
Vol.:(0123456789)

Machine Translation (2020) 34:67–96
https://doi.org/10.1007/s10590-020-09249-7

1 3

A roadmap to neural automatic post‑editing: an empirical
approach

Dimitar Shterionov1,4 · Félix do Carmo2,4 · Joss Moorkens3 · Murhaf Hossari4 ·
Joachim Wagner4 · Eric Paquin4 · Dag Schmidtke5 · Declan Groves5 · Andy Way4

Received: 2 April 2019 / Accepted: 22 July 2020 / Published online: 3 September 2020
© The Author(s) 2020

Abstract
In a translation workflow, machine translation (MT) is almost always followed by
a human post-editing step, where the raw MT output is corrected to meet required
quality standards. To reduce the number of errors human translators need to correct,
automatic post-editing (APE) methods have been developed and deployed in such
workflows. With the advances in deep learning, neural APE (NPE) systems have
outranked more traditional, statistical, ones. However, the plethora of options, vari-
ables and settings, as well as the relation between NPE performance and train/test
data makes it difficult to select the most suitable approach for a given use case. In
this article, we systematically analyse these different parameters with respect to NPE
performance. We build an NPE “roadmap” to trace the different decision points and
train a set of systems selecting different options through the roadmap. We also pro-
pose a novel approach for APE with data augmentation. We then analyse the perfor-
mance of 15 of these systems and identify the best ones. In fact, the best systems are
the ones that follow the newly-proposed method. The work presented in this article
follows from a collaborative project between Microsoft and the ADAPT centre. The
data provided by Microsoft originates from phrase-based statistical MT (PBSMT)
systems employed in production. All tested NPE systems significantly increase the
translation quality, proving the effectiveness of neural post-editing in the context of
a commercial translation workflow that leverages PBSMT.

Keywords Automatic post-editing · Neural post-editing · Multi-source · Deep
learning · Empirical evaluation · Machine Translation

At the time of conducting this work, Dimitar Shterionov and Félix do Carmo wereemployed at the
ADAPT Centre, Dublin City University, Dublin, Ireland.

 * Dimitar Shterionov
 d.shterionov@tilburguniversity.edu

Extended author information available on the last page of the article

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/395062205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0001-6300-797X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10590-020-09249-7&domain=pdf

68 D. Shterionov et al.

1 3

1 Introduction

Machine Translation (MT) is widely employed in industrial translation workflows.
MT for dissemination is an intermediate step which generates a raw translation of
a given source document or a sentence, followed by a post-editing step that ensures
that the quality of the final translation meets required quality standards. Automatic
Post-editing (APE) is an area of research aiming at exploring methods that apply
editing operations on an MT output to produce a better translation and thus reduce
the human effort in the translation workflow.

APE covers a wide range of post-editing approaches, from regular expressions
applied on the MT output to post-editing simple error patterns, to deep learning
techniques that can transform complete sentences, paragraphs or even documents
into a more correct variant. Needless to say, while APE aims to reduce certain MT
errors, it is up to the human translator to accept or further post-edit the output. In
this article, we focus on APE with deep neural networks—neural APE or simply
neural PE (NPE)—and the sentence-to-sentence post-editing case.

In the rest of this article we use the following abbreviations and notations:

– SRC segment(s) in the source language;
– MT the output of a non-specified MT system;
– PE the version of the MT segment(s) after post-editing by professional transla-

tors;
– SMT the output of an SMT system, usually the baseline;
– NMT the output of an NMT system;
– NPE the version of the MT segment(s), after post-editing with an NPE system;
– TER(npe, pe), TER(smt, pe) the TER score between NPE or SMT (the hypoth-

esis) and PE (the reference), a human post-edited version of the machine transla-
tion output is used as reference.1

1.1 Automatic post editing and its parallelism with machine translation

APE systems convert a segment e in the target language L2 to a corrected variant e′ in
the same language. The APE task can be seen as a monolingual translation task where
the source and the target language are the same. As such, APE implementations are
rather similar to MT systems and even employ similar methodologies. However, while
in an MT scenario a system is trained on pairs of sentences (f, e) in two different lan-
guages, in an APE scenario the available data includes MT input and output, as well
as the human post-edited variant of it. That is, an APE system is trained on triplets of
sentences—(f , e, e�)—where e′ is the post-edited variant of e. Such triplets (i) reveal
the transformations of e into e′ that should be learned by the APE, for it to correct

1 We refer to these scores as TER instead of HTER since we use the PEs as references with no further
human post-editing. That is, it is simply an automatic scoring of TER between a hypothesis (output by an
MT or an APE system) and a reference (produced by a human translator).

69

1 3

A roadmap to neural automatic post-editing: an empirical…

automatically any new data and (ii) allow for a consistency check with the source sen-
tence f. The learning process depends on the availability of enough triplets.

1.2 Data demands and data scarcity

While the collection of parallel data (for training MT engines, for example) has been an
ongoing process since the beginning of SMT, APE is a recently-emerged approach. For
many language pairs, thus, enough parallel data is available. However, that is not the
case for triplets with human post-edited data, required in data-driven APE approaches.

To mitigate this issue for the open development of APE systems, datasets of artifi-
cially generated triplets have been produced and made publicly available. In Junczys-
Dowmunt and Grundkiewicz (2016) one such set for the English → German language
direction is described. It is generated via round-trip translations using two PBSMT
engines, one for the German → English and another for the English → German lan-
guage directions. The synthetic post-edit triplets are composed of the German source
data as the post-edited data, the German → English translated data as the English
source, and the round-trip translation output as the uncorrected MT data. Consecu-
tively, the data is filtered according to TER to mimic the quality of the provided APE
data. More recently, Negri et al. (2018) present the eSCAPE corpora covering multiple
language pairs. Their method is to translate freely-available data and use the target side
as a human post-edited version of this translation, thus creating triplets of sentences.

Exploiting synthetic data has shown to lead to improvements in APE (Bojar et al.
2017; Chatterjee et al. 2018) and in NMT systems (Sennrich et al. 2016b; Poncelas
et al. 2018). A detailed summary is presented in do Carmo et al. (2020). However,
Poncelas et al. (2018) show that using excessive synthetic (i.e. backtranslated) data can
lead to deterioration of quality. Nevertheless, in an industry environment where human
post-editing is a standard procedure, a sufficient quantity of closed-access triplet data
is often available (Crego et al. 2016; Mathur et al. 2017). This was the case in the col-
laborative project between the ADAPT centre and Microsoft described in this article.
This data is typically (i) optimised towards the domain of application (i.e. with respect
to terminology, style, etc.) and (ii) conforms with the quality standard requirements.

In this article, we present NPE systems trained on industry-standard data for the
English–German (EN–DE) and English–Spanish (EN–ES) language pairs. And while
the data we used is not publicly available, this article aims to convey our knowledge
and experience on such data, making it easier for researchers to understand industry
requirements and to provide solutions that apply not only in academic but also in com-
mercial conditions.

1.3 The ADAPT‑microsoft APE project

The systems we present in this article are the result of a collaboration between the
ADAPT Centre and the Microsoft GSX Language Technology group that took place
between May and September 2018.

This collaborative project aimed to test the use of NPE in a commercial environ-
ment and with industry-standard data. The data, provided by Microsoft, is part of the

70 D. Shterionov et al.

1 3

production data. Within the scope of this project, we considered two language pairs:
English–German (EN–DE) and English–Spanish (EN–ES), exploited in two rounds.

The project was divided into two main stages: stage i State-of-the-art review and
analysis, and stage ii Implementation and Empirical evaluation.

In stage i we conducted a review of the state-of-the-art of APE systems. The pur-
pose of this first stage was to inform the empirical one, i.e. stage ii, and guaran-
tee that the best technology available was employed for the purposes of the project.
A summary and analysis of state-of-the-art APE systems is presented in do Carmo
et al. (2020).

Stage ii started with a full analysis of the data provided by Microsoft. Section 3 of
this article summarises our findings with respect to the data. This analysis allowed
us to identify specific features in the data that conformed the models tested at the
next stage.

The implementation and evaluation part was divided in two. First, we trained and
evaluated NPE systems with EN–DE data. This round ran as a standalone project
encompassing data analysis, data preprocessing, deciding on NPE systems to train,
and training and assessment, all using only EN–DE data. Based on the results, obser-
vations and acquired knowledge from the first round, we conducted a second set of
experiments with EN–ES data. That is, we selected some of the best approaches
and we ran experiments on EN–ES data, with fewer systems involved. Overall we
trained 15 different systems (11 systems with EN–DE data and 4 with EN–ES data),
exploring diverse setups with and without augmentation of the input data. These
systems are described in Sect. 4.

In the evaluation part we collected standard edit scores—TER (Snover et al.
2006) and BLEU (Papineni et al. 2002)—of the different systems under compari-
son. A detailed analysis of the results was also performed. Our evaluation results are
reported in Sect. 5.

