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Abstract
In a translation workflow, machine translation (MT) is almost always followed by 
a human post-editing step, where the raw MT output is corrected to meet required 
quality standards. To reduce the number of errors human translators need to correct, 
automatic post-editing (APE) methods have been developed and deployed in such 
workflows. With the advances in deep learning, neural APE (NPE) systems have 
outranked more traditional, statistical, ones. However, the plethora of options, vari-
ables and settings, as well as the relation between NPE performance and train/test 
data makes it difficult to select the most suitable approach for a given use case. In 
this article, we systematically analyse these different parameters with respect to NPE 
performance. We build an NPE “roadmap” to trace the different decision points and 
train a set of systems selecting different options through the roadmap. We also pro-
pose a novel approach for APE with data augmentation. We then analyse the perfor-
mance of 15 of these systems and identify the best ones. In fact, the best systems are 
the ones that follow the newly-proposed method. The work presented in this article 
follows from a collaborative project between Microsoft and the ADAPT centre. The 
data provided by Microsoft originates from phrase-based statistical MT (PBSMT) 
systems employed in production. All tested NPE systems significantly increase the 
translation quality, proving the effectiveness of neural post-editing in the context of 
a commercial translation workflow that leverages PBSMT.
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1 Introduction

Machine Translation (MT) is widely employed in industrial translation workflows. 
MT for dissemination is an intermediate step which generates a raw translation of 
a given source document or a sentence, followed by a post-editing step that ensures 
that the quality of the final translation meets required quality standards. Automatic 
Post-editing (APE) is an area of research aiming at exploring methods that apply 
editing operations on an MT output to produce a better translation and thus reduce 
the human effort in the translation workflow.

APE covers a wide range of post-editing approaches, from regular expressions 
applied on the MT output to post-editing simple error patterns, to deep learning 
techniques that can transform complete sentences, paragraphs or even documents 
into a more correct variant. Needless to say, while APE aims to reduce certain MT 
errors, it is up to the human translator to accept or further post-edit the output. In 
this article, we focus on APE with deep neural networks—neural APE or simply 
neural PE (NPE)—and the sentence-to-sentence post-editing case.

In the rest of this article we use the following abbreviations and notations:

– SRC segment(s) in the source language;
– MT the output of a non-specified MT system;
– PE the version of the MT segment(s) after post-editing by professional transla-

tors;
– SMT the output of an SMT system, usually the baseline;
– NMT the output of an NMT system;
– NPE the version of the MT segment(s), after post-editing with an NPE system;
– TER(npe, pe), TER(smt, pe) the TER score between NPE or SMT (the hypoth-

esis) and PE (the reference), a human post-edited version of the machine transla-
tion output is used as reference.1

1.1  Automatic post editing and its parallelism with machine translation

APE systems convert a segment e in the target language L2 to a corrected variant e′ in 
the same language. The APE task can be seen as a monolingual translation task where 
the source and the target language are the same. As such, APE implementations are 
rather similar to MT systems and even employ similar methodologies. However, while 
in an MT scenario a system is trained on pairs of sentences (f, e) in two different lan-
guages, in an APE scenario the available data includes MT input and output, as well 
as the human post-edited variant of it. That is, an APE system is trained on triplets of 
sentences—(f , e, e�)—where e′ is the post-edited variant of e. Such triplets (i) reveal 
the transformations of e into e′ that should be learned by the APE, for it to correct 

1 We refer to these scores as TER instead of HTER since we use the PEs as references with no further 
human post-editing. That is, it is simply an automatic scoring of TER between a hypothesis (output by an 
MT or an APE system) and a reference (produced by a human translator).
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automatically any new data and (ii) allow for a consistency check with the source sen-
tence f. The learning process depends on the availability of enough triplets.

1.2  Data demands and data scarcity

While the collection of parallel data (for training MT engines, for example) has been an 
ongoing process since the beginning of SMT, APE is a recently-emerged approach. For 
many language pairs, thus, enough parallel data is available. However, that is not the 
case for triplets with human post-edited data, required in data-driven APE approaches.

To mitigate this issue for the open development of APE systems, datasets of artifi-
cially generated triplets have been produced and made publicly available. In Junczys-
Dowmunt and Grundkiewicz (2016) one such set for the English → German language 
direction is described. It is generated via round-trip translations using two PBSMT 
engines, one for the German → English and another for the English → German lan-
guage directions. The synthetic post-edit triplets are composed of the German source 
data as the post-edited data, the German →  English translated data as the English 
source, and the round-trip translation output as the uncorrected MT data. Consecu-
tively, the data is filtered according to TER to mimic the quality of the provided APE 
data. More recently, Negri et al. (2018) present the eSCAPE corpora covering multiple 
language pairs. Their method is to translate freely-available data and use the target side 
as a human post-edited version of this translation, thus creating triplets of sentences.

Exploiting synthetic data has shown to lead to improvements in APE (Bojar et al. 
2017; Chatterjee et  al. 2018) and in NMT systems  (Sennrich et  al. 2016b; Poncelas 
et  al. 2018). A detailed summary is presented in  do  Carmo et  al. (2020). However, 
Poncelas et al. (2018) show that using excessive synthetic (i.e. backtranslated) data can 
lead to deterioration of quality. Nevertheless, in an industry environment where human 
post-editing is a standard procedure, a sufficient quantity of closed-access triplet data 
is often available (Crego et al. 2016; Mathur et al. 2017). This was the case in the col-
laborative project between the ADAPT centre and Microsoft described in this article. 
This data is typically (i) optimised towards the domain of application (i.e. with respect 
to terminology, style, etc.) and (ii) conforms with the quality standard requirements.

In this article, we present NPE systems trained on industry-standard data for the 
English–German (EN–DE) and English–Spanish (EN–ES) language pairs. And while 
the data we used is not publicly available, this article aims to convey our knowledge 
and experience on such data, making it easier for researchers to understand industry 
requirements and to provide solutions that apply not only in academic but also in com-
mercial conditions.

1.3  The ADAPT‑microsoft APE project

The systems we present in this article are the result of a collaboration between the 
ADAPT Centre and the Microsoft GSX Language Technology group that took place 
between May and September 2018.

This collaborative project aimed to test the use of NPE in a commercial environ-
ment and with industry-standard data. The data, provided by Microsoft, is part of the 
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production data. Within the scope of this project, we considered two language pairs: 
English–German (EN–DE) and English–Spanish (EN–ES), exploited in two rounds.

The project was divided into two main stages: stage i State-of-the-art review and 
analysis, and stage ii Implementation and Empirical evaluation.

In stage i we conducted a review of the state-of-the-art of APE systems. The pur-
pose of this first stage was to inform the empirical one, i.e. stage ii, and guaran-
tee that the best technology available was employed for the purposes of the project. 
A summary and analysis of state-of-the-art APE systems is presented in do Carmo 
et al. (2020).

Stage ii started with a full analysis of the data provided by Microsoft. Section 3 of 
this article summarises our findings with respect to the data. This analysis allowed 
us to identify specific features in the data that conformed the models tested at the 
next stage.

The implementation and evaluation part was divided in two. First, we trained and 
evaluated NPE systems with EN–DE data. This round ran as a standalone project 
encompassing data analysis, data preprocessing, deciding on NPE systems to train, 
and training and assessment, all using only EN–DE data. Based on the results, obser-
vations and acquired knowledge from the first round, we conducted a second set of 
experiments with EN–ES data. That is, we selected some of the best approaches 
and we ran experiments on EN–ES data, with fewer systems involved. Overall we 
trained 15 different systems (11 systems with EN–DE data and 4 with EN–ES data), 
exploring diverse setups with and without augmentation of the input data. These 
systems are described in Sect. 4.

In the evaluation part we collected standard edit scores—TER  (Snover et  al. 
2006) and BLEU (Papineni et  al. 2002)—of the different systems under compari-
son. A detailed analysis of the results was also performed. Our evaluation results are 
reported in Sect. 5.

