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ABSTRACT 

So far, the alkali activated concrete has primarily focused on the effect of source material 

properties and ratio of mix proportions on the compressive strength development. A little 

research has focused on developing a standard mix design procedure for alkali activated 

concrete for a range of compressive strength grades. This study developed a standard mix 

design procedure for alkali activated slag‒fly ash (low calcium, class F) blended concrete 

using two machine learning techniques, Artificial Neural Networks (ANN) and Multivariate 

Adaptive Regression Spline (MARS). The algorithm for the predictive model for concrete 

mix design was developed using MATLAB programming environment by considering the 

five key input parameters;  water/solid ratio, alkaline activator/binder ratio, Na-Silicate /NaOH 

ratio, fly ash/slag ratio and NaOH molarity. The targeted compressive strengths ranging from 

25–45 MPa (3.63–6.53 ksi) at 28 days were achieved with laboratory testing, using the 

proposed machine learning mix design procedure. Thus, this tool has the capability to provide 

a novel approach for the design of slag-fly ash blended alkali activated concrete grades 

matching to the requirements of in-situ field constructions. 

Key-words: Alkali Activated Concrete; Artificial Neural Networks; Multivariate Adaptive 

Regression Spline model; Mix design; Compressive strength 

 

INTRODUCTION 

Portland cement (PC) is one of the most manmade consumable materials worldwide and its 

current annual production exceeded 4.2 billion metric tonnes [1, 2]. The speedy surge in 
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consumption and demand, the large greenhouse gases emissions and the high production cost 

of PC have encouraged the need of developing sustainable alternative construction binders. 

The cement production itself is responsible for 5–7% of total carbon dioxide emissions 

worldwide [3]. Thus, it is an urgent essentiality for alternative, sustainable cementitious 

materials, which can decrease the dependence on PC in construction. Alkali activated 

concrete can be produced using blended industrial waste of fly ash and blast furnace slag, 

which can reduce carbon dioxide emissions by 25‒45% [4]. The blended slag‒fly ash reacts 

with concentrated alkaline activator and form three-dimensional aluminosilicate cross-linked 

network. The blended alkali activated concrete is gaining importance as it is getting applied 

in the actual in situ field construction projects in Australia and many other countries [2].  

The use of alkali activated concrete in specific applications requires a carefully designed mix 

with required characteristics such that the structural members will perform as required 

throughout the design life. However, the mix design process for alkali activated concrete is 

complex due to the varying chemical and physical properties of fly ash and slag. Literature 

has shown that the properties of source materials and the alkali activated concrete mix design 

directly influence the final properties of blended alkali activated concrete [5-7]. Optimization 

by artificial intelligence tools has used been for mix design of PC concrete: for instance, the 

genetic algorithm [8, 9] and particle swarm optimization algorithm [10, 11] were applied to 

evaluate engineering properties of PC concrete mixtures. 

To date, few studies have been conducted to develop a unique mix design procedure using 

artificial neural networks, which can in turn predict the compressive strength of the alkali 

activated concrete produced utilizing different binding materials [12, 13]. Nazari Torgal [12] 

developed six different artificial neural network models while changing number of neurons in 

hidden layers and model finalizing methods and  predicted the compressive strength of 

different types of alkali activated concrete. They have considered seven independent input 



4 
 

parameters such as curing time, calcium hydroxide content, superplasticizer content, NaOH 

concentration, mould type, alkali activated concrete type and water to sodium oxide molar 

ratio. The authors [12] concluded that the use of artificial neural networks to predict the 

compressive strength of different alkali activated concrete mixes was able to be done in a 

relatively short span of time with minimal error rates. Topcu and Saridemir [14] also used 

artificial neural networks along with fuzzy logic and observed that the compressive strength 

development of alkali activated concrete with different binding materials can be predicted 

through the use of artificial neural networks in a short period of time with minimal error in 

comparison to the experimentally results. Bondar [13] concluded that the optimum network 

architecture to predict compressive strength of alkali activated concrete was one with a three-

layer feed forward network with tan-sigmoid function as the hidden layer transfer function 

and a linear function as the output layer.  

Lahoti et al. [15] investigated the effect of Si/Al molar ratio, water/solids ratio, Al/Na molar 

ratio and H2O/Na2O molar ratio in determining the compressive strength of metakaolin based 

alkali activated concrete. The machine learning-based classifiers were engaged for the 

strength predictions and the results illustrated that Si/Al ratio is the most significant 

parameter followed by Al/Na ratio. Machine learning-based classifiers were able to predict 

the compressive strength with high precision. Nazari and Sanjayan [16] further worked with 

support vector machine technique to predict compressive strength of alkali activated 

concretes. Due to the complexity of models, the support vector machine parameters were 

found using five different optimization algorithms including genetic algorithm, particle 

swarm optimization algorithm, ant colony optimization algorithm, artificial bee colony 

optimization algorithm and imperialist competitive algorithm. The authors [16] concluded 

that hybrid models can be appropriately used for modelling of compressive strength of alkali 

activated paste, mortar and concrete specimens.  
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Despite the in-depth research carried out in the field of alkali activated concrete and proposed 

different methods to calculate mix proportions, the development of a suitable mix design 

procedure for this novel concrete is still in the experimental stage: almost all the proposed 

methods using different techniques are mainly dependent on the trial and error approach [17, 

18]. In this study, five key factors, water/solid ratio, alkaline activator/binder ratio, Na-Silicate 

/NaOH ratio, fly ash/slag ratio and NaOH molarity have been identified for the compressive 

strength development. Based on the parameters, a new standard mix design procedure for 

alkali activated slag‒fly ash (low calcium, class F) blended concrete has been developed and 

the effectiveness of predicting the compressive strength was tested using ANN and MARS 

models.  

