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Abstract— This paper presents
a novel approach to identify
the prediction interval associ-
ated with data using interval
type-2 fuzzy logic systems with
support vector regression. For
such a purpose, a constrained
quadratic objective function is
defined which is then solved
using well-established quadratic
programming approaches. Not
only does the output of interval
type-2 fuzzy logic system replicates the measured value, but also it provides the lower bound and the upper bound
for measured data values. In the proposed approach, to have more valuable information, a penalty term is added in the
cost functions to have full control over the width of prediction interval. This method has been successfully applied to two
benchmark identification problems. It is observed that by using the control parameter in the cost function, it is possible
to obtain a narrower, yet inclusive prediction interval. Furthermore, superior prediction accuracy is obtained compared to
existing methods in literature. Motivated by these results, the proposed approach is used to predict time series collected
using a satellite from Urmia lake water level which resulted in high accuracy and an inclusive prediction interval. The
graphical abstract presented for the paper illustrates the overall data gathering as well as data analysis made to estimate
the prediction interval associated with Urmia lake water level data.

Index Terms— Fuzzy neural networks, prediction algorithms, Estimation, prediction interval, remote sensing, level
measurement,

I. INTRODUCTION

Interval type-2 fuzzy logic systems (IT2FLSs) are widely
known to be an inevitable option in the presence of high levels
of uncertainties and noise in the system [1]. In a fuzzy logic
system, the membership grade assigned to an input by various
experts may be different resulting in interval membership
grades. Interval type-2 fuzzy membership functions (MFs)
are a promising method to deal with such different expert
knowledge which benefit from an infinite number of type-1
fuzzy MFs. Although use of interval type-2 fuzzy MFs makes
the structure of IT2FLSs more complicated, it allows them
to deal with high levels of uncertainties in the system. The
uncertainty can exist in the MFs and/or in the consequent part
resulting in a histogram of values in the consequent part [2].
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The additional degree of freedom which exists in the structure
of IT2FLSs make it possible to deal with uncertainty and noise
which may exist in real world data.

Real world datasets inherently suffer from nonlinearity,
uncertainty and noise. Although fuzzy logic systems, espe-
cially in the case of Mamdani type, are known to be general
function approximators, minimum functional approximation
error inevitably exist [3]. A bounding interval for data can
be more useful than just identifying the crisp output value of
the system as it guarantees the prediction interval for future
data samples. Not only can IT2FLSs deal with uncertainty
and noise but also they promise a prediction interval that
covers data. Piecewise linear methods as well as interval fuzzy
models have already been used to find prediction intervals
[4,5]. A linear programming approach is used to estimate the
parameters of these structures [4,5]. However, the methods
investigated in these studies do not provide any means to
control the prediction interval width, which is the primary
motivation of this study.

Finding an unviolated prediction interval covering all future
possible values is a very useful practice. General function
approximators such as fuzzy logic models may be used to
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estimate interval values associated with data. To show the im-
portance and place of prediction interval identification, several
possible engineering applications that already exist in literature
are studied. For instance, when modeling a nonlinear circuit,
the elements of the circuit that suffer from uncertainties in
their real values due to manufacturing variations. Furthermore,
environmental conditions may impose more uncertainties to
their characteristic [5]. Characteristic identification of physical
systems may be useful for fault identification as well. In [6],
the physical system is modeled completely in terms of an
IT2FLS, the violation of the prediction interval associated
with system is an indication of fault in the system. It is
further possible to use multiple IT2FLSs describing various
faulty conditions of the system which can be used to identify
the cause of the fault rather than just its occurrence [7]. To
achieve stable operation of an energy management system, it
is required to utilize knowledge about the predicted values as
well as uncertainty associated with wind speed, solar energy
and other resources used in such an energy management
system. Such resources are highly stochastic. A robust energy
management system using wind power and speed interval
prediction is investigated in [8], where the obtained prediction
interval for wind is used for management purposes. Another
application of fuzzy prediction interval approach is in stock
exchange price prediction [9]. For such a purpose, simulation
results show that an IT2FLS whose parameters are trained us-
ing genetic algorithms can successfully identify the prediction
interval associated with data [9].

Various algorithms have been used to estimate the pa-
rameters of IT2FLSs. Such optimization algorithms can be
placed into three main categories: derivative-based optimiza-
tion methods, derivative-free optimization approaches and
hybrid algorithms [10]. From another point of view, training
methods for IT2FLSs can be placed into two categories:
iterative approaches and non-iterative approaches [11]. While
optimizing IT2FLSs using least square is a non-iterative
approach, gradient based methods instead require several it-
erations before converging to their optimal solutions [12].
Support vector regression (SVR) is an alternative non-iterative
training machine learning method that can successfully be
applied to train IT2FLSs. It is widely known that an IT2FLS
trained using this method results in superior generalization
properties than most of other approaches [13]. In [13,14],
SVR is used to estimate the parameters of an IT2FLS, the
comparison results show the superiority of this system over
several existing system identification methods. A complete
review summarizing various parameter estimation methods
for IT2FLSs is provided in [10]. The proposed approach in
this study is a non-iterative derivative-free method with a
few design parameters which makes it an ideal choice when
dealing with nonlinear interval system identification. Being
non-iterative, the probability of entrapment in a local minimum
for the proposed algorithm is minimum as well.

Statistical approaches such as bootstrap, Bayesian method as
well as Kalman filter have previously been applied to find the
confidence interval associated with data [15,16]. The structures
used in these studies are mostly artificial neural networks
(ANNs) and cover a wide range of applications including

decision making [8] and prediction interval estimation methods
[17]. However, these approaches mostly involve the calculation
of the Hessian value of an ANN structure’s output with respect
to its parameters which is known to be time consuming.
Moreover, the identification error in these cases needs to be
zero mean with a normal probability distribution function [18].