2  Neural APE

In this work, we analyse and empirically evaluate different NPE approaches and 
present the most efficient ones. The ultimate goal of this work is to inform the 
reader about the end-to-end process for achieving high-quality APE output, along 
with the conditions and limitations of the various approaches. In addition, we 
exploit industry data composed of triplets ( {src,mt, pe} ) where the post-edited 
segments originate from professional translators. Thus, we aim to draw a road-
map over existing neural APE techniques. The major decision points are related 
to (i) the neural architecture and (ii) how the data is used for training the NPE 
system. We do not investigate the effects of adapting low-level settings of the 
neural systems, such as the learning optimiser, the size of the neural networks, 
etc. as they are outside of the scope of this project; we consider the default set-
tings to be effective for our tasks. In (Junczys-Dowmunt and Grundkiewicz 2017) 
an analysis of various sequence-to-sequence architectures for APE is presented, 
over the differences and the effects of the various attention mechanisms on APE 
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quality. Our work aims to explore various architectures in a commercial environ-
ment and it focuses on the dependencies between data and model architectures.

As noted in Sect.  1, the APE task involves handling multi-source input and 
a single source output (Input: {src,mt},Output : pe). In a sequence-to-sequence 
encoder-decoder architecture, the multi-source input can be handled with either 
a single encoder or with multiple encoders. That would impose different require-
ments towards preprocessing the data and building dictionaries. For example, if a 
single encoder is used, then the SRC and MT need to be concatenated and a joint 
dictionary needs to be built.

A double-encoder NMT model, where SRC and MT inputs are encoded sep-
arately and the corresponding context vectors are used together as input to the 
decoder, would require separate dictionaries: two for the SRC and MT and one 
for the PE data. In the latter case the dictionary size would be smaller than the 
one of a joint dictionary in the former (single-encoder) case.

Another decision on how to approach NPE is whether to use ensembles of 
models or a single-model NMT system. To handle different types of input/output 
pairs (e.g. based on character count or word count) we can either implement an 
ensemble NMT system, where different networks will be trained on the different 
input/output pairs, or one single network trained on data carrying extra informa-
tion regarding its type. In this case, a prefix token can be added to each input 
pair or triplet, which identifies the type(s) of input. While ensembling is widely 
used for NMT, quality estimation, and APE, it complicates the architecture, add-
ing an extra layer of training and optimisation. This type of engineering over-
head makes it prohibitive for large-scale QE employment that is required in a 
commercial workflow. For example, Microsoft operates with more than 80 lan-
guages, therefore it is easy to see how important it is to choose an efficient and 
scalable approach for production. The latter approach, i.e. adding a prefix token 
to the input sequence, follows from transfer learning and has been employed suc-
cessfully on multi-language MT (Johnson et al. 2017; Mattoni et al. 2017), gen-
der identification in MT (Vanmassenhove et al. 2018) and controllability in MT 
(e.g., to manage forms of politeness (Sennrich et al. 2016a)). Using a prefix token 
allows only one system to be trained jointly to perform APE on different types of 
input. To our knowledge, at the time of conducting the experiments, our work was 
the first to employ such an approach for APE.

For NMT, splitting words into subword units has led to state-of-the-art 
results. The most common method is unsupervised Byte Pair Encoding  (Senn-
rich et al. 2016c), BPE in short, a fast and language-independent method. Other 
methods based on morphology (e.g. based on Morfesor (Creutz et al. 2005; Smit 
et  al. 2014)) have also led to good results for specific languages  (Ataman and 
Federico 2018). Their main drawback is the language dependency. Segment-
ing tokens into their basic building blocks, i.e. characters, has been explored for 
character-based NMT (Lee et al. 2017) and also for character-based APE (Junc-
zys-Dowmunt and Grundkiewicz 2017). For our NPE systems, we considered 
words and subword units generated with BPE. Increasing the granularity of sub-
word units to characters would imply that the APE system would have to learn 
how to correct the spelling of specific words—a task that is computationally 
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more expensive and unnecessary for our use case (the dataset originates from 
SMT systems and it is therefore expected to be correctly spelled).

Another decision point is whether to extend the training data with data-spe-
cific features. Similar to Hokamp (2017), an option is to add syntactic features 
as factors and train a factored NMT system.

These different decision points are mapped in Fig.  1 in the form of a road-
map. We follow this roadmap to systematically construct our experiments and 
train the corresponding systems. Such a systematic empirical evaluation aims to 
inform the reader of the possible options and their implications in constructing 
APE systems for other use cases.

Clean data

Cased data

Combined data

Word segmented data

Augmented data

Ready to train data

Encoder/decoder type selected

Number of encoders selected

Encoder combination selected

System trained

Lower
True

No/normal

Joint

Independent

Chars Subwords

Words

No Prefix Feat.
Both

CNN
LSTM

Transformer

Concatenated
Multi-source

No ensemble
Ensemble

Ready to train

Fig. 1  A roadmap over the decision points for an APE system. Each node represents a stage prior to 
training an APE system. Each transition between the nodes on the map represents the different options 
of a single decision point. A transition between two nodes should follow only one of the available edges, 
that is, multiple options for a single decision point are not possible. Continuous lines indicated options 
we empirically evaluated in Sect.  4; for the rest we present thorough analysis based on literature and 
preliminary experiments. Legend (following the roadmap): Lower lower-cased data; True true-cased data 
(only change words at the beginning of a sentence to their most frequent form); No/normal do not apply 
any casing transformation; Joint combine SRC, MT and PE data to build a joint vocabulary or word-
segmentation (e.g. BPE); Independent do not combine SRC, MT and PE data, but apply consecutive 
transformations independently on each of them; Chars segment each word on character level; Subwords 
segment each word on subword level (e.g. after BPE); Words no word segmentation; No no data augmen-
tation; Prefix data is augmented using a prefix on each sentence; Feat. per-word features; Both prefix and 
features; CNN NMT with CNN-based encoder and decoder; LSTM NMT with LSTM-based encoder and 
decoder; Transformer Transformer NMT architecture; Concatenated SRC and MT input sentences are 
concatenated; Multi-source SRC and MT are fed separately into an encoder; No ensemble do not ensem-
ble models; Ensemble ensemble models
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3  Data analysis

The data provided by Microsoft (actual production data), constitutes a collection 
of 201,000 triplets, translated from English into two different target languages: 
German (EN–DE) and Spanish (EN–ES). These triplets include the source 
English string (SRC), its machine translation (MT)—originating from an SMT 
system—in different moments in time, and their corrected versions created by 
human post-editing (PE). The data consisted of user interface (UI) strings, that 
is, it contained menu entries, help messages, etc. from different Microsoft soft-
ware products.

The following analysis was produced only for the EN–DE language pair, dur-
ing the first round of stage ii of the project.

3.1  Pre‑processing

First, we performed a data analysis on the English-German data to identify 
issues and irregularities that might impede the performance of an APE system. 
We investigated strings such as untranslatable items, file names/paths/locations, 
hyperlinks, markup, structured alphanumericals, and so on, which are very fre-
quent in UI data. The inappropriate handling of these strings, e.g., incorrect 
tokenisation, could trigger an APE system to post-edit an already correct trans-
lation, i.e. the problem of overcorrection. As a result, we proposed and imple-
mented a pre-processing step to clean and normalise the data. This step included 
the normalisation of spaces, punctuation, quotes, and other special characters.

Segment duplication was also analysed. It is a typical situation in production 
scenarios, where the same segment may be produced in different projects and 
translated repeatedly. We identified 0.4% of the data as full duplicates—same 
SRC, MT and PE—and removed them.