SIGNIFICANCE OF RESEARCH 

To date alkali activated concrete has primarily focused on the effect of source material 

properties and ratio of mix proportions on the compressive strength development. Little 

research has focused on developing a standard mix design procedure for alkali activated 

slag‒fly ash blended concrete for a range of compressive strength grades. This study 

evaluates the development of a standard mix design procedure for this alkali activated 

concrete using two machine learning techniques and determines the most reliable statistical 

model to calculate the mix proportions for a targeted range of compressive strengths of alkali 

activated slag‒fly ash blended concrete. Overall, the proposed methodology demonstrated an 

effective engineering strategy that can be applied in problems of structural and construction 

engineering prospective. 

MIX DESIGN DATABASE 

An inclusive literature review was conducted to establish a database for mix designs of alkali 

activated slag‒fly ash (low calcium, class F) blended concrete based on 28-day compressive 
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strength. Before the application of the machine learning models to the database, data pre-

processing was conducted to remove the outliers. Database consists of compressive strength 

values obtained from 208 concrete mix designs, reported in 45 journal publications, Table 1. 

Table 1 

 

MACHINE LEARNING MODELS 

Data Pre-processing 

The accuracy of statistical or machine learning modelling depends upon the accuracy and 

reliability of data. Outliers are mostly defined as data points which are a minority that have 

patterns quite different to the majority of other data points in the sample [56]. Any presence 

of outliers in the data will significantly affect how the machine learning models will 

effectively train the model for forecasting [57, 58]. Table 2 shows the statistics for both input 

variables (water/solid ratio, alkaline activator/binder ratio, Na-Silicate /NaOH ratio, fly 

ash/slag ratio and NaOH molarity) and the output (i.e. compressive strength) considered in 

the model development. The low values of skewness and kurtosis for water/solid, NaOH 

molarity and compressive strength are an indication of the asymmetry about the mean values 

and they are light tailed too.  

Table 2 

In this paper, the methods of Hampel [59] and Cook’s distance [60]  are used to detect and 

remove the outliers to improve the dataset for machine learning modelling. The raw dataset in 

this study was tested using both the methods and all samples were carefully screened as rows 

before the data points were excluded. This is an iterative and tedious process with the nine 

input samples. The presence of an outlier in one sample could remove valuable data in other 

sample sets, thus the occurrence of outliers across rows of data were checked to ensure that 

there are more than two outliers in each row to have it excluded prior to the modelling 
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process. However, in any sample, if the outlier had a significant deviation from the core of 

the data, that particular outlier was removed. Hampel method computes the median ( ) for 

a data set and then calculates the deviation  from the median value. Each data point  

is subjected to this calculation: , where, belongs to a set of  (number of data 

points). If the condition,  ) is satisfied, then the value is accepted as an 

outlier. Fig.1 shows an example of 2 input variables with the original data and the refined 

data when the outliers are removed. 

Fig. 1  

The Cook’s method of removing outliers is mostly used to detect the influence of data points 

in a regression analysis [61]. Cook’s distance  of observation  is given in Eq. 1: 

 

Where,  is the th fitted response value,  is the th fitted response value when the fit 

excludes observation ,  is the mean squared error,  is the number of coefficients in the 

regression model. Fig. 2 shows the scatter plots of outliers detected by Cook’s method in two 

of the input samples. This was applied to the entire dataset. Moreover, the boxplots in Fig. 3 

show the data distribution in the raw and refined dataset. It is evident from the figure that the 

majority of the outliers are related to the input parameters, Activator/Binder ratio and 

Na2SiO3/NaOH ratio. 

Fig. 2 & Fig. 3  

Artificial Neural Networks 

Recent studies have relied on the use of Artificial Neural Networks (ANN) to help predict 

compressive strength of GPC with different binding materials [13, 62]. In recent years, ANN 
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has been used in the civil engineering industry to overcome many problems such as 

determining structural damage, the modelling of material behaviour, and ground water 

monitoring [14]. ANNs are described as a series of parallel architectures that work 

cooperatively to solve complex problems by connecting simple computing elements [62]. The 

networks utilise learning capabilities obtained from example inputs, which make them perfect 

for use in the prediction of GPC compressive strength as available data is fairly limited. An 

artificial neuron contains five main parts: inputs, weights, sum function, activation function 

and outputs [14]. The inputs are the known data collected from previous test results. Weights 

are values that demonstrate the effect that the input values have on the outputs. The effect of 

the weights is calculated by the sum function. The weighted sums of inputs are calculated by 

Eq. 2: 

 

Where, (net)j is the weighted sum of the jth  neuron for the input received from the preceding 

layer with n neurons, wij is the weight between the jth neuron in the preceding layer, xi is the 

output of the ith neuron in the preceding layer, b is a fixed value as internal addition and 

Σrepresents the sum function [14]. The activation function is one which processes the net 

input obtained through the sum function and defines the output values. The output is created 

using a sigmoid function as given in Eq. 3: 

 

Where, α is a constant used to control the slope of the semi-linear region [14]. Topcu and 

Saridemir [14] used ANNs along with fuzzy logic to predict the strength development of 

GPC with different binding materials. They found that compressive strengths can be 

predicted through the use of ANNs in a short period of time with minimal error in 
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comparison to test results. Bondar [63] concluded that the optimum network architecture to 

predict compressive strength of GPC was one with a three-layer feed forward network with 

tan-sigmoid function as the hidden layer transfer function and a linear function as the output 

layer. Nazari et al. [13, 62] similarly concluded that the use of ANNs to predict the 

compressive strength of different GPC mixes was able to be done in a relatively short span of 

time with minimal error rates. They utilised a two-layer feed forward-back propagating 

network. It was decided to use a three-layer feed forward network with a tan-sigmoid 

function as the hidden layer function, similar to that by Bondar [63], in this study to predict 

the mix design of a alkali activated concrete with 32 MPa (4.64 ksi) compressive strength. 

Multivariate Adaptive Regression Splines (MARS) model  

The MARS model was originally proposed by Friedman [64]. It is a form of a stepwise linear 

regression and suitable for higher dimensional inputs. In the reported literature the MARS 

model appears to be more popular than its counterparts such as Artificial Neural Networks 

and Extreme Learning Machine [65] because of its adaptively synthesized model structure 

compared to the fixed model structures of its counterparts. MARS predictive modelling has 

been widely used in hydro-meteorological analysis, most recently in predicting the 

evaporation loss [66, 67], and in predicting the behaviour of fibre reinforced polymer 

confined concrete [68].  

