  

Level 

  

farm type   farm size (head) 

Total farrow to 

finish 

farrow to 

wean 
fattening  < 2000 ≥ 2000 

Employees live on the farm Yes 93% 94% 100%  90% 96% 93% 

 No 2% 6%   3% 1% 2% 

 Not always 5%    7% 2% 5% 

 

Accommodation area for staff 

adjacent (< 10 meters) to 

buildings housing pigs 

        

Yes 31% 11% 25%  39% 20% 29% 

No 69% 89% 75%  61% 80% 71% 
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3.3.3 Practices for introduction and selling of pigs 

The practices for the introduction and selling of pigs on surveyed farms are presented 

in Table 3.2. Fattening farms introduced more pigs and at more frequent intervals (6.5 

times per year with about 1200 head in total) than farrow to finish farms (1.8 times per 

year with about 140 head) and breeding farms (1.5 times per year with about 70 head); 

farrow to wean farms sold more pigs more frequently (a total of 27600 head sold 210 

times per year) than farrow to finish farms (5327 pigs sold 46 times per year) and 

fattening farms (800 pigs sold 6 times per year). Of the interviewed owners/managers, 

89% would contact farrow to wean farms directly when they needed new stock, but 5% 

of them would use agents (“middle-men”) and 1% of them would attend a live pig 

market for replacement stock. When selling pigs, less than half of the farms (42%) 

would sell all the pigs in a pen at one time. On 30% of the visited farms, buyers would 

participate in selecting pigs for purchase and their subsequent loading onto trucks.  
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Table 3.2 The introduction of live pigs and selling practices of farms participating in the study 

Explanatory variable  Level farm type   farm size (head) Total 

    farrow to finish farrow to wean fattening   < 2000  ≥ 2000  

Introduced pigs in the year 

preceding the survey 

Yes 61% 28% 50%   66% 50% 57% 

No 39% 72% 50%   34% 50% 43% 

    
   

        

Source of introduced pigs 

Breeding farms 88% 100% 100%   90% 89% 89% 

Middle men 6%     6% 5% 5% 

Live pig market 1%       2% 1% 

Others 5%     4% 5% 4% 

         

New pigs are quarantined when 

introduced 

Yes all the time 62% 100% 50% 
 

45% 85% 65% 

Sometimes 14% 0% 0% 
 

18% 6% 12% 

Never 24% 0% 50%  37% 8% 23% 

           

Measures undertaking during 

quarantine in farms which adopted 

quarantine practices  

Observe for signs 

of illness only 

52% 14% 50%  61% 38% 50% 

Observe pigs and 

do diagnostic tests 

37% 86% 0%  24% 55% 40% 
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Explanatory variable  Level farm type   farm size (head) Total 

    farrow to finish farrow to wean fattening   < 2000  ≥ 2000  

Observe pigs and 

occasionally 

collect samples for 

testing 

11% 0% 50%  15% 6% 11% 

               

Sell all the finishing pigs in an 

individual pen  

Yes all the time 43% 33% 50%   32% 51% 42% 

Sometimes 30% 33% 50%   28% 33% 31% 

Never 27% 33%    39% 16% 27% 

               

Who selects and loads pigs for sale  

Workers from the 

farm only 
68% 94% 50% 

  
66% 74% 70% 

Buyers only 11% 
  

  15% 5% 10% 

Both 21% 6% 50%   18% 21% 20% 

    
   

        

People loading pigs change their 

clothes before entering the piggery 

to select and load pigs 

Yes 46% 6% 75%   61% 26% 42% 

No 54% 94% 25%   39% 74% 58% 

    
   

        

People loading pigs change their 

boots before entering the piggeries 

to select and load pigs 

Yes 30% 6% 50%   37% 21% 28% 

No 70% 94% 50%   63% 79% 72% 
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Explanatory variable  Level farm type   farm size (head) Total 

    farrow to finish farrow to wean fattening   < 2000  ≥ 2000  

               

Ever seen half loaded truck 

(presence of other farm pigs on 

truck) before loading 

Yes 13% 
  

  18% 5% 11% 

No 77% 100% 75%   65% 93% 80% 

Not sure 10% 
 

25%   17% 2% 9% 

               

Number of times pigs were 

introduced in the year preceding the 

survey (mean ± SD) 

  1.8 ± 1.2 1.8 ± 0.8 6.5 ± 7.8   1.8 ± 3.4 1.9 ± 2.8   

         

Number of pigs introduced in the 

year preceding the survey (mean ± 

SD) 

  138 ± 366 70 ± 19 1211 ± 1682   104 ± 712 216 ± 974   

Number of times pigs were sold 

during the year preceding the survey 

(mean ± SD) 

  45 ± 70 201 ± 301 5.5 ± 6.4   21 ± 63 96 ± 328   

         

Number of pigs sold during the year 

preceding the survey (mean ± SD) 
  5228 ± 10413 25999 ± 32120 800 ± 1131   1959 ± 5069 12109 ± 40335   
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3.3.4 Biosecurity management practices on farms 

The biosecurity practices of farms participating in the study are presented in Table 3.3. 

In general, breeders adopted better biosecurity management practices than fattening 

and farrow to finish farms, and similarly, larger farms had better biosecurity than 

smaller ones. However, on average, only about 70% farms had a vehicle disinfection 

drive-through tyre wash at the front-gate, only about half of the surveyed farms 

required all vehicles from outside to be disinfected. Dogs, cats and poultry were 

commonly present (more than 50%) on pig farms. In 46% of the farms with dogs/cats, 

the dogs/cats could contact pigs directly. Of the 86 farms which also kept some 

poultry, 69% of them purchased poultry from live bird markets and 67% of farms had 

the same worker feed both the pigs and the poultry. Approximately 90% of the farms 

(141) had a pond on their farms, with 18% of them using the pond water for flushing 

waste from their piggeries and two used pond-water as pig drinking water. Swill was 

fed to pigs in only 3.9% (6) of the surveyed farms. 
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Table 3.3 Biosecurity practices adopted in the participating farms 

Explanatory variable  Level farm type  farm size (head) 

Total 

    
farrow to 

finish 

farrow to 

wean 
fattening  < 2000 ≥ 2000 

Disinfection pool for trucks at the farm 

entrance 

Yes 69% 94% 75%  59% 83% 72% 

No 31% 6% 25%  41% 17% 28% 

 
    

 
   

Disinfection of vehicles from outside 

Yes, always 50% 89% 50%  37% 71% 55% 

No or 

sometimes 
50% 11% 50% 

 
63% 29% 45% 

         

Not allow visitors to enter the piggery  
Yes 73% 89% 25% 

 
69% 77% 73% 

No 27% 11% 75% 

 
31% 23% 27% 

 
    

 
   

Dogs/cats present on farm 
Yes 77% 50% 100% 

 
82% 68% 75% 

No 23% 50%   18% 32% 25% 

         

Dogs/cats can have direct contact with pigs a 
Yes 46% 44% 50%  49% 43% 46% 

No 54% 56% 50%  51% 57% 54% 

         

Dogs/cats can have direct contact with pig Yes 38% 38% 25%  38% 36% 37% 
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Explanatory variable  Level farm type  farm size (head) 

Total 

    
farrow to 

finish 

farrow to 

wean 
fattening  < 2000 ≥ 2000 

feed or drinking water a No 62% 62% 75%  62% 64% 63% 

         

Feed raw poultry meat or pork to dogs/cats a 
Yes 29% 12% 50%  38% 18% 28% 

No 71% 88% 50%  62% 82% 72% 

         

Poultry present on farm 
Yes 59% 33% 100% 

 

75% 41% 57% 

No 41% 67%   25% 59% 43% 

         

The same person(s) feeds both pigs and 

poultry b 

Yes 68% 67% 50%  69% 64% 67% 

No 32% 33% 50%  31% 36% 33% 

         

Source of poultry b 

Live bird 

markets 
71% 67% 25% 

 

75% 59% 69% 

Nearby villages  11%  25% 

 
8% 15% 10% 

Breeder poultry 

farms 
10% 17% 25% 

 

10% 15% 12% 

Breed 

themselves 
8% 17% 25% 

 

8% 12% 9% 
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Explanatory variable  Level farm type  farm size (head) 

Total 

    
farrow to 

finish 

farrow to 

wean 
fattening  < 2000 ≥ 2000 

 
    

 
   

Pond present on farm 
Yes 88% 100% 75% 

 
81% 97% 89% 

No 12%  25%  19% 3% 11% 

 
        

Pond water used as a source of drinking water 

for pigs c 

Yes 1% 6%  
 

 3% 1% 

No 99% 94% 100%  100% 98% 99% 

 
        

Pond water used to flush piggeries c 
Yes 17% 22%  

 
20% 16% 18% 

No 83% 78% 100%  80% 84% 82% 

 
        

Netting used to prevent access of birds to 

piggery 

Yes 10% 24% 25% 
 

7% 17% 12% 

No  90% 76% 75%  93% 83% 88% 

 
        

Wild birds able to enter piggery 

Yes 45% 47% 50% 
 

55% 36% 45% 

No 23% 41%   16% 32% 25% 

Not sure 32% 12% 50%  28% 31% 30% 
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Explanatory variable  Level farm type  farm size (head) 

Total 

    
farrow to 

finish 

farrow to 

wean 
fattening  < 2000 ≥ 2000 

Is swill fed to pigs? 
Yes 4%  25% 

 
6% 2% 4% 

No 96% 100% 75%  94% 98% 96% 

a Only conducted with the farms having dogs/cats present on the farm. 

b Only conducted with farms keeping poultry on farm.  

c Only conducted with the farms having a pond on the farm. 
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3.3.5 Risk factor analysis 

Among the 84 questions, 52 factors were analyzed and 24 factors were significantly 

associated (p < 0.20) with farmer’ reported SI infection in the univariable logistic 

regression analyses (Table 3.4). The results of the multivariable logistic regression 

analysis are presented in Table 3.5. In the final multivariable logistic regression model, 

piggeries that did not prevent the entry of wild birds, raised poultry or did not have a 

disinfection pool at the piggery entrance were more likely to have an outbreak of SI in 

the 6 month period preceding the administration of the questionnaire (OR = 2.50, 

95%CI: 1.01-6.16; OR = 3.24, 95%CI: 1.52-6.94; OR = 2.65, 95%CI: 1.04-6.78; 

respectively) (Table 3.5). The Hosmer–Lemeshow test of goodness of fit (p = 0.73) 

and the AUC (0.73; 95%CI: 0.65-0.81) indicated that the model fitted the data well 

and had a medium predictive ability. 

Table 3.4 Results of the analysis by univariable logistic regression for owner 

reported Swine Influenza infection in piggeries 

ID Risk factors P-value OR (95%CI) 

1 Less than 10 years of operation  0.056 2.18 (0.98, 4.85) 

2 Less than 2000 head inventory 0.006 2.5 (1.3, 4.8) 

3 No quarantine implemented 0.084 1.78 (0.93, 3.43) 

4 Don’t sell all finishing pigs in one pen every time 0.121  1.68 (0.88, 3.21) 

5 People loading pigs do not change clothes before entering 

piggery 
0.001 3.28 (1.68, 6.41) 

6 People loading pigs do not change boots before entering 

piggery 
0.056  2.26 (0.98, 4.1) 
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ID Risk factors P-value OR (95%CI) 

7 Workers loading pigs do not conduct spray disinfection to their 

clothes/boots after loading trucks 

0.006  2.72 (1.34, 5.5) 

8 No production records kept 0.013 2.81 (1.24, 6.34) 

9 No veterinarians among employees 0.002 2.81 (1.46, 5.43) 

10 Workers occasionally work in different piggeries 0.001 3.08 (1.58, 6.01) 

11 No disinfection of workers before entering the piggery  0.001 4.29 (1.83, 10.04) 

12 Without scheduled disinfection of pig pens 0.081 1.86 (0.93, 3.74) 

13 Process feed in the piggery 0.115 2.15 (0.83, 5.57) 

14 Not separate living area of employees from piggery area 0.083 1.87 (0.92, 3.8) 

15 Visitors are allowed to enter the piggery  0.009 2.68 (1.28, 5.62) 

16 Dogs/cats on the farm 0.032 2.33 (1.08, 5.05) 

17 Poultry on the farm  <0.001 3.96 (1.99, 7.9) 

18 Wild birds able to gain entry to the piggery 0.002 4.22 (1.71, 10.4) 

19 Wild birds have potential contact with drinking water of pigs 0.006 4.18 (1.5, 11.65) 

20 Eat poultry meat on farm 0.017 6.41 (1.39, 29.46) 

21 Purchase live poultry to cook on farm 0.024 2.25 (1.11, 4.53) 

22 Not using mouth mask/gloves when treating sick pigs 0.005  2.69 (1.35, 5.34) 

23 No college graduates employed on the farm <0.001 5.19 (2.28, 11.83) 

24 Introduced pigs in the year preceding the questionnaire 0.196 1.54 (0.8, 2.94) 
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Table 3.5 Results of the analysis by multivariable logistic regression for owner 

reported Swine Influenza infection in piggeries 

 Β Sig. OR 95% CI for 

OR 

Lower Upper 

 

Wild birds able to enter piggery 0.92 0.047 2.50 1.01 6.16 

Poultry present on the farm 1.18 0.002 3.24 1.52 6.94 

The workers are not required to undertake any 

biosecurity measures, such as changing 

clothes/boots, having a shower or disinfecting 

their boots, before they enter the piggery  

0.97 0.042 2.65 1.04 6.78 

Constant 
-

1.71 
  

  

 

3.4 Discussion  

A high seropositivity of SI at the individual animal level has been reported in previous 

studies in the Chinese pig population (Song, Xiao et al. 2010, Liu, Wei et al. 2011, 

Strelioff, Vijaykrishna et al. 2013). However, the herd prevalence of SIV infection in 

China has rarely been reported and it is likely that the individual animal prevalence is 

biased through the sampling methodology used. This study found a high farmer-

reported herd prevalence (almost 60%) in pig farms in Guangdong Province from 

January to August 2015. To our knowledge, this is the first study describing husbandry, 

management and biosecurity practices adopted in Chinese pig farms and identifying risk 

factors for SI infection in pig farms in China. 

This study had several strengths and limitations. Due to the unwillingness of many 

farmers to allow collection of serum samples from their pigs, we used farmer reported 

SI infection when analyzing potential risk factors. The clinical signs of SI infection in 
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pigs are similar to other respiratory diseases, including porcine reproductive and 

respiratory syndrome and infection with Mhp, however the low mortality, short duration 

and recovery without therapy help in differentiating SI from other respiratory diseases 

(Detmer, Gramer et al. 2013, Kong, Ye et al. 2014). In this study, the dependent 

variable, (SI), relied partly upon the farm owners/managers’ knowledge of the disease 

and partly on epidemiological features or diagnosis of the disease. It is believed that the 

farmers surveyed should be familiar with SI as it is a commonly seen disease in local 

pig farms and 93% of farmers visited claimed they knew about SI. Nearly half of the 

surveyed farms claimed that they had participated in training on swine diseases offered 

by local official veterinary stations in the preceding year (data not shown). The temporal 

distribution of farmer reported SI outbreaks highlighted a peak of infection during 

March to May, which fits well with the SI surveillance results with serum tested by the 

provincial university laboratory (personal communication with the head of the 

laboratory). Although a case was identified using a variety of disease effects, it is worth 

investigating the association between farmer-reported SI infection and the results of 

laboratory diagnostic tests in future studies. Although the accuracy of farmers’ 

perception on SI epidemic in a herd hasn’t been evaluated in China, several studies 

conducted internationally have indicated that pig farmers have a good knowledge on SI 

(Hernandez-Jover, Taylor et al. 2012, Rabinowitz, Fowler et al. 2013). Data on farmer’ 

reported SI outbreaks also relies heavily on the willingness of farmers to cooperate in 

the study, consequently we used the services of veterinary consultants who offer 

technical support to the local farmers, to increase the response rate. All surveys were 

administered by the consultants, and none of the randomly selected farmers/managers 

refused to be involved in the study. Recall bias could be another obstacle for a 

syndrome survey (O'Neill, Church et al. 2014); however in this study 80% of the 
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interviewed farms had detailed production records documenting the specific onset date 

(44/70) or month (59/70) of the SI outbreaks experienced. 

The univariable logistic regression analysis indicates that there were many (16) 

significant variables that may be reflective of poor biosecurity. These and the three 

significant variables from the multivariable logistic regression analysis demonstrate 

implementation of poor biosecurity practices on many local pig farms. The husbandry 

and biosecurity practices adopted by local farms indicate several potential pathways for 

the introduction of SI into the surveyed farms. For example, live pig movement between 

pig farms is considered a high-risk practice (Brown 2000, Almeida, Storino et al. 2017) 

with 57% of the visited farms having introduced live pigs in the year preceding the 

survey. Approximately one-third (35%) of the farms that introduced pigs in the 

preceding year did not always quarantine these introduced stock, and of those who did 

adopt some form of quarantine, half of them only used visual inspection for signs of 

clinical disease. Due to the common subclinical infection status of SI in individual pigs 

(Er, Lium et al. 2014, Er, Skjerve et al. 2016), visual inspection could be ineffective in 

detecting disease in introduced pigs. About 6% of the visited farms purchased pigs from 

traders (middle men) or from live pig markets, where pigs from different farms are 

mixed. Mixing of pigs and contact of pigs from different sources can facilitate SI spread 

(Bowman, Nelson et al. 2014, Bowman, Workman et al. 2014, Lauterbach, Wright et al. 

2018). Contact between pigs and infected buyers can be another risk factor for SI 

introduction (Grontvedt, Er et al. 2013, Nelson and Vincent 2015). Less than half of the 

surveyed farms sold the whole pen each time. Others have reported the association of SI 

infection with a lack of all-in all-out management in the fattening room (OR 2.4, 95% 

CI: 1.0–5.8) (Fablet, Simon et al. 2013). When selecting and loading pigs, on 30% of 

the farms buyers would participate in the activity. However, many of the surveyed 
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farms did not ask the buyers to change their clothes (58%) or boots (72%) before 

entering the piggeries. Buyers sometimes purchase pigs from different farms to make up 

a consignment, with 11% of surveyed farmers reporting seeing trucks collecting their 

pigs already containing pigs from other farms. Since SIV can be transmitted through 

aerosols (Corzo, Romagosa et al. 2013, Hemmink, Morgan et al. 2016), the close 

proximity of pigs from other farms present on these trucks could introduce SIV via 

aerosols, or they could contaminate clothes or boots of people involved in the loading 

(Lauterbach, Wright et al. 2018). 

Pigs can contract influenza A viruses from other species, especially from humans and 

birds (Karasin, Brown et al. 2000, Grontvedt, Er et al. 2013, Nelson and Vincent 2015). 

Avian influenza viruses have been isolated from pigs in many places. In Canada, H4N6 

influenza A viruses were isolated from pigs with pneumonia on a commercial swine 

farm (Karasin, Brown et al. 2000). Human source influenza A infection in pigs has also 

been widely reported. For example, a study in the Czech Republic reported that 

antibodies against human influenza virus isolated during the 1995 epidemic were 

present in the local pig population. It is possible that the human virus was introduced to 

the pig herds by infected animal attendants, in whom antibodies against this virus were 

also found (Pospisil, Lany et al. 2001). In China, former prevailing human H1N1 strains 

have been shown to be circulating in the pig population (Yu, Zhang et al. 2007, Yu, 

Zhou et al. 2009). The authors concluded that more than 40 outbreaks of human-origin 

H1N1 viruses in swine had been reported in the 5 years after H1N1pdm09 was first 

detected in humans (Nelson, Stratton et al. 2015). 

South China, especially Guangdong Province, is considered an epicenter for influenza 

(Ninomiya, Takada et al. 2002). Understanding the complexity of the interface between 

pigs and other species, including humans, is key to understanding the ecology of 
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influenza in this area. The high proportion of farms with other species on farm, 

including cats/dogs (75%) and poultry (57%) in this study, can provide opportunities for 

potential cross-species transmission of influenza within this area. Similar to the findings 

of this study, in a small study (85 farms) conducted in Spain by Simon-Grife, Martin-

Valls et al. (2011) the presence of other species on a farm increased the risk of infection 

with SI in fattening pigs (OR = 2.3). In contrast, Takemae, Shobugawa et al. (2016) 

found that the presence of other animals on a farm was protective for influenza A 

infection in pig farms in Vietnam (OR = 0.26). The conflicting results may be due to 

different ecosystems and husbandry practices adopted between studies. In the current 

study the presence of backyard poultry increased the risk of farmer-reported SI. Our 

survey found that 69% of farms with poultry introduced live poultry from local live bird 

markets, where high prevalences of avian influenza have been reported (Yuan, Lau et al. 

2015). Compared to H5 and H7 subtype avian influenza, H9 subtype is the most 

common avian-sourced influenza infection in pigs. In China, 28 swine H9N2 viruses 

were isolated from 1998 to 2007 (Karasin, Brown et al. 2000, Yu, Zhou et al. 2011). 

Furthermore wild birds, particularly wild ducks, can be involved in the transmission of 

influenza viruses to pigs through contaminating pond water, and as SIV can also be 

transmitted to poultry, the possibility of SIV transmitting to wild birds cannot be ruled 

out (Karasin, Brown et al. 2000, Karasin, West et al. 2004, Kuntz-Simon and Madec 

2009). Of the visited farms 89% had ponds, and 18% of them used the pond water to 

flush piggeries. Furthermore wild waterfowl are commonly seen on these ponds during 

the bird migratory seasons (personal communication with some interviewed pig 

farmers). Avian influenza virus can remain infective for more than 40 days in water at 

temperatures ≤ 23 ℃, thus contaminated pond water could potentially introduce avian 
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influenza virus to pigs through aerosolization during flushing (Lebarbenchon, Yang et al. 

2011, Lebarbenchon, Sreevatsan et al. 2012). 