The fuzzy logic system parameter estimation methods used
in [4,5,19] rely on a constrained cost function. A constrained
least square method is formulated to find the fuzzy prediction
interval whilst having measured data between bounds defined
by fuzzy model [19]. However, such a prediction interval
estimator did not have any parameter to control the width
of the prediction interval. This is the main drawback of
the algorithm introduced in [19] which may result in too
conservative prediction interval. The main motivation of this
paper is to have full control over the width of prediction
interval to obtain a narrow, yet inclusive one.

In this study, the original version of SVR, a powerful ma-
chine learning approach, for the training of IT2FLSs [13,14]
is modified. The two main motivations for the modification
made in this study are:

1) To deal with identification problems when the estimation
error is not Gaussian.

2) To have control over width of the prediction interval

This modified version of SVR includes terms corresponding
to the width of the prediction interval associated with system
output in the cost function to control it. These modifications
form the main contribution of the proposed approach over
existing approaches. Although the prediction interval covering
data presents valuable information about it, too wide prediction
interval contains less specific information about data. It is
therefore highly desirable to have some means to control
the width of prediction interval, which in turn adds another
objective function, making the parameter estimation of the
IT2FLS a multi-objective optimization problem. The added
objective function includes the width of the output interval
associated with fuzzy system output. Two more constraints are
required to be added to make sure that measured data samples
do not fall outside the interval defined by the IT2FLS. The fact
that the proposed approach includes some means to control
width of prediction interval found by the fuzzy system is the
main contribution of the current paper over previously studied
SVR approach in [13,14]. Similar to previous approaches
such as [13,14], the optimization problem is solved using a
quadratic programming algorithm. Uncertainty analysis in the
case of statistical approaches necessitates the calculation of
a Hessian matrix which is a very complex task. Furthermore,
these approaches suffer from requirements on error such as the
normal distribution function and zero-mean which may not be
valid in some cases. The proposed approach is an algebraic
approach which relaxes some of the assumptions about error
such as being zero mean and having a normal probability
distribution function. The proposed algorithm is then used to
estimate the prediction interval for two interesting benchmark
problems. Simulation results support the fact that using the
proposed approach, one can have full control over the width of
the prediction interval, while maintaining prediction accuracy.
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Earth observation has different branches such as ground-
sensing networks and satellite remote sensing [20]. The data
collected using satellites can be used to gain a wide range
of knowledge about the social, economic, and environmental
condition of the region. Spatial temporal dynamic analysis is
possible through remote sensing. For instance, urban popula-
tion in an area is estimated by analyzing the nighttime light.
The brightness of an area in this case is an indication of its
population, wealth and similar parameters associated with the
region [21]. Haze pollution monitoring is another application
of satellite remote sensing [22] which results in high quality
measurements. Various machine learning techniques including
texture analysis [23], clustering and classification [24], as well
as visualization, analysis and interpretation [25] are among the
approaches which have already been applied to the remote
sensing dataset. The analysis of water resources is crucial
because of its social effect on the life of people living in
the nearby area. Such analysis is possible through remote
sensing using the data collected from satellites 1. Urmia
lake has been paid much attention in previous studies due
to its high social impact on life of people neighboring area
and its environmental conditions [26,27]. In this study, the
proposed multi-objective prediction interval is used to analyze
the time series associated with the water level of Urmia lake.
Comparisons are provided between the proposed approach and
state-of-the-art studies applied to the same dataset which show
the superior performance of the proposed approach.

This paper is organized as follows: In Section II, a litera-
ture survey is performed addressing relevant approaches. An
overview of the basic structure of the IT2FLS is provided
in Section III. The proposed methodology for the training of
IT2FLSs are presented in Section IV. The experimental results
of the proposed IT2FLSs are illustrated in Section V. Finally,
in Section VI, the concluding marks are presented.

II. LITERATURE SURVEY

In this section, a list of articles related to the estimation
of the prediction interval associated with data are presented.
Existing approaches can be placed into three major categories
of classical statistical approaches, upper and lower estimation
methods and other optimization-based approaches which does
not include extraction of upper and lower bound of data a
priori (see Fig. 1).

A. Classical Statistical Approaches
The first class are classical statistical approaches that rely on

uncertainty analysis to find the standard deviation associated
with the output of model. These methods assume a normal
distribution function for error which makes it possible to come
up with an appropriate confidence interval covering data.

The bootstrap method aims at constructing several subsets
of data by re-sampling the original dataset. Each subset is
then modeled independently using an identifier, and outputs of
trained models combined to forecast data. The most straight-
forward method is to use the average value of constructed

1Lake Urmia (0115) Height Variations from TOPEX POSEIDON and
Jason series Altimetry

Fig. 1. Categories of different estimation algorithms for prediction
interval identification

models as the overall model. However, Bayesian model aver-
aging as well as weighted average least square can be named as
alternative approaches [28]. Bayesian model averaging assigns
different gains to each model such that the best model has the
greatest share in the output and the worst one has the least
impact on it. Overall model averaging in this case results in a
model that can outperform every single input model. On the
other hand, the weighted average least square method uses
orthogonalization which reduces the computational burden
whilst improving the accuracy of the system [28].

Among various model averaging methods, the simplest one
is taking the average model of several ANNs previously
investigated in [29]. This approach is examined on the energy
market of Victoria region in Australia and New York city
with a sampling time of 30 minutes [29]. In this work, time-
varying variance associated with models is estimated using
the GARCH model. This variance can be controlled to reflect
the prediction interval associated with the (1-α)% confidence
interval. The fundamental assumption for the maximum like-
lihood estimator required for training a GARCH model is the
normal distribution of error.

Bayesian approach is another statistical method that can be
used to find the prediction interval associated with data. The
parameters in this case are estimated such that they minimize
a regularized cost function that includes the sum of squared
error as well as the norm of network weights. The uncertainty
analysis in this algorithm involves the estimation of a Hessian
matrix that can be cumbersome in terms of ANNs as this
structure has a large number of parameters [18].

The Delta method, another statistical approach to estimate
the prediction interval, uses a Taylor expansion of a neural
network to find the uncertainty associated with its output.
This algorithm suffers from computational burden due to
dependency of its uncertainty analysis on a Hessian matrix
[30].

