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Summary

Many of the recent advances in natural language processing have been spearheaded by
the transfer learning paradigm, where models are pretrained on source tasks, in order
to improve performance on target tasks. Pretrained models can be divided into those
that produce non-contextualized embeddings, and those that produce contextualized
embeddings. The former are vector representations that depend only on the word type
of a given word, while the latter depend on its intra-sentential context.

Contextualized embeddings are usually produced by deep neural networks with many
parameters, which can be expensive to pretrain. As a result, practitioners often re-use
model checkpoints from bigger research labs and companies. This approach is not optimal
in cases where there is a mismatch between the source and target domains. By contrast,
non-contextualized embeddings are shallow and cheaper to pretrain, but they tend to be
less successful than their contextualized counterparts.

In this thesis, we explore ways of getting the best of both worlds, by combining con-
textualized and non-contextualized embeddings. Generally speaking, our aim is to
leverage the expressiveness of contextualized embeddings (e.g., BERT), while enhancing
them with inexpensive non-contextualized embeddings (e.g., Word2Vec). Our contribu-
tions can be divided into two avenues:

In Chapters 2 and 3, we align non-contextualized embeddings with the input
layer of BERT. In Chapter 2, we use this method to inject domain-specific biomedical
Word2Vec embeddings into the general-domain BERT model. When evaluated on biomed-
ical named entity recognition and question answering, the resulting model consistently
improves over BERT. In Chapter 3, we use the same method to inject entity embeddings
into BERT. We show that the resulting model compares favorably against variants of BERT
that were explicitly pretrained to process entity embeddings.

In Chapters 4 and 5, we align different contextualized and non-contextualized
sentence embeddings via generalized canonical correlation analysis and other sentence
meta-embedding methods. In Chapter 4, we evaluate our approach on unsupervised du-
plicate question detection in low-resource, highly domain-specific community question an-
swering forums. In Chapter 5, we use sentence meta-embeddings to set a new state of the
art on the unsupervised semantic textual similarity benchmark.
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Zusammenfassung

Viele Fortschritte der letzten Jahre in der maschinellen Sprachverarbeitung beruhen auf der
Technik des Transfer-Lernens. Beim Transfer-Lernen werden Modelle auf Quell-Aufgaben
vortrainiert, um die Genauigkeit auf Ziel-Aufgaben zu verbessern. Vortrainierte Modelle
können unterteilt werden in solche, die nicht-kontextualisierte Repräsentationen pro-
duzieren, und solche, die kontextualisierte Repräsentationen produzieren. Erstere
sind Vektoren, die nur von der Identität einzelner Worte abhängen. Letztere hängen vom
Kontext innerhalb des Satzes ab.

Kontextualisierte Repräsentationen werden normalerweise von tiefen neuronalen Net-
zen mit vielen Parametern produziert. Das Vortrainieren dieser Modelle ist teuer. Da-
her werden häufig Modelle wiederverwendet, die von größeren Forschungsinstituten und
Firmen vortrainiert wurden. Dieser Ansatz ist allerdings nicht optimal in Situationen,
wo Quell- und Ziel-Domäne nicht zusammenpassen. Auf der anderen Seite sind nicht-
kontextualisierte Repräsentationen weniger tief und weniger teuer, aber in der Regel auch
weniger erfolgreich.

In dieser Dissertation holen wir das Beste aus beiden Welten heraus, indem wir kontex-
tualisierte mit nicht-kontextualisierten Repräsentationen kombinieren. Unser
Ziel ist, die Ausdrucksstärke von kontextualisierten Repräsentationen (z.B. BERT) zu
nutzen, und mithilfe von günstigen, nicht-kontextualisierten Repräsentationen (z.B. Word2-
Vec) zu verbessern. Unsere Beiträge können in zwei Richtungen eingeteilt werden:

In Kapiteln 2 und 3 alignieren wir nicht-kontextualisierte Repräsentationen
mit der Eingabe-Schicht von BERT. In Kapitel 2 nutzen wir die Methode, um domänen-
spezifische Word2Vec-Repräsentationen in das BERT-Modell zu injizieren. Wir evaluieren
das resultierende Modell auf biomedizinischer Entitätenerkennung und der Beantwortung
von Fragen, mit Verbesserungen gegenüber BERT. In Kapitel 3 nutzen wir die Methode, um
Entitäten-Repräsentationen in das BERT-Modell zu injizieren. Wir zeigen, dass das resul-
tierende Modell kompetitiv ist gegenüber BERT-Varianten, die explizit dafür vortrainiert
wurden, Entitäten-Repräsentationen zu verarbeiten.

In Kapiteln 4 und 5 alignieren wir kontextualisierte und nicht-kontextualisierte
Satz-Repräsentationen mithilfe der generalisierten kanonischen Korrelationsanalyse und
anderen Methoden. In Kapitel 4 evaluieren wir unseren Ansatz auf der unüberwachten
Erkennung von Duplikat-Fragen in datenarmen, sehr domänen-spezifischen Frage-und-
Antwort-Foren. In Kapitel 5 setzen wir einen neuen Bestwert auf der unüberwachten
semantischen Text-Ähnlichkeits-Benchmark.
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Chapter 1

Introduction

1.1 About this thesis

1.1.1 Motivation

For much of the last decade, natural language processing (NLP) has been dominated
by deep learning: machine learning with complex, parametrized models, which are often
referred to as neural networks (see Section 1.2). Some of the most recent advances of the
field have been spearheaded by the transfer learning paradigm, where models are pretrained
on source tasks, in order to improve performance on target tasks (see Section 1.3).

In the context of NLP, pretrained models can be divided into those that produce con-
textualized embeddings, and those that produce non-contextualized embeddings.

Contextualized embeddings (Peters et al., 2017, 2018; Conneau et al., 2017; Howard
and Ruder, 2018; Cer et al., 2018; Devlin et al., 2019, inter alia) are vector representations
of words and/or sentences that depend on intra-sentential context. For example, the con-
textualized embedding of the word bank is different in the sentence the bank was robbed
and in the sentence it is a bank holiday. Contextualized embeddings are typically produced
by deep neural networks like LSTMs (Section 1.4.3.1) or Transformers (Section 1.4.3.2).
Since these models are expensive in terms of hardware and training time (Strubell et al.,
2019, 2020), pretraining is typically done by big research labs and companies, who then
share their checkpoints with the wider NLP community (Wolf et al., 2020).

Non-contextualized embeddings, which are also called static embeddings or simply
word vectors, are an older embedding technique (Church and Hanks, 1990; Schütze, 1992;
Mikolov et al., 2013c; Pennington et al., 2014; Bojanowski et al., 2017, inter alia). As the
name suggests, non-contextualized embeddings do not depend on intra-sentential context,
but instead assign one vector per word type. They are usually based on shallow vector
operations, and as a result, they are cheaper to pretrain than their contextualized counter-
parts. But when used for transfer learning purposes, the performance of non-contextualized
embeddings may not be comparable to contextualized embeddings.

Imagine an NLP practitioner who wants to tackle some target task via transfer learning.
She does not have the resources to pretrain her own contextualized embedding model, so
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she decides to use an existing checkpoint. This “off-the-shelf” approach is not optimal
in scenarios where there is a mismatch between the source data of the checkpoint and
the intended target data (e.g., a domain mismatch, see Section 1.3.2). And while the
practitioner has sufficient resources to pretrain non-contextualized embeddings on more
suitable source data, the resulting model is unlikely to be comparable to a contextualized
one.