The findings of this study can help reduce the risk of SI on pig farms and mitigate 

against the risk of a potential influenza pandemic. The study highlights the need for 

improved biosecurity in piggeries, particularly with respect to the introduction and sale 

of pigs. Local veterinary authorities should educate farmers on better biosecurity 

management to reduce the risk of SI and the findings from this study should be noticed 

in educational material for by local farmers. For example, farmers should follow an all-

in all-out practice for batches/pens and should not let buyers enter piggeries. Farmers 

should particularly be aware that backyard poultry and wild birds on farm do have a 

potential negative impact to their pigs. As well as influenza virus, other pathogens, 

including Brachyspira pilosicoli and atrophic rhinitis pathogenic Pasteurella multocida 

(Dejong 1991, Smith 2005), can be transmitted from poultry to pigs. Active surveillance 

for SI is currently undertaken in south China by the National Reference Laboratory for 

Animal Influenza, and this is designed to monitor gene mutations of circulating SIVs 

and the early detection of new strains with potential pandemic threat (Chen, Zhang et al. 

2013, Yang, Chen et al. 2016). To be more efficient, sampling should be conducted in 

early spring in Guangdong, and farms with poor biosecurity and particularly those with 

poultry, wild birds and other animals with access to the pigs should be specifically 

targeted for sampling. 

3.5 Conclusions 

This study has revealed several potential pathways for SI transmission among pig farms 

in Guangdong Province. Access by humans, poultry, wild birds and other animals on 

pig farms can increase the risk of SI infection in pig farms. The findings of this study 

highlight the importance of understanding the local pig industry and the practices 
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adopted when developing control measures to reduce the risk of SI to local pig farms. It 

is concluded that biosecurity needs to be improved significantly to reduce the risks from 

SI in southern China. 
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CHAPTER 4： Risk of Zoonotic Transmission of 

Swine Influenza at the Human-Pig Interface in 

Guangdong Province, China 
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Preface 

In the preceding chapter, the interactions between pigs, chickens, dogs/cats and the pig 

farmers and the biosecurity practices adopted by the local farmers in Guangdong 

Province were described. Several potential pathways for the spread of SIV between and 

within local pig farms were identified. In particular there were frequent contacts 

between pig farmers and their pigs during routine management and husbandry practices 

and when pigs were sold. As influenza viruses can be transmitted from pigs to humans 

and vice versa, it would be useful to understand the risk of spill-over infection of viruses 

at the human-pig interface.  

This chapter was designed to explore the knowledge, beliefs and practices of the pig 

farmers and live pig traders in Guangdong Province on SI. The practices adopted by 

local pig farmers and traders that would facilitate the spread of influenza between pig 

farms and between pigs and humans were described. In particular factors associated 

with a “low awareness of the zoonotic risk of SI” and “not using personal-protection 

equipment” were analysed to inform future targeted interventions against SI.  

The text of this chapter is identical to that in the manuscript published in ‘Zoonoses and 

Public Health’ except for the reference list which has been combined with references of 

other chapters and incorporated as one list at the end of the thesis.  

This chapter can be found published as:  

Li Y, Edwards J, Huang B, Shen C, Cai C, Wang Y, Zhang G, Robertson I. Risk of 

zoonotic transmission of swine influenza at the human-pig interface in Guangdong 

Province, China. Zoonoses and Public Health. 2020 June; 

https://doi.org/10.1111/zph.12723 
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75 

 

 

Statement of Contribution 

Principal Author 

Co-Author Contributions 

By signing the Statement of Contribution, each author certifies that: 

iii. the candidate’s stated contribution to the publication is accurate (as detailed 

above); 

iv. permission is granted for the candidate to include the publication in the thesis. 

 

Name of Co-Author  Emeritus Professor Ian Robertson 

Contribution to the Paper 

Supervised the study and provided critical 

comments to improve the interpretation of results, 

edited and revised the manuscript.  

Overall percentage (%) 10 

Signature

 

 

Date: 15/06/2020 

Title of Paper 

Risk of Zoonotic Transmission of Swine Influenza 

at the Human-Pig Interface in Guangdong 

Province, China. 

Publication Status Published  

Publication Details 

Li Y, Edwards J, Huang B, Shen C, Cai C, Wang Y, 

Zhang G, Robertson I. Risk of Zoonotic 

Transmission of Swine Influenza at the Human-Pig 

Interface in Guangdong Province, China. Zoonoses 

and Public Health. 

https://doi.org/10.1111/zph.12723 

Name of Principal Author 

(Candidate) 
Yin Li 

Contribution to the Paper 

Conceptualised and developed the study, planned 

and conducted the field study, collected and 

analysed the data, interpreted the results and wrote 

the paper. 

Overall percentage (%) 60 

Signature

 

Date: 15/06/2020 



   

76 

 

Name of Co-Author  Emeritus Professor John Edwards 

Contribution to the Paper 

Provided critical comments to improve the 

interpretation of results, edited and revised the 

manuscript. 

Overall percentage (%) 5 

Signature

 

  

Date:15/06/2020 

Name of Co-Author  Professor Huang Baoxu 

Contribution to the Paper 
Provided critical comments to improve the 

manuscript. 

Overall percentage (%) 5 

Signature

 

Date: 15/06/2020 

Name of Co-Author  Dr Wang Youming 

Contribution to the Paper 
Provided critical comments to improve the 

manuscript. 

Overall percentage (%) 5 

Signature        

 

  

Date:15/06/2020 

Name of Co-Author  Professor Zhang Guihong 

Contribution to the Paper Collected data 

Overall percentage (%) 5 

Signature           

 

  

Date:15/06/2020 

Name of Co-Author  Dr Cai Chang 

Contribution to the Paper 
Provided critical comments to improve the 

manuscript. 

Overall percentage (%) 5 

Signature             

 

  

Date:15/06/2020 

Name of Co-Author  Dr Shen Chaojian 

Contribution to the Paper Conducted the field study and collected data 

Overall percentage (%) 5 

Signature            

 

  

Date:15/06/2020 

 

  



   

77 

 

Abstract 

A cross-sectional survey was conducted from 2015 to 2018 to assess the risk of 

zoonotic influenza to humans at the human-pig interface in Guangdong Province, 

south China. One hundred and fifty-three pig farmers, 21 pig-traders and 16 pig trade 

workers were recruited using convenience sampling and surveyed at local pig farms, 

live pig markets and slaughterhouses, respectively. Questionnaires were administered 

to collect information on the biosecurity and trading practices adopted and their 

knowledge and beliefs about swine influenza (SI). Most (12 of 16) trade workers said 

they would enter piggeries to collect pigs and only six of 11 said they were always 

asked to go through an on-farm disinfection procedure before entry. Only 33.7% of 

the interviewees believed that SI could infect humans, although pig farmers were 

more likely to believe this than traders and trade workers (p < 0.01). Several unsafe 

practices were reported by interviewees. “Having vaccination against seasonal flu” 

(OR = 3.05, 95%CI: 1.19 - 8.93), “Believe that SI can cause death in pigs” (No/Yes: 

OR = 8.69, 95%CI: 2.71 – 36.57; Not sure/Yes: OR = 4.46, 95%CI: 1.63 – 14.63) and 

“Keep on working when getting mild flu symptoms” (OR = 3.80, 95%CI: 1.38 – 

11.46) were significantly and positively correlated to “lacking awareness of the 

zoonotic risk of SI”. “Lacking awareness of the zoonotic risk of SI” (OR = 3.19, 

95%CI: 1.67 - 6.21), “Keep on working when getting mild flu symptoms” (OR = 

3.59, 95%CI: 1.57 – 8.63) and “Don’t know SI as a pig disease” (OR = 3.48, 95%CI: 

1.02 – 16.45) were significantly and positively correlated to “not using personal 
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protective equipment when contacting pigs”. The findings of this study would benefit 

risk mitigation against potential pandemic SI threats in the human-pig interface in 

China. 
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4.1 Introduction 

Swine influenza not only causes significant economic loss to the pig industry (Er, 

Lium et al. 2014, Er, Skjerve et al. 2016), but is also a zoonosis that may cause 

serious public health problems worldwide (Dorjee, Revie et al. 2016). Patients 

infected by swine influenza strains show clinical signs of coughing, fever and running 

nose, similar to the signs of human influenza (Tang, Shetty et al. 2010). As with 

human seasonal influenza, deaths are occasionally reported in cases that have 

contracted swine strains (Bidiga, Asztalos et al. 2010, Gong and Gao 2010, Lee, Wu 

et al. 2010). 

Cross-species transmission of influenza occurs because the influenza virus has 

segmented RNA, and gene exchange can happen when different strains infect the 

same host cells (Zhou, Senne et al. 1999, Kuntz-Simon and Madec 2009). Swine 

influenza reassortants have the potential to result in the next pandemic influenza of 

humans. The most recently known pandemic of swine-originated influenza in the 

human population were due to H1N1pdm in 2009. This virus had the capacity for 

rapid human to human transmission and contained genes from swine, poultry and 

human influenza strains (Schnitzler and Schnitzler 2009). Swine influenza is endemic 

in the Chinese pig population and the main virus strains circulating in the Chinese pig 

population include Eurasian avian-like H1N1, H1N1pdm, classical swine H1N1 and 

H3N2 (Chen, Zhang et al. 2013, Chen, Fu et al. 2014). New emerging strains make 
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China a country with a significant risk of producing new pandemic influenza strains 

(Chen, Zhang et al. 2013). 

Pig farmers and traders in China have been found to have a higher risk of getting 

infected by swine/poultry influenza viruses (Zhou, Cao et al. 2014, Ma, Anderson et 

al. 2015) than people who don’t work in the livestock industry. Contacts between pig 

farmers, pigs, birds and dogs/cats have been highlighted in a recently published study 

(Li, Edwards et al. 2019) with 93% of respondents saying that workers lived on-site at 

the piggery with 29% of farms providing accommodation for staff immediately 

adjacent to pig houses. However, contacts between pig industry workers and pigs 

have been rarely studied and the knowledge and beliefs of Chinese pig industry 

workers about SI are not known. 

A cross-sectional survey was undertaken to investigate human-pig contacts by pig 

farmers and live pig traders in Guangdong Province, China. The contacts between 

traders, trade workers and pigs were described to better understand the zoonotic risk 

of swine influenza in the trading sector in China. Gaps in the knowledge and beliefs 

of local pig farmers, traders and trade workers on SI were explored to inform targeted 

interventions in the future. These findings could benefit the mitigation of the risks of a 

potential pandemic influenza threat in China. 
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4.2  Materials and methods 

4.2.1 Sampling strategy 

The study was conducted in Guangdong Province, China. The interviews with pig 

farmers were undertaken in July and August 2015 and the meetings with pig traders 

and employees of pig traders were undertaken in June 2018. The sampling strategy 

used for selecting pig farmers was described in detail in a previous study (Li, Edwards 

et al. 2019). In brief, client lists of consultants who were offering veterinary services 

to pig farms in the province were used as a sampling frame, and on average seven 

farms were randomly selected from each of the 21 prefectures in the province. In 

total, 153 pig farmers were visited and surveyed. A convenience sampling strategy 

was used to choose traders and employees of traders. Twelve traders were interviewed 

at two wholesale live pig markets: Jinkang market (10 traders interviewed) and Jiahe 

market (2 traders interviewed). Nine traders were also interviewed at three 

slaughterhouses: Xincheng slaughterhouse in Xinxing county (3 traders), Kongwangji 

slaughterhouse (5 traders) and Shiqiao slaughterhouse (1 trader) in Guangzhou city. 

Sixteen trade workers (employees of traders) were interviewed in Jinkang market (8 

workers) and Kongwangji slaughterhouse (8 workers). The locations of the premises 

where interviews were conducted are shown in Figure 4.1. 
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Figure 4.1 The location of the premises where interviews were conducted 

4.2.2 Data collection 

Questionnaires were designed and administered to collect information about human-

pig contact, trade practices, and interviewees’ knowledge and beliefs about SI and the 
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practices they adopted in their daily work which may influence the risk of acquiring a 

zoonosis, such as SI. See appendix 1, 2 and 3. The farmers, traders and trade workers 

were asked different questions about contacts between themselves and their pigs 

because they played different roles within the pig industry. However, common issues 

on their knowledge, beliefs and practices that could increase the risk of SI were 

investigated across the three groups. To measure the knowledge and belief of 

interviewees, questions, such as, “Do you think SI can kill pigs” and “Do you think SI 

can infect humans" were asked. In terms of risky practices in their daily work, 

questions addressing the use of personal protection equipment (PPE), seeking of 

medications for influenza infection, and what they did when they got mild flu-like 

symptoms and SI infected pigs were asked. To avoid compromising the business 

reputation of the traders and trade workers, the question “How would your peers deal 

with pigs that are reluctant to walk during trade?” was asked to traders and trade 

workers, because the pigs infected by SI or other diseases would lay on the ground 

and not move unless forced to (Pomorska-Mol, Dors et al. 2017, Takemae, Tsunekuni 

et al. 2018). The questionnaires were pretested and subsequently revised. The final 

questionnaire for farmers, traders and trade workers contained 84, 25 and 15 

questions, respectively and the average response time to complete was less than 30 

minutes. Part of the questionnaire to farmers (30 questions) was analyzed in this study 

and the remaining questions were included in a separate study on prevalence, 

distribution and risk factors for farmer- perceived-SI-infection. The questionnaires 
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were administered in a face-to-face setting. The interviewers were trained in 

delivering the questionnaire by the authors before administering the survey. The study 

and questionnaires were approved by the Murdoch University Human Ethics 

Committee [Project Number: 2017/113]. 

4.2.3 Data analyses 

The contacts between local pig farmers and their pigs have been reported in another 

study and were not repeated in this study (Li, Edwards et al. 2019). Trade practices of 

traders and trade workers were analyzed using R software (version 3.0.2) (R Core 

Team 2018). Practices adopted by traders interviewed in markets and slaughterhouses 

were compared to explore different patterns in trade behaviors between the groups. 

Traders in live pig markets often collect pigs from intensively managed pig farms and 

then sell pigs to pork sellers (Li, Huang et al.), while traders in the slaughterhouses 

collected pigs from local backyard or small-scale farms. For different groups of 

traders/trade workers (working in markets vs. working in slaughterhouses), the 

percentages of people adopting different trade practices were calculated. The 

percentage was calculated using the number of people within a category divided by 

the total number of people of that group, compared to explore different patterns in 

trade behaviors between the groups. Practices adopted by interviewed pig farmers, 

traders and trade workers which could increase the risk of human acquired infections 

from SI, and knowledge and beliefs of interviewees about SI were compared. 

Similarly, the percentages of people undertaking different practices were calculated 



   

85 

 

and compared between the groups. The chi-square test and t-test were conducted, 

when needed, using "Publish" package (Ozenne 2018) in R. Statistical descriptions of 

the knowledge, beliefs and unsafe practices of the interviewees were conducted and 

the differences between pig farmers, traders and trade workers were compared with 

the “Publish” package in R.  

Factors associated with lacking awareness of the zoonotic risk of SI and not using 

PPE were explored with the “stats” package (R Core Team 2018) in R. An 

interviewee who didn't think or didn't know SI could infect humans was defined as a 

person who lacked awareness of the zoonotic risk of SI. An interviewee who didn't 

wear gloves or a face mask when having contact with pigs was defined as a person not 

using PPE in direct contact with pigs. Univariable and multivariable logistic 

regression analyses were used to identify the magnitude of the correlation between 

factors and interested outcomes. The odds ratio (OR) of each variable was calculated 

in the models, which reflect the magnitude of the association between the variable and 

the outcome of interest. The Hosmer–Lemeshow (HL) test and calculation of the area 

under the curve (AUC) were conducted to check the robustness of the multivariable 

logistic regression models. The packages “knitr” (Xie 2019) and “markdown” (JJ 

Allaire 2018) were used to produce the result tables. 
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4.3 Results 

4.3.1 Trading behavior of traders and employees 

The trading patterns of traders interviewed in slaughterhouses and markets are 

described in Table 4.1. Unsold pigs were kept and fed for additional days and traders 

interviewed in slaughterhouses were more likely to have leftover pigs than traders in 

markets (p = 0.05). Mixing pigs from different farms to make a batch to trade was a 

common practice with an average of pigs from 1.6 farms making up a trade (median 

1). It took an average of 15 hours for a trader to sell all the pigs in one batch. 
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Table 4.1 Trade patterns of the interviewed traders in Guangdong province†. 

Variable Level 
 Location of interviewed traders Total 

(n=21) 
p-value 

slaughterhouse (n=9) live pig market (n=12) 

Type of pigs traded 

Finishers only 9 (100.0) 10 (83.3) 19 

(90.5) 0.592 

Finishers and weaners 0 (0.0) 2 (16.7) 2 (9.5) 

      

Sizes of the farms 

supplying the trader 

(head) 

< 100  1 (11.1) 1 (8.3) 2 (9.5) 

0.489 

100-500 2 (22.2) 1 (8.3) 3 (14.3) 

>500 3 (33.3) 2 (16.7) 5 (23.8) 

Any size 3 (33.3) 8 (66.7) 11 

(52.4) 

      

What is done with leftover 

pigs? 

No leftover pigs 2 (22.2) 9 (75.0) 11 

(52.4) 
0.051 

Fed for a few days until selling 7 (77.8) 3 (25.0) 10 

(47.6) 
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Variable Level 
 Location of interviewed traders Total 

(n=21) 
p-value 

slaughterhouse (n=9) live pig market (n=12) 
      

Where do you purchase 

pigs from? 

Contact pig farms directly 2 (22.2) 1 (8.3) 3 (14.3) 

0.587 

Contracted pig farms 2 (22.2) 1 (8.3) 3 (14.3) 

Middlemen 3 (33.3) 6 (50.0) 9 (42.9) 

Pig farms owned by traders 1 (11.1) 0 (0.0) 1 (4.8) 

Contact pig farms themselves & 

middlemen 

1 (11.1) 2 (16.7) 3 (14.3) 

Contact pig farms themselves & 

contracted farms & middlemen 

0 (0.0) 1 (8.3) 1 (4.8) 

Contact pig farms themselves & 

middlemen 

0 (0.0) 1 (8.3) 1 (4.8) 

      

Where do you sell pigs to? 

Sell live pigs to slaughterhouses 0 (0.0) 1 (8.3) 1 (4.8) 

<0.01 

Slaughtered by slaughterhouses and then 

sell meat themselves 

8 (88.9) 0 (0.0) 8 (38.1) 

Sell live pigs to meat sellers 0 (0.0) 8 (66.7) 8 (38.1) 

Sell live pigs to other live pig traders 0 (0.0) 1 (8.3) 1 (4.8) 

Sell to slaughterhouses or meat seller 0 (0.0) 2 (16.7) 2 (9.5) 

Slaughtered by slaughterhouse and then 

sell meat themselves and also sell pigs to 

other meat sellers 

1 (11.1) 0 (0.0) 1 (4.8) 
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Variable Level 
 Location of interviewed traders Total 

(n=21) 
p-value 

slaughterhouse (n=9) live pig market (n=12) 
      

Do you have another 

occupation? 

No 4 (44.4) 12 (100.0) 16 

(76.2) 

0.013 
Meat seller 4 (44.4) 0 (0.0) 4 (19.0) 

Meat seller & pig farmer 1 (11.1) 0 (0.0) 1 (4.8) 

      

Trucks for transport 

Self-owned 7 (77.8) 6 (50.0) 13 

(61.9) 0.399 

Rented 2 (22.2) 6 (50.0) 8 (38.1) 

      

How many farms are 

needed to make up a 

saleable batch 

Median [iqr] 2.0 [1.0, 2.0] 1.0 [1.0, 2.0] 1.0 

[1.0, 

2.0] 

0.582 

Work experience in the 

pig industry (years) 

Mean (sd) 10.0 (8.0) 10.5 (4.4) 10.2 

(6.1) 

0.872 

On how many days would 

you visit at least one 

farm? 

Mean (sd) 0.9 (0.2) 3.6 (8.3) 2.5 

(6.5) 

0.369 

How many farms have 

you visited in the 

preceding 30 days? 

Mean (sd) 2.9 (1.6) 13.1 (9.6) 9.0 

(9.0) 

<0.01 
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Variable Level 
 Location of interviewed traders Total 

(n=21) 
p-value 

slaughterhouse (n=9) live pig market (n=12) 

How many batches of pigs 

are transported each 

month? 

Mean (sd) 43.3 (40.0) 28.3 (2.1) 34.8 

(26.5) 

0.191 

How many pigs are in a 

batch? (head) 

Mean (sd) 75.1 (75.3) 92.5 (12.8) 85.0 

(49.3) 

0.428 

How many hours are 

needed to sell one batch of 

pigs? 

Mean (sd) 17.2 (13.0) 13.8 (2.7) 15.3 

(8.6) 

0.377 

How many workers do 

you hire? 

Mean (sd) 2.8 (1.8) 4.0 (2.1) 3.5 

(2.1) 

0.175 

What is the daily salary 

for a worker (RMB)? 

Mean (sd) 160.0 (56.6) 241.7 (46.9) 230.0 

(54.6) 

0.025 

†: The numbers in the table are the number of traders within each category of variables, unless defined specifically in the variable column. 

Numbers in brackets are percentages (%).  
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The practices of the trade workers are summarized in Table 4.2. Most (12 of 16) trade 

workers said they would enter piggeries to collect pigs and only three said they 

wouldn't enter piggeries, with one failing to answer this question. Only 3 of 11 trade 

workers reported that they were not always asked by pig farmers to change their boots 

before entering piggeries and 2 out of 11 trade workers admitted they were not always 

asked to change their clothes before entering piggeries. Half of the interviewed trade 

workers also raised pigs or poultry at home (Table 4.2). 
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Table 4.2 Trade practices of the interviewed trade workers in Guangdong province†.  

