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Abstract: Remote Patient Monitoring (RPM) has gained great popularity with an aim to measure
vital signs and gain patient related information in clinics. RPM can be achieved with noninvasive
digital technology without hindering a patient’s daily activities and can enhance the efficiency of
healthcare delivery in acute clinical settings. In this study, an RPM system was built using radio
frequency identification (RFID) technology for early detection of suicidal behaviour in a hospital-
based mental health facility. A range of machine learning models such as Linear Regression, Decision
Tree, Random Forest, and XGBoost were investigated to help determine the optimum fixed positions
of RFID reader–antennas in a simulated hospital ward. Empirical experiments showed that Decision
Tree had the best performance compared to Random Forest and XGBoost models. An Ensemble
Learning model was also developed, took advantage of these machine learning models based on
their individual performance. The research set a path to analyse dynamic moving RFID tags and
builds an RPM system to help retrieve patient vital signs such as heart rate, pulse rate, respiration
rate and subtle motions to make this research state-of-the-art in terms of managing acute suicidal
and self-harm behaviour in a mental health ward.

Keywords: remote patient monitoring (RPM); radio frequency identification (RFID); machine learn-
ing; linear regression; decision tree; Random Forest; XGBoost; Ensemble Learning; mental health;
suicide

1. Introduction

Healthcare technology has developed rapidly in recent years and innovations in
remote monitoring are gaining more attention towards those systems that are capable
of early identification of the deteriorating patient [1]. Remote patient monitoring (RPM)
is capable of obtaining continuous accurate readings of vital signs and a range of other
clinically important information that can identify early indicators of deterioration in a
patient’s health condition [2]. This can be achieved with noninvasive digital technology
without hindering a patients’ daily activities, and it can enhance the efficiency of healthcare
delivery in acute clinical settings. In mental health, this can provide a particular advantage
as inpatients do not spend the majority of their time in bed and do not routinely have a
clinical monitor or device attached to them for providing treatment and care.

The goal of inpatient psychiatric care is to provide a safe environment for both patients
and staff. Strategies to manage or minimise self-harm in depressed and suicidal patients
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include a range of non-pharmacological approaches such as visual observations and thera-
peutic engagement. However, when a patient has persistent suicidal ideation they are in
a very vulnerable state and have a high risk of acting upon this particularly in the early
stages of admission [3]. In-hospital suicides are also often associated with occurring in
the evening and during night shifts when there is reduced staff supervision. During these
times of high risk, suicides occur in isolated areas of the ward such as bathrooms and
single rooms. RPM technology has the potential to assist with identifying early signs
of suicidal intent before these occasions occur and would be a valuable clinical tool for
effective management in providing care [1].

Current technological advances in remote patient monitoring can record clinical
observations related to varying physical phenomena. Continuous monitoring of human
vital signs such as heart rate, pulse rate, breathing rates and patient movements could act
as important clinical indicators for early detection of deterioration [4]. Alterations in any of
these parameters could be used to predict serious clinical events [5]. The clinical utility of
this system lies with routine visual observations and patient safety monitoring by nursing
staff. Staff could be alerted by an RPM system to return to a patient room and assess the
safety of this patient if they have left their bed shortly after being observed to apparently be
sleeping. Other recent technologies on Internet of Things (IoT), including Heterogeneous
Brain Storming (HBS) for object recognition tasks [6], also have great potential to advance
remote patient monitoring.

There are known benefits to using radio frequency identification (RFID) technology
in healthcare asset tracking and predicting future events with machine learning tools by
analysing RFID tag data [4]. These techniques can also be used for direct patient care by
providing alerts to indicate potential human errors in managing patients such as misidenti-
fication of patients and medication [7]. However, traditional RPM systems are intrusive
and need dedicated sensors to be attached and can cause considerable inconvenience in
psychiatric clinical care. Recent innovations have employed this technology to detect vital
signs without making contact with the patient using techniques such as near-field coherent
sensing of signals generated from the antennae of the RFID tag [8,9]. However, little is
known about how these methods can be used to monitor vital signs of several patients
simultaneously who are also mobile. There are formidable challenges with integrating this
type of technology into a clinical setting such as where best to deploy equipment for it not
to interfere with routine clinical care.

The ultimate goal of this research is to detect accurate vital signs of multiple patients
through an RPM system. Readings for each individual will be tracked and differentiated
using noninvasive monitoring techniques [7]. Identifying the optimum configuration of
sensors using RFID technology in a simulated hospital ward has become an important
step toward this goal. In this study, a laboratory was established, simulating a hospital
psychiatric ward using an RPM system utilising sensors and RFID technology. We collected
and analysed data from multiple reader–antenna positions in the laboratory. Specifically, we
compared combinations of multiple positions of reader–antennas based on received signal
strength indicators (RSSI) and from this derived better positions to fix the reader–antenna
devices. The linear relationship between dependent and independent variables was derived
with their coefficients and an intercept with using an ordinary least squares (OLS) linear
regression method. A linear equation was developed with RSSI as output variable and
Distance_1, Distance_2, Antennas_Distance as independent variables with their respective
coefficients. Label prediction was completed using various machine learning algorithms
and derived their error metrics, aiming to discover the patterns between the positions of
reader–antenna and RSSI readings. As a result, Decision Tree appeared to have the best
performance compared with Random Forest and XGBoost. Furthermore, an Ensemble
Learning model was developed, capitalising on the performance advantages of these
machine learning algorithms. This study contributes towards better design of a remote
patient monitoring (RPM) system with noninvasive technology, specifically:



Sensors 2021, 21, 776 3 of 20

• better understanding of methodology and complications involved to kick-start data
collection of human vital signs and their motion;

• setting reader–antennas with efficacy to have high tag readability in a simulated
psychiatric ward;

• discovered the patterns between independent and dependent variables retrieved from
RFID equipment setup on a static tag;

• better understanding of a number of existing machine learning algorithms, specifically,
Decision Tree, Random Forest and XGBoost, for their capability of data analytic in an
RPM system utilising sensors and RFID technology; and furthermore

• an ensemble machine learning model developed for data analytic in an RPM system
utilising sensors and RFID technology.

In this paper, Section 2 presents a review on existing methods in monitoring depressed
patients and RFID implementation in Remote Patient Monitoring systems. In Section 3,
the research problem will be defined, and in Section 4, the research methodology will be
discussed, including the technical details of data collection and data modelling. The experi-
mental results are presented and discussed in Section 5. Finally, Section 6 concludes the
paper with research outcomes, contributions and limitations.

2. Related Works

Healthcare-related RFID technology for patient care has previously been implemented
using passive RFID tags that have been integrated with hospital identification bands worn
on the patient’s wrist. These typically have been useful for retrieving patient details like
name, age, blood type, treatments required, allergies and so on by scanning an RFID tag
with a reader [7]. This has been shown to improve hospital safety measures by working
as a smart identification system [4,10]. However, a limitation of this is in situations where
the patient does not wear a wrist band [11]. This is common in psychiatric wards where
identification of patients is routinely performed using a photographic system [12]. A recent
attempt to overcome this constraint has had modest success where psychiatric nurses
conducted visual observations via infrared based sensors fitted in a fixed installation
located within an anti-ligature housing on the wall.

Wang et al. [13] described a case study demonstrating how an RPM system using
RFID technology was implemented hospital-wide in the Taipei Medical University Hospital
around 14 years ago amid the SARS outbreak. The authors described the development
strategy and architecture design, and highlighted the importance of support from clinical
staff for successful implementation of an RPM system in a hospital. This innovative
project included a purpose specific active RFID tag that was developed to monitor patient
temperature. Field generators were used in conjunction with tag readers to help contain
costs. The readers had multiple read capacity with 10 MB memory and a range of 3 to
85 metres. The architecture developed for the location-based management system was
sophisticated and could retrieve data from a medical record system before processing
and sending an alert/email/short message to clinical staff when it judged there was an
infectious event. The system included readers outside the hospital that were connected to
the local telecommunication networks to assist with community quarantines.

Researchers at Cornell University have recently developed a method of detecting vital
signs using Near-field Coherent Sensing (NCS) based on electromagnetic energy [14]. This
is achieved by indirectly modulating the backscattered signal generated from mechanical
motions that originate from inside the human body as well as on the surface. The signal
source from the pulse should be within the near-field zone of the antennas, around 10 cm,
with amplitude and phase used for measurements. The NCS method overcomes the limita-
tions of existing systems like electrocardiogram and acoustics methods that require direct
contact with skin and are also limited by body movement, patient comfort and wearing
convenience [15]. NCS also has advantages over other methods such as photoplethsmog-
raphy that are dependent on reflection and transmission of light, which can limit sensing
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capabilities and sampling rates thereby compromising the accuracy of monitored heart rate
and respiration rate [8].

An RPM system using NCS with RFID technology was described by Sharma and
Kan for the purpose of sleep monitoring as a viable alternative to polysomnography [16].
The system was implemented using passive RFID tags to assess heart rate, respiration rate
and upper body movement. The RFID tag was adhered to the fabric of the patients clothing
near the region of the heart. Semi-supervised learning of temporal and spectral characteris-
tics for classification by support vector machines was completed using signal features when
the patient was at rest, with accurately detected motion in 91.06% of cases. Another study
that assessed patient movement through an RPM system was in an Australian hospital that
used passive RFID tags on patient clothing [17]. Identification of movement was based
upon the backscattered signal at the RFID reader antenna. A wearable sensor system was
developed to detect patient movement when getting out of bed or a chair to prevent falls
and was able to detect these motions 81.4% of the time. Zhao et al. also designed an
RPM system to detect movement of people by measuring signal changes of pre-deployed
passive RFID tags at critical places [18]. The system estimated moving direction and current
location by measuring critical power variation sequences of the passive RFID tags.

The goal of this work is to design an RPM system that can be readily transferred
from the lab environment for monitoring in an acute care setting. To achieve the goal of
a real-time monitor for vital signs and movements of acutely suicidal patients in a real
hospital ward, an initial step was to understand the optimum configuration of reader–
antenna positions in a simulated hospital ward. Radio wave signals need to be detected and
transmitted from passive RFID tags. As discussed above, many methods in related studies
to date have relied upon manually collected data. Although promising, the deployment of
these processes in a real clinical environment would be time consuming and error prone
with much manual effort required. Studies that incorporate remote monitoring with RFID
technology appeared to be more feasible for detecting patient motion and monitoring vital
signs under real clinical conditions.

