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Abstract: Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the
future state of the underlying soils plays a critical role in planning and managing water resources and
sustainable agricultural practices. In this paper, Deep Learning (DL) hybrid models (i.e., CEEMDAN-
CNN-GRU) are designed for daily time-step surface soil moisture (SSM) forecasts, employing the
gated recurrent unit (GRU), complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN), and convolutional neural network (CNN). To establish the objective model’s viability
for SSM forecasting at multi-step daily horizons, the hybrid CEEMDAN-CNN-GRU model is tested
at 1st, 5th, 7th, 14th, 21st, and 30th day ahead period by assimilating a comprehensive pool of
52 predictor dataset obtained from three distinct data sources. Data comprise satellite-derived Global
Land Data Assimilation System (GLDAS) repository a global, high-temporal resolution, unique
terrestrial modelling system, and ground-based variables from Scientific Information Landowners
(SILO) and synoptic-scale climate indices. The results demonstrate the forecasting capability of the
hybrid CEEMDAN-CNN-GRU model with respect to the counterpart comparative models. This is
supported by a relatively lower value of the mean absolute percentage and root mean square error.
In terms of the statistical score metrics and infographics employed to test the final model’s utility,
the proposed CEEMDAN-CNN-GRU models are considerably superior compared to a standalone
and other hybrid method tested on independent SSM data developed through feature selection
approaches. Thus, the proposed approach can be successfully implemented in hydrology and
agriculture management.

Keywords: deep learning algorithm; MODIS; gated recurrent unit; satellite models of soil moisture

1. Introduction

The precise requirements for water resource supply, constant monitoring, and forecast-
ing are changing continuously with population growth, agricultural and human activities.
Any variations in weather and perturbations in climate patterns due to anthropogenically-
induced factors affect usable water distribution and accessibility. Instead of precipitation
playing a paramount role, the terrestrial water basin tends to dominate the actual function-
ing of the hydrological, ecological, and inter-coupled socio-economic systems [1]. Notably,
the knowledge of fundamental components of water reservoirs, e.g., soil moisture (SM)
and streamflow, is essential for an effective water resources management strategy. SM
also governs the physical interactions between land and the atmosphere [2,3] and acts as

Remote Sens. 2021, 13, 554. https://doi.org/10.3390/rs13040554 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7941-3902
https://orcid.org/0000-0002-2290-6749
https://orcid.org/0000-0002-5469-1738
https://orcid.org/0000-0001-9050-6328
https://orcid.org/0000-0002-6862-4106
https://doi.org/10.3390/rs13040554
https://doi.org/10.3390/rs13040554
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13040554
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/4/554?type=check_update&version=2


Remote Sens. 2021, 13, 554 2 of 30

a driver to feed irrigation systems [4], grazing and crop yield predictions [5]. A decline
in groundwater reduces soil water content and the storage volume in underlying soils. A
lack of soil moisture can affect agricultural and hydro-meteorological processes. Therefore,
predictive models providing prior information on monitoring and forecasting water, such
as in this study, are critical to soil moisture forecasts as a principal regulating factor in
groundwater hydrology to understand the soil’s future state.

With increasing computer power, researchers are developing intelligent models to
extract features in historical data (e.g., SM). Such models demonstrate acceptable skills
in forecasting hydro-metrological variables, e.g., precipitation [6–9], drought [10], stream-
flow [11,12], runoff [13,14], floods [15,16], soil moisture [17], water demand and water
quality [18–21]. However, very few studies have focused on the prediction of soil mois-
ture, with most examples being the artificial neural networks (ANN) [22] and the extreme
learning machines (ELM) [23]. Irrespective of the model type and domain of applications,
accurately forecasted soil moisture presents a greater understanding of water resources and
agricultural management, leading to more sustainable decisions. Intelligent systems based
on deep learning utilise feature extraction and reveal the compounded association between
predictors and targets [24]. Hence, soil moisture prediction with advanced algorithms is a
highly practical tool for agricultural water management. DL methods, however, are yet
to be explored in the present study region (i.e., Australian Murray Darling Basin). In this
study, we adopt a gated recurrent unit (GRU) neural networks as a modified long-short
term memory (LSTM) that has attracted good research attention [25]. There appear to be
only a few studies on GRU-based models, especially in hydrology [26,27]. Convolutional
Neural Networks (CNNs) is a useful feature extraction method to improve the overall
predictive process [28]. Therefore, an integration of CNN and GRU can, in foreseeable
possibilities, lead to a robust pre-processing of data providing a viable option to improve
the model’s forecasting skill. This has been evident in some studies that integrated CNN
with LSTM for improved performance, with Ghimire et al. [28] showing the superior skill
of the CNN-LSTM model in the problem of solar radiation. Integration of deep learning
(i.e., CNN-GRU) for soil moisture forecasting is yet to be tested explicitly, with no studies
previously using this method, the focus of this study.

Given the stochastic nature of hydrological variables, multi-resolution analysis (MRA)
can enhance any model’s performance as a tool to reveal the data features. Conven-
tional MRA, for example, discrete wavelet transforms (DWT), have long been imple-
mented [29–32]. However, DWT appears to have drawbacks, and this critical issue is
resolved by the maximum-overlap discrete wavelet transform (MODWT), an advanced
DWT method [11,33,34]. In this study, we adopt an improved version of EMD, i.e., complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to implement
a self-adaptive decomposition of the predictor variables [23]. In CEEMDAN-based decom-
position, a coefficient representing Gaussian white noise with a unit variance is added con-
secutively at each stage to reduce the forecasting procedure’s complexity, avoiding the time
series’ intricacy [35]. Previous studies used CEEMDAN in forecasting soil moisture [23,36]
with an earlier version (i.e., EEMD) used in forecasting streamflow [37] and rainfall [38–40].
Moreover, The multivariate empirical mode decomposition (MEMD) is a self-adaptive
algorithm that establishes multivariate inputs to perform a proper investigation [41]. The
MEMD method has been successfully applied in time series forecasting [42,43]. The study
incorporates the CEEMDAN method as neither the EEMD nor the CEEMDAN decomposi-
tion approach has been assimilated with any deep learning approach (i.e., GRU) to produce
a soil moisture forecast system, as attempted in the present study.

Climate indices have long been recognised as a useful synoptic-scale indicator of
teleconnections representing climate variability [9,44]. La Niña, represented by climate
indices, is accountable for substantial rainfall in eastern Australia, whereas the El Niño
phenomenon is related to drought [45]. However, El Niño Southern Oscillation (ENSO)
has a potential impact on precipitation in northern and eastern Australia [46]. Consider-
ing the substantial effects of ENSO phenomena on Australia’s climate variability, some
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studies [9,47,48] have correlated ENSO effects with hydrological variables (e.g., streamflow,
rainfall, and droughts). Rashid et al. [49] aimed to predict a drought index in Australian
catchments by aggregating synoptic-scale climate mode indices. Considering these studies,
the design of an artificial intelligence model utilising synoptic-scale climate indices, as
done in this paper, can be of great practical value in developing sustainable river systems
and drought management strategies.

In our paper, we rely on satellite (i.e., MODIS) sensors providing a flexible remote
system to explore the nexus between physical, chemical, and biological parameters related
to ground variables (i.e., observations) and how these affect future changes in daily soil
moisture. However, the inclusion of three distinct datasets has a high potential to address
the uncertainties in the predictor variables, especially the remote sensing data’s errors. The
variables from satellite sensors are associated with errors that propagate to the prediction
of hydrologic variables [50–52]. To address this issue, it is preferable to integrate satellite
and ground-based variables. Ghimire et al. [53] integrated GIOVANNI data with ECMWF
Reanalysis to predict long-term solar radiation. However, the integration of satellite-based,
ground-based SILO data, and climate indices for soil moisture forecasts, particularly with
deep learning methods (e.g., LSTM), is yet to be implemented.