Variable Level 

Location of interviewed workers 
Total 

(n=16) 

p-

value pig market 

(n=8) 

slaughterhouse 

(n=8) 

Number of days worked each month Mean (sd) 27.1 (2.4) 30.0 (0.0) 28.6 (2.2) <0.01 

Number of hours worked each day Mean (sd) 8.0 (0.0) 9.2 (2.1) 8.6 (1.5) 0.085 

How many farms do you visit each day?  Median 

[iqr] 

1.0 [1.0, 1.2] 1.0 [1.0, 1.0] 1.0 [1.0, 

1.0] 

0.296 

Number of batches transported each day Median 

[iqr] 

1.0 [1.0, 1.0] 2.0 [1.5, 2.0] 1.0 [1.0, 

2.0] 

0.023 

Total number of pigs transported each day 

(head) 

Mean (sd) 62.0 (17.3) 66.4 (38.4) 64.1 (28.0) 0.768 

Whether enter piggery to collect pigs 
No 0 (0.0) 3 (42.9) 3 (20.0) 

0.155 
Yes 8 (100.0) 4 (57.1) 12 (80.0) 

      

Whether required to change boots before entering a piggery 

No 1 (12.5) 0 (0.0) 1 (9.1) 

0.037 Yes 7 (87.5) 1 (33.3) 8 (72.7) 

Sometimes 0 (0.0) 2 (66.7) 2 (18.2) 

      

Whether required to change clothes before entering a piggery 

Yes 8 (100.0) 1 (33.3) 9 (81.8) 

0.094 Sometimes 0 (0.0) 2 (66.7) 2 (18.2) 

No 0 (0.0) 0 (0.0) 0 (0.0) 
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Variable Level 

Location of interviewed workers 
Total 

(n=16) 

p-

value pig market 

(n=8) 

slaughterhouse 

(n=8) 

      

Whether required to undergo any disinfection procedure before 

entering a piggery 

No 0 (0.0) 1 (33.3) 1 (9.1) 

0.051 Yes 6 (75.0) 0 (0.0) 6 (54.5) 

Sometimes 2 (25.0) 2 (66.7) 4 (36.4) 

      

Whether raise pigs or poultry at home 
No 5 (62.5) 3 (37.5) 8 (50.0) 

0.617 
Yes 3 (37.5) 5 (62.5) 8 (50.0) 

      

Whether co-workers raise pigs or poultry at home 

No 5 (62.5) 3 (37.5) 8 (50.0) 

0.558 Yes 1 (12.5) 1 (12.5) 2 (12.5) 

Not sure 2 (25.0) 4 (50.0) 6 (37.5) 

†: The numbers in the table are the number of traders within each category of variables, unless defined specifically in the variable column. 

Numbers in brackets are percentages (%).  
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4.3.2 Knowledge and beliefs of pig farmers, traders and trade workers about 

swine influenza 

The knowledge and beliefs of the interviewees were evaluated through the responses 

to four questions (Table 4.3). More than 90% of the interviewees were aware that SI 

was a pig disease, with more farmers (92.8%) knowing about the disease than trade 

workers (68.8%). Only 33.7% of the interviewees thought that SI could infect 

humans, with more farmers than the other two groups believing this (36.6% in 

farmers vs 14.3% in traders and 31.2% in trade workers) (p < 0.01).  
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Table 4.3 Knowledge and beliefs of interviewed pig farmers, traders and trade workers in swine influenza†. 

Variable Level 
employees of traders  

(n=16) 

pig farmers 

(n=153) 

pig traders 

(n=21) 

Total 

(n=190) 

p-

value 

Work experience (years) Mean (sd) 10.9 (4.8) 8.2 (5.2) 10.2 (6.1) 8.6 (5.3) 0.047 

Whether aware of the disease called 

swine influenza? 

No 5 (31.2) 11 (7.2) 2 (9.5) 18 (9.5) 
<0.01 

Yes 11 (68.8) 142 (92.8) 19 (90.5) 172 (90.5) 

       

Do you think SI is a significant disease 

in pigs?‡ 

Yes - 85 (55.6) 6 (28.6) 91 (52.3) 

0.016 No - 41 (26.8) 6 (28.6) 47 (27.0) 

Don’t know - 27 (17.6) 9 (42.9) 36 (20.7) 

       

Do you think SI can kill pigs?‡ 

Yes - 106 (69.3) 3 (14.3) 109 (62.6) 

<0.01 No - 20 (13.1) 10 (47.6) 30 (17.2) 

Don’t know - 27 (17.6) 8 (38.1) 35 (20.1) 

       

Do you think SI can infect humans? 

Yes 5 (31.2) 56 (36.6) 3 (14.3) 64 (33.7) 

<0.01 No 2 (12.5) 40 (26.1) 14 (66.7) 56 (29.5) 

Don’t know 9 (56.2) 57 (37.3) 4 (19.0) 70 (36.8) 

†: The numbers in the table are the number of traders within each category of variables, unless defined specifically in the variable column. 

Numbers in brackets are percentages (%).  

‡: Trade workers were not asked these questions due to the extremely low response rate in the pre-test of the questionnaire to them.



   

96 

 

4.3.3 Risky practices adopted by pig farmers, traders and trade workers that 

would promote zoonotic risk of SI 

The practices that could enhance the zoonotic risk of SI are summarized in Table 4.4. 

Only 38.9% of the interviewees would always wear gloves/masks when they had 

contact with pigs for their work. Approximately two thirds (69.2%) of respondents 

would visit a doctor if they had influenza-like symptoms. However when affected by 

a mild influenza-like syndrome, 82.6% of them would continue working, with more 

farmers (87.6%) doing so than traders (61.9%) or trade workers (62.5%) (p < 0.01). 

Vaccination coverage of the surveyed group against seasonal human influenza was 

low with only 24.2% being vaccinated. When pigs displaying clinical signs similar to 

SI were seen, more than 60% of the participants’ peers would reportedly continue to 

trade these pigs, while 25% would return the pigs to the source farms. When evidence 

of SI was observed on local pig farms, most farmers (94.8%) would treat the sick 

pigs. 



   

97 

 

Table 4.4 Practices adopted by interviewed pig farmers, traders and trade workers which could increase the risk of human acquired 

infections from SI†.  

Variable Level 
Employees of the 

traders (n=16) 

Pig farmers 

(n=153) 

Pig traders 

(n=21) 

Total 

(n=190) 
p-value 

Do you wear gloves/masks when you have 

contact with pigs in your work? 

No 7 (43.8) 61 (39.9) 9 (42.9) 77 (40.5) 

0.732 Always 6 (37.5) 58 (37.9) 10 (47.6) 74 (38.9) 

Sometimes 3 (18.8) 34 (22.2) 2 (9.5) 39 (20.5) 

       

What would you do if you got the “flu”? 

Go to see a doctor 3 (27.3) 114 (74.5) 11 (52.4) 128 (69.2) 

<0.01 
Take some pills 7 (63.6) 37 (24.2) 7 (33.3) 51 (27.6) 

Just have a rest without 

any medical treatment 
1 (9.1) 2 (1.3) 3 (14.3) 6 (3.2) 

       

Would you continue to work if you had a 

mild case of the flu? 

No 6 (37.5) 19 (12.4) 8 (38.1) 33 (17.4) 
<0.01 

Yes 10 (62.5) 134 (87.6) 13 (61.9) 157 (82.6) 

       

Are you vaccinated against seasonal flu 

each year? 

No 12 (75.0) 117 (76.5) 15 (71.4) 144 (75.8) 
0.877 

Yes 4 (25.0) 36 (23.5) 6 (28.6) 46 (24.2) 
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Variable Level 
Employees of the 

traders (n=16) 

Pig farmers 

(n=153) 

Pig traders 

(n=21) 

Total 

(n=190) 
p-value 

In your opinion how would your peers deal 

with stressed pigs that were reluctant to 

walk? 

Sell at a lower price 4 (25.0) - 6 (30.0) 10 (27.8) 

0.098 

Return to the original 

farm 
2 (12.5) - 7 (35.0) 9 (25.0) 

Emergency slaughter 6 (37.5) - 6 (30.0) 12 (33.3) 

Notify authorities for 

safe disposal 
0 (0.0) - 1 (5.0) 1 (2.8) 

Sell after treatment using 

antibiotics 
4 (25.0) - 0 (0.0) 4 (11.1) 

       

How would you deal with any pigs that had 

influenza-like clinical signs ‡? 

Don’t take action - 6 (3.9) - 6 (3.9) 

- Sell - 2 (1.3) - 2 (1.3) 

Treat - 145 (94.8) - 145 (94.8) 

†: The numbers in the table are the number of traders within each category of variables, unless defined specifically in the variable column. 

Numbers in brackets are percentages (%).  

‡: only farmers were asked this question
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4.3.4 Factors associated with a lack of awareness of the zoonotic risk of SI 

The factors associated with a lack of awareness of the zoonotic potential of SI are 

displayed in Table 4.5 and Supplementary Table 4.1. “Being vaccinated against 

seasonal flu” (OR = 3.05, 95%CI: 1.19 - 8.93), “Don’t think SI can cause death in 

pigs” (OR = 8.69, 95%CI: 2.71 – 36.57), “Don’t know if SI can cause death in pigs” 

(OR = 4.46, 95%CI: 1.63 – 14.63) and “Keep on working when having mild flu 

symptoms” (OR = 3.80, 95%CI: 1.38 – 11.46) were found significantly positively 

correlated to “lacking awareness of the zoonotic risk of SI” in the multivariable 

logistic regression analysis (p-value: 0.66 for HL test on the multivariable logistic 

regression model, AUC: 0.74 (95% CI: 0.67-0.80)). 
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Table 4.5 Results of the multivariable logistic regression analysis for lacking 

awareness of the zoonotic potential of swine influenza 

 β Sig. OR 95% CI for 

OR 

Lower Upper 

 

Is vaccinated against seasonal flu each year 1.116 0.027 3.051 1.19 8.93 

Don’t think SI can cause death in pigs 2.163 0.001 8.694 2.71 36.57 

Don’t know if SI can cause death in pigs 1.495 0.007 4.460 1.63 14.63 

Keep on working when get mild flu-like 

symptoms 

1.335 0.012 3.798 1.38 11.46 

Constant 
-

1.197 
  

  

 

4.3.5 Factors associated with not using PPE when contacting pigs 

The factors associated with “not using PPE when contacting pigs” are summarized in 

Tables 4.6 and Supplementary Table 4.2. “Lacking awareness of the zoonotic risk of 

SI” (OR = 3.19, 95%CI: 1.67 - 6.21), “Keep on working when having mild flu-like 

symptoms” (OR = 3.59, 95%CI: 1.57 – 8.63) and “Don’t know if SI is a pig disease” 

(OR = 3.48, 95%CI: 1.02 – 16.45) were significantly positively correlated to “not 

using PPE when contacting pigs” in the multivariable logistic regression analysis (p-

value < 0.01 for HL test on the multivariable logistic regression model, AUC: 0.72 

(95%% CI: 0.65-0.79)). 
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Table 4.6 Results of the analysis by multivariable logistic regression for not using 

PPE when contacting pigs 

 β SE OR 95% CI for 

OR 

Lower Upper 

 

Lack awareness of the zoonotic risk of SI 1.16 0.33 3.19 1.67 6.21 

Keep on working when get mild flu-like 

symptoms 

1.28 0.43 3.59 1.57 8.63 

Don’t know SI is a pig disease 1.25 0.69 3.48 1.02 16.45 

Constant 
-

1.44 
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4.4 Discussion 

South China has a complicated eco-system shared by large populations of humans, pigs 

and poultry, and it has been recognized as one of the most important areas for global 

influenza control (Trevennec, Cowling et al. 2011, Kong, Ye et al. 2014). 

Understanding the epidemiology, especially the zoonotic risk, of influenza in this area is 

the key to development of a control strategy. To our knowledge, this is the first study to 

explore the zoonotic risk of swine influenza at the human-pig interface in China. 

Trade practices undertaken by local live pig traders can facilitate genetic reassortment 

among SI strains and encourage the emergence of new strains with pandemic potential 

in the field (Zhu, Zhou et al. 2011, Bowman, Nelson et al. 2014). Traders and trade 

workers frequently visit pig farms and they often enter piggeries as part of their 

business. Mixing pigs from different pig farms to make a batch for transport would 

expose pigs to different influenza strains. Exposed pigs can contract influenza and start 

to shed virus within one day of initial exposure (Corzo, Romagosa et al. 2013, 

Hemmink, Morgan et al. 2016). Weaner pigs traded in the live pig markets and the 

returned pigs with SI-like clinical signs are dangerous potential pathways to introduce 

new reassortants to pig farms (Lauterbach, Wright et al. 2018). To mitigate the 

influenza risk in the live pig trade sector, we suggest using new tools, such as social 

media software that can offer real-time video communication and examination of pigs 

remotely, to avoid direct contact between traders and their employees and piggeries 

when trading pigs. Evidence-based regulations on live pig trade should also be 

established in live pig markets and slaughterhouses. For example, traders shouldn’t be 

allowed to trade piglets and finishers at the same time; and mixing pigs from different 

farms should be prevented.  
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Low awareness of the zoonotic ability of SI was found among local pig farmers and 

trading personnel surveyed. Surprisingly people who had been vaccinated against 

human flu had lower levels of awareness of the zoonotic risk of SI than non-vaccinated 

individuals. This may be associated with vaccinated people being less likely to become 

infected with swine strains because the administered human vaccines against seasonal 

influenza may provide some cross-protection against swine strains (Solorzano, Ye et al. 

2010). However, if a new pandemic strain emerges in the pig population, it is unlikely 

that vaccination against human influenza strains would protect people (Centers for 

Disease Control and Prevention 2019). There are also several factors influencing the 

decision of people to be vaccinated against human influenza, including: access to 

medical care; perceived risk of contracting human influenza; perceived severity of 

human influenza; concerns on potential side effects arising from vaccination against 

human influenza; highest level of education and income status (Parrish, Graves et al. 

2015, Maurer 2016, Quinn, Jamison et al. 2017, Wang, Yue et al. 2018). It is possible 

that there is an unknown confounding factor for the apparent association between 

uptake of vaccination against human influenza and lower levels of awareness of the 

zoonotic risk of SI. It is significant that more than 80% of the interviewees would keep 

on working when they had mild influenza-like symptoms, even though they potentially 

could transmit human influenza viruses to pigs (Nelson and Vincent 2015). This 

behavior was also found to be associated with “lacking awareness about the zoonotic 

risk of SI”. We suggest that an education campaign should be conducted in China to 

promote farmers’ and traders’ awareness of the zoonotic risk of SI. According to the 

findings in the study, pig farmers and people involved in the live pig trade should be 

informed that SI can infect people, and if they develop influenza, they can also transmit 

the disease to pigs. As traders were shown to have a lower level of knowledge than 
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farmers in this study it is recommended that traders be specifically targeted in any 

education program. We suggest that routine training should be offered by local health 

authorities and information provided on leaflets for distribution to the local live pig 

markets and slaughterhouses. 

The interviewees’ knowledge and beliefs about SI have an impact on whether they 

would use PPE when contacting pigs. According to this study, the interviewees who 

didn't know about SI and were not aware that SI could infect humans, were more likely 

not to use PPE. It is essential to educate pig industry workers about the epidemiology of 

SI, and especially the zoonotic character of this disease. Regulations should be 

established to require the wearing of PPE, such as wearing a face mask and gloves, 

when contacting sick pigs by all pig industry workers in China. 
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4.7  Supplementary Material  

 

Supplementary Table 4.1 Results of the analyses by univariable logistic regression 

for lacking awareness about the zoonotic risk of Swine Influenza  

Correlated factors P-value OR (95%CI) 

Occupation (traders and trade workers vs. farmers) 0.088 2.09 (0.93, 5.19) 

Were vaccinated against seasonal flu each year 0.052 2.16 (1.02, 4.91) 

Don’t think SI is an important disease to pigs 0.108 1.85 (0.89, 4.00) 

Don’t know if SI is an important disease to pigs 0.003 4.86 (1.86, 15.25) 

Believe SI can cause death in pigs (No/Yes) 0.003 5.51 (1.98, 19.61) 

Believe SI can cause death in pigs (Not sure/Yes) 0.002 5.08 (1.98, 15.79) 

Keep on working when get mild flu-like symptoms  0.019 2.49 (1.16, 5.38) 

 

 

Supplementary Table 4.2 Results of the analysis by univariable logistic regression 

for not using PPE when contacting pigs 

Factors P-value OR (95%CI) 

Lack awareness of the zoonotic risk of SI <0.001 3.65 (1.96, 6.94) 

Don’t know SI is a pig disease 0.054 3.51 (1.02, 4.91) 

Don’t think SI is an important disease to pigs 0.020 2.50 (1.17, 5.59) 

Don’t know if SI is an important disease of pigs 0.458 1.35 (0.62, 3.00) 

Keep on working when get mild flu-like symptoms  <0.001 4.04 (1.86, 9.25) 
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CHAPTER 5： Pig trade networks through live pig 

markets in Guangdong Province, China  



   

107 

 

Preface 

Poor biosecurity and the frequent selling of pigs were found in the pig farms surveyed 

in Guangdong Province (Chapter Three). In addition the findings presented in Chapter 

Four highlighted that the trading practices of the local pig industry workers, especially 

the live pig traders, could promote the spread of influenza between pig farms in 

Guangdong Province. Mixing of pigs sourced from different pig farms at the local live 

pig markets can potentially result in the production of new SIV reassortants, with these 

new SIVs subsequently spreading via contaminated clothing of the traders and their 

vehicles when pigs are collected from pig farms. There are several wholesale live pig 

markets in Guangdong Province where, not only pigs from the province are traded, but 

also pigs sourced from other provinces are sold. The study reported in this chapter was 

developed to investigate the contact network between source counties that were 

connected to the wholesale live pig markets in Guangdong Province. Characteristics of 

the trading network were explored, and the impact of the structure of the network on 

controlling a potential epidemic was investigated with specific emphasis on the 

effectiveness of applying targeted (risk-based) control interventions for pigs sourced 

from counties with high levels of connectedness through the live pig market network.  

The text of this chapter is identical to that in the manuscript published in 

‘Transboundary Emerging Diseases’ except for the reference list which has been 

combined with references of other chapters and incorporated as one list at the end of the 

thesis.  

This chapter can be found published as:  
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Li Y, Huang B, Shen C, Cai C, Wang Y, Edwards J, Zhang G, Robertson ID. Pig trade 

networks through live pig markets in Guangdong Province, China. Transboundary and 

Emerging Diseases. 2020 May;67(3):1315-29. 
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Abstract 

This study used social network analysis to investigate the indirect contact network 

between counties through the movement of live pigs through four wholesale live pig 

markets in Guangdong Province, China. All 14,118 trade records for January and June 

2016 were collected from the markets and the patterns of pig trade in these markets 

analysed. Maps were developed to show the movement pathways. Evaluating the 

network between source counties was the primary objective of this study. A 1-mode 

network was developed. Characteristics of the trading network were explored and the 

degree, betweenness and closeness were calculated for each source county. Models 

were developed to compare the impacts of different disease control strategies on the 

potential magnitude of an epidemic spreading through this network. The results show 

that pigs from 151 counties were delivered to the four wholesale live pig markets in 

January and/or June 2016. More batches (truckloads of pigs sourced from one or more 

piggeries) were traded in these markets in January (8,001) than in June 2016 (6,117). 

The pigs were predominantly sourced from counties inside Guangdong Province 

(90%), along with counties in Hunan, Guangxi, Jiangxi, Fujian and Henan provinces. 

The major source counties (46 in total) contributed 94% of the total batches during the 

two-month study period. Pigs were sourced from piggeries located 10 to 1,417 km 

from the markets. The distribution of the nodes’ degrees in both January and June 

indicate a free-scale network property, and the network in January had a higher 

clustering coefficient (0.54 vs 0.39) and a shorter average pathway length (1.91 vs 
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2.06) than that in June. The most connected counties of the network were in the 

central, northern and western regions of Guangdong Province. Compared with 

randomly removing counties from the network, eliminating counties with higher 

betweenness, degree or closeness, resulted in a greater reduction of the magnitude of a 

potential epidemic. The findings of this study can be used to inform targeted control 

interventions for disease spread through this live pig market trade network in south 

China. 
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5.1 Introduction 

Live animal movement is a critical pathway for disease spread between farms, regions 

and countries (Bigras-Poulin, Thompson et al. 2006, Ortiz-Pelaez, Pfeiffer et al. 2006, 

Soares Magalhaes, Ortiz-Pelaez et al. 2010, Volkova, Howey et al. 2010). 

Understanding these movements is a key component of disease prevention and 

control. Social network analysis (SNA) have been utilized to: investigate the potential 

for disease transmission through animal movements; determine the magnitude and 

control of potential epidemics (Dube, Ribble et al. 2009, Gates and Woolhouse 2015); 

predict the infection risk for premises (Bigras-Poulin, Thompson et al. 2006); and 

guide risk-based surveillance approaches and decisions (e.g. early detection) (Kiss, 

Green et al. 2006, Martin, Zhou et al. 2011). Besides movement of live animals, 

attention has also focused on the network of indirect contacts between farms 

(Brennan, Kemp et al. 2008, Dent, Kao et al. 2008, Rossi, De Leo et al. 2017), 

because many animal diseases, including swine influenza (SI) and African swine 

fever (ASF), can spread indirectly via contaminated fomites (e.g. vehicles, equipment, 

clothing) and people (Grontvedt, Er et al. 2013, Lauterbach, Wright et al. 2018). A 

previous study in southern China highlighted the use of poor biosecurity practices by 

local pig farmers when selling pigs as: less than half of the farms implemented an 

“all-in-all-out” practice for pigs in a pen; thirty percent of buyers entered a piggery to 

select and collect pigs; and only about half of the surveyed farms always required all 

external vehicles to be disinfected (Li, Edwards et al. 2019). These behaviors in pig 
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trade have the potential to facilitate the spread of contagious diseases via live pig 

trade networks. 

Although pigs are usually transported directly from farms to slaughterhouses in most 

provinces of China, there is trade of live pigs through wholesale markets in 

Guangdong Province, in south China. Estimations have suggested that around 10% of 

the pigs slaughtered in the province, were traded through wholesale live pig markets 

(P. Chen, personal communication, July 10, 2018). Home slaughter of pigs is illegal 

in Guangdong Province and is rarely considered to occur in the field (People's 

Government of Guangdong People's Government of Guangdong Province 2011). 

Small abattoirs in townships offer a slaughter service at a cost of 30 RMB (4.5 USD) 

per head. Abattoirs with larger slaughter capacity are usually located in suburban 

areas of a city. All wholesale live pig markets in this province are located in the cities 

of Guangzhou and Foshan, and it is estimated that approximately 5.7 million pigs are 

supplied annually to these two cities via live pig markets (P. Chen, personal 

communication, July 10, 2018). Approximately 90% of the pigs traded at these 

markets originate from piggeries located within Guangdong Province (P. Chen, 

personal communication, July 10, 2018). In 2015, small piggeries, that sell less than 

50 pigs in a year, contributed 87.5% of the total number of pig farms in Guangdong 

Province (Statistic Beurau of GuangdongStatistic Beurau of Guangdong Province 

2016). The live pig traders or their employees usually visit pig farms in several 

counties every day to collect pigs for subsequent resale in the markets. These pigs are 
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transported to the markets in trucks either owned or hired by the traders, and which 

usually carry pigs sourced from multiple piggeries. However, some pig farmers 

transport their pigs directly to the live pig markets. At the markets, the traders rent 

pens which are used to contain pigs purchased from multiple pig farms. The pens are 

separated from each other by either an open metal fence or a low brick wall 

(approximately 1 meter high). Pigs are then purchased by butchers/meat sellers. Some 

pig traders will offer a "slaughter and delivery service" where the pigs selected by the 

butchers are identified and sent to a slaughterhouse, with the carcass subsequently 

delivered directly to the meat seller's stall. The meat sellers’ stalls are not in the live 

pig trade markets and are often in a vegetable and meat market near residential areas. 

