
SPECIAL SECTION ON UTILITY PATTERN MINING:
THEORETICAL ANALYTICS AND APPLICATIONS

Received June 4, 2020, accepted June 16, 2020, date of publication June 22, 2020, date of current version July 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3004199

Proof Learning in PVS With Utility Pattern Mining
M. SAQIB NAWAZ 1, PHILIPPE FOURNIER-VIGER 1,
AND JI ZHANG 2, (Senior Member, IEEE)
1School of Humanities and Social Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
2School of Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia

Corresponding author: Philippe Fournier-Viger (philfv8@yahoo.com)

ABSTRACT Interactive theorem provers (ITPs) are software tools that allow human users to write and
verify formal proofs. In recent years, an emerging research area in ITPs is proof mining, which consists
of identifying interesting proof patterns that can be used to guide the interactive proof process in ITPs.
In previous studies, some data mining techniques, such as frequent pattern mining, have been used to analyze
proofs to find frequent proof steps. Though useful, such models ignore the facts that not all proof steps are
equally important. To address this issue, this paper proposes a novel proof mining approach based on finding
not only frequent patterns but also high utility patterns to find proof steps of high importance (utility). A proof
process learning approach is proposed based on high utility itemset mining (HUIM) for the PVS (Prototype
Verification System) proof assistant. Proofs in PVS theories are first abstracted to a computer-processable
corpus, where each line represents a proof sequence and proof commands in proof sequences are associated
with utilities representing their weightage (importance). HUIM techniques are then applied on the corpus
to discover frequent proof steps/high utility patterns and their relationships with each other. Experimental
results suggest that combining frequent patternmining techniques, such as sequential patternmining and high
utility itemset mining, with proof assistants, such as PVS, is useful to learn and guide the proof development
process.

INDEX TERMS Frequent patterns, high utility itemset mining, proof steps, proof sequences, PVS.

I. INTRODUCTION
Theorem proving is a famous approach in formal methods
that is used for the analysis of hardware and software sys-
tems, especially safety critical systems. In theorem prov-
ing, the system that needs to be analyzed is first modeled
and specified in an appropriate mathematical logic. Impor-
tant/critical properties of the system are then verified using
theorem provers [21]. Today, these mathematics-based tools
are used in verification projects that range from compilers,
operating systems and hardware components to prove the
correctness of large mathematical proofs [31]. There are two
general categories of theorem provers: Automated theorem
provers (ATPs) and interactive theorem provers (ITPs). ATPs
are generally based on first-order logic (FOL) and deal with
the development of computer programs that can automati-
cally perform logical reasoning. On the other hand, ITPs are
based on higher-order logic (HOL) and offers support for
rich logical formalisms such as dependent and (co)inductive
types as well as recursive functions. This expressive power

The associate editor coordinating the review of this manuscript and

approving it for publication was Jerry Chun-Wei Lin .

leads to the undecidability problem, which means that the
reasoning process cannot be automated in HOL. Thus, ITPs
require human guidance during the proof development pro-
cess, which is why ITPs are also known as proof assistants.
Some famous proof assistants are HOL4 [39], Coq [6] and
PVS [36].

In ITPs, user guides the proof process by providing the
proof goal and by applying proof commands and tactics
to prove the goal. Generally, a user is involved in lots of
repetitive work while verifying a nontrivial theorem (proof
goal), and thus the overall process is quite laborious and
tedious as well as time consuming. For example, a list
of 100 mechanically verified mathematical theorems is avail-
able [44]. The development of formal proofs for many of
these theorems required several months or even years (For
example, the Kepler conjecture proof in HOL Light [20]
take approximately 20 years and twice as much for the
Feit-Thompson theorem in Coq [19]) and the complete proofs
contain thousands of low-level inference steps.

In the automated deduction field, huge search spaces
are generally involved in finding the correct proofs for a
given theorem/lemma. This means that proof automation

119806 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9856-2885
https://orcid.org/0000-0002-7680-9899
https://orcid.org/0000-0001-7167-6970
https://orcid.org/0000-0001-8768-9709

M. S. Nawaz et al.: Proof Learning in PVS With Utility Pattern Mining

in theorem provers is not as advanced yet as it was once
thought they would be by this time. The formal proof of
a goal in ITPs mainly depends on the specifications avail-
able in a theory or a set of theories along with different
combinations of proof commands, inference rules, interme-
diate states and tactics. Because a theory in ITPs often
contains many definitions and theorems, it is quite ineffi-
cient to apply a brute force or pure random search-based
approach for proof searching. However, ITPs now do
have a large corpora of computer-understandable formalized
knowledge [7], [23], [24] in the form of proof libraries.

In PVS, proof scripts for each theory are stored in a
separated file. Such proof scripts can be considered as a
proof corpus for the theorems and lemmas in that theory.
Proof scripts of different theories can be combined together
to develop a more complex corpora. With the evolution in
information and communication technologies (ICT) in the
last decade, it is now possible to use data mining and machine
learning techniques on these corpora for guiding the proof
search process, for proof automation and for the development
of proof tactics/strategies, as indicated in the works done
in [10], [18], [22]–[24], [34].

In these corpora, there is the potential to identify useful
and interesting hidden proof patterns and relationships of
such proof patterns with each other. With such information,
sequential pattern mining (SPM) techniques [15] can be used
to investigate the dependency of new conjectures on already
proved facts and to predict the next proof step(s) or pattern(s)
for guiding the proof of a new non-trivial theorem/lemma.
One such proof process learning approach was provided
in [34]. However, the learning approach was not considering
the importance of particular proof commands in the corpus.
Every PVS proof command was given the same importance.
However, in most cases, this is not the general way. For exam-
ple, in most of the proofs, proof commands for skolemiza-
tion (such as skosimp, and skolem!), formulas simplification
(such as flatten and split) and definitions expansion (such as
expand) are used at the start and powerful decision proce-
dure such as grind and assert (for equational reasoning) are
used at the end. This means that some proof commands and
decision procedures are used more and should be given more
importance than other infrequently used proof commands.
The focus in this work is on proof guidance and premise
selection in PVS from the perspective of high utility pattern
mining (HUPM) techniques, particularly high utility itemset
mining (HUIM).

In this paper, we present HUIM-based proof process learn-
ing approach for the PVS proof assistant. The basic idea is
to convert the PVS proofs for a theory into a proof corpus
that is suitable for learning. Each line in the corpus represents
a proof sequence that comprises a set of proof commands.
Each proof command is given a utility value that represents
the importance of that proof command. HUIM techniques are
applied on the corpus to find frequent proof steps/patterns
with high utility that are used in the proofs. Moreover, rela-
tionships between proof steps/patterns are discovered through

sequential rule mining. Besides PVS, the proposed approach
can also be used to guide the proof process in other proof
assistants. For example, the learning approach [34] is recently
used in [35] for proof searching and optimization in the
HOL4 proof assistant.

Machine learning and data mining are mainly used in
theorem provers for three tasks: premise selection, strategy
selection and internal guidance. Deep learning techniques
were first used in [22] for premise selection in Mizar prover.
For ITPs, a large datasets called HolStep was introduced
in [23], which consists of 2M statements and 10K conjectures
from HOL Light proof assistant. In [24], various machine
learning methods were used and compared for learning the
dependencies in proofs taken from CoRN, which is a repos-
itory for the Coq proof assistant. Premise selection based on
machine learning and automated reasoning for the HOL4 is
provided in [17] by adapting HOL(y)Hammer [25]. More-
over, Tactictoe, a learning approach based on theMonte Carlo
tree search algorithm, was developed in [18] for HOL4.

The rest of this paper is organized as follows. Section II
provides a brief overview on PVS, SPM and HUIM.
Section III elaborates the HUIM-based learning approach that
is used to discover useful proof steps/patterns with high utility
and their relationships. Details on HUIM algorithms used
in this work are presented in Section IV. Evaluation of the
proposed approach on a case study and obtained results are
discussed in Section V. Finally, the paper is concluded with
some remarks in Section VI. PVS dump files (that contain
entire specifications for theories and associated proofs) and
HUIM related data for this work can be found at [38].