In MARS algorithm, training data sets are divided into separate piecewise linear segments 

(splines) of different gradients (slopes). These splines are connected together smoothly, and 

the piecewise curves are known as basis functions (BFs) producing a model able to handle 

linear as well as nonlinear behaviour. The connection points are called knots. Between any 

two knots, MARS characterises data either globally or using linear regression. BF(x) is the 

basis function for the x intersects at the knot. Let Y be the target dependent variable and X = 

(x1, x2……xp) be the input independent variables. For a continuous response, the relationship 



10 
 

between Y and X can be expressed using the MARS model as 

: Where e is the fitting error and f(X) is the 

MARS model with the BFs. For simplicity for this research, only piecewise linear functions 

are considered. In the MARS environment, the following expression, Eq. 4, can be used to 

predict compressive strength of fly ash based alkali activated concrete (Y). 

 

x is the input variable, c0 is a constant and cm is the coefficient of BF(x). During the 

construction of MARS model, the basis functions are selected based on the generalized cross 

validation (GCV) in Eq. 5. 

 

n is the number of data points, yi is the actual value of data point i,  is the predicted value 

for data point i and C(M) is the penalty factor defined as : where d is the 

cost penalty factor of each basis function optimisation. When several basis functions are 

selected in the forward phase, over-fitting can occur. Therefore, deleting some basis functions 

in the backward phase is important to select the optimised model. 

MARS and ANN model development 

The algorithm for the predictive model for alkali activated concrete mix design was 

developed using MATLAB programming environment. In order to develop the MARS 

model, the database shown in Table 2 was analysed to establish the key mix design 

parameters. These were identified as the fly ash/slag ratio, water/solid ratio, activator/binder 

ratio, Na-Silicate /NaOH ratio and NaOH molarity as predictive variables. When developing 



11 
 

the MARS and ANN predictive models, it is important to select a training data subset and a 

testing subset to evaluate the model performance. The portioning of the available database 

between the training and testing subsets was decided based on each application and there is 

no fixed approach for this division. In the literature, it is reported that 63-80% of the available 

data has been used for the training [65, 69-71]. In a more recent study, 60% of the data was 

selected for training, the 20% selected for testing while the remaining was selected for 

validation [65]. It was decided in this study to select 68 of the available data (~70%) for the 

training and use the remainder as the testing subset. A random sampling process was used in 

partitioning the database into training and testing to achieve optimum results. The randomly 

sampled data set was used in the development and training stage of the model while the 

testing dataset was used in the model verification stage. As the initial stage of the model 

development, all the input and output data sets were normalized to get a range between 0 and 

1 using: 

; where, x is any data point (input or output), xnormalised is 

the normalized value of the data set, xminimum is the minimum value of the set of data and 

xmaximum is the highest value of the same data set. In the MARS model construction, 19 basis 

functions were used in the forward phase and 6 of them were deleted in the backward phase 

leaving 13 basis functions in the final optimum MARS model. ANN model architecture 

consists of 8 input parameters, with 10 neurons in the hidden layer leading to only one target 

which is the compressive strength. Fig. 4  

MARS and ANN model evaluation  

Once the predictive model is developed, it is important to test the model by using the actual 

and predicted compressive strengths of alkali activated concrete. The performance of the 
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MARS model developed was evaluated using coefficient of correlation (R), mean square 

error (RMSE) and mean absolute error (MAE) [65], Eq. 6.1–6.3.  

 

 

 

Where, Yai and Ypi are actual and predicted compressive strengths,  and  are the mean of 

the actual and predicted values while n is the number of data samples. The performance 

indicators of the MARS model for the training and testing data sets are shown in Table 3. 

The training data set is having a better correlation with the actual values. It is evident that 

ANN performed better than MARS, the values of R, RMSE and MAE show that ANN 

predicted values estimate the actual compressive strength values quite well. Fig. 5 shows the 

scatter plots of the ANN model and MARS models.  

Table 3 & Fig. 5  

The histogram of absolute prediction error of the ANN and MARS models are shown in Fig. 

6. Most of the errors are clustered towards zero indicating a good performance of the models 

in forecasting the compressive strength based on the training of the input samples. Fig. 7 

shows the comparison of actual compressive strength with ANN and MARS simulated 

values. Both methods make good predictions of the compressive strength with the exception 

of few points. 

Fig. 6 & Fig. 7  

 

DESIGN OF ALKALI ACTIVATED CONCRETE  
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Contour Plots  

Four different contour plots obtained from analytical model are illustrated in Fig. 8. The 

compressive strength of alkali activated concrete is dependent on all the five variables that 

have been identified, and these contour maps can be used to design mix proportions 

achieving required compressive strengths at 28 days. Fig. 8(a) shows that when water/solid 

ratio varies between 0.15 and 0.3, and activator/binder ratio increases, the compressive 

strength is increased. However, when water/solid ratio increase beyond 0.3, the compressive 

strength started to decrease with increasing the activator/binder ratio. Higher compressive 

strength can also be achieved with a higher water/solid ratio, but also with lower 

activator/bind ratio and lower fly ash/slag ratio, Fig. 8(a/d). Fig. 8(b) shows that a 

combination of a higher activator/binder ratio and a lower Na-Silicate /NaOH ratio will yield 

a higher compressive strength. For a range of Na-Silicate /NaOH of 1.0 to 4.5, a range of 

compressive strengths can be achieved (25–45 MPa / 3.63–6.53 ksi) if the activator/binder 

ratio is between 0.55 and 0.75. In contrast, Fig. 8(c) shows that either lower activator/binder 

ratio combined with a lower NaOH molarity or higher activator/binder ratio combined with a 

higher NaOH molarity can result in higher compressive strengths. That is, when 

activator/binder ratio varies from 0.35-0.55 and NaOH molarity differs from 7-10 or 

activator/binder ratio varies from 0.55-0.75 and NaOH molarity differs from 10-14, the range 

of compressive strengths between 25 and 45 MPa (3.63 and 6.53 ksi) can be achieved. 