No pork is sold in these live pig trade markets. Pigs may stay in the markets for hours 

to days until being sent to slaughterhouses. 

In 2016, the pig population in Guangdong Province was estimated at 20.5 million 

(Ministry of Agriculture and Rural Affairs 2017) and the province is considered a key 

area for the emergence of some important swine diseases in China. For example, the 

first case of FMD subtype A infection in a pig was found in the province in 2013 

(OIE 2018) and in 2018, a novel coronavirus, swine acute diarrhea syndrome 

coronavirus, was identified as the pathogen causing high mortality in four commercial 

pig farms in the province (Zhou, Fan et al. 2018). There are also a variety of influenza 

strains circulating in pigs in the province and surveillance data indicates that the gene 

reassortment among local isolates is far more complicated than that among isolates 
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from other Chinese provinces (Ninomiya, Takada et al. 2002, Liu, Wei et al. 2011, 

Cao, Zhu et al. 2013, Xie, Zhang et al. 2014, Zhou, Cao et al. 2014, Yang, Chen et al. 

2016). 

The live animal market trade system plays a critical role in the circulation of 

pathogens among areas in China, especially for long-distance disease spread (Martin, 

Zhou et al. 2011, Zhou, Li et al. 2015). However, live pig trade patterns in the markets 

have rarely been described and the characteristics of these networks and their impact 

on disease spread and control strategies to adopt have never been studied in China. 

This study was designed to investigate the indirect contact network between source 

counties through the movement of live pigs via these wholesale markets. This study 

aims to provide evidence for improved decision making and resource allocation to 

areas for prevention and control of disease. Trade patterns in live pig markets were 

described and properties of the networks in January (winter, busy trade season) and in 

June (summer, quiet trade season) were compared to study the stability of the live pig 

market trade network in different months/seasons. Different strategies were compared 

to illustrate the benefit of taking a risk-based intervention to constrain potential 

disease spread through this network. The findings of this study can be used to inform 

targeted interventions to control disease spread through the live pig market trade 

network. 
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5.2 Materials and methods 

The objective of this study is to evaluate the trade network between source counties 

and the traders in wholesale live pig markets. This study was conducted in 

Guangdong Province, South China. SNA was used to explore the characteristics of 

this trade network. The trade data were collected by the China Animal Health and 

Epidemiology Center (CAHEC) during a routine survey in 2017. The study was 

approved by the Murdoch University Human Ethics Committee [Project Number: 

2017/113].  

5.2.1 Data sources 

Trade records were extracted from health certificates of pigs and were collected from 

all four wholesale live pig markets in Guangdong Province, south China. In China, 

each batch of pigs requires a pig health certificate provided by the local official 

veterinarians. The pig health certificates are paper-based. The farmers give the pig 

health certificates to traders, so the traders can transport pigs to markets or 

slaughterhouses. If traders didn't offer pig health certificates, the markets or 

slaughterhouses will not accept their pigs (People's Government of Guangdong 

People's Government of Guangdong Province 2011). Market managers are required 

by local authorities to collect these health certificates and to keep them for at least one 

year. Three of these markets (Jiahe market - market 1; Furong market - market 2; and 

Baiyun market - market 3) are located in Guangzhou city, and Wufeng market 

(market 4) is situated in Foshan city. In total, 14,118 trade records from January 
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(8,001) and June (6,117) 2016 were collected. The data covers trade events from all 

traders in all four wholesale live pig markets. These markets are open every day of the 

year, except for a short closure (1-2 weeks) during the spring festival. Sheep, goat and 

cattle were also traded in Furong market, whilst all other markets only traded pigs. 

Data for each batch (a truckload of pigs that had been collected from one or more 

farms from the same county) was collected, including the source counties of the pigs 

(91.3% of the data had source counties recorded), the loading date, number of pigs, 

destination markets and the destination pig pen(s) at the market (76.1% of the data 

recorded the destination pen which is usually owned by one trader). 

5.2.2 Data analyses 

The patterns of pig trade in the four live pig markets were analyzed. Maps were 

developed using ArcGIS 9.3 (ESRI Inc., Redlands, CA, USA) to show the transport 

pathways from supply counties to the four markets and the average distance 

individual batches were transported was calculated. The total number of pigs traded in 

each month, the average size of a batch, the number of pig pens and the source 

counties of the pigs were also calculated for each market. A batch was a group of pigs 

from one or more farms transported to the live markets on one truck, irrespective of 

the number. A county that contributed at least 20 batches in one month was classified 

as a major supply county. The total number of batches to the markets from these 

major source counties was compared to check the stability of supply for January and 

June. 
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The SNA was conducted with the packages “igraph”(Nepusz 2006) and “tnet” (Tore 

Opsahl 2009) in R (R Core Team 2018). The study unit in the network was source 

county and trader. Firstly, the network was established as an undirected bipartite 

network, and the number of batches was set as the link weight. The source and 

destination nodes were set as the source counties and the pens (each pen owned by a 

trader) in the markets, respectively. The 2-mode network was then transformed into a 

1-mode network by removing the pens, to focus on the network between source 

counties.  

The static networks for markets 3 and 4, which had complete trade records, were 

compared between the two months (seasons) to evaluate the stability of the live pig 

trading networks through these markets. The 15 counties that contributed the most 

pigs to the two markets in January and June 2016 were compared to check the 

stability of the pig supply. The “power.law.fit” function in igraph was used to test if a 

network had free-scale property. The Kolmogorov-Smirnov test was used to test the 

goodness of fit for nodes with ten or more degrees using a confidence level of 95% (a 

p-value > 0.05 indicated that the nodes’ degree fit a power-law distribution, and thus 

the network has free-scale property). 

Parameters (edge density, clustering coefficient, diameter, the average length of 

pathways) of the networks were calculated and compared (Nepusz 2006). Fast-greedy 

community detection was performed using the “fastgreedy.community” function in 

“igraph” to determine the number of communities in a network (Clauset, Newman et 
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al. 2004). R0 was investigated across the networks. R0 is defined as the average 

number of secondary cases produced by a case during its infectious period in a 

susceptible population (Lin and Vandendriessche 1992). R0 is affected by the 

characteristics of the pathogen (for example, pathogenicity and environmental 

resistance of the pathogen). It is also determined by the method and frequency of 

contact between units of interest. In this study, we focused on the impact of the trader 

network on a disease transmitted among supply counties. To illustrate the impact of 

the network structure on the spread of diseases, we compared the R0s of existed 

networks in different seasons to simulate random networks with the same number of 

nodes. “R0(network)/R0(random)” was calculated for the two static networks in 

January and June 2016 (Marquetoux, Stevenson et al. 2016). 

Trade data from January and June 2016 were joined to create a combined social 

network. The 2-mode network was then transformed into a 1-mode network by 

removing the pens (traders). There were 37 nodes deleted from the network because 

they were isolated nodes in the 1-mode network. These isolated counties infrequently 

supplied pigs to only one trader in the markets. The degree, betweenness and 

closeness of each node were calculated. The correlations between the nodes’ scores in 

degrees and betweenness and closeness were checked using Pearson’s correlation test. 

A map was developed to show the degrees of source counties in this network. The 

distributions of degrees, betweenness and closeness of the nodes in the combined 

network were illustrated with figures. To illustrate the impact of the key players on 
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the potential magnitude of epidemics spreading through this network, the 

methodology of Marquetoux et al., (2016) was used to compare the decrease of the 

GWCC in the network with different strategies. One involved randomly removing a 

node in the network, while the others involved deleting the nodes in sequence 

according to their scores of three indicators of centrality: degree, betweenness and 

closeness. 

Definitions of the technical terms used in this paper relating to SNA are provided in 

Table 5.1. 

Table 5.1 Definitions of social network analysis terms used in the study on trade 

networks through live pig markets in Guangdong Province 

Parameter 

 

Definition 

 

General terms:  

Node A node refers to a unit of interest in a network (Dube, Ribble et al. 

2009). In this study, supply counties and traders (sale pens in markets) 

are nodes in trade networks. 

Edge An edge represents a contact between individuals in the susceptible 

population (Shirley and Rushton 2005). In this study, counties were 

supplying pigs to a pen (2-mode network), or two counties were 

connected by the same trader(s). Links between a county and a pen (2-

mode network) or between counties (1-mode network) were taken as 

an edge. 
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Parameter 

 

Definition 

 

Weight of links In the bipartite network of counties and pens, the weight of a link was 

defined as the number of batches between a county and a pen, during a 

defined period. When projected as a 1-mode network of counties, the 

weight of a link was defined as the total number of paths (through 

pens) between two source counties, during a defined period. 

  

Edge density A value reflecting the density of the network and can be calculated 

using equation: L/k(k - 1). L means the number of exiting edges and k 

means the number of nodes in a network (Wasserman 1994) 

  

Diameter 

 

The longest geodesic between any pair of nodes in the network 

(Wasserman 1994) 

Average path length For any two given nodes, the shortest path between them over the 

paths between all pairs of nodes in the network (Dube, Ribble et al. 

2009) 

  

Measures of centrality:  

Degree This parameter was calculated for the 1-mode network of source 

counties. It represents the total number of contacts of a county to other 

counties in the network. A higher degree means more connection to 

other nodes in the network (Marquetoux, Stevenson et al. 2016). 
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Parameter 

 

Definition 

 

Betweenness The frequency by which a node falls between pairs of other nodes on 

the shortest path connecting them (Dube, Ribble et al. 2009). 

Betweenness is a measure of centrality used to quantify a node’s 

potential to ‘control’ the flow or curtail paths within a network 

(Marquetoux, Stevenson et al. 2016). 

  

Closeness  The sum of the shortest distances (not geographical, but path length) 

from a source livestock operation to all other reachable operations in 

the network (Shirley and Rushton 2005) 

 

Measures of cohesion:  

 

Clustering coefficient This parameter was calculated for the 1-mode network of source 

counties. It represents the proportion of one county's neighbors who 

are also neighbors to another (Watts and Strogatz 1998).  

 

Giant weakly connected 

component (GWCC) 

 

The weakly connected component is the undirected subgraph in which 

all nodes are linked, not taking into account the direction of the links 

(Robinson and Christley 2007). GWCC is the largest weak component 

in the network (Dube, Ribble et al. 2009). In this study, the network 

among source counties was considered as an undirected network, so 

we use GWCC as the indicator for the potential magnitude of an 

epidemic. 
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5.3 Results 

5.3.1 Trade patterns of the live pig market trade network 

Pigs from 151 counties were delivered to the four markets in January and/or June 

2016. There were at least 238 pens in operation in the four markets in these two 

months in 2016. On average 67 pigs were consigned in a batch. The daily trade 

volume in the four markets varied from 1,021 to 7,138 head (16 to 124 batches). 

Market 1 had the highest daily trade volume (5,954 and 7,138 pigs, and 77 and 124 

batches in January and June, respectively). More batches were traded in the four 

markets in January (8,001) than in June 2016 (6,117). However, pigs were sourced 

from more counties in June (136) than in January 2016 (90) (Table 5.2).
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Table 5.2 Trade statistics for the wholesale live pig markets in Guangdong in 2016 

Market Month 

Number of 

batches 

Total 

number of 

pigs 

Average 

batch size ± 

SD 

Number of 

recorded pig 

pens 

Averaged daily 

trade volume 

(head) ± SD 

Number 

of supply 

counties 

1 January 3838 221293 58±33 96 7138±1506 65 

1 June 2376 184577 78±24 4* 6153±3425 89 

2 January 503 31638 63±33 1* 1021±121 22 

2 June 491 34367 70±17 1* 1146±154 41 

3 January 1515 126112 83±11 53 4068±282 38 

3 June 1357 112175 83±17 51 3739±286 54 

4 January 2145 125527 59±22 79 4049±661 36 

4 June 1893 111196 59±23 85 3707±444 48 

Total 
 

14118 946885 67±24 - - 151 

*Most data in this month didn’t include a record of the pen code. For the other 

unmarked numbers, the number of recorded pig pens was the number of pens in 

operation in that market during the respective month. The number of pens that a county 

was linked to during a month varied from 1 to 86. On average, pigs from a county were 

supplied to 12 (median: 5) pens in January and 8 (median: 2) pens in June 2016. 

The sourcing counties were predominantly inside Guangdong Province (92% of all 

batches), along with counties in Hunan, Guangxi, Jiangxi, Fujian and Henan provinces 

(Fig. 5.1). The number of pigs supplied from different counties varied between January 

and June, but the supply from the major source counties was stable with the counties 

that contributed the most pigs/batches in January also providing the most in June (Fig. 
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5.2). The major source counties (46) contributed 94% of the total batches during the two 

months. Pigs were sourced from piggeries from 10 to 1,417 km from the markets, with 

average distances of 223 and 307 km in January and June 2016, respectively. 

 

Figure 5.1 Transport of pigs to the wholesale live pig markets in Guangdong in 

January (high demand month) and June (low demand month) 2016. Yellow circles 

represent the source counties in January 2016 and blue circles represent the source 

counties in June 2016. Size of the circles indicates the number of batches 

transported. Circles overlapped for some counties because these counties supplied 

pigs to more than one market and each of the overlapping circles indicates the 

number of batches delivered to one of the markets. 
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Figure 5.2 Number of batches from major supply counties (supplying ≥ 20 

batches/month) to the wholesale live pig markets in Guangdong in January and 

June 2016. Provinces of these counties are identified on the far right. 

5.3.2 Trade networks in different months  

The 2-mode trade network was analyzed to determine the stability of the trade between 

the two months/seasons. Twelve of the 15 counties supplying the most batches were 
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similar in the two seasons. They contributed 84 and 78% of the total number of batches 

in January and June, respectively. Notably, all the links between the source counties in 

January still existed in June, with only 9% of the links in June being new links to the 

trade network; on the other hand, these new links only contributed 1.5% of the total 

number of batches in June. 

The distributions of the degrees of the nodes in both January and June indicate free-

scale network property (Fig. 5.3；p-values of 0.14 and 0.52, respectively), thus a few 

nodes have much higher connectivity than other nodes in this network. However, the 

network in January had a higher clustering coefficient and a shorter average pathway 

length than that in June (Table 5.3).  

 

Figure 5.3 Distributions of the degrees of source counties in the live pig trade 

networks through wholesale live pig markets in Guangdong in January and June 

2016 
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Table 5.3 Properties of pig trade networks through live pig markets in Guangdong 

Province in January and June 2016 

Network properties Month 

 January June 

Edge density 0.24 0.15 

Clustering coefficient 0.54 0.39 

Diameter 5 4 

The average length of pathways 1.91 2.06 

Number of communities 4 7 

R0(network)/R0(random) 1.23 1.29 

 

With 46 new source counties being added to the markets in June, new communities 

were formed in the live pig trade network (Supplementary Figure 5.1). 

5.3.3 Properties of the combined static 1-mode network 

The parameters of the combined static network are summarized in Table 5.4. Most of 

these parameters are between the parameters of the static networks of January and June. 

The combined static network is displayed in Fig 5.4. 
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Table 5.4 Properties of the combined (January and June) static social network of 

live pigs traded through live pig markets in Guangdong Province in 2016  

Network properties Value 

Edge density 0.18 

Clustering coefficient 0.47 

Diameter 4 

The average length of pathways 1.93 

Number of communities 5 

R0(network)/R0(random) 1.29 

 

 

Figure 5.4 Graph of the combined static network of pig movement through 

wholesale live pig markets in Guangdong in January and June 2016. Different 

colored areas represent five different communities in the network, and nodes with 

the same color belong to the same community. 



   

131 

 

The degree, betweenness, and closeness of each source county in this network are 

summarized in Supplementary Table 5.1. The degree of each source county indicated 

that the most connected counties of the network were in the central, northern and 

western regions of Guangdong Province (Fig. 5.5). 

 

Figure 5.5 The connectivity of source counties in the combined static network of 

pig movement through wholesale live pig markets in Guangdong in January and 

June 2016. 

5.3.4 Influence on GWCC by different ‘control’ strategies 

The distribution of degree, betweenness and closeness are displayed in Supplementary 

Figure 5.2, 5.3 and 5.4. The nodes that had higher degrees also had higher betweenness 

(correlation coefficient of 0.88, p < 0.001) and higher closeness (correlation coefficient 

0.74, p < 0.001). Compared with randomly removing counties from the network, 

eliminating counties with higher betweenness, degree or closeness, resulted in a greater 
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reduction in the magnitude of a potential epidemic. Of the three risk-based strategies, 

isolating the nodes according to their betweenness had the greatest effect in decreasing 

the size of GWCC in most of the steps (Fig. 5.6). 

 

Figure 5.6 The decrease in the size of GWCC of the pig movement network 

through wholesale live pig markets in Guangdong in January and June 2016 under 

different control scenarios. The grey dotted lines representing the 95% CI of the 

size of the GWCC when removing counties randomly. 

The GWCC reduced slowly when deleting the first few nodes with the highest degree, 

betweenness and closeness, and significant reductions only occurred when more nodes 

were deleted. For example, when less than 7 nodes were deleted from the network, there 

was no difference between the different strategies in terms of decreasing the size of the 

GWCC. However, if the 45 counties with the highest betweenness or degree from the 
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network were removed, the GWCC decreased to approximately 10 counties, while if 45 

counties were randomly removed, the GWCC decreased to only 65 counties (Fig. 5.6). 

5.4 Discussion 

To our knowledge, this is the first study that described the pattern and explored the 

network of live pig trading through wholesale live pig markets in China. Live animal 

markets provide a location where there is direct contact and mixing between animals 

and humans that can facilitate disease spread (Kiss, Green et al. 2006, Myers, Olsen et 

al. 2006, Robinson and Christley 2007, Bowman, Nelson et al. 2014, He, Liu et al. 

2014, Zhou, Li et al. 2015, Dutkiewicz, Zajac et al. 2018, Van der Poel, Dalton et al. 

2018). Furthermore, long-distance transport and mixing of animals at live-animal 

markets is stressful (Dalla Costa, Lopes et al. 2017, Earley, Buckham Sporer et al. 2017, 

Sommavilla, Faucitano et al. 2017, Zurbrigg, van Dreumel et al. 2017), allowing greater 

opportunity for pathogen and disease spread between animals. 

Significant differences were found in the connectivity of source counties. “Free-scale” 

pattern was found in this market trading network. Studies conducted in other countries 

on livestock movement networks have also reported “free-scale” property (Woolhouse, 

Shaw et al. 2005, Kiss, Green et al. 2006, Lentz, Kasper et al. 2009, Soares Magalhaes, 

Ortiz-Pelaez et al. 2010, Molia, Boly et al. 2016, Earley, Buckham Sporer et al. 2017). 

This indicates that they are potentially key players in a network which should be 

targeted for disease control strategies. The connectivity was measured with different 

parameters in this study: degree, betweenness and closeness. Most of the counties with 

the highest degree were located in central, northern and western Guangdong. It is worth 

noting that the counties with high degree scores also had high betweenness and 

closeness values. These counties had larger pig populations than counties with lower 
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connectivity. Thus, they are more likely to supply pigs to many markets at the same 

time. This result indicates that it will be very challenging to stop pig movement in 

counties with higher connectivity, during an emergency response to an epidemic. We 

suggest that besides movement suspension, other control measures such as emergency 

vaccination, enhanced quarantine, promotion of better biosecurity practices in the 

trading sector and education programs should also be implemented during emergency 

disease responses. 

The results of this study have provided insight on approaches for implementation of 

emergency responses to SI and other pig diseases in Guangdong Province. For example, 

the transmission of ASF in China (Ge, Li et al. 2018, Normile 2018) has been the result 

of long-distance movement of live pigs allowing the epidemic to propagate (Wang, Sun 

et al. 2018). Our findings show that the supply counties of the live pig markets in 

Guangdong Province included, not only counties inside this province but also counties 

from Guangxi, Hunan, Jiangxi, Fujian, Jiangsu and Henan provinces. Animal health 

authorities in Guangdong Province should pay more attention to outbreaks in these 

provinces, especially Hunan and Guangxi. These provinces contributed more pigs to the 

live pig markets in Guangdong Province than did other provinces (excluding 

Guangdong Province) and some counties in the middle of Hunan and east Guangxi had 

relatively high connectivity in the live pig market trading network. For early detection 

of ASF in Guangdong Province, counties inside/adjacent to Guangzhou and to the north 

and south-west of the province should also be targeted for active surveillance. Control 

measures against ASF adopted in China have included mass field screening of pigs, 

widespread sampling and testing, movement restrictions, thorough cleaning and 

disinfection of trucks transporting pigs, and registration of live pig-traders (Ministry of 

Agriculture and Rural Affairs 2018). However, these measures can be a big burden for 
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local governments. Social network analysis on animal movement can contribute to 

improving the efficiency of control measures when resources are limited by targeting 

priority areas. The current results indicate that, in an emergency response where often 

there are limited diagnostic and human resources, targeted surveillance and intervention 

would be a better strategy to control the potential magnitude of an outbreak among the 

source counties included in the market trading network. In this study, we found that if 

we isolated the 45 counties with higher connectivity (for example, by movement 

restriction or enhanced quarantine), the magnitude of a potential epidemic could 

decrease substantially, in contrast to conducting control measures across the same 

number of randomly selected counties (10 vs 70).  

