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Abstract 

Horizontal stirrups are normally required in reinforced concrete (RC) beam-column joints (BCJs) for 

resisting shear forces in seismic design. For RC moment-resisting frames subjected to a high lateral 

loading, a large number of stirrups are needed in joint cores. This may cause reinforcement congestion, 

leading to construction difficulty and insufficient concrete compaction, which can result in poor 

seismic performance. In this study, a novel reinforcement detail in the form of unbonded diagonal bars 

mechanically anchored at beam ends is proposed for RC interior BCJs. The detail alleviates the 

reinforcement congestion through partially replacing horizontal stirrups, and improves the seismic 

performance of BCJs by plastic hinge relocation and input shear force reduction mechanisms. Four 

2/3-scale RC interior BCJ specimens were prepared and tested under quasi-static cyclic load, including 

one specimen designed with the current code and three specimens adopting the proposed reinforcement 

detail. Test results show that the proposed reinforcement detail is able to relocate the plastic hinges 

away from beam-joint interfaces as well as improve the loading capacity, energy dissipation capacity, 

stiffness, and bonding condition of beam reinforcements within the cores of BCJs. The combined use 

of stirrups and the proposed reinforcement detail significantly enhances the cracking resistance and 

reduces joint distortion, while additional amount of stirrups results in a marginal improvement. 

Moreover, an analytical model considering plastic hinge relocation and input joint shear force 

reduction is proposed for BCJs with the novel reinforcement detail. The model can adequately predict 

the failure mode and loading capacity of BCJ specimens.  

 

Keywords: beam-column joints, seismic performance, diagonal bars, plastic hinge relocation, 

reinforced concrete. 

 

1. Introduction 

Reinforced concrete (RC) moment-resisting frame is a typical structural form, in which beam-column 

joints (BCJs) are defined as the parts of columns where transverse beams are connected. The BCJs 

play a crucial role in seismic design of structures as they transfer loads between beams and columns 

[1]. Under lateral action such as earthquakes, the shear force inside joint cores could be several times 

higher than that in the adjacent structural members [2]. Reconnaissance of previous earthquakes has 

indicated that the failure of BCJs could lead to large story drifts and even the global collapse of 

structures [3]. Nowadays BCJs have been recognized as critical structural components in frames, and 

current codes [4] specify the concept of “strong joint-weak members” in the design of moment-
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resisting frames. Therefore, the BCJs must be properly designed and detailed to prevent their failure 

prior to beams or columns. 

 

The shear resistance mechanism of BCJs is more complicated than that of beams and columns. Paulay 

et al. [5] proposed that the shear forces in BCJs are resisted through the truss and the diagonal concrete 

strut mechanisms. Horizontal stirrups are required to transfer forces in the truss mechanism, and 

sufficient sectional area and concrete strength are the main parameters affecting the force taken by the 

diagonal concrete strut mechanism. In addition, joint stirrups provide confinement to the concrete strut 

inside joint core and enhance the shear resistance of BCJs [6]. Consequently, a large quantity of stirrups 

may be required in BCJs, especially for those subjected to a large horizontal force, which brings about 

the problem of reinforcement congestion when the space of joint core is limited. As a result, 

construction difficulty and insufficient concrete compaction occur inside joint cores, leading to 

unsatisfactory seismic performance of BCJs. 

Alternative reinforcements for BCJs have been developed to address the above-mentioned issues, such 

as diagonal bars. Tsonos et al. [7] found that RC exterior BCJs with diagonal bars are able to resist 

higher horizontal shear stress than those with conventional stirrups. Au et al. [8] compared the seismic 

behaviour of interior BCJs with no joint reinforcement, conventional stirrups and diagonal bars. It was 

found that the use of diagonal bars enhances the loading capacity of BCJs and improves the bond 

condition between longitudinal reinforcements and joint concrete. Chalioris et al. [9] compared the 

seismic performance of exterior BCJs with different reinforcement details. The BCJs with diagonal 

bars show higher loading capacity and energy dissipation capacity than those with or without 

conventional stirrups. The combined use of stirrups and diagonal bars inside joint core is recommended 

for crack control. Kotsovou and Mouzakis [10] found that the shear deformation of BCJs is 

significantly reduced when 80% of conventional stirrups are replaced with diagonal bars. Lu et al. [11] 

compared the seismic performance of interior BCJs with diagonal bars to those with conventional 

stirrups. Although those BCJs with diagonal bars exhibit enhanced loading capacity, the importance of 

confinement from stirrups in achieving ductile behaviour of BCJs is emphasized. Diagonal bars 

combined with hair clip bars were also developed as reinforcement for exterior BCJs [12,13]. The 

addition of diagonal bars to hair clip bars inside joint cores enhances the shear strength and overall 

loading capacity of BCJs without compromising their ductility and stiffness. Furthermore, several 

analytical models have been successfully developed for estimating the shear strength of BCJs with 

diagonal bars [14,15]. It has been demonstrated that the use of diagonal bars as joint reinforcement is 

effective in resisting shear forces in BCJs. Nevertheless, the diagonal bars bonded with joint concrete 

transferred the forces on diagonal bars into joint cores, which causes damage to joint concrete. 