We also noted that some segments in the provided data form small para-
graphs, containing more than one sentence. We analysed the distribution of such 
segments and identified that 22% of the segments contained more than one sen-
tence, and only 0.4% of the segments contained more than five sentences. We 
assessed their structure and found it impractical to segment these to the sentence 
level. It is typical in NMT and APE to cut sentences to around 60 tokens for 
efficiency and performance purposes. To accommodate these long sentences, we 
extended this cut-off limit to 300 and 150 tokens, for concatenated and multi-
source systems respectively (see Sect. 4).

We implemented a pre-processing step that tackles the aforementioned issues 
and further cleans the data. While some of the pre-processing is language inde-
pendent, e.g., file names/paths/locations, other modifications are language 
dependent. In Sect.  4.1 we discuss the employment of this step in our experi-
ments for the EN–DE data.
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3.2  Partitions

Next, we analysed the data with respect to different common characteristics that 
might show similar patterns and potentially guide the APE systems. Besides the 
triplets of SRC,  MT,  PE, the provided dataset included information such as the 
software package that was translated, the translation project, a timestamp and 
other metadata. We hypothesised that each of these metadata categories could act 
as a factor in grouping the data into partitions that share common features. These 
common features in turn would help the decoding process to find a better post-
edited candidate. We studied several ways to partition the data, using a criterion 
of relevance, based on the distribution of data in the classes, to decide which 
would be used in the experiments. Following, we present the main partitions we 
considered together with the factors and reasons for focusing on these.

– Length: Microsoft provided a word count of each source segment, produced 
with Microsoft’s internal tools. Microsoft wanted to receive results and obser-
vations for subsets of the data based on the following length intervals: (i) 0–4; 
(ii) 5–9; (iii) 10–30; (iv) 31–∞ . We distributed the data into 4 partitions based 
on the length of the source segments: Len1, Len2, Len3, Len4.

– Tenant: another useful metadata label is the tenant description. A tenant is a 
grouping of projects, according to Microsoft organisation. We used this infor-
mation to form 14 partitions of our data according to the tenant label.

– TenantPartition: because some partitions based on the tenant label contained 
a very small number of segments, we further organised the data into 6 parti-
tions—the top five tenants as specific partitions, and the others into one single 
partition called “Other”. In the rest of this article we refer to this partitioning 
as “TenantPartition”.

Aside from these three classes for partitioning the data, we also considered Pro-
ject and Number of sentences in a segment as relevant criteria, in addition to dif-
ferent ways to calculate word and token counts. However, these were not con-
sidered relevant due to the unbalanced way in which segments were distributed 
according to these criteria. For example, there was a high number of projects 
(583), many of which contained a small number of segments:

– The largest project, “DevSuitePortal”, had 16.5k segments (8.2%).
– The second largest, “word-Office-ios”, had 9.6k segments (4.8%).
– The top 5 cover 47.9k (23.8%), the top 10 cover 73.2k (36.4%).
– 350 projects had less than 100 segments.
– 94 projects had less than 5 segments.

As for the number of sentences in a segment, we analysed their distribution, and 
we identified that 88% of the segments contained 1 sentence, and there were only 
0.4% segments with more than five sentences. Due to the skewed distribution, we 
decided not to use this as an informative feature for data partitioning.
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3.3  Editing patterns

A brief analysis of some of the editing patterns in the data was also done at this 
stage, although it was not intended to apply these as components of the training sys-
tems. A type/token ratio analysis and an analysis of unique trigrams showed that PE 
sentences had a richer vocabulary, which was used more consistently than in MT 
output. These data conform with the findings presented in  (Vanmassenhove et  al. 
2019) and Toral (2019) about the differences the lexical richness between human 
and machine translated text.

We also observed that in 27.4% of the segments the MT output had not been 
post-edited. A close analysis of some of these segments shows segments composed 
of placeholders, numbers, URLs, or other non-translatable elements. The number 
of segments in which the PE content is the same as the SRC content is around 10%, 
again with some cases of untranslatable elements or placeholders.

The distribution of editing operations observed in the training data was as fol-
lows: a higher number of substitutions (22%), followed by deletions (15.4%), with 
insertions and shifts at similar proportions (ca. 4%). This distribution is typical of 
PE scenarios and it is more or less reproduced by the best APE systems (do Carmo 
et al. 2020).

3.4  Training, development and test data

The provided data consisted of 180,198 triplets of segments as training data 
(SRC,SMT → PE), 10,000 triplets as test and 10,000 as development sets. For the 
two language pairs the source side of the training data is the same, however the test 
and development sets are different, since the sampling method did not only use fea-
tures of the source segments, but also features of the target segments.

Our data analysis also guided the selection of the development and test sets. We 
took into account the main features and partitions identified in the data. The features 
that were considered relevant for extracting a balanced sample of the dataset were: 
length of the segment (source words), token count of the PE data, the tenant, the 
TER scores estimated between MT and PE, and number of sentences in a segment. 
We selected randomised and stratified subsets for the training, development, and test 
sets.

For both training and translation, we use tokenised, normal-cased sentences. We 
applied neither lowercase nor truecase to the tokens, but used their original form, 
in order to account for casing errors. By using original-case data, the NPE system 
would learn to recognise casing errors we aim to fix along with everything else.

4  Experiments setup and tested systems

We followed the roadmap of Fig. 1 and built 15 NPE systems, alternating between 
the different options on the choice points. We first trained and evaluated 11 systems 
for the EN–DE language pair. Following their evaluation, we used the parameters 
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that led to the best performance to train 4 systems for the EN–ES language direc-
tion. Our empirical assessment then aimed to: (i) identify the best system for our use 
case and for the two language pairs and (ii) identify how different system variables 
affect the NPE performance.

4.1  Systems

Pre-processing: Following the discussion in Sect. 3 with respect to the EN–DE data, 
we added an extra decision point on our roadmap regarding the pre-processing of 
the data. There were two pre-processing methods—we could either use the original 
data as preprocessed by Microsoft, or the data that resulted from applying ADAPT’s 
pre-processing which fixes spaces, quotes, and other issues as presented in Sect. 3.1. 
That gave rise to two different types of systems.

We ought to note that while the ADAPT pre-processing led to better results (see 
later in Sect. 5) we decided to use Microsoft’s (pre-processed) data in the second 
experiment round with EN–ES data. The reason is two-fold: (i) a lot of the pre-
processing is language dependent and (ii) the observed improvements are not big 
enough to justify the manual labour required to identify a good pre-processing pro-
cedure for the EN–ES data.

Tokens and dictionaries The choice for word segmentation granularity impacts 
not only the data vocabulary (i.e., the system’s dictionary), but also the choice of 
Encoder/Decoder. We considered three different strategies to build dictionaries: (i) 
Character-based; (ii) BPE, including 50k BPE operations; (iii) Word-based. For dif-
ferent use cases, each of these methods has been shown in literature to have a posi-
tive impact on the translation quality, and under different conditions it can be pre-
ferred to the others. While in a post-editing scenario it is important to learn how 
to correct complete words, rather than sub-word particles (characters or BPE-based 
subwords) an important shortcoming of word-based dictionaries is the large vocabu-
laries that, if reduced for the model to fit in memory, may result in out-of-vocabulary 
(OOV) issues. At the other extreme, using characters as basic tokens implies long 
sequences that are hard to process (from time and resource perspectives and dimin-
ishing performance for LSTM models) with sequence-to-sequence models (Pascanu 
et al. 2012). To target this issue, convolutional neural networks (CNNs) have been 
successfully employed in MT (Lee et al. 2017) and APE (Varis and Bojar 2017). In 
this work we aim to address the performance of the more mainstream LSTM and 
Transformer models.

In our experiments we look into BPE- and word-based dictionaries.
Data augmentation At this stage we had to decide whether and what extra input 

information to add. In Sect. 3.2 we identified several data partitions based on certain 
properties of the input/output data. We consider the three partitions—(i) Length, (ii) 
TenantPartition and (iii) Tenant—as most characteristic and use them to augment 
our data. To do so, we introduce an extra token in front of the input sequence that 
states the partition it belongs to. We refer to systems trained with extra information 
about the Length, TenantPartition and Tenant as Augmented 1, Augmented 2 and 
Augmented 3 accordingly (see Tables 1 and 2).