II. PRELIMINARIES
A brief introduction to the PVS proof assistant, SPM and
HUIM is provided in this section.

A. PVS
Prototype verification system (PVS), developed at SRI
International, offers a formal specification language and
an interactive theorem prover. The PVS specification lan-
guage is build on HOL and its type system supports pred-
icate sub-typing and other type dependencies. The PVS
type system is not algorithmically decidable and theorem
proving may be required to establish the type-consistency
in a specification. Theorems that need proving are called
type-correctness conditions (TCCs). Specifications in PVS
are organized in the form of parameterize theories comprising
definitions, axioms, assumptions, lemmas and theorems.

PVS offers inference rules, proof commands and decision
procedures that can be used to prove theorems. The PVS
prover is based on sequent calculus where each proof goal
is a sequent consisting of formulas called antecedents and
consequents, such as:

{−1} X1
{−2} X2
{−3} X3

..

VOLUME 8, 2020 119807

M. S. Nawaz et al.: Proof Learning in PVS With Utility Pattern Mining

———
{1} Y1
{2} Y2
{3} Y3
..

where formulas (Xi) above the line represent the antecedents
and formulas (Yj) below the line are the consequents. In a
sequent, the conjunction of the antecedents implies the dis-
junction of the consequents, such as (X1 ∧ X2 ∧ X3 . . .) ⊃
(Y1 ∨ Y2 ∨ Y3). Here, a simple example is presented for the
sum function that is defined recursively in PVS.

n: VAR nat
sum(n): RECURSIVE nat = (IF n = 0 THEN 0

ELSE n + sum(n - 1) ENDIF) MEASURE n
the: THEOREM sum(n) = (n * (n + 1))/2

Theorem the in this example is proved by induction. The
base case is proved with expand ‘‘sum’’ and ‘‘propax’’ proof
commands. Whereas, the inductive case is proved with com-
mands: skosimp, expand ‘‘sum’’ + and assert. During proof
construction, PVS generates a graphical proof tree in which
the remaining proof obligations are the tree leaves. If a proof
gets stuck, then this tree helps to see where the proof went
wrong. More details on PVS can be found in [36].

B. SPM AND HUIM
The data mining field deals with the problem of discovering
meaningful hidden information (knowledge) in large datasets
with the help of techniques developed by integrating machine
learning with statistics. Extracted information is then trans-
formed into a knowledge-base that can be used for decision
making and data understanding. Data mining has gained
increased attention in recent years due to the availability of
large amount of data in different applications belonging to
various fields. Some important data mining tasks are: classi-
fication, prediction, clustering, pattern mining and anomaly
analysis [1]. In data mining, pattern mining techniques are
used to find interesting and useful patterns that are hidden
in large datasets or databases. Such techniques can be used
on datasets of different types that ranges from sequence and
transactions to strings and graphs [2].

Traditional pattern mining techniques are used in many
applications. However, these techniques are inappropriate
for analyzing data with time or that is sequentially ordered.
They fail to find patterns that involve temporal relation-
ships between events or symbols. Sequential Pattern Mining
(SPM) [15], a special case of structured data mining was
used to address this problem. SPM discovers useful and
important subsequences in a set of sequences of symbols,
where the importance of a subsequence is measured through
different parameters such as its occurrence frequency, profit
and length. High utility pattern mining, an emerging topic
in SPM, consists of discovering patterns having a high impor-
tance in databases. Among the various kinds of high utility
patterns (HUP) that can be discovered in databases, high
utility itemsets (HUIs) are themost studied. AnHUI is a set of
values that appears in a database and has a high importance to

the user, as measured by a utility function. High utility itemset
mining (HUIM) generalizes the problem of frequent item-
set mining by considering item quantities and weights [11].
SPM and HUIM has been used in the past in many real-life
applications such as recommendation systems, text analysis,
e-learning, web-page click-stream analysis, bioinformatics,
energy reduction in smart-homes, users preferences identifi-
cation and market-based analysis. More details on SPM and
HUIM can be found in surveys [15] and [11], respectively.

III. PROOF PROCESS LEARNING APPROACH
The proposed HUIM-based proof process learning approach
for PVS is shown in Figure 1. It consists of two main parts:

FIGURE 1. HUIM-based proof learning approach.

1) Proof corpus Development: Proof steps for theo-
rems/lemmas in PVS theories are converted to a proof
corpus. Each complete proof in the corpus is abstracted
to a sequence of proof commands/decision proce-
dures and each proof command/decisison procedure is
assigned a utility value.

2) Learning through HUIM: HUIM algorithms are
used on the corpus to discover the common proof
steps/patterns and top-k patterns with high utility as
well as the sequential relationships between proof steps
and patterns.

The PVS data (proofs) is assembled first so that HUIM
algorithms can be used. Moreover, the proof corpus should
satisfy certain minimum requirements to make it more suit-
able for learning. For example:

• It is stored in a computational and electronic form.
• It contains many examples of proofs that offer diversity
in kinds of proof steps. The corpus should have different
proof steps so that useful proof patterns and the depen-
dency of proof steps can be discovered.

• It is transformed in a suitable abstraction, so that no
meaningful information from the proofs is left out.
To achieve this, we use the ‘‘proof sequences to inte-
gers’’ abstraction. In such abstraction, each proof com-
mand is converted to a distinct positive integer.

119808 VOLUME 8, 2020

M. S. Nawaz et al.: Proof Learning in PVS With Utility Pattern Mining

The proof development process in PVS is interactive in
nature and it follows the sequent-style proof representation.
A user first provides the property (in the form of a lemma or
theorem) that is called a proof goal. User then applies proof
commands, inference rules and decision procedures to solve
the proof goal. The action resulting from a proof command,
inference rule or decision procedure is referred to as a PVS
proof step (PPS) here. A PPS may either prove the goal
or generates another sequent or divide the main goal into
sub-goals. The proof development process for a theorem or
lemma is completed when the sequent or all the sub-goals are
proved. After proof development, PVS saves the proof scripts
of a theory in a separate proof file. These files contain PPS
with some other information related to PVS. After removing
the redundant information from the proof files, the complete
proof is a sequence of PPS.
Let PS = {PPS1,PPS2, . . . ,PPSm} represent the set of

PPS. A proofs corpus is a set of records (transactions), called
proofs, denoted as PD = {T0,T1, . . . ,Tn}, where each proof
Tc is a set of proof commands (i.e. Tc ⊆ PS), and has a
unique identifier c called its TID. For example, consider the
proof corpus shown in Table 1. It contains five transactions
T0, T1, T2, T3 and T4. The record T2 indicates that three proof
commands (skosimp, expand, propax) were used in the proof
of a theorem/lemma.

TABLE 1. A sample of a proof corpus.

The goal of frequent proof steps mining is to discover
those proof steps that have high support (occur frequently).
A proof steps set PSS is a set of proof commands such
that PSS ⊆ PS. |PSS| denotes the set cardinality. PSS
has a length k (called k-PSS) if it contains k proof com-
mands (i.e., |PSS| = k). For example, consider that
PS = {skolem!,flatten, inst?, split, beta, iff , assert}. The set
{skolem!, flatten, assert} is a PSS that contains three proof
commands.

The measure that is used mostly in frequent pattern mining
is the supportmeasure. The support of aPSS in a proof corpus
PD is the total number of transactions (proof sequences) that
contain the PSS, and is defined as sup(PSS) = |{T |PSS ⊆
T ∧ T ∈ PD}|. For example, the support of {skosimp,
expand} in Table 1 is 3 as it appears in three proof records
(T1, T2 and T4).

A PSS is a frequent sequence iff sup(PSS) ≥ minsup,
where minsup (minimum support) is determined by the user.
One main limitation of frequent sequence or pattern mining

is that discovered sequences or patterns are not always useful
or provide important information.