2 Neural APE

In this work, we analyse and empirically evaluate different NPE approaches and
present the most efficient ones. The ultimate goal of this work is to inform the
reader about the end-to-end process for achieving high-quality APE output, along
with the conditions and limitations of the various approaches. In addition, we
exploit industry data composed of triplets ({src,mt, pe}) where the post-edited
segments originate from professional translators. Thus, we aim to draw a road-
map over existing neural APE techniques. The major decision points are related
to (i) the neural architecture and (ii) how the data is used for training the NPE
system. We do not investigate the effects of adapting low-level settings of the
neural systems, such as the learning optimiser, the size of the neural networks,
etc. as they are outside of the scope of this project; we consider the default set-
tings to be effective for our tasks. In (Junczys-Dowmunt and Grundkiewicz 2017)
an analysis of various sequence-to-sequence architectures for APE is presented,
over the differences and the effects of the various attention mechanisms on APE

71

1 3

A roadmap to neural automatic post-editing: an empirical…

quality. Our work aims to explore various architectures in a commercial environ-
ment and it focuses on the dependencies between data and model architectures.

As noted in Sect. 1, the APE task involves handling multi-source input and
a single source output (Input: {src,mt},Output : pe). In a sequence-to-sequence
encoder-decoder architecture, the multi-source input can be handled with either
a single encoder or with multiple encoders. That would impose different require-
ments towards preprocessing the data and building dictionaries. For example, if a
single encoder is used, then the SRC and MT need to be concatenated and a joint
dictionary needs to be built.

A double-encoder NMT model, where SRC and MT inputs are encoded sep-
arately and the corresponding context vectors are used together as input to the
decoder, would require separate dictionaries: two for the SRC and MT and one
for the PE data. In the latter case the dictionary size would be smaller than the
one of a joint dictionary in the former (single-encoder) case.

Another decision on how to approach NPE is whether to use ensembles of
models or a single-model NMT system. To handle different types of input/output
pairs (e.g. based on character count or word count) we can either implement an
ensemble NMT system, where different networks will be trained on the different
input/output pairs, or one single network trained on data carrying extra informa-
tion regarding its type. In this case, a prefix token can be added to each input
pair or triplet, which identifies the type(s) of input. While ensembling is widely
used for NMT, quality estimation, and APE, it complicates the architecture, add-
ing an extra layer of training and optimisation. This type of engineering over-
head makes it prohibitive for large-scale QE employment that is required in a
commercial workflow. For example, Microsoft operates with more than 80 lan-
guages, therefore it is easy to see how important it is to choose an efficient and
scalable approach for production. The latter approach, i.e. adding a prefix token
to the input sequence, follows from transfer learning and has been employed suc-
cessfully on multi-language MT (Johnson et al. 2017; Mattoni et al. 2017), gen-
der identification in MT (Vanmassenhove et al. 2018) and controllability in MT
(e.g., to manage forms of politeness (Sennrich et al. 2016a)). Using a prefix token
allows only one system to be trained jointly to perform APE on different types of
input. To our knowledge, at the time of conducting the experiments, our work was
the first to employ such an approach for APE.

For NMT, splitting words into subword units has led to state-of-the-art
results. The most common method is unsupervised Byte Pair Encoding (Senn-
rich et al. 2016c), BPE in short, a fast and language-independent method. Other
methods based on morphology (e.g. based on Morfesor (Creutz et al. 2005; Smit
et al. 2014)) have also led to good results for specific languages (Ataman and
Federico 2018). Their main drawback is the language dependency. Segment-
ing tokens into their basic building blocks, i.e. characters, has been explored for
character-based NMT (Lee et al. 2017) and also for character-based APE (Junc-
zys-Dowmunt and Grundkiewicz 2017). For our NPE systems, we considered
words and subword units generated with BPE. Increasing the granularity of sub-
word units to characters would imply that the APE system would have to learn
how to correct the spelling of specific words—a task that is computationally

72 D. Shterionov et al.

1 3

more expensive and unnecessary for our use case (the dataset originates from
SMT systems and it is therefore expected to be correctly spelled).

Another decision point is whether to extend the training data with data-spe-
cific features. Similar to Hokamp (2017), an option is to add syntactic features
as factors and train a factored NMT system.

These different decision points are mapped in Fig. 1 in the form of a road-
map. We follow this roadmap to systematically construct our experiments and
train the corresponding systems. Such a systematic empirical evaluation aims to
inform the reader of the possible options and their implications in constructing
APE systems for other use cases.

Clean data

Cased data

Combined data

Word segmented data

Augmented data

Ready to train data

Encoder/decoder type selected

Number of encoders selected

Encoder combination selected

System trained

Lower
True

No/normal

Joint

Independent

Chars Subwords

Words

No Prefix Feat.
Both

CNN
LSTM

Transformer

Concatenated
Multi-source

No ensemble
Ensemble

Ready to train

Fig. 1 A roadmap over the decision points for an APE system. Each node represents a stage prior to
training an APE system. Each transition between the nodes on the map represents the different options
of a single decision point. A transition between two nodes should follow only one of the available edges,
that is, multiple options for a single decision point are not possible. Continuous lines indicated options
we empirically evaluated in Sect. 4; for the rest we present thorough analysis based on literature and
preliminary experiments. Legend (following the roadmap): Lower lower-cased data; True true-cased data
(only change words at the beginning of a sentence to their most frequent form); No/normal do not apply
any casing transformation; Joint combine SRC, MT and PE data to build a joint vocabulary or word-
segmentation (e.g. BPE); Independent do not combine SRC, MT and PE data, but apply consecutive
transformations independently on each of them; Chars segment each word on character level; Subwords
segment each word on subword level (e.g. after BPE); Words no word segmentation; No no data augmen-
tation; Prefix data is augmented using a prefix on each sentence; Feat. per-word features; Both prefix and
features; CNN NMT with CNN-based encoder and decoder; LSTM NMT with LSTM-based encoder and
decoder; Transformer Transformer NMT architecture; Concatenated SRC and MT input sentences are
concatenated; Multi-source SRC and MT are fed separately into an encoder; No ensemble do not ensem-
ble models; Ensemble ensemble models

73

1 3

A roadmap to neural automatic post-editing: an empirical…

3 Data analysis

The data provided by Microsoft (actual production data), constitutes a collection
of 201,000 triplets, translated from English into two different target languages:
German (EN–DE) and Spanish (EN–ES). These triplets include the source
English string (SRC), its machine translation (MT)—originating from an SMT
system—in different moments in time, and their corrected versions created by
human post-editing (PE). The data consisted of user interface (UI) strings, that
is, it contained menu entries, help messages, etc. from different Microsoft soft-
ware products.

The following analysis was produced only for the EN–DE language pair, dur-
ing the first round of stage ii of the project.

3.1 Pre‑processing

First, we performed a data analysis on the English-German data to identify
issues and irregularities that might impede the performance of an APE system.
We investigated strings such as untranslatable items, file names/paths/locations,
hyperlinks, markup, structured alphanumericals, and so on, which are very fre-
quent in UI data. The inappropriate handling of these strings, e.g., incorrect
tokenisation, could trigger an APE system to post-edit an already correct trans-
lation, i.e. the problem of overcorrection. As a result, we proposed and imple-
mented a pre-processing step to clean and normalise the data. This step included
the normalisation of spaces, punctuation, quotes, and other special characters.

Segment duplication was also analysed. It is a typical situation in production
scenarios, where the same segment may be produced in different projects and
translated repeatedly. We identified 0.4% of the data as full duplicates—same
SRC, MT and PE—and removed them.

We also noted that some segments in the provided data form small para-
graphs, containing more than one sentence. We analysed the distribution of such
segments and identified that 22% of the segments contained more than one sen-
tence, and only 0.4% of the segments contained more than five sentences. We
assessed their structure and found it impractical to segment these to the sentence
level. It is typical in NMT and APE to cut sentences to around 60 tokens for
efficiency and performance purposes. To accommodate these long sentences, we
extended this cut-off limit to 300 and 150 tokens, for concatenated and multi-
source systems respectively (see Sect. 4).

We implemented a pre-processing step that tackles the aforementioned issues
and further cleans the data. While some of the pre-processing is language inde-
pendent, e.g., file names/paths/locations, other modifications are language
dependent. In Sect. 4.1 we discuss the employment of this step in our experi-
ments for the EN–DE data.

74 D. Shterionov et al.

1 3

3.2 Partitions

Next, we analysed the data with respect to different common characteristics that
might show similar patterns and potentially guide the APE systems. Besides the
triplets of SRC, MT, PE, the provided dataset included information such as the
software package that was translated, the translation project, a timestamp and
other metadata. We hypothesised that each of these metadata categories could act
as a factor in grouping the data into partitions that share common features. These
common features in turn would help the decoding process to find a better post-
edited candidate. We studied several ways to partition the data, using a criterion
of relevance, based on the distribution of data in the classes, to decide which
would be used in the experiments. Following, we present the main partitions we
considered together with the factors and reasons for focusing on these.

– Length: Microsoft provided a word count of each source segment, produced
with Microsoft’s internal tools. Microsoft wanted to receive results and obser-
vations for subsets of the data based on the following length intervals: (i) 0–4;
(ii) 5–9; (iii) 10–30; (iv) 31–∞ . We distributed the data into 4 partitions based
on the length of the source segments: Len1, Len2, Len3, Len4.

– Tenant: another useful metadata label is the tenant description. A tenant is a
grouping of projects, according to Microsoft organisation. We used this infor-
mation to form 14 partitions of our data according to the tenant label.