On the other hand, plastic hinge relocation has also been proposed to improve the seismic performance 

of BCJs. When plastic hinge is moved away from the beam-joint interface, yielding penetration of 

beam longitudinal bars into joint can be weakened, leading to a reduced joint shear action. Park and 

Milburn [16] and Hwang et al. [17] provided additional steel bars anchored in the beam ends for both 

exterior and interior BCJs, respectively. As a result, the plastic hinges in both types of joint were 

successfully relocated away from the beam-joint interfaces, which improves the bonding between 

beam longitudinal bars and joint concrete. Moreover, BCJs with relocated plastic hinges exhibit higher 

energy dissipation capacity and shear strength. To retrofit BCJs, CFRP sheets were bonded at the beam-

joint interface for relocating plastic hinges [18,19]. The plastic hinges were relocated to the ends of 

CFRP sheets so that the joint failure could be prevented, resulting in higher loading capacity and 



ductility of BCJs. Wang et al. [20] tested seismically deficient exterior BCJs retrofitted by externally 

bonded CFRP sheets and near-surface mounted CFRP strips. Both strengthening methods effectively 

relocated the plastic hinge away from the joint region and consequently protected the joint cores. In 

summary, the plastic hinge relocation is achieved mainly by enhancing flexural capacity of beam 

sections close to joint. 

In this paper, a novel reinforcement detail in the form of diagonal bars with horizontal mechanical 

anchorage segments at beam ends is proposed for RC interior BCJs. The diagonal segments of the bars 

are covered with PVC tubes to prevent their bonding with joint concrete. The ends of anchorage 

segments are equipped with mechanical anchors (e.g. steel anchorage heads) to provide sufficient 

anchorage for diagonal bars and control the location of the plastic hinge of the beam through changing 

the reinforcement ratio along the beam. Relocation of the plastic hinge away from the beam-column 

interface is advantageous in relieving strength degradation in the joint due to strain penetration effect. 

To verify the effectiveness of using the proposed reinforcement detail to replace conventional stirrups, 

four 2/3-scale interior BCJ specimens, including one control specimen designed according to the 

Chinese code [4] and three specimens adopting the proposed reinforcement detail, were prepared and 

tested under quasi-static cyclic load. The influence of joint reinforcement detail (conventional stirrups 

or the proposed detail) and the quantity of joint stirrups on the seismic performance of interior BCJs 

is investigated. Furthermore, an analytical model is developed to predict the failure mode and loading 

capacity of BCJs with the proposed reinforcement detail. 

 

2. Experimental programme 

2.1 New reinforcement detail for BCJs 

Figure 1 shows the conventional stirrups and the proposed reinforcement detail for a RC interior BCJ. 

The proposed reinforcement detail aims to partially replace stirrups in joint cores to alleviate the 

reinforcement congestion and enhance the seismic behaviour of RC BCJs. Moreover, the proposed 

reinforcement detail utilizes the unused space in joint so that it can also be combined with conventional 

horizontal stirrups. This reinforcement detail is developed based on the plastic hinge relocation and 

the joint shear force reduction mechanisms. To relocate plastic hinge, the flexural capacity of beam 

sections close to joint needs to be enhanced. This can be achieved by increasing reinforcement ratio at 

the beam ends through the presence of the anchorage segments of the proposed reinforcement detail. 

Senturk et al. [21] installed steel heads on the ends of reinforcement bars to enhance the connection 

between precast beam and column. They found that the steel heads are able to improve the anchorage 

between beam longitudinal bars and beam end plate. The idea is adopted in this study and steel heads 

are installed at the ends of the anchorage segments to improve the anchorage of diagonal bars and 

control the position of plastic hinges. The plastic hinge is expected to form at the ends of anchorage 

segments rather than at the beam-joint interface. As illustrated in Figure 2, the joint shear force can be 

reduced through balancing the input forces transferred from beam longitudinal reinforcements. Due to 

the opposite sign of bending moments at the beam-column interfaces across the joint core, the top 

reinforcements on one side and the bottom reinforcements on the other side are both under tension or 

compression. Hence, the forces taken by the horizontal segments of the proposed reinforcement detail 

can be balanced by the diagonal segments. To prevent the forces taken by the diagonal segments 

transferring to joint concrete, the diagonal segments are covered with PVC tubes. 

 



  

(a) conventional stirrups (b) proposed reinforcement detail 

  

(c) single diagonal bar (d) steel anchorage heads 

Figure 1. Schematic view of the reinforcement details for BCJs. 

 

  
Figure 2. Input shear force reduction mechanism of the proposed reinforcement detail. 

2.2 Specimen description 

Four 2/3-scale RC interior BCJ specimens were designed and tested in this study. Except the horizontal 

stirrups in the joint cores, the specimens designed in accordance with GB50010 [4] have identical 

geometry and reinforcement details as shown Figure 3(a). The beam with a cross-section of 250 mm 

× 350 mm has an overall length of 2800 mm. Three D14 bars are placed symmetrically at top and 

bottom zones of beam sections as longitudinal reinforcements. The column with a square section of 

300 mm × 300 mm has a total length of 2130 mm. Eight D16 bars are arranged evenly along the 

periphery as longitudinal reinforcements. D10 bars were adopted as the stirrups with a spacing of 100 

mm for both beam and column. The thickness of concrete cover is 25 mm.  



 

(a) Geometry and reinforcements of J1 

   

(b) Joint reinforcement of J2 (c) Joint reinforcement of J3 (d) Joint reinforcement of J4 

Figure 3. Geometry and reinforcement details of specimens (Unit: mm). 

 

The BCJ specimens were designed with different reinforcement details in the joint regions. Three 

layers of conventional stirrups at a spacing of 100 mm were adopted for specimen J1, while the 

proposed reinforcement detail is adopted for specimens J2-J4 as illustrated in Figures 3(b)-3(d). In 

specimen J2, conventional stirrups were completely replaced by two pairs of D12 diagonal bars with 

anchorages in the beams ends, while one and three D10 horizontal stirrups at a spacing of 100 mm 

were added to specimens J3 and J4, respectively. The anchorage length la of mechanically anchored 

deformed steel bars was determined based on Eq. (1) specified in GB50010 [4]. 

 la=0.084fyd/ft (1)  

where fy is the yield strength of steel bar, ft is the tensile strength of concrete, and d is the diameter of 

steel bar. Based on the material properties measured, an anchorage length of 187 mm is obtained. It 

should be noted that Eq. (1) estimates the required anchorage length based on yielding of steel bars, 

while in this case the anchorage segments of the proposed reinforcement detail is not considered as 

yielded due to plastic hinge relocation. Consequently, the anchorage length is reduced to 175 mm, 

corresponding to half of the beam depth.  