Fig. 8  

Mix design calculation  

In order to validate the model developed using machine learning, four concrete mixes were 

designed with the targeted compressive strength of 25 MPa (3.63 ksi), 30 MPa (4.35 ksi), 40 

MPa (5.80 ksi) and 45 MPa (6.53 ksi). For instance, in the 30 MPa (4.35 ksi) concrete mix, 

the five mix design variables obtained from contours shown in Fig. 8 were: water/solid ratio, 
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activator/binder ratio, Na-Silicate /NaOH ratio, fly ash/slag ratio and NaOH molarity were 

0.33, 0.70, 3.2, 6.0 and 10.5, respectively. The majority of the alkali activated slag‒fly ash 

blended concrete mixes in Table 1 used a total binder content (i.e. fly ash and slag) of 400-

420 kg (882-926 lb). The total binder content in the mix designs used for this study is taken 

as 410 kg (904 lb), a median value of the reported range. The volume percentage of coarse 

aggregate/total aggregate in concrete generally varies between 0.60 and 0.75 [72]. For this 

study, the VAggregate/(VSand + VAggregate) ratio is taken as 0.65. 

(a) Calculate fly ash and slag content: 

 and   

After solving: Fly ash = 351.4 kg (774.7 lb) and Slag = 58.6 kg (129.2 lb) 

(b) Calculate alkaline activator content: 

 and  

After solving: Na-Silicate = 218.7 kg (482.2 lb) and NaOH = 68.3 kg (150.6 lb) 

(c) Calculate required added water content: 

 

 Na-Silicate NaOH Added water Binder Total 

Solid  96.4  19.8   0 410 526.2 
Water  122.3  48.5   w 0 170.8 + w 

After solving: Added water (w) = 2.85 kg (6.28 lb).  

It was noted that the alkali activation process releases water during the dissolution of the 

species and formation of aluminosilicate gel [73]. As such, water plays the role of a reaction 

medium, but resides within pores in the gel. In order to maintain the workability, extra water 

will be added to the concrete mix as required. 
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(d) Calculate fine and coarse aggregate content: 

The fine and coarse aggregate content in alkali activated concrete mix is calculated based on 

the absolute volume (V) method [72]. It is noted that the PC concrete in the fresh mix stage 

can entrain entrapped air upto 2% by volume [72]. For simplicity, this factor is not included 

in  the calculations . 

 

 

 

where  is specific material density (kg/m3). 

After solving:  538.6 kg (1187.4 lb) and  1042.5 kg (2298.3 lb) 

Similarly, the mix proportions of specific blended alkali activated concrete was calculated 

and tabulated in Table 4. 

Table 4 

Experimental Procedure 

The alkali activated slag-fly ash blended concrete was produced using Class F low calcium 

fly ash, obtained from Gladstone power plant in Australia and commercially available blast 

furnace slag. The X-ray fluorescence analysis, X-ray diffraction analysis and Malvern 

particle size (Mastersizer X) analysis were conducted to examine the chemical composition, 

mineralogical composition and particle size distribution of raw materials, respectively. The 

surface area of fly ash and slag were determined using Brunauer Emmett Teller (BET) 

method by N2 absorption.  

Table 5 & Table 6 
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The liquid sodium hydroxide and liquid Na-Silicate (Na2O=14.7% and SiO2=29.4% by mass, 

specific gravity=1.53) were used as alkaline activator in the alkali activated concrete 

production. The fine aggregate and coarse aggregate were prepared with respect to the 

Australian Standards, AS 1141.5 [74]. River sand in uncrushed form (specific gravity=2.5 

and fineness modulus= 2.8) was used as fine aggregate, and 10mm grain size crushed granite 

aggregate (specific gravity=2.65 and water absorption=0.74%) was used as coarse aggregate 

in concrete. Demineralized water was used throughout in the mixing. 

The fly ash-slag binder, river sand and coarse aggregate were mixed using a 60 litre concrete 

mixer for 4 minutes. Next Na-Silicate, sodium hydroxide and water were added and mixed 

continuously for another 8 minutes in order to obtain a glossy and well combined concrete 

mix. The alkali activated concrete mix was poured into 100x100x100 mm cubic Teflon 

moulds, and then vibrated using a vibration table for 1 minute to remove air bubbles. Finally, 

the concrete moulds were kept at laboratory conditions (23°C/73.4°F temperature and 70% 

relative humidity) for 24 hours. Next concrete moulds were removed, and specimens were 

cured in water until being tested at 7 and 28 days. The 7-day and 28-day compressive 

strengths of alkali activated concrete were tested using a MTS machine with a loading rate of 

20 MPa/min (2.9 ksi/min) in accordance with AS 1012.9 standard [75].  

Experimental results and Model validation 

The compressive strength development of four slag-fly ash blended concrete mixes, i.e. 25 

MPa (3.63 ksi), 30 MPa (4.35 ksi), 40 MPa (5.80 ksi) and 45 MPa (6.53 ksi), between 7 and 

28 days are displayed in Fig. 9. The experimental data confirmed that four alkali activated 

concrete mixes achieved their specific targeted compressive strength or very closer to the 

required compressive strength at 28 days. Only the M25 mix displayed a little reduction 

compared to the desired compressive strength. All alkali activated concrete s achieved 

strength increase between 7 and 28 days, but in different percentage. The M25 mix obtained 



17 
 

the highest strength development (43%) while M40 gained the lowest strength increase 

(19.3%) during this period. Overall, test results showed a good correlation between the 

targeted and achieved compressive strength of slag-fly ash blended concrete by following the 

proposed mix design method using machine learning techniques. The current model has 

identified five key mix design parameters and can be applied to design concrete grades 

ranging from 25 to 45 MPa (3.63 to 6.53 ksi).  