The objectives are, therefore, fourfold. (1) To build deep learning approaches to
forecast surface soil moisture (SSM) at 2 cm depth, incorporating CEEMDAN (i.e., data
splitting method) with CNN (i.e., feature extraction method) to generate a GRU-based
predictive model. This predictive system, denoted as the CEEMDAN-CNN-GRU hybrid
model, is improved with neighbourhood component analysis as a feature selection tenet
on diverse predictors obtained from MODIS data, climate mode indices, and ground-
based SILO product. (2) To adopt the hybrid CEEMDAN-CNN-GRU model for daily
SSM forecasts at a multi-step horizon (i.e., 1st, 5th, 7th, 14th, 21st, and 30th day lead
time). (3) To explore the contributory influence of climate indices on the accuracy of the
CEEMDAN-CNN-GRU model. (4) To comprehensively benchmark the objective model
against alternative tools such as the GRU standalone algorithm, CEEMDAN-GRU, and
CNN-GRU hybrid model. This study’s primary contribution is to generate a skilful deep
learning method for soil moisture prediction, capitalising on remote sensing and ground
data while capturing pertinent relationships between soil moisture and synoptic-scale
drivers of climate variability in the Australian Murray Darling Basin.

2. Materials and Methods
2.1. Theoretical Frameworks
2.1.1. Convolutional Neural Network

To build the CEEMDAN-CNN-GRU hybrid model trained for daily SSM forecasts, this
study purposely employs the Convolutional Neural Networks (CNN) for optimal feature
extraction from the input dataset. CNN’s have some similarities with conventional neural
networks. They are, however, different in their connectivity between and within neuronal
layers. In conventional neural networks, every neuron is wholly connected to all neurons
in prior layers, whereas single layer neurons do not contribute to the model’s network.
CNN’s are similar to Feed Forward Neural Networks [54], with its model architecture
having three layers based on pooling, convolutional, and fully connected layer settings.

The connected layer is employed to estimate objective variables depending on the
predictor variable’s input features. CNN has proven to be a reliable modelling tool to extract
hidden features in inputs and generating filters capturing data features in predictors [55].
To extract the pattern in an objective variable (i.e., SSM) and associated predictor variables,
each convolutional layer is established as follows [56]:

hk
ij = f

((
Wk × x

)
ij
+ bk

)
(1)

Here, Wk is referred to as the weight of the kernel associated with kth feature map, f
is the activation function, and the operator of the convolutional procedure is denoted by
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multiplication sign (×). The rectified linear unit (ReLU) is used as an activation function
and the adaptive moment estimation (Adam) is selected as an optimisation algorithm using
the grid search approach. The ReLU is described as:

f (x) = max(0, x) (2)

A one-dimensional convolutional operative was adopted to directly forecast the 1-
Dimensional dataset, which eventually simplifies the modelling procedures for real-time
forecasting execution.

2.1.2. Gated Recurrent Unit Network

The hybrid CEEMDAN-CNN-GRU model utilises Gated Recurrent Unit (GRU) neural
network as the predictive tool after extracting features based on the CNN algorithm
(Section 2.1.1). GRU is a distinct type of long short-term memory (LSTM) network presented
by Cho et al. [57]. Along with similarities, GRU possesses different characteristics from
the LSTM. For instance, the GRU owns two gates, namely the update gate and reset gate,
whereas the LSTM has three gates (i.e., the input gate, forget gate, and output gate). Figure 1
provides a schematic of the hybrid CEEMDAN-CNN-GRU model with CEEMDAN data
decomposition and model architecture. Moreover, Figure 1b shows the structure of the
gated recurrent unit network.
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Figure 1. (a) Schematic of the hybrid CEEMDAN-CNN-GRU model with Complete Ensemble
Empirical Model Decomposition (CEEMDAN), Convolutional Neural Networks (CNN), and Gated
Recurrent Unit (GRU) Neural Network arrangement. The IMFs (Intrinsic Mode Functions) and
residual series are generated in the CEEMDAN process, whereas the CNN algorithm represents the
feature extraction stage. (b) 2-layered GRU model.
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In a GRU Network, two input features, including the input vector x(t) and output
vector h(t − 1), are present in each layer. The yield of each gate is achieved by logical
operation and non-linear transformation of predictors. Moreover, the association between
predictors and predictand can be defined as follows:

r(t) = σg(Wrx(t) + Urh(t− 1) + br) (3)

z(t) = σg(Wzx(t) + Uzh(t− 1) + bz) (4)

h(t) = (1− z(t))o(t− 1) + z(t)oĥ(t) (5)

ĥ(t) = σh(Whx(t) + Uh(r(t))oh (t− 1)) + bh (6)

where r(t) is the reset gate vector, z(t) is defined as the update gate vector, W and U are
parameter metrics and vector. σh is referred to as a hyperbolic tangent, and σg is defined as
a sigmoid function. Finally, given the architecture of GRU, a training approach is chosen,
which includes backpropagation through time. Based on previous studies, Adam optimiser
was implemented as it has enhanced expertise.

2.1.3. Hybrid CNN–GRU. Neural Network

In this paper, the hybrid modelling approach utilises a deep learning method built
upon a feature extraction procedure under a forecast model framework. This research
demonstrates how the CNN–GRU model comprised of three-layered CNN is used for fea-
ture extraction to generate future changes in the objective variable (i.e., SSM). In particular,
the GRU layer is employed to integrate input features extracted by the CNN algorithm to
finally forecast the target variable (i.e., SSM) with minimal training and testing error.

2.1.4. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN)

As elucidated in Section 1, CEEMDAN is adopted as an improved version of EMD
and EEMD to perform a self-adaptive decomposition of model input signals [23] prior
to modelling the target variable. The CEEMDAN decomposition process commences by
discretising the n-length inputs of any model χ(t) into intrinsic mode functions (IMFs)
and residues to comply with tolerability provision. Nevertheless, to ensure no leakage of
information in the IMFs and residues from the training series into the future (i.e., testing
and validation subset), the decomposition is performed separately for training, validation,
and testing. The actual IMF is produced by taking the mean of the EMD-grounded I.M.F.s
across a trial and the combination of white noise to model the predictor-target variables.

Assume that we have D-dimensional set, with n-length Xi matrix (i.e., inputs selected
by two-phase decomposed sub-series achieved during the decomposition) and the 1-
dimensional surface soil moisture as the target variable. The difference between CEEMDAN
and EEMD is that in the CEEMDAN case, a restricted noise (εi) across [0, 1] is included
at every single decomposition stage, calculated to induce the IMF to take the lead to
insignificant error. Considering Ej(.) as an operator producing Jth modes obtained from
EMD, we follow Torres et al. [58] to implement the CEEMDAN process as follows:

Step 1: The decomposition of p-realizations of χ[n] = ε1ωp[n] using EMD to develop their
first intrinsic approach, as explained according to the equation:

ˆIMF1[n] =
1
p

P

∑
p=1

IMFp
1 [n] = IMF1[n] (7)

Step 2: Putting k = 1, the 1st residue is computed following Equation (7).

Res1[n] = χ[n]− ˆIMF1[n] (8)
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Step 3: Putting k = 2, the 2nd residual is obtained as:

ˆIMF2[n] =
1
p

P

∑
p=1

E1(r1[n] + ε1E1(ω
p[n])) (9)

Step 4: Setting k = 2 . . . K calculates the kth residue as:

Resk[n] = Resk−1[n]− ˆIMFk[n] (10)

Step 5: Now we decompose the realisations Resk[n] + ε1E1(ω
p[n]), Here, k = 1, . . . K

until their first model of EMD is reached; here, the (k + 1) is:

ˆIMF(k+1)[n] =
1
p

P

∑
p=1

E1(rk[n] + εkEk(ω
p[n])) (11)

Step 6: Now the k value is incremented, and steps 4–6 are repeated. Consequently, the final
residue is achieved:

RESk[n] = χ[n]−
K

∑
k=1

ˆIMFk (12)

Here, K is defined as the limiting case (i.e., the highest number of modes). To com-
ply with the replicability of the earliest input, χ[n], the following is performed for the
CEEMDAN approach.

χ[n] =
K

∑
k=1

ˆIMFk + RESk[n] (13)

The additive noise demonstrates that signal-to-noise ratio (ε) is operated at every
phase [59,60] and must connect the low magnitude with high-frequency signals in the
data [61,62]. Figure 1a provides the CEEMDAN decomposed IMFs and residuals and
CNN architecture.