1.1.2 Contributions

In this thesis, we explore ways of getting the best of both worlds, by combining contex-
tualized and non-contextualized embeddings. Our contributions can be divided into two
avenues:

1.1.2.1 Injecting non-contextualized embeddings into BERT

In Chapters 2 and 3, we propose a method for injecting non-contextualized embeddings
into the (contextualized) pretrained BERT model. More specifically, we fit a linear trans-
formation to align non-contextualized embeddings with the vectors of BERT’s input layer,
based on a small dictionary of shared vocabulary items. This method is inspired by super-
vised cross-lingual word embedding alignment (Mikolov et al., 2013b; Faruqui and Dyer,
2014; Xing et al., 2015; Artetxe et al., 2016; Smith et al., 2017, inter alia). Conceptually,
the goal is to “trick” BERT into accepting the transformed non-contextualized embeddings
as if they were from its own input layer, without any pretraining of BERT itself.

In Chapter 2, we use this method to inject Word2Vec word embeddings (Mikolov et al.,
2013c,a) that were trained on biomedical texts into the general-domain BERT model (De-
vlin et al., 2019). BERT thus gains knowledge about domain-specific words, with empirical
improvements on biomedical named entity recognition and question answering. In Chapter
3, we use the method to inject Wikipedia2Vec entity embeddings (Yamada et al., 2016,
2020) into BERT. The result is a model called E-BERT, which understands a mixture of
text and entity inputs. We show empirically that E-BERT is less likely than BERT to
over-rely on the surface form of entity names, and that it performs better on unsupervised
question answering, relation classification and entity linking tasks.

1.1.2.2 Sentence meta-embeddings

In Chapters 4 and 5, we address unsupervised text similarity tasks with sentence meta-
embeddings (called multi-view sentence embeddings in Chapter 4). Sentence meta-em-
beddings are an application of word meta-embedding techniques (Rastogi et al., 2015; Yin
and Schütze, 2016, inter alia) at the level of the sentence. More specifically, we combine
ensembles of sentence embeddings from different pretrained models via trainable functions.
Empirically, our most successful meta-embedding method is a linear transformation learned
with generalized canonical correlation analysis (Kettenring, 1971; Bach and Jordan, 2002).
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In Chapter 4, we use this technique to combine contextualized and non-contextualized,
domain-specific and general-domain sentence embeddings, in order to perform unsuper-
vised duplicate question detection in highly domain-specific community question answering
forums (Hoogeveen et al., 2015; Nakov et al., 2017). In Chapter 5, we use sentence meta-
embeddings to set a new state of the art on the unsupervised semantic textual similarity
benchmark (Cer et al., 2017).

1.1.3 Outline

Chapters 2 through 5 correspond to the publications that were described in Section 1.1.2.
The rest of this introductory chapter provides relevant background information: In Section
1.1.4, we define conventions for mathematical notation. In Sections 1.2 and 1.3, we intro-
duce some core concepts of deep learning and transfer learning. Section 1.4 describes some
commonly used neural network architectures for NLP, while Section 1.5 gives an overview
of the pretrained models that are used and evaluated in this thesis.

1.1.4 Mathematical notation

The chapters of this thesis were written at different points in time. As a result, they
may differ somewhat in terms of mathematical notation. Here, we define some general
conventions.

1.1.4.1 Scalars, vectors and matrices

We use lowercase italics for scalars x ∈ R, lowercase boldface for vectors x ∈ Rd, and
uppercase boldface for matrices X ∈ Rd×d′ . The i’th vector of X is denoted xi, and the
j’th entry of x is denoted xj. The inner vector product is denoted xTy or x·y, while matrix
multiplication is denoted Xy. The euclidian norm of x is ||x||2. Vector concatenation is
denoted:

[x; y] or

[
x
y

]
(1.1)

1.1.4.2 Functions

Functions are denoted as stylized uppercase F or lowercase f . We use the notation F :
X → Y , where X ,Y are the feature space (domain) and output space (codomain) of the
function. A composition of functions, where F (2) is applied after F (1), is denoted F (2)◦F (1).