77

1 3

A roadmap to neural automatic post-editing: an empirical…

Similar to Hokamp (2017) we also explored features based on part-of-speech 
(POS) tags and dependency parses. However, our preliminary experiments showed 
that in a scenario where the SRC and/or MT segments do not constitute well-formed 
sentences, as is the case of the UI data in our use case, adding such features impedes 
the performance of the system. Our results were below acceptable and after the pre-
liminary tests, we discontinued experimenting with word-level linguistic features 
and focused on the prefix-token augmentation. We ought to note that while our 
results in the specific use case discard linguistic features, other types of word-level 
features may contribute to the overall performance. However, this reaches out of the 
scope of our work and we did not pursue this direction.

Input representation Given that the input consists of two types of sequences—the 
SRC and the SMT—we can choose between (i) Single sequence input where SRC 
and SMT are concatenated or (ii) Multi-sequence input where SRC and SMT are fed 
separately. The former case would imply the use of one encoder, while for the latter, 
two separate encoders—one for the SRC and another for the SMT sequences.

Furthermore, in the single sequence case, it is important to consider the order in 
which sentences are presented—either the SRC is the first part of the sequence fol-
lowed by the SMT, or the other way round. We used concatenated input, i.e. single 
sequence input, with the SRC being the first part of the input. We also tested multi-
sequence input, where SRC and SMT are provided as two different inputs to a multi-
encoder architecture.

Table 1  NPE systems and the choice of variable options for the EN–DE language pair

System Preprocessing Word-segment Input representation Encoder Extra information

Vanilla 1 ADAPT BPE Concatenated LSTM No
Vanilla 2 Microsoft BPE Concatenated LSTM No
Vanilla 3 ADAPT Words Concatenated LSTM No
Vanilla 4 Microsoft Words Concatenated LSTM No
Vanilla 5 ADAPT BPE Multi-source LSTM No
Vanilla 6 Microsoft BPE Multi-source LSTM No
Vanilla 7 ADAPT BPE Multi-source Transformer No
Vanilla 8 Microsoft BPE Multi-source Transformer No
Augmented 1 ADAPT BPE Multi-source LSTM LENGTH
Augmented 2 ADAPT BPE Multi-source LSTM TENANTPartition
Augmented 3 ADAPT BPE Multi-source LSTM TENANT

Table 2  NPE systems and the choice of variable options for the EN–ES language pair

System Preprocessing Word-segment Input representation Encoder Extra information

Vanilla 1 Microsoft BPE Concatenated LSTM No
Augmented 1 Microsoft BPE Multi-source LSTM LENGTH
Augmented 2 Microsoft BPE Multi-source LSTM TENANTPartition
Augmented 3 Microsoft BPE Multi-source LSTM TENANT
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Ensembles As justified in Sect.  2, we do not explore system combination with 
ensembles. In our exploration we focus on single-model systems only.

Based on these variables, we implemented a set of APE systems using the Mar-
ian-NMT toolkit. The set of tested systems contains 8 Vanilla systems (when we 
only train with the provided language data and we test different NMT implementa-
tions) and three Augmented systems (when extra information is added to the data). 
This strategy allowed us to incrementally test characteristics from different state-of-
the-art systems, and to explore knowledge retrieved during the data analysis, as pre-
sented in Sect. 3. Table 1 summarises the systems and the system options we trained 
for the EN–DE language pair.

After training and assessing the performance on the EN–DE data, we selected 
options and trained 4 systems for the EN–ES language pair. These are listed in 
Table 2. While evaluation scores proved that ADAPT’s preprocessing improves the 
performance of the EN–DE systems, we do not employ such preprocessing for the 
EN–ES systems as discussed earlier in this section.

4.2  System setup

We trained our systems on an Intel-CPU (Intel(R) Core(TM) i7-5960X CPU 
@ 3.00GHz) machine, with two Titan X GPU cards with 12GB RAM each. The 
machine itself has 64GB of RAM. We used one GPU for each system (training and 
translation).

Our training and translation pipelines (see below, after the list of setup options) 
are written in bash and invoke scripts in the following languages: Python 3.6, Java, 
and Perl. The version of MarianNMT that we used was 1.5.0 and the setup was as 
follows:

– Options –mini-batch-fit, –workspace 9000, –layer-normalization, –dropout-rnn 
0.2 –dropout-src 0.1 –dropout-trg 0.1, –early-stopping 5, –max-length 150 –max-
length-crop, –valid-freq 2000 –save-freq 2000 –disp-freq 1000.

– Validation metric cross-entropy translation.
– For multi-source systems the max-length was 150, while for the concatenated 

systems, the max-length was double the size, i.e. 300.

We used the amun decoder for the concatenated systems, the multi-s2s and the 
multi-transformer for the multi-source systems.

4.3  Experiment pipeline

We implemented a pipeline of 5 processing steps. Given that the data provided is 
already tokenised, split into train, test and development sets and pre-processed, 
no pre-processing and tokenisation were executed in the experiments pipeline. 
One exception is the invocation of a step to concatenate the two input sequences 
into a single one, for the Vanilla 1—Vanilla 4 systems, trained only in the first 
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round (EN–DE). The 5 processing steps of our pipeline are described next, 
together with the general settings. 

1. Create dictionaries To retain language independency, we built our dictionaries 
on source and target languages independently. In particular, given the SRC, SMT, 
and PE triplets, the first step will create 3 dictionaries. Prior to extracting each 
of these dictionaries, byte pair encoding (BPE) is applied on the data to create 
sub-words which will constitute our dictionaries. Dictionaries are extracted only 
from the training data, i.e., test and development sets are not considered when 
creating the dictionaries.

2. Train Train an NPE system given the two source datasets (SRC and SMT) and 
the PE as a target set. These were the training options:

– Use development set for validation.
– Use cross-entropy as the validation and stopping criteria. We used cross-

entropy rather than BLEU to limit the chances to overfit on the develop-
ment set.

– Define early stopping after 5 updates that do not improve the cross-entropy.
– Compute BLEU on the validation set for each 2000 updates.
– Save an intermediate model each 2000 updates.
– Set workspace memory to 9  GB: given that our GPUs have memory of 

12 GB, we allowed for 9GB to be used during training; the rest is used dur-
ing validation.

– Use the  –mini-batch-fit option and do not explicitly indicate batch size. 
Due to the differences in our systems, we did not explicitly set the batch 
size and we allowed MarianNMT to determine optimal sizes for each 
batch. In some cases, setting the batch size to 64, while using word-based 
dictionaries, would lead to out-of-memory issues.

– We also used layer normalisation and dropout.
– Set maximum length of the input sequences for concatenated systems 

(Vanilla 1—Vanilla 4) to 300; for all other systems, it was set to 150.

3. Translation After a system is trained, it can be invoked to translate text. In the case 
of concatenated systems, the input is one file that contains tokenised sentences in 
the source language, concatenated to sentences in the target language (that are the 
output of the MT system). For the multi-source systems, there are two separate 
inputs—one is the SRC data and another is the SMT data. The generated output 
file contains tokens with BPE-specific characters that need to be removed in the 
next step.

4. Post-processing BPE-specific characters are removed and the sequences are deto-
kenised.

5. Evaluation Our pipeline contains a script for scoring the output quality against 
the PE part of the triplets that formed the test set. The script uses two options for 
BLEU and one for TER: (i) Moses BLEU is the multi-bleu.pl script distributed 
with Moses 2.1; (ii) MultEval BLEU is the version of the algorithm as imple-
mented within the MultEval tool; (iii) TER is as implemented within the MultEval 
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tool. This evaluation process with multiple metrics allowed us to better assess and 
compare the quality of the systems.

4.4  Vocabulary sizes

The vocabulary sizes for the concatenated systems for the EN–DE and EN–ES 
language pairs are shown in Table 3.