Boot-strap, Bayesian approach and delta methods to find
prediction interval using ANNs are comprehensively investi-
gated in [18] for ten different case studies. The investigated
datasets cover a wide range including synthetic dataset, body
fat estimation, real-world baggage handling system, concrete
compressive strength and six more datasets. It is concluded

ipad.fas.usda.gov/cropexplorer/global_reservoir/gr_regional_chart_jason1.aspx?regionid=metu&reservoir_name=Urmia_1
ipad.fas.usda.gov/cropexplorer/global_reservoir/gr_regional_chart_jason1.aspx?regionid=metu&reservoir_name=Urmia_1
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that Bayesian method is the most reliable prediction interval
in most cases. However, the computational burden associated
with this method may be against wide-spread use of this
algorithm [18].

In the case of using the least square estimation method for
ANN parameters, the covariance matrix associated with this
estimator can be constructed based on its properties [31]. In
[31], numerical analysis is presented to demonstrate the quality
of the prediction interval of ANNs for an artificial plant as a
benchmark example. However, the least square algorithm can
be applied on a limited class of linear regression models as
well as the output layer of ANNs when a linear activation
function is used in the output layer. The generalization of this
approach to a wider class of intelligent structures would be
difficult and may involve approximation.

The Kalman filter family are well-known estimation meth-
ods that can be effectively used to tune the parameters of ar-
tificial intelligent structures [32]. Its extended version benefits
from Taylor expansion and can be used to estimate the param-
eters of ANNs when they appear non-linearly in ANN output.
There exist various versions of Kalman filtering including the
extended Kalman filter with U-D factorization, designed to
improve the numerical stability of the estimation method [15].
The adaptive Kalman filter benefits from mechanisms to tune
the Kalman filter parameters during training automatically.
This will contribute to having less design parameters and
consequently less design iterations. On the other hand, their
decoupled extended Kalman filters are frequently used due
to its decoupling procedure. However, they impose more
approximation to reduce the size of covariance matrix [33].

Uncertainty in data directly influences the innovation covari-
ance matrix. Standard deviation associated with each output
can be calculated from the diagonal elements of this matrix
resulting in finding prediction intervals associated with each
output. Different members of the Kalman filter family has
been previously applied to estimate the prediction interval
associated with market clearing price [15] as well as short-
term load forecast [34].

The main disadvantage of using the Kalman filter family to
estimate the confidence intervals is that the assumptions on
noise including the Gaussian probability distribution function
and zero-mean are among the assumptions required for this
estimator. Moreover, the Taylor expansion needed to estimate
the parameters that appear nonlinearly in the output imposes
more inaccuracy to the approximate method as its higher order
terms must be neglected [33].

Fuzzy systems may be considered as alternative general
function approximators for ANNs, and may outperform ANNs
in some cases [35], [36]. The fuzzy confidence interval is
developed in [37] using statistical methods under general
statistical assumptions for data such as zero-mean error, and
the normal probability distribution function for error.

B. Lower Upper Bound Estimation Algorithm

Ideal absolute and relative lower and upper bounding of data
can be generated to identify the prediction interval associated
with it [38]. Multiple linear regression models benefiting from

the least square algorithm to estimate their parameters are used
in [38] to identity the prediction interval width as well as the
measured value. This approach is used to find the prediction
interval of the daily-sampled discharge value of the Yangtze
river, the longest river in Asia, located within the Chinese terri-
tory [38]. The lower upper bound estimator (LUBE) proposed
by Khosravi et. al [39] uses an ANN with two outputs that
directly replicate the upper and lower bounds. A cost function
that includes the coverage probability as well as the width of
the prediction interval is used to estimate the parameters of
the ANN with two outputs [39]. The main disadvantage of
this method is the requirement to select design parameters
in the cost function that greatly influence its performance.
To successfully implement this algorithm, several iterations
with different parameter values in the cost function may be
required before ending up with an appropriate selection. A
similar two output ANN is used in [40] that benefits from
fuzzy objective functions to reduce the number of design
parameters in its cost function. This fuzzy objective function
controls the training procedure of the ANN with two outputs.
Generally, the LUBE methods alleviate the requirement for the
error probability distribution to be normal which is common
for statistical approaches and limits their applicability [39] and
[40].

In a study performed by N. Shrivasta et. al., electricity
price was identified using radial basis neural networks [41].
In this work two support vector machines are used to train
the radial basis kernels to follow the trend of lower and
upper bounds of data. The parameters associated with the two
support vector machines are selected using particle swarm op-
timization rather than grid partitioning to speed up the overall
estimation method. The main objective function considered for
the particle swarm optimizer includes a term associated with
coverage and width criterion. The studied method successfully
obtained the prediction interval for electricity prices of the
Ontario electricity market an hour-ahead forecasting as well
as three-hours ahead forecasting basis. The prediction interval
associated with the Pennsylvania–New Jersey– Maryland day-
ahead market, and real-time market is considered in this
study in a daily basis. It is important to demonstrate that
the proposed approach is fast enough to perform prediction
in a timely manner. Simulation results demonstrate that the
prediction algorithm is reasonably fast, as it takes a couple
of minutes to be completed, that makes it suitable for the
prediction of a few hours ahead [41].

The simplicity of the LUBE method is its main advantage
and has resulted in the use of this algorithm in several prob-
lems including wind power forecasting [40], flood prediction
interval forecast [42], wind speed prediction interval [43] tidal
current forecast [44], and short term photo voltaic forecast
[45].

The main disadvantage is the need to find the upper and
lower bound a priori as well as the selection of parameters
in the cost function. Although the fuzzy approach in [40] de-
creases the number of design parameters in the cost function,
finding appropriate upper and lower bounds is still required for
successful use. The approach presented in this study, does not
require the knowledge of the upper and lower bound associated
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with data a priori. This is the main improvement offered by the
proposed algorithm over approaches studied under the LUBE
title.