To overcome this, HUIM can be used, where proof com-
mands are annotated with numerical values and patterns are
selected on the basis of a user-defined utility function. The
task of HUIM consists of finding patterns in a quantitative
database. Some additional information is provided, such as
the items quantities in transactions and weights that indicate
the relative importance of each item. Two utility functions are
generally used.

The first one is the external utility, where each PPS is
associated with a positive number p(PPS). The positive value
of a PPS as external utility represents the importance of
that PPS. Furthermore, every PPS that appears in a transac-
tion (proof sequence) Tc has a positive number q(PPS,Tc),
called its internal utility. This value represents the quantity
(occurrence) of PPS in Tc.
These utilities are explained in more details with the

proof corpus shown in Table 2. The columns (excluding
the first one) represent the number of PPS in a particu-
lar transaction (proof). In this example, the set of PPS is
PS = {skosimp, expand, flatten, inst, propax, skeep, typepred,
assert, grind, split}. The corpus in Table 2 contains ten trans-
actions (T0,T1, . . .T9). The transaction T3 shows that PPS
skosimp, expand and assert were used to prove that transac-
tion, and that have internal utilities of 1, 2, and 1 respectively.
Table 3 lists the external utilities of PSS. External utilities
were assigned to PPS on the basis of their importance: the
more the PPS is used in the corpus, the higher the external
utility value for that PPS.

Now, the overall utility of a PPS in a transaction
Tc is denoted as u(PPS,Tc) and defined as p(PPS) ×
q(PPS,Tc). The utility of a PSS in a transaction Tc
is denoted as u(PSS,Tc) and defined as u(PSS,Tc) =∑

PPS∈PSS u(PPS,Tc) if PSS ⊆ Tc. Otherwise u(PSS,Tc) =
0. Finally the overall utility of a PSS in PD is denoted as
u(PSS) and defined as u(PSS) =

∑
Tc∈g(PSS) u(PSS,Tc),

where g(PSS) is the set of transactions that contain PSS.
For example, the utility of PPS skosimp in transaction

T2 is u(skosimp,T2)= 1 × 3 = 3. The utility of the
PSS {sksoimp, expand} in T2 is u({skosimp, expand},T2) =
u(skosimp,T2) + u(expand,T2) = 1 × 3 + 1 ×
6 = 9. The utility of PSS {sksoimp, expand} in PD
is u({skosimp, expand}) = u(skosimp) + u(expand) =
u(skosimp,T2) + u(skosimp,T3) + u(skosimp,T6) +
u(skosimp,T7) + u(skosimp,T8) + u(skosimp,T9) +
u(expand,T2)+ u(expand,T3)+ u(expand,T6)+ u(expand,
T7)+ u(expand,T8)+ u(expand,T9) = 3+ 3+ 3+ 3+ 3+
3 + 6 + 12 + 6 + 36 + 24 + 24 = 126. Thus, the utility of
{sksoimp, expand} in the PD can be interpreted as the total
profit generated by PPS skosimp and expand when they are
used together. The problem of high utility PSS mining is
defined as follows:

A PSS is a high-utility PSS if its utility u(PSS) is no
less than a user-defined minutil threshold (i.e. u(PSS) ≥
minutil). The problem of high-utility PSS mining is to find

VOLUME 8, 2020 119809

M. S. Nawaz et al.: Proof Learning in PVS With Utility Pattern Mining

TABLE 2. A transactional proof corpus with internal utility values.

TABLE 3. PPS external utility values.

all high-utility proof PSS, given aminutil threshold that is set
by the user.

A. CHALLENGES
The goal in high utility PSS mining is to enumerate all the
patterns for PSS in the corpus with a utility greater than or
equal to the minutil. However, it is difficult to achieve the
goal because of three reasons.

First, the number of PPS can be very large. Generally,
if a corpus contains m distinct PPS, then there are 2m − 1
possible PSS (not including the empty set). For exam-
ple, if PS= {skosimp, expand, assert}, the possible PSS are
{skosimp}, {expand}, {assert}, {skosimp, expand}, {skosmp,
assert}, {expand , assert}, and {skosimp, expand , assert}.
Thus, there are 23 − 1 = 7 PSS for this particular PS. In the
naive approach, the utilities of all possible PSS are counted
by scanning the corpus and then only PSS having high utility
values are kept. This naive approach is inefficient despite
the fact that it produces the correct result. The reason is that
the number of possible PSS can be very large. For example,
if the corpus has 20 PPS, we need to calculate the utilities of
220 − 1 possible PSS. This is very hard to achieve with the
naive approach as the size of the search space (that indicates
the total number of possible PSS) is very large even if there
are few proofs in the corpus. In fact, the overall size of the
search space also depends on how similar the proofs are in
the corpus, how large the utility values are, and on whether
the minutil threshold is low or high.

The second reason is that high utility PSS are often scat-
tered in the search space. Thus, manyPSS must be considered

FIGURE 2. The search space of high utility proof step mining.

by an algorithm before it can find the actual high utility PSS.
To illustrate this, Figure 2 provides the Hasse graph of the
search space for some PSS from Table 2. In a Hasse graph,
each node represents the possible PSS and a uni-directional
edge is drawn from one PSS1 to another PSS2 if and only if
PSS1 ⊆ PSS2 and |PSS1| + 1= |PSS2|. In Figure 2, high util-
ityPSS are shownwith light blue nodes, while low utilityPSS
are represented using white nodes. The utility value of each
PSS is also indicated along the node. It can be observed from
Figure 2 that the utility of a PSS can be higher, lower or equal
to the utility of any of its supersets/subsets. For example,
the utility of thePSS {D,E} is 15, while the utility of its super-
sets {D,E,G} and {B,D,E,G} are 12 and 78, respectively.
This means that the utility measure is neither monotonic nor
anti-monotonic. Because of this property, the high utility PSS
appear scattered in the search space. Thus, the problem of
high utility PSS mining is more difficult than the problem of
frequent PSS, because the support measure is monotonic in
the later case. This means that the support of a PSS can be
either higher or equal to the frequency of any of its supersets.

The third reason is due to the interactive proof process
in PVS. During the proof development process, users are
required to formalize their inputs with (1) PPS, and (2) argu-
ments for those PPS. For example the PPS (expand ‘‘Teq’’)
expands the function Teq and typepred < gives the type pred-
icate of <. Therefore, a proof goal in PVS can be considered
as a context-PPS pair, where context contains the information

119810 VOLUME 8, 2020

M. S. Nawaz et al.: Proof Learning in PVS With Utility Pattern Mining

about the current hypotheses, variables and the goal that
needs proving. The goal may contains a set of sub-goals. The
user is required to guide the proof process towards completion
by suggesting which PPS (and arguments) to use. However,
the arguments depends on the specification (particularity on
variables and functions declarations) inside the theory and on
the proof goal. This means that arguments for a particular
PPS can be different for different theories and different proof
goals. To avoid this, we focus on PPS only in this work. We
believe that adding arguments information would restrict the
learning model to work well for only one (or some related)
theory.

Because the utility measure is neither monotonic nor anti-
monotonic, strategies for reducing the search space used in
frequent pattern mining cannot be used directly in the prob-
lem of high utility pattern mining. Still, some fast algorithms
are designed in recent years that can avoid the scanning of
all possible itemsets in the search space and can find all high
utility patterns. Some of these algorithms that we used in this
work to mine PVS proofs are described in the next section.

IV. ALGORITHMS FOR HUIM
For HUIM, various algorithms can be found in the literature.
All of these algorithms generally have the same input and
output. The differences lie in the strategies and data struc-
tures that are used in these algorithms for searching HUIs.
More specifically, they differ in (1) whether a depth-first or
breadth-first search is used, (2) the type of database rep-
resentation, (3) how the next itemsets, that needs further
exploration in the search space, is determined, and (4) how the
utility of itemsets is computed to check whether they satisfy
the minimum utility constraint. We discuss some important
HUIM algorithms next.