For the multi-source systems, we used only BPE-based vocabulary, since using 
word-based vocabularies would lead to memory outage. The vocabulary sizes are 
shown in Table 4.

A partition token for Augmented 1 to Augmented 3 systems is additionally 
added to the vocabulary.

4.5  Training statistics

In Tables 5 and 6 we present the training times, number of training iterations and 
number of epochs that were required to train each system.

The training of the EN–DE systems in the first round allowed us to conclude 
that the Transformer systems (Vanilla 7 and 8) were the fastest.

For the EN–ES round, we only trained and tested one of the Vanilla systems 
and the three augmented systems. The decision not to train all the same systems 
as for EN–DE was based on the first evaluations of the EN–DE systems. We pre-
sent our results in Sect. 5.

Table 3  Vocabulary sizes for systems with concatenated input

Language pair Preprocessing Word-segmentation SRC ∪ SMT PE

EN–DE ADAPT BPE (50k operations) 44,796 41,631
EN–DE Microsoft BPE (50k operations) 44,820 41,614
EN–DE ADAPT Words 77,924 58,080
EN–DE Microsoft Words 78,834 58,181
EN–ES Microsoft BPE (50k operations) 44,865 41,769

Table 4  Vocabulary sizes for systems with multi-source input

Language pair Preprocessing Word-segmentation SRC SMT PE

EN–DE ADAPT BPE (50k operations) 39,024 40,950 42,246
EN–DE Microsoft BPE (50k operations) 39,570 40,878 42,200
EN–ES Microsoft BPE (50k operations) 37,473 40,841 41,769
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5  Evaluation

Evaluation of the performance of the NPE systems, based on the translation of 
the test set, and its comparison to the PE it contained, was processed in several 
phases: 

1. Collecting the standard metrics for APE evaluation: TER and BLEU, for all sys-
tems. TER was measured using the output of each NPE system as hypothesis, 
against the PE as reference. The presented BLEU scores are also computed on the 
premises that the NPE output is the hypothesis and the (human) PE is the refer-
ence. This data was first collected for EN–DE, and then for the EN–ES language 
pair only once the best EN–DE systems were evaluated (Sect. 5.1).

2. Then, we looked in detail at the results obtained by the different systems, focused 
on the precision of the systems, the number of edit operations, the results 
within the various partitions, and the minimum and maximum number of errors 
(Sect. 5.2).

3. Finally, an experimental evaluation of NPE applied to NMT output was conducted 
(Sect. 5.3).

Table 5  Training statistics for 
the EN–DE NPE systems

System reference Train time 
(minutes)

Iterations # epochs

Vanilla 1 530 26,000 53
Vanilla 2 608 30,000 61
Vanilla 3 478 22,000 42
Vanilla 4 486 24,000 46
Vanilla 5 667 24,000 51
Vanilla 6 658 24,000 51
Vanilla 7 228 16,000 55
Vanilla 8 216 16,000 56
Augmented 1 690 24,000 50
Augmented 2 690 22,000 46
Augmented 3 699 26,000 54

Table 6  Training statistics for 
the EN–ES NPE systems

System reference Train time 
(minutes)

Iterations # epochs

Vanilla 1 549 28,000 40
Augmented 1 529 22,000 46
Augmented 2 528 22,000 46
Augmented 3 519 22,000 46
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5.1  Standard evaluation scores

After training our systems, we evaluated them by computing BLEU and TER 
scores on the test sets. The results for EN–DE are presented in Table 7, and for 
EN–ES in Table 8.

The first thing to observe from Tables  7 and 8 is that all tested NPE sys-
tems improve the quality of the translations of the baseline SMT output. These 
improvements are more visible in EN–DE, and the observations on the first round 
for this language pair helped us select a lesser number of systems for the second 
round for EN–ES. So, let us start by analysing the EN–DE scores.

Table 7  Evaluation scores for 
the EN–DE NPE systems

For ease of readability baseline scores on the test set are highlighted 
in italic; among the NPE systems the worst scores (on the test set) 
are in bold font and underlined and the best scores are in bold

System reference BLEU Moses BLEU 
MultEval

TER 
MultEval

Dev Test Dev Test Dev Test

Baseline 39.10 41.07 39.10 40.80 41.00 39.20
Vanilla 1 62.87 62.81 62.50 62.70 28.00 27.70
Vanilla 2 62.41 62.95 62.10 62.90 29.20 28.20
Vanilla 3 61.79 62.42 61.50 62.10 29.30 28.10
Vanilla 4 61.31 61.86 60.70 61.20 29.70 29.40
Vanilla 5 63.78 64.16 63.50 63.70 27.70 27.20
Vanilla 6 63.53 63.72 63.01 63.00 28.50 28.20
Vanilla 7 53.26 54.25 53.00 53.80 35.70 35.10
Vanilla 8 53.19 53.91 52.60 53.20 36.40 35.50
Augmented 1 64.38 64.87 64.10 64.50 27.60 26.70
Augmented 2 64.24 65.01 64.00 64.60 27.10 26.20
Augmented 3 64.47 64.99 64.20 64.60 27.10 26.30

Table 8  Evaluation scores for 
the EN–ES NPE systems

For ease of readability baseline scores on the test set are highlighted 
in italic; among the NPE systems the worst scores (on the test set) 
are in bold font and underlined and the best scores are in bold

System reference BLEU Moses BLEU 
MultEval

TER 
MultEval

Dev Test Dev Test Dev Test

Baseline 58.19 60.09 58.20 60.10 27.60 25.60
Vanilla 1 65.31 66.06 65.10 65.80 24.60 23.20
Augmented 1 66.07 66.84 65.90 66.60 23.70 23.20
Augmented 2 65.54 66.26 65.40 66.00 24.40 23.50
Augmented 3 66.19 66.78 66.10 66.50 23.30 22.90
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For EN–DE, the minimum improvements were + 12.84, + 12.40 and − 3.70 in 
Moses BLEU, MultEval BLEU and TER, respectively, for system Vanilla 8. The 
maximum improvement is + 23.93, + 23.80 and − 12.90 in Moses BLEU, MultEval 
BLEU and TER, respectively, for the Augmented 2 system.

We also observe that multi-source systems outperform the concatenated ones 
(Vanilla 1 to 4). Two explanations for this are valid: (i) trimming of long sequences 
(longer than 300 tokens) removes tokens from the end of the concatenated input and 
as such the second part of the sequence may be significantly reduced; (ii) LSTMs 
are known to decay in performance the longer the input they are given, and even 
though Marian uses an attention mechanism that aims to tackle this problem, it 
has been shown that NMT decays in performance with the increase of the input 
length (Koehn and Knowles 2017). Concatenated approaches use the source as pre-
fix and the SMT output as suffix; since these strings are sometimes trimmed, the 
second part of the sequence may be completely removed. We followed the approach 
of  (Hokamp 2017) where SRC was the first string and the SMT the second. We 
ought to note that reversing the two, i.e. SMT first and SRC second, may impact the 
performance. However, in the two extreme cases where the second part is trimmed 
completely, the APE task is reduced to an MT task—either a monolingual (SMT to 
PE) or a bilingual (SRC to PE). Multi-source systems bypass the aforementioned 
problems and allow source and SMT to remain completely aligned.

One drawback of both NMT and NPE we picked in our experiments is that 
they deal with limited number of input tokens. When inputs to an NPE system are 
trimmed to fit such a limit it is unlikely that the output will be a correct post-edited 
version of the original MT. We acknowledge this limitation and will address it in our 
future work.

The results show that the best performing system for EN–DE is the one aug-
mented with the TenantPartition token, i.e. Augmented 2. This system was selected 
as our best NPE system for EN–DE, and it was evaluated in-depth as reported in the 
following sections. This may mean that this token identifies the sets of strings that 
share more common features. This process permits a great deal of experimentation, 
by testing the addition of these tokens using different classes and methods.