The findings of this study can also help to improve the efficiency of routine surveillance 

on influenza in this area. Influenza is one of the most significant zoonotic diseases 

(Myers, Olsen et al. 2006, Bowman, Nelson et al. 2014, Ma, Anderson et al. 2015, 

Lauterbach, Wright et al. 2018). Pigs can be infected by swine influenza strains, as well 

as some human strains, and genetic reassortment between swine and human influenza 

strains may facilitate the evolution of new strains circulating in pigs or even pandemic 

strains in humans (Zhou, Senne et al. 1999, Kuntz-Simon and Madec 2009, Rajao, 

Walia et al. 2017). A recent study indicated a poor level of biosecurity being adopted by 

pig farmers in Guangdong when selling pigs (Li, Edwards et al. 2019). There is 

evidence to indicate that workers on pig farms and markets in China have a higher risk 

of acquiring SI influenza than the general population (Yin, Rao et al. 2014, Ma, 

Anderson et al. 2015). To improve the efficiency of surveillance of SI in Guangdong, 

those traders in the markets with more contacts to different counties and those pig farms 

within the counties with higher connectivity in the network should be targeted for 

human influenza and SI surveillance, respectively. 
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The clustering coefficient was higher in the trade network of January than June 2016 

(0.54 vs 0.39). Thus, via this market trading network, an epidemic in January would 

spread faster than in June. The average path length in the combined static network was 

less than 2, which means that any two counties in the network can be connected via just 

another county. Interestingly, the average path length was shorter in the trade network 

of January than that in June, which illustrates that it would be easier for a pathogen to 

spread among nodes in this trade network in January than in June. Furthermore, the 

lower temperature in January could preferentially influence the survival of pathogens in 

the environment (Botner and Belsham 2012). Local animal health authorities should be 

aware that this market trade network would require more attention in January. 

The dynamics of the live pig trade can lead to new directions for pig diseases spread 

through this market trading network. We evaluated the consistency of the live pig 

market trading network by comparing the source counties in January and June 2016. 

The links among the dominant source counties and the live pig pens were stable in the 

different months, although there were 55 more counties from neighboring provinces 

involved in pig supply in June. However, these newly added counties contributed less 

than 2% of the pigs, and the trade frequency of these counties was low. When we 

transformed the 2-mode network into the 1-mode network, many of these counties 

became isolated nodes. We decided to simplify the network by deleting these nodes, 

because these counties which only occasionally supply pigs should have a low impact 

on the spread of disease between counties. It was not surprising that more pigs were 

traded in these markets in January than in June (504570 vs 442315) because January is 

close to the Chinese Spring Festival and demand for meat increases before this festival 

(Pan, Wei et al. 2016). The increase in the number of source counties in June may be 

due to the change in the pig density in Guangdong Province arising from a policy to 
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restrict the number of pig farms in the province implemented in 2014, resulting in some 

farms being forced to close or to relocate to other counties (China State Council 2013). 

As displayed in Figure 5.2, Baiyun (suburban area of Guangzhou city) and Sanshui 

(suburban area of Zhongshan city) supplied many pigs in January 2016, but the numbers 

supplied in June 2016 decreased dramatically. During our field investigation, we were 

told that many pig farms in these areas were closed in 2016 because of concerns arising 

from their environmental impact. Another reason could be price changes in neighboring 

provinces which may have provided incentives for traders to collect pigs from more 

distant counties. A study on live poultry movement in China reported that when the 

price of poultry changed in neighboring provinces, the direction of movement of live 

poultry also changed accordingly (Li, Wang et al. 2018). It is worth noting that the 

increased supply counties in this network resulted in a change in the structure of the 

local market trade network. Newly produced communities can result in new disease 

circulating directions between counties. We suggest that local veterinary authorities 

should pay attention to the impact of policy or price changes on livestock movement. 

Monitoring the changes in the structure of this market trade network is needed. 

Several model limitations need consideration. Firstly, the “removal of the counties from 

this network” cannot be totally achieved because illegal trade could be present. 

However, animal movement suspension has been implemented on several occasions in 

China (for example, emergency responses for PPR and ASF) (Ministry of Agriculture 

and Rural Affairs 2019) and is required by the animal health law in China (China State 

China State Council 2015). Although it is impossible to prevent all illegal trade, 

suspending legal trade would dramatically reduce the trade volume from selected 

counties. Besides movement restriction, other control measures, such as emergency 

vaccination, intensive screening for cases, enhancing biosecurity within the trading 
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sector and implementing education programs could also reduce disease risk in targeted 

counties. These control measures could also result in the targeted areas being 

“removed” from the network in terms of spreading disease. Secondly, in reality 

authorities would not randomly select places to implement an emergency response. The 

places are usually selected according to their current infection status or potential for 

infection. However, early detection of an epidemic in a county can be challenging, 

especially for an exotic disease (Liu, Atim et al. 2019), and choosing counties based on 

convenience is unlikely to be effective. We used randomness to model these non-

targeted scenarios and we believe that our model, even with its limitations, has offered 

new insights for decision-makers to understand the disease risk in places before an 

epidemic occurs. The same methodology has been used in another similar study 

(Marquetoux, Stevenson et al. 2016). It is worth noting that this study only focused on 

the pig movement network through local wholesale markets. Pigs are also traded 

through other systems in this province. For example, breeding pigs are often traded 

directly between pig farms, and weaners are often moved from breeding farms to 

fattening farms. Further studies on the movement of live pigs among local farms are 

needed. 

It is a better strategy for disease control to understand the risk of disease spread through 

live animal movements before an epidemic actually occurs (Shirley and Rushton 2005). 

In recent years, many countries and companies have established databases to record 

livestock movement (Bigras-Poulin, Thompson et al. 2006, Kiss, Green et al. 2006, 

Marquetoux, Stevenson et al. 2016, Lee, Polson et al. 2017). These data would be 

critical in tracing livestock movement during emergency responses and would favor 

SNA being used to inform the establishment of a proper disease-control contingency 

plan. However, livestock trade (source, destination) is poorly recorded in many 
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livestock markets in China. The most common source of live pig movement records in 

China is the official health certification of the traded pigs, which has limitations. Firstly, 

the certification record often lacks the name and location of the source farm, which 

makes it difficult, if not impossible, to effectively trace back to farms/animals in 

outbreak investigations. Secondly, data from the health certification system is not 

shared between provincial animal health authorities, even though live pig movements 

often cross provincial boundaries. A more comprehensive national database should be 

established in China. Detailed information on the location, species, farm size, type of 

source piggery (breeding, fattening etc.) and livestock movements should be recorded 

and updated in a timely manner. 

5.5 Conclusions 

The live pig market trading network in Guangdong involved pigs sourced from at least 

151 counties in 2016. The trading network had connected counties in Guangdong, 

Guangxi, Hunan, Fujian, Jiangxi, Hubei, Henan and Jiangsu provinces. For emergency 

disease control, targeted surveillance is required, and for this to eventuate nation-wide, a 

more comprehensive database of livestock movement is needed at the national level. 

The findings in this study could be used to offer insights into SI surveillance, 

emergency responses and control of ASF and other swine diseases in Guangdong 

Province and southern China. 
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5.7 Supplementary Material  

 

Supplementary Figure 5.1 Communities in the pig movement network through wholesale live pig markets in Guangdong in January and 

June 2016. Areas with a different color represent different communities in the network, and nodes with the same color belong to the 

same community. 
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Supplementary Figure 5.2 The distribution of degrees of source counties in the combined static network of pig movement through 

wholesale live pig markets in Guangdong in January and June 2016. 
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Supplementary Figure 5.3 The distribution of betweenness of source counties in the combined static network of pig movement through 

wholesale live pig markets in Guangdong in January and June 2016. 
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Supplementary Figure 5.4 The distribution of closeness of source counties in the combined static network of pig movement through 

wholesale live pig markets in Guangdong in January and June 2016. 
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Supplementary Table 5.1 The degree, betweenness and closeness of each source 

county in the pig market trading network in Guangdong Province, 2016 

County degree Betweenness closeness 

Sanshui 76 673.845 0.003745 

Yuncheng 54 282.91 0.00346 

Dinghu 85 919.031 0.003876 

Jianghai 36 47.586 0.003257 

Electric white 10 0 0.002967 

Pengjiang 46 120.534 0.003367 

Hepu 32 134.029 0.003215 

New 43 89.974 0.003333 

Four 80 773.088 0.003802 

Kaiping 40 109.745 0.003289 

Enping 54 169.576 0.00346 

Huaiji 47 206.345 0.003378 

Nanhai 34 44.231 0.003215 

Lianzhou 12 2.748 0.002959 

Yangchun 50 153.602 0.003413 

Yangxi 26 23.637 0.003145 

Yingde 44 144.877 0.003333 

Longyuqu 10 0 0.002967 

Cold water beach 8 0.462 0.002899 

Pubei 7 3.138 0.002571 

Gaoyao 24 22.674 0.003125 

Fresh 44 81.639 0.003344 

Guiping 10 0 0.002865 

Xiangxiang 11 0 0.002907 

Closed 26 38.288 0.003106 

Huazhou 39 131.357 0.003289 

Qingcheng 49 153.498 0.003401 

Heshan 39 60.046 0.003279 

Lu Chuan 36 178.41 0.003257 

Huadu 25 13.504 0.003135 

Xinxing 60 277.728 0.003534 

Nansha 10 0 0.002882 

Yunan 10 0 0.002882 

Yangdong 36 37.917 0.003247 

Taishan 31 17.68 0.003195 

Xingan 15 3.777 0.002985 

Camphor 25 30.527 0.003135 

High security 10 0 0.002865 

Conghua 4 0 0.00277 

Fenyi 4 0 0.002786 

Lechang 29 48.335 0.003185 

Pingnan 6 3.75 0.002747 

Taixing 9 0 0.00289 

Maonan 3 0 0.002725 

Fogang 18 5.232 0.003067 

Changting 6 0 0.002801 
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County degree Betweenness closeness 

Hengxian 10 0 0.002967 

Baiyun 57 378.2 0.003497 

Linwu 12 2.265 0.002899 

Qinbei 5 0 0.002825 

Qiyang 6 0 0.002841 

Jiangyong 8 0.462 0.002899 

On the high 10 0 0.002865 

Feng 4 0 0.002786 

Foshanshixiaqu 5 0 0.002793 

Qintang 5 0 0.00274 

Nanxiong 29 48.354 0.003165 

Ma Zhang 22 13.027 0.003086 

Renhua 35 61.119 0.003236 

Wengyuan 33 47.35 0.003205 

Qujiang 30 36.742 0.003175 

Luoding 10 4.479 0.002778 

Gaoming 16 6.776 0.00277 

Yangshan 34 54.171 0.003205 

Zhongshan 10 0 0.002825 

Lianjiang 34 78.909 0.003226 

Suixi 22 18.111 0.003096 

Yong'an 18 6.722 0.003067 

Bobai 34 82.422 0.003236 

Zhenjiang 20 8.872 0.002899 

Gaozhou 21 8.177 0.002907 

Yunan 9 2.712 0.002786 

Shixing 33 53.825 0.003226 

Xuwen 6 0 0.002591 

Leizhou 10 0 0.00266 

Wujiang 14 3.057 0.002801 

Beiliu 16 17.137 0.003003 

Lian Shan Zhuang Yao 

Autonomous 8 7.199 0.002907 

Big 19 5.907 0.002793 

Ruyuan Yao Autonomous 28 24.369 0.003175 

Lotus 19 2.854 0.003077 

Zhongshan 1 0 0.002381 

Nankang 14 2.332 0.002717 

Wuchuan 15 1.418 0.002841 

Lingling 6 0 0.002639 

Longnan 12 1.499 0.002674 

Yangshuo 3 0 0.002545 

Dingnan 15 8.674 0.002959 

Leping 5 0 0.002817 

Slope head 18 7.592 0.002899 

Jiangcheng 13 0.806 0.002941 

Rongxian 9 7.849 0.002874 

Leiyang 22 27.371 0.003049 

Changning 14 3.239 0.00295 
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County degree Betweenness closeness 

Dongguan 8 0 0.002865 

Hengyang 32 64.884 0.003155 

Steaming 9 0 0.00277 

Hengdong 14 3.239 0.00295 

Hengnan 14 1.739 0.002976 

Lianping 9 0 0.002882 

Jiedong 11 0.549 0.002924 

Lianyuan 17 8.113 0.003003 

Xinhua 17 9.945 0.002976 

Ruijin 7 0 0.002809 

Pingjiang 10 0 0.002907 

Fengshun 3 0 0.002558 

Jishui 7 0 0.002809 

Lengshuijiang 4 0 0.002786 

Double clear 9 0 0.00277 

Xinfeng 10 0 0.00266 

Yuanzhou 7 0 0.002809 

Yunxi 5 0 0.00277 

Anyuan 5 0 0.00277 

Zixing 12 2.754 0.002924 

Yushui 8 1.057 0.002833 
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CHAPTER 6： Infection and determinants of 

human and avian influenza in pigs in south China 
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Preface 

In Chapters Three and Four of this thesis the contacts between pigs and pig industry 

workers in Guangdong Province were described, highlighting that local pig farmers and 

traders generally had a low awareness of the zoonotic risk of SI. These two groups were 

found to be taking inadequate steps to protect themselves from zoonotic SIVs in their 

work. These findings justify the monitoring of zoonotic strains of SIVs in the Chinese 

pig population. SI is one of the diseases targeted by national surveillance programs and 

this surveillance is designed to enhance the early detection of new zoonotic SIV strains. 

A targeted risk-based strategy for surveillance is required in order to maximise the 

benefit of limited resources and to enhance the early detection of emerging zoonotic SI 

strains. In Chapter Five, the SNA on the live pig movement offered clues for targeted 

surveillance and evaluated the impact of live pig markets on potential SI epidemics. 

However, little is known about the impact of other variables on SI, and it is not clear 

what factors are associated with the spill-over infection of human and avian influenza 

viruses to pigs. In this chapter, other variables, with a focus on meteorological, 

geographical and anthropogenic factors, were investigated to determine their potential 

roles in influenza infection in pigs in south China.  

The manuscript outlined in this chapter is currently under review for publication in 

‘Preventive Veterinary Medicine’.  
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Abstract 

The coinfection of swine influenza (SI) strains and avian/human-source influenza 

strains in piggeries can contribute to the evolution of new influenza viruses with 

pandemic potential. This study analyzed surveillance data on SI in south China and 

explored the spatial predictor variables associated with different influenza infection 

scenarios in counties within the study area. Blood samples were collected from 7670 

pigs from 534 pig farms from 2015 to 2017 and tested for evidence of infection with 

influenza strains from swine, human and avian sources. The herd prevalences for EA 

H1N1, H1N1pdm09, classic H1N1, HS-like H3N2, seasonal human H1N1 and avian 

influenza H9N2 were 88.5, 64.5, 60.3, 57.8, 12.9 and 10.3%, respectively. 

Anthropogenic factors including detection frequency, chicken density, duck density, 

pig density and human population density were found to be better predictor variables 

for three influenza infection scenarios (infection with human strains, infection with 

avian strains, and coinfection with H9N2 avian strain and at least one swine strain) 

than were meteorological and geographical factors. Predictive risk maps generated for 

the four provinces in south China highlighted that the areas with a higher risk of the 

three infection scenarios were predominantly clustered in the delta area of the Pearl 

River in Guangdong province and counties surrounding Poyang Lake in Jiangxi 

province. Identification of higher risk areas can inform targeted surveillance for 

influenza in humans and pigs, helping public health authorities in designing risk-

based SI control strategies to address the pandemic influenza threat in south China. 
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6.1 Introduction 

Disease arising from infection with influenza A viruses is one of the most widespread 

diseases of humans and animals (World Health Organization 2019). The influenza A 

viruses have a broad host spectrum, including humans, pigs, birds, tigers, dogs, 

domestic cats, horses, seals, whales and bats (Brown 2000, Yassine, Lee et al. 2013, 

Poole, Yu et al. 2014). Influenza virus is an RNA virus and hence genomic mutations 

occur frequently (Webster, Bean et al. 1992), with its segmented nature allowing the 

recombination of genes from different strains (Zhou, Senne et al. 1999, Kuntz-Simon 

and Madec 2009, Rajao, Walia et al. 2017). These mutations and recombinations 

result in the production of different subtypes and strains circulating in the field 

(Kuntz-Simon and Madec 2009). Furthermore immunity induced against one 

strain/subtype fails to confer cross-protection against different subtypes/lineages 

(Webster, Bean et al. 1992). These features of the virus make control of this globally 

distributed disease challenging. 

Swine influenza (SI) is a highly contagious disease of pigs (Crisci, Mussa et al. 2013) 

with infected pigs displaying clinical signs of coughing, fever, and inappetence 

(Takemae, Tsunekuni et al. 2018). Although the clinical signs of SI in pigs are often 

mild, co-infection with porcine reproductive and respiratory syndrome (PRRS) and 

other diseases can result in high mortality (Nakharuthai, Boonsoongnern et al. 2008) 

and infection in pregnant sows can result in stillbirths (Wesley 2004). Besides the 

significant economic impact of SI to the pig industry, SI viruses (SIV) can also infect 
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other species, including birds and humans (Hass, Matuszewski et al. 2011, McCune, 

Arriola et al. 2012, Zhu and Shu 2013, Bowman, Nelson et al. 2014), and spillover 

infection of SI strains to humans has become an emerging problem in public health 

(Gregory, Lim et al. 2001, Gray and Kayali 2009, Tang, Shetty et al. 2010, van der 

Meer, Orsel et al. 2010). Gene exchange between strains circulating in different 

species may lead to new epidemics in one or multiple species. Although each host 

species has several dominant influenza subtypes/strains circulating in its population, 

occasionally cross-species infection occurs (Yang, Qiao et al. 2012, Zhu and Shu 

2013, Sikkema, Freidl et al. 2016). Pigs are susceptible to both avian and human 

influenza strains. In 2009, H1N1pdm09 was responsible for a pandemic, and 

subsequently this subtype has become established worldwide in the pig population 

(Keenliside 2013). The reassortment between SIVs and H1N1pdm09 has drawn 

attention as coinfection of pigs with SIV and avian/human-source influenza strains 

can contribute to the evolution of new influenza viruses with pandemic potential for 

humans (Zhu, Zhou et al. 2011, Hiromoto, Parchariyanon et al. 2012, Grontvedt, Er et 

al. 2013, Rajao, Walia et al. 2017, Chastagner, Bonin et al. 2019). 

Surveillance of SI is not only crucial for animal health but also essential for preparing 

against a potential pandemic influenza threat, and is undertaken in many countries, 

including China (Vincent, Awada et al. 2014). South China is an area with vast 

populations of humans, birds and pigs. Previous studies in this area revealed 

complicated gene exchange between local SIVs and avian/human source viruses in 
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pigs (Chen, Fu et al. 2014, Xie, Zhang et al. 2014, Yang, Chen et al. 2016, Ma, Wang 

et al. 2018). To detect newly emerging SIVs, especially strains with pandemic 

potential, pre-emptive and risk-based surveillance is needed. However, the frequency 

and distribution of SI infection, especially cross-species infection, in this area are still 

unknown. In this study, we take advantage of existing surveillance data to explore the 

frequency and spatial distribution of SIV and human and avian influenza virus strains 

in pig farms in south China. To inform future targeted SI surveillance, anthropogenic, 

meteorological and geographical factors associated with human and avian influenza 

viral infection in pigs were also explored. The findings of this study can help in the 

design of risk-based SI surveillance to address the pandemic influenza threat in south 

China. 

6.2 Materials and Methods 

6.2.1 Study design 

The main objectives of this study were to describe the distribution of seropositive pigs 

to influenza strains in the sampled farms and to establish models to predict the 

influenza infection risk in counties in Guangdong, Guangxi, Jiangxi and Fujian 

provinces, south China. A pig with an antibody titer > 1:40 on the hemagglutination 

inhibition (HI) test was classified as seropositive, and a farm having at least one 

seropositive pig against a specific strain was defined as a case farm for that strain. For 

spatial modelling, a county was used as the study unit, with counties containing one or 

more case farms categorized as positive. The association of anthropogenic, 
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meteorological and geographical factors with different scenarios, as listed in Table 

6.1, of seropositivity to influenza A in piggeries and counties was investigated. 
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Table 6.1 Different influenza infection scenarios used in this study 

Scenario Definition  Code 

An avian influenza infected farm A farm containing one or more pigs that were seropositive to at least one avian 

influenza virus 

aivInf 

A multi-strain infected farm A farm containing one or more pigs that were seropositive to at least two SIV 

strains 

mltInf 

A more-than-two-strain infected farm Farms that had pigs that were seropositive to at least three SIV strains were 

defined as a more-than-two-strains infected farm  

mltInf2 

A more-than-three-strain infected farm A farm containing one or more pigs that were seropositive to all four SIV strains  mltInf3 

An AIV and human seasonal influenza 

virus coinfected farm 

A farm containing one or more pigs that were seropositive both to at least one 

AIV subtype and human seasonal H1N1 influenza virus  

aivhsInf 

An H9N2 AIV and SIV coinfected farm A farm having pigs that were seropositive to H9N2 AIV and at least one dominant 

SIV strains (including EA avian-like H1N1, H1N1pdm09 and classic H1N1) 

h9sivInf 

A county with AIV infection in local pig 

herds 

A county with at least one pig herd infected with AIV strains (including H4N8, 

H6N6, H7N9, H9N2, H10N8 and H5N1)  

AIV 

A county with seasonal human flu 

infection in local pig herds 

A county with at least one pig herd infected with seasonal human H1N1 influenza 

virus  

SHH1N1IV 

A county with pig herds positive to 

H9N2 AIV and SIVs 

A county with at least one pig herd positive to H9N2 AIV and at least one SIV 

strain (including EA H1N1, H1N1pdm09 and classic H1N1) 

H9SIV 
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6.2.2 Dataset collection 

6.2.2.1 Blood Samples 

Surveillance data on SI from 2015 to 2017 in south China were sourced from the 

Guangdong Key Laboratory for Zoonoses Prevention and Control, South China 

Agriculture University (SCAU). This laboratory has been offering diagnostic and 

consultant services to pig farms in south China since the 1990s and SI is one of the 

diseases that the laboratory focuses on. The results of testing of blood samples 

collected from 7670 pigs originating from 533 pig farms located in 71 counties of 12 

provinces in south China from 2015 to 2017 were analyzed. No vaccines against SI 

had reportedly been used on these farms during the study period. The 

hemagglutination inhibition (HI) test was used to confirm influenza infection in pigs 

following an established protocol (Cao, Zhu et al. 2013). Information on the virus 

strains used in this study is summarized in Table 6.2. No cross-reactions in HI testing 

were observed between these strains.  

Table 6.2 The virus strains used in the hemagglutination inhibition test in this 

study. 