Material properties of steel bars and concrete were tested. Yield and ultimate strengths of deformed 

steel bars are given in Table 1. Ready-mix concrete was used to cast the four BCJ specimens. Cubic 

compressive strength fcu based on 100 mm cubes at the 28th curing day was 43.8 MPa. The compressive 



strengths of concrete on the day of testing for specimens J1-J4 were 43.6 MPa, 46.0 MPa, 45.6 MPa, 

and 46.5 MPa, respectively.  

Table 1. Mechanical properties of steel bars. 

Material properties 
Steel bar 

D10 D12 D14 D16 

Yielding strength fy (MPa) 450 453 443 460 

Ultimate strength fu (MPa) 635 645 668 650 

 

2.3 Test setup and loading sequence 

The test setup of BCJ specimens is shown in Figure 4. The bottom of the column was hinged to the 

strong floor through a fixture, while the top of the column was connected to a servo-hydraulic actuator 

for applying the horizontal load. A hydraulic jack was also installed at the top of the column to apply 

axial load through stressing four rods connecting the top plate with the bottom fixture. Both ends of 

beams were constrained in vertical direction only, thus they are free to rotate and move horizontally. 

With this test setup, the distances between contra-flexural points on beams and columns were 2400 

mm and 2130 mm, respectively. Load cells were attached to the horizontal actuator and the column 

top to monitor horizontal reaction force and column axial force, respectively. A wire linear variable 

displacement transducer (LVDT) was used to record the induced column top displacement. Two rod 

LVDTs were installed on the back of joint core to monitor the shear deformation. In addition, strain 

gauges were installed on the beam longitudinal bars, the joint stirrups, and the proposed reinforcement 

detail to record their corresponding strain. 

 

  

Figure 4. Test setup of BCJ specimens (Unit: mm). 

 

The loading sequence for BCJs consists of two stages. At the first stage, a medium level [22–24] of 

column axial force of 0.2fc’Ag was loaded, where fc’ is the cylinder compressive strength of concrete 

and Ag is the gross area of the column section. Here fc’ is taken as 0.8fcu with fcu being the cubic 

compressive strength of concrete on the day of testing. At the second stage, horizontal loading was 

applied at the column top following the displacement scheme illustrated in Figure 5. The displacement 

scheme was designed based on the control specimen (i.e. specimen J1), and then applied to the other 



specimens. Prior to applying the horizontal load, the nominal flexural capacity Mbu of the beam section 

was calculated using the tested material properties and neglecting the partial safety factors. In the first 

cycle, the horizontal displacement was applied to the level when the bending moment reaches 0.75Mbu 

and the corresponding displacement was marked as 0.75Δy. The nominal yielding displacement Δy was 

subsequently calculated by linear extrapolation. In the following cycles, the displacement level was 

increased step by step to Δy, 2Δy, 3Δy, …, with each displacement level repeated twice. The specimens 

were loaded to failure when the applied force descended to 80% of the recorded peak load. 
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Figure 5. Loading history of applied horizontal displacement. 

 

3. Test results and discussion 

3.1 General observations and failure modes 

Figure 6 shows the development of crack patterns at various positive displacements and failure modes 

of BCJ specimens. In specimen J1 with the conventional joint reinforcements, flexural cracks were 

first observed on the beams at the horizontal displacement of 11.3 mm. These flexural cracks evolved 

from top and bottom of the beams and propagated symmetrically towards the middle of the beam 

section. As the horizontal displacement increased to 15 mm, the first diagonal crack on the joint core 

was found. With further increase of displacement, the flexural cracks mainly developed at the beam-

joint interfaces in width as these sections are subjected to higher bending moments. Meanwhile, the 

cracks at the joint core continuously propagated in terms of length and quantity. However, their width 

at the joint core was well restrained by the horizontal stirrups, which indicates the horizontal stirrups 

designed according to the code were able to resist the joint shear force. At the horizontal displacement 

of 75 mm, concrete spalling occurred at the beam-joint interfaces, followed by the formation of plastic 

hinges at the beam-column interfaces. There was more massive concrete spalling at the beam-joint 

interfaces as the displacement further increased, leading to the final failure of specimen J1. Generally, 

specimen J1 failed with the formation of plastic hinges at the beam-joint interfaces as shown in Figure 

6(a).  

Compared with specimen J1, the development of cracks on the beams of specimens J2-J4 was similar 

at the initial loading stage but different with further increased displacement. Flexural cracks first 

formed and propagated on the beams as the horizontal displacement increased. However, the 

development of flexural cracks mainly concentrated at the sections located at the ends of anchorage 

segments of the proposed reinforcement detail after the horizontal displacement reached 45 mm. These 

flexural cracks were much wider than those at other locations on the beams, as the anchorage segments 



of the proposed reinforcement detail enhanced the flexural resistance of beam sections close to the 

joints. As the horizontal displacement further increased, several splitting cracks were observed near 

the ends of the proposed reinforcements, followed by concrete crushing and spalling. This indicates 

that the plastic hinges formed at the sections away from the beam-joint interfaces as shown in Figures 

6(b)-6(d). Moreover, the plastic hinges in specimens J2-J4 spread in wider regions than those in 

specimen J1. With further cyclic loading, the spalling of concrete accompanied by the buckling of 

longitudinal bars occurred in the plastic hinge zones. Specimens J2-J4 eventually failed with the 

formation of plastic hinges at the ends of anchorage segments of the proposed reinforcement detail.  