2.1.5. Feature Selection: Neighbourhood Component Analysis

The selection of features within the inputs used to forecast soil moisture is vital in
applying a predictive model. This is implemented to reduce the dimensionality of model
inputs and computational cost, including the desired improvements in the forecasting
accuracy and interpretation of the predictive model characteristics and nature of its pre-
dictors [59,63–65]. This study has adopted Neighbourhood Component Analysis (NCA)
based on regressions applied to segregate the potential input variables from 52 predictor
variables. Introduced by Yang et al., this method uses a competent, non-rectilinear, and
non-parametric implanted approach. The MATLAB function called “fsrnca” performs
NCA feature selection with regularisation to learn feature weights for the minimisation
of an objective function that measures the average ‘leave-one-out’ regression loss over
the training data. The NCA process’s fsrnca approach is adopted to train a variable set to
better understand the importance of features through weight by minimising the objective
function and calculating the regression loss of predictive model for soil moisture forecasts.

Consider training a dataset T = {(xi, yi): i = 1, 2, 3,..., N} where xi ∈ RP is the feature
vectors (i.e., predictor variables), yi ∈ R is the target (i.e., SSM), and N is the sample number
for the training set. A function g(x) : RP → R is absorbed by fsrnca algorithm to forecast
the response y from several input variables, optimising their nearest spaces. The weighted
distance (Dw) amongst any two samples is calculated as:

Dw(xa, xb) =
J

∑
j=1

w2
j |xa, xb| (14)
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where xa and xb are the two samples used during training, and wj is defined as the weight-
related to the jth feature. Furthermore, the probability distribution (pαβ) is employed
to increase its leave-one-out forecasting correctness in the training phase. By contrast,
the probability is that xα chooses xβ as its reference argument. The algorithm acquires a
weighting vector ‘w’ for gradient the ascent method to determine the feature subset with a
regularisation factor to prevent overfitting.

3. Study Area and Data
3.1. Study Area and Description of Predictive Model Development Dataset

For the first time, this study aims to build a new forecast for daily surface soil moisture
(SSM) with convolutional-gated recurrent unit neural networks within the Australian
Murray Darling Basin (MDB). The MDB covers ~1,042,730 km2 (or 14%) of mainland
Australia [24,66] and ~67% of agricultural lands [67]. As illustrated (Figure 2), the sites
are selected based on climate class and soil type diversity, namely Menindee, Deniliquin,
Fairfield, and Gabo Island.
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Figure 2. The Australian Murray Darling Basin with study sites and Surface Soil Moisture (SSM, kgm−2) where the hybrid
CEEMDAN-CNN-GRU model at multi-step daily SSM forecasting.

The geographical locations and physical characteristics of the sites in Murray Darling
Basin are tabulated in Table 1. It should be noted that the site Gabo Island is located at the
border of the MDB region for comparison purposes with the other study stations, whereas
~20 lakes surround Menindee in a harsh desert environment. The site Fairfield lies within
the savannah climate class with land-use patterns of dryland cropping [23]. Figure 2 also
shows a histogram of monthly surface soil moisture patterns for the candidate sites.
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Table 1. Geographic locations and physical characteristics of selected sites in the Murray Darling Basin.

Station Name BOM Station ID SILO Position
(MODIS Grid Area)

Major Climate Class
[68]

Soil Type
[69]

Elevation
[70]

Menindee 047019
32.39◦S, 142.42◦E
(142.5◦E, 32.5◦S,
142.25◦E, 32.25◦S)

Desert Calcarosol 61

Deniliquin 074128
35.53◦S, 144.97◦

(145◦E, 35.25◦S,
144.75◦E, 35◦S)

Savannah Calcarosol 94

Fairfield 066137
33.92◦S, 150.98◦E
(149.75◦E, 37.75◦S,
150.0◦E, 37.5◦S)

Savannah Vertosol 15

Gabo Island 084016
37.57◦S, 149.92◦E
(150◦E, 37.75◦S,
149.75◦E, 37.5◦S)

Sub-Tropical Sodosol 15

BOM = Bureau of Meteorology, Australia.

The appropriate selection of predictors related to the objective variable has a crucial
role in predictive model design. To build a robust model, we adopt remotely sensed
MODIS satellite-derived data identified as potential predictor variables in other studies,
e.g., solar radiation prediction [24,71,72]. We consider different studies that demonstrate
the potential utility of synoptic-scale climate indices that modulate Australian rainfall and
crops [41,73,74]. This study integrates three unique data (i.e., satellite-derived data, climate
indices, and ground-based variables) to capture a diverse suite of predictive features
to forecast SSM, enabling the deep-learning approach a significant edge over the solely
station-based models.

3.1.1. MODIS Satellite Dataset

Our hybrid deep learning model (i.e., CEEMDAN-CNN-GRU) is built upon NASA’s
Geospatial Online Interactive Visualization and Analysis Infrastructure (GIOVANNI) repos-
itory (1 February 2003 to 31 March 2020). GIOVANNI represents a powerful online visuali-
sation and analysis tool for geoscience datasets, capturing 2000 satellite variables [75,76]. In
this study, MODIS-based predictor variables, presented in Table 2, are utilised to design and
evaluate the hybrid CEEMDAN-CNN-GRU model for SSM forecasting. These are extracted
from the GLDAS system representing the high-temporal resolution terrestrial modelling
system consisting of the land surface state and several flux parameters with three temporal
resolution products: hourly, daily, and monthly. Our study has used GLDAS 2.0 datasets
extracted in daily temporal resolutions available publicly. The study utilised MODIS-based
surface soil moisture (SSM) data as a target variable obtained from the GLDAS 2.0 model.

3.1.2. Scientific Information for Landowners (SILO) Dataset

To increase the pool of predictors, enabling effective feature engineering and increased
performance of the DL model, this study selects nine meteorological variables from Sci-
entific Information for Landowners (SILO): https://www.longpaddock.qld.gov.au/silo/
ppd/index.php (accessed on 31 December 2020). SILO, managed by the Department
of Environment and Science, Queensland Government [77], is popular for studying the
Australian climate. Table 2 provides a list of SILO data.

3.1.3. Climate Indices

In previous studies, e.g., [9,29,59,74] on modelling precipitation, streamflow, and
soil moisture, the role of synoptic-scale and climate indices were found significant in
improving the overall model. In this study, twenty-one climate indices are thus obtained
from many sources: National Climate Prediction Centre, Australian Bureau of Meteorol-
ogy [70], and National Oceanic and Atmospheric Administration (NOAA) with daily sea

https://www.longpaddock.qld.gov.au/silo/ppd/index.php
https://www.longpaddock.qld.gov.au/silo/ppd/index.php
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surface temperature (Nino1 + 2SST, Nino3SST, Nino3.4SST, Nino4SST) over 1 March 2003
to 31 March 2020 from KNMI Climate Explorer [78]. As the positive SOI is related to La-
Nina and negative SOI concurs with El-Nino events [79,80], this study has used all of these
indices due to strongly correlated rainfall with lagged SOI showing high predictability
of rainfall from August-November [44,81]. To further enhance the predictive skill of the
deep learning model, we consider Madden-Julian Oscillation (MJO) known to produce a
substantial effect on tropical weather [70], which indeed entails a change in rainfall, wind,
sea surface temperature (SST), and cloudiness [82]. Hence, eight daily MJO indices were
adopted from KNMI. Climate Explorer [78], together with Interdecadal Pacific Oscilla-
tion (IPO), was introduced by Henley et al. [83], collected from NOAA National Climate
Prediction Centre. Detailed information on climate indices and SSTs are in Table 2.

Table 2. Description of the global pool of 52 predictor variables used to design and evaluate hybrid
CEEMDAN-CNN-GRU predictive model for daily surface soil moisture forecasting.

GLDAS 2.0: Modis Satellite Data from Giovanni Repository

Predictor Variable Notation Description Units

SurT St Average Surface Skin temperature K

CSW CW Plant canopy surface water Kg m−2

CWE CE Canopy water evaporation kg m−2 s−1

Esoil Es Direct Evaporation from Bare Soil kg m−2 s−1

ET ET Evapotranspiration kg m−2 s−1

Esnow Es Snow Evaporation kg m−2 s−1

GWS GW Groundwater storage mm

LWR. LW Net longwave radiation flux W m−2

Qg Qg Ground heat flux W m−2

Qh Qh Sensible heat net flux W m−2

Qle Qle Latent heat net flux W m−2

Qs Qs Storm surface runoff Kg m−2 s−1

Qsb Qb Baseflow-groundwater runoff Kg m−2 s−1

Qsm Qm Snow-melt Kg m−2 s−1

Snd Sn Snow depth m

Snt Snt Snow Surface temperature m

SMp Sp Profile Soil moisture Kg m−2

SMrz Sz Root Zone Soil moisture Kg m−2

SSM SSM Surface Soil moisture Kg m−2

SWE SW Snow depth water equivalent Kg m−2

SWR SR Net short-wave radiation flux W m−2

Tra Tr Transpiration Kg m−2 s−1

TWS TW Terrestrial water storage mm

SILO (Ground-Based Observations)

T.Max Tx Maximum Temperature ◦C

T.Min Tn Minimum Temperature ◦C

Rain r Rainfall mm

Evap Ep Evaporation mm

Radn Rd Radiation MJ m−2
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Table 2. Cont.