3. Research Problem

The research problem is to determine the optimum configuration of an RPM system
in a simulated hospital ward that can effectively monitor vital signs and patient movement.
The study was divided into two stages: The first was to determine the optimum position
placement of two reader–antennas from a range of different combinations that could
effectively read data signals generated from a static passive RFID tag and to feed signal
data into multiple machine learning models so that a dependent variable could be predicted.
This was based up on comparisons of the various received signal strength indicators (RSSI).
The second stage was to determine the error rate in predicting the dependent variable by
evaluating the performance of the regression models produced using schemes commonly
recognised by the research community in this field.

4. Methodology
4.1. Framework

The study was conducted in a dedicated lab room to simulate a hospital ward for
real-time human data collection and build machine learning models to analyse the data
patterns. To detect the position of a passive RFID tag placed in the room, a setup was
needed with multiple reader–antennas. Two ultra-high frequency (UHF) 870 readers with
integrated antennas were chosen to detect the RFID signal data. Initial preparatory work
included an analysis of the radiation pattern generated from the readers. Polarity of the
reader was taken into consideration and its orientation in relation to the tag was chosen
based on minimising the effect that this had on signal detection.

RFID reader–antenna positions were tested by collecting data from the static tag to
establish the optimum position of each of the antennae where maximum signal strength
was received. Except from reader–antennas, RFID passive tag and the lab computer,
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the laboratory room was free from any other objects to ensure measurement accuracy.
The retrieved tag data was read using the manufacturer software and UHF reader utility
that was installed on a lab computer and preprocessed to compare signal strengths of
the two reader–antennas. The relationship between the input and output variables was
thus based on the distance between the passive RFID tag and the antennae of the two
readers. The RSSI was chosen as the dependent output variable. The two measured
distances of the readers from the static tag were the independent variables. The distance
between the two reader–antenna positions was also measured and regarded as independent
variables in the data set. The linear relationship between the variables, coefficients and the
intercept was calculated using ordinary least squares (OLS) linear regression and is shown
in Equation (1).

f (y) = (m1 × x1) + (m2 × x2) + · · ·+ (mn × xn) + c (1)

where f (y) is the output variable with m1, m2, . . . , mn as coefficient of input variables
x1, x2, . . . , xn, taking c as the intercept of the line equation.

The architecture of this study is illustrated in Figure 1, which uses a framework
with two tiers, separating the data collection and data modelling aspects. Data collection
included the receivable signal strength on two UHF 870 RFID reader–antennas (shown
in Figure 2) positioned in 16 arbitrary positions in the laboratory to test reader–antenna
signal receivable strength. Two UHF 870 RFID reader–antennas were placed in selected
positions in the simulated ward that received data from the static tag. As previously
stated, the research problem is to determine the multiple reader–antenna positions in the
laboratory/simulated ward, RFID passive tag position which was made static. All the
coordinates of the various reader–antenna positions and including the tag were recorded.
Later, the data set was preprocessed in a data preparation step. The recorded coordinates
and of reader–antenna positions and tag were used to calculate the distances between the
tag and each of the reader–antenna positions.

Figure 1. Overview of research architecture.

Data modelling included first a linear equation, which was derived from the relation-
ship between the chosen variables using Ordinary Least Squares (OLS). Machine learning
algorithms were then subsequently chosen for modelling and data analysis, aiming to
detect this linear relationship and to predict label values. An Ensemble Learning method
was developed, taking advantage of these models for further performance improvement.
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Figure 2. Ultra-high frequency (UHF) radio frequency identification (RFID) reader–antenna and
passive RFID tag.

4.2. Data Collection and Preparation
4.2.1. Sensor Technology adapted to a Simulated Ward

The two UHF RFID reader–antennas that were used in the study together with a
passive RFID tags are illustrated in Figure 2. A standard laboratory computer was used
to operate reader–antennas through manufacturer software and to read reader–antenna
retrieved tag data. Reader–antennas were fixed to side walls of the simulated ward shown
in Figure 3 and the RFID tag placed at centre of the room fixed to a stable object, simulating
a patient lying on a hospital bad. The dimensions of the simulated ward indicate where
the alphabetically represented reader–antennas were positioned. The first reader–antenna
was initially placed at position a, and data were recorded from both readers where each
time the second reader–antenna was sequentially placed at each of the other 15 identified
reader–antenna positions from b to p. Reader 1 was then placed in position b, and the
corresponding Reader 2 moved accordingly to each of the remaining 14 positions from c to
p. This pattern of moving the readers continued until all combinations were completed.
Table 1 shows the x, y, z coordinates of the chosen reader–antenna positions measured in
metres with the original point (0, 0, 0) at the lower-left corner of the room.
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Figure 3. Laboratory room/Simulated ward with reader–antennas and tag positions.

Table 1. Reader–antenna coordinates in laboratory room/simulated ward.