C. Methods using Cost Function Defined Directly on
Data

In the approach investigated in [4,5], two lower and upper
fuzzy models are considered to identify the prediction interval.
Data needs to be between the upper and the lower fuzzy
models while the outputs of the fuzzy models are as close as
possible to the measured data. Hence, the problem is formu-
lated as a constrained optimization problem. The cost function
considered in this study is the l∞-norm of the difference
between the output of the two fuzzy models and the measured
data under the constraint imposed by the requirement to have
data in the interval defined by the lower and upper fuzzy
models. Similar methods are investigated for the identification
of uncertain systems for robust fuzzy control purposes, where
the lower and upper fuzzy models are used to identify uncer-
tain dynamics of nonlinear systems in state space form. The
identified interval fuzzy model is then used to design a robust
controller for an inverted pendulum and a bulk converted
circuit [46]. In [4,5,46] a linear programming approach is
used to find the upper and lower fuzzy models. Other than
application to robust control, the fuzzy prediction interval has
been successfully applied to fault detection problems [47].

Other than the interval associated with the output of a fuzzy
model, in [19] another approach is proposed which estimates
the interval associated with the consequent part parameters as
well using the least square method. Hence, this approach is
not a black box method as it gives more information about the
internal parameters of the system.

The main advantage of the approaches in this category
over statistical approaches is that they do not depend on the
assumption on estimation error to have normal probability
distribution function. They also do not necessitate finding
the lower and upper bound for data a priori, a common
requirement of the LUBE method. However, the downfall of
the algorithms used in [4,5,19,46] is that no control exists over
the width of the prediction interval which may result in an
unnecessarily large width for the prediction interval meaning
it contains less specific information about data. Motivated by
this shortcoming an algorithm is proposed in this study that
falls within algorithms explained in Section II-C and is capable
of controlling the width of prediction interval.

D. General overview of aforementioned methods
The general overview of the proposed approaches is pre-

sented here. Classical statistical approaches are widely used
for uncertainty analysis associated with the prediction interval.
They benefit from statistical analysis which makes them a
reliable approach. However, the assumptions associated with
these approaches including the Gaussian probability distri-
bution function for the prediction error as well as being
zero-mean are among the restricting requirements for this
method. The LUBE is the second approach investigated in
this paper. The interesting feature of this algorithm is that

after finding an absolute or relative upper and lower bound
for data, finding the nonlinear function which can approximate
them is straightforward. However, considering the fact that
uncertainty may not be distributed uniformly makes finding
the lower and upper bound associated with data a priori very
difficult. The main disadvantage of the methods investigated
in Section II-C is that no control exists over the width of
the prediction interval in these algorithms which may result
in a wider prediction interval than required. If the width
of prediction interval is wider than required it contains less
specific information about data which needs to be avoided.
The aforementioned shortcomings associated with the three
categories of algorithms are the main motivation for the
proposed approach in this paper.

III. GENERAL STRUCTURE OF INTERVAL TYPE-2 FUZZY
LOGIC SYSTEM

The general structure of interval type-2 fuzzy systems
including its main building blocks is depicted in Fig. 2. Several
structures for IT2FLSs and its type-reducers are investigated in
[48,49]. The structure used in this study benefits from interval
type-2 fuzzy MFs in the antecedent part and interval values
for the consequent part parameters. A typical fuzzy IF-THEN
rule for such a structure is as follows.

Fig. 2. Type-2 fuzzy logic system building blocks

IF x1 is Ãj1 and x2 is Ãj2 and . . . and xn is Ãjn

THEN yj=

n∑
i=1

α̃ijxi+β̃j (1)

where x1, x2, . . . ,xn are the input variables, y is the
single output variable. Moreover, Ãij’s are interval type-2
fuzzy MFs for the jth rule of the ith input. α̃ij and β̃j
(i= 1, . . . ,n, j= 1, . . . ,M) are the interval parameters in the
consequent part of the rules that satisfy the following equation.

α̃ij∈[αij , αij ], β̃j∈[β
j
, βj ] (2)

The following definitions are made.

F j=

n∑
i=1

αijxi+βj (3)

F j=

n∑
i=1

αijxi+βj (4)

wj(x) =µ
F̃ j

1

(x1) ∗ ...∗µ
F̃ j

n
(xn) (5)
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wj(x) =µF̃ j
1
(x1) ∗ ...∗µF̃ j

n
(xn) (6)

where µ
F̃ j

k

(xk) are µF̃ j
k
(xk) are the lower and upper MF

corresponding to jth rule for xk and ” ∗ ” is a t-norm operator.
The output value of IT2FLS is given as

Y (x) = [yl(x), yr(x)] (7)

where x∈Rn is a vector of inputs of system. Among various
defuzzifications approaches to calculate the output of an
IT2FLS, the Maclauren based first order approximate one is
chosen [49]. The accuracy of this defuzzification algorithm is
lower than the exact model of the enhanced Karnik-Mendel
model approach [50] and higher than the approximate models
of Biglarbegian-Melek-Mendel [51] and Nie-Tan [52]. The
computational burden for such an algorithm is less than the
enhanced Karnik-Mendel model as it does not necessitate
the sorting procedure required by it. The Maclauren series
expansion based first order approximate output of the IT2FLS
is as follows [49]:

y∈[yl, yr] (8)

where yl and yr are the left most and right most values
of output of IT2FLSs, respectively. These parameters are
calculated as follows.

yr≈
∑M
j=1 (wj+wj)F

j
+
∑M
j=1 (sign(mj)∆wjF

j
)∑M

j=1 (wj+wj)+
∑M
j=1 (sign(mj)∆wj)

(9)

where:

mj=F
j−
∑M
j=1 w

jF
j∑M

j=1 w
j

(10)

and ∆wj=wj−wj . Furthermore, yl is calculated as

yl≈
∑M
j=1 (wj+wj)F j−

∑M
j=1 (sign(mj)∆wjF j)∑M

j=1 (wj+wj)−
∑M
j=1 (sign(mj)∆wj)

(11)

where:

mj=F j−
∑M
j=1 w

jF j∑M
j=1 w

j
(12)

The final crisp output value of IT2FLS is obtained as

Y (x) =
yl+yr

2
(13)

It is then possible to rewrite (9) as

yr=

M∑
j=1

νjRF
j

R (14)

where:

νjR=
wj+wj+sign(mj)∆wj∑M

j=1 (wj+wj)+
∑M
j=1 (sign(mj)∆wj)

(15)

The parameter yr in a vector form is obtained as:

yr=φRθ (16)

where
φR= [−→ν TR,−→ν

T
Rx1, ...,

−→ν TRxn]
T (17)

and −→α R is defined as
−→ν R= [ν1R, ..., ν

M
R ]

T (18)

Furthermore, θ is defined as

θ
T

(n+1).M= [β1, ..., βM , α11, ..., α1M , ..., αn1, ..., αnM ]

where α’s and β’s are the consequent part parameters defined
in (4). Similarly, it is possible to rewire the equation corre-
sponding to yl (11) in a vector form as

yl=

M∑
j=1

νjl F
j
l (19)

where:

νjl =
(wj+wj)− (sign(mj)∆wj)∑M

j=1 (wj+wj)−
∑M
j=1 (sign(mj)∆wj)

(20)

yl=φLθ (21)

where:
φL= [−→ν TL,−→ν

T
Lx1, ...,

−→ν TLxn]
T (22)

and −→α L is defined as.
−→ν L= [ν1L, ..., ν

M
L ]

T (23)

Furthermore, θ is defined as.

θT(n+1).M= [β
1
, ..., β

M
, α11, ..., α1M , ..., αn1, ..., αnM ]

where α’s and β’s are the consequent part parameters defined
in (3).

IV. SUPPORT VECTOR REGRESSION METHOD

Support vector regression is a powerful machine learning
approach that is widely used to estimate the parameters
of fuzzy logic systems including IT2FLSs [13,14]. Let N
be the number of training data samples to train IT2FLSs
{(x1, t1), ..., (xN , tN )}, with tk, k= 1, ...,N being the target
values for IT2FLSs. The SVR method is designed to guarantee
that training error never exceeds ε [13,14]. Such behavior is
similar to a dead zone term, Dεk, which can add a penalty
term to the cost function when an error is larger than ε and
stays neutral otherwise. A dead-zone function is as follows:

Dεk=

{
0 if |ek| <ε
|ek|−ε otherwise

, k= 1, ...,N

where ek is the identification error. The constrained optimiza-
tion problem to estimate the parameters of the IT2FLS is as
follows [13,14]:

min
θ,θ,ξ,ξ∗

1

2
θT θ+

1

2
θ
T
θ+C

N∑
k=1

(ξk+ξ∗k) (24)

s.t. tk−
1

2
(φL,kθ+φR,kθ)≤ε+ξk, k= 1, ...,N (25)

1

2
(φL,kθ+φR,kθ)−tk≤ε+ξ∗k, k= 1, ...,N (26)

ξk, ξ
∗
k≥0 ∀k (27)
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In the case when ε < |ek|, the terms ξk and ξ∗k act as
a penalty term for cost function. The parameter C forms a
trade-off between the model complexity and its accuracy.

This cost function and its solution using linear program-
ming approaches have been previously considered in literature
[13,14]. Although such approaches result in high performance
identifiers with high generalization performances, there is no
control over the width of the interval value of the output that is
equal to (yr−yl) point-wise. As mentioned earlier, it is highly
desired to have a narrow interval width as it contains more
information about data. Motivated by this fact, a modified
cost function for the SVR model is proposed in this study
in Section 5.

V. PROPOSED MULTI-OBJECTIVE SUPPORT VECTOR
REGRESSION METHOD

As mentioned earlier, the algorithm proposed in this study
not only identifies crisp output value, but also the prediction
interval associated with data. The proposed method benefits
from penalty terms which provide the means to control the
width of the prediction interval using an appropriate design
parameter. The mathematical formulation of the constrained
optimization functions as well as the corresponding quadratic
programming approaches to solve these problems are pre-
sented in this Section.

A. Cost Function Formulation
The objective is to find the nonlinear interval function

covering the data plus having the type reduced output of the
IT2FLS approximate the measured data points. It is desirable
to allow control of the output interval width which is equal
to (yr−yl) point-wise. Therefore, the constrained optimization
problem is modified as follows:

min
θ,θ,ξ,ξ∗

1

2
θT θ+

1

2
θ
T
θ+C

N∑
k=1

(ξk+ξ∗k+ξ−k +ξ+k )

+ γ

N∑
k=1

(tk−φl,kθ)2︸ ︷︷ ︸
I1

+ γ

N∑
k=1

(tk−φr,kθ)2︸ ︷︷ ︸
I2

(28)

s.t. tk−
1

2
(φL,kθ+φR,kθ)≤ε+ξk, k= 1, ...,N, (29)

1

2
(φL,kθ+φR,kθ)−tk≤ε+ξ∗k, k= 1, ...,N, (30)

φR,kθ−tk≤ε+ξ+k , k= 1, ...,N, (31)

tk−φL,kθ≤ε+ξ−k , k= 1, ...,N, (32)

ξk, ξ
∗
k, ξ

+
k , ξ

−
k ≥0 ∀k (33)

The newly added terms and constraints with respect to the
existing SVR method [13,14] are the terms I1, and I2 terms
in (28) as well as the constraints of (32-34). The nonequality
of (31), if fulfilled, guarantees that the target values do not
exceed the yr. On the other hand, the nonequality of (32), if
fulfilled, guarantees that the target values do not fall below
yl. The terms I1, I2 are used to control the width of interval

with γ being a tuning parameter. While a large value for γ
may decrease the prediction accuracy, a small value for it may
result in a wide interval value for the output that includes less
valuable information.