Training speed is a particularly important feature in the evaluation of systems that 
are to be used in production settings. The Vanilla 7 and Vanilla 8 systems are the 
fastest during the training stages (see Table 5), because they use the ‘transformer’ 
approach. However, while these two transformer systems are approximately 3 times 
faster than the augmented ones (using a sequence-to-sequence method), the evalua-
tion scores obtained by these systems in the same training circumstances are much 
lower. We admit the possibility that these systems might achieve a higher quality 
with a higher volume of training data, namely by using synthetic data  (Junczys-
Dowmunt and Grundkiewicz 2016; Chatterjee et al. 2018), but that was considered 
out of scope for this project.

State-of-the-art APE systems can also deteriorate TER scores, espe-
cially because they over-correct the output of segments that require no editing 
(do Carmo et al. 2020). In our case, all NPE systems yielded improvements in the 
global scores, which shows the potential of the NPE approach. It is important to 
stress this, since, for EN–ES, this was achieved with very high BLEU and very 
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low TER scores in the initial SMT output, a circumstance in which it would be 
very difficult to get any improvements.

As might be predicted, due to the already high initial values of BLEU and 
TER in the training data, the improvements in the scores were not so visible for 
EN–ES, and the intervals between systems were much narrower. In this language 
pair, there was no clear system with the best scores for both metrics: Augmented 
1 (trained with Length as the added token) obtained the best scores in BLEU 
(66.84 as measured by Moses, and 66.60, as measured with MultEval), but Aug-
mented 3 (trained with Tenant as the added token) achieved the best TER score 
(22.90). This is a very different outcome from EN–DE, in which it had been one 
system trained with the TenantPartition token to outperform all others, according 
to the three metrics. Since we are using TER as the main metric, we chose Aug-
mented 3 as our best system for EN–ES. The improvements from the SMT output 
obtained by this system were of a mere 2.7 TER points and less than 7 BLEU 
points, much lower values than those obtained in EN–DE.

5.2  Detailed analysis of editing results

This detailed analysis tried to answer two questions: (i) how good are the best 
NPE systems and (ii) for which input is NPE better. To answer (i) we measured 
the precision of the NPE systems, and we analysed the balance in the distribution 
of edit operations. To know on which type of input NPE achieves the best results, 
we looked into the distribution of edit operations, per each major data partition, 
and we analysed the behaviour of very long and very short segments, besides 
those that required the least number of edits and those that required the maximum 
number of edits.

Precision This is measured as a ratio of the segments in which TER was 
improved over the total number of segments that were modified. To measure this 
precision, we identified the segments in which there were content differences 
between SMT and PE, since these were the segments modified by the NPE sys-
tem. Then, we compared the TER(smt,pe) and TER(npe,pe) in those segments, 
and we considered as improved those segments in which the TER of the NPE 
was lower than the one for SMT. We report the number of improved and deterio-
rated segments, and the number of those that were edited by the NPE system, but 
which resulted in the same TER.

As we can see in Tables 9 and 10, the precision metric confirms the capacity 
of the NPE system to improve the global TER of the test sets. In EN–DE, 76% of 
the sentences in the test set were modified, and a number that corresponds to 62% 
of these was improved. The EN–ES NPE seems to be more conservative, only 
modifying 67% of the segments, and less precise, since only 51% of the modified 
segments were improved. The best system in EN–ES also deteriorated a higher 
number of sentences (35%, against 25% in EN–DE). The percentage of segments 
which were modified with no effect on TER was fairly similar in both language 
pairs (12% in EN–DE and 14% in EN–ES). 
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Distribution of edit operations. In Tables 11 and 12 we compare the best NPE 
systems to the baseline SMT output, in terms of the edit operations that result in the 
distances between these outputs and the original PE versions.

The NPE system for EN–DE would require far fewer edit operations to be 
transformed into the PE than the SMT system. This reduction in the number of 
edit operations affected all types of edits except insertions, which the NPE system 

Table 9  Precision of best NPE system for EN–DE

Description No. %

Total segments in test set 10000
Non-modified segments SMT=NPE (content) 2396 24
Modified segments SMT≠NPE (content) 7604 76
Improved segments TER(npe, pe)<TER(smt, pe) 4734 62
Deteriorated segments TER(npe, pe)>TER(smt, pe) 1923 25
Segments with same TER TER(npe, pe)=TER(smt, pe) 947 12

Table 10  Precision of best NPE system for EN–ES

Description No. %

Total segments in test set 10000
Non-modified segments SMT=NPE (content) 3350 34
Modified segments SMT≠NPE (content) 6650 67
Improved segments TER(npe, pe)<TER(smt, pe) 3415 51
Deteriorated segments TER(npe, pe)>TER(smt, pe) 2323 35
Segments with same TER TER(npe, pe)=TER(smt, pe) 912 14

Table 11  Number of edit operations in SMT and NPE for EN–DE

Insertions Deletions Substitutions Shifts Total

SMT: TER(smt, pe) 3526 14,795 17,427 4587 40,335
NPE: TER(npe, pe) 4136 7717 12,860 2404 27,117
(NPE-SMT) 610 − 7078 − 4567 − 2183 − 13,218

Table 12  Number of edit operations in SMT and NPE for EN–ES

Insertions Deletions Substitutions Shifts Total

SMT: TER(smt, pe) 4745 6213 14,308 3057 28,323
NPE: TER(npe, pe) 3543 7974 11,947 1888 25,352
(NPE-SMT) − 1202 1761 − 2361 − 1169 − 2971
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would require more than the SMT system. This result is very different for the 
EN–ES systems. In this case, the number of edits is also lower for the NPE sys-
tem than for the SMT system, but the reduction is much smaller. Besides, instead 
of more insertions, the NPE makes more deletions than the SMT system, but 
again the difference is not very relevant.

Figure 2 shows that the distribution of edit operations is well-balanced, in both 
language pairs. Substitutions are the most frequent edit, representing almost 47% 
of the total, followed by deletions (28% and 31% for EN–DE and EN–ES, respec-
tively), with insertions at around 15%, and shifts below 10%.

We also assessed the most frequently edited tokens by the EN–DE best system. 
The top 5 most frequently edited tokens per editing operation are:

– Insertions The five most frequently inserted tokens account for 14% of all 
insertions, two of them being the words “Sie” (5.8% of all insertions) and 
“Bitte” (1.8%). The other three more frequently inserted tokens are punctua-
tion and placeholders.

– Deletions The five most frequently deleted tokens account for almost 20% 
of all deletions. The most frequently deleted tokens are punctuation (comma 
6.4%, neutral double quote 5.6% and full stop with 2.4%), the pronoun “Sie” 
(3.0%) and the article “die” (2.3%).

– Substitutions Substitutions are much more sparse; the five most frequent sub-
stituted tokens only account for 2.3% of all substitutions. Punctuation tokens 
constitute a major part of the substitutions, but the most frequent one is capi-
talisation—8.2% of all substitutions.

The next question we tried to answer was: in which type of segments is NPE most 
effective? To help answer this, we analysed our data partitions, besides the origi-
nal TER partitions, and the maximum and minimum types of segments.

Length partitions In Table 13 we show the average TER scores in each length 
partition for both language pairs, obtained by the best NPE systems. We can see 
that the common result is that the lowest average TER scores (i.e. the best) are 
obtained in the mid-length segments (between 5 and 30 words). The shortest 

(a) For the best NPE system for EN-DE (b) For the best NPE system for EN-ES

Fig. 2  Distribution of edit operations in both language pairs
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segments (below 5 words) seem to be the ones in which the NPE systems have 
more difficulties in achieving good TER scores, in both language pairs.

TenantPartition The TenantPartition groups tenants in six classes. We inves-
tigated whether there were differences in the TER scores obtained after NPE 
among these classes. In this case, the biggest differences came from the compari-
son between the TER scores of the SMT and the NPE systems.