Reader-Antenna Position x y z

a 0 0 0.81
b 0 0.83 0.81

c 0 1.66 0.81

d 0 2.49 0.81

e 0 3.32 0.81

f 0.78 3.32 0.81

g 1.56 3.32 0.81

h 2.35 3.32 0.81

i 2.35 2.5 0.81

j 2.72 1.84 0.81

k 3.17 1.28 0.81

l 3.89 0.72 0.81

m 3.14 0 0.81

n 2.34 0 0.81

o 1.56 0 0.81

p 0.78 0 0.81

Tag 1.58 1.32 0.75

4.2.2. Radiation Pattern

The high gain directional antennas of the UHF RFID readers concentrated the RF field
in a specific direction. As the RFID passive tags do not have an internal power source
electromagnetic energy transmitted from the RFID readers activated the tags. The Friis
transmission formula shown in Equation (2) was applied to manage the power received by
the passive tag that was transmitted from the RFID readers [19]:

Ptag

Preader
= GtagGreader

(
λ

4πd

)2
(2)
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where Ptag and Preader are power received by the tag and power transmitted by reader,
respectively. Gtag and Greader are the corresponding gains of the tag and reader antennas, λ
is wavelength and d the distance between tag and reader antenna.

High directional gain antennas have an oval radiation pattern and read the tags in
the peripheral area. The antenna radiated a very narrow beam over a long distance and
used point-to-point communication. The top side of the reader–antenna devices were
positioned so that they faced towards the static tag and tilted slightly downwards. This
was to accommodate the oval radiation pattern and the location of the static tag that was
lower than the arbitrarily chosen positions of the reader–antennas.

4.2.3. Reader–Antenna Polarisation and Orientation

Polarisation is orientation of the electric field of an electromagnetic wave. Linear
polarisation and circular polarisation are special cases of elliptical polarisation. With linear
polarisation, the electric field stays in same plane [20]. Therefore, reader–antennas and the
RFID tag were located within the same plane to minimise the possibility of orientation
mismatches [21].

RFID tags are usually matched with linearly polarised antenna with either a horizontal
or vertical orientation. However, the aim here is to detect tags that may be in any orientation
and capable of detecting vital signs and movements of a hospitalised patient. The lab was
therefore constructed using circularly polarised antenna. Although a limitation of this
technique is that the read range is much shorter, it does have the ability to identify an RFID
tag irrespective of orientation.

4.2.4. UHF Reader Utility Software

Prior to data collection several parameters of the UHF reader utility software including
RFID tags used in the experiments were configured. These included reader frequency
(918–926 MHz for Australia), tag alias name and Auto-Save path for retrieved data. Ad-
ditional attributes included Received Signal Strength Indicator (RSSI) and frequency of
the tag. As both UHF reader–antennas were set to the same configuration and features, it
was expected that the second antenna position would have the same distribution of data.
Reader operation mode was set to Auto-Read for reading tags that were in the reader–
antenna radiation pattern. This was user-dependent and needed to be reset if a reader did
not detect a tag within a given time frame. Data collected from successful tag readings
were saved in a csv format file by the Auto-Save feature.

4.2.5. Data Preparation

Data were collected on a csv sheet for each of the chosen 16 paired reader-antenna
positions. The relationships between reader–antenna position and the corresponding
received signal strength were analysed based upon the seven features listed below.

• First Antenna Position: alphabetic notation.
• Distance 1: distance of tag from first antenna in metres.
• Frequency 1: frequency of the tag w.r.t Antenna 1 in MHz.
• RSSI 1: Received Signal Strength Indicator (RSSI) percentage w.r.t Antenna 1.
• Second Antenna Position: alphabetic notation.
• Distance 2: distance of tag from second antenna in metres.
• Frequency 2: frequency of the tag w.r.t Antenna 2 in MHz.
• RSSI 2: Received Signal Strength Indicator (RSSI) percentage w.r.t Antenna 2.

Collected data was preprocessed prior to training the machine learning models. Data
features from the two reader–antennas described above were combined to make the data
tag-centric. From this the following six features were recorded based upon taking the
maximum value from either RSSI 1 or RSSI 2.

• First Antenna Position: alphabetic notation.
• Distance 1: distance of tag from first antenna.
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• Second Antenna Position: alphabetic notation.
• Distance 2: distance of tag from second antenna.
• Frequency: frequency of the tag.
• RSSI: Received Signal Strength Indicator (RSSI).

The independent features were Distance 1, Distance 2 and Antenna Distance, whereas
the RSSI was the dependent feature. Their relationship can be revealed from the plots on
Figure 4, where shorter distances correspond to stronger RSSI and vise versa. Detailed
statistics of the collected data set are presented in Section 5.

Figure 4. Second Antenna position distance and Received Signal Strength Indicator (RSSI), where the
top is reader–antenna position and its distance from tag, and the bottom is reader–antenna position
and RSSI.

4.3. Data Modelling

In the second tier, Data Modelling, machine learning algorithms were executed for
data modelling and analysis. The relationship between the independent and dependent
variables was determined using ordinary least squares (OLS) method in linear regression
model. Later, machine learning algorithms such as Decision Tree, Random Forest and
XGBoost were adopted to predict signal strength received by reader–antenna in various
positions. Finally, an Ensemble Learning was developed to combine the individual machine
learning models, aiming to improve predictive performance of the model.

4.3.1. Relationship between Variables

Ordinary Least Squares (OLS) was the statistical method used to define significance of
each independent feature in the data set with respect to dependent features [22]. The col-
lected data were split into training data and testing data on a 4:1 ratio to perform the OLS
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regression. Using this method the sum of square differences between the variables were
minimised before deriving the linear equation shown in Equation (1). We also calculated
an r-squared, adjusted r-squared and a p value to show significance of the independent
features and their coefficients relative to each of the independent features. The related
analysis is discussed in Section 5.