Strains Subtype Major host species 

A/swine/Guangdong/SS1/2012 EA H1N1 Swine 

A/Guangdong/1057/2010 H1N1pdm09 Swine/human 

A/swine/Guangdong/L3/2009 Classic H1N1 Swine 

A/Guangdong/NH1/2012 Seasonal Human H1N1 Human 

A/swine/Guangdong/L22/2010 H3N2 HS-like Swine/human 

A/swine/Guangdong/K4/2010 H4N8 Avian 

A/chicken/Guangdong/178/2004 H5N1 Avian 

A/swine/Guangdong/K6/2010 H6N6 Avian 

A/chicken/Guangdong/G2/2013  H7N9 Avian 

A/chicken/Guangdong/V/2008  H9N2 Avian 

A/chicken/Jiangxi/102/2013 H10N8 Avian 
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6.2.2.2 Spatial Predictor Variables 

Several anthropogenic factors were chosen as predictor variables for different 

influenza infection scenarios in a county. The anthropogenic factors included in this 

study were: sampling frequency (number of farms sampled during the study period), 

hours of travel time by driving to a major city, chicken density, duck density, pig 

density, human population density, gross domestic product (GDP) and amount of 

night-time light (Table 6.3). Some of these factors have previously been linked to 

infection with several avian influenza viruses in poultry and humans (i.e., H7N9 and 

H5N1) (Gilbert, Golding et al. 2014, Li, Yang et al. 2015). Sampling frequency was 

added to the modelling to control for confounding. A detailed description of the 

anthropogenic factors included in this study can be found elsewhere (Ding, Fu et al. 

2018, Gilbert, Nicolas et al. 2018). 

Meteorological factors, including annual cumulative precipitation, maximum and 

minimum annual temperatures, and mean annual relative humidity (Table 6.3), were 

also included as predictor variables for the different influenza infection scenarios in 

counties. Based on the data set (V3.0) of daily climate values from Chinese surface 

stations, the ANUSPLIN-SPLINA software was employed to generate 1 km × 1 km 

gridded meteorological factors for the period 2015 to 2017. 

A set of geographical predictor variables, including elevation (height above sea level), 

water cover area, distance (km) to water cover, distance (km) to a nature reserve and 

normalized difference vegetation index (NDVI), were also included in the modelling. 
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Water cover area, distance to water cover, distance to a nature reserve and NDVI were 

included as potential indicators to reflect the link between a given county and 

potential bird habitats. The first two datasets were derived from the 1 km × 1 km 

gridded land use in 2015 obtained from the website (https://http://www.resdc.cn/) of 

the Resource and Environment Data Cloud Platform, Institute of Geographical 

Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences. 

Based on the nature reserve boundary dataset downloaded from the Information 

Center of Ministry of Ecology and Environment of the People’s Republic of China, 

the distance (km) between a given location and the nearest nature reserve was also 

calculated. The 2015 mean annual NDVI data with an 8 km × 8 km spatial resolution 

were obtained from the Global Inventory Modelling and Mapping Studies group 

(https://ecocast.arc.nasa.gov/). The data sources of all potential predictor variables 

modelled are summarized in Table 6.3. 
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Table 6.3 The variables included in the analyses. 

Category Predictor variable Definition of the variable Data source 

Anthropogenic 

Sampling frequency Number of farms sampled in a county during the 

study period 

Guangdong Key Laboratory of Zoonoses Prevention 

and Control in South China Agriculture University 
Travel time to a major city Hours needed to travel to a city with a population of 

more than 50, 000. 

European Commission Joint Research Center Global 

Environment Monitoring Unit 

(http://forobs.jrc.ec.europa.eu/) 
Chicken density Total number of chickens per pixel (10 km2) Harvard Dataverse 

(https://library.harvard.edu/services-tools/harvard-

dataverse) 
Duck density Total number of ducks per pixel (10 km2) 

Pig density Total number of pigs per pixel (10 km2) 

Human population density The population density in a county (people per km2) National Bureau of Statistics of China 
Gross domestic product (GDP) 

Total GDP of a county (Ten thousand yuan) 
Global Change Research Data Publishing & 

Repository (http://www.geodoi.ac.cn/weben/) 
Night-time light Range from 0 to 63, reflecting the development level 

of a county 

The Earth Observation Group, NOAA 
(https://www.ngdc.noaa.gov/eog/) 

Meteorological 

Annual cumulative precipitation Average annual cumulative precipitation (mm) for 

2015 – 2017 

China Meteorological Data Service Center 

(https://data.cma.cn/en) 

Maximum annual temperature Average maximum annual temperature (°C) for 2015 

– 2017 

Minimum annual temperature Average minimum annual temperature (°C) for 2015 

– 2017 

Mean annual relative humidity Mean annual relative humidity for 2015 - 2017 
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Category Predictor variable Definition of the variable Data source 

Geographical 

Elevation Averaged height above sea level (meters) of a 

county 

The Consultative Group on International Agricultural 

Research Consortium for Spatial Information 

(http://www.un-spider.org/links-and-

resources/institutions/consultative-group-international-

agricultural-research-consortium-spatial-inform) 

Density of water cover area The total area of all the natural and human-made 

water bodies divided by the total area of a county 

(per ha) 

Resource and Environment Data Cloud Platform, 

Institute of Geographical Sciences and Natural 

Resources Research, Chinese Academy of Sciences 

(http://english.igsnrr.cas.cn/) 
Distance to water cover Distance (Km) to a natural or human-made water 

body 

Distance to a nature reserve Distance (Km) from the geometric centre of a 

county to the nearest nature reserve as defined by the 

government classifications  

Information Center of Ministry of Ecology and 

Environment of the People’s Republic of China 

(http://english.mee.gov.cn/) 
Normalized Difference Vegetation 

Index (NDVI) 

The difference between the reflection value in the 

near-infrared band and the reflection value in the 

red-light band divided by the sum of the two. NDVI 

can reflect the background influence of plant canopy 

Global Inventory Modeling and Mapping Studies 

group 
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6.2.3 Data analysis 

6.2.3.1 Influenza infection in pigs in the sampled pig farms 

The proportion of farms positive for each strain was calculated and the chi-square test 

used to compare the farm-level prevalence between strains. To demonstrate the 

transmission capacities of different influenza strains in pigs on a farm, the individual 

animal level seroprevalence for each strain in each seropositive farm were calculated, 

then for each strain, the mean and the 5% and 95% percentile of these individual 

animal level seroprevalences in seropositive farms were calculated to estimate the 

mean and 90% range of the individual animal seroprevalence of a strain in infected 

pig farms. An ANOVA was used to compare the individual pig-level seroprevalence 

for different SIVs or AIVs in the positive farms. The proportion of farms with multi-

strain SIV coinfection (mltInf, mltInf2 and mltInf3), AIV infection (aivInf), AIV and 

human seasonal influenza coinfection (aivhsInf), and H9N2 and SIVs coinfection 

(h9sivInf) were also calculated. Basic R packages (R Core Team 2018) were used for 

these calculations. A case farm was a farm that contained one or more seropositive 

pigs to: AIVs; seasonal human H1N1; multiple strains of SIV at the same time; or H9 

and SIVs at the same time. Counties that contained case farms were illustrated with 

maps developed with ArcGIS (Version 9.3, ESRI Inc., Redlands, CA, USA). 

6.2.3.2 Spatial data preprocessing 

In the present study, the WGS-84 geographical coordinate system was adopted (Slater 

and Malys 1998). In addition, all data, including county administrative boundary 

dataset obtained from the IGSNRR and the related predictor variables, were translated 
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into a unified coordinate system. The related predictor variables were converted to 

county-scale datasets. 

6.2.3.3 Modelling 

The R (v 3.3.3) statistical programming environment was employed in the present 

study. The extension “gbm” and “dismo” packages were used to build boosted 

regression tree (BRT) models (Jiang, Wang et al. 2019). AIV, SHH1N1IV and H9SIV 

(see definitions in Table 6.1) were modelled and analyzed separately. For each 

infection scenario, the seronegative counties were randomly selected from the 

counties labelled with a 0, with twice as many negative counties selected compared to 

seropositive counties. To reduce the effect of negative county samples on the 

modelling process, the operation of randomly selecting counties with no farms 

containing seropositive pigs was conducted 50 times. Based on these operational steps 

an ensemble of 50 BRT models was fitted to increase the robustness of the analysis 

and to quantify the uncertainty of the modeling results. The values of the main 

parameters (i.e., tree complexity and learning rate) of all 50 BRT ensembles were 

included using the methods of Messina (Messina, Kraemer et al. 2016). In the present 

study, the area under the curve (AUC) was adopted as the accuracy evaluation index 

for the BRT models, and a 10-fold cross-validation method was employed to guard 

against over-fitting. In addition, the relative contribution (RC) indicator was 

calculated to quantify the contribution of each related covariate to the ensemble BRT 
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models (Zheng, Jiang et al.). Based on the fitted BRT ensembles, the 95% confidence 

intervals (CI) of the RC for each related covariate were calculated. 

Maps were developed using the established models to predict the relative risk of 

counties having the three influenza infection scenarios: AIV, SHH1N1IV and H9SIV. 

The risk levels were divided into ten categories from 0 (blue) to 1 (red) when 

developing maps. The marginal effect curves of sampling frequency in the ensemble 

BRT model fitted to AIV, SHH1N1IV and H9SIV were illustrated to determine which 

values to use when developing maps. The scope of the maps covered all the counties 

in Guangdong, Guangxi, Jiangxi and Fujian provinces. 

6.3 Results 

6.3.1 Influenza infection in local pig farms 

The herd-level seroprevalence of different influenza strains is summarized in Table 

6.4. Evidence of infection with all the tested strains, except for H10N10, was found 

on one or more sampled pig farms. In general, SIV strains (EA H1N1, H1N1pdm09, 

Classic H1N1 and H3N2 HS-like) had a higher herd-level seroprevalence than a 

human-source strain (Seasonal Human H1N1) and avian-sourced strains (H4N8, 

H6N6, H7N9, H9N2, H10N8 and H5N1). Among the SIV strains, EA H1N1 had the 

highest herd-level seroprevalence (88.5%), followed by H1N1pdm09 (64.5%), classic 

H1N1 (60.3%) and H3N2 HS-like (57.8%) (P < 0.05). One or more pigs were 

seropositive to seasonal human H1N1 in 12.9% of the sampled farms. For avian-
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source strains, H9N2 had the highest herd-level seroprevalence (10.3%), while the 

herd-level seroprevalences of the other strains were very low (< 3%) (P < 0.05). 

Nearly one-third (32.6%) of the sampled farms contained pigs that were seropositive 

to the four SIV strains tested (Table 6.4), although individual pigs were not 

necessarily seropositive to the four strains. Antibodies to more than two SIV strains in 

pigs at a sampling were detected in 67.2% of the sampled farms. 9.2% of the farms 

contained pigs that were seropositive to H9N2 AIV and at least one SIV, while 

approximately 1% of the sampled farms contained pigs that were seropositive to 

seasonal human H1N1 influenza and at least one AIV strain (Table 6.4). 

 Table 6.4 Serological status of sampled pig farms in south China from 2015 to 

2017 

Influenza strain/Scenarios 

Major host 

species affected 

by the influenza 

strain 

Number 

of tested 

farms* 

Number of 

farms that had 

seropositive 

pigs (%) 

P value 

H1N1pdm09 Swine/human 533 344 (64.5) 

< 0.05 
EA H1N1 Swine 416 368 (88.5) 

Classic H1N1 Swine 527 318 (60.3) 

H3N2 HS-like Swine/human 533 308 (57.8) 

Seasonal Human H1N1 Human 295 38 (12.9) - 

H4N8 Avian 303 8 (2.6) 

< 0.05 

H6N6 Avian 191 1 (0.5) 

H7N9 Avian 311 3 (1.0) 

H9N2 Avian 532 55 (10.3) 

H10N8 Avian 83 0 (0) 

H5N1 Avian 210 1 (0.5) 

One or more pigs were 

seropositive to at least one 

avian influenza virus 

- 533 63 (11.8) - 
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Influenza strain/Scenarios 

Major host 

species affected 

by the influenza 

strain 

Number 

of tested 

farms* 

Number of 

farms that had 

seropositive 

pigs (%) 

P value 

One or more pigs were 

seropositive to at least two 

SIV strains 

- 533 358 (67.2) - 

One or more pigs were 

seropositive to at least three 

SIV strains 

- 533 281 (52.7) - 

One or more pigs were 

seropositive to all the four 

SIV strains  

- 533 174 (32.6) - 

One or more pigs were 

seropositive both to at least 

one AIV subtype and human 

seasonal H1N1 influenza 

virus  

- 533 4 (0.8) - 

One or more pigs were 

seropositive to H9N2 AIV 

and at least one SIV strains 

(including EA avian-like 

H1N1, H1N1pdm09 and 

classic H1N1) 

- 533 49 (9.2) - 

* Not all farms were tested for every strain 

The individual animal level seroprevalence to each influenza strain on infected farms 

is summarized in Table 6.5. There was a significant difference in the animal level 

seroprevalence for the different SIV strains tested (F = 71.4, P < 0.01). EA H1N1 had 

the highest average animal level seroprevalence of 39.3%, followed by H3N2 

(37.3%). H4N8 had a higher average individual animal prevalence (19.6%) than 

H9N2 (7.3%) in the infected farms (P < 0.01). 
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Table 6.5 Pig level seroprevalence to different influenza strains in infected pig 

farms sampled in south China from 2015 to 2017 

Influenza strain 

Average animal level 

prevalence in infected 

herds (%) 

5th and 95th percentile of 

individual prevalence in the 

positive farms 

H1N1pdm09 21.6 6.3 – 50.0 

EA H1N1 39.3 10 - 83.3 

Classic H1N1 21.8 6.3 – 55.6 

H3N2 HS-like 37.3 6.7 – 100.0 

Seasonal Human H1N1 9.2 2.5 – 20.3 

H9N2 7.3 1.9 – 15.0 

H4N8 19.6 -* 

H6N6 2.1 -* 

H7N9 8.1 -* 

H5N1 6.3# -* 

H10N8 - - 

*Not calculated as only 8 or fewer farms contained seropositive pigs 

# Only one farm contained a single positive pig of 16 sampled. 

 

The counties which had pigs that were seropositive to different influenza strains and 

to multi-strain are displayed in Figure 6.1.  
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Figure 6.1 The counties that had pigs that were seropositive to different influenza 

strains and to multi-strain in Guangdong, Guangxi, Jiangxi and Fujian 

provinces. 

 

6.3.2 The relative contribution of related covariates  

The AUC values for the BRT model for AIV, SHH1N1IV and H9SIV were 0.72 

(95% CI: 0.71-0.73), 0.85 (95% CI: 0.84-0.86) and 0.70 (95% CI: 0.68-0.71), 

respectively. The anthropogenic factors were the most important predictor variables in 
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the ensemble BRT models, contributing 65.74% to the spatial variation for AIV, 83% 

to that for SHH1N1IV, and 67.04% to that for H9SIV (Table 6.6). Of the eight 

anthropogenic factors, the sampling frequency had the most notable RC, with 39.74% 

(95% CI 38.30-41.18) for the models fitted to the AIV dataset, 73.93% (95% CI 

73.02-74.85) for the models fitted to the SHH1N1IV dataset and 44.57% (95% CI 

43.33-45.70) for the models fitted to the H9SIV dataset. The RCs of each of the 

remaining seven anthropogenic factors were less than 10% in all infection scenarios. 

For the AIV-based fitted BRT models, chicken density (RC 8.45%, 95% CI 8.26-

8.64), travel time to a major city (RC 5.56%, 95% CI 5.24-5.88), human population 

density (RC 3.37%, 95% CI 3.25-3.48) and duck density (RC 2.88%, 95% CI 2.79-

2.97) were notable predictor variables. For SHH1N1IV-based fitted BRT models, 

human population density (RC 5.46%, 95% CI 5.21-5.71), and pig density (RC 

1.18%, 95% CI 1.09-1.26) played a more important role than did chicken density (RC 

0.87%, 95% CI 0.83-0.91), travel time to a major city (RC 0.69%, 95% CI 0.64-0.74), 

and duck density (RC 0.55%, 95% CI 0.52-0.57). In the H9SIV-based BRT ensemble, 

the notable anthropogenic predictor variables were, in decreasing order of RC values, 

travel time to a major city (RC 7.89%, 95% CI 7.54-8.22), duck density (RC 5.79%, 

95% CI 5.66-5.91), chicken density (RC 3.50%, 95% CI 3.40-3.60), night-time light 

(RC 2.53%, 95% CI 2.47-2.50) and pig density (RC 1.50%, 95% CI 1.38-1.61). 

Meteorological and geographical factors also contributed to the prediction of risk 

areas. The relative contributions of meteorological factors to predicting the risk of 
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having AIV, SHH1N1IV and H9SIV in a county were 12.36, 6.82 and 20.62%, 

respectively. The meteorological factors contained four elements, of which annual 

cumulative precipitation contributed the most, both when predicting the risk of having 

AIV (4.77%; 95% CI: 4.49-5.05) and H9SIV (9.88%; 95% CI: 9.75-10.00) in a 

county. Geographical factors contributed 21.91% to the estimation of the AIV’s risk 

in a county, 10.16% to that of SHH1N1IV and 12.32% to that of H9SIV. Among the 

five geographical factors, elevation was the most important variable for predicting the 

risk areas of AIV and SHH1N1IV, contributing 14.02% (95% CI 13.88-14.16) and 

5.64% (95% CI 5.5-5.78), respectively. 
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Table 6.6 The relative contribution of related covariates predicting the risk of a county having pigs exposed to AIV, SHH1N1IV and 

H9SIV. 

 
Mean and 95% CI of the relative importance 

 
AIV (%) SHH1N1IV (%) H9SIV (%) 

Anthropogenic factors* 65.74 83.00 67.04 
    

Detection frequency 39.74 (38.3-41.18) 73.93 (73.02-74.85) 44.57 (43.33-45.7) 

Travel time to a major city 5.56 (5.24-5.88) 0.69 (0.64-0.74) 7.89 (7.54-8.22) 

Chicken density 8.45 (8.26-8.64) 0.87 (0.83-0.91) 3.5 (3.4-3.6) 

Duck density 2.88 (2.79-2.97) 0.55 (0.52-0.57) 5.79 (5.66-5.91) 

Pig density 2.69 (2.59-2.79) 1.18 (1.09-1.26) 1.5 (1.38-1.61) 

Human population density 3.37 (3.25-3.48) 5.46 (5.21-5.71) 0.43 (0.41-0.45) 

Gross domestic product (GDP) 1.06 (0.98-1.13) 0.1 (0.09-0.11) 0.83 (0.78-0.87) 

Night-time light 1.99 (1.9-2.09) 0.22 (0.21-0.24) 2.53 (2.47-2.5) 
    

Meteorological factors* 12.36 6.82 20.62 
    

Annual cumulative precipitation 4.77 (4.49-5.05) 1.83 (1.76-1.9) 9.88 (9.75-10) 

Maximum annual temperature 4.35 (4.14-4.56) 2.67 (2.55-2.8) 2.24 (2.1-2.37) 

Minimum annual temperature 1.19 (1.09-1.29) 1.42 (1.35-1.49) 6.23 (5.87-6.58) 

Mean annual relative humidity 2.05 (1.99-2.11) 0.9 (0.84-0.97) 2.27 (2.19-2.34) 
    

Geographical factors* 21.91 10.16 12.32 
    

Elevation 14.02 (13.88-14.16) 5.64 (5.5-5.78) 1.16 (1.11-1.21) 

Water cover area 4.24 (4.08-4.39) 1.55 (1.48-1.63) 2.64 (2.54-2.74) 

Distance to water cover 0.86 (0.79-0.92) 1.25 (1.18-1.32) 2.61 (2.44-2.78) 

Distance to nature reserve 1.21 (1.16-1.25) 1.22 (1.14-1.31) 3.32 (3.22-3.4) 

Normalized Difference Vegetation 

Index (NDVI) 1.58 (1.5-1.65) 

0.5 (0.48-0.53) 2.59 (2.52-2.65) 

*Sum of relative contribution for each category. 
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The marginal effect curves of sampling frequency in the ensemble BRT model fitted 

to AIV, SHH1N1IV and H9SIV are displayed in Supplementary Figure 6.1. Sampling 

frequency had a strong positive association with the presence of AIV as the sampling 

frequency increased to 9 after which no further effect on the response was observed. 

A similar trend was also found in the modeling and analysis for H9SIV. When the 

sampling frequency initially increased, the probability of SHH1N1IV-positive did not 

alter. However, the probability of a county having pigs that were seropositive to AIV 

increased rapidly when the sampling frequency increased from 3 to 5. Overall the 

relationships between sampling frequency and the presence of these three infection 

scenarios were similar.  

6.3.3 Estimating relative risk level for the survey zones 

By setting the sampling frequency to 5 and 9, the final predicted relative risk level 

maps of AIV, SHH1N1IV and H9SIV in the counties in Guangxi, Guangdong, Fujian 

and Jiangxi provinces were obtained (Figure 6.2). The sampling frequency was set at 

5 and 9 because the marginal analysis indicated that the association between the 

sampling frequency and the presence of interested scenarios did not increase after 

reaching these sampling frequencies (see supplementary Figure 6.1). Using a 

sampling frequency of 9 (Figures 6.2 B, D, F), the predicted risk levels for these three 

scenarios in the four provinces were higher than that with a sampling frequency of 5 

(Figures 6.2 A, C, E), since the risk gradually increased from blue to red when the risk 

levels were divided into ten categories from 0 (blue) to 1 (red). By adopting a 
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threshold value of 0.5 to distinguish high-risk from low-risk areas, only the central 

part of Guangdong was classified as a high risk area for AIV at a sampling frequency 

of 5 (Figure 6.2 A), while at a sampling frequency of 9 it extended to most parts of 

Guangdong, the northern counties of Jiangxi (cities of Nanchang, Ji'an, Xinyu and 

Shangrao), central and coastal areas of Fujian (cities of Fuzhou, Quanzhou and 

Nanping) and the southern part of Guangxi (Nanning and Yulin cities) (Figure 6.2 B). 