 

    

    

    

    

    

(a) J1 (b) J2 (c) J3 (d) J4 

Figure 6. Development of cracks and failure modes of BCJ specimens.  

 

The cracks within the joint cores in specimens J2-J4 with the proposed reinforcement detail mainly 

distributed along the diagonal directions, while those in specimen J1 with the conventional 

reinforcement distributed across the joint core. Moreover, specimens J2-J4 exhibited different levels 

of damage inside the joint cores, resulting from the combination of different quantities of stirrup with 

the proposed reinforcement detail. Diagonal cracks were initially observed in the joint cores at the 

horizontal displacement of 15 mm for the specimens. As there was no stirrup in the joint core of 

specimen J2, the joint core was less restrained against the development of cracks. Consequently, the 

15 mm 15 mm 15 mm 15 mm 

45 mm 45 mm 45 mm 45 mm 

75 mm 75 mm 75 mm 75 mm 

105 mm 105 mm 105 mm 105 mm 

Failure Failure Failure Failure 



cracks propagated quickly along the diagonal directions in terms of both width and quantity, followed 

by concrete spalling inside the joint core due to the repeated opening and closing of the cracks as 

shown in Figure 6(b). With the addition of one layer of stirrup in specimen J3, the cracks inside the 

joint core were properly controlled in terms of width and quantity. There were limited number of 

hairline diagonal cracks in the joint core as shown in Figure 6(c). It indicates that adding one layer of 

stirrup is able to activate the truss mechanism to sustain the stresses developed inside the joint core. 

For specimen J4 with three layers of stirrups inside the joint core, there was a limited improvement in 

cracking behaviour as compared with specimen J3. Adding more stirrups in the joint core only slightly 

decreased the number of cracks as seen in Figure 6(d). It should be noticed that the stirrups in specimen 

J4 are placed with a relatively small spacing due to the limited height of the beams, which causes 

similar cracking behaviour for specimens J3 and J4. In summary, joint stirrup is necessary to control 

the cracks inside the joint core for BCJs with the proposed reinforcement detail. However, the amount 

of joint stirrups can be reduced from three layers to one layer in specimen J3 as more stirrups in 

specimen J4 result in a marginal effect on further reducing the cracks inside the joint core.  

3.2 Hysteretic behaviour 
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Figure 7. Load-displacement relationship of BCJ specimens. 

 

Figure 7 shows the hysteretic relationships of horizontal force and displacement at the column tip for 

BCJ specimens. In general, the horizontal force is linear to the displacement for all specimens at the 

initial loading stage, indicating that the deformations of BCJs are mainly within elastic range. After 

entering the yielding stage, the hysteretic loops of specimens become plumper. The nonlinear 



deformation of specimens occurs due to the yielding of steel reinforcement and the cracking of 

concrete. With the increasing horizontal displacement, their loading and unloading stiffness decreases 

and the area of each hysteretic loop becomes larger. At the late loading stage, the hysteretic loops of 

BCJs with the conventional stirrups and the proposed reinforcement detail have different shapes. There 

is a smooth sliding stage during the unloading and reloading stages in specimen J1. This means that 

the horizontal force keeps almost constant under various horizontal displacements, resulting from 

severe bonding failure between beam longitudinal bars and joint concrete. Consequently, the beam 

longitudinal bars slipped against joint concrete until the opened cracks at the beam-joint interfaces 

closed. Although specimen J1 could sustain the load after sliding, the slippage of beam longitudinal 

bars inside the joint core leads to a significant pinching phenomenon in the hysteretic loops. This is 

consistent with the findings of a previous study by Alaee and Li [25]. Compared to specimen J1, the 

sliding phenomenon is well prevented for specimens J2-J4, indicating that the bonding between beam 

longitudinal bars and concrete inside the joint core is well maintained. Consequently, the hysteretic 

loops for specimens J2-J4 are plumper than that for specimen J1, especially at the late stage of loading. 

For the specimens with the proposed reinforcement detail, the addition of stirrups has a negligible 

impact on their hysteretic behaviour, as the overall behaviour of specimens is controlled by the plastic 

hinges formed in beams.  

3.3 Envelope curves and displacement ductility 
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Figure 8. Envelope curves of hysteretic loops for specimens. 

 

Figure 8 shows the envelope curves of hysteretic loops for the BCJ specimens. The four BCJ specimens 

exhibit similar force-displacement relationships at the initial stage of loading as they are mainly within 

the elastic stage. Afterwards, specimen J1 gradually enters the yielding stage, followed with a reduction 

of horizontal force after the formation of plastic hinges. Specimens J2-J4 with the proposed 

reinforcement detail sustain higher loads than specimen J1 under the same displacement level. With 

further increased displacement after the peak loads, the loads of specimens J2-J4 drop faster than that 

of specimen J1, which is mainly related to the buckling of beam longitudinal bars due to the more 

severe concrete spalling in specimens J2-J4. At the final stage of loading, the loads of specimens J2-

J4 are even lower than that sustained by specimen J1. The loading capacities of the specimens at the 

push and pull loading directions are given in Table 2. Compared to the specimen J1 with conventional 

stirrups, the loading capacities of specimens J2-J4 with the proposed reinforcement detail are increased 

by 11.6% to 13.4%. For the three specimens with the proposed reinforcement, the envelope curves are 



comparable as they are dominated by the yielding of the beams with the same reinforcements.   