A. TWO-PHASE ALGORITHMS
The first algorithms to find HUIs perform two phases, that
is why they are known as two-phase algorithms. The three
famous two-phase algorithms are Two-Phase algorithm [30],
IHUP [3] and UP-Growth [42]. The basic idea in these
algorithms is to use a monotonic measure (known as TWU
(TransactionWeighted Utilization)) that puts an upper-bound
on the utility measure. The TWU is defined as follows:

In the context of this paper, the TWU of a PSS is defined
as the sum of the utilities of transactions containing PSS, i.e.
TWU (PSS) =

∑
Tc∈g(PSS) TU (Tc), where the transaction util-

ity (TU) of a transaction Tc represents the sum of the utilities
of all the PPS in Tc, i.e. TU (Tc) =

∑
PPS∈Tc u(PPS,Tc).

The transaction utilities of T0, T1, T2, T3, T4, T5, T6, T7, T8
and T9 are respectively 7, 39, 14, 20, 30, 30, 14, 54, 42, 56.
The TWU of single PPS skosimp, expand , flatten, inst ,
propax, skeep, typepred , assert , grind , split are respectively
200, 309, 221, 106, 135, 99, 99, 299, 7 and 191. The TWU
of the PSS {flatten, inst} is TWU ({flatten, inst}) = TU (T1)+
TU (T4)+ TU (T5)= 39+ 30+ 30 = 99. The TWU measure
is an upper-bound on the utility measure and can be used to
reduce the search space.

For example, the utility of the PSS {expand, flatten,
inst , propax} is 30, and TWU ({expand , flatten, inst ,
propax})= 39. Thus, any supersets of {expand , flatten, inst ,
propax} cannot have a TWU and a utility greater than 39. So,
if the minutil is set to a value greater than 39, all supersets
of {expand , flatten, inst , propax} can be eliminated from the
search space, because their utilities cannot be greater than 39.
Algorithms such as Two-Phase algorithm [30], IHUP [3] and
UP-Growth [42] use this property to prune the search space.

In two phase algorithm, high utility itemset (PSS in our
case) are mined in two phases. In the first phase, a set of
candidates is found. In the second phase, the utility of the
found candidates is computed by scanning the database. Item-
sets with low utility are filtered and the high utility itemsets
are returned [27]. However, this approach is inefficient as
the set of candidate itemsets found with phase 1 can be very
large. Running the second phase to evaluate these candidates
can be very costly. In the worst case, all candidate itemsets
are compared to all transactions of the database. Therefore,
the performance of two phase algorithms highly depends on
the number of generated candidates in the first phase. This
problem is addressed by designing one-phase algorithms,
which are described next.

B. ONE-PHASE ALGORITHMS
One-phase based HUIM algorithms do not generate candi-
dates. Such algorithms directly calculate the utility of each
considered pattern in the search space. The advantage of this
approach is that an itemset can be identified immediately as
a low utility or high utility itemset. Moreover, candidates are
not stored in thememory. The concept of one-phase algorithm
was first presented in [29], which was later improved and
more efficient one-phase algorithms have been designed such
as FHM. These algorithms also introduced the notion of novel
upper-bounds on the utility of itemsets that are based on the
exact utility of each itemset, and can thus prune a larger part
of the search space compared to the TWUmeasure. The most
popular type of HUIM algorithms are based on the utility-list
structure.

FHM (Fast High-utility itemset Mining) is a one-phase
algorithm that employs a depth-first search to explore the
search space. During the searching process, the FHM algo-
rithm builds a utility-list for each visited itemset. The
utility-list stores information about the utility of the itemset
in the transactions where it appears as well as the information
related to the utilities of remaining items in these transac-
tions. Utility-lists allow the quick utility computation of an
itemset and upper-bounds on the utility of its super-sets. This
is done without scanning the whole database. Furthermore,
utility-lists of k-itemsets (k > 1) can be built quickly by join-
ing utility-lists of shorter patterns. The utility-list is defined
as follows:

Let X represents an itemset andD represents a quantitative
database. Assume that a total order ≺ is defined on the set
of items I that appears in D. The utility-list ul(X) in D
is a set of tuples (tid , iutil, rutil) for each transaction Ttid

VOLUME 8, 2020 119811

M. S. Nawaz et al.: Proof Learning in PVS With Utility Pattern Mining

that contains X . The iutil shows the utility of X in Ttid ,
i.e. u(X ,Ttid). Whereas, the rutil element is defined as∑

i∈Ttid∧i>x∀x∈X (i,Ttid). The utility-list of an itemset uses the
remaining utility upper-bound to prune the search space. The
utility-list structure used by the FHM algorithm is said to be a
vertical database representation. More details on FHM can be
found in [16]. The optimized version of FHM is FHM+ [13]
that efficiently discover HUIs by putting upper-bounds on the
utility of itemsets by using length constraints with a technique
known as Length Upper-bound Reduction (LUR).
Utility-list based algorithms are easy to implement and

they are efficient. However, these algorithms have some
important limitations. First, they may search for some item-
sets that are not present in the database, as the itemsets
are generated by combining itemsets, without scanning the
database. Thus, they may waste a lot of time in build-
ing the utility-lists of non-exisiting itemsets. Second, these
algorithms sometimes uses a lot of memory in building a
utility-list for each visited itemset in the search space.

One-phase algorithms based on pattern-growth solve sev-
eral drawbacks of utility-list based algorithms. These algo-
rithms explore the search space by scanning the database.
Thus, itemsets that exist in the database are considered only.
The D2HUP [28] is the first such algorithm. D2HUP algo-
rithm performs a depth-first search and uses a hyper structure
to represents the database and its corresponding projections.
However, creating and updating the hyperstructure can be
quite costly. Another algorithm is the EFIM algorithm [46]
that is inspired by the LCM algorithm. EFIM processes each
itemset in the search space in linear time and space. It per-
forms a depth-first search using an horizontal database repre-
sentation. Moreover, two novel upper-bound (the local-utility
and subtree-utility) are used in EFIM to reduce the search
space. Moreover, another novel array-based utility counting
technique (named Fast Utility Counting) is used to com-
pute the two upper-bounds in linear time and space. In last,
EFIM integrates high-utility database projection (HDP) and
high-utility transaction merging (HTM) to reduce the cost of
database scans.

C. TOP-K HUIM ALGORITHMS
In traditional HUIM algorithms, the value minutil threshold
greatly affects the execution time, memory use and the num-
ber of generated patterns. An algorithm may generate a huge
number of patterns if minutil is set too low. This may make
the algorithm to run slow and use much memory. Similarly,
the algorithm may generate a few or no patterns if minutil
is set too high. For these limitations, the problem of top-
k HUIM was proposed [41]. Such algorithms discover the
k itemsets with the highest utility by replacing the minutil
parameter with k . The working of a top-k HUIM algorithm
is as follows. Initially, it starts exploring the search space by
setting an internal minutil to 0. Then, after finding the k high
utility itemsets, minutil is increased to the pattern utility that
has the lowest utility among the current top-k patterns. The
search goes on for each found high utility itemset and the set

of the current top-k pattern is updated alongside the internal
minutil. The set of the top-k high utility itemsets is returned
after the algorithm terminates. The problem of top-kHUIM is
more difficult than the problem of HUIM as the former start
with internal minutil = 0. In the past, various top-K HUIM
algorithms have been proposed. In this paper, two algorithms,
TKU (Top-K utility itemsets) and TKO (Top-K utility itemsets
in one phase), are used. The details for both algorithms can
be found in [41]. A comparison of the considered HUIM
algorithms for various parameters is provided in Table 4.

TABLE 4. Comparison of algorithms used for mining PVS proofs.

D. EVOLUTIONARY-BASED AND SEQUENTIAL RULE
FINDING ALGORITHMS
Besides traditional approaches, evolutionary techniques are
also used to mine high-utility patterns. Evolutionary algo-
rithms are optimization and search technique that can solve
complex and often highly nonlinear problems. They can
investigate very large problem spaces to find the best solu-
tion based on fitness functions under a set of multiple
constraints. HUIM approaches that are based on genetic algo-
rithm (called HUIF-GA) and on particle swarm optimization
called HUIF-PSO) were proposed in [40].