A Maclauren series first order approximation of type-
reduction + defuzzification, previously designed in [49], is
used. The regressor values φL,k and φR,k depend on the
consequent part parameter values that in turn result in a two
step optimization. In the first step, since the consequent part
parameters are unknown, the regressor values φL and φR are
chosen as:

φR= [−→ν TR,−→ν
T
Rx1, ...,

−→ν TRxn]
T (34)

and −→ν R is defined as:
−→ν R= [ν1R, ..., ν

M
R ]

T (35)

where:

νjR=
wj∑M
j=1 w

j
(36)

and
φL= [−→ν TL,−→ν

T
Lx1, ...,

−→ν TLxn]
T (37)

and −→ν L is defined as:
−→ν L= [ν1L, ..., ν

M
L ]

T (38)

where:

νjL=
wj∑M
j=1 w

j
(39)

In the second step, based on the estimations made in the
first step for θ and θ, the newer values of regressors for the
IT2FLS, φL and φR, are calculated considering (17), (18),
(22) and (23). The pseudocode of the proposed algorithm is
as follows:

1) Input Selection and data processing
2) Present data in terms of the maximum and minimum
3) Split the data to test and train dataset
4) MF Generation for the IT2FLS
5) Obtain the regressors using (34) - (39).
6) Tune the consequent part parameters (first stage) to

obtain the regressors using the quadratic programming
approach to solve optimization problem (28)-(33)

7) Obtain the regressors using the updated consequent part
parameters using (15), (17), (18), (20), (22) and (23).

8) Tune the consequent part parameters (second stage)
using the quadratic programming approach to solve (28)-
(33)

9) Evaluate the performance for the train and test data. If
error is satisfactory STOP, otherwise GOTO 4).

The formulation of this problem in terms of quadratic
programming is given in the following section.

B. Solution to Cost Function in terms of a Quadratic
Programming Approach

A quadratic programming problem is defined as follows and
can be solved using various commercially available software
such as the Matlabr quadprog command.

min
x

1

2
xTHx+fTx (40)
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provided that:
Ax≤b (41)

where H and A are matrices and f , b, and x are vectors.
Formulation of the problem mentioned in Section V.A in

terms of quadratic programming requires the definition of an
unknown parameter x as the vector of unknowns as follows.

x=
[

θ θ ξk ξ∗k ξ−k ξ+k
]

(42)

The matrix H is presented as follows.

H=

 H11 H12 H13

H21 H22 H23

H31 H32 H33

 (43)

with its components being represented as follows.

H11=



I+γφL,1φ
T
L,1

...
I+γφL,kφ

T
L,k

...
I+γφL,n+1φ

T
L,n+1



T

H11∈R(n+1).M×(n+1).M

H22 =



I + γφR,1φ
T
R,1

...
I + γφR,kφ

T
R,k

...
I + γφR,n+1φ

T
R,n+1



T

H22 ∈ R(n+1).M×(n+1).M

H12 = H12 = O(n+1).M×(n+1).M

H13 = O(n+1).M×4N

H23 = O(n+1).M×4N, H31 = O4N×(n+1).M

H32 = O4N×(n+1).M , H31 = O4N×4N

The vector f is represented as follows.

f=
[
f1 f2 f3

]
(44)

where f1, f2 and f3 are represented as follows.

f1 = −2γ
[
t1φL,1 . . . tKφL,K . . . tNφL,N

]
f2 = −2γ

[
t1φU,1 . . . tKφU,K . . . tNφU,N

]

f3 =

 C . . . C︸ ︷︷ ︸
4N



The matrix A in the inequality is presented as follows.

A=



A11 A12 −I O O O
A21 A22 O −I O O
A31 A32 O O O −I
A41 A42 O O −I O
O O −I O O O
O O O −I O O
O O O O −I O
O O O O O −I


(45)

where:
A11 = −0.5diag (φL,1, . . . , φL,k, . . . , φL,N ) ∈ RN×N

A12 = −0.5diag (φL,1, . . . , φL,k, . . . , φL,N ) ∈ RN×N

A21 = 0.5diag (φL,1, . . . , φL,k, . . . , φL,N ) ∈ RN×N

A22 = 0.5diag (φR,1, . . . , φR,k, . . . , φR,N ) ∈ RN×N

A23 = O ∈ RN×N , A42 = O ∈ RN×N

A23 = diag (φR,1, . . . , φR,k, . . . , φR,N ) ∈ RN×N

A41 = −diag (φL,1, . . . , φL,k, . . . , φL,N ) ∈ RN×N

The vector b in the inequality of (41) is represented as follows.

b=
[
b1 b2 b3 b4 b5 b6 b7 b8

]T
(46)

With its components b1, b2,. . . , b8 given as follows.

b1 =
[
−t1 + ε . . . −tk + ε . . . −tN + ε

]T
b2 =

[
t1 + ε . . . tk + ε . . . tN + ε

]T
b3 =

[
t1 + ε . . . tk + ε . . . tN + ε

]T
b4 =

[
−t1 + ε . . . −tk + ε . . . −tN + ε

]T
b5, b6, b7, b8 = O ∈ RN×N .

VI. SIMULATION RESULTS

To analyze the capability and performance of the proposed
algorithm in predicting an appropriate prediction interval, it
is used for several existing datasets in literature including
input/output data associated with static function approximation
[53], and datasets gathered from time varying dynamic systems
[54]. The prediction is done using the constrained cost function
represented in (28)-(33) (see Section V-A). The accuracy of
the predictions is compared with existing methods to show
the superior performance of the proposed approach over the
state-of-the-art methods in literature. Three sets of parameter
values are considered for the proposed algorithm which are
listed in Table I.

TABLE I
PARAMETER SETS CONSIDERED FOR THE PROPOSED ALGORITHM IN

THE FOLLOWING EXPERIMENTS

Paramater set RMSE for test data
No. 1 ε = 0.01, C = 40 and γ = 0.1
No. 2 ε = 0.01, C = 40, and γ = 1
No. 3 ε = 0.1, C = 40, and γ = 1
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A. Nonlinear Function Approximation
A nonlinear function approximation is considered as the

first example. This nonlinear function has previously been
considered in a number of papers [53] as follows:

y= 1+x0.51 +x−12 +x−1.53 (47)

Fig. 3. Prediction Interval obtained for the nonlinear function approxi-
mation

Fig. 4. Prediction Interval obtained for the nonlinear function approxi-
mation using different values of γ

To estimate this function 1000 randomly generated numbers
are selected from the interval of [1, 5]. This data is further
split into test and train data with 20% of points being consid-
ered for testing, and the rest being used for training purposes.
MFs used in this study are Gaussian interval type-2 fuzzy MFs
with crisp centre and interval σ values. Table II demonstrates
the results of comparison between RMSEs of the proposed
approach versus five other approaches previously investigated
in [53,55]. All competitors listed in this table benefit from
adaptive neuro-fuzzy inference systems constructed upon type-
1 MFs with various training methods. As shown in table II, the
proposed approach considerably outperforms other methods

TABLE II
IDENTIFICATION RESULTS FOR THE NONLINEAR FUNCTION

APPROXIMATION PRESENTED IN EXAMPLE 2. BOLD FACED RESULTS

INDICATES THE BEST ONE.