 

The displacement ductility μ defined as the ratio of ultimate displacement Δu to yielding displacement 

Δy is calculated for specimens at the push and pull loading directions. The ultimate displacement is 

defined as the post-peak displacement at 80% of the peak load, while the yielding displacement is 

determined by the energy balance method [26]. Table 2 shows the calculation of yielding displacement, 

ultimate displacement and ductility of specimens. The specimen J1 achieves a displacement ductility 

of 6.8 and 4.9 in the push and pull directions, respectively. With the proposed reinforcement detail, the 

displacement ductility of specimens J2-J4 is slightly decreased, which agrees with the faster drop of 

forces in the envelope curves. This reduction of ductility is mainly associated to the buckling of beam 

longitudinal bars and the spalling of concrete in the plastic hinge zones. Ductility of specimens J3 and 

J4 is marginally higher than that of specimen J2. It indicates that addition of stirrups inside the joint 

core has a limited improvement on the ductility of BCJs with the proposed reinforcement detail. As 

specimens J2-J4 finally failed with the formation of beam plastic hinges, adding more stirrups inside 

joint core has a negligible impact on the overall displacement ductility of BCJs.  

 

Table 2: Concrete strength, loading capacity and displacement ductility of specimens. 

Specimen 

Push direction Pull direction 

Fu  

(kN) 

Δy 

(mm) 
Δu (mm) μ 

Fu  

(kN) 

Δy  

(mm) 

Δu  

(mm) 
μ 

J1 69.6 19.0 129.1 6.8 68.3 22.3 108.4 4.9 

J2 78.9 (13.4%) 21.9 112.4 5.1 76.6 (12.2%) 23.6 101.9 4.3 

J3 78.3 (12.5%) 20.3 109.3 5.4 76.4 (11.9%) 21.9 108.6 5.3 

J4 78.5 (12.8%) 21.4 112.8 5.3 76.2 (11.6%) 22.1 109.2 4.9 

Note: the number in parentheses indicates the improvement compared to the control specimen. 

 

3.4 Energy dissipation 

Figure 9 shows the cumulative energy dissipation of BCJ specimens against the horizontal 

displacement. The cumulative energy dissipation is calculated by summing up the areas of previously 

accomplished hysteretic loops. Generally, the cumulative energy dissipation of BCJ specimens 

increases with the horizontal displacement. Before the horizontal displacement reaches 30 mm, those 

specimens dissipate similar energy regardless of the joint reinforcements. Afterwards, specimens J2-

J4 with the proposed reinforcement detail dissipate higher cumulative energies than the control 

specimen. This is mainly attributed to the higher force sustained by the specimens and the better 

bonding between beam longitudinal bars and concrete within the joint cores. Among those specimens 

with the proposed reinforcement detail, specimens J2 and J3 show similar energy dissipation capacity, 

which indicates that the addition of one stirrup has a limited effect on improving the energy dissipation. 

Nevertheless, further increasing the amount of stirrups to three layers leads to the highest energy 

dissipation in specimen J4. This means that the addition of three layers of stirrups to the proposed 

reinforcement detail is beneficial in improving the energy dissipation of BCJs. As compared with 

specimen J1, the cumulative energy dissipation of specimens J2, J3 and J4 is increased by 10.6%, 7.3% 

and 19.2%, respectively. 
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Figure 9. Cumulative energy dissipation of specimens at various displacements. 

 

3.5 Stiffness degradation 

Figure 10 shows the stiffness degradation of BCJ specimens at various displacements. Secant stiffness 

defined as the slope of the line connecting the peak loads at the positive and negative directions is 

calculated, based on the first cycle at each displacement level. Generally, the stiffness of the BCJ 

specimens decreases as the displacement increases. The specimens have similar stiffness at the initial 

stage of loading. As the displacement increases, the stiffness of specimen J1 drops slightly faster than 

that of the other specimens. This reflects that the proposed reinforcement detail has a negligible 

influence on the initial stiffness of BCJs, but could slightly delay the degradation of stiffness. However, 

the degradation rates of stiffness tend to be identical for specimens J1-J4 at the advanced stage of 

loading. The stiffness degradation curves of specimens J2-J4 are almost overlapped, indicating that the 

variation of joint stirrups could not change the stiffness of specimens. Overall, the adoption of the 

proposed joint reinforcement detail and the amount of stirrups have a marginal impact on the stiffness 

degradation of BCJs. 
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Figure 10. Secant stiffness of specimens at various displacements. 

 

3.6 Joint distortion 

Figure 11 shows the calculation of joint distortion and the relationship of joint distortion to 

displacement for the tested specimens. Here, the joint distortion is calculated based on the 

measurements of a pair of LVDTs installed diagonally in the joint core as shown in Figure 11. At the 



initial stage of loading, the joint distortion for all the specimens gradually increases with the horizontal 

displacement, resulting from the increasing joint shear force. For specimen J1, the joint distortion tends 

to be stable and even slightly decreases after the horizontal displacement reaches 75 mm, as the 

deformation of specimen J1 mainly focuses on the plastic hinges developed at beam-joint interfaces at 

the late stage of loading. However, joint distortion of specimen J2 without conventional stirrup 

increases considerably after reaching the horizontal displacement of 75 mm. For instance, specimen 

J2 exhibits 5 times higher joint distortion that specimen J1 at the horizontal displacement of 120 mm. 

This highlights the importance of joint stirrup in controlling the joint distortion and agrees with the 

observed failure mode of specimen J2. Combining one layer of stirrup with the proposed reinforcement 

detail in specimen J3 results in a significant reduction of joint distortion. The joint distortion of 

specimen J3 is lower than that of specimens J1 and J2. As compared with specimen J2, the adding one 

layer of stirrup reduces joint distortion by around 90% in specimen J3 at the displacement of 120 mm. 