– TenantPartition: because some partitions based on the tenant label contained
a very small number of segments, we further organised the data into 6 parti-
tions—the top five tenants as specific partitions, and the others into one single
partition called “Other”. In the rest of this article we refer to this partitioning
as “TenantPartition”.

Aside from these three classes for partitioning the data, we also considered Pro-
ject and Number of sentences in a segment as relevant criteria, in addition to dif-
ferent ways to calculate word and token counts. However, these were not con-
sidered relevant due to the unbalanced way in which segments were distributed
according to these criteria. For example, there was a high number of projects
(583), many of which contained a small number of segments:

– The largest project, “DevSuitePortal”, had 16.5k segments (8.2%).
– The second largest, “word-Office-ios”, had 9.6k segments (4.8%).
– The top 5 cover 47.9k (23.8%), the top 10 cover 73.2k (36.4%).
– 350 projects had less than 100 segments.
– 94 projects had less than 5 segments.

As for the number of sentences in a segment, we analysed their distribution, and
we identified that 88% of the segments contained 1 sentence, and there were only
0.4% segments with more than five sentences. Due to the skewed distribution, we
decided not to use this as an informative feature for data partitioning.

75

1 3

A roadmap to neural automatic post-editing: an empirical…

3.3 Editing patterns

A brief analysis of some of the editing patterns in the data was also done at this
stage, although it was not intended to apply these as components of the training sys-
tems. A type/token ratio analysis and an analysis of unique trigrams showed that PE
sentences had a richer vocabulary, which was used more consistently than in MT
output. These data conform with the findings presented in (Vanmassenhove et al.
2019) and Toral (2019) about the differences the lexical richness between human
and machine translated text.

We also observed that in 27.4% of the segments the MT output had not been
post-edited. A close analysis of some of these segments shows segments composed
of placeholders, numbers, URLs, or other non-translatable elements. The number
of segments in which the PE content is the same as the SRC content is around 10%,
again with some cases of untranslatable elements or placeholders.

The distribution of editing operations observed in the training data was as fol-
lows: a higher number of substitutions (22%), followed by deletions (15.4%), with
insertions and shifts at similar proportions (ca. 4%). This distribution is typical of
PE scenarios and it is more or less reproduced by the best APE systems (do Carmo
et al. 2020).

3.4 Training, development and test data

The provided data consisted of 180,198 triplets of segments as training data
(SRC,SMT → PE), 10,000 triplets as test and 10,000 as development sets. For the
two language pairs the source side of the training data is the same, however the test
and development sets are different, since the sampling method did not only use fea-
tures of the source segments, but also features of the target segments.

Our data analysis also guided the selection of the development and test sets. We
took into account the main features and partitions identified in the data. The features
that were considered relevant for extracting a balanced sample of the dataset were:
length of the segment (source words), token count of the PE data, the tenant, the
TER scores estimated between MT and PE, and number of sentences in a segment.
We selected randomised and stratified subsets for the training, development, and test
sets.

For both training and translation, we use tokenised, normal-cased sentences. We
applied neither lowercase nor truecase to the tokens, but used their original form,
in order to account for casing errors. By using original-case data, the NPE system
would learn to recognise casing errors we aim to fix along with everything else.

4 Experiments setup and tested systems

We followed the roadmap of Fig. 1 and built 15 NPE systems, alternating between
the different options on the choice points. We first trained and evaluated 11 systems
for the EN–DE language pair. Following their evaluation, we used the parameters

76 D. Shterionov et al.

1 3

that led to the best performance to train 4 systems for the EN–ES language direc-
tion. Our empirical assessment then aimed to: (i) identify the best system for our use
case and for the two language pairs and (ii) identify how different system variables
affect the NPE performance.

4.1 Systems

Pre-processing: Following the discussion in Sect. 3 with respect to the EN–DE data,
we added an extra decision point on our roadmap regarding the pre-processing of
the data. There were two pre-processing methods—we could either use the original
data as preprocessed by Microsoft, or the data that resulted from applying ADAPT’s
pre-processing which fixes spaces, quotes, and other issues as presented in Sect. 3.1.
That gave rise to two different types of systems.

We ought to note that while the ADAPT pre-processing led to better results (see
later in Sect. 5) we decided to use Microsoft’s (pre-processed) data in the second
experiment round with EN–ES data. The reason is two-fold: (i) a lot of the pre-
processing is language dependent and (ii) the observed improvements are not big
enough to justify the manual labour required to identify a good pre-processing pro-
cedure for the EN–ES data.

Tokens and dictionaries The choice for word segmentation granularity impacts
not only the data vocabulary (i.e., the system’s dictionary), but also the choice of
Encoder/Decoder. We considered three different strategies to build dictionaries: (i)
Character-based; (ii) BPE, including 50k BPE operations; (iii) Word-based. For dif-
ferent use cases, each of these methods has been shown in literature to have a posi-
tive impact on the translation quality, and under different conditions it can be pre-
ferred to the others. While in a post-editing scenario it is important to learn how
to correct complete words, rather than sub-word particles (characters or BPE-based
subwords) an important shortcoming of word-based dictionaries is the large vocabu-
laries that, if reduced for the model to fit in memory, may result in out-of-vocabulary
(OOV) issues. At the other extreme, using characters as basic tokens implies long
sequences that are hard to process (from time and resource perspectives and dimin-
ishing performance for LSTM models) with sequence-to-sequence models (Pascanu
et al. 2012). To target this issue, convolutional neural networks (CNNs) have been
successfully employed in MT (Lee et al. 2017) and APE (Varis and Bojar 2017). In
this work we aim to address the performance of the more mainstream LSTM and
Transformer models.

In our experiments we look into BPE- and word-based dictionaries.
Data augmentation At this stage we had to decide whether and what extra input

information to add. In Sect. 3.2 we identified several data partitions based on certain
properties of the input/output data. We consider the three partitions—(i) Length, (ii)
TenantPartition and (iii) Tenant—as most characteristic and use them to augment
our data. To do so, we introduce an extra token in front of the input sequence that
states the partition it belongs to. We refer to systems trained with extra information
about the Length, TenantPartition and Tenant as Augmented 1, Augmented 2 and
Augmented 3 accordingly (see Tables 1 and 2).

77

1 3

A roadmap to neural automatic post-editing: an empirical…

Similar to Hokamp (2017) we also explored features based on part-of-speech
(POS) tags and dependency parses. However, our preliminary experiments showed
that in a scenario where the SRC and/or MT segments do not constitute well-formed
sentences, as is the case of the UI data in our use case, adding such features impedes
the performance of the system. Our results were below acceptable and after the pre-
liminary tests, we discontinued experimenting with word-level linguistic features
and focused on the prefix-token augmentation. We ought to note that while our
results in the specific use case discard linguistic features, other types of word-level
features may contribute to the overall performance. However, this reaches out of the
scope of our work and we did not pursue this direction.

Input representation Given that the input consists of two types of sequences—the
SRC and the SMT—we can choose between (i) Single sequence input where SRC
and SMT are concatenated or (ii) Multi-sequence input where SRC and SMT are fed
separately. The former case would imply the use of one encoder, while for the latter,
two separate encoders—one for the SRC and another for the SMT sequences.

Furthermore, in the single sequence case, it is important to consider the order in
which sentences are presented—either the SRC is the first part of the sequence fol-
lowed by the SMT, or the other way round. We used concatenated input, i.e. single
sequence input, with the SRC being the first part of the input. We also tested multi-
sequence input, where SRC and SMT are provided as two different inputs to a multi-
encoder architecture.

Table 1 NPE systems and the choice of variable options for the EN–DE language pair

System Preprocessing Word-segment Input representation Encoder Extra information

Vanilla 1 ADAPT BPE Concatenated LSTM No
Vanilla 2 Microsoft BPE Concatenated LSTM No
Vanilla 3 ADAPT Words Concatenated LSTM No
Vanilla 4 Microsoft Words Concatenated LSTM No
Vanilla 5 ADAPT BPE Multi-source LSTM No
Vanilla 6 Microsoft BPE Multi-source LSTM No
Vanilla 7 ADAPT BPE Multi-source Transformer No
Vanilla 8 Microsoft BPE Multi-source Transformer No
Augmented 1 ADAPT BPE Multi-source LSTM LENGTH
Augmented 2 ADAPT BPE Multi-source LSTM TENANTPartition
Augmented 3 ADAPT BPE Multi-source LSTM TENANT

Table 2 NPE systems and the choice of variable options for the EN–ES language pair

System Preprocessing Word-segment Input representation Encoder Extra information

Vanilla 1 Microsoft BPE Concatenated LSTM No
Augmented 1 Microsoft BPE Multi-source LSTM LENGTH
Augmented 2 Microsoft BPE Multi-source LSTM TENANTPartition
Augmented 3 Microsoft BPE Multi-source LSTM TENANT

78 D. Shterionov et al.

1 3

Ensembles As justified in Sect. 2, we do not explore system combination with
ensembles. In our exploration we focus on single-model systems only.

Based on these variables, we implemented a set of APE systems using the Mar-
ian-NMT toolkit. The set of tested systems contains 8 Vanilla systems (when we
only train with the provided language data and we test different NMT implementa-
tions) and three Augmented systems (when extra information is added to the data).
This strategy allowed us to incrementally test characteristics from different state-of-
the-art systems, and to explore knowledge retrieved during the data analysis, as pre-
sented in Sect. 3. Table 1 summarises the systems and the system options we trained
for the EN–DE language pair.