4.3.2. Signal Strength Prediction

Machine learning algorithms were adopted to model the patterns between the strength
of received signal and the position of reader–antennas. Using the collected data set without
additional parameter tuning, a preliminary empirical study was conducted, aiming to
find out the right machine learning algorithms for data modelling in this context (The
preliminary empirical experiment was conducted on the Lazy Predict package in the library
of Python version 3.8). As shown in Table 2, a large number (35) of existing machine
learning models were tested in the study. Their performance was measured by r-squared
values and mean square error (MSE; see Equation (6) in Section 5.1).

Table 2. Empirical experimental results of machine learning models in preliminary study.

Model r-Squared MSE

Decision Tree 1 0.01
Random Forest 0.99 0.40
XGBoost 0.97 1.04
Ada Boost Regressor 0.96 1.56
Gradient Boosting Regressor 0.95 1.87
Bagging Regressor 0.95 1.87
Extra Trees Regressor 0.94 2.31
SVR 0.67 12.46
NuSVR 0.65 13.39
Huber Regressor 0.63 14.28
Stochastic Gradient Descent 0.62 14.44
Linear Regression 0.62 14.44
Transformed Target Regressor 0.62 14.44
Lars 0.62 14.44
Orthogonal Matching Pursuit
CV 0.62 14.59

RidgeCV 0.62 14.59
Ridge 0.62 14.59
RANSAC 0.62 14.59
Lasso-Lars IC 0.62 14.59
Poisson Regressor 0.62 14.66
Bayesian Ridge 0.62 14.66
LassoCV 0.62 14.66
ElasticNetCV 0.62 14.66
LarsCV 0.61 14.66
Lasso-Lars CV 0.61 14.66
Hist Gradient Boosting 0.6 15.28
LightGBM 0.59 15.52
kNN 0.58 15.92
Passive Aggressive Regressor 0.53 17.80
Lasso 0.53 17.97
Orthogonal Matching Pursuit 0.52 18.31
Elastic Net 0.46 20.70
Gamma Regressor 0.4 22.94
Generalised Linear Regressor 0.4 23.04
Tweedie Regressor 0.4 23.04

Based on the empirical experimental results shown in Table 2, Decision Tree, Random
Forest and XGBoost were identified as the top three models and were thus selected for data
modelling in this study. Their technical details are discussed below.
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Decision Tree is a predictive modelling approach commonly used in statistics and machine
learning. As the target variable in this study was continuous, we used the regression
tree function to predict our output dependent variable. To assist with modelling in
Decision Tree, we set max_depth, the maximum depth parameter in the experimental
system (The Sklearn package in the library of Python version 3.8) to determine the
furthest extent of the decision that predicted the label value. The maximum depth
parameter was obtained using testing values between 1 and 10. The results show that
when the maximum depth parameter is 8, the model has the best performance—least
mean absolute error (MAE; see Equation (5) in Section 5.1) and mean squared error
(MSE). Decision tree was fit with the specific data set to train the model.

Random Forest is a type of supervised machine learning model based on Ensemble Learn-
ing by combining multiple models to form a more accurate prediction model. The re-
gression model was used to aggregate the Decision Tree predictions and produce a
meta-estimation of the target variables. Each decision tree predicts a target variable
for each record and then the average of all decision trees is taken to predict the final
output. The number of trees chosen for the Random Forest was based on trial and
error with different values to tune the n_estimator hyperparameter. This was not time
consuming as Random Forest is not computationally expensive. There were 10 trees
eventually chosen as the n_estimator for the forest to enhance prediction capability of
the model and reduce error rates. The max_depth parameter remained the same as
that chosen for the Decision Tree model. To measure impurity of the output variable,
mean squared error (MSE) was again used.

XGBoost The extreme gradient boosting technique known as XGBoost was also used to
build the trees [23], and it is highly flexible, efficient and portable. The modelling was
completed in a sequential fashion with the aim of reducing errors in previous trees
from the results of subsequent trees. The model not only learns from predecessors
but also optimises residual errors in each tree by using a gradient descent to minimise
error iteratively. Aiming to better train the model, the data set was split using k-
fold cross-validation with 9 sets for training and one for evaluation. The standard
MAE and MSE performance metrics for this study were again calculated. MSE
also provided the loss function to estimate training loss. The objective function in
Equation (3) was estimated with this training loss together with a regularisation term
to measure how well the model fitted the training data.

obj(θ) = L(θ) + Ω(θ) (3)

where L is the training loss function and Ω the regularisation term.

Ensemble Learning The current study is limited by the number of chosen positions in
which the receiver–antennas have been placed. The expected data set from 16 posi-
tions is relatively small, so it was assumed that the hypotheses produced from the
chosen machine learning algorithms would be prone to overfitting thus affecting the
quality of their predictive ability. An Ensemble Learning algorithm was therefore
applied to improve the predictive performance of the final model [24]. The appli-
cation of Ensemble Learning averaged the different hypothesis predicted from the
previously applied algorithms and reduced the risk of selecting an incorrect hypoth-
esis [25]. The weighted average ensemble model shown in Equation (4) combines
outcomes from the Decision Tree, Random Forest and XGBoost models.

ensemble_model =
n

∑
i=1

(wi ×mi), (4)

where mi refers to a model weighted by wi, n is the number of available models
(which is 3 in this case), and w1 + · · ·+ wn = 1.
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Each model input to the ensemble was weighted with a coefficient valued between
0.1 to 1.0. The coefficients were iteratively balanced to achieve a combined weight
equal to 1.0. Similar performance metrics were again calculated from this resultant
estimated average of the three previous model predictions.