GLDAS 2.0: Modis Satellite Data from Giovanni Repository

Predictor Variable Notation Description Units

VP VP Vapour Pressure hPa

RHmaxT Rx Relative Humidity at Temperature
T.Max %

RHminT Rn Relative Humidity at Temperature
T.Min %

Mpot Mp Morton potential evapotranspiration
overland mm

SYNOPTIC-SCALE (Climate Mode Indices)

Nino3.0 N3 Average SSTA over 150◦–90◦W and
5◦N–5◦S

NONE

Nino3.4 N34 Average SSTA over 170◦E–120◦W
and 5◦N–5◦S

Nino4.0 N4 Average SSTA over 160◦E–150◦W
and 5◦N–5◦S

Nino1+2 N12 Average SSTA over 90◦W–80◦W
and 0◦–10◦S

AO A Arctic Oscillation

AAO AO Antarctic Oscillation

MJO1 MJ1 Madden Julian Oscillation-1

MJO2 MJ2 Madden Julian Oscillation-2

MJO4 MJ4 Madden Julian Oscillation-4

MJO5 MJ5 Madden Julian Oscillation-5

MJO6 MJ6 Madden Julian Oscillation-6

MJO7 MJ7 Madden Julian Oscillation-7

MJO8 MJ8 Madden Julian Oscillation-8

MJO10 MJ10 Madden Julian Oscillation-10

EPO EP East Pacific Oscillation

GBI G Greenland Blocking Index (GBI)

WPO WP Western Pacific Oscillation (WPO.)

PNA PN Pacific North American Index

NAO N North Atlantic Oscillation

SAM SM Southern Annular Mode index

SOI SOI Southern Oscillation Index, as per
Troup [84]

SSTA = Sea Surface Temperature anomalies (°C).

3.2. Predictive Model Development

To design a forecast model for SSM over multi-step periods of 1st, 5th, 7th, 14th,
21st, and 30th day lead time, three distinct datasets from satellites (i.e., GIOVANNI), cli-
mate indices, and ground source (SILO) for 17 years, 1 February 2003 to 31 March 2020
are used. Hybrid DL is implemented under Intel i7 @ 1.5 GHz and 16 GB memory. The
proposed model algorithms were demonstrated using freely available DL libraries, namely
the Keras [85,86] and TensorFlow [87] libraries. MATLAB 2020 software is used for Neigh-
bourhood Component Analysis feature selection with packages matplotlib, and Minitab is
used to visualise the forecasted SSM in the testing phase.
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Data-driven models were built by normalising the input variables, transforming these
predictors into a more consistent form [88]. To ensure the variable features were given pro-
portional attention in network training, all were normalised [89] between (0, 1) [41,53,90].

xnorm =
x− xmin

xmax − xmin
(15)

In Equation (15), x is the respective variable, xmin is the minimum value, xmax is the
maximum and xnorm is the normalised value. After normalising the variables, the datasets
are partitioned into training (February 2003–December 2013), validation (January 2014–
December 2016), and testing (January 2017–March 2020) subsets. Figure 3 shows the
methodological steps of the proposed CEEMDAN-CNN-GRU model. CEEMDAN is
implemented in four stages.
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Figure 3. Workflow with the steps in model design for hybrid CEEMDAN-CNN-GRU predictive
model. SSM = Surface Soil Moisture, NCA = neighbourhood component analysis for regression,
IMF = Intrinsic Mode Function, CEEMDAN = Complete Ensemble Empirical Model Decomposition
with adaptive noise, GRU = Gated Recurrent Units.

3.2.1. Feature Selection

By incorporating the MODIS satellite and ground and climate indices, this study has
utilised 52 different predictors for SSM forecasting; hence, feature selection was crucial
for data pre-processing. This is because irrelevant and redundant features increase the
network size, congestion and cause a reduction in the algorithm’s speed, reducing the
efficiency of the predictive model [91]. Therefore, our study has used the NCA algorithm
to screen an optimal set of predictor variables out of the 52-variable set. In general, fsrnca
calculates every predictor’s relative weight against a target (SSM), illustrated in Figure 4.
Following this, the standalone GRU and hybrid CNN-GRU models were executed with
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predictors added one by one from the highest feature to the lowest feature weight until an
optimal performance was achieved. Figure 5 illustrates the the relative root mean squared
error (RRMSE) value of different combinations prepared based on NCA. Tables A1–A6
shows the GRU and CNN-GRU model’s performance accordingly.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 31 
   

 

3.2.1. Feature Selection 

By incorporating the MODIS satellite and ground and climate indices, this study has 

utilised 52 different predictors for SSM forecasting; hence, feature selection was crucial 

for data pre-processing. This is because irrelevant and redundant features increase the 

network size, congestion and cause a reduction in the algorithm’s speed, reducing the 

efficiency of the predictive model [91]. Therefore, our study has used the NCA algorithm 

to screen an optimal set of predictor variables out of the 52-variable set. In general, fsrnca 

calculates every predictor’s relative weight against a target (SSM), illustrated in Figure 4. 

Following this, the standalone GRU and hybrid CNN-GRU models were executed with 

predictors added one by one from the highest feature to the lowest feature weight until 

an optimal performance was achieved. Figure 5 illustrates the the relative root mean 

squared error (RRMSE) value of different combinations prepared based on NCA. Tables 

A1–A6 shows the GRU and CNN-GRU model’s performance accordingly. 

 

Figure 4. Feature weight matrix of predictor variables from a pool of 52 data sources using neighbourhood component 

analysis at the nth (n = 1, 5, and 30) day lead time forecasting of surface soil moisture shown for the case of Menindee study 

station. Details of the variables are mentioned in Table 2. 

Figure 4. Feature weight matrix of predictor variables from a pool of 52 data sources using neighbourhood component
analysis at the nth (n = 1, 5, and 30) day lead time forecasting of surface soil moisture shown for the case of Menindee study
station. Details of the variables are mentioned in Table 2.

Figure 4 illustrates the respective feature weights of predictor variables, using the
Menindee station as an example. For the 1st day of SSM forecasting, the root zone soil
moisture (kg m−2) is found to generate the highest feature weight, whereas, for the 5th day,
groundwater storage (mm) is found to be the most significant feature weight. Notably,
the groundwater storage contributed to the largest feature weighted for the 7th, 14th, 21st,
and 30th day SSM forecasting. This evaluation indicates that groundwater has a strong
influence on SSM over inter-daily scales. Tables S1–S6 illustrates the input combination for
SSM forecasting in the nth day lead period with their respective forecasting performance
with CNN-GRU and GRU model. It is imperative to note that fsrnca algorithm is used in
two distinct phases before applying the hybrid-deep learning (i.e., CEEMDAN-CNN-GRU)
model. In the first phase, fsrnca attains the feature weights and acquires the optimal predic-
tor variable list required for SSM forecasts. Subsequently, the second phase incorporates
the data decomposition process utilising CEEMDAN to each variable selected from the
feature weights. Finally, the feature weight is calculated for IMF (t) deduced for each
predictor variable against the objective variable (i.e., SSM). Here, the term t refers to the
number of IMFs for each variable, removing four to five least significant features from the
hybrid CEEMDAN-CNN-GRU model.
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Figure 5. Stair plot showing the relative root mean squared error (RRMSE, %) for (a) CNN-GRU and
(b) GRU applied at different input combinations for the Menindee station at the 1st, 5th, 7th, 14th,
21st and 30th day lead time.

3.2.2. Hybrid Deep Learning Algorithm Implementation

Before applying the CEEMDAN-CNN-GRU model in the 1st, 5th, 7th, 14th, 21st, and
30th day SSM forecasts, hyperparameter selection is undertaken through a grid search
procedure whose theoretical descriptions are provided in Section 2. Table 3 shows the
hyperparameters, optimal GRU architecture, and CNN-GRU with input combinations de-
duced from the feature weight matrix. Finally, the deep learning forecast model combining
a data decomposition (i.e., CEEMDAN) stage with a three-layered feature extraction stage
(i.e., CNN) and feature selection stage (i.e., fsrnca) is implemented to forecast SSM.