Adding two layers of stirrups can further reduce the joint distortion in specimen J4. For example, the 

joint distortion of specimen J4 is almost half of that of specimen J3 after reaching the displacement of 

60 mm. Nevertheless, additional two layers of stirrups in specimen J4 is not as effective as the one 

layer of stirrup in specimen J3. Moreover, the joint distortions of both specimen J3 and J4 are lower 

that specimen J1 with the conventional stirrups. This indicates that the existence of joint stirrup is 

crucial in controlling the joint distortion, but further addition of stirrups have a marginal impact on 

restraining the distortion of joint cores in BCJs. 
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Figure 11. Computation and results of joint distortion at various displacements.  

 

3.7 Strain of beam longitudinal bars 

Figure 12 presents the strain profiles of the upper beam longitudinal bars at different displacement 

levels. The horizontal and vertical axes indicate the relative distances to the joint centre and the strains 

of bars, respectively. Only strains of beam bars before the displacement of 45 mm are shown in the 

figures, due to the malfunction of strain gauges under the repeated loadings. At the displacement of 30 

mm, the strains of bars in all specimens are generally subjected to tension and compression in the left 

and right beams, respectively. The strains of beam bars in specimen J1 increase gradually as they get 

closer to the beam-column interfaces. The strains of beam bars at the left beam-joint interface reach 

the yielding level at the displacement of 15 mm. At the displacement of 45 mm, the beam bars at both 

left and right column faces are subjected to a high tensile strain. It indicates that there is a significant 



bonding deterioration between beam bars and concrete inside the joint core for specimen J1. For 

specimens J2-J4 with the proposed reinforcement detail, the strains of beam bars distribute more 

uniformly, and their highest strains occur at a section away from the beam-joint interfaces. This is 

mainly caused by the enhanced flexural resistance at the beam ends with the incorporation of 

anchorage segments of the proposed reinforcement detail. Besides, the beam bars in specimens J2-J4 

enter the yielding stage after reaching the displacement of 30 mm, which is delayed when compared 

to that in specimen J1. Moreover, the slopes of strain distribution in the joint regions of specimens J2-

J4 are lower than that of specimen J1. It indicates that the forces inputted into the joint cores through 

bonding are reduced for the specimens with the proposed reinforcement detail. The specimens with 

different layers of stirrups show similar strain profile for the beam bars. Increasing the layers of stirrups 

inside the joint cores has a limited influence on the strain distribution of beam bars in the joint regions.  
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Figure 12. Strain profiles of the upper beam longitudinal bars under pushing action. 

 

3.8 Strain of joint stirrup 

Figure 13 shows the strain of joint stirrups at various displacements for BCJ specimens. Here, 

specimen J2 is not included as there is no stirrup in its joint core. Generally, the strains of stirrups in 

specimens J1, J3 and J4 first increase with the horizontal displacement, followed with a reduction as 

the horizontal displacement further increases. The initial increase of strain of joint stirrups is mainly 

caused by the enhanced involvement in shear resistance through the truss mechanism. After reaching 

peak strains, the strains of joint stirrups in all specimens drop with the increased displacement. On one 

hand, bond deterioration between the beam longitudinal bars and joint concrete under cyclic loading 



reduces the shear resistance contributed by the truss mechanism. On the other hand, the forces on the 

specimens drop after reaching their loading capacities as seen in the envelope curves of hysteretic 

loops. Moreover, the damage of BCJ specimens concentrated on beams instead of joint cores in 

specimens J1, J3 and J4 at the late stage of loading. 
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Figure 13. Strain of joint stirrups at various displacements. 

 

The strain of joint stirrup in specimen J1 is clearly higher than that in specimens J3 and J4 at the early 

stage of loading. It indicates that force transmitted into the joint core of specimen J1 is larger than that 

of the other two specimens. Besides, the strain of joint stirrup in specimen J1 starts to drop at the 

displacement of 75 mm, while strains of joint stirrups in specimens J3 and J4 drop at the displacement 

of 90 mm. This indicates that the contribution of truss mechanism within the joint cores in specimens 

J3 and J4 deteriorates at the later stage of loading. Essentially, the plastic hinge relocation in specimens 

J3 and J4 improves the bonding condition between beam longitudinal bars and joint concrete, which 

delays the deterioration. Specimens J3 and J4 with different layers of stirrups exhibit similar strain of 

stirrups, indicating the quantity of stirrups inside the joint cores marginally affects their strains for 

BCJs with the proposed reinforcement detail. 

 

3.9 Strain of the proposed reinforcements 
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Figure 14. Strain of the proposed reinforcements at various displacements. 

 



Figure 14(a) shows the strain on diagonal segments of the proposed reinforcement detail for specimens 

J2-J4. The diagonal bars inside the joint cores are under tension and compression when BCJ specimens 

are loaded in push and pull directions, respectively. Generally, the strain of diagonal bars is more 

significant in tension than in compression. Under the push loading, the strain of diagonal segments 

ascends as the horizontal displacement increases up to 90 mm, followed with a reduction as the 

horizontal displacement further increases. This reduction could result from two reasons: Firstly, the 

force of BCJ specimen decreases at the late stage of loading as discussed previously for the envelope 

curves of the hysteretic loops. Secondly, the deformation in BCJs was shifted from the joint cores to 

the plastic hinge zones at beam ends at the advanced stage of loading. Moreover, the maximum strain 

of diagonal bars in specimen J2 is slightly higher than that of specimens J3 and J4, as specimen J2 

experienced a higher joint distortion. Specimens J3 and J4 have similar strain for diagonal bars inside 

the joint cores. It indicates that increasing amount of stirrups have a marginal impact on the forces 

taken by the diagonal bars.  