Literature [6, 76-78] indicates that a number of inter related factors influence the compressive 

strength of the alkali activated/geopolymer concrete. The particle size distribution together 

with the specific surface area, and the reactive amorphous percentage of source materials (i.e. 

fly ash and blast furnace slag) are the governing parameters of compressive strength 

development [79-82]. In addition, the commercially available Na-Silicate solution has many 

chemical species, such as monomer, dimer, trimer, cyclic, polymeric, rings etc., whose 

relative contents are dependent upon the SiO2/Na2O molar ratio. These varieties of chemical 

species can be expected to influence the alkali activation of source materials, which in turn 

affect the compressive strength development [83, 84]. Overall, it is recommended that 

including these factors in mix design procedure at future study would further increase the 

accuracy and reliability of this model to use in filed applications with more confidence. 

Fig. 9 

 

SUMMARY AND CONCLUSIONS 

An extensive literature review was conducted in order to obtain the mix design details and 

corresponding compressive strengths of alkali activated slag‒fly ash (low calcium) blended 

concrete. Two machine learning approaches, Artificial Neural Networks (ANN) and 

Multivariate Adaptive Regression Spline (MARS) techniques have been utilised to develop 
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this model in order to design the alkali activated concrete mixes with a target compressive 

strength at 28 days. The main contribution from this study is the use of model created using 

machine learning techniques to develop contour plots to present the relationship between the 

five key parameters, namely water/solid ratio, alkaline activator/binder ratio, Na-Silicate 

/NaOH ratio, fly ash/slag ratio and NaOH molarity that influence the compressive strength of 

blended concrete. The algorithm for the predictive model for alkali activated concrete mix 

design was developed using MATLAB programming environment. A detailed calculation for 

a 30 MPa (4.35 ksi) alkali activated concrete mix design is presented in order to demonstrate 

the use of these contour plots to design concrete mix proportions. Correspondingly, the four 

alkali activated concrete mixes were designed, and an experimental program was conducted 

to measure the actual compressive strength. The test results, ranging from 25 MPa to 45 MPa 

(3.63 to 6.53 ksi), are in good agreement with the predicted compressive strengths from the 

contour plots, hence validating the model. As such, the proposed contour plots together with 

the methodology can be used to develop mix designs for alkali activated slag-fly ash (Class F, 

low calcium) blended concrete. 
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Table 1 – Mix design database 

Slag   
(kg) 

Fly ash 
(kg) 

Aggregates (kg) Activator (kg) Added 
Water 
(kg) 

Solid % (Na-Silicate) NaOH solution Compressive 
Strength  
(MPa) 

Refer. 
Coarse  Fine NaOH Na-Silicate SiO2 Na2O Molarity Density 

(g/cm3) 

240 80 1215 715 46 114 80 29.4 14.7 12M 1.37 35.5 [19] 
240 80 1215 715 46 114 80 29.4 14.7 12M 1.37 47.7  

340 85 1065 390 164 0 58 29.4 14.7 12M 1.37 37.0  

340 85 1065 390 82 82 67 29.4 14.7 12M 1.37 56.0  

223 95 1160 753 61 75 85 25.5 12.8 10M 1.32 64.3  

228 98 1160 753 63 77 79 25.5 12.8 10M 1.32 64.3  

230 99 1145 742 63 77 87 25.5 12.8 10M 1.32 64.3  

300 100 1068 712 12 74 133 29.5 11.5 10M 1.32 52.1  

236 101 1145 742 65 79 82 25.5 12.8 10M 1.32 64.3  

307 102 1293 554 41 102 55 29.4 13.7 10M 1.32 55.5  

307 102 1293 554 41 102 55 29.4 14.7 10M 1.32 55.5  

240 103 1160 753 66 81 68 25.5 12.8 10M 1.32 64.3  

245 105 1111 721 68 82 93 25.5 12.8 10M 1.32 64.3  

319 106 1152 636 10 65 136 32.8 14.7 10M 1.32 55.6  

248 106 1145 742 68 83 70 25.5 12.8 10M 1.32 64.3  

319 106 1152 636 10 65 136 32.8 14.7 10M 1.32 56.2  

319 106 1063 638 23 47 164 16.5 33.0 10M 1.32 51.0 [20] 
319 106 1063 638 67 168 0 16.5 33.0 10M 1.32 51.0  

319 106 1155 628 10 65 136 32.8 14.7 10M 1.32 55.4  

251 108 1111 721 69 84 87 25.5 12.8 10M 1.32 64.3  

264 113 1111 721 73 89 75 25.5 12.8 10M 1.32 64.3  

360 120 855 840 80 160 144 28.9 19.6 8M 1.27 32.5  

360 120 856 840 80 160 144 28.9 19.6 8M 1.27 31.0  

360 120 857 840 80 160 144 28.9 19.6 8M 1.27 41.0  

360 120 858 840 80 160 144 28.9 19.6 8M 1.27 36.0  

360 120 859 840 80 160 144 28.9 19.6 8M 1.27 18.0  

192 128 1122 707 38 58 0 29.4 14.7 12M 1.37 11.3 [21] 
192 128 1122 707 45 67 0 29.4 14.7 12M 1.37 14.2  

192 128 1122 707 51 77 0 29.4 14.7 12M 1.37 15.6  

175 175 1081 483 40 100 0 29.4 13.7 14M 1.42 29.2  

132 198 1160 753 64 78 69 25.5 12.8 10M 1.32 50.3  

200 200 1074 716 9 56 145 29.5 11.5 10M 1.32 31.7  

200 200 1068 712 12 74 133 29.5 11.5 10M 1.32 49.3  

200 200 1062 708 15 93 122 29.5 11.5 10M 1.32 58.2  

200 200 1068 712 19 62 139 29.5 11.5 10M 1.32 44.4  

200 200 1056 704 12 124 104 29.5 11.5 10M 1.32 65.0  

200 200 1074 716 15 93 102 29.5 11.5 10M 1.32 65.7  

200 200 1050 700 15 93 102 29.5 11.5 10M 1.32 42.3  

200 200 1529 764 22 218 80 28.1 14.7 10M 1.32 11.3 [22] 
200 200 1730 865 22 218 0 28.1 14.7 10M 1.32 34.6  

200 200 1660 830 22 218 33 28.1 14.7 10M 1.32 19.7  
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200 200 1580 790 22 218 67 28.1 14.7 10M 1.32 9.7  