After training and assessing the performance on the EN–DE data, we selected
options and trained 4 systems for the EN–ES language pair. These are listed in
Table 2. While evaluation scores proved that ADAPT’s preprocessing improves the
performance of the EN–DE systems, we do not employ such preprocessing for the
EN–ES systems as discussed earlier in this section.

4.2 System setup

We trained our systems on an Intel-CPU (Intel(R) Core(TM) i7-5960X CPU
@ 3.00GHz) machine, with two Titan X GPU cards with 12GB RAM each. The
machine itself has 64GB of RAM. We used one GPU for each system (training and
translation).

Our training and translation pipelines (see below, after the list of setup options)
are written in bash and invoke scripts in the following languages: Python 3.6, Java,
and Perl. The version of MarianNMT that we used was 1.5.0 and the setup was as
follows:

– Options –mini-batch-fit, –workspace 9000, –layer-normalization, –dropout-rnn
0.2 –dropout-src 0.1 –dropout-trg 0.1, –early-stopping 5, –max-length 150 –max-
length-crop, –valid-freq 2000 –save-freq 2000 –disp-freq 1000.

– Validation metric cross-entropy translation.
– For multi-source systems the max-length was 150, while for the concatenated

systems, the max-length was double the size, i.e. 300.

We used the amun decoder for the concatenated systems, the multi-s2s and the
multi-transformer for the multi-source systems.

4.3 Experiment pipeline

We implemented a pipeline of 5 processing steps. Given that the data provided is
already tokenised, split into train, test and development sets and pre-processed,
no pre-processing and tokenisation were executed in the experiments pipeline.
One exception is the invocation of a step to concatenate the two input sequences
into a single one, for the Vanilla 1—Vanilla 4 systems, trained only in the first

79

1 3

A roadmap to neural automatic post-editing: an empirical…

round (EN–DE). The 5 processing steps of our pipeline are described next,
together with the general settings.

1. Create dictionaries To retain language independency, we built our dictionaries
on source and target languages independently. In particular, given the SRC, SMT,
and PE triplets, the first step will create 3 dictionaries. Prior to extracting each
of these dictionaries, byte pair encoding (BPE) is applied on the data to create
sub-words which will constitute our dictionaries. Dictionaries are extracted only
from the training data, i.e., test and development sets are not considered when
creating the dictionaries.

2. Train Train an NPE system given the two source datasets (SRC and SMT) and
the PE as a target set. These were the training options:

– Use development set for validation.
– Use cross-entropy as the validation and stopping criteria. We used cross-

entropy rather than BLEU to limit the chances to overfit on the develop-
ment set.

– Define early stopping after 5 updates that do not improve the cross-entropy.
– Compute BLEU on the validation set for each 2000 updates.
– Save an intermediate model each 2000 updates.
– Set workspace memory to 9 GB: given that our GPUs have memory of

12 GB, we allowed for 9GB to be used during training; the rest is used dur-
ing validation.

– Use the –mini-batch-fit option and do not explicitly indicate batch size.
Due to the differences in our systems, we did not explicitly set the batch
size and we allowed MarianNMT to determine optimal sizes for each
batch. In some cases, setting the batch size to 64, while using word-based
dictionaries, would lead to out-of-memory issues.

– We also used layer normalisation and dropout.
– Set maximum length of the input sequences for concatenated systems

(Vanilla 1—Vanilla 4) to 300; for all other systems, it was set to 150.

3. Translation After a system is trained, it can be invoked to translate text. In the case
of concatenated systems, the input is one file that contains tokenised sentences in
the source language, concatenated to sentences in the target language (that are the
output of the MT system). For the multi-source systems, there are two separate
inputs—one is the SRC data and another is the SMT data. The generated output
file contains tokens with BPE-specific characters that need to be removed in the
next step.

4. Post-processing BPE-specific characters are removed and the sequences are deto-
kenised.

5. Evaluation Our pipeline contains a script for scoring the output quality against
the PE part of the triplets that formed the test set. The script uses two options for
BLEU and one for TER: (i) Moses BLEU is the multi-bleu.pl script distributed
with Moses 2.1; (ii) MultEval BLEU is the version of the algorithm as imple-
mented within the MultEval tool; (iii) TER is as implemented within the MultEval

80 D. Shterionov et al.

1 3

tool. This evaluation process with multiple metrics allowed us to better assess and
compare the quality of the systems.

4.4 Vocabulary sizes

The vocabulary sizes for the concatenated systems for the EN–DE and EN–ES
language pairs are shown in Table 3.

For the multi-source systems, we used only BPE-based vocabulary, since using
word-based vocabularies would lead to memory outage. The vocabulary sizes are
shown in Table 4.

A partition token for Augmented 1 to Augmented 3 systems is additionally
added to the vocabulary.

4.5 Training statistics

In Tables 5 and 6 we present the training times, number of training iterations and
number of epochs that were required to train each system.

The training of the EN–DE systems in the first round allowed us to conclude
that the Transformer systems (Vanilla 7 and 8) were the fastest.

For the EN–ES round, we only trained and tested one of the Vanilla systems
and the three augmented systems. The decision not to train all the same systems
as for EN–DE was based on the first evaluations of the EN–DE systems. We pre-
sent our results in Sect. 5.

Table 3 Vocabulary sizes for systems with concatenated input

Language pair Preprocessing Word-segmentation SRC ∪ SMT PE

EN–DE ADAPT BPE (50k operations) 44,796 41,631
EN–DE Microsoft BPE (50k operations) 44,820 41,614
EN–DE ADAPT Words 77,924 58,080
EN–DE Microsoft Words 78,834 58,181
EN–ES Microsoft BPE (50k operations) 44,865 41,769

Table 4 Vocabulary sizes for systems with multi-source input

Language pair Preprocessing Word-segmentation SRC SMT PE

EN–DE ADAPT BPE (50k operations) 39,024 40,950 42,246
EN–DE Microsoft BPE (50k operations) 39,570 40,878 42,200
EN–ES Microsoft BPE (50k operations) 37,473 40,841 41,769

81

1 3

A roadmap to neural automatic post-editing: an empirical…

5 Evaluation

Evaluation of the performance of the NPE systems, based on the translation of
the test set, and its comparison to the PE it contained, was processed in several
phases:

1. Collecting the standard metrics for APE evaluation: TER and BLEU, for all sys-
tems. TER was measured using the output of each NPE system as hypothesis,
against the PE as reference. The presented BLEU scores are also computed on the
premises that the NPE output is the hypothesis and the (human) PE is the refer-
ence. This data was first collected for EN–DE, and then for the EN–ES language
pair only once the best EN–DE systems were evaluated (Sect. 5.1).

2. Then, we looked in detail at the results obtained by the different systems, focused
on the precision of the systems, the number of edit operations, the results
within the various partitions, and the minimum and maximum number of errors
(Sect. 5.2).

3. Finally, an experimental evaluation of NPE applied to NMT output was conducted
(Sect. 5.3).

Table 5 Training statistics for
the EN–DE NPE systems

System reference Train time
(minutes)

Iterations # epochs

Vanilla 1 530 26,000 53
Vanilla 2 608 30,000 61
Vanilla 3 478 22,000 42
Vanilla 4 486 24,000 46
Vanilla 5 667 24,000 51
Vanilla 6 658 24,000 51
Vanilla 7 228 16,000 55
Vanilla 8 216 16,000 56
Augmented 1 690 24,000 50
Augmented 2 690 22,000 46
Augmented 3 699 26,000 54

Table 6 Training statistics for
the EN–ES NPE systems

System reference Train time
(minutes)

Iterations # epochs

Vanilla 1 549 28,000 40
Augmented 1 529 22,000 46
Augmented 2 528 22,000 46
Augmented 3 519 22,000 46

82 D. Shterionov et al.

1 3

5.1 Standard evaluation scores

After training our systems, we evaluated them by computing BLEU and TER
scores on the test sets. The results for EN–DE are presented in Table 7, and for
EN–ES in Table 8.

The first thing to observe from Tables 7 and 8 is that all tested NPE sys-
tems improve the quality of the translations of the baseline SMT output. These
improvements are more visible in EN–DE, and the observations on the first round
for this language pair helped us select a lesser number of systems for the second
round for EN–ES. So, let us start by analysing the EN–DE scores.