Frequent or high utility patterns with low confidence usu-
ally play no important role in decision making or prediction.
To address this limitation, it was proposed to discover sequen-
tial rules by not only considering their support but also their
confidence [12]. In the context of this work, a sequential rule
X → Y is a relationship between two PSSs X ,Y ⊆ PS,
such that X ∩ Y = ∅ and X ,Y 6= ∅. The rule r : X → Y
means that if items of X occur in a sequence, items of Y will
occur afterward in the same sequence. X is contained in Sα
(written as X v Sα) iff X ⊆

⋃n
i=1 αi. A rule r : X → Y

is contained in Sα (r v Sα) iff there exists an integer k
such that 1 ≤ k < n, X ⊆

⋃k
i=1 αi and Y ⊆ ∪

n
i=k+1αi.

Furthermore, let seq(r) and ant(r) respectively denotes the set
of sequences containing r and the set of sequences containing
its antecedent , i.e. seq(r) = {Sα|Sα ∈ PD ∧ r v Sα} and
ant(r) = {Sα|Sα ∈ PD∧X v Sα}. The confidence of r in PD
is defined as confPD(r) = |seq(r)|/|ant(r)| and the support of
r in PD is defined as supPD(r) = |seq(r)|/|PD|.
A rule r is a frequent sequential rule iff supPD (r) ≥

minsup and r is a valid sequential rule iff it is frequent
and confPD(r) ≥ minconf , where the thresholds minsup,
minconf ∈ [0, 1] are set by the user. Mining sequential

119812 VOLUME 8, 2020

M. S. Nawaz et al.: Proof Learning in PVS With Utility Pattern Mining

rules in a corpus deals with finding all the valid sequential
rules. ERMiner [12] is the state-of-the-art algorithm to mine
sequential rules in a sequence dataset. It relies on a vertical
database representation and represents the search space of
rules using equivalence classes of rules having the same
antecedent or consequent. It employs two operations (left and
right merges) to explore the search space of frequent sequen-
tial rules, where the search space is pruned with the sparse
count matrix (SCM) technique, which makes ERMiner more
efficient than other sequential rule finding algorithms.

The utility of a rule r in a sequence sc is defined as
u(r, sc) =

∑
i∈X∪Y u(i, cs) iff r ⊆ cs. Otherwise it is 0. The

utility of r in a PD is defined as uPD(r) =
∑

s∈PD u(r, s).
A rule r is a high-utility sequential rule iff uPD(r) ≥ minutil
and r is a valid rule. The problem of mining high utility
sequential rules from a sequence database is to discover all
high utility sequential rules. For mining high utility sequen-
tial rules, HUSRM (High Utility Sequential Rule Miner) is
used. It explores the search space of sequential rules using
a depth-first search. To prune the search space of sequential
rules, the HUSRM algorithm adapts the concept of sequence
estimated utility. HUSRM first scans the database to build all
sequential rules of size 1 × 1. Then, it recursively performs
left/right expansions starting from those sequential rules to
generate larger sequential rules. More details on HUSRM can
be found in [47].

V. EXPERIMENTS AND RESULTS
All the experiments are performed on an HP laptop with a
fifth generation Core i5 processor and 8 GB RAM. For the
case study, we select our previous works [32], [33], where
PVS is used for the analysis and verification of Reo connec-
tors composed of untimed, timed and probabilistic channels.
The main reason to select the proofs in [32], [33] is that
we are extending the formalization framework to cover the
stochastic [5] and hybrid [8] behavior of Reo connectors. We
believe that this proof learning approach will not only enable
us to comprehend the proof process for stochastic and hybrid
connectors but also can be considered far more effective in
providing the necessary guidance to attain the proofs of such
connectors.

SPMF datamining library is used to analyze thePD. It is an
open-source and cross-platform framework that is developed
in Java and offers implementations for more than 190 data
mining algorithms, including several high utility pattern min-
ing algorithms. More detail on SPMF can be found in [14].

A. CASE STUDY
Reo [4] is a channel-based exogenous coordination language
that allows the construction of complex connectors from
primitive channels through compositional operators. Connec-
tors in Reo provide the protocol for controlling and orga-
nizing the communication, synchronization and cooperation
between components. Each channel in Reo has two channel
end types source or sink. A source channel end accepts data
into the channel and a sink channel end dispenses data out of

the channel. Few primitive channel types in Reo are shown
in Figure 3.

FIGURE 3. Some primitive channels in Reo.

For example, the synchronous (Sync) channel has one
source and one sink end. Input/Output (I/O) operations can
succeed only if the writing operation at source end is syn-
chronized with the read operation at its sink end. Similarly,
a lossy synchronous (LossySync) channel is a variant of syn-
chronous channel that accepts all data through its source
end. The written data is lost immediately if no corresponding
read operation is available at its sink end. A FIFO1 channel
channel has one buffer cell, one source end and one sink end.
The channel accepts a data itemwhenever the buffer is empty.
The data item is kept in the buffer and dispensed to the sink
end later in the FIFO order.

Figure 4 shows a connector composed from combining two
channels (Sync channel (AB) and FIFO1 channel (BC)). This
connector can accepts data items at source node A and stores
the data items in the buffer, before dispensing them through
the sink node C . The mixed node B allows the data items
to move from one channel to anohter channel without any
change.

FIGURE 4. A connector composed of a Sync and a FIFO1 channel.

The untimed and timed connectors behavior in PVS [32]
was formalized by means of data-flows on its sink and source
nodes. In PVS, record structure named TD is used to represent
the timed-data sequences on sink and source nodes, where
time is defined as a positive real number (R+) and data is
defined as a positive type.

Time: Type = posreal
Data: Type+
TD = TYPE = [# T: sequence[Time],

D: sequence[Data] #]
Input, Output: VAR TD

Input and Output are declared as variables of type TD.
Some predicates are used for untimed channels specification.
For example, Teq takes two TD sequences and returns true
if the time of two sequences are equal. Tle represents that
time of the first sequence is strictly less than the second
sequence and Deq shows the equality of data: data sequence
at Input is equal to data sequence at Output. Similarly for
timed channels, some more predicates are specified. These
predicates are similar to the untimed predicates with one of
the time sequences is added by a t time delay.

Teq(Input,Output):bool = T(Input) = T(Output)
Tle(Input,Output):bool = T(Input) < T(Output)
Deq(Input,Output):bool = D(Input) = D(Output)

VOLUME 8, 2020 119813

M. S. Nawaz et al.: Proof Learning in PVS With Utility Pattern Mining

With TD and predicates, Reo channels such as Sync and
FIFO1 are specified as follows:

Sync(Input,Output):bool = Teq(Input,Output) &
Deq(Input,Output)

Fifo1(Input,Output):bool= Tle(Input,Output) &
Tle(Output,next(Input)) & Deq(Input,Output)

The probabilistic connectors behavior in [33] is formalized
with timed data distribution (TDD), where T is a sequence
of time points, and DD is a sequence of data distributions.
For untimed/timed channels, data is defined as a positive
type. To capture the probabilistic behavior, data is defined
as a function of type [T → real] (where T is a positive
(non-empty) type).

Time: Type = posreal
Data: TYPE [T -> real]
DD: TYPE = [Data, df]
TDD: TYPE = [# T: sequence[Time],

D: sequence[DD] #]
Input, Output: VAR TDD

where df is the distribution function for a real-valued
random variable X.

Three main composition operators (flow through, replicate
and merge) are used in Reo for connector construction. Flow
through and replicate operators can be achieved explicitly
in PVS, whereas merge operator is defined inductively. The
complete details on the specification for Reo channels, oper-
ators and predicates can be found in [32], [33], [38].