The proposed CEEMDAN-CNN-GRU model is implemented in four stages, as shown
in Figure 3. Firstly, CEEMDAN is applied to decompose historical training data into
IMFs and residual signals (Figure 1a) followed by segregation of each IMFs and residual,
such as collecting all the IMF1 for predictor variables. The relative feature weights of
respective IMFs related to IMF of the target variable (i.e., SSM) are determined. The optimal
signal selection enables the algorithm to remove the least important feature-weighted
IMFs, allowing the predictive model network to be noise-free. Finally, the forecasted
SSM utilising the CEEMDAN-based model (i.e., the hybrid CEEMDAN-CNN-GRU) is
obtained by aggregating the IMFs of the predictor variables. The robustness of the model
is investigated by several evaluation criteria (Section 3.2.3).
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Table 3. (a) Range of tested hyperparameters in designing hybrid CNN-GRU and GRU predictive
models through trial and error method. (b) Optimally selected hyperparameters. ReLU stands for
Rectified Linear Units, SGD stands for stochastic gradient descent optimiser.

(a) Tested Range of Model Hyper-Parameters

Model Model Hyper-parameter Names Search Space for Optimal
Hyper-Parameters

CNN-GRU

Filter 1 (70, 80, 100, 150)

Filter 2 (70, 80, 100,150)

Filter 3 (70, 80, 100, 150)

GRU Cell Units (40, 50, 70, 80, 100, 150)

Epochs (500, 800, 1000)

Activation function (ReLU)

Optimiser (Adam, SGD)

Batch Size (5, 10, 20, 50, 100)

GRU

GRU Cell 1 (70, 80, 100, 110)

GRU Cell 2 (70, 80, 100,150, 200, 210)

Epochs (500, 800, 1000)

Activation function (ReLU)

Optimiser (Adam, SGD)

Batch Size (5, 10, 20, 50, 100)

(b) Optimally Selected Hyper-Parameters

CNN-GRU

Convolution Layer 1 (C1) 80

C1-Activation function ReLU

C1-Pooling Size 1

Convolution Layer 2 (C2) 70

C2-Activation function ReLU

C2-Pooling Size 1

Convolution Layer 3 (C3) 80

C3-Activation function ReLU

C3-Pooling Size 1

GRU Layer 1 (L1) 200

L1-Activation function ReLU

GRU Layer 2 (L2) 60

L2-Activation function ReLU

Drop-out rate 0.2

Optimiser Adam

Padding Same

Batch Size 5

Epochs 400

GRU

GRU Cell 1 (G1) 110

G1-Activation function ReLU

GRU Cell 2 (G2) 250

G2-Activation function ReLU

Epochs 300
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Table 3. Cont.

(a) Tested Range of Model Hyper-Parameters

Optimiser SGD

Drop-out rate 0.2

Batch Size 15

Epochs 1000

It is worth noting that climate indices (CIs) have a notable signature of climate vari-
ability in Australia, leading to substantial influence on rainfall and a potential effect on
future surface soil moisture patterns. In the final task, climate indices’ relative contribution
to building the CEEMDAN-CNN-GRU model is assessed by Multivariate Adaptive Regres-
sion Splines (MARS) utilising the ARESLab toolbox. Following Friedman [86], MARS can
determine each predictor variable’s significance by evaluating its complex and non-linear
interaction with the target (i.e., SSM) based on best regressors and provide the importance
of each variable. The relative importance of any predictor variable is the square root of GCV
(Generalised Cross-Validation) with all basic functions involving the respective variable
minus the root square of the GCV score of that full model. However, this process is scaled
in such a way that the relative importance has a value of 100, expressed:

GCV =
MSE(

1− enp
N
)2 (16)

Here, enp is the significant number of model parameters, p = k + c (k− 1)/2; k = basis
function in MARS model; c = penalty (set to 2 or 3). However, if enp is greater or equal to
N, GCV is an Inf, which indicates the model is flawed [92].

3.2.3. Predictive Model Evaluation

The efficacy of deep learning hybrid model is evaluated using different performance
evaluation criteria e.g., Pearson’s Correlation Coefficient (r), root mean square error (RMSE),
Nash-Sutcliffe efficiency (NSE) [93], mean absolute error (MAE), and Kling-Gupta effi-
ciency [94]. Due to geographic differences between the study stations, we employ relative
error-based metrics: i.e., relative RMSE (denoted as RRMSE) and relative MAE (denoted as
RMAE). The appraisal of a predictive model’s efficacy depends on the exactness between
the predicted and observed values. RMSE is an appropriate measure of model performance
compared to MAE when the error distribution in the tested data is Gaussian [95] but for
an improved model evaluation, the Willmott’s Index (WI) and Legates-McCabe’s (LM)
Index are used as more sophisticated and compelling measures [96,97]. Mathematically,
the metrics are as follows:

Correlation coefficient (r):

r =


∑N

i=1
(
SSMobs − SSMobs

)(
SSM f or − SSM f or

)
√

∑N
i=1
(
SSMobs − SSMobs

)2
∑N

i =1

(
SSM f or − SSM f or

)2


2

(17)

Mean absolute error (MAE: kg m−2):

MAE =
1
N

N

∑
i=1

∣∣∣SSM f or − SSMobs

∣∣∣ (18)

Root mean squared error (RMSE: kg m−2):

RMSE =

√√√√ 1
N

N

∑
i=1

(
SSM f or − SSMobs

)2
(19)
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Nash-Sutcliffe Efficiency (NSE):

NSE = 1−

1−
∑N

i=1 (SSM f or)
2

∑N
i=1

(
SSMobs − SSM f or

)2

) (20)

Kling-Gupta efficiency (KGE):

KGE = 1−

√√√√(r− 1)2 +

(
SSM f or

SSMobs
− 1

)2

+

(
CVp

CVs

)2
(21)

Mean Absolute Percentage Error (MAPE, %):

MAPE =
1
N

(
t=1

∑
N

∣∣∣∣∣ (SSM f or − SSMobs)

SSMobs

∣∣∣∣∣
)
× 100, (0% ≤ MAPE ≤ 100%) (22)

Willmott’s Index (WI):

WI = 1−

 ∑N
i=1

(
SSM f or − SSMobs

)2

∑N
i=1

(∣∣∣SSM f or − SSMobs

∣∣∣+ ∣∣SSMobs − SSMobs
∣∣ )2

 (23)

Legates–McCabe’s Index (LM):

LM = 1−

 ∑N
i=1

∣∣∣SSM f or − SSMobs

∣∣∣
∑N

i=1
∣∣|SSMobs − SSMobs|

∣∣
 (24)

Relative Root Mean Squared Error (RRMSE, %):

RRMSE(%) =

√
1
N ∑N

i=1

(
SSM f or − SSMobs

)2

1
N ∑N

i=1(SSMobs)
× 100 (25)

Relative Mean Absolute Error (RMAE, %):

RMAE (%) =

1
N ∑N

i=1

∣∣∣SSM f or − SSMobs

∣∣∣
1
N ∑N

i=1(SSMobs)
× 100 (26)

Absolute percentage bias (APB, %):

APB =

∑N
i=1

∣∣∣SSMobs − SSM f or

∣∣∣ × 100

∑N
i=1|SSMobs|

 (27)

In Equations (17)–(27), SSMobs and SSM f or represents the observed and forecasted
values for ith test value; SSMobs and SSM f or refer to their averages, accordingly, and N is
defined as the number of observations, while CV stands for the coefficient of variation. CV
is a standardised measure of the dispersion of the frequency distribution.

4. Results

The practical utility of the hybrid DL (i.e., CEEMDAN-CNN-GRU) model is estab-
lished by integrating diverse data in its training and model testing phase. Significant
features from predictor variables are used by incorporating NCA, and the predictive model
is evaluated using statistical metrics (Equations (17)–(27)), infographics, and visualisations
to appraise the degree of agreements between simulated and observed soil moisture. By
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several measures, the CEEMDAN-CNN-GRU model appears to outperform all the com-
parative models with superior r and NSE and low RMSE, MAE, and APB in the testing
phase. An extensive analysis of tabulated results (Table 4) provides convincing arguments
that the hybrid deep learning method is effective for surface soil moisture forecasts and
can perhaps be a potential tool in agriculture water management. However, among all
study sites, the CEEMDAN-CNN-GRU model for the Menindee station showed the best
performance, considering r (0.996), NSE (0.995), and lowest RMSE (0.021), MAE (0.013),
and APB (0.359) values for the 1st day of SSM forecasting. The performance of this model
is followed by the CEEMDAN-GRU and CNN-GRU model.