200 200 1554 777 22 218 73 28.1 14.7 10M 1.32 10.6  

300 200 805 925 50 125 12 29.4 14.7 12M 1.37 39.0  

136 203 1160 753 65 80 63 25.5 12.8 10M 1.32 50.3  

204 204 1113 635 24 48 175 29.4 14.7 8M 1.27 42.3 [23] 
204 204 1113 635 24 48 175 29.4 14.7 8M 1.27 51.8  

204 204 1113 635 24 48 175 29.4 14.7 8M 1.27 51.3  

204 204 1113 635 24 48 175 29.4 14.7 8M 1.27 49.0  

205 205 1290 549 41 102 93 29.4 13.7 8M 1.27 37.0 [24] 
205 205 1290 439 41 102 93 29.4 13.7 8M 1.27 39.0  

205 205 1290 329 41 102 93 29.4 13.7 8M 1.27 40.5  

205 205 1290 220 41 102 93 29.4 13.7 8M 1.27 26.9  

205 205 1290 549 41 102 55 29.4 13.7 8M 1.27 45.9 [25] 
205 205 1290 439 41 102 55 29.4 13.7 8M 1.27 48.1  

205 205 1290 329 41 102 55 29.4 13.7 8M 1.27 51.1  

205 205 1290 220 41 102 55 29.4 13.7 8M 1.27 33.6  

205 205 1290 549 41 102 93 29.4 13.7 8M 1.27 45.9 [26] 
205 205 1290 549 41 102 93 29.4 13.7 8M 1.27 48.1  

205 205 1290 549 41 102 93 29.4 13.7 8M 1.27 51.1  

205 205 1290 549 41 102 93 29.4 13.7 8M 1.27 33.6  

205 205 1293 554 41 102 55 29.4 13.7 10M 1.32 53.5 [27] 
205 205 1293 554 41 102 90 29.4 13.7 10M 1.32 52.5  

205 205 1290 549 41 102 55 29.4 13.7 10M 1.32 53.5 [28] 

205 205 1293 554 41 102 90 29.4 13.7 10M 1.32 70.4 [27] 

205 205 1290 549 41 102 55 28.0 8.0 8M 1.27 38.3 [28] 
205 205 1290 549 41 102 55 28.0 8.0 8M 1.27 40.5  

205 205 1290 549 41 102 55 28.0 8.0 8M 1.27 43.7  

205 205 1290 549 41 102 55 28.0 8.0 8M 1.27 46.2  

205 205 1290 549 41 102 55 28.0 8.0 8M 1.27 36.2  

205 205 1290 549 41 102 93 29.4 13.7 8M 1.27 45.9 [29] 
205 205 1290 549 41 102 93 29.4 13.7 8M 1.27 48.1  

205 205 1290 549 41 102 93 29.4 13.7 8M 1.27 51.1  

205 205 1290 549 41 102 93 29.4 13.7 8M 1.27 33.6  

205 205 1290 549 41 102 55 29.4 13.7 8M 1.27 45.9 [25] 
205 205 1290 549 41 102 55 29.4 13.7 8M 1.27 48.1  

205 205 1290 549 41 102 55 29.4 13.7 8M 1.27 51.1  

205 205 1290 549 41 102 55 29.4 13.7 8M 1.27 33.6  

205 205 1293 554 41 102 90 29.4 13.7 10M 1.32 52.5 [30] 
205 205 1293 554 41 102 90 29.4 13.7 10M 1.32 54.1  

205 205 1293 554 41 102 90 29.4 13.7 10M 1.32 56.3  

205 205 1293 554 41 102 42 29.4 13.7 10M 1.32 56.5 [31] 
139 209 1160 753 67 82 57 25.5 12.8 10M 1.32 50.3  

140 210 1196 644 11 134 65 25.7 8.5 10M 1.32 45.0 [32] 
140 210 1196 644 11 134 65 25.7 8.5 10M 1.32 47.5  

140 210 1196 644 11 134 65 25.7 8.5 10M 1.32 48.5  

140 210 1196 644 11 134 65 25.7 8.5 10M 1.32 12.5  
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140 210 1081 483 40 100 0 29.4 13.7 14M 1.42 36.9  

212 212 1059 635 23 47 163 16.5 33.0 10M 1.32 52.0  

212 212 1059 635 67 168 0 16.5 33.0 10M 1.32 52.0  

213 213 1127 628 11 73 123 32.8 14.7 10M 1.32 58.4  

213 213 1065 390 164 0 58 29.4 14.7 12M 1.37 34.0  

213 213 1065 390 82 82 67 29.4 14.7 12M 1.37 38.0  

213 213 1127 628 11 73 123 32.8 14.7 10M 1.32 59.2  

213 213 1127 628 11 73 123 32.8 14.7 10M 1.32 58.4 [33] 
213 213 1135 617 10 65 136 32.8 14.7 10M 1.32 46.7  

142 213 1145 742 69 84 62 25.5 12.8 10M 1.32 50.3  

144 216 1145 742 69 85 59 25.5 12.8 10M 1.32 50.3  

145 218 1111 721 70 86 76 25.5 12.8 10M 1.32 50.3  

146 219 1145 742 70 86 56 25.5 12.8 10M 1.32 50.3  

225 225 1164 627 45 113 45 29.4 14.7 14M 1.42 44.1 [34] 