Tables 14 and 15 show how Chicago and Exchange15 are the two tenants that 
achieve the highest reduction in TER scores, from SMT to NPE output, for both 
language pairs. In contrast, OMain2 was, for both language pairs, the tenant in 
which the TER scores, on average, increased the most.

We can also see that, for both SMT and NPE output, and in both language 
pairs, OMain2 is always the tenant in which we get the lowest TER scores. How-
ever, we did not find a correlation between the highest/lowest TER scores and the 

Table 13  Average TER scores 
per length partition, for both 
language pairs

Length partitions EN–DE EN–ES

0-4 35.50 29.55
5-9 23.69 19.92
10-30 23.82 21.90
31-300 29.73 24.78

Table 14  Average TER scores per TenantPartition of SMT and NPE for EN–DE

TenantPartition Avg TER(smt, pe) Avg TER(npe, pe) Reduction

Chicago 44.64 29.94 − 14.70
OMainCCRel 45.80 37.39 − 8.40
Exchange15 41.65 25.12 − 16.53
OMain2 19.10 22.15 3.06
BitHum 39.31 41.53 2.22
Other 37.28 30.79 − 6.49

Table 15  Average TER scores per TenantPartition of SMT and NPE for EN–ES

TenantPartition Avg TER(smt, pe) Avg TER(npe, pe) Reduction

Chicago 29.66 25.22 − 4.44
OMainCCRel 29.49 26.70 − 2.79
Exchange15 28.50 22.95 − 5.55
OMain2 13.17 19.84 6.67
BitHum 29.23 33.55 4.32
Other 23.81 26.36 2.55
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reduction/deterioration in the TER scores between the baseline SMT and the NPE 
systems, in this analysis per TenantPartition.

These results show the relevance of using the tenants as informative tokens for 
NPE, as we had seen for length. Since these tenants probably group different types 
of content, this analysis could be further explored in future studies, by looking at the 
specific linguistic features that create this difference in results.

TER ranges We then investigated how the best NPE systems performed according 
to the initial TER scores of the SMT output. We grouped the segments in the test set 
according to ranges of 20 TER points, we counted the number of segments in those 
ranges in SMT and in NPE output, and then we estimated the percentage of those 
counts over the whole test set. The observations are illustrated in Tables 16 and 17.

Tables 16 and 17 show an increase in the number of segments with TER scores 
in the first two ranges, of zero TER and of scores up to 20 points, for both language 
pairs, after NPE was applied. In EN–DE, the percentage of segments with zero TER 
increased from 29% in the SMT output to 41% in NPE output. In EN–ES, the ini-
tial number of segments in this TER range in SMT was already high, 38%, but this 
increased one point, to 39% in NPE. The two first ranges gained in total 1684 seg-
ments in EN–DE, and only 410 segments in EN–ES.

The only range in which this percentage increased again was in the number of 
segments with TER scores above 100, an increase that reflects a deterioration in 
TER scores caused by NPE. It is important to note that these are segments in which 
all words are edited or there is an addition of words in the edited version. (Since 
TER is not capped, if an edited sentence has more words than the reference, then 

Table 16  Number and 
percentage of segments per TER 
reange in SMT and NPE output 
for EN–DE

TER ranges SMT % total NPE % total Diff.

0 2947 29 4076 41 1129
1–19 659 7 1214 12 555
20–39 1858 19 1602 16 − 256
40–59 2013 20 1170 12 − 843
60–79 1214 12 604 6 − 610
80–99 298 3 162 2 − 136
100–1140 1011 10 1172 12 161

Table 17  Number and 
percentage of segments per TER 
range in SMT and NPE output 
for EN–ES

TER ranges SMT % total NPE % total Diff.

0 3782 38 3910 39 128
1–19 1442 14 1724 17 282
20–39 2219 22 2015 20 − 204
40–59 1273 13 982 10 − 291
60–79 613 6 480 5 − 133
80–99 164 2 122 1 − 42
100–1140 507 5 767 8 260
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the score will be higher than 100%.) There is a long tail of segments in this range, 
in both outputs and in both language pairs. In EN–DE, the number of segments in 
this highest TER range (of 100–1140 TER points) increased from 10 to 12%, and in 
EN–ES from 5 to 8%.

The number of segments in the four TER ranges between these two extremes 
(segments with TER between 20 an 99%) always decreased from SMT to NPE. 
The TER scores of the sentences in these ranges could have improved or deterio-
rated, but we can see that the vast majority of these sentences saw their TER scores 
reduced to a value between 0 and 19. Let us look in detail at the table for EN–DE, 
for example. There are 161 segments that had a TER below 100 in SMT and whose 
score was deteriorated to values between 100-1140% by NPE. We can assume that 
most of these segments belonged to the 80-99 range: this range lost 136 segments, 
and we only need another 25 segments from the 60 to 79 range to have all segments 
in which the TER scores deteriorated. This means that NPE was able to reduce the 
TER to a value between 0 and 19% editing in a number of sentences that is equiva-
lent to those that had editing scores from 20 to 79% but which moved to a different 
20-point range of editing scores.

Our observations thus suggest that NPE systems are capable of reducing the TER 
score obtained by SMT systems, measured against the human PE, in segments that 
show a wide variation of initial TER scores. However, these systems show bigger 
difficulties at higher levels of editing. Of course, we are only looking at gross num-
bers of segments between 20-point ranges; many changes in the TER scores hap-
pened within the ranges that we use in this analysis. We look next at some of the 
extreme TER scores in the dataset.

Segments with extreme editing The final task in this detailed evaluation looked at 
segments with very low or very high numbers of errors, as identified by TER, and 
for very long and very short segments.

TER(npe, pe) counts as an error, or edit, every word that has been deleted, 
inserted, substituted or shifted in the NPE translation, when compared to the PE. 
Table 18 shows the number of segments with zero edits in the SMT output, the num-
ber of segments with zero edits in the NPE output, and the intersection between the 
two columns, i.e. the number of segments which have zero edits in both outputs. In 
EN–DE, of the ca. 3000 segments that had zero errors (no edits when compared to 
PE) in the SMT output, only ca. 2000 (i.e. 67%) were maintained in that condition. 
The rest will have been edited somehow by the NPE and their TER was deterio-
rated. However, the number of segments with zero edits in NPE was increased by 

Table 18  Number of segments 
with minimum and maximum 
editing in SMT and NPE output 
for EN–DE

Errors per segment SMT NPE Both % SMT

NumErr = 0 2947 4076 1983 67
NumErr = 1 1311 1787 504 38
NumErr > 100 2 7 0
Total errors in seg 

NumErr>100
290 1700 0
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an extra 1000. This same tendency is seen in segments with one error, in this case 
with different percentages. This means that, although NPE does deteriorate the TER 
in a portion of the best scores from SMT, it is capable of improving the global TER 
scores by reducing the TER in a higher number of segments.

In the other extreme, for segments with a high number of errors, above 100 (and 
this number reaches 382 in one single segment), there is a higher number of seg-
ments in NPE than in SMT. The seven segments in this group have all more than 
100 words, they include several sentences, and some are composed of long lists of 
non-translatable code, placeholders, and similar UI content. NPE truncated some 
of these segments, it translated non-translatable elements, and it has missed the 
detailed translation required within these segments. NPE edited almost all of the 
words in these segments, which justifies that there are 1700 errors in 2100 words 
in these segments alone. We may add that in all 290 segments with more than 100 
words, only five have less than 100 errors, but that all segments with more than 
200 words are in this list of segments with more than 100 errors. Considering the 
magnitude of errors added to the TER scores in these sentences alone, a process that 
tackled this problem alone could have a big effect in the precision of the system. 
As alluded for in the data analysis (Sect.  3.1), this type of issue could be solved 
with a pre-processing stage to split long segments that include several sentences into 
single-sentence segments.

Table 19 reports the equivalent data for the EN–ES NPE systems, and the behav-
iour is similar.