Table 7 Evaluation scores for
the EN–DE NPE systems

For ease of readability baseline scores on the test set are highlighted
in italic; among the NPE systems the worst scores (on the test set)
are in bold font and underlined and the best scores are in bold

System reference BLEU Moses BLEU
MultEval

TER
MultEval

Dev Test Dev Test Dev Test

Baseline 39.10 41.07 39.10 40.80 41.00 39.20
Vanilla 1 62.87 62.81 62.50 62.70 28.00 27.70
Vanilla 2 62.41 62.95 62.10 62.90 29.20 28.20
Vanilla 3 61.79 62.42 61.50 62.10 29.30 28.10
Vanilla 4 61.31 61.86 60.70 61.20 29.70 29.40
Vanilla 5 63.78 64.16 63.50 63.70 27.70 27.20
Vanilla 6 63.53 63.72 63.01 63.00 28.50 28.20
Vanilla 7 53.26 54.25 53.00 53.80 35.70 35.10
Vanilla 8 53.19 53.91 52.60 53.20 36.40 35.50
Augmented 1 64.38 64.87 64.10 64.50 27.60 26.70
Augmented 2 64.24 65.01 64.00 64.60 27.10 26.20
Augmented 3 64.47 64.99 64.20 64.60 27.10 26.30

Table 8 Evaluation scores for
the EN–ES NPE systems

For ease of readability baseline scores on the test set are highlighted
in italic; among the NPE systems the worst scores (on the test set)
are in bold font and underlined and the best scores are in bold

System reference BLEU Moses BLEU
MultEval

TER
MultEval

Dev Test Dev Test Dev Test

Baseline 58.19 60.09 58.20 60.10 27.60 25.60
Vanilla 1 65.31 66.06 65.10 65.80 24.60 23.20
Augmented 1 66.07 66.84 65.90 66.60 23.70 23.20
Augmented 2 65.54 66.26 65.40 66.00 24.40 23.50
Augmented 3 66.19 66.78 66.10 66.50 23.30 22.90

83

1 3

A roadmap to neural automatic post-editing: an empirical…

For EN–DE, the minimum improvements were + 12.84, + 12.40 and − 3.70 in
Moses BLEU, MultEval BLEU and TER, respectively, for system Vanilla 8. The
maximum improvement is + 23.93, + 23.80 and − 12.90 in Moses BLEU, MultEval
BLEU and TER, respectively, for the Augmented 2 system.

We also observe that multi-source systems outperform the concatenated ones
(Vanilla 1 to 4). Two explanations for this are valid: (i) trimming of long sequences
(longer than 300 tokens) removes tokens from the end of the concatenated input and
as such the second part of the sequence may be significantly reduced; (ii) LSTMs
are known to decay in performance the longer the input they are given, and even
though Marian uses an attention mechanism that aims to tackle this problem, it
has been shown that NMT decays in performance with the increase of the input
length (Koehn and Knowles 2017). Concatenated approaches use the source as pre-
fix and the SMT output as suffix; since these strings are sometimes trimmed, the
second part of the sequence may be completely removed. We followed the approach
of (Hokamp 2017) where SRC was the first string and the SMT the second. We
ought to note that reversing the two, i.e. SMT first and SRC second, may impact the
performance. However, in the two extreme cases where the second part is trimmed
completely, the APE task is reduced to an MT task—either a monolingual (SMT to
PE) or a bilingual (SRC to PE). Multi-source systems bypass the aforementioned
problems and allow source and SMT to remain completely aligned.

One drawback of both NMT and NPE we picked in our experiments is that
they deal with limited number of input tokens. When inputs to an NPE system are
trimmed to fit such a limit it is unlikely that the output will be a correct post-edited
version of the original MT. We acknowledge this limitation and will address it in our
future work.

The results show that the best performing system for EN–DE is the one aug-
mented with the TenantPartition token, i.e. Augmented 2. This system was selected
as our best NPE system for EN–DE, and it was evaluated in-depth as reported in the
following sections. This may mean that this token identifies the sets of strings that
share more common features. This process permits a great deal of experimentation,
by testing the addition of these tokens using different classes and methods.

Training speed is a particularly important feature in the evaluation of systems that
are to be used in production settings. The Vanilla 7 and Vanilla 8 systems are the
fastest during the training stages (see Table 5), because they use the ‘transformer’
approach. However, while these two transformer systems are approximately 3 times
faster than the augmented ones (using a sequence-to-sequence method), the evalua-
tion scores obtained by these systems in the same training circumstances are much
lower. We admit the possibility that these systems might achieve a higher quality
with a higher volume of training data, namely by using synthetic data (Junczys-
Dowmunt and Grundkiewicz 2016; Chatterjee et al. 2018), but that was considered
out of scope for this project.

State-of-the-art APE systems can also deteriorate TER scores, espe-
cially because they over-correct the output of segments that require no editing
(do Carmo et al. 2020). In our case, all NPE systems yielded improvements in the
global scores, which shows the potential of the NPE approach. It is important to
stress this, since, for EN–ES, this was achieved with very high BLEU and very

84 D. Shterionov et al.

1 3

low TER scores in the initial SMT output, a circumstance in which it would be
very difficult to get any improvements.

As might be predicted, due to the already high initial values of BLEU and
TER in the training data, the improvements in the scores were not so visible for
EN–ES, and the intervals between systems were much narrower. In this language
pair, there was no clear system with the best scores for both metrics: Augmented
1 (trained with Length as the added token) obtained the best scores in BLEU
(66.84 as measured by Moses, and 66.60, as measured with MultEval), but Aug-
mented 3 (trained with Tenant as the added token) achieved the best TER score
(22.90). This is a very different outcome from EN–DE, in which it had been one
system trained with the TenantPartition token to outperform all others, according
to the three metrics. Since we are using TER as the main metric, we chose Aug-
mented 3 as our best system for EN–ES. The improvements from the SMT output
obtained by this system were of a mere 2.7 TER points and less than 7 BLEU
points, much lower values than those obtained in EN–DE.

5.2 Detailed analysis of editing results

This detailed analysis tried to answer two questions: (i) how good are the best
NPE systems and (ii) for which input is NPE better. To answer (i) we measured
the precision of the NPE systems, and we analysed the balance in the distribution
of edit operations. To know on which type of input NPE achieves the best results,
we looked into the distribution of edit operations, per each major data partition,
and we analysed the behaviour of very long and very short segments, besides
those that required the least number of edits and those that required the maximum
number of edits.

Precision This is measured as a ratio of the segments in which TER was
improved over the total number of segments that were modified. To measure this
precision, we identified the segments in which there were content differences
between SMT and PE, since these were the segments modified by the NPE sys-
tem. Then, we compared the TER(smt,pe) and TER(npe,pe) in those segments,
and we considered as improved those segments in which the TER of the NPE
was lower than the one for SMT. We report the number of improved and deterio-
rated segments, and the number of those that were edited by the NPE system, but
which resulted in the same TER.

As we can see in Tables 9 and 10, the precision metric confirms the capacity
of the NPE system to improve the global TER of the test sets. In EN–DE, 76% of
the sentences in the test set were modified, and a number that corresponds to 62%
of these was improved. The EN–ES NPE seems to be more conservative, only
modifying 67% of the segments, and less precise, since only 51% of the modified
segments were improved. The best system in EN–ES also deteriorated a higher
number of sentences (35%, against 25% in EN–DE). The percentage of segments
which were modified with no effect on TER was fairly similar in both language
pairs (12% in EN–DE and 14% in EN–ES).

85

1 3

A roadmap to neural automatic post-editing: an empirical…

Distribution of edit operations. In Tables 11 and 12 we compare the best NPE
systems to the baseline SMT output, in terms of the edit operations that result in the
distances between these outputs and the original PE versions.

The NPE system for EN–DE would require far fewer edit operations to be
transformed into the PE than the SMT system. This reduction in the number of
edit operations affected all types of edits except insertions, which the NPE system

Table 9 Precision of best NPE system for EN–DE

Description No. %

Total segments in test set 10000
Non-modified segments SMT=NPE (content) 2396 24
Modified segments SMT≠NPE (content) 7604 76
Improved segments TER(npe, pe)<TER(smt, pe) 4734 62
Deteriorated segments TER(npe, pe)>TER(smt, pe) 1923 25
Segments with same TER TER(npe, pe)=TER(smt, pe) 947 12

Table 10 Precision of best NPE system for EN–ES

Description No. %

Total segments in test set 10000
Non-modified segments SMT=NPE (content) 3350 34
Modified segments SMT≠NPE (content) 6650 67
Improved segments TER(npe, pe)<TER(smt, pe) 3415 51
Deteriorated segments TER(npe, pe)>TER(smt, pe) 2323 35
Segments with same TER TER(npe, pe)=TER(smt, pe) 912 14

Table 11 Number of edit operations in SMT and NPE for EN–DE

Insertions Deletions Substitutions Shifts Total

SMT: TER(smt, pe) 3526 14,795 17,427 4587 40,335
NPE: TER(npe, pe) 4136 7717 12,860 2404 27,117
(NPE-SMT) 610 − 7078 − 4567 − 2183 − 13,218

Table 12 Number of edit operations in SMT and NPE for EN–ES

Insertions Deletions Substitutions Shifts Total

SMT: TER(smt, pe) 4745 6213 14,308 3057 28,323
NPE: TER(npe, pe) 3543 7974 11,947 1888 25,352
(NPE-SMT) − 1202 1761 − 2361 − 1169 − 2971

86 D. Shterionov et al.

1 3

would require more than the SMT system. This result is very different for the
EN–ES systems. In this case, the number of edits is also lower for the NPE sys-
tem than for the SMT system, but the reduction is much smaller. Besides, instead
of more insertions, the NPE makes more deletions than the SMT system, but
again the difference is not very relevant.

Figure 2 shows that the distribution of edit operations is well-balanced, in both
language pairs. Substitutions are the most frequent edit, representing almost 47%
of the total, followed by deletions (28% and 31% for EN–DE and EN–ES, respec-
tively), with insertions at around 15%, and shifts below 10%.