5. Experimental Results and Analysis
5.1. Performance Metrics

Two different performance metrics were used to evaluate the regression models
implemented: mean absolute error (MAE) and mean squared error (MSE).

MAE provided a measure of the average magnitude of errors in predictions excluding
direction. This value ranges from 0 to 1 and was negatively-oriented so that lower values
produced from Equation (5) indicated a better model. The following metrics were used to
evaluate each regression model including weighted average output.

MAE =
∑n

i=1|yi − xi|
n

, (5)

where yi is the predicted value, xi the actual value and n the total number of data points.
Mean squared error (MSE) measures average of the squared error. It is calculated

by summing squares of the difference between the predicted values and actual value,
divided by number of data points. Equation (6) shows how the MSE was calculated for
measuring impurity:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2. (6)

MSE is the mean

(
1
n

n

∑
i=1

)
of the squares of the errors (Yi − Ŷi)

2.

5.2. Experimental Results

Reader–antenna positions within the simulated ward were recorded based upon their
coordinates. The 16 arbitrarily chosen reader–antenna positions resulted in 120 combina-
tions of the paired readers. General descriptive statistics of the data collected are presented
in Table 3. This includes the number of records collected from the positions selected for
analysis, mean and standard deviation of the variables, minimum and maximum values
together with quartile ranges. The range of each feature differs as the measuring unit
for each one is different. All features have the same number of records with no missing
values. Table 4 presents the top 5 records of the data set features after data preparation
was completed.

Table 3. Numerical variables and their statistical description.

Distance_1 Frequency_1 RSSI_1 Distance_2 Frequency_2 RSSI_2

count 120.00 120.00 120.00 120.00 120.00 120.00

mean 1.91 921.43 73.39 1.74 921.79 77.21

std 0.35 2.05 5.19 0.39 1.69 7.02

min 1.25 918.80 66.53 1.25 918.80 66.53

25% 1.62 919.20 69.83 1.41 920.50 70.40

50% 1.98 922.40 72.50 1.59 921.90 81.56

75% 2.14 923.50 76.71 2.04 923.40 82.73

max 2.55 924.30 86.98 2.55 924.30 86.98
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Table 4. Data set with top 5 records of features.

Antenna_1 Antenna_2 Distance_1 Distance_2 Antennas_ Frequency RSSI
Distance

a b 2.06 1.66 0.83 920.5 76.71

a c 2.06 1.62 1.66 920.5 77.09

a d 2.06 1.97 2.49 919.2 72.60

a e 2.06 2.55 3.32 920.5 70.20

a f 2.06 2.15 3.41 920.5 70.20

Prior to data preparation, the RSSI values of all reader–antenna positions in the
simulated ward were plotted on a line graph with respect to a bar graph of the static tag
position and are presented in Figure 5. The alphabetic positions of the reader–antennas
are denoted on the x axis and the static tag distance in meters is on the y1 axis. The RSSI
percentage value is denoted on the y2 axis ranges from 0 to 100. The maximum RSSI value
was approximately 86% and steadily decreased to 66% as the readers were brought further
apart. The closest antenna position on the bar graph is the j position and farthest is the
e position.

Data collected from the paired reader positions were analysed. Table 5 shows the
matrix formed. The maximum RSSI value gathered from the two reader–antennas is
presented. Each of the 16 reader–antennas was combined with the remaining reader–
antenna positions. There were no repetitions as both reader–antennas were identical in
both configuration and features. Close observation of Table 5 showed that j antenna
position had the highest RSSI value and e position had the least RSSI value.

Figure 5. Fall in RSSI with tag distance.

Using the ordinary least squares (OLS) linear regression method, a linear relationship
between independent and dependent variables was determined. The OLS results are pre-
sented in Table 6. It shows that the two independent variables, Distance_1 and Distance_2,
have a negative coefficient. Antennas_Distance variable has coefficient closer to zero value.
The constant value was the intercept of the linear equation. Standard error is error in pre-
diction or represents the average distance of the variable from the regression line. Standard
error was high in constant value compared to other three variables. The t-statistic value is a
measure of how statistically significant the coefficient is, which was calculated by dividing
coefficient with standard error. The constant value had a high t-statistic value due to its
high standard error.
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Table 5. RSSI values for reader–antenna combinations.

a b c d e f g h i j k l m n o
a
b 76.71
c 77.09 77.09
d 72.6 76.71 77.09
e 70.2 76.71 77.09 72.6
f 70.2 76.71 77.09 72.6 69.26
g 72.4 76.71 77.09 72.6 72.4 72.4
h 70.2 76.71 77.09 72.6 69.83 69.83 72.4
i 72.6 76.71 77.09 72.6 72.6 72.6 72.6 72.6
j 86.98 86.98 86.98 86.98 86.98 86.98 86.98 86.98 86.98
k 81.56 81.56 81.56 81.56 81.56 81.56 81.56 81.56 81.56 86.98
l 70.2 76.71 77.09 72.6 67.87 69.26 72.4 69.83 72.6 86.98 81.56

m 70.4 76.71 77.09 72.6 70.4 70.4 72.4 70.4 72.6 86.98 81.56 70.4
n 82.73 82.73 82.73 82.73 82.73 82.73 82.73 82.73 82.73 86.98 82.73 82.73 82.73
o 85.48 85.48 85.48 85.48 85.48 85.48 85.48 85.48 85.48 86.98 85.48 85.48 85.48 85.48
p 82.53 82.53 82.53 82.53 82.53 82.53 82.53 82.53 82.53 86.98 82.53 82.53 82.53 82.73 85.48

Table 6. Ordinary least squares (OLS) regression results.