For SHH1N1IV, the high risk areas were more widely distributed with higher risks in 

the coastal areas of Guangxi and Guangdong provinces and the northern region of 

Jiangxi province at a sampling frequency of 5 (Figure 6.2 C), and at a sampling 

frequency of 9, the high risk area expanded to include most parts of Guangdong and 

Jiangxi provinces, the western area of Guangxi province and the coastal and western 

regions of Fujian province (Figure 6.2 D). For H9SIV, the high-risk areas were 

significantly smaller than for the two previously mentioned viruses. Xinxing County 

in Yunfu City of Guangdong province was the only area at high risk under a sampling 

frequency of 5 (Figure 6.2 E), while at a sampling frequency of 9 the area of 

Guangdong province under high risk was still relatively broad (Guangzhou, Qingyuan 

and Jiangmen cities) and the other three provinces also had some high risk regions, 

but overall the level of risk was not as high as for the other viruses examined (Figure 

6.2 F). 
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Figure 6.2 The estimated relative risk level of AIV, SHH1N1IV and H9SIV in 

Guangdong, Guangxi, Jiangxi and Fujian provinces, China. 

6.4 Discussion 

This study found a complicated pattern of influenza virus infection in pigs in south 

China with a high herd level prevalence and widespread distribution of SI within the 
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region. Some pigs and herds were found to be co-infected with SIV and avian/human 

source influenza strains which would explain why gene reassortment among SIV 

strains has been commonly observed in this area (Qiao, Liu et al. 2014, Xie, Zhang et 

al. 2014, Yang, Chen et al. 2016). The animal level seroprevalences in infected herds 

varied between the virus strains examined, potentially reflecting their different 

transmission abilities. It is possible that when an avian/human influenza strain infects 

pigs, the virus either gradually establishes in the pig population, or dies out due to an 

inability to adapt to the different species. Monitoring the prevalence of avian/human 

strains in pigs would be useful to predict which strains are establishing in pigs. 

Based on passive surveillance data and the BRT modeling framework, the complex 

links among three infection scenarios and related covariates were analyzed and 

quantified. For each infection scenario, the fitted ensemble BRT models were 

combined with different sampling frequencies to estimate the relative risk level for 

infection in different counties in this area, enhancing the health authorities’ capacity 

to target critical areas for surveillance and to develop focused control strategies. 

Several studies have explored the spatial patterns of the monitoring targets, especially 

for AIV (Moura, Perdigao et al. 2009, Nelson, Philippe et al. 2011, Trock, Burke et al. 

2015, Delabouglise, Choisy et al. 2017). For instance, the spatial characteristics of 

H5N1 and H7N9 human influenza infection cases were analyzed in research which 

explored the effects of meteorological factors on the infections (Li, Rao et al. 2015). 

Another study included several environmental variables (human population density 
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and presence of water bodies) to explore the spatial epidemiological characteristics of 

H7N9 and H5N1 human infections (Li, Yang et al. 2015). Chicken density, duck 

density and travel time to a major city were also included in research conducted by 

Gilbert, Golding et al. (2014), revealing the reasons for the geographic distribution of 

H7N9. Compared with previous studies, the current research used more spatial 

predictor variables (17) in order to investigate the current situation in south China. In 

addition, sampling frequency was added as a covariate and was found to have a 

significant impact on the prediction results, which had been overlooked in the data 

collection and modeling processes performed by other researchers. 

There are limitations in using passive SIV surveillance data, including having samples 

only from some of the counties in the provinces investigated and incomplete 

information about the sampled farms. Furthermore, the regional herd prevalence may 

actually be lower than the value estimated from this study due to potential 

overrepresentation of farms which have been sampled to confirm the diagnosis of 

animals displaying clinical signs typical of SI. However even with these limitations, 

passive surveillance of SI is still adopted in many countries as it is more economical 

and practical than active surveillance (Delabouglise, Antoine-Moussiaux et al. 2016). 

Some studies have found that data from large-scale passive surveillance can provide 

useful information on the distribution of diseases (Amezcua, Pearl et al. 2013, Simon, 

Larsen et al. 2014, Strutzberg-Minder, Tschentscher et al. 2018). In the future, data 
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from well-designed active surveillance on SI should be collected and used to further 

examine the predictive factors identified from the current study. 

Machine learning (ML) has been used in disease prediction in recent years (Bhatt, 

Gething et al. 2013). ML could allow the exploration of a broader scope of variables, 

and may be better for predicting an event than with traditional models (Boeckel, 

Thanapongtharm et al. 2012). However, it is often challenging to explain the logical 

relations between the dependent and independent variables (Elith, Leathwick et al. 

2008). With a high demand for disease prediction in the field and with more 

algorithms being developed, ML will likely play a more important role in identifying 

“hot spots” for disease surveillance. We suggest big data should be used to explore 

more potential ways to predict the risk distribution of SI, as well as other diseases of 

animals and humans. A relevant database with good quality, current and timely 

updated data is also required for this to be possible. 

The results arising from the current study would also benefit the implementation of 

active surveillance on SI. In China, surveillance on SI has been included in the annual 

animal disease surveillance plan (Ministry of Agriculture and Rural Affairs of China 

2019). One of its priorities is to detect influenza strains that are capable of infecting 

humans. Active surveillance in pigs, involving collecting blood samples to evaluate 

the seroprevalence of different strains and collecting nasal swabs to isolate viruses 

that are circulating in the field, is currently being undertaken in south China. 

However, there are limitations in the current active surveillance activities undertaken 
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in China. Firstly, convenience sampling has been used when selecting areas to 

sample; Secondly, samples are mostly collected at slaughterhouses which could lead 

to a delay in detecting new emerging strains in the field and predominantly limits 

sampling to apparently healthy animals of market age; and Thirdly, there is low 

sensitivity in virus isolation from samples collected from finisher pigs as this age 

group is less susceptible to SI compared with piglets or weaners (Takemae, 

Parchariyanon et al. 2011, Ozawa, Matsuu et al. 2015). These limitations in the 

current SI surveillance activities would lower the chance of detecting influenza strains 

with zoonotic potential. To improve the sensitivity for detecting such strains, farms in 

areas with a higher risk of spill-over influenza infection should be targeted for 

sampling in the future. 

In this study, the frequency of SIV strains and human and avian influenza infection in 

pig farms in south China were described. Several anthropogenic, meteorological and 

geographical factors associated with human and avian influenza virus infection in pigs 

were identified. Counties in the delta area of the Pearl River in Guangdong province 

and counties surrounding Poyang Lake in Jiangxi province were identified as 

potential target areas for active surveillance of SI to detect zoonotic SIVs. The 

findings of this study can benefit risk-based SI surveillance in south China to reduce 

the impact of SI in pigs and for the prompt detection of recombinant influenza viruses 

with pandemic zoonotic potential. 
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CHAPTER 7： General discussion 

Internationally swine influenza has a high economic impact on the pig industry and 

has been rated as one of the most important pig diseases globally (Hernandez-Jover, 

Taylor et al. 2012, Er, Lium et al. 2014, Er, Skjerve et al. 2016). Swine influenza 

virus also poses a significant threat to public health, with zoonotic transmission to 

humans reported in many countries, including China (Yang, Qiao et al. 2012, Wang, 

Qi et al. 2013, Zhu and Shu 2013, Bowman, Nelson et al. 2014, Sikkema, Freidl et al. 

2016). In China the large pig and human populations, a high prevalence of SI in pig 

farms, the presence of many new emerging variants of SIV and frequent contacts 

between humans and pigs, make the local control of SI in both pigs and people 

challenging.  

In recent years several emerging zoonotic diseases, including HPAI H5N1, H7N9, 

SARS and COVID-19, have thrived in China, especially in south China (Zhong, 

Zheng et al. 2003, Yu, Shu et al. 2006, Ke, Mok et al. 2017, Mitchell 2020). Some of 

these diseases, such as COVID-19, became pandemics resulting in significant impact 

to human health, society and the economy at a national and international level 

(Mitchell 2020). Understanding the epidemiology of these highly contagious diseases 

is key to their effective control. The findings of the research reported in this thesis 

will not only benefit the control of SI in pigs but also assist in reducing the risk of 

zoonotic transmission of SIV to humans in south China.  
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A systematic analysis of SI in south China was conducted in the research reported in 

this thesis to support evidence-based control of the disease within the study area. 

Although this study primarily focused on Guangdong Province in south China, the 

findings are likely to be applicable to other regions/provinces of China. In this study 

the husbandry and biosecurity practices adopted by local pig farmers were described, 

the prevalence of farmer-perceived SI at the farm level evaluated and the risk factors 

for farmer-perceived SI analysed. The contacts between pigs and local pig industry 

workers, including pig farmers, pig traders and trade workers, and the industry 

workers’ knowledge and beliefs about SI were also investigated. The movement 

network of live pigs through the wholesale live pig markets in the study area was 

analysed to identify the source counties with the highest risk of having SI, if there was 

an epidemic of SI spreading via the market trading system. Different strategies were 

evaluated to direct risk-based disease control and spatial modelling was employed to 

explore determinants for scenarios in counties that could lead to the future 

development of a zoonotic influenza strain in pigs. In this final chapter, the findings 

of this study are reviewed, areas that need further research are highlighted and 

limitations of the current study discussed. 

7.1. The husbandry and biosecurity practices in pig farms in Guangdong 

Province 

Very few studies have explored the husbandry and biosecurity practices adopted in 

Chinese piggeries and this deficiency was addressed in Chapter Three, where the 
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husbandry and biosecurity practices adopted by commercial piggeries in Guangdong 

Province were described. These findings can help understand the current and potential 

transmission pathways of SI between local piggeries. 

The study found that there were frequent direct and indirect contacts of pigs, people, 

vehicles and fomites from the surveyed farms with those of other premises. For 

example, 57% of the surveyed farms introduced pigs in the year preceding the survey, 

with an average introduction frequency of twice a year (Chapter 3). The introduced 

pigs may spread SI and potentially other diseases between local farms when the 

infected imported pigs were mixed with the pigs on farm. Swine influenza could also 

be introduced into a farm at the time of selling pigs since proper control of the 

movement of buyers was lacking on many farms. Different “types” of piggeries were 

found to have different selling rates with farrow-to-weaning farms selling pigs, on 

average, 200 times a year compared with an average of 6 times for fattening farms. To 

the knowledge of the author, no other study has presented statistics on the 

introduction and selling practices of Chinese pig farms. These values could be used 

for quantitative risk analysis on the spread of pig diseases in local pig farms.  

Biosecurity in pig farms has been very topical in China in recent years, especially 

since the incursion of ASF (Wang, Sun et al. 2018, Zhou, Li et al. 2018); however on-

farm biosecurity in Chinese pig farms has rarely been reviewed. Several significant 

limitations in the biosecurity implemented in pig farms in Guangdong Province were 

highlighted in this research (Chapters 3 and 4). Firstly, many farms failed to 
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quarantine introduced pigs properly with 35% of the surveyed farms not 

implementing quarantine on all of the pigs introduced to the piggery. Secondly, the 

movement of people not associated with the day-to-day running of the enterprises 

onto the farms was not restricted. This is evident in that 30% of the surveyed farms 

allowed buyers to select and then load their purchased pigs, and 72% of these farms 

didn’t require the people loading these pigs to change their boots before they entered 

the piggery. It is likely that the proportion of farms which allow buyers to enter the 

piggeries may be higher than 30%, because 12 of the 15 surveyed trade workers 

reported that they entered piggeries to collect pigs themselves. Swine influenza virus 

can be transmitted between farms on contaminated boots or clothes of visitors 

(Torremorell, Allerson et al. 2012, Allerson, Cardona et al. 2013). A study conducted 

in six commercial Chinese pig farms reported that 11.6% of swabs of surfaces that 

were likely to be touched by humans, including piggery gates and walls, and 4.8% of 

faecal or slurry samples were positive for influenza A by qRT-PCR (Anderson, Ma et 

al. 2018). Influenza A virus can retain its infectivity for 14 days in slurry at 20 ℃ 

(Botner and Belsham 2012). This duration is sufficient to allow the spread of SI via 

contaminated clothes/boots since the surveyed traders visited farms, on average, once 

every three days. These results suggest that more restrictions should be implemented 

to prevent the indirect spread of SI and other contagious diseases via the movement of 

people. To be more specific, buyers should not be allowed to enter the piggeries, or 

they should be required to undertake biosecurity measures, such as changing or 
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cleaning and disinfecting their clothes and boots, before and after entering piggeries. 

Taken together, these results indicate that biosecurity gaps on pig farms in 

Guangdong Province may have facilitated the spread of SI between and within local 

farms.  

7.2. Prevalence and risk factors of farmer reported swine influenza infection 

As mentioned in the literature review, prior to the study reported in this thesis, there 

was limited information on the farm-level prevalence of SI in China, and most of the 

previous reports were based on biased sampling, including samples collected from 

slaughterhouses. For the first time a study was undertaken to determine the farm-level 

prevalence of SI in south China (Chapter 3). Nearly 60% of the surveyed farmers 

believed SIV infection had been present in their pigs in the six-month period prior to 

the survey. A similar high farm-level prevalence has been reported in other countries, 

including the USA, Norway, Spain and UK (Mastin, Alarcon et al. 2011, Simon-

Grife, Martin-Valls et al. 2011, Corzo, Culhane et al. 2013, Er, Skjerve et al. 2016).  

It was surprising that no prior study had analysed risk factors for SIV infection in 

Chinese pig farms, even though the molecular epidemiology of SIVs has been 

intensively studied in China, including in the same location as the current study (Bi, 

Fu et al. 2010, Liu, Wei et al. 2011, Qiao, Liu et al. 2014, Zhou, Cao et al. 2014, 

Yang, Chen et al. 2016). Several risk factors were identified as being associated with 

SI in the surveyed Chinese pig farms. One of the interesting findings was that the 

presence of poultry was associated with farmer perceived SIV infection (OR 3.24, 



   

186 

 

95% CI: 1.52–6.94). A similar result was also reported by Simon-Grife, Martin-Valls 

et al. (2011). This result may be explained by the fact that AIV from poultry can 

occasionally infect pigs. Several studies have reported infection of pigs from south 

China with AIV (Ninomiya, Takada et al. 2002, Song, Xiao et al. 2010). Another 

important finding from this research was that the entry of wild birds into a piggery 

increased the likelihood of SI being reported by farmers. This finding supports 

evidence from a previous observation that wild waterfowl can transmit influenza A 

virus to pigs (Karasin, Brown et al. 2000). Influenza viruses may be spread to pigs via 

direct contacts between wild birds and pigs, or indirectly via faecally contaminated 

feed or water (Karasin, Brown et al. 2000, Torremorell, Allerson et al. 2012, 

Anderson, Ma et al. 2018). The current study found that 89% of the surveyed farms 

had a pond on the farm. Even though only a small proportion (1%) of farms actually 

used these ponds as sources of drinking water for pigs, 18% of the farms did use pond 

water to flush effluent in the piggeries. As ponds are likely to attract wild birds, and 

AIV can survive in pond water for days or even months (Webster, Yakhno et al. 1978, 

Ito, Okazaki et al. 1995), there is the potential for aerosolisation and dispersal of virus 

during flushing. An evidence-based regulation for SI control should be established to 

discourage or ban raising poultry on commercial pig farms and to construct piggeries 

to prevent access by wild birds. This could include not allowing free-roaming poultry 

on pig farms by applying official assessments/certification, such as the “Standardized 

demonstration farm for livestock and poultry breeding” (Ministry of Agriculture and 
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Rural Affairs 2018), and requiring adequate screening/barriers to prevent the entry of 

wild birds. 

In this study, the lack of biosecurity for workers before they entered piggeries was 

identified as a risk factor for SIV infection on farms. Similarly, Wang, Wen et al. 

(2016) reported that the entry of visitors was a risk factor for porcine reproductive and 

respiratory syndrome in Chinese pig farms. These results highlight the need for 

improving biosecurity procedures for visitors to and workers on pig farms. All people 

should undertake necessary biosecurity procedures before entering the piggeries, such 

as ideally showering or at the very least hand-washing, changing their “street” clothes 

and boots to farm provided attire, walking through a disinfectant fogging room and 

wearing face masks (Alarcon, Monterubbianesi et al. 2019). The risk factors for 

farmers’ perceived SIV infection identified in this research should be considered 

when developing a control strategy for SI. However, different control measures will 

vary in their cost and may not always be practical or achievable on individual farms. 

When implementing control and preventive practices, it is important to consider the 

cost-benefit of each of the planned control measures, however the benefit of 

implementing strengthened biosecurity practices is that it will also reduce the likely 

entry of many other infectious and potentially costly diseases to the pig industry. 
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7.3. The risk of zoonotic transmission of swine influenza at the human-pig 

interface 

Pig industry workers have a higher risk of contracting SI than people without 

occupational exposure to pigs (Myers, Olsen et al. 2006, Yin, Rao et al. 2014, Ma, 

Anderson et al. 2015). However, the epidemiology of SI at the human-pig interface in 

China has rarely been investigated, and in particular the knowledge of pig traders, 

their beliefs about SI and their hygiene practices were unknown prior to the study 

reported in Chapter Four. 

In the current study the role of local pig industry workers in zoonotic SIV infection in 

south China was investigated. The practices adopted by local traders which may 

facilitate the spread of SI between farms should be considered when designing control 

programs against the disease. For example, 80% of the interviewed trade workers said 

they would enter a piggery when collecting pigs. This is a risky practice with the 

potential for introducing SI onto a farm, and other studies have similarly highlighted 

that visitors can spread a range of diseases between farms (Brennan, Kemp et al. 

2008, Grontvedt, Er et al. 2013, Lichoti, Davies et al. 2017). To reduce the chance of 

introducing SI to pig farms, new ways of selecting pigs for sale/purchase should be 

developed on the local pig farms. Both buyers and producers could take advantage of 

social applications (APPs), such as WeChat, QQ and Skype, to conduct real-time 

video communication/inspection to select pigs. WeChat offers the advantage in China 

that it is already used by more than half a billion Chinese (Zeng, Deng et al. 2016) 
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and would not require additional investment by users, although a smart phone is a 

prerequisite to use this and other video communication software.  

In this study it was found that some traders (25% of those surveyed) would return pigs 

displaying clinical signs characteristic of SI to the source herd. Regulations need to be 

developed and implemented in local live pig markets and slaughterhouses to prevent 

this practice. These clinically affected pigs could be slaughtered and processed 

immediately, as pork meat from influenza infected pigs is believed to be free from 

SIV (Vincent, Lager et al. 2009). However, the offal, including the lungs, blood and 

brain, of these animals should be condemned/rendered and not used for human or 

animal consumption as SIV has previously been detected in these organs of infected 

pigs (Janke 2014). However, the disadvantage of processing these pigs for human 

consumption, as opposed to total condemnation and rendering, would be an increased 

risk of acquiring SIV by the workers in the slaughterhouses. To address this risk, 

these pigs should be slaughtered separately and the workers slaughtering and 

processing these pigs required to wear proper personal protection equipment, such as 

wearing N95 face masks, and be required to work at a safe speed to minimise the 

potential for infection. An alternative could be that these pigs are transported directly 

to rendering facilities in slaughterhouses, although this would require compensation to 

be provided for its successful implementation and acceptance by the industry. 

In this research, only 33.7% of the interviewees thought that SIV could infect humans. 

This highlights the limited knowledge of the interviewees about SI. Another study on 
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the knowledge of pandemic (H1N1) in 2009 also reported limited knowledge about 

the disease by the general public in China, even though the virus had caused a 

pandemic when the study was conducted (Lin, Huang et al. 2011). Poor hygienic 

practices were adopted by many of the local pig industry workers, including 82.6% of 

respondents advising that they would continue to work if they had mild flu symptoms, 

and less than 40% of the interviewees would always wear gloves/masks when 

contacting pigs. These findings confirm that the risk of zoonotic SIV infection is high 

in local pig industry workers, particularly given the high frequency of SI in local pig 

farms (Chapters Three and Six). Consequently there is a need for systematic 

surveillance of SI in both pigs and people in south China and adoption of improved 

hygienic practices, such as wearing face masks and gloves, by all pig industry 

workers when contacting pigs. 

Workers who continue working when displaying mild flu symptoms were more likely 

to not be aware of the zoonotic risk of SI (OR = 3.80, 95%CI: 1.38 – 11.46) and 

interviewees who had a lack of awareness of the zoonotic risk of SI were more likely 

not to use PPE when contacting pigs (OR = 3.19, 95%CI: 1.67 - 6.21), highlighting 

the poor knowledge/awareness about the disease by many local pig industry workers. 

Similarly Lin, Huang et al. (2011) reported an association between a poor level of 

knowledge about pandemic (H1N1) in 2009 and the adoption of risky practices. Key 

gaps in the knowledge of pig industry workers about SI were identified in this study, 

and these gaps should be targeted in focused educational initiatives in the future. To 
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promote good knowledge about SI to local pig industry workers, simple leaflets with 

key information, such as SIVs can infect humans and wearing a face mask and gloves 

can provide protection when contacting pigs, should be developed and delivered to 

local pig farms, slaughterhouses and live pig markets. Local public and animal health 

authorities should be responsible for delivering extension material and training to 

improve the knowledge and awareness of local pig farmers about the disease. A study 

on malaria in the Democratic Republic of Congo showed that education was the most 

important factor that led to using bed nets by local villagers to reduce exposure to the 

mosquito vector (Ndjinga and Minakawa 2010). Similarly Bailey, Gamble et al. 

(2018) reported that a short lesson on rabies improved the knowledge and attitudes of 

school children in Malawi on the disease for at least 9 weeks after delivery. It has also 

previously been observed that a health education program for Thai farmers resulted in 

a significant improvement in the adoption of safe working practices by the farmers 

(Rattanaselanon, Lormphongs et al. 2018). An appropriately designed educational 

program on the impact of SI and the role biosecurity and improved hygiene can play 

in its prevention, would likely be a very cost-effective means of minimising the 

disease’s impact to the general community and the pig industry. 