For the 5th day of SSM forecasting, the results of the objective model for Menindee had
the best performance (r = 0.993; NSE = 0.991; RMSE = 0.040 kg m−2) followed by Deniliquin
(r = 0.989; NSE = 0.975; RMSE = 0.091 kg m−2). Likewise, for the 7th, 14th, 21st, and 30th
days of SSM forecasting, the CEEMDAN-CNN-GRU model outperformed the other models
by a notable margin for all the respective periods of SSM forecasting. However, a site-specific
signature in the model accuracy was also evident, with the results for Menindee registering
the lowest value of RMSE generated by the CEEMDAN-CNN-GRU model. In terms of MAE,
the CEEMDAN-CNN-GRU model returned the lowest value for Menindee, suggesting that
the CEEMDAN-CNN-GRU model was a potential forecasting tool SSM at the 1st, 5th, and 7th
day ahead periods. Not surprisingly, in accordance with other studies, e.g., the present study
indicates that as the length of the forecasting period was increased, the model’s performance
appear to reduce at a significant rate in such a way that the r-values reduced by 0.30%,
1.10%, 9.15%, 11% and 15% for the 1st to 5th, 7th, 14th, 21st and 30th day of SSM forecasting.
The change of the performance metrics (i.e., NSE, MAE, and APB) for longer-term horizons
relative to the shorter-term horizons also concurred with the respective changes in the r-values
and is consistent with earlier studies [60,98]. For a longer-term horizon, the present r value
was lower, and the MAE increased, suggesting that for the longer forecast horizon, the
model appeared to lose the relevant data features in the predictor variables required to
maintain precise SSM forecasting performance. The hybrid CEEMDAN-CNN-GRU model
is further evaluated using a probability plot of errors at the 95th percentile, including
those of the benchmark model (i.e., CNN-GRU, CEEMDAN-GRU) and the standalone
model (i.e., GRU) with an illustration for Menindee at the different nth (n = 1, 5, 7, 14, 21
and 30) days (Figure 6). The CEEMDAN-CNN-GRU model results show that ~95% of
SSM forecasting had the lowest error (<0.1) for the 1st and 5th days of SSM forecasting.
Among all the predictive models and the forecast periods over nth days, the GRU-based
model showed a more significant proportion of |FE| values at a 95% confidence level.
Notably, consistently good results were also achieved for the other stations (i.e., Deniliquin,
Fairfield, and Gabo Island), which are shown in supplementary materials (Figure S1a–c).
The lowest value of |FE|, with <0.063 with a 95% percentile, was evident for Fairfield
compared to the other two study stations. The correlation between observed and forecasted
daily surface soil moisture datasets generated by the proposed CEEMDAN-CNN-GRU
model vs. the corresponding benchmark models (i.e., CNN-GRU and GRU), for the case of
Menindee station, is illustrated in Figure 7. The correlations for the hybrid GRU model are
positioned close to the observed SSM values up to the 7th day, revealing a high degree of
forecasting accuracy. An improvement in the model’s forecasting performance was attained
by applying the CNN algorithm (i.e., soil moisture generated by the CNN-GRU model)
and data decomposition (i.e., CEEMDAN-CNN-GRU) method on standalone GRU model.
The disparity between the forecasted SSM and the reference SSM values was significantly
higher for the 14th, 21st, and 30th days of SSM forecasting, which concurs with earlier
metrics suggesting a potential inadequacy of the data features long time ahead periods [60].
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Table 4. Evaluation of hybrid CEEMDAN-CNN-GRU vs. benchmark (CNN-GRU, CEEMDAN-GRU, GRU) models for the specific case of Menindee study site. The correlation coefficient
(r), root mean square error (RMSE; Kg m−2), mean absolute error (MAE; Kg m−2), and Nash-Sutcliffe coefficient, NS) is computed between forecasted and observed surface soil moisture
for the 1st day, 5th day, 7th day, 14th day, 21st day, and 30th day ahead periods in the testing phase. The optimal model is boldfacede.

Soil Moisture Forecasting Horizon, nth Day Lead Time

1st Day 5th Day 7th Day 14th Day 21st Day 30th Day

r NSE RMSE MAE APB r NSE RMSE MAE APB r NSE RMSE MAE APB r NSE RMSE MAE APB r NSE RMSE MAE APB r NSE RMSE MAE APB

Study Station 1: Menindee

CEEMDAN-
CNN-
GRU

0.996 0.995 0.021 0.013 0.359 0.993 0.991 0.040 0.030 0.823 0.985 0.967 0.075 0.057 1.559 0.906 0.896 0.226 0.185 5.079 0.895 0.787 0.230 0.186 5.098 0.869 0.714 0.255 0.201 5.493

CNN-GRU 0.967 0.892 0.135 0.112 3.061 0.966 0.918 0.117 0.094 2.569 0.945 0.861 0.152 0.121 3.330 0.892 0.770 0.235 0.193 5.285 0.899 0.788 0.210 0.168 4.594 0.851 0.765 0.238 0.181 4.945

CEEMDAN-
GRU

0.976 0.937 0.116 0.094 2.234 0.970 0.933 0.120 0.095 2.265 0.957 0.909 0.140 0.110 2.613 0.882 0.738 0.237 0.186 4.424 0.864 0.781 0.262 0.206 4.918 0.866 0.742 0.275 0.217 5.163

GRU 0.962 0.893 0.134 0.110 3.020 0.962 0.933 0.121 0.094 2.589 0.940 0.851 0.158 0.126 3.452 0.882 0.745 0.244 0.197 5.390 0.887 0.748 0.243 0.196 5.360 0.863 0.726 0.251 0.197 5.386

Study Station 2: Deniliquin

CEEMDAN-
CNN-
GRU

0.990 0.899 0.048 0.034 0.778 0.989 0.975 0.091 0.065 1.489 0.959 0.917 0.165 0.113 2.611 0.801 0.607 0.355 0.247 5.716 0.768 0.573 0.374 0.266 6.130 0.703 0.465 0.415 0.295 6.807

CNN-GRU 0.979 0.955 0.098 0.075 1.799 0.945 0.866 0.169 0.137 3.270 0.929 0.846 0.181 0.143 3.405 0.866 0.624 0.283 0.224 5.333 0.873 0.749 0.231 0.181 4.298 0.848 0.687 0.258 0.202 4.806

CEEMDAN-
GRU

0.987 0.958 0.106 0.081 1.930 0.968 0.929 0.123 0.096 2.279 0.969 0.920 0.131 0.106 2.524 0.872 0.730 0.240 0.189 4.505 0.859 0.712 0.249 0.197 4.701 0.869 0.671 0.264 0.207 4.926

GRU 0.967 0.927 0.125 0.099 2.350 0.947 0.889 0.154 0.121 2.874 0.918 0.822 0.195 0.153 3.655 0.867 0.722 0.244 0.191 4.560 0.868 0.695 0.256 0.201 4.787 0.850 0.659 0.269 0.217 5.152

Study Station 3: Fairfield

CEEMDAN-
CNN-
GRU

0.975 0.976 0.035 0.024 0.554 0.972 0.975 0.069 0.052 1.189 0.959 0.920 0.162 0.110 2.524 0.842 0.628 0.349 0.238 5.493 0.762 0.573 0.374 0.264 6.088 0.746 0.523 0.374 0.261 6.078

CNN-GRU 0.945 0.935 0.061 0.048 1.099 0.962 0.943 0.135 0.091 2.107 0.907 0.821 0.240 0.156 3.612 0.764 0.560 0.376 0.264 6.109 0.759 0.554 0.379 0.259 5.988 0.708 0.477 0.410 0.289 6.671

CEEMDAN-
GRU

0.947 0.943 0.048 0.034 0.778 0.939 0.935 0.091 0.065 1.489 0.929 0.917 0.165 0.113 2.611 0.801 0.607 0.355 0.247 5.716 0.768 0.573 0.374 0.266 6.130 0.703 0.465 0.415 0.295 6.807