Figure 14(b) shows the strain of steel bars at the beam-joint interface for specimens J2-J4 under the 

push loading. Both beam longitudinal bars and anchorage segments of the proposed reinforcement 

detail are included. The beam longitudinal bars experienced a higher strain than the anchorage 

segments of the proposed reinforcement, due to the better anchorage condition of beam longitudinal 

bars. It can be seen that beam longitudinal bars of specimen J2-J4 typically undergo double strain than 

the anchorage segments of diagonal bars. The strain of bars at the beam-joint interface in specimen J2 

is higher than that in specimens J3 and J4, indicating that the addition of joint stirrups helps control 

the integrity of joint regions and reduces the input shear force inside the joint cores. However, 

specimens J3 and J4 show similar strains for beam longitudinal bars and anchorage segments of 

diagonal bars. It indicates that increasing the amount of stirrup has very limited effect on reducing the 

strain of beam longitudinal bars at the beam-joint interfaces. 

 

4. Analytical study 

4.1 Model description 

Figure 15 illustrates the mechanism of plastic hinge relocation for a BCJ with the proposed 

reinforcement detail. The upper graph shows the applied bending moment (shaded) and the flexural 

capacity (void) along the beam. With the anchorage segments of the proposed reinforcement detail, 

the flexural capacity of beam ends is increased from Mbu to Mbu
’. To relocate plastic hinges from the 

beam-column interfaces to the ends of anchorage segments, the applied bending moment Mb at the 

ends of anchorage segments shall be equal to Mbu. Therefore, the applied bending moment at the beam-

joint interfaces Mb
’ can be calculated by extrapolation based on Eq. (2). 

 Mb
’=Mbulb/(lb-la) (2) 

where lb is the distance from the beam contra-flexure point to the beam-joint interface, and la is the 

anchorage length of diagonal bars. To achieve the plastic hinge relocation, the flexural capacity of 

beam section at the beam-joint interfaces Mbu
’ should be higher than the applied bending moment, as 

given in Eq. (3). 

 Mbu
’>Mb

’ (3) 

Therefore, a proper anchorage length la of diagonal bars needs to be determined for achieving the 



plastic hinge relocation. If the anchorage length is too small, the plastic hinge relocation may not be 

evident as the forces taken by the anchorage segments are insufficient. Moreover, relocating plastic 

hinge by a short distance may still result in the yielding penetration of beam longitudinal bars into the 

joint core, leading to a higher joint shear force. If the anchorage length of diagonal bars is too long, 

the applied bending moment at the beam-joint interfaces may exceed the flexural capacity of beam. 

The plastic hinges consequently form at the beam-joint interfaces, leading to the failure of the joint 

cores. Therefore, the plastic hinge relocation occurs only when the anchorage length of diagonal bars 

is within a proper range. In this study, specimens J2, J3 and J4 were designed with a proper anchorage 

length for the diagonal bars.  

 

Figure 15. Design of plastic hinge relocation. 

 

 

  

(a) Force flow on steel bars. (b) Sectional analysis of A-A section. 

Figure 16. Illustration of input shear force reduction. 

 

Figure 16 shows the input shear force reduction mechanism of the proposed reinforcement detail in 

BCJs. The force flow on the beam longitudinal bars (void) and the proposed reinforcement detail (solid) 

are plotted in Figure 16(a). At the beam-joint interfaces, both beam longitudinal bars and anchorage 

segments of the proposed detail contribute to the flexural resistance of beam section. The forces on the 

beam longitudinal bars are transmitted into the joint core through bonding, causing shear force inside 

the joint core. The forces on the anchorage segments of the proposed detail are transmitted into 

diagonal segments and self-balanced inside the joint core. To quantify the input joint shear force, 

section analysis at the beam-joint interface (e.g. A-A section) is performed as shown in Figure 16(b). 

Plane strain distribution is assumed, εs and εs
’ are the tensile and compressive strains of beam 

longitudinal bars, respectively. εc is the compressive strain of concrete at the top surface. The total 

forces of reinforcements and concrete can be calculated based on their material constitutive laws. Here 



the resultant compressive force of concrete is determined based on Eq. (4) in accordance with the code 

GB50010 [4]. Uniaxial behavior of steel bars is assumed to be elastic-perfectly-plastic, therefore, the 

tensile and compressive forces of beam longitudinal bars are calculated by Eqs. (5) and (6), 

respectively.  

 Cc=α1fcβ1xb  (4) 

 

 Ts=εsEs (5) 

 

 Cs=εs
’Es (6) 

where α1 and β1 are the parameters depending on εc, x is the height of concrete compression zone, and 

Es is the elastic modulus of steel bars. The strain on the anchorage segments of the proposed 

reinforcement detail is taken as half of that on the beam longitudinal bars, as discussed in Section 3.9. 

Consequently, Tsd=0.5εsEs and Csd=0.5εs
’Es are the tensile and compressive forces on the anchorage 

segments of the proposed reinforcement detail. The above variables can be determined based on the 

equilibrium conditions in Eqs. (7) and (8). 

 Cc+Cs+Csd = Ts+Tsd (7) 

 Cc(h0-0.5βx)+(Cs+Csd)(h0-as
’)=Mb

’ (8) 

The input joint shear force Vj can be consequently determined based on force equilibrium in the joint 

core as shown in Figure 17. Only the forces on beam longitudinal bars and concrete are included, as 

the forces on the proposed reinforcement detail are self-balanced through the diagonal bars. Ts1, Ts2, 

Ts3 and Ts4 are the tensile forces on beam and column longitudinal bars, while Cs1, Cs2, Cs3 and Cs4 are 

the compressive forces on beam and column longitudinal bars. Cc1, Cc2, Cc3 and Cc4 are the compressive 

forces on concrete. Vb and Vc are the shear forces on beam and column, respectively. Thus, the input 

shear force Vj can be computed as in Eq. (9). 

 Vj=Cs+Cc1+Ts2-Vc (9) 

 

 

Figure 17. Forces acting on an interior BCJ. 

 

To estimate the joint shear capacity Vju, Eqs. (10)-(12) specified in the code GB50010 [4] are adopted. 