Method RMSE for
test data

ANFIS GD-RLSE [53] 0.245
ANFIS RPROP+RLSE [53] 0.218
ANFIS QP+RLSE [53] 0.773
ANFIS LM+RLSE [53] 0.288
ANFIS AWPSO+RLS [55] 0.072
Proposed approach with parameter
set No. 1

0.016

Proposed approach with parameter
set No. 2

0.017

in terms of generalization for test datasets. Furthermore, Fig.
3 illustrates that the prediction interval covers the target
data samples. The capability of the proposed algorithms in
controlling the prediction interval using the parameter γ is
illustrated in Fig. 4; where the prediction interval for the case
when γ is equal to 0.1 and 1 are demonstrated. It can be
observed in Fig. 4 that a large value for γ results in a narrower
prediction interval, such a result complies with the claimed
role of γ in the cost function and estimation procedure.

B. Identification of a Time-Varying Nonlinear Dynamic
System

A second order nonlinear dynamic system with time-varying
parameters [54] is used to test the performance of the proposed
approach in this study. The output of this dynamic system is a
nonlinear time-varying function of inputs, time delays of input
and time delayed output values as follows [54]:

y (t+1) =f(y (t) , y (t−1) , y (t−2) , u (t) , u(t−1) (48)

where the nonlinear function f(.) is defined as follows.

f (x1, x2, x3, x4, x5) =
x1x2x3x5 (x3−b) +cx4

a+x22+x23
(49)

and parameters a, b and c are time-varying parameters defined
as follows.

a (t) = 1.2− 0.2cos

(
2πt

T

)
b (t) = 1.0− 0.4sin

(
2πt

T

)
a (t) = 1.0 + 0.4sin

(
2πt

T

)
with T , the total number of samples, is taken as to be equal to
1000. The input signal to the system u(t) is taken as follows.

u (t) =


sin
(
πt
25

)
t< 250

1.0 250≤t< 500
−1.0 500≤t< 750
f (t) 750≤t< 1000

(50)

where:

f (t) = 0.3sin

(
πt

25

)
+ 0.1sin

(
πt

32

)
+ 0.6sin

(
πt

10

)
.
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TABLE III
IDENTIFICATION PERFORMANCE FOR THE TIME-VARYING SYSTEM

IDENTIFICATION PROBLEM PRESENTED IN THIS PAPER. BOLD FACED

RESULTS INDICATES THE BEST ONE.

Method Rules Epoch Training
RMSE

Testing
RMSE

Type-1 TSK
FNS [56]

9 100 0.0282 0.0598

Type-2
TSK FNS [56]

4 100 0.0284 0.0601

Feedorward
Type-2 FNN

3 100 0.0281 0.0593

SIT2FNN [57] 4 100 0.0351 0.0560
SEIT2 FNN
[58]

3 100 0.0274 0.0574

TSCIT2FNN
[59]

3 100 0.0279 0.0576

IT2 FNN-GD
[54]

- 200 0.0540 0.0613

IT2 FNN-SMC
[54]

- 200 0.0360 0.0390

IT2 FNNPSO
+ SMC [54]

- 200 0.0199 0.0390

Proposed
Approach with
parameter set
No. 3

11 Non-
iterative

0.0146 0.0348

The first 80% of the generated data is used for training and
the last 20% is chosen for testing purposes. Parameter values
used for this system identification case are ε = 0.1, γ = 1,
and C = 40.

Fig. 5. Prediction performance of the proposed approach on time
varying system identification in terms of the training dataset

The proposed algorithm is a non-iterative approach and does
not include any iterations before convergence to true values
of the parameters. A summary of the results obtained using
the proposed method and several existing system identification
models is given in Table III. As Table III shows, the proposed
algorithm outperforms existing methods in terms of system
identification accuracy for the training dataset as well as gen-
eralization to the test data. The identification performance is
illustrated in Fig. 5 which shows that the output of the IT2FLS
closely replicates the real data for training data. Furthermore,

TABLE IV
STATISTICS ASSOCIATED WITH THE URMIA LAKE WATER LEVEL

DATASET.

Parameter Value
Max. 6.5630
Min -1.9430
Std. 2.4125
Mean 2.1689

TABLE V
PREDICTION RESULTS OVER THE URMIA LAKE WATER LEVEL DATASET.

BOLD FACED RESULTS INDICATES THE BEST ONE.

RMSE test RMSE train
Trained ANFIS with hybrid (27
rules) [26]

0.3633 –

Trained ANFIS with PSO (27 rules)
[26]

0.2454 0.43408

Hybrid PSO-RLS (27 rules) [26] 0.11089 0.224
Hybrid PSO-GD (27 rules) [26] 0.12621 0.239
ANFIS (1296 rules) [60] 0.08 –
The proposed method with with pa-
rameter set No. 3

0.0348 0.0146

the data is bounded with yl and yr, which provide an appro-
priate prediction interval for data. As mentioned earlier, such
prediction intervals are controllable using appropriate selection
of the parameter γ. It can be further shown by simulation
that this prediction interval is never violated by desired output
values which is a very appreciable result. In another words,
the yl’s never exceed corresponding desired output values and
yr ‘s are never smaller than the corresponding desired output
values.