225 225 1164 627 45 113 45 29.4 14.7 14M 1.42 41.1 [35] 
225 225 1164 627 45 113 45 29.4 14.7 14M 1.42 42.7  

225 225 1164 627 45 113 45 29.4 14.7 14M 1.42 42.8  

225 225 1164 627 45 113 45 29.4 14.7 14M 1.42 43.7  

225 225 1164 627 45 113 45 29.4 14.7 14M 1.42 41.7  

225 225 1164 627 45 113 45 29.4 14.7 14M 1.42 41.9  

225 225 1164 627 45 113 45 29.4 14.7 14M 1.42 42.6  

225 225 1164 627 45 113 45 29.4 14.7 14M 1.42 46.0  

225 225 1164 627 45 113 45 29.4 14.7 14M 1.42 47.2  

225 225 1164 627 45 113 45 29.4 14.7 14M 1.42 46.3  

225 225 790 960 58 145 25 29.4 13.7 8M 1.27 40.4 [36] 
225 225 791 960 58 145 25 29.4 13.7 10M 1.32 43.0  

225 225 792 960 58 145 25 29.4 13.7 12M 1.37 45.7  

225 225 790 960 58 145 25 29.4 13.7 8M 1.27 40.4 [36] 
225 225 790 960 58 145 25 29.4 13.7 10M 1.32 43.0  

225 225 790 960 58 145 25 29.4 13.7 12M 1.37 45.7  

151 227 1111 721 73 89 66 25.5 12.8 10M 1.32 50.3  

153 230 1111 721 74 90 63 25.5 12.8 10M 1.32 50.3  

158 237 1277 547 52 129 0 29.4 14.7 8M 1.27 28.4 [37] 
158 237 1277 547 52 129 0 29.4 14.7 4M 1.14 34.8  

158 237 1277 547 52 129 0 29.4 14.7 4M 1.14 37.2  

158 237 1277 547 52 129 0 29.4 14.7 4M 1.14 33.2  

159 239 1111 721 77 94 52 25.5 12.8 10M 1.32 50.3  

240 240 850 840 80 160 144 28.9 19.6 8M 1.27 34.0  

240 240 851 840 80 160 144 28.9 19.6 8M 1.27 33.0  

240 240 852 840 80 160 144 28.9 19.6 8M 1.27 41.5  

240 240 853 840 80 160 144 28.9 19.6 8M 1.27 37.0  

240 240 854 840 80 160 144 28.9 19.6 8M 1.27 19.0  

163 245 1294 554 41 103 0 28.0 8.0 8M 1.27 45.6  

105 245 1081 483 40 100 0 29.4 13.7 14M 1.42 35.7  

163 245 1294 554 41 103 0 34.8 16.5 10M 1.32 43.4 [38] 
250 250 805 925 50 125 12 29.4 14.7 12M 1.37 42.3  
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258 258 1176 505 59 147 0 25.0 7.5 10M 1.32 54.3  

67 267 1160 753 64 79 62 25.5 12.8 10M 1.32 31.7  

135 270 1000 850 57 143 0 29.4 13.7 12M 1.37 38.6  

68 274 1160 753 66 81 56 25.5 12.8 10M 1.32 31.7  

69 276 1145 742 67 81 64 25.5 12.8 10M 1.32 31.7  

120 280 1210 652 53 107 0 15.4 53.9 10M 1.32 56.5  

70 280 1081 483 40 100 0 29.4 13.7 14M 1.42 32.9  

70 281 1160 753 68 83 50 25.5 12.8 10M 1.32 31.7  

71 283 1145 742 68 83 58 25.5 12.8 10M 1.32 31.7  

122 286 1294 554 41 103 0 28.0 8.0 8M 1.27 42.5  

72 289 1160 753 70 85 43 25.5 12.8 10M 1.32 31.7  

73 291 1145 742 70 85 51 25.5 12.8 10M 1.32 31.7  

73 294 1111 721 71 86 69 25.5 12.8 10M 1.32 31.7  

150 300 1058 743 52 128 0 27.0 8.0 12M 1.37 35.4  

100 300 1207 650 53 107 0 15.4 53.9 10M 1.32 45.0  

100 300 1222 658 53 107 0 15.4 53.9 12M 1.37 57.0  

100 300 1246 671 47 93 0 15.4 53.9 10M 1.32 48.5  

100 300 1223 659 46 114 0 15.4 53.9 10M 1.32 45.0  

200 300 805 925 50 125 12 29.4 14.7 12M 1.37 40.2  

75 301 1111 721 73 89 62 25.5 12.8 10M 1.32 31.7  

102 307 1290 549 41 102 55 29.4 13.7 10M 1.32 35.4  

77 309 1111 721 75 91 55 25.5 12.8 10M 1.32 31.7  

35 315 1081 483 40 100 0 29.4 13.7 14M 1.42 29.5 [39] 

79 318 1111 721 77 93 47 25.5 12.8 10M 1.32 31.7 [40] 
106 319 1121 583 10 107 101 32.8 14.7 10M 1.32 56.8  

106 319 1121 583 10 107 101 32.8 14.7 10M 1.32 57.5  

106 319 1109 603 7 78 130 32.8 14.7 10M 1.32 29.5  

80 320 704 973 29 158 0 32.2 11.2 10M 1.32 42.9 [41] 
80 320 1209 651 46 114 0 30.0 11.5 14M 1.42 47.0  

80 320 1209 651 64 96 0 30.0 11.5 14M 1.42 54.0  

80 320 1216 655 40 100 8 30.0 11.5 14M 1.42 35.0  

80 320 1216 655 56 84 8 30.0 11.5 14M 1.42 45.0  

80 320 1203 648 53 107 0 15.4 53.9 10M 1.32 42.5  

80 320 1203 648 53 107 0 15.4 53.9 12M 1.37 45.0  

80 320 1227 661 47 93 0 15.4 53.9 10M 1.32 42.5  

80 320 704 973 29 158 0 32.3 11.8 10M 1.32 44.6 [42] 

80 320 704 973 29 158 0 32.2 11.2 10M 1.32 46.0 [43] 
80 320 1216 655 100 40 8 30.0 11.5 14M 1.42 35.0  

82 326 1294 554 41 103 0 28.0 8.0 8M 1.27 34.3  

60 340 1209 651 46 114 0 30.0 11.5 14M 1.42 46.6  

60 340 1209 651 46 114 0 30.0 11.5 14M 1.42 46.6  

60 340 1200 646 53 107 0 15.4 53.9 10M 1.32 29.0  

60 340 1200 646 53 107 0 15.4 53.9 12M 1.37 36.0  

60 340 1209 651 47 93 0 15.4 53.9 10M 1.32 32.0  

60 340 1184 637 64 96 0 15.4 53.9 10M 1.32 30.0  

85 340 1065 390 164 0 58 29.4 14.7 12M 1.37 40.0 [44] 
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85 340 1065 390 82 82 67 29.4 14.7 12M 1.37 36.0  