Primitive channels in Reo can be combined together to
form connectors. The connector in Figure 4 can be speci-
fied in PVS by combining the Sync and FIFO1 channels,
such as Sync(A, B) & FIFO1(B, C). Let a, b, c denote the
time sequences when the corresponding data sequence flows
through nodes A, B and C respectively. According to the
semantics of Sync and FIFO1 channels, a = b < c. Let α, γ
represent the data sequences being observed at nodes A and
C respectively, and α = γ . In PVS, these results are proved
with the following theorem.
Theorem 1: Sync(A,B) ∧ Fifo1(B,C) ⇒ Tle(A,C) ∧
Teq(A,B) ∧ Deq(A,C)
The proof steps for theorem 1 are shown in Figure 5.
The proof corpus PD contains the complete proofs that are

used to prove important properties of connectors as well as the
proofs for theories, such as probability theory, that are used
in the modeling of Reo connectors.

B. RESULTS
Results obtained by applying the algorithms discussed in
Section IV on the proof corpus are discussed in this section.

We first run Two-Phase algorithm on the PD. The minutil
threshold was set to 60. The total candidates (high utilityPSS)
searched by the algorithm were 721, out of which 209 were
selected by the algorithm as high utility PSS. Some obtained
results with high utility (Util.) and support (Sup.) are listed
in Table 5. Note that the support for each PSS was calculated
by the algorithm. The first pattern shows that the {expand,
flatten} was found in 48% of proof sequences in PD with

FIGURE 5. PVS proof tree for theorem 1.

TABLE 5. Extracted high utility proof patterns with Two-Phase algorithm.

utility of 60. Most of the generated patterns generally started
from the skosimp, and expand PPS. Table 5 provides some
useful information (PSS) that are used in the verification of
Reo channels and connectors. It is important to point out
here that some discovered patterns (such as patterns 4 and 6)
in Table 5 have very low support, but their utility value is
high. Such patterns would not be discovered with traditional
frequent patterns approaches in [34].

The comparison of Two-Phase (TP) algorithmwith various
one phase algorithms is presented in Table 6. All algorithms
listed in Table 6 except FHM+ has one parameter. The results
listed in Table 6 is for the following parameters:minutil = 10,
minim pattern length= 2 and maximum pattern length= 12.
The performance of D2HUP was the worst in all of them
in terms of parameters listed in Table 6. Whereas, the per-
formance of all other algorithms were almost similar with
negligible difference.

Discovered proof sequences with fewer proof steps are
generally more important than long proof sequences. The
reason is that long PSS represent those proof sequences that
are more specific, and thus occur rarely. FHM+ can be used
to find proof sequences that are more useful to users while
filtering those that may be less useful. Some short proof

119814 VOLUME 8, 2020

M. S. Nawaz et al.: Proof Learning in PVS With Utility Pattern Mining

TABLE 6. Algorithms comparison.

TABLE 7. Extracted patterns with FHM+.

sequences obtained with FHM+ are listed in Table 7. As we
are interested in short proof sequences, the minimum length
and maximum length were set to 2 and 4, respectively. The
total proof sequences searched by FHM+ were 222, out of
which 163 were selected as high utility proof sequences. It
is important to point out here that the best parameter values
for aforementioned algorithms were determined empirically
after testing to make sure that we obtain few important pat-
terns and not too many redundant patterns. The utility value
of PSS in Table 7 represent their overall importance in the
proofs of theorems/lemmas. We get some interesting results,
like most of the proofs for theorems or lemmas start with the
skosimp, followed by expand and flatten. Similarly, we also
obtained small proof patterns (with high utility values) that
were used frequently at the end of proofs in PD, such as
{assert, grind} and {typepred, assert, grind}. Table 8 lists the
counts for the total proof sequences searched and generated
by FHM+ for two varying parameters.

TABLE 8. Results with FHM+.

In Table 9, results obtained with top-k high utility mining
algorithms TKU and TKO are listed. It is important to note
here that TKU uses two-phases to discover top k HUIs,
whereas, TKO uses only one phase. In our case, both algo-
rithms generated the same results. For example for k = 30,
both algorithms generated the same number of PSS with
almost same execution time and memory used. The results

TABLE 9. Extracted proof steps/patterns with TKO and TKU.

obtained with top-k HUIM algorithms were different from
the two-phase and one phase based HUIMs algorithms. These
algorithms generated the top patterns with high utility in the
proofs. For example, the first top pattern in Table 9 shows
that PSS {flatten, inst, propax, skeep, typepred, assert, split}
with high utility 15 occurred frequently in the PD. Moreover,
the utility of a discovered pattern generally increases by
addingmorePPS in the pattern. However, in some cases, such
as pattern four in Table 9, the utility of a discovered pattern
decreases when a new PPS expand is added.

Results obtained by running evolutionary based HUIM
algorithms is presented in Table 10. Both algorithms gener-
ated the same results. However, HUI-GA was approximately
twice slower than PSO, while the memory usage was the
same for both of them. The possible reason for this is that
the GA-based algorithm use two operators (crossover and
mutation) to evolve and discover HUIs. Whereas, PSO uses
internal velocity that is used to update the positions of par-
ticles (itemsets) towards the optimal value. Moreover, PSO
converges faster than GA. One important thing to note here
is that patterns obtained by evolutionary-based HUIM are
different from those found by traditional HUIM algorithms.

TABLE 10. Frquent proof steps/patterns extracted with HUIF-GA and
HUIF-PSO.

Table 11 lists some of the relationships between proof
steps/patterns that are discovered through sequential rule
mining with the HUSRM algorithm. The confidence
(misconf) threshold is set to 40%, which means that rules
have a confidence of at least 40% (a rule X ==> Y has
a confidence of 40% if the set of proof commands in X is

VOLUME 8, 2020 119815

M. S. Nawaz et al.: Proof Learning in PVS With Utility Pattern Mining

TABLE 11. Sequential rules with high utility in the corpus.

followed by the set of proof commands in Y at least 40%
of the times when X appears in a proof sequence). The sec-
ond column in Table 11 is for the support and the third
column indicates the confidence (probability). The fourth
column shows the utility value for the rule. For example,
the second rule in Table 11 indicates that 58% of the time,
the {expand,flatten} is followed after the skosimp command.
With HUSRM algorithm, we found some interesting rela-
tionships and dependencies between proof steps and patterns.
These results were different from the sequential rules dis-
covered in the frequent proof steps/patterns with no utility
values. For comparison, the sequential rules discovered with
ERMiner in [34] are shown Figure 6. ERminer can be used to
find sequential rule in a sequence database that does not have
utility information. The value above the arrow in Figure 6
represents the support for the rule and the value below the
arrow represents the confidence.

FIGURE 6. Sequential rules discovered with ERMiner.

In [9], common proof patterns are found in the Isabelle
proofs with a variable length Markov Chain. Proofs are rep-
resented in a tree structure format, which are linearized, such
as the proofs are split into separate sequences and given
weights accordingly. However, linearization means losing
any important connections (information) between different
branches in the proofs due to which interesting patterns may
well be lost. Another work [26] used a hybrid method that
combines statistical data mining and theory exploration to
analyse and automate Coq proofs. Coq proof terms and object
types are also represented as a tree. Their aim was to find use-
ful lemmas or hypotheses as arguments of a tactic. However,
no such promising terms that can be used as arguments of a
tactic were identified. In this work, the proof corpus contains
all the necessary important information for pattern discovery

and SPM, HUI algorithms, which are more user-friendly and
work efficiently on the corpus.

Overall, it was observed through various experiments that
SPM and HUIM techniques can be used effectively to learn
the proof development process in PVS. Besides HOL4, learn-
ing approaches can also be used in other proof assistants such
as HOL4 and Coq. Results obtained so far indicate that the
total number of proof steps in each proof (abstraction sim-
plicity) and the utility value assigned to each proof command
have a direct correlation on the efficiency of HUIM algo-
rithms. These preliminary results indicate that the research
direction of linking and integrating evolutionary algorithms
with proof assistants is worth pursuing. This approach may
have a considerable impact to advance and accumulate human
knowledge, especially in the fields of formal logic and
computation. The ultimate goal is to develop proof tac-
tics/strategies with useful patterns that can be invoked directly
by the user in the proof development process.