We also assessed the most frequently edited tokens by the EN–DE best system.
The top 5 most frequently edited tokens per editing operation are:

– Insertions The five most frequently inserted tokens account for 14% of all
insertions, two of them being the words “Sie” (5.8% of all insertions) and
“Bitte” (1.8%). The other three more frequently inserted tokens are punctua-
tion and placeholders.

– Deletions The five most frequently deleted tokens account for almost 20%
of all deletions. The most frequently deleted tokens are punctuation (comma
6.4%, neutral double quote 5.6% and full stop with 2.4%), the pronoun “Sie”
(3.0%) and the article “die” (2.3%).

– Substitutions Substitutions are much more sparse; the five most frequent sub-
stituted tokens only account for 2.3% of all substitutions. Punctuation tokens
constitute a major part of the substitutions, but the most frequent one is capi-
talisation—8.2% of all substitutions.

The next question we tried to answer was: in which type of segments is NPE most
effective? To help answer this, we analysed our data partitions, besides the origi-
nal TER partitions, and the maximum and minimum types of segments.

Length partitions In Table 13 we show the average TER scores in each length
partition for both language pairs, obtained by the best NPE systems. We can see
that the common result is that the lowest average TER scores (i.e. the best) are
obtained in the mid-length segments (between 5 and 30 words). The shortest

(a) For the best NPE system for EN-DE (b) For the best NPE system for EN-ES

Fig. 2 Distribution of edit operations in both language pairs

87

1 3

A roadmap to neural automatic post-editing: an empirical…

segments (below 5 words) seem to be the ones in which the NPE systems have
more difficulties in achieving good TER scores, in both language pairs.

TenantPartition The TenantPartition groups tenants in six classes. We inves-
tigated whether there were differences in the TER scores obtained after NPE
among these classes. In this case, the biggest differences came from the compari-
son between the TER scores of the SMT and the NPE systems.

Tables 14 and 15 show how Chicago and Exchange15 are the two tenants that
achieve the highest reduction in TER scores, from SMT to NPE output, for both
language pairs. In contrast, OMain2 was, for both language pairs, the tenant in
which the TER scores, on average, increased the most.

We can also see that, for both SMT and NPE output, and in both language
pairs, OMain2 is always the tenant in which we get the lowest TER scores. How-
ever, we did not find a correlation between the highest/lowest TER scores and the

Table 13 Average TER scores
per length partition, for both
language pairs

Length partitions EN–DE EN–ES

0-4 35.50 29.55
5-9 23.69 19.92
10-30 23.82 21.90
31-300 29.73 24.78

Table 14 Average TER scores per TenantPartition of SMT and NPE for EN–DE

TenantPartition Avg TER(smt, pe) Avg TER(npe, pe) Reduction

Chicago 44.64 29.94 − 14.70
OMainCCRel 45.80 37.39 − 8.40
Exchange15 41.65 25.12 − 16.53
OMain2 19.10 22.15 3.06
BitHum 39.31 41.53 2.22
Other 37.28 30.79 − 6.49

Table 15 Average TER scores per TenantPartition of SMT and NPE for EN–ES

TenantPartition Avg TER(smt, pe) Avg TER(npe, pe) Reduction

Chicago 29.66 25.22 − 4.44
OMainCCRel 29.49 26.70 − 2.79
Exchange15 28.50 22.95 − 5.55
OMain2 13.17 19.84 6.67
BitHum 29.23 33.55 4.32
Other 23.81 26.36 2.55

88 D. Shterionov et al.

1 3

reduction/deterioration in the TER scores between the baseline SMT and the NPE
systems, in this analysis per TenantPartition.

These results show the relevance of using the tenants as informative tokens for
NPE, as we had seen for length. Since these tenants probably group different types
of content, this analysis could be further explored in future studies, by looking at the
specific linguistic features that create this difference in results.

TER ranges We then investigated how the best NPE systems performed according
to the initial TER scores of the SMT output. We grouped the segments in the test set
according to ranges of 20 TER points, we counted the number of segments in those
ranges in SMT and in NPE output, and then we estimated the percentage of those
counts over the whole test set. The observations are illustrated in Tables 16 and 17.

Tables 16 and 17 show an increase in the number of segments with TER scores
in the first two ranges, of zero TER and of scores up to 20 points, for both language
pairs, after NPE was applied. In EN–DE, the percentage of segments with zero TER
increased from 29% in the SMT output to 41% in NPE output. In EN–ES, the ini-
tial number of segments in this TER range in SMT was already high, 38%, but this
increased one point, to 39% in NPE. The two first ranges gained in total 1684 seg-
ments in EN–DE, and only 410 segments in EN–ES.

The only range in which this percentage increased again was in the number of
segments with TER scores above 100, an increase that reflects a deterioration in
TER scores caused by NPE. It is important to note that these are segments in which
all words are edited or there is an addition of words in the edited version. (Since
TER is not capped, if an edited sentence has more words than the reference, then

Table 16 Number and
percentage of segments per TER
reange in SMT and NPE output
for EN–DE

TER ranges SMT % total NPE % total Diff.

0 2947 29 4076 41 1129
1–19 659 7 1214 12 555
20–39 1858 19 1602 16 − 256
40–59 2013 20 1170 12 − 843
60–79 1214 12 604 6 − 610
80–99 298 3 162 2 − 136
100–1140 1011 10 1172 12 161

Table 17 Number and
percentage of segments per TER
range in SMT and NPE output
for EN–ES

TER ranges SMT % total NPE % total Diff.

0 3782 38 3910 39 128
1–19 1442 14 1724 17 282
20–39 2219 22 2015 20 − 204
40–59 1273 13 982 10 − 291
60–79 613 6 480 5 − 133
80–99 164 2 122 1 − 42
100–1140 507 5 767 8 260

89

1 3

A roadmap to neural automatic post-editing: an empirical…

the score will be higher than 100%.) There is a long tail of segments in this range,
in both outputs and in both language pairs. In EN–DE, the number of segments in
this highest TER range (of 100–1140 TER points) increased from 10 to 12%, and in
EN–ES from 5 to 8%.

The number of segments in the four TER ranges between these two extremes
(segments with TER between 20 an 99%) always decreased from SMT to NPE.
The TER scores of the sentences in these ranges could have improved or deterio-
rated, but we can see that the vast majority of these sentences saw their TER scores
reduced to a value between 0 and 19. Let us look in detail at the table for EN–DE,
for example. There are 161 segments that had a TER below 100 in SMT and whose
score was deteriorated to values between 100-1140% by NPE. We can assume that
most of these segments belonged to the 80-99 range: this range lost 136 segments,
and we only need another 25 segments from the 60 to 79 range to have all segments
in which the TER scores deteriorated. This means that NPE was able to reduce the
TER to a value between 0 and 19% editing in a number of sentences that is equiva-
lent to those that had editing scores from 20 to 79% but which moved to a different
20-point range of editing scores.

Our observations thus suggest that NPE systems are capable of reducing the TER
score obtained by SMT systems, measured against the human PE, in segments that
show a wide variation of initial TER scores. However, these systems show bigger
difficulties at higher levels of editing. Of course, we are only looking at gross num-
bers of segments between 20-point ranges; many changes in the TER scores hap-
pened within the ranges that we use in this analysis. We look next at some of the
extreme TER scores in the dataset.

Segments with extreme editing The final task in this detailed evaluation looked at
segments with very low or very high numbers of errors, as identified by TER, and
for very long and very short segments.

TER(npe, pe) counts as an error, or edit, every word that has been deleted,
inserted, substituted or shifted in the NPE translation, when compared to the PE.
Table 18 shows the number of segments with zero edits in the SMT output, the num-
ber of segments with zero edits in the NPE output, and the intersection between the
two columns, i.e. the number of segments which have zero edits in both outputs. In
EN–DE, of the ca. 3000 segments that had zero errors (no edits when compared to
PE) in the SMT output, only ca. 2000 (i.e. 67%) were maintained in that condition.
The rest will have been edited somehow by the NPE and their TER was deterio-
rated. However, the number of segments with zero edits in NPE was increased by

Table 18 Number of segments
with minimum and maximum
editing in SMT and NPE output
for EN–DE

Errors per segment SMT NPE Both % SMT

NumErr = 0 2947 4076 1983 67
NumErr = 1 1311 1787 504 38
NumErr > 100 2 7 0
Total errors in seg

NumErr>100
290 1700 0

90 D. Shterionov et al.

1 3

an extra 1000. This same tendency is seen in segments with one error, in this case
with different percentages. This means that, although NPE does deteriorate the TER
in a portion of the best scores from SMT, it is capable of improving the global TER
scores by reducing the TER in a higher number of segments.

In the other extreme, for segments with a high number of errors, above 100 (and
this number reaches 382 in one single segment), there is a higher number of seg-
ments in NPE than in SMT. The seven segments in this group have all more than
100 words, they include several sentences, and some are composed of long lists of
non-translatable code, placeholders, and similar UI content. NPE truncated some
of these segments, it translated non-translatable elements, and it has missed the
detailed translation required within these segments. NPE edited almost all of the
words in these segments, which justifies that there are 1700 errors in 2100 words
in these segments alone. We may add that in all 290 segments with more than 100
words, only five have less than 100 errors, but that all segments with more than
200 words are in this list of segments with more than 100 errors. Considering the
magnitude of errors added to the TER scores in these sentences alone, a process that
tackled this problem alone could have a big effect in the precision of the system.
As alluded for in the data analysis (Sect. 3.1), this type of issue could be solved
with a pre-processing stage to split long segments that include several sentences into
single-sentence segments.