Coef Std Error t p > |t| [0.025 0.975]

Const 109.2178 2.427 45.010 0.000 104.412 114.024

Distance_1 −6.0125 1.007 −5.972 0.000 −8.007 −4.019

Distance_2 −11.0570 0.874 −12.657 0.000 −12.787 −9.327

Antenna_Distance 0.2726 0.342 0.797 0.427 −0.405 0.950

The statistical significance of each variable, which effects the output variable RSSI
value, is tested in this OLS linear regression analysis. The p > |t| value as shown in Table 6
defines the significance of the variables, which is the p-value for the null hypothesis that
the coefficient is equal to zero (no effect). By convention, α value (0.05) was set to be the
standard measure for significance. If p value of a variable was less than α, the variable was
considered to be statistically significant. In this study, Distance_1 and Distance_2 variables
were highly significant and the null hypothesis was rejected, i.e., distance of static tag
from each antenna–readers would not affect the RSSI value as their p value was much less
than the α value. This showed that the Distance_1 and Distance_2 variables were strongly
correlated with dependent variable RSSI and a value decrease in these variables would
enhance the output variable. Antennas_Distance variable’s p value was also greater than
the α value 0.05 and did not reject the null hypothesis. The r-squared value is a fraction of
variation in output variable predicted by input variable [26]. Here, the value is 0.626.

From Table 6, a linear Equation (7) can be formed with coefficients of each variable
and constant value.

f (y) = 109.22 + (−6.01)× v1 + (−11.05)× v2 + (0.27)× v3, (7)

where f (y) is the output variable, with input variables Distance_1, Distance_2 and
Distance_3 being v1, v2 and v3, respectively, and the constant is the intercept.

As part of the data modelling tier of this study architecture, multiple machine learning
models, such as Decision Tree, Random Forest and XGBoost, were trained and evalu-
ated with performance metrics discussed in Section 5.1. The decision tree model had
performance metrics as MAE 0.01 and MSE 0.003. The hyperparameter of Decision Tree,
max_depth, was tuned from 1 to 10. This reduced the error rates till the value 8. Random
Forest had a higher performance compared to XGBoost with MAE 0.16 and MSE 0.11. Two
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hyperparameters—n_estimators and max_depth—of the Random Forest model were tuned
to enhance the prediction capability of the model and reduce the error rates. In the XGBoost
model, the error rates are high compared to the other two machine learning models. The
k-fold cross-validation implemented in the XGBoost model did not seem to improve the
performance. Later, Ensemble Learning was implemented by combining individual models
with weights, taking average of the outputs as the final result. Decision Tree had the least
error rate in all three performance metrics with MAE 0.01 and MSE 0.003, compared to other
individual models, even with outperforming the Ensemble Learning model. Performance
metrics of the individual models and Ensemble Learning are presented in Table 7.

Table 7. Performance metrics of regression models.

Model MAE MSE

Decision Tree 0.01 0.003
Random Forest 0.16 0.11

XGBoost 0.24 0.21

Ensemble Learning 0.04 0.006

Ideally, Ensemble Learning would enhance the prediction accuracy compared to
individual models involved in it. In this study, the weighted average method did not
improve prediction accuracy or reduce error rates, at least when compared with the
Decision Tree model. After tuning the model by testing the coefficients in range of 0.1 to 1,
the best performance that the Ensemble Learning model was able to achieve was MAE 0.04
and MSE 0.006 (as shown in Table 5) with w1 = 0.8, w2 = 0.1 and w3 = 0.1, where m1, m2
and m3 refer to Decision Tree, Random Forest and XGBoost models, respectively, for the
ensemble_model function defined by Equation (4).

The predicted values of test data were compared with original test data to evaluate
the individual model’s predictive performance visually. Figure 6 shows three plots of
Decision Tree, Random Forest and XGBoost models. To differentiate the original data
and predicted data in the plots, dots refer to original data and lines refer to predicted
data. If a line overlaps a dot, the model has predicted the value precisely; otherwise the
model has predicted incorrectly. Fluctuations in the original and predicted data seem
almost similar in three model plots. Decision Tree model was able to predict almost all data
points precisely. Random Forest plot shows four data points were incorrectly predicted,
whereas XGBoost model predicted five data points incorrectly. This is consistent with the
performance metrics shown in Table 7.
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Figure 6. Models evaluation plots with Decision Tree sitting on top, Random Forest in the middle
and XGBoost on the bottom.