VI. CONCLUSION
The proof development process in ITPs is interactive in
nature, where users guide the proof searching and are forced
to do lots of repetitive work. This makes the proving process
in ITPs a cumbersome and a time consuming task. To make
the proof process simpler and for providing proof guidance,
HUIM-based learning approach is adopted in this work to
find the frequent proof steps/patterns and their relationship in
PVS theories. Some interesting proof patterns are found with
HUIM and obtained results show that the number of proof
steps in each proof and the utility value assigned to each proof
command have a direct correlation on the efficiency of HUIM
algorithms.

In the future, this work can be extended in several direc-
tions. First, we will use the SPM and HUIM-based learning
approach on the corpora of proof steps for theories included in
PVS library, which contains thousands of theorems. This will
enable us to develop a more general learning approach for
the proofs of new conjunctures (unseen theorems). Another
direction is to use evolutionary and heuristics techniques such
as genetic programming and particle swarm optimization for
the development of PVS strategies and tactic from frequently
occurring proof patterns. Some preliminary work is done
in [35], where GA is used for proof searching in HOL4.
This also shows that the proposed learning approaches are
not limited to PVS only, and can easily used with other proof
assistants. Last but not the least, it would be interesting to
use HUIM and SPM algorithms on the HOL Light [23] and
Coq [24] datasets.

REFERENCES
[1] C. C. Aggarwal, Data Mining—The Textbook. Springer, 2015.
[2] C. C. Aggarwal and J. Han, Frequent Pattern Mining. Springer, 2014.
[3] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee, ‘‘Efficient tree

structures for high utility pattern mining in incremental databases,’’ IEEE
Trans. Knowl. Data Eng., vol. 21, no. 12, pp. 1708–1721, Dec. 2009.

[4] F. Arbab, ‘‘Reo: A channel-based coordination model for component
composition,’’ Math. Struct. Comput. Sci., vol. 14, no. 3, pp. 329–366,
Jun. 2004.

119816 VOLUME 8, 2020

M. S. Nawaz et al.: Proof Learning in PVS With Utility Pattern Mining

[5] C. Baier and V. Wolf, ‘‘Stochastic reasoning about channel-based com-
ponent connectors,’’ in Proc. Int. Conf. Coordination Models Lang., in
Lecture Notes in Computer Science, vol. 4038. Springer, 2006, pp. 1–15.

[6] Y. Bertot and P. Casteran, Interactive Theorem Proving and Pro-
gram Development: Coq’Art: The Calculus of Inductive Constructions.
New York, NY, USA: Springer-Verlag, 2003.

[7] J. C. Blanchette, M. P. L. Haslbeck, D. Matichuk, and T. Nipkow, ‘‘Mining
the archive of formal proofs,’’ in Proc. Int. Conf. Intell. Comput. Math., in
Lecture Notes in Computer Science, vol. 9150. Springer, 2015, pp. 3–17.

[8] X. Chen, J. Sun, and M. Sun, ‘‘A hybrid model of connectors in cyber-
physical systems,’’ in Proc. Int. Conf. Formal Methods Softw. Eng., in
Lecture Notes in Computer Science, vol. 8829. Springer, 2014, pp. 59–74.

[9] H. Duncan, ‘‘The use of data-mining for the automatic formation of
tactics,’’ Ph.D. dissertation, School Inform., Univ. Edinburgh, Edinburgh,
U.K., 2007.

[10] M. Färber and C. E. Brown, ‘‘Internal guidance for Satallax,’’ in Proc. Int.
Joint Conf. Automated Reasoning, in Lecture Notes in Computer Science,
vol. 9706. Springer, 2016, pp. 349–361.

[11] P. Fournier-Viger, J. Chun-Wei Lin, T. Truong-Chi, and R. Nkambou,
A Survey of High Utility Itemset Mining. Springer, 2019, pp. 1–45.

[12] P. Fournier-Viger, T. Gueniche, S. Zida, and V. S. Tseng, ‘‘ERMiner:
Sequential rule mining using equivalence classes,’’ in Proc. Int. Symp.
Intell. Data Anal., in Lecture Notes in Computer Science, vol. 8819.
Springer, 2014, pp. 108–119.

[13] P. Fournier-Viger, J. C. Lin, Q. Duong, and T. Dam, ‘‘FHM+: Faster
high-utility itemset mining using length upper-bound reduction,’’ in Proc.
Int. Conf. Ind., Eng. Other Appl. Appl. Intell. Syst., in Lecture Notes in
Computer Science, vol. 9799. Springer, 2016, pp. 115–127.

[14] P. Fournier-Viger, J. C. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng,
and H. T. Lam, ‘‘The SPMF open-source data mining library version 2,’’
in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases, in
Lecture Notes in Computer Science, vol. 9853. Springer, 2016, pp. 36–40.

[15] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas,
‘‘A survey of sequential pattern mining,’’ Data Sci. Pattern Recognit.,
vol. 1, no. 1, pp. 54–77, 2017.

[16] P. Fournier-Viger, C. Wu, S. Zida, and V. S. Tseng, ‘‘FHM: Faster high-
utility itemset mining using estimated utility co-occurrence pruning,’’ in
Proc. Int. Symp. Methodologies Intell. Syst., in Lecture Notes in Computer
Science, vol. 8502. Springer, 2014, pp. 83–92.

[17] T. Gauthier and C. Kaliszyk, ‘‘Premise selection and external provers for
HOL4,’’ inProc. Conf. Certified Programs Proofs (CPP), 2015, pp. 48–57.

[18] T. Gauthier, C. Kaliszyk, and J. Urban, ‘‘TacticToe: Learning to reason
with HOL4 tactics,’’ in Proc. LPAR, in EPiC Series in Computing, vol. 46.
2017, pp. 125–143.

[19] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot,
S. L. Roux, A. Mahboubi, R. O’Connor, S. O. Biha, I. Pasca, L. Rideau,
A. Solovyev, E. Tassi, and L. Théry, ‘‘A machine-checked proof of the odd
order theorem,’’ in Proc. Int. Conf. Interact. Theorem Proving, in Lecture
Notes in Computer Science, vol. 7998. Springer, 2013, pp. 163–179.

[20] T. C. Hales et al., ‘‘A formal proof of the Kepler conjecture,’’ CoRR,
vol. abs/1608.02644, 2015.

[21] O. Hasan and S. Tahar, ‘‘Formal verification methods,’’ in Encyclopedia
of Information Science and Technology, 3rd ed. Hershey, PA, USA: IGI
Global, 2015.

[22] G. Irving, C. Szegedy, A. A. Alemi, N. Eén, F. Chollet, and J. Urban,
‘‘Deepmath-deep sequence models for premise selection,’’ in Proc. Neural
Inf. Process. Syst. (NIPS), pp. 2243–2251, 2016.

[23] C. Kaliszyk, F. Chollet, and C. Szegedy, ‘‘HolStep: A machine
learning dataset for higher-order logic theorem proving,’’ CoRR,
vol. abs/1703.00426, 2017.

[24] C. Kaliszyk, L. Mamane, and J. Urban, ‘‘Machine learning of Coq proof
guidance: First experiments,’’ in Proc. SCSS, in EPiC Series in Computing,
vol. 30. 2014, pp. 27–34.

[25] C. Kaliszyk and J. Urban, ‘‘HOL(y)hammer: Online ATP service for HOL
light,’’ Math. Comput. Sci., vol. 9, no. 1, pp. 5–22, Mar. 2015.

[26] E. Komendantskaya and J. Heras, ‘‘Proof mining with dependent types,’’
in Proc. Int. Conf. Intell. Comput. Math., in Lecture Notes in Computer
Science vol. 10383. Springer, 2017, pp. 303–318.

[27] J. C.-W. Lin, J. Zhang, P. Fournier-Viger, T.-P. Hong, and J. Zhang, ‘‘A two-
phase approach to mine short-period high-utility itemsets in transactional
databases,’’ Adv. Eng. Informat., vol. 33, pp. 29–43, Aug. 2017.

[28] J. Liu, K. Wang, and B. C. M. Fung, ‘‘Direct discovery of high utility
itemsets without candidate generation,’’ in Proc. IEEE 12th Int. Conf. Data
Mining, Dec. 2012, pp. 984–989.