C. Discussion
Overall results demonstrate higher accuracy in prediction

with respect to state-of-the-art papers in literature. Prediction
interval estimation is a major feature of the proposed approach
over existing literature which relaxes some of the assumptions
required by previous approaches such as Gaussian probability
distributed functions for prediction error. The prediction in-
terval obtained using this approach is a reasonably inclusive
one which is not too wide to avoid less specific information
associated with data. The role of the parameter γ is also crucial
in the performance of the proposed approach. The larger value
for the parameter γ results in smaller width for prediction
interval which contains more specific information about data.
However, larger value for γ may result in having more points
violating the prediction interval which needs to be avoided.
Hence, the appropriate selection for the parameter γ is required
for appropriate estimation of the prediction interval.

VII. APPLICATION TO PREDICTION INTERVAL
IDENTIFICATION ASSOCIATED WITH URMIA LAKE WATER

LEVEL USING SATELLITE REMOTE SENSING

Remote earth observation through satellites is crucial to
gain valuable information about environmental conditions,
lake water levels, and other vital factors. Such data analysis
can be used to manage drinkable water to prevent disasters
in the area [20]. Remote sensing is a major branch of earth
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Fig. 6. Performance of the proposed approach on lake water level
prediction for the training data set

Fig. 7. Performance of the proposed approach on lake water level
prediction for the training data set

observation science which provides a huge amount of infor-
mation using satellite. A huge amount of data gathered from
the environment require appropriate analysis to be useful for
further analysis and decision making [61]. Machine learning
approaches [62] as well as time series analysis [21] may be
used to analyze collected data. Urmia lake is located in the
span of longitudes of 45◦ to 46◦ east and latitudes of 37◦

to 38.5◦ north in the northwest of Iran. Fluctuation in the
water level of lake Urmia has been paid attention due to
its environmental and social impact on living conditions in
nearby area [26]. The data associated with lake water level
was collected with a sample interval of 10 days between 1992
and 2014 using satellites and includes 727 data samples, from
which 509 samples are selected for training and 218 data
samples are used for testing data. The collection of data was
performed using the TOPEX/Poseidon/Jason satellite series

(at 10-day resolution) 2. The statistics associated with the
lake Urmia dataset water level are presented in Table IV.
This dataset has previously been investigated in a number of
papers in which adaptive neuro-fuzzy inference systems with
various training algorithms were used to predict it [26,60].
The inputs taken for the prediction system in this study are[
y(t− 40) y(t− 30) y(t− 10) y(t)

]
and the desired

value of the system is y(t+ 10) where y(t−n) represents the
lake water level n days ago. The results obtained using the
proposed approach as well as several approaches in literature
are presented in Table V.

As shown in Table V, the obtained values for the proposed
algorithm outperform other approaches considerably while the
number of rules considered for the proposed method is 5 which
is considerably less than that of [60], [26]. The performance
of the proposed approach as well as test data is indicated in
Figs 6 and 7. As can be seen from these figures, the obtained
results are close to measured lake water level.

VIII. CONCLUSIONS

In this study, the identification of the prediction interval
associated with data is investigated. Three main categories of
prediction interval estimation are distinguished within litera-
ture. The first category, explained in Section II-A, involves
statistical approaches that perform uncertainty analysis on the
model output. Using the co-variance associated with the model
output as well as the properties of error with the normal
probability distribution function, they find the confidence
interval that covers future values of the output at certain
level of confidence. The second class, described in Section
II-B, involves the estimation of lower and upper bounds for
data a priori, which is then used as a guideline to estimate
model parameters. The third category, described in Section
II-C, addresses the shortcomings of the first two categories
including the assumption of the normal probability distribution
function for error as well as finding the lower and upper
bound of data by defining an appropriate cost function on data
directly.

The method which is used to identify the prediction in-
terval using IT2FLSs proposed in this study falls within the
third category of estimation algorithms. Using the proposed
approach, the prediction interval related to data using IT2FLSs
is estimated with a multi-objective cost function. It is assumed
that data values are not interval in nature, however, other
than identification of their crisp values, it is desired to find
a prediction interval covering the data. Using the multi-
objective cost function, not only can we predict data, but
we can also have a parameter to control the width of the
prediction interval to prevent it from being unnecessarily large.
Although the method investigated in this study falls into the
third category of prediction intervals, having control over the
prediction interval width is the most important contribution
of this study with respect to the current approaches in this
category. Benchmark datasets investigated in this study are

2Lake Urmia (0115) Height Variations from TOPEX POSEIDON and
Jason series Altimetry

ipad.fas.usda.gov/cropexplorer/global_reservoir/gr_regional_chart_jason1.aspx?regionid=metu&reservoir_name=Urmia_1
ipad.fas.usda.gov/cropexplorer/global_reservoir/gr_regional_chart_jason1.aspx?regionid=metu&reservoir_name=Urmia_1
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generated using a nonlinear function and a time-varying dy-
namic system. A quadratic programming method is used to
minimize the constrained optimization problem and estimate
the parameters of the IT2FLS. It is shown through simulation
that with an appropriate choice of parameters associated with
the proposed algorithm, it is possible to obtain a narrow yet
covering prediction interval whilst maintaining the prediction
accuracy. Comparisons between the proposed approach and
state-of-the-art prediction methods in literature demonstrate
the superior prediction accuracy of the proposed approach over
them. It is further shown that using the proposed approach, an
appropriate prediction interval can be estimated to cover data
with reasonable number of rules without losing accuracy.

Motivated by the results obtained from the proposed ap-
proach over benchmark prediction methods, it is used to
predict the Urmia lake water level collected through satellites.
Such predictions may be used to predict a possible water
shortage in the area and prevent it from happening. Simulation
results demonstrated that the proposed approach is an effective
way to deal with this time series dataset. Comparison results
demonstrated superior performance of the proposed approach
over the state-of-the-art approaches in literature. The predic-
tion interval estimated in this method covers data and can be
used for decision making purposes.

The limitation of the proposed approach is that it is a non-
iterative approach which require the whole dataset in batch
form to be used for parameter estimation. As future work, it
would be interesting to study the recursive and possibly less
computationally expensive version of this algorithm.
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