5.3. Discussion

The main contribution that this study makes is to the understanding of the ground
work required for designing a remote patient monitoring system using RFID sensor technol-
ogy. This work has identified the considerations needed for using RFID reader–antennas
to identify vital signs on hospitalised patients that may be able to move freely about the
ward. The work implies that this type of approach would be best deployed in patient
rooms that are designed to accommodate possibly up to four in-patients instead of an
open ward layout. This is because the range for detecting passive RFID signals using
the techniques described in this study have a direct bearing on the RSSI. However, this
conforms to the goal of the initial scenario for this research, which is to identify early dete-
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rioration of suicidal and self-harm behaviours in circumstances where nursing observation
and supervision of patient safety are reduced because of lower staffing levels during the
known high risk periods in the evening and night shifts. The study has confirmed how the
optimum positions for reader–antennas would be chosen for deployment in a psychiatric
ward of a given hospital. This was achieved by understanding the relationship between
the independent and dependent variables that contribute to detecting the maximum signal
strength required for detecting vital signs and patient movement. A better understanding
was also offered from the results of this case study as to the implications for choice of a
suitable machine learning algorithm to analyse signal data.

The optimum position for the first reader–antenna placed in the simulated ward used
for this study produced the highest RSSI tag readability. The second reader position was
determined from the next highest signal strength obtained. A benefit of this for eventual
system design is that the location of at least one of the reader–antennas could logically
be associated with an entrance or doorway and could indicate if a person has left the
room with respect to the signal strength associated with this event. The impact of this
relationship to tag readability has important practical implications for deployment in a real
ward and could effect decisions on how notifications and alarms will be configured so not
to disrupt the routine clinical business of a hospital ward.

Figure 5 infers that an increase in distance between tag and antenna decreases the
RSSI value. This inference was supported with OLS regression results in Table 6 and
metrics in Table 5. OLS regression results have a negative coefficient of Distance_1 and
Distance_2 variables. Negative coefficients present an inverse relation with output variable
RSSI. Metrics in Table 5 show the j position has the highest RSSI value 86.98, which is the
closest reader–antenna position to the tag and the e position has the lowest RSSI value,
which is the farthest reader–antenna position to the tag. All three sets of results presented
in Figure 5 and Tables 5 and 6 confirm that closer positions would have higher RSSI values.
When considering the dimensions of the laboratory in this research, position j could be the
first preference for reader–antenna. The probability of selecting two better positions for
signal receivable would be narrowed down to 15 combinations as position j was considered
best. The second position was decided based on the spread of reader–antenna positions in
Figure 3 and each individual antenna RSSI value. With this, j and e combination would be
good pair of positions in the laboratory to fix two UHF RFID reader–antennas. Other RSSI
values presented in Figure 7 show that the difference of RSSI value from positions k and c
is 4.47 but their distance from static tag is almost same, similar to that on positions b and d.
This could be useful in identifying multiple tags that are associated with patients where
their initial reference could be associated with their hospital bed located in the room.

Figure 7. RSSI difference vs. reader–antenna position.
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In Table 6, the p value shows the significance of each independent variable in predict-
ing output variable when the value is less than the significance level α value (0.05). Based
on this, Distance_1 and Distance_2 variables are significant and the Antennas_Distance
variable is not, as its p value is far greater than α value (0.05). The r-squared value is
0.626, which is considerably low. However, the OLS regression model is able to find the
relationship between independent and dependent variables. An increase in the r-squared
value would enhance dependent variable prediction accuracy of the linear Equation (7)
introduced previously.

6. Conclusions

Study results were presented in the architecture design of a two tier framework for
data collection and data modelling. The main outcome from this study was to present
an understanding of how to determine the optimum positioning for two RFID reader–
antennas that would receive the maximum RSSI signal from a passive RFID tag in a
simulated hospital ward. A circular polarisation technique was chosen for this purpose
as this ultimate goal of the research is to design a remote patient monitoring system for
ambulatory psychiatric patients that are highly vulnerable for risk of self-harm and suicide.
Although this technique limited the range within which a tag could be read, it suited this
clinical purpose that was designed to provide an assisting technical solution for reduced
nursing staff levels on evening and night duty shifts when this risk is at its highest.

Radiation pattern, and reader–antenna and tag orientation play a major role in tag
readability. This study created a combined data set from arbitrarily chosen positions of a
pair of reader–antennas to produce a linear equation that estimated the Received Signal
Strength Indicator (RSSI) from a passive RFID tag. The Decision Tree machine learning
algorithm was best at predicting RSSI using regression modelling with the data set collected
for this study and produced good performance metrics, compared with Random Forest,
XGBoost and an Ensemble Learning model combining all three algorithms.

The biggest challenge for this study was tag readability due to reader–antenna radia-
tion pattern and polarisation. The UHF 870 RFID readers with integrated antenna were
designed to read RFID tags within range of 5 m using a one directional radiation pattern.
However, with circular polarisation the reader–antennas was not able to read tags with
distance more than 1.5 m. Another limitation of this study was that the Ensemble Learning
with weighted average method had a higher error rate compared to the individual machine
learning models. This could possibly be related to the relatively uncomplicated study
design that had a small number of variables and therefore did not require the compen-
satory capabilities of Ensemble Learning algorithms. The k-fold cross-validation that was
implemented in XGBoost model also had a high error rate which could also have impact
upon its performance to correctly predict the output variable.

The future direction for this study is to replicate this method with a dynamic RFID
passive tag so that data can be collected relative to tag motion. Near-field coherent sensing
(NCS) technology would then be introduced to read human vital signs and subtle motions.
Machine learning algorithms would again be employed to analyse the data patterns and
build generic models for the remote patient monitoring system.
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