GRU 0.925 0.919 0.153 0.096 2.205 0.913 0.905 0.177 0.115 2.659 0.904 0.809 0.250 0.168 3.864 0.778 0.585 0.369 0.254 5.850 0.775 0.568 0.376 0.267 6.165 0.666 0.411 0.435 0.314 7.267

Study Station 4: Gabo Island

CEEMDAN-
CNN-
GRU

0.988 0.966 0.085 0.067 1.455 0.987 0.971 0.079 0.062 1.346 0.978 0.944 0.109 0.086 1.887 0.931 0.899 0.188 0.147 3.206 0.909 0.764 0.224 0.175 3.829 0.913 0.807 0.202 0.158 3.456

CNN-GRU 0.979 0.951 0.101 0.078 1.707 0.973 0.944 0.109 0.084 1.826 0.948 0.897 0.147 0.113 2.457 0.921 0.843 0.182 0.141 3.087 0.911 0.803 0.204 0.160 3.493 0.879 0.862 0.193 0.151 3.284

CEEMDAN-
GRU 0.986 0.966 0.085 0.067 1.472 0.983 0.964 0.087 0.069 1.508 0.974 0.945 0.107 0.085 1.844 0.924 0.821 0.194 0.153 3.340 0.913 0.814 0.198 0.156 3.394 0.912 0.798 0.206 0.161 3.520

GRU 0.977 0.950 0.102 0.081 1.773 0.970 0.940 0.113 0.086 1.868 0.951 0.902 0.144 0.111 2.423 0.919 0.825 0.192 0.150 3.283 0.912 0.813 0.199 0.156 3.411 0.815 0.743 0.203 0.160 3.499
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model for Menindee at different nth (n = 1, 5, 7, 14, 21 and 30) day lead time. 
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across the Murray Darling Basin with a least square regression line, y = mx + C, and the 

coefficient of determination in each sub-panel. Notably, the objective model (i.e., 

CEEMDAN-CNN-GRU) is seen to attain more accurate results with considerably larger r2 

values. The SSM forecast with a hybrid deep learning model for Menindee station 

performed significantly better than the comparative model (i.e., CNN-GRU). In the case 

of Menindee, for example, the values for m and r2 are in reasonably good agreement 

against the 1:1 line representing the forecasted and observed SSM values in such a way 
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Figure 7. Time series of daily surface soil moisture (SSM, kg m−2) for observed SSM (Gray) and Figure 1. 5, 7, 14, 21, and 30) day
lead times.
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Figure 8 shows a scatter plot of forecasted and observed SSM for the 1st and 7th
days across the Murray Darling Basin with a least square regression line, y = mx + C,
and the coefficient of determination in each sub-panel. Notably, the objective model (i.e.,
CEEMDAN-CNN-GRU) is seen to attain more accurate results with considerably larger
r2 values. The SSM forecast with a hybrid deep learning model for Menindee station
performed significantly better than the comparative model (i.e., CNN-GRU). In the case of
Menindee, for example, the values for m and r2 are in reasonably good agreement against
the 1:1 line representing the forecasted and observed SSM values in such a way that (m|r2)
is 0.994|0.995 for the hybrid CEEMDAN-CNN-GRU model relative to (0.931|0.933) for
CNN-GRU for the 1st day ahead of SSM forecasting. Moreover, for the 1st day of SSM
forecasting, the CEEMDAN-CNN-GRU model provided results in significant proximity
to the other three stations, such as Deniliquin: 0.962|0.966, Fairfield: 0.928|0.964, and the
Gabo Island: 0.958|0.976). Alternatively, the y-intercept of the regression line was close
to trivial, i.e., 0.002 (Menindee: 1st day), 0.193 (Deniliquin: 1st day), 0.05 (Fairfield:1st
day), and 0.303 (Gabo Island:1st day), revealing the efficacy of the deep learning hybrid
method for surface soil moisture forecasting. For the 14th, 21st, and 30th day ahead of SSM
forecasting, the y-intercept, as expected, deviated slightly from the ideal value of 0, caused
by more outliers between simulated and reference values in the testing phase.
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To further analyse the tested models’ performances, we adopt the Legates and Mc-
Cabe’s Index [99] as a cross-validation metric for simulated data. This metric has a better
model penalisation skill when high SSM values are expected in the testing set [41]. This
is illustrated in Figure 9 in terms of a polar plot of the LM values for the hybrid deep
learning approach (i.e., CEEMDAN-CNN-GRU) and other models for the different day
ahead forecasting. The LM values accumulated across all stations in the case of CEEMDAN-
CNN-GRU have a superior result with the highest LM≈ 0.962 for Menindee and the lowest
LM for the case of Gabo Island (LM ≈ 0.846) in the 1st Day ahead SSM forecasting. In
agreement with earlier results, the LM values for the 14th, 21st, and 30th day ahead for
other models were comparatively smaller. Figure 10a,b is a contour plot of KGE and MAPE
for the hybrid DL approach (i.e., CEEMDAN-CNN-GRU) along with its benchmark (i.e.,
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CNN-GRU) and standalone (i.e., GRU) methods for all four stations in MDB at different nth
(n = 1, 5, 7, 14, 21 and 30) days in forecasting SSM. This infographic verifies the robustness
of the proposed objective model that attains the highest KGE values and the lowest MAPE
values for 1st and 5th day of SSM forecasting.
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for the hybrid CEEMDAN-CNN-GRU against comparative models at different nth (n = 1, 5, 7, 14, 21,
and 30) day ahead forecasting of SSM.

However, for the 14th, 21st, and 30th day of SSM forecasting, the KGE values range
between 0.40 and 0.80, and the MAPE values range from 4–11%, demonstrating a slightly
lower forecast accuracy relative to the 1st and 5th day of SSM forecasting. Figure 11
illustrates the absolute forecasted error (|FE|) using all the four candidate study sites’ im-
plemented models. The box plot demonstrates the data dispersal in terms of the forecasted
(SSMfor) SSM. Figure 11 provides a clear visualisation of the closed distribution of error
values for Menindee and Fairfield stations in the hybrid CEEMDAN-CNN-GRU model
for 1st day ahead SSM forecasting. The lower end of the plot for |FE| is situated within
the lower quartile (25th) and upper quartile (75th). Moreover, the GRU and CNN-GRU
models for these stations show an increased distribution of |FE|, except for the Fairfield
station. Moreover, the forecasting of SSM for the 14th, 21st, and 30th day periods have
a comparatively higher value of the absolute forecasting error for all tested models. A
more comprehensive inspection of the absolute forecasting error (|FE|) in the case of
the hybrid GRU. model for the four study stations further cements the suitability of the
CEEMDAN-CNN-GRU model in forecasting SSM for the 1st, 5th, and 7th day ahead
periods in Australian Murray Darling Basin, evidenced by the narrowest error distribution
in comparison with the other models.
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Figure 10. Contour plot of (a) KGE, (b) MAPE for hybrid CEEMDAN-CNN-GRU model against
comparative models for different nth (n = 1, 5, 7, 14, 21, and 30) day ahead forecasting of SSM.
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Figure 11. Box plot of errors in the testing phase for hybrid CEEMDAN-CNN-GRU against comparative models at different
nth (n = 1, 7, and 30) day ahead lead time forecasting SSM. (Note: CEEMDAN-CNN-GRU = Hybrid Model integrating the
CEEMDAN and CNN algorithm with GRU; CEEMDAN-GRU = Hybrid Model integrating the CEEMDAN algorithm with
GRU; CNN-GRU = Hybrid Model integrating the CNN algorithm with GRU).

It is noteworthy that in this study, two distinct algorithms, namely the CEEMDAN
and CNN, are used to improve the GRU-based predictive model. Therefore Figure 12
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shows the effect of applying CEEMDAN and CNN as data pre-processing and feature
extraction methods incrementally, respectively, on the per cent change in RMAE values
within the testing SSM values. In terms of 1st, 5th, and 7th day of Menindee station, the
RMAE (%) values of CEEMDAN-CNN-GRU model (where both CEEMDAN and CNN are
integrated) appeared to decrease by ~87%, 68%, and 54%, respectively. Similarly, for the
1st-day forecasting taking the example of Fairfield station, the CNN feature-extraction skill
reduced the error of ~55%, whereas an additional decrease in RMAE of ~18% was noted
integration of the CEEMDAN selected variables (CEEMDAN-CNN-GRU). Additionally, for
Deniliquin and Gabo Island study sites, the SSM forecasting for the 1st day ahead evaluated
through RMAE values decreased by slightly less than 20%. It is worth mentioning that the
per cent increase in RMAE was ~5% for Menindee for the 30th day ahead SSM forecasting
with similar deductions for the other stations.
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Figure 12. The percentage change in RMAE generated by the objective, and benchmark models using
CEEMDAN and CNN methods (as data decomposition and feature extraction methods) adopted in
forecasting SSM at four study sites: Murray Darling Basin. (a) Menindee, (b) Deniliquin, (c) Fairfield,
(d) Gabo Island at different nth (n = 1, 5, 7, 14, 21, and 30) day ahead forecasting SSM.