[29] M. Liu and J. Qu, ‘‘Mining high utility itemsets without candidate gener-
ation,’’ in Proc. 21st ACM Int. Conf. Inf. Knowl. Manage. (CIKM), 2012,
pp. 55–64.

[30] Y. Liu, W. Liao, and A. N. Choudhary, ‘‘A two-phase algorithm for fast
discovery of high utility itemsets,’’ in Proc. Pacific-Asia Conf. Knowl.
Discovery Data Mining, in Lecture Notes in Computer Science, vol. 3518.
Springer, 2005, pp. 689–695.

[31] M. S. Nawaz, M. Malik, Y. Li, M. Sun, and M. I. U. Lali, ‘‘A survey on
theorem provers in formal methods,’’ CoRR, vol. abs/1912.03028, 2019.

[32] M. S. Nawaz and M. Sun, ‘‘Reo2PVS: Formal specification and verifica-
tion of component connectors,’’ in Proc. SEKE, 2018, pp. 391–396.

[33] M. S. Nawaz and M. Sun, ‘‘Using PVS for modeling and verification
of probabilistic connectors,’’ in Proc. Int. Conf. Fundam. Softw. Eng.,
in Lecture Notes in Computer Science, vol. 11761. Springer, 2019,
pp. 61–76.

[34] M. S. Nawaz, M. Sun, and P. Fournier-Viger, ‘‘Proof guidance in PVS
with sequential pattern mining,’’ in Proc. Int. Conf. Fundamentals Softw.
Eng., in Lecture Notes in Computer Science, vol. 11761. Springer, 2019,
pp. 45–60.

[35] M. Z. Nawaz, O. Hasan, M. S. Nawaz, P. Fournier-Viger, and M. Sun,
‘‘Proof searching in HOL4 with genetic algorithm,’’ in Proc. 35th Annu.
ACM Symp. Appl. Comput., Mar. 2020, pp. 513–520.

[36] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert, ‘‘PVS
system Guide, PVS prover Guide, PVS language reference,’’ SRI Int.,
Menlo Park, CA, USA, Tech. Rep., Nov. 2001.

[37] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, ‘‘H-mine: Hyper-
structure mining of frequent patterns in large databases,’’ in Proc. IEEE
Int. Conf. Data Mining, Nov./Dec. 2001, pp. 441–448.

[38] PVS and HUIM Data. [Online]. Available: https://github.com/saqibdola/
HUIM-PVS

[39] K. Slind and M. Norrish, ‘‘A brief overview of HOL4,’’ in Proc. Int. Conf.
Theorem Proving Higher Order Logics, in Lecture Notes in Computer
Science, vol. 5170. Springer, 2008, pp. 28–32.

[40] W. Song and C. Huang, ‘‘Mining high utility itemsets using bio-inspired
algorithms: A diverse optimal value framework,’’ IEEE Access, vol. 6,
pp. 19568–19582, 2018.

[41] V. S. Tseng, C.-W. Wu, P. Fournier-Viger, and P. S. Yu, ‘‘Efficient algo-
rithms for mining Top-K high utility itemsets,’’ IEEE Trans. Knowl. Data
Eng., vol. 28, no. 1, pp. 54–67, Jan. 2016.

[42] V. S. Tseng, C. Wu, B. Shie, and P. S. Yu, ‘‘UP-growth: An efficient
algorithm for high utility itemset mining,’’ in Proc. 16th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2010, pp. 253–262.

[43] T. Uno, M. Kiyomi, and H. Arimura, ‘‘LCM ver. 2: Efficient mining algo-
rithms for frequent/closed/maximal itemsets,’’ in Proc. FIMI Workshop,
2004, pp. 1–11.

[44] F. Wiedijk. Formalizing 100 Theorems. Accessed: Apr. 3, 2020. [Online].
Available: https://cs.ru.nl/~freek/100

[45] M. J. Zaki, ‘‘Scalable algorithms for association mining,’’ IEEE Trans.
Knowl. Data Eng., vol. 12, no. 3, pp. 372–390, May/Jun. 2000.

[46] S. Zida, P. Fournier-Viger, J. C. Lin, C. Wu, and V. S. Tseng, ‘‘EFIM:
A highly efficient algorithm for high-utility itemset mining,’’ in Proc.
Mexican Int. Conf. Artif. Intell., in Lecture Notes in Computer Science,
vol. 9413. Springer, 2015, pp. 530–546.

[47] S. Zida, P. Fournier-Viger, C. Wu, J. C. Lin, and V. S. Tseng, ‘‘Efficient
mining of high-utility sequential rules,’’ in Proc. Int. Workshop Mach.
Learn. Data Mining Pattern Recognit., in Lecture Notes in Computer
Science, vol. 9166. Springer, 2015, pp. 157–171.

M. SAQIB NAWAZ received the B.S. degree in
computer systems engineering from the Univer-
sity of Engineering and Technology, Peshawar,
Pakistan, in 2011, the M.S. degree in computer
science from the University of Sargodha, Pakistan,
in 2014, and the Ph.D. degree from Peking Uni-
versity, Beijing, China, in 2019. He is currently a
Postdoctoral Fellow with the Center of Innovative
Industrial Design (CIID), Harbin Institute of Tech-
nology, Shenzhen, China. His research interests

include formal methods (theorem provers and model checkers), evolutionary
computation, and the use of machine learning and data mining in software
engineering.

VOLUME 8, 2020 119817

M. S. Nawaz et al.: Proof Learning in PVS With Utility Pattern Mining

PHILIPPE FOURNIER-VIGER is a Full
Professor with the Harbin Institute of Technology
(Shenzhen), China. Five years after completing his
Ph.D. degree, he came to China and became a Full
Professor with the Harbin Institute of Technology
(Shenzhen), after obtaining a title of national talent
from the National Science Foundation of China.
He has published more than 250 research papers
in refereed international conferences and journals,
which have received more than 5200 citations.

He is also the Founder of the popular SPMF open-source data mining
library, which provides more than 170 algorithms for identifying various
types of patterns in data. The SPMF software has been used in more than
800 articles, since 2010, for many applications from chemistry, smartphone
usage analysis restaurant recommendation, to malware detection. He is the
Editor of the book High Utility Pattern Mining: Theory, Algorithms and
Applications (Springer, 2019), and a co-organizer of the Utility Driven
Mining and Learning Workshop at KDD 2018 and ICDM 2019 and 2020.
His research interests include data mining, frequent pattern mining, sequence
analysis and prediction, big data, and applications.

JI ZHANG (Senior Member, IEEE) received the
B.E. degree from the Department of Information
Management and Information Systems, Southeast
University, China, in 2000, the M.Sc. degree from
the Department of Computer Science, National
University of Singapore, in 2002, and the Ph.D.
degree from the Faculty of Computer Science,
Dalhousie University, Canada, in 2008. From
2008 to 2009, he was a Postdoctoral Research
Fellow with the CSIRO ICT Center, Hobart,

Australia. He is currently an Associate Professor in computing with the
University of Southern Queensland (USQ), Australia. He has published over
140 articles in major peer-reviewed international journals and conferences.
His research interests include big data analytics, knowledge discovery and
data mining (KDD), and information privacy and security. He is a member
of ACM, a Fellow of the Australian Endeavour and Queensland, Australia,
and a Scholar of Izaak Walton Killam, Canada.

119818 VOLUME 8, 2020

	INTRODUCTION
	PRELIMINARIES
	PVS
	SPM AND HUIM

	PROOF PROCESS LEARNING APPROACH
	CHALLENGES

	ALGORITHMS FOR HUIM
	TWO-PHASE ALGORITHMS
	ONE-PHASE ALGORITHMS
	TOP-K HUIM ALGORITHMS
	EVOLUTIONARY-BASED AND SEQUENTIAL RULE FINDING ALGORITHMS

	EXPERIMENTS AND RESULTS
	CASE STUDY
	RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	M. SAQIB NAWAZ
	PHILIPPE FOURNIER-VIGER
	JI ZHANG