80 340 1216 655 40 100 8 30.0 11.5 14M 1.42 34.7  

172 343 1031 724 52 128 0 27.0 8.0 12M 1.37 30.3 [45] 
150 350 805 925 50 125 12 29.4 14.7 12M 1.37 38.8  

40 360 1209 651 46 114 0 30.0 11.5 14M 1.42 38.3 [46] 
40 360 1218 656 40 100 6 30.0 11.5 14M 1.42 33.3  

40 360 1209 651 46 114 0 30.0 11.5 14M 1.42 38.3 [47] 
40 360 1218 656 40 100 6 30.0 11.5 14M 1.42 33.3  

40 360 1209 651 46 114 0 30.0 11.5 14M 1.42 40.0 [48] 
40 360 1209 651 64 96 0 30.0 11.5 14M 1.42 43.0  

40 360 1216 655 40 100 8 30.0 11.5 14M 1.42 27.0  

40 360 1216 655 56 84 8 30.0 11.5 14M 1.42 27.0  

40 360 1197 644 53 107 0 15.4 53.9 10M 1.32 22.0 [49] 

40 360 1216 655 40 100 8 30.0 11.5 14M 1.42 27.0 [50] 
90 360 1000 850 57 143 0 29.4 13.7 12M 1.37 36.3  

120 360 845 840 80 160 144 28.9 19.6 8M 1.27 40.0  

120 360 846 840 80 160 144 28.9 19.6 8M 1.27 37.0  

120 360 847 840 80 160 144 28.9 19.6 8M 1.27 48.0  

120 360 848 840 80 160 144 28.9 19.6 8M 1.27 31.0  

120 360 849 840 80 160 144 28.9 19.6 8M 1.27 21.0  

40 360 1216 655 100 40 8 30.0 11.5 14M 1.42 27.0 [51] 
40 360 1216 655 100 40 8 30.0 11.5 14M 1.42 27.0  

41 367 1294 554 41 103 0 28.0 8.0 8M 1.27 21.1 [52] 

165 385 913 508 97 244 0 29.4 14.7 12M 1.37 43.3 [53] 
100 400 805 925 50 125 12 29.4 14.7 12M 1.37 34.9  

45 405 1000 850 57 143 0 29.4 13.7 12M 1.37 35.9 [54] 

50 450 805 925 50 125 12 29.4 14.7 12M 1.37 31.3 [55] 
1 MPa = 0.145 ksi 

Table 2 – Statistics of the raw experimental data 

Variable Minimum Maximum Average aSD Skewness Kurtosis 

Fly ash/Slag ratio 0.25 5.67 1.636338 1.265632 1.329057 0.661458 

Water/Solid ratio 0.269 0.925 0.319204 0.093986 0.092207 -1.04618 

Activator/Binder ratio 0.269 0.925 0.393491 0.065017 -0.56924 1.763769 

Na2SiO3/NaOH ratio 1 8.769 2.076436 0.554776 -0.83189 -1.02217 

NaOH molarity 8 16 10.07746 2.297312 0.21715 -0.2579 

Compressive strength (MPa) 20 89 42.84886 11.0641 -0.02721 0.270916 
aStandard Deviation; 1 MPa = 0.145 ksi 

Table 3 – Model performance metrics 

 R2 RMSE (MPa) MAE (MPa) 

ANN 0.86331 5.61 3.77 

MARS 0.83835 6.01 4.14 
                                           1 MPa = 0.145 ksi  
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Table 4 – Mix design of slag‒fly ash blended concrete (kg/m3) 

Mix 
Notation 

Target 
Strength 

Mix design variables obtained from Contours (Fig. 8) 

Water/Solid Activator/Binder Na2SiO3/NaOH NaOH molarity Fly ash/Slag 

M25 25 MPa 0.40 0.65 4.2 9.0 6.5 

M30 30 MPa 0.33 0.70 3.2 10.5 6.0 

M40 40 MPa 0.30 0.54 2.2 11.5 3.0 

M45 45 MPa 0.40 0.40 4.0 12.0 1.0 

Mix 
Notation 

Target 
Strength 

Calculated Mix Proportions (kg/m3) 

Fly ash Slag Sand Aggregates Na2SiO3 NaOH Added water 

M25 25 MPa 355.3 54.7 518.3 1001.0 215.3 51.3 50.50 

M30 30 MPa 351.4 58.6 545.9 1054.4 218.7 68.3 5.40 

M40 40 MPa 307.5 102.5 575.0 1110.6 152.2 69.2 19.63 

M45 45 MPa 205 205 565.6 1092.5 131.2 32.8 97.22 
1 MPa = 0.145 ksi  
 

 

Table 5 – Chemical composition of fly ash and slag 

Fly ash 
Component (wt. %) 

SiO2 Al2O3 Fe2O3 CaO P2O5 TiO2 MgO K2O SO3 MnO Na2O LOIa 
Fly ash 47.9 28.0 14.1 3.8 1.8 2.0 0.9 0.6 0.3 0.2 0.4 0.4 
Slag 36.9 14.2 0.3 36.0 0.4 0.6 5.1 0.1 6.1 0.4 0 0.3 

aLoss on ignition (unburnt carbon content) 

 

Table 6 – Physical and mineralogical properties of fly ash and slag 

Properties investigated Fly ash Slag 

Specific Gravity 2.25 2.95 

BET Surface Area, (m2/kg) 2363 3582 

Fineness (%) 
at 10 microns 43.1 43.5 

at 20 microns  61.9 71.9 

at 45 microns  82.7 96.9 

Amorphous content (%) 71.8 71.7 

Crystalline content (%) 27.8 28.0 
                                       1 m2/kg = 704.5 in2/lb  
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Note: M3O mix parameters are shown in dotted lines  
Fig. 8 
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