Table 19 reports the equivalent data for the EN–ES NPE systems, and the behav-
iour is similar.

Segments with extreme lengths The analysis of the shortest and longest segments,
summarised in Tables 20 and 21, shows another dimension of the need for some
form of optimisation for specific segments.

The edit scores in one-word segments are heavily deteriorated by NPE systems,
for both languages. If we look in detail to these segments, we will see some of the

Table 19 Number of segments
with minimum and maximum
editing in SMT and NPE output
for EN–ES

Errors per segment SMT NPE Both % SMT

NumErr = 0 3782 3910 2566 68
NumErr = 1 1400 1887 620 44
NumErr > 100 0 7 0
Total Errors in seg

NumErr>100
0 1154 0

Table 20 Number of segments with minimum and maximum numbers of words in SMT and NPE output
for EN–DE

Short and long segments No. SMT_TER NPE_TER Reduction

One-word segments 1351 27.4 56.07 28.67
Two-word segments 1794 38.52 32.94 − 5.58
Segments with +100wds 12 28.07 44.1 16.03

91

1 3

A roadmap to neural automatic post-editing: an empirical…

effects of “hallucinated” BPE words. In two-word segments, the scores improve, and
in EN–DE NPE already achieves a better editing score than SMT. In EN–ES, the
improvement is not so high to make NPE improve on the SMT. In the long seg-
ments, as we have seen above, the deterioration of TER scores by NPE is much
higher. As we mentioned before, the longest segments include several strings of
localisation code and placeholders, elements which make it very hard for any MT
systems to identify the language content and translate it adequately. We can see from
this brief analysis that NPE is well tuned to mid-length segments in such a way that
it compensates for this lack of capacity in segments at the length extremes.

Summary of detailed evaluation This detailed evaluation has answered the two
questions we initially asked. First, it has shown that our best NPE systems in each
language pairs were very precise and also balanced, in terms of the distribution of
edit operations. Besides, it helped us see that the added tokens of length and ten-
ant were in fact very informative, since they pointed to partitions of data in which,
although the distribution of TER improvements was not equal, the gains in some of
the partitions compensated for the losses in others. Finally, this evaluation allowed
us to identify types of segments in which TER deterioration occurred most fre-
quently, namely segments which show more than 100 errors in SMT output and
those that have one, two or more than 100 words, information which can help devise
methods to tackle this specific deterioration and thus improve the precision of an
NPE system to be used with this type of data.

5.3 Evaluation of NPE on NMT output

After the global evaluation of the performance of all NPE systems, the best perform-
ing systems were applied to NMT output. For EN–DE, we used the Augmented 2
system, trained with the TenantPartition token. For the EN–ES language pair, we
use Augmented 1, trained with the Length token, as explained before.

We applied our NPE on custom NMT systems (sequence-to-sequence with LSTM
units), trained with Marian-NMT, with default parameters for EN–DE and EN–ES.
For training we used in-domain data after we ensured that there were no overlaps
with the APE training data. We then translated the original test set source strings
and next we applied our NPE systems. The output of these systems is referred to as
“NMTcustom with NPE” in Tables 22 and 23. The performance of this system was
measured against the original PE reference.

Table 21 Number of segments with minimum and maximum numbers of words in SMT and NPE output
for EN–ES

Short and long segments No. SMT_TER NPE_TER Reduction

One-word segments 1130 22.02 50.42 28.4
Two-word segments 1598 28.52 29.25 0.73
Segments with + 100 wds 15 20.2 51.96 31.76

92 D. Shterionov et al.

1 3

In industry it is still the case that SMT rather than NMT systems prolifer-
ate in real production scenarios, as these SMT systems have continuously been
updated and tuned to achieve high performance in the actual translation pipe-
lines deployed. While NMT systems continue to improve, and despite the fact
that those which are used in production have surpassed the quality obtainable
via SMT, our main objective in these experiments was to show that while NPE
can improve NMT output, the gain is lower than when post-editing SMT output.
Besides, at the time of this project (2018), the amount of post-edited NMT data
was not adequate to fully train and test the learning capacity of an NPE system
applied to NMT output.

We can see from Tables 7 and 8 that these are under-performing NMT systems,
with TER and BLEU scores that do not represent major improvements from the
baseline SMT systems. This may be due to big differences between the training data
used for the NMT and the actual data in the test set. Still, this created the conditions
to test the application of the lessons learnt by the NPE system on SMT output to
new NMT output.

The NPE systems (having been trained on SMT output), receive the SRC+NMT
output of the test set as multi-inputs, and translate this input into an improved ver-
sion in the target language.

It is important to note that this approach is against the assumptions of an APE
process: the editing patterns that have been learnt during training are closely depend-
ent on the output of the MT system used originally, in this case, SMT systems, so
the use of input from a different MT system may present unpredictable results. Still,
these results contribute to answering a different question: can an APE system trained
on SMT output be used to improve NMT output?

We can see that, for EN–DE, TER has been reduced in − 7.20, and BLEU
increased 17.60, when we applied NPE to an underperforming NMT system output.
For EN–ES, there were visible improvements in BLEU (2.50), but TER deteriorated
(+ 2.30).

Table 22 Comparison of custom NMT system before and after NPE for EN–DE

Sys. ref BLEU (Moses) BLEU (MultEval) TER (MultEval)

NMTcustom 41.51 41.20 39.10
NMTcustom with NPE 59.11 58.80 31.90
(Auggmented 2)

Table 23 Comparison of custom NMT system before and after NPE for EN–ES

Sys. ref BLEU (Moses) BLEU (MultEval) TER (MultEval)

NMTcustom 59.71 59.40 24.40
NMTcustom with NPE 62.07 61.90 26.70
(Auggmented 1)

93

1 3

A roadmap to neural automatic post-editing: an empirical…

A conclusion we can take from these results is that NPE systems are not able to
achieve as high improvements in NMT output, as they can when working with out-
puts from different MT technologies. Besides, although the EN–DE results seem to
be promising, the results in the other language pair seem to fail, in view of a thinner
learning margin. Further experiments, and a detailed analysis of the results, would
be required to give a more accurate answer to the question of the applicability of an
NPE system trained on SMT output to improve NMT output.

6 Conclusions

This article presents the outcome of a joint project between ADAPT and Micro-
soft on the topic of Neural Post-Editing (NPE). We investigated different options for
building an NPE system, drawing a roadmap to aid with the major decision points.
This map covers decisions about preprocessing (segmentation and tokenisation) of
the data, the NPE architecture, the approach chosen to present the input/output to
the system, as well as how to introduce extra information, targeting optimal per-
formance. Following this roadmap, we identified the optimal setup—multi-source
LSTM encoder/decoder networks with data augmented with extra information (pre-
sented as a prefix token, attached to each triplet) for both EN–DE and EN–ES. The
use of prefix tokens has proven beneficial in MT for domain adaptation, for correct-
ing politeness, and for improving gender issues. To our knowledge, this work was
the first to use this approach for automatic post-editing, and has been shown to lead
to the best performing systems.

In addition, we conducted an in-depth comparative analysis on the trained sys-
tems with respect to TER. The effects of our systems have been positive under all
investigated criteria. Furthermore, the detailed evaluation of the results showed
areas in which research can invest to improve or fine-tune NPE application to spe-
cific use cases.

This project has demonstrated a positive contribution from APE in improving the
output of MT content production workflows in commercial environments. Compa-
nies dealing with translation data over the years have accumulated post-edited data
which may be tapped into and used to learn editing patterns that may help improve
the outputs of MT systems. This contribution is not so clear when content produc-
tion systems are based on NMT, so more research is needed to clarify how APE can
improve on this output.

One issue that deserves further attention is related to how sequence-to-sequence
systems, and in our case APE systems, handle long inputs, e.g., beyond our 300-
token limit. In an industry setting, this can be common for many texts. In the future,
we would like to investigate this issue and we consider paragraph or document level
APE with smart ways to segment longer input sequences.