7.4. Pig movement in the live pig markets in south China 

Other studies have described the trade and poor hygienic practices adopted in live bird 

markets in south China (Martin, Zhou et al. 2011, He, Liu et al. 2014); however prior 

to the study reported in this thesis no similar study had been conducted on the live pig 
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markets in the country. In Chapter Five, the trade volume and frequency, number of 

traders and supply counties and catchment areas of the wholesale live pig markets in 

Guangdong Province were explored. The findings of Chapters Four and Five 

indicated that the live pig markets in Guangdong Province are potential hubs for SI, as 

well as other diseases of pigs, facilitating spread between pig farms in south China. At 

least 151 counties in Guangdong, Hunan, Guangxi, Jiangxi, Fujian and Henan 

provinces were connected to these markets and more than 14,000 batches of pigs were 

traded during the two-month study period in 2016. In addition, the trade practices 

adopted by local traders could facilitate the spread of contagious diseases between pig 

groups from different farms. For example, the traders often mixed pigs from different 

farms to make a trade, and they would spend 15 hours on average to sell a batch of 

pigs. A particularly risky practice adopted was that unsold pigs were kept for several 

days by the traders enhancing the potential transmission of pathogens between pigs 

sourced from different farms. Even though these markets may have played a 

significant role in the spread of epidemics, it is important to bear in mind that closure 

of local markets may not be practical or ideal. Traditionally Chinese have preferred 

eating fresh pork and this is a key driver for the need for live pig markets. Unless 

there is a change to accepting chilled meat by the community it will be difficult to 

remove live animal markets from China (Lin, Zhang et al. 2017). The closure of 

markets may potentially alter the movements of live pigs, possibly resulting in 

unexpected consequences. This occurred when live bird markets were closed in China 
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with the aim to control H7N9. New movement patterns of birds occurred resulting in 

the spread of H7N9 to rural areas adjacent to the cities (Li, Wang et al. 2018). A 

better alternative to closure would be to implement risk-based control according to the 

movement network of pigs and people associated with these markets. The areas with 

high connectivity should be identified because they would be expected to have a 

higher risk of an epidemic through this market trade network. The results presented in 

Chapter Five indicated that the supply counties with highest connectivity in the live 

pig market trading network were located in the north, centre and southwest of 

Guangdong Province. This finding highlights that pigs and piggeries in these areas 

should be specifically targeted for sampling, as opposed to random sampling, to 

enhance the early detection of new emerging SIVs. In this study, different strategies 

were also compared to illustrate the benefit of using risk-based intervention in 

containing an epidemic spreading via the market trading network. The results of this 

research highlighted that isolating the nodes with the highest betweenness and degree 

scores would be a key feature of reducing the magnitude of a potential epidemic. This 

recommendation is in line with other SNA studies that have been conducted on the 

movement of sheep in the UK (Kiss, Green et al. 2006) and the movements of sheep, 

cattle and deer between farms in New Zealand (Marquetoux, Stevenson et al. 2016). 

The models established in the current research justify that a risk-based strategy for 

control should be undertaken to quickly contain an epidemic. For example, at the 

early stage of an epidemic, such as COVID-19 or emerging human influenza, targeted 



   

194 

 

sampling and movement restrictions based on SNA findings should be employed. 

This was highlighted in a recent study on COVID-19 in China where the number of 

cases in provinces was strongly associated with the number of emigrations from 

Wuhan to these provinces (Chen, Zhang et al. 2020). In conclusion, these findings 

offer valuable insights for decision-makers in an emergency response to an epidemic, 

particularly as they are often faced with the challenges of insufficient diagnostic 

capacity/capability and limited financial resources.  

7.5. Spatial predictor variables associated with SI in counties in south China 

Spatial predictor variables have been analysed in other species for a range of 

infectious diseases, including anthrax, rabies, peste des petits ruminants (PPR), and 

bluetongue (Mayo, Gardner et al. 2012, Tenzin, Dhand et al. 2012, Kracalik, Malania 

et al. 2013, Gao, Liu et al. 2019). In terms of spatial predictor variables for influenza 

A, studies have identified anthropogenic, meteorological and geographical factors 

associated with infection in poultry and humans (Ward, Maftei et al. 2008, Paul, 

Tavornpanich et al. 2010, Chen and Chen 2014, Kim and Pak 2019). However, the 

spatial variables associated with influenza infection in pigs had not been studied prior 

to the research reported in this thesis and this study was also the first attempt to link 

anthropogenic, meteorological and geographical factors and human/avian sourced 

influenza infection in pigs at a spatial scale in counties in south China (Chapter Six).  

The current study found that elevation above sea-level was the most significant 

variable for predicting the presence of infected herds/seropositive pigs to AIV strains 
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(relative importance: 14.02, 95%CI: 13.88-14.16) and also for infected 

herds/seropositive pigs to human seasonal influenza H1N1 (relative importance: 5.64, 

95%CI: 5.5-5.78). A possible explanation for this might be that elevation (up to 200 

m) is associated with increased densities and/or interactions of pigs, humans and birds 

within the study area. Although no similar studies have explored the association 

between elevation and SI in pig farms, a study in Europe reported that conversely a 

lower elevation was highly correlated with HPAI H5N1 in wild birds. In that study 

the authors hypothesised that lower flatter areas had more water sources which 

attracted waterfowl, resulting in mixing and spread of virus in this population (Si, 

Wang et al. 2010). The current study found that the density of chickens (relative 

importance: 8.45, 95%CI: 8.26-8.64) was the second most important predictor 

variable for AIV in pigs, and human population density the second most important 

predictor variable for human H1N1 in pigs (relative importance: 5.46, 95%CI: 5.21-

5.71). Similarly, several other studies have reported that poultry and human density 

were both associated with outbreaks of H5N1 and H7N9 (Gilbert, Chaitaweesub et al. 

2006, Chen and Chen 2014, Artois, Jiang et al. 2018). 

The population density of chickens was more important than the density of humans, 

ducks and pigs in predicting the risk of having pigs seropositive against AIV strains 

on a farm. This supports the likelihood that chickens on pig farms are, not 

surprisingly, the most important sources of AIV infection for pigs. This was supported 
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by the findings reported in Chapter Three where the presence of poultry on a farm 

was a risk factor for farmer’ perceived SI. 

7.6. Limitations and recommendations  

There were several biases and limitations to the research reported in this thesis. 

Firstly, in Chapter Three, the diagnosis of SI and categorisation of a piggery as 

infected (positive) was based on the perceptions/observations of the farmers. The 

reliability of the case definition is heavily dependent upon the farmers’ knowledge 

about SI because the diagnosis was rarely confirmed by a veterinarian or by 

laboratory testing. Secondly, the SNA undertaken as part of this research only 

included the movement of pigs via the live pig trade markets. The majority 

(approximately 80%) of live pigs move from farms to slaughterhouses in Guangdong 

Province (P. Chen, personal communication, July 10, 2018) and these movements 

were not analysed in this study. In addition, the movements of live pigs, including 

weaners and piglets between farms for grow-out purposes, were also not investigated. 

Thirdly, data from a laboratory offering diagnostic services to piggeries were used for 

the spatial modelling (passive surveillance data), as currently there are no available 

active surveillance data on SI from south China. 

Because of these biases and limitations, it is recommended that in future:  

• Additional studies using the results of laboratory/diagnostic tests to categorise 

SI infected and non-infected herds are undertaken to confirm the associations 
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between the risk factors for farmer-perceived SI and laboratory confirmed 

infection with SI on local farms. 

• Educational programs should be developed to enhance the knowledge about SI 

by the people involved in the pig industry in south China. Practical hygienic 

practices that would reduce the risk of transmission of influenza A between 

pigs and between humans and pigs and vice versa should be introduced to 

local pig industry workers. In particular the risk of zoonotic infection should 

be emphasised to traders and trade workers associated with the live pig 

markets. Methods to minimise the risk factors for SI in pigs and people, as 

identified in this study, should be developed and included in educational 

materials for local farmers and traders. In conjunction with these 

recommendations hygiene regulations should be developed and implemented 

to minimise transmission of SIV at live pig markets. 

• To understand other potential pathways for the spread of SI between pig farms 

in south China, SNA should also be conducted to explore the movement 

networks of live pigs within the area. These movement data should include 

pigs moving from farms directly to slaughterhouses and pigs moving between 

farms.  

• A comprehensive qualitative or quantitative risk analysis targeting the risk of 

zoonotic SIV infection in local pig industry workers should be conducted 

based on the findings of the current research. Through the use of sensitivity 
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analysis the trading patterns that need targeted interventions in local live pig 

markets system could then be identified.  

• Additional studies on the spatial predictors of avian/human influenza infection 

in pigs using active surveillance data of influenza A viruses in pigs are needed 

to confirm the associations between the predicting factors for avian/human 

influenza infection in pigs. New variables, such as the densities of local wild 

waterfowl and migrating birds, could be explored in these new models.  

• The findings of the research reported in this thesis highlight the need for 

improved surveillance for influenza A in both pigs and pig industry workers in 

south China. Commercial pig farms located in counties with high connectivity, 

as determined by the movement network of live pigs that are traded via local 

markets, and in counties of the delta area of the Pearl River in Guangdong 

Province and those surrounding Poyang Lake in Jiangxi Province should be 

targeted for SI surveillance. 

7.7. Conclusions 

This thesis has generated important information that: described the husbandry and 

biosecurity practices adopted on pig farms in Guangdong Province; demonstrated the 

presence of biosecurity gaps on pig farms and in live pig markets that potentially 

would lead to the spread of SI in Guangdong Province; identified a SI herd prevalence 

of 60% in six months of 2015 based on farmers’ perceptions about the disease; 

identified three risk factors (wild birds being able to enter piggeries, presence of 
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poultry on the farm, and lacking disinfection procedures for workers before they enter 

piggeries) associated with SIV infection in pig farms in Guangdong Province; 

analysed the risk of zoonotic SIV infection at the interface between local pig industry 

workers and their pigs; analysed the movement pattern of pigs through the live pig 

markets network in Guangdong Province; and explored the anthropogenic, 

meteorological and geographical risk factors for human/avian influenza infection in 

pigs in south China. The findings presented in this thesis help further our 

understanding of the epidemiology of SI in south China and will improve the ability 

to control SI in pigs and humans in China. 
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Appendices 

Appendix 1 

Questionnaire for pig farmers 

 

Objectives 

• To record the management, biosecurity and trading behaviours in the pig farms 

involved in this project 

• To collect information on relevant risk factors for SIV infection on pig farms 

 

Farm-（    ）Sampling Authority:                  Recorder:        Tel:                     

Farm Address: village     town      county        prefecture      province             

Name of the 

farm                      
 Tel： 

Production 

information 

1. Start time for breeding: Year of                             

2. Farm type: □ Fattening  □ Self-reproducing □ Breeding  □ Other:                                

3. Breed: □ Yorkshire  □ Landrace  □ 3-hybrid  □ Duroc  □ Other:                      

4. Pigs inventory          head, including sows:       head, gilts:       head, 

Piglets:       head, fattening:             head, and boars:         head 

5. The raising pattern for fattening pigs: 

□all-in-all-out on farm; □all-in-all-out on single shed □mix batches in 

one piggery □other 

6. Did you introduce any pigs during the last 12 months:□Yes □No

（Turn to Q9） 

How many times were pigs introduced:        How many head were 

introduced:                 

Source of introduction: □from breeding farms directly □ from middle 

man  

 □from live pig market □other source: _________________ 

7. Did you implement quarantine when pigs were introduced:       □Yes 

□No □Sometimes  

8. Did you perform any specific practices during period of quarantine 

for introduced pigs??:         □observe only  □observe and test  □ it 

depends 

9. In the last 12 months how many times did you sell pigs:       How 

many head did you sell?:                 

10. Do you sell all of the pigs from a pen at one time?             □Yes □No 
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□Sometimes 

11. When you sell pigs, who is responsible for picking up the pigs and 

loading them onto trucks: 

□our employees □buyers □ both 

12. Do buyers change clothes before entering the producing area?:  

□Yes □No 

□Sometimes 

13. Do buyers change their boots before entering the producing area?:  

□Yes □No 

□Sometimes 

14. Do your employees shower and/or disinfect their footwear after 

loading and before handling pigs remaining in the herd?: 

□Yes □No 

□Sometimes 

15. Have you seen pigs from other farms on the collection trucks before 

your pigs are loaded?: 

□Yes □No □not 

sure 

16. What kind of environment is the farm in:  □ Village  □ Rural Area □ 

Other (please specify):              

  

Management  

 

17. Do you record abnormal situations such as reduced production, sick 

or dead pigs? 

□ No  □ Yes □ Sometimes 

18. Do you hire any veterinarians?   □ No  □ Full-time vet  □ Part-time 

vet 

19. Do the employees in producing area shift among different sheds     

□ Yes   □ No   

20. How often do you disinfect the pig houses? At least: 

□ Once a week  □ Once a month  □ Once every 3 months  □ 

Never  

21. What chemical do you usually use for disinfection?:                                   

22. Where is your pig-feed sourced?:  

□ Purchase it myself □ The vendor sends it to the piggery 

□ Purchase the components and mix on the farm□ all of the 

above 

23. How often did you usually buy feed for your pigs?   once every              

days 

 

Biosecurity  

24. What is surrounding your pig-farm? 

□ village □ cropland □ mountains □ other:                            

25. Are the living area(s) for workers and the pig production area(s) 

separated?                □ No  □ Yes 

26. Is there a disinfection pool at the entrance of pig farm?              □ No  

□ Yes  
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27. Are visitors/vehicles allowed to enter the producing areas?           

□ No (go to Q30)  □ Yes □ 

Sometimes 

28. Are visitors/vehicles disinfected before they enter the piggery?           

□ No  □ Yes □ Sometimes   

29. Are visitors or vehicles allowed to enter production areas?   

□ No  □ Yes, by changing boots □ Yes, by changing clothes  

□ other:                          

30. Other species on the farm? 

□ No  (turn to Q37) □ dog  (turn to Q31-33) □chicken □duck 

□ geese □ other:                        

31. Can the dog(s) contact pigs directly?                □ No  □ Yes □ 

Sometimes 

32. Can the dog(s) contact the pigs’ feed or drinking water?       

□ No  □ Yes □ 

Sometimes 

33. Do you feed the dog(s) raw poultry meat or pork? 

□ No  □ Yes □ Sometimes 

34. What type of poultry do you have on the farm?      

□ egg poultry □ meat poultry□ both 

 

35. Why are the poultry kept?       

□ self-consumption  □ sell □ both 

36. From where do you source poultry?      □ LBMs  □villages nearby  

□breeding farm □ Self-reproducing 

37. Is there any water pools/ponds/dams on the farm?                    □ Yes  

□ No(turn to Q) 

38. Do you take water from these sources pool to drink pigs?                        

□ Yes  □ No 

39. Do you take water from these pools/ponds/dams to flush piggeries?                   

□ Yes  □ No 

40. Have you ever seen any wild birds on the farm?                        □ No  

□ Yes 

41. Can the wild birds enter into the piggery buildings?             □ Yes  □ 

No □ not sure 

42. Do you have any facilities/practices to protect against wild birds 

entering the piggery?               □ No  □ Yes 

43. Do you have disposal facilities for dead pigs?                     □ No  □ 

Yes 

Human-pig 

interface  

44. Do the employees eat poultry meat?               □ Yes  □ No □ 

sometimes 

45. Where do they get this poultry meat from?  

□ retail LBMs nearby □ wholesale LBMs □ poultry of their own 

46. Do you feed pigs swill?                                    □ Yes  □ No 

47. Have any of your staff had the flu (influenza) in the last 6 months                       
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□ No  □ Yes 

48. If so, what did they do?     

  □ Clinic/hospital  □ Took medicine  □ Took a rest  □Other 

49. Did any workers still work on the farm if they were only mildly 

sick?:        

□ No  □ Yes □ Sometimes  

50. If so, did they wear a face-mask while working in the piggery?   □ No  

□ Yes □ Sometimes 

51. In the last 6 months have you seen any of your pigs sick with signs of 

difficult breathing, coughing, or discharge from the mouth or eyes?     

□ No(turn to Q55)  □ Yes 

52. If so, how many pigs in total were in the group :      , and how many 

of these were sick:        

When did they get sick:               , and how long did the sickness 

last?  days:           

53. Was it diagnosed as SIV infection?                           □ No  □ Yes 

54. Who did the diagnosis?  

□ vets on farm  □ official vets  □ service company  □Other:               

55. Have you ever heard of Swine Flu?               □ No  □ Yes □ Don’t 

know 

56. Do you think it is an important pig disease?      □ No  □ Yes □ Don’t 

know  

57. Do you think it can cause pigs to die?        □ No  □ Yes □ Don’t know 

58. How do you treat with the pigs with flu?   

□ Sale  □ Medicine treat  □  No treat                   

59. When treating sick pigs, do workers wear face-masks and gloves? □ 

No  □ Yes 

60. Do you think swine flu can cause people to get the flu?       

□ No  □ Yes  □ Don’t know 

61. Are workers vaccinated against influenza every year?                 □ No  

□ Yes 

Sampling 

information 

62. Number of samples:      in total, including       swabs,       serum 

samples  

63. Storage condition:                                                             

64. Coding of the samples:                                                                                                        

65. Among them: The coding                   are sows;                are gilts 

             are piglets;              are fattening pig;                are boars 

 

Note:  This questionnaire is used for an epidemiological survey only, your 

information will not be released to any other person or third party.   
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Appendix 2 

Questionnaire for pig traders 

No. of this interview：               Institute:                    

Interviewer:               phone number: 

 

Name of the interviewee：               phone number:                      

Name of the interview place                                      

Address:   province    county     township     village 

Altitude            longitude           

Trade 

practices  

1. Working experience: have been trading pigs since the year of       

2. What kind of pigs do you trade: □finishers □ weaners □both 

3. What is (are) the size of the farm(s) from where you buy pigs: 

 □ < 100 pigs □ 100-500 pigs □ > 500 pigs □ include all these categories 

4. How many farms have you visited to buy finishers in the preceding 30 

days?     ；How many farms have you visited to buy weaners in the preceding 

30 days?               

5. How many batches of pigs are transported each month?    ; 

How many pigs are in a batch? (head)    ;  

How many farms are needed to make up a saleable batch?      

What is done with leftover pigs?                          

Where do you purchase pigs from?：□Contact pig farms themselves 

□contracted farms □middlemen □other:                              

6. Where do you sell pigs to?  □Sell live pigs to slaughterhouses □Slaughtered by 

slaughterhouses and then sell meat themselves □Sell live pigs to meat sellers 

□Sell live pigs to other live pig traders □Sell live pigs to farms □other:                     

7. Trucks for transport: □Self-owned □Rented □other:                 

8. How many workers do you hire?   ;  

What is the daily salary of a worker?   RMB/day 

9. Do you have another occupation?  

□No □veterinary consultant □feed seller □livestock medicine seller  □other:                

Human-

pig 

interface 

10. Approximately how often would you visit at a pig farm?  Once every   days 

11. Do you wear gloves/masks when loading pigs?    □No □Always □Sometimes 

12. Do your workers wear gloves/masks when loading pigs? □No □Always 

□Sometimes 

13. Would you enter a piggery to collect pigs?      □No □Always □Sometimes 

14. Do you require any certificate when transporting pigs?   

□No □Health certificate □Don’t know 

15. Did you have flu in the preceding 3 months?       □No □Yes □Not sure 

16. What would you do if you got the “flu”? 

□Go to see a doctor □Take some pills □Just have a rest without any medical 
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treatment 

□others:          

17. Would you continue to work if you had a mild case of the flu?    □No □Yes 

18. Do you know a disease called swine influenza (SI)?        □No □Yes 

19. Do you think SI is a significant disease in pigs?      □No □Yes □Don’t know 

20. Do you think SI can kill pigs?             □No □Yes □Don’t know 

21. Do you think SI can infect humans?        □No □Yes □Don’t know 

22. Are you vaccinated against seasonal flu each year?     □No □Yes  

23. In your opinion how would your peers deal with stressed pigs that were reluctant 

to walk? 

□Sell as normal □Sell at a lower price □Sell after treatment using antibiotics 

□Return to the original farm □other:         

 

Note: This questionnaire is used for an epidemiological survey only, your information 

won’t be released to the third party.  

Contact address: No.369 Nanjing Road, Qingdao, Shandong, China Animal Health 

and Epidemiology Center 

Contact Person: Yin Li      Telephone: 85648638 
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Appendix 3 

Questionnaire for pig trade workers 

 

No. of this interview：               Institute:                    

Interviewer:               phone number: 

 

Name of the interviewee：         age:      phone number:                                    

Name of the interview place                                      

Address:   province    county     township     village 

Altitude            longitude           

Trade 

practices  

1. Working experience: have been doing this job since the year of       

2. How many days do you work in a month?     ；How many hours do you work 

each day?        

3. On how many days would you visit at least one farm?  Once every   days 

4. Usually, how many batches of pigs do you transport each day?    ; 

How many pigs in total do you transport each day?    heads;  

5. Which month is the busiest month?     

Human-

pig 

interface 

6. Do you raise pigs or poultry at home?           □No □Yes  

7. Do your co-workers raise pigs or poultry at home?     □No □Yes □Not sure 

8. Do you wear gloves/masks when loading pigs?    □No □Always □Sometimes 

9. Would you enter piggery to collect pigs?       □No □Always □Sometimes 

10. Do farmers ask you to change your boots before entering their piggery?  

                         □No □Always □Sometimes 

11. Do farmers ask you to change your clothes before entering their piggery?  

                       □No □Always □Sometimes 

12. Do farmers ask you to undergo any disinfection procedure? □No □Yes 

If yes, what is the disinfection procedure?          

13. Did you have flu in the preceding 3 months?       □No □Yes □Not sure 

14. What would you do if you got the “flu”? 

□Go to see a doctor □Take some pills □Just have a rest without any medical 

treatment 

□other:          

15. Would you continue to work if you had a mild case of the flu?    □No □Yes 

16. Do you know a disease called swine influenza (SI)?        □No □Yes 

17. Do you think SI is a significant disease in pigs?     □No □Yes □Don’t know 

18. Do you think SI can kill pigs?            □No □Yes □Don’t know 

19. Do you think SI can infect humans?          □No □Yes □Don’t know 

20. Are you vaccinated against seasonal flu each year?     □No □Yes  
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21. In your opinion how would your peers deal with stressed pigs that were reluctant 

to walk? 

□Sell as normal □Sell at a lower price □Sell after treatment using antibiotics 

□Return to the original farm □other:         

 

Note: This questionnaire is used for an epidemiological survey only, your information 

won’t be released to the third party.  

Contact address: No.369 Nanjing Road, Qingdao, Shandong, China Animal Health 

and Epidemiology Center 

Contact Person: Yin Li      Telephone: 85648638 
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