The equations consider the shear resistance of joint contributed from concrete, joint reinforcements, 

and the effect of column axial load, while limiting an upper bound to avoid concrete crushing. 

 Vju=min(Vju1, Vju2) (10) 

 



 Vju1=0.353fc
’bjhj (11) 

 Vju2=(1.1fybjhj+0.05N+fyvAsvj)/0.85 (12) 

where fc
’ and ft are the compressive and tensile strength of concrete, respectively. bj and hj are the width 

and height of joint, respectively. N is the column axial force. fyv and Asvj are the yielding strength of 

joint stirrups and total sectional area of joint stirrups, respectively. Based on the above analysis, the 

failure mode can be predicted, and loading capacity Fu of BCJs can be subsequently calculated based 

on force equilibrium. Figure 18 shows the procedure for predicting the failure mode and loading 

capacity of BCJs.  

 

Figure 18. Procedure for predicting failure modes and loading capacity of BCJs. 

 

4.2 Comparison between analytical and experimental results 

Comparison of results from analytical model and experimental tests for the four specimens is shown 

in Table 3. It is worth noting that an over-strengthening factor of 1.25 for beam longitudinal bars was 

adopted to calculate joint shear force Vj for specimen J1, as the yielding of beam longitudinal bars was 

assumed at the beam-joint interfaces. Specimens J2-J4 satisfy the requirement specified in Eq. (3) for 

achieving beam plastic hinge relocation, which agrees with the observed failure modes in the test. It 

indicates that the developed analytical model is able to accurately predict the occurrence of plastic 

hinge relocation for BCJs with the proposed reinforcement detail. For specimens J1, J3 and J4, the 

predicted joint shear forces Vj is lower than joint shear capacities Vju, indicating that these joint cores 

have enough strength to resist the input shear force. Furthermore, the loading capacities of BCJs were 

properly predicted as the ratio of tested to predicted loading capacity of BCJs ranges from 0.99 to 1.19, 

especially for specimens J1, J3 and J4 whose failure modes are correctly predicted. Nevertheless, the 

predicted joint shear force of specimen J2 is higher than its shear capacity, which results in a joint 



shear failure in the prediction. This is different from the observed failure occurred at both beams and 

joint, resulting from underestimation of joint shear capacity based on Eqs. (10)-(12) specified in the 

code. Overall, the developed analytical model is able to accurately predict the failure mode and loading 

capacity of BCJs with the proposed reinforcement detail. 

Table 3. Comparison of analytical and test results. 

Spec. 
Mbu 

(kNm) 

Mb
’ 

(kNm) 

Mbu
’ 

(kNm) 

Vj 

(kN) 

Vju 

(kN) 

Prediction Test  

Fu.t/Fu.p Failure 

mode 

Fu.p 

(kN) 

Failure 

mode 

Fu.t 

(kN) 

J1 61.4 N/A N/A 394.6 599.3 B 65.9 B 69.6 1.06 

J2 61.7 73.2 89.8 385.9 313.1 J 66.3 J+B 78.9 1.19 

J3 61.7 73.1 89.3 381.8 394.8 B 78.5 B 78.3 0.99 

J4 61.8 73.3 90.4 386.4 564.1 B 78.6 B 78.5 0.99 

Note: B - beam failure, J - joint failure. 

 

5. Conclusions 

This paper investigated the effectiveness of using unbonded diagonal bars with horizontal anchorage 

segments along beams to replace conventional stirrups for RC interior BCJs. Four BCJ specimens, 

including one control specimen designed in accordance with current code and three specimens 

adopting the proposed reinforcement detail, were prepared and tested under quasi-static cyclic loading. 

Seismic performances of the BCJ specimens were compared in terms of failure mode, hysteretic 

behaviour, energy dissipation, stiffness degradation, joint distortion and strain of reinforcements. An 

analytical model was also proposed to predict the failure mode and loading capacity of BCJs with the 

proposed reinforcement detail. Based on the test results and discussion, the following conclusions can 

be drawn: 

(1) The proposed reinforcement detail for BCJs is able to move the plastic hinges away from the beam-

joint interfaces as its anchorage segments enhance flexural capacities of beam sections close to the 

joint. The combined use of conventional stirrup and the proposed reinforcement detail significantly 

reduces the tendency of cracking inside the joint core. 

(2) The adoption of the proposed reinforcement detail increases the loading capacity of BCJs by 13.4% 

as compared to BCJ with the conventional stirrups. This is achieved as the length of the force arm 

is reduced after the relocation of the plastic hinge. The proposed reinforcement detail for BCJs also 

enhances the energy dissipation, stiffness and ameliorates joint distortion, although the 

displacement ductility is slightly reduced. Further increasing the amount of joint stirrups has a 

marginal impact on the performance of BCJs with the proposed reinforcement detail. 

(3) The BCJs with the proposed reinforcement detail possess the improved bonding between 

longitudinal bars and concrete inside the joint core. This is achieved through reducing the shear 

force transmitted into the joint core under the reduced yielding penetration and force self-balance 

mechanism. The strain on the anchorage segments of the proposed reinforcement detail is around 

half of that on beam longitudinal bars at the beam-joint interface. 

(4) The developed analytical model can adequately predict the failure mode and the loading capacity 

of BCJs with the proposed reinforcement detail. The loading capacity is underestimated for the 

BCJ failed in joint shear, as the joint shear strength is estimated based on the code. However, the 

model can still be applied for conservative design purpose. 



(5) Replacing horizontal stirrups with the proposed reinforcement detail in BCJs can alleviate the 

reinforcement congestion inside the joint core. However, conventional stirrups are still necessary 

to confine the joint cores and resist shear forces in BCJs with the proposed reinforcement detail. 
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