We further show the CEEMDAN-CNN-GRU hybrid model’s skill for seasonal forecast-
ing for the different day ahead periods to better understand the seasonal effects of models
used in SSM prediction. Figure 13 displays the average observed vs forecasted SSM on a
seasonal basis (i.e., austral summer, autumn, winter, and spring) generated by CEEMDAN-
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CNN-GRU model in case of Menindee study site. The forecast error across these seasons is
relatively insignificant, occupying values of (0, 0.16) kg m−2 to demonstrate the exceptional
skill of the objective model. Notably, the 1st and 5th day ahead of observed and forecasted
SSM for austral summer, spring, winter, and autumn appear to match with the forecast
error (|FE|) < 0.04 kg m−2, whereas, for winter, the |FE| values are slightly higher for the
5th day ahead SSM forecasting. Not surprisingly, the CNN-GRU model possesses a larger
error, ranging from 0.04 to 0.18 kg m−2, establishing the CNN-GRU model’s relatively poor
performance compared with the hybrid CEEMDAN-CNN-GRU model. For the case of
the 30th day ahead SSM forecasting, the study site Menindee registered a higher uncer-
tainty for austral summer (0.18<|FE|< 0.18 kg m−2) compared with winter and spring
(0.14 < FE < 0.15 kg m−2). This indicates that the hybrid CEEMDAN-CNN-GRU model
developed with NCA and CEEMDAN algorithms employing MODIS-derived satellite
data, ground-based observations, and climate indices can be considered ideal in multi-step
SSM forecasting.
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Figure 13. The average forecasted SSM vs. observed SSM on a seasonal basis using hybrid
CEEMDAN-CNN-GRU and CNN-GRU models for Menindee at different nth (n = 1, 5, 7, 14, 21,
and 30) day ahead periods. The forecast error (|FE|) in each model is plotted on a secondary axis as
a line chart.

5. Discussions

Based on the results, we note the effects of climate indices on surface soil moisture as
non-negligible. In this paper, analysing this impact is undertaken using two ways. Firstly,
the NCA algorithm provides key information about how climate indices affect SSM. For
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example, for SSM forecasting, climate indices based on SOI, EPO, MJOs and SST were
found to significantly affect the SSM. Secondly, GCV values based on a MARS model were
calculated following Friedman [100] approach to deduce the importance of input features.
The contributory influence appeared to be between 12% and 53% according to GCV for
Menindee station, and similarly notable effect for the other study sites. Specifically, the
lowest percentage of ~12% of GCV was found for the 14th, and the highest percentage
(~53%) was found for the 28th Day ahead SMM forecasting. In a nutshell, we note that
climate indices make a moderate to high contribution in forecasting surface soil moisture
within the Murray Darling Basin.

Neighbourhood Component Analysis (NCA) was utilised to examine significant
features from a relatively large pool (or 52 different) data related to soil moisture. In
data-driven modelling, selecting predictor variables is crucial, as improper variables with
weak relationships against SSM can lead to undesirable uncertainties in the model. As
per evaluations in Tables S1–S6, a combination of predictor variables deduced by NCA
at six different lead time SSM forecasting was significant, and this result concurred with
previous studies [59,101].

The objective approach based on NCA yielded good accuracy (i.e., CEEMDAN-CNN-
GRU), demonstrating that best predictors were attained through a careful variable selection
stage (by NCA) and feature extraction stage (by CNN and CEEMDAN methods). Accord-
ingly, the proposed forecast model for SSM was sufficiently robust in daily and seasonal
tests, as well as through the inclusion of synoptic-scale features, i.e., those captured from
patterns in the SST and MJO series. The probability of absolute error placing within the
95th percentile and the substantial seasonal forecasting of SSM indicates that the model
can handle satellite-derived variables’ error. Our study also suggests that groundwater
recharge, deep percolation, and plant uptake, which are essential factors to concentrate
soil moisture in different layers [57], can be ideal variables to better understand SSM
characteristics while also assisting in the prediction of future changes.

The present model’s performance revealed that a shorter period forecast (i.e., 1st,
5th, or 7th) was more precise, whereas a longer forecast horizon (i.e., 14th, 21st, and 30th)
registered a lower accuracy than that of the shorter span of SSM forecasting. One plausible
reason for this is that our predictive model appeared to struggle to capture enough input
features from the dataset for a more extended time-step forecast (i.e., 30th day against
7th day). Considering the reduction in feature capturing capability of the model, we can
say that as the time series data approached close to the 7th-day boundary, the model
would capture it with good forecast accuracy. Undoubtedly, this occurs due to a loss
of data features in the predictor-target matrix. This indeed concurs with earlier studies
(e.g., [60,98], where models for the 1- and 2-day ahead modelling horizon was more
accurate than the 30-day horizon for river flow forecasting, and the 1- and 3-month runoff
model was more accurate than the 6-month runoff model predicting 1-, 3-, and 6-month
ahead runoff in the Yingluoxia watershed, Northwestern China. The hybrid deep learning
approach (i.e., CEEMDAN-CNN-GRU) incorporated with MODIS satellite-derived data,
ground-based SILO data, and climate mode indices (representing synoptic-scale climate
features) can be a good modelling tool to predict soil moisture or other hydrological
variables at multi-step lead times, including its future use in water resource management
and sustainable agriculture.

6. Conclusions

This study reports the performance efficacy of a DL data-driven (CEEMDAN-CNN-
GRU) model based on the Gated Recurrent Unit (GRU) for daily surface soil moisture
forecasting at multi-step horizons. The hybrid CEEMDAN-CNN-GRU model was built
by integrating MODIS sensors (satellite-derived data), ground-based observations, and
climate indices tested at important stations in the Australian Murray Darling Basin. To
attain an accurate and reliable model for soil moisture, a feature extraction (i.e., CNN) and
feature (or variable) selection algorithm (i.e., NCA) was used, with tests at 1st, 5th, 7th, 14th,
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21st, and 30th day ahead period. The input variables, comprised initially of 52 different
predictors, were extracted from March 2003 to March 2020 and screened accordingly, using
the NCA algorithm through a feature selection stage, to select the most relevant input
variables required to forecast daily-scale soil moisture. Three other benchmarking models
(i.e., CEEMDAN-GRU, CNN-GRU, and GRU) were built and evaluated against statistical
score metrics and visual analysis to ascertain the predictive skill of the objective model
of observed and forecasted datasets in the testing phase. The results revealed that NCA
was a practical approach to acquire the best features from an optimal set of predictor
variables. The hybrid CEEMDAN-CNN-GRU model has significantly improved the de-
composition of input variables to provide more defined soil moisture prediction features.
Thus, the proposed CEEMDAN-CNN-GRU model yielded an acceptable level of accuracy
when applied at the 1st, 5th, and 7th day ahead SSM forecasting against standalone GRU
model registering a comparatively higher forecast error at all these periods. This supe-
rior performance was also endorsed with low MAE values, ranging from 0.013 kg m−2

to 0.067 kg m−2, 0.030 kg m−2 to 0.075 kg m−2, and 0.057 kg m−2 to 0.113 kg m−2 for the
1st, 5th, and 7th day ahead period. Other results also supported the practical utility of
the CEEMDAN-CNN-GRU model. For example, the probability plot of absolute error for
Menindee station has 95% of SSM forecasting with the lowest error bracket (<0.1) at the 1st,
and 5th day SSM prediction, and these results were better than earlier studies on forecasting
soil moisture prediction, e.g., [23,36,59,102]. As the present study has focused on daily
scale prediction, in a future study, researchers may also adopt the CEEMDAN-CNN-GRU
model to utilise the global climate model (GCM) model-simulated variables to estimate
future SSM under global warming scenarios.
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