Segments with extreme lengths The analysis of the shortest and longest segments, 
summarised in Tables  20 and 21, shows another dimension of the need for some 
form of optimisation for specific segments.

The edit scores in one-word segments are heavily deteriorated by NPE systems, 
for both languages. If we look in detail to these segments, we will see some of the 

Table 19  Number of segments 
with minimum and maximum 
editing in SMT and NPE output 
for EN–ES

Errors per segment SMT NPE Both % SMT

NumErr = 0 3782 3910 2566 68
NumErr = 1 1400 1887 620 44
NumErr > 100 0 7 0
Total Errors in seg 

NumErr>100
0 1154 0

Table 20  Number of segments with minimum and maximum numbers of words in SMT and NPE output 
for EN–DE

Short and long segments No. SMT_TER NPE_TER Reduction

One-word segments 1351 27.4 56.07 28.67
Two-word segments 1794 38.52 32.94 − 5.58
Segments with +100wds 12 28.07 44.1 16.03
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effects of “hallucinated” BPE words. In two-word segments, the scores improve, and 
in EN–DE NPE already achieves a better editing score than SMT. In EN–ES, the 
improvement is not so high to make NPE improve on the SMT. In the long seg-
ments, as we have seen above, the deterioration of TER scores by NPE is much 
higher. As we mentioned before, the longest segments include several strings of 
localisation code and placeholders, elements which make it very hard for any MT 
systems to identify the language content and translate it adequately. We can see from 
this brief analysis that NPE is well tuned to mid-length segments in such a way that 
it compensates for this lack of capacity in segments at the length extremes.

Summary of detailed evaluation This detailed evaluation has answered the two 
questions we initially asked. First, it has shown that our best NPE systems in each 
language pairs were very precise and also balanced, in terms of the distribution of 
edit operations. Besides, it helped us see that the added tokens of length and ten-
ant were in fact very informative, since they pointed to partitions of data in which, 
although the distribution of TER improvements was not equal, the gains in some of 
the partitions compensated for the losses in others. Finally, this evaluation allowed 
us to identify types of segments in which TER deterioration occurred most fre-
quently, namely segments which show more than 100 errors in SMT output and 
those that have one, two or more than 100 words, information which can help devise 
methods to tackle this specific deterioration and thus improve the precision of an 
NPE system to be used with this type of data.

5.3  Evaluation of NPE on NMT output

After the global evaluation of the performance of all NPE systems, the best perform-
ing systems were applied to NMT output. For EN–DE, we used the Augmented 2 
system, trained with the TenantPartition token. For the EN–ES language pair, we 
use Augmented 1, trained with the Length token, as explained before.

We applied our NPE on custom NMT systems (sequence-to-sequence with LSTM 
units), trained with Marian-NMT, with default parameters for EN–DE and EN–ES. 
For training we used in-domain data after we ensured that there were no overlaps 
with the APE training data. We then translated the original test set source strings 
and next we applied our NPE systems. The output of these systems is referred to as 
“NMTcustom with NPE” in Tables 22 and 23. The performance of this system was 
measured against the original PE reference.

Table 21  Number of segments with minimum and maximum numbers of words in SMT and NPE output 
for EN–ES

Short and long segments No. SMT_TER NPE_TER Reduction

One-word segments 1130 22.02 50.42 28.4
Two-word segments 1598 28.52 29.25 0.73
Segments with  + 100 wds 15 20.2 51.96 31.76
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In industry it is still the case that SMT rather than NMT systems prolifer-
ate in real production scenarios, as these SMT systems have continuously been 
updated and tuned to achieve high performance in the actual translation pipe-
lines deployed. While NMT systems continue to improve, and despite the fact 
that those which are used in production have surpassed the quality obtainable 
via SMT, our main objective in these experiments was to show that while NPE 
can improve NMT output, the gain is lower than when post-editing SMT output. 
Besides, at the time of this project (2018), the amount of post-edited NMT data 
was not adequate to fully train and test the learning capacity of an NPE system 
applied to NMT output.

We can see from Tables 7 and 8 that these are under-performing NMT systems, 
with TER and BLEU scores that do not represent major improvements from the 
baseline SMT systems. This may be due to big differences between the training data 
used for the NMT and the actual data in the test set. Still, this created the conditions 
to test the application of the lessons learnt by the NPE system on SMT output to 
new NMT output.

The NPE systems (having been trained on SMT output), receive the SRC+NMT 
output of the test set as multi-inputs, and translate this input into an improved ver-
sion in the target language.

It is important to note that this approach is against the assumptions of an APE 
process: the editing patterns that have been learnt during training are closely depend-
ent on the output of the MT system used originally, in this case, SMT systems, so 
the use of input from a different MT system may present unpredictable results. Still, 
these results contribute to answering a different question: can an APE system trained 
on SMT output be used to improve NMT output?

We can see that, for EN–DE, TER has been reduced in −  7.20, and BLEU 
increased 17.60, when we applied NPE to an underperforming NMT system output. 
For EN–ES, there were visible improvements in BLEU (2.50), but TER deteriorated 
(+ 2.30).

Table 22  Comparison of custom NMT system before and after NPE for EN–DE

Sys. ref BLEU (Moses) BLEU (MultEval) TER (MultEval)

NMTcustom 41.51 41.20 39.10
NMTcustom with NPE 59.11 58.80 31.90
(Auggmented 2)

Table 23  Comparison of custom NMT system before and after NPE for EN–ES

Sys. ref BLEU (Moses) BLEU (MultEval) TER (MultEval)

NMTcustom 59.71 59.40 24.40
NMTcustom with NPE 62.07 61.90 26.70
(Auggmented 1)
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A conclusion we can take from these results is that NPE systems are not able to 
achieve as high improvements in NMT output, as they can when working with out-
puts from different MT technologies. Besides, although the EN–DE results seem to 
be promising, the results in the other language pair seem to fail, in view of a thinner 
learning margin. Further experiments, and a detailed analysis of the results, would 
be required to give a more accurate answer to the question of the applicability of an 
NPE system trained on SMT output to improve NMT output.

6  Conclusions

This article presents the outcome of a joint project between ADAPT and Micro-
soft on the topic of Neural Post-Editing (NPE). We investigated different options for 
building an NPE system, drawing a roadmap to aid with the major decision points. 
This map covers decisions about preprocessing (segmentation and tokenisation) of 
the data, the NPE architecture, the approach chosen to present the input/output to 
the system, as well as how to introduce extra information, targeting optimal per-
formance. Following this roadmap, we identified the optimal setup—multi-source 
LSTM encoder/decoder networks with data augmented with extra information (pre-
sented as a prefix token, attached to each triplet) for both EN–DE and EN–ES. The 
use of prefix tokens has proven beneficial in MT for domain adaptation, for correct-
ing politeness, and for improving gender issues. To our knowledge, this work was 
the first to use this approach for automatic post-editing, and has been shown to lead 
to the best performing systems.

In addition, we conducted an in-depth comparative analysis on the trained sys-
tems with respect to TER. The effects of our systems have been positive under all 
investigated criteria. Furthermore, the detailed evaluation of the results showed 
areas in which research can invest to improve or fine-tune NPE application to spe-
cific use cases.

This project has demonstrated a positive contribution from APE in improving the 
output of MT content production workflows in commercial environments. Compa-
nies dealing with translation data over the years have accumulated post-edited data 
which may be tapped into and used to learn editing patterns that may help improve 
the outputs of MT systems. This contribution is not so clear when content produc-
tion systems are based on NMT, so more research is needed to clarify how APE can 
improve on this output.

One issue that deserves further attention is related to how sequence-to-sequence 
systems, and in our case APE systems, handle long inputs, e.g., beyond our 300-
token limit. In an industry setting, this can be common for many texts. In the future, 
we would like to investigate this issue and we consider paragraph or document level 
APE with smart ways to segment longer input sequences.
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