Acknowledgements The ADAPT Centre for Digital Content Technology is funded under the SFI
Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Devel-
opment Fund. Félix do Carmo collaborated in this project in the ambit of a European Union’s Horizon
2020 research and innovation programme, under the EDGE COFUND Marie Skłodowska-Curie Grant

94 D. Shterionov et al.

1 3

Agreement No. 713567. This publication has emanated from research supported in part by a research
grant from Science Foundation Ireland (SFI) under Grant Number 13/RC/2077.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

References

Ataman D, Federico M (2018) Compositional representation of morphologically-rich input for neural
machine translation. In: Proceedings of the 56th annual meeting of the association for computational
linguistics (ACL 2018), July 15–20, 2018, Melbourne, Australia, vol 2: short papers, pp 305–311

Bojar O, Chatterjee R, Federmann C, Graham Y, Haddow B, Huang S, Huck M, Koehn P, Liu Q,
Logacheva V, Monz C, Negri M, Post M, Rubino R, Specia L, Turchi M (2017) Findings of the
2017 Conference on Machine Translation (WMT17). In: Proceedings of the second conference on
machine translation (WMT 2017), September 7–8, 2017, Copenhagen, Denmark, vol 2: shared task
papers, pp 169–214

Chatterjee R, Negri M, Rubino R, Turchi M (2018) Findings of the WMT 2018 shared task on automatic
post-editing. In: Proceedings of the 3rd conference on machine translation (WMT 2018) (shared
task), October 31–November 1, 2018, Brussels, Belgium, pp 710–725

Crego JM, Kim J, Klein G, Rebollo A, Yang K, Senellart J, Akhanov E, Brunelle P, Coquard A, Deng Y,
Enoue S, Geiss C, Johanson J, Khalsa A, Khiari R, Ko B, Kobus C, Lorieux J, Martins L, Nguyen
D, Priori A, Riccardi T, Segal N, Servan C, Tiquet C, Wang B, Yang J, Zhang D, Zhou J, Zoldan P
(2016) Systran’s pure neural machine translation systems. CoRR abs/1610.05540

Creutz M, Lagus K, Virpioja S (2005) Unsupervised morphology induction using morfessor. In: Finite-
state methods and natural language processing, 5th international workshop (FSMNLP 2005),
revised papers, September 1–2, 2005, Helsinki, Finland. Lecture notes in computer science, vol
4002, pp 300–301

do Carmo F, Shterionov D, Wagner J, Hossari M, Paquin E, Moorkens J (2020) A review of the state-of-
the-art in automatic post-editing. Mach Transl 34 (in press)

Hokamp C (2017) Ensembling factored neural machine translation models for automatic post-editing and
quality estimation. In: Proceedings of the second conference on machine translation (WMT 2017),
September 7–8, 2017, Copenhagen, Denmark, pp 647–654

Johnson M, Schuster M, Le QV, Krikun M, Wu Y, Chen Z, Thorat N, Viégas FB, Wattenberg M, Corrado
G, Hughes M, Dean J (2017) Google’s multilingual neural machine translation system: enabling
zero-shot translation. Transactions of the association for computational linguistics (TACL) vol 5, pp
339–351

Junczys-Dowmunt M, Grundkiewicz R (2016) Log-linear combinations of monolingual and bilingual
neural machine translation models for automatic post-editing. In: Proceedings of the first conference
on machine translation (WMT 2016), August 11–12, 2016, Berlin, Germany, vol 2, pp 751–758

Junczys-Dowmunt M, Grundkiewicz R (2017) An exploration of neural sequence-to-sequence architec-
tures for automatic post-editing. In: Proceedings of the eighth international joint conference on natu-
ral language processing (IJCNLP 2017), November 27–December 1, 2017, Taipei, Taiwan, vol 1:
long papers, pp 120–129

Koehn P, Knowles R (2017) Six challenges for neural machine translation. In: Proceedings of the first
workshop on neural machine translation (NMT@ACL 2017), August 4, 2017, Vancouver, Canada,
pp 28–39

Lee J, Cho K, Hofmann T (2017) Fully character-level neural machine translation without explicit seg-
mentation. Trans Assoc Comput Linguist (TACL) 5:365–378

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

95

1 3

A roadmap to neural automatic post-editing: an empirical…

Mathur P, Ueffing N, Leusch G (2017) Generating titles for millions of browse pages on an e-commerce
site. In: Proceedings of the 10th international conference on natural language generation (INLG
2017), September 4–7, 2017, Santiago de Compostela, Spain, pp 158–167

Mattoni G, Nagle P, Collantes C, Shterionov D (2017) Zero-shot translation for Indian languages with
sparse data. In: Proceedings of the 16th machine translation summit (MTSummit 2017), September
18–22, 2017, vol 2: users and translators track, pp 1–10

Negri M, Turchi M, Chatterjee R, Bertoldi N (2018) ESCAPE: a large-scale synthetic corpus for auto-
matic post-editing. In: Proceedings of the eleventh international conference on language resources
and evaluation (LREC 2018), May 7–12, 2018, European Language Resources Association (ELRA),
Miyazaki, Japan, pp 24–30

Papineni K, Roukos S, Ward T, Zhu WJ (2002) BLEU: a method for automatic evaluation of machine
translation. In: Proceedings of the 40th annual meeting on association for computational linguistics
(ACL 2002), July 6–12, 2002, Philadelphia, Pennsylvania, USA, pp 311–318

Pascanu R, Mikolov T, Bengio Y (2012) Understanding the exploding gradient problem. CoRR
abs/1211.5063

Poncelas A, Shterionov D, Way A, de Buy Wenniger GM, Passban P (2018) Investigating backtransla-
tion in neural machine translation. In: Proceedings of the 21st annual conference of the european
association for machine translation (EAMT 2018), May 28–30, 2018, Alacant, Spain, pp 249–258

Sennrich R, Haddow B, Birch A (2016a) Controlling politeness in neural machine translation via side
constraints. In: The 2016 conference of the North American Chapter of the association for com-
putational linguistics: human language technologies (NAACL HLT 2016), June 12–17, 2016. San
Diego, California, USA, pp 35–40

Sennrich R, Haddow B, Birch A (2016b) Improving neural machine translation models with monolingual
data. In: Proceedings of the 54th annual meeting of the association for computational linguistics,
ACL 2016, Berlin, Germany, vol 1: long papers, pp 86–96

Sennrich R, Haddow B, Birch A (2016c) Neural machine translation of rare words with subword units.
In: Proceedings of the 54th annual meeting of the association for computational linguistics (ACL
2016), August 7–12, 2016, Berlin, Germany, vol 1: long papers, pp 1715–1725

Smit P, Virpioja S, Grönroos S, Kurimo M (2014) Morfessor 2.0: Toolkit for statistical morphological
segmentation. In: Proceedings of the 14th conference of the european chapter of the association for
computational linguistics (EACL (2014) April 26–30, 2014. Gothenburg, Sweden, pp 21–24

Snover M, Dorr B, Schwartz R, Micciulla L, Makhoul J (2006) A study of translation edit rate with tar-
geted human annotation. In: Proceedings of the 7th conference of the association for machine trans-
lation of the Americas (AMTA 2006) visions for the future of machine translation, August 8–12,
2006. Massachusetts, USA, Cambridge, pp 223–231

Toral A (2019) Post-editese: an exacerbated translationese. In: Proceedings of machine translation
summit XVII (MTSummit 2019), August 19–23, 2019, Dublin, Ireland, vol 1: research track, pp
273–281

Vanmassenhove E, Hardmeier C, Way A (2018) Getting gender right in neural MT. In: Proceedings of the
2018 conference on empirical methods in natural language processing (EMNLP2018), October 31–
November 4, 2018, Brussels, Belgium, pp 3003–3008

Vanmassenhove E, Shterionov D, Way A (2019) Lost in translation: loss and decay of linguistic richness
in machine translation. In: Proceedings of machine translation summit XVII (MTSummit 2019),
August 19–23, 2019, Vol 1: research track, Dublin, Ireland, pp 222–232

Varis D, Bojar O (2017) CUNI system for WMT17 automatic post-editing task. In: Proceedings of the
second conference on machine translation (WMT 2017), September 7–8, 2017, Copenhagen, Den-
mark, pp 661–666

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

96 D. Shterionov et al.

1 3

Affiliations

Dimitar Shterionov1,4 · Félix do Carmo2,4 · Joss Moorkens3 · Murhaf Hossari4 ·
Joachim Wagner4 · Eric Paquin4 · Dag Schmidtke5 · Declan Groves5 · Andy Way4

 Félix do Carmo
 f.docarmo@surrey.ac.uk

 Joss Moorkens
 Joss.Moorkens@adaptcentre.ie

 Murhaf Hossari
 Murhaf.Hossari@adaptcentre.ie

 Joachim Wagner
 Joachim.Wagner@adaptcentre.ie

 Eric Paquin
 Eric.Paquin@adaptcentre.ie

 Dag Schmidtke
 dags@microsoft.com

 Declan Groves
 degroves@microsoft.com

 Andy Way
 Andy.Way@adaptcentre.ie

1 Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg,
The Netherlands

2 Centre for Translation Studies, University of Surrey, Surrey, UK
3 ADAPT Centre and School of Applied Language and Intercultural Studies, Dublin City

University, Dublin, Ireland
4 ADAPT Centre, School of Computing, Dublin City University, Dublin, Ireland
5 Microsoft, South County Business Park, Leopardstown, Dublin, Ireland

http://orcid.org/0000-0001-6300-797X

	A roadmap to neural automatic post-editing: an empirical approach
	Abstract
	1 Introduction
	1.1 Automatic post editing and its parallelism with machine translation
	1.2 Data demands and data scarcity
	1.3 The ADAPT-microsoft APE project

	2 Neural APE
	3 Data analysis
	3.1 Pre-processing
	3.2 Partitions
	3.3 Editing patterns
	3.4 Training, development and test data

	4 Experiments setup and tested systems
	4.1 Systems
	4.2 System setup
	4.3 Experiment pipeline
	4.4 Vocabulary sizes
	4.5 Training statistics

	5 Evaluation
	5.1 Standard evaluation scores
	5.2 Detailed analysis of editing results
	5.3 Evaluation of NPE on NMT output

	6 Conclusions
	Acknowledgements
	References