1.1.4.3 Texts

Texts are usually written as a sequence of tokens X = x1 . . . xT , where every token xt is
from a finite vocabulary L of words, characters, etc. Subsequences of X are denoted Xt:t+n.
The length of X (in tokens) is |X|. The size of the vocabulary (in tokens) is |L|.
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1.2 Deep learning

Deep learning is machine learning via complex, parametrized models, which are often
called neural networks (LeCun et al., 2015; Schmidhuber, 2015, inter alia). Here, we give
an overview over the core concepts involved in defining and training a neural network.
Throughout this section and the next, we use the task of biomedical named entity recog-
nition as a running example.

1.2.1 Tasks

Neural networks are trained to perform tasks. Following Ruder (2019, p.44), a task is
defined by its feature space X with probability distribution P (X), and its output space Y
with prior distribution P (Y ) and conditional probability distribution P (Y |X). In NLP, X
is often a set of texts, i.e., a set of possible sequences of tokens from a vocabulary: X = L+,
where + is the Kleene plus.

1.2.1.1 Datasets

A task is usually represented by a training set D(train) and a separate test set D(test). The
former is used to optimize the parameters of the model, while the latter is used to estimate
its performance on unseen datapoints.

1.2.1.2 Supervised tasks

Supervised tasks have labeled training data:

D(train) = {(X(1), Y (1)), . . . , (X(N), Y (N))}
X(n) ∈ X ;Y (n) ∈ Y

(1.2)

Usually, the labels Y (n) stem from annotators or other trusted sources. Tasks with heuristic,
less trustworthy labels are often referred to as weakly supervised (Ratner et al., 2020).

Running example: Throughout this section and the next, we use the task of supervised
biomedical named entity recognition (NER) as an example.

Here, X is the space of all sentences, and P (X) is skewed towards sentences from
biomedical documents. The task is to predict which subsequences of some sentence X ∈ X
refer to a certain class of entity, such as diseases. NER is often formalized as a tagging
problem, where tokens are classified as B(egin), (I)nside or (O)utside. Thus, the output
space Y is the space of possible tag sequences: Y = {B, I,O}+. D(train) and D(test) contain
pairs of sentences and their true tag sequences.
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1.2.1.3 Unsupervised tasks

Unsupervised tasks are tasks that use unlabeled data only, i.e., D(train) = {X(1) . . . X(N)}.
One example of an unsupervised NLP task is autoregressive language modeling, where we
predict a given word xt from its left context X1:t−1 or right context Xt+1:T (see Section
1.5.2.1). Other unsupervised tasks include problems related to word co-occurrence (see
Sections 1.5.1.1 through 1.5.1.3), masked language modeling or next sentence prediction
(see Section 1.5.2.2).

1.2.2 Neural networks

1.2.2.1 Layers

A neural network is a function F : X → Y that is parametrized by a set of trainable
parameters Θ (Goodfellow et al., 2016, p.164). Section 1.4 describes some commonly used
neural network architectures. For now, and regardless of the specific architecture, F can
be conceptualized as a composition of layers:

F = F (L) ◦ . . . ◦ F (1) (1.3)

Every F (l) is itself a function with parameters Θ(l) ⊆ Θ.

1.2.2.2 Embeddings

The outputs of the intermediate layers of a neural network are called hidden vectors.
In NLP, hidden vectors are often associated with specific input units, such as words or
sentences. These specific vectors are also called representations or embeddings.

For instance, let X = x1 . . . xT be a sentence, and let H ∈ R|X|×d be the output of an
intermediate layer, given X, where the t’th vector ht corresponds to the t’th token xt. Then
we would call ht an embedding of xt. As mentioned in Section 1.1.1, we will differentiate
between non-contextualized embeddings, where ht depends only on xt, and contextualized
embeddings, where ht depends on other xt′ with t′ 6= t.

Running example: A neural network that learns our biomedical NER task might look
as follows:

Its lowest layer F (1) is an embedding lookup layer, which transforms the tokens of
X = x1 . . . xT into non-contextualized embeddings (see Section 1.4.2.1):

E ∈ R|X|×d; E =




e1
...

eT


 = F (1)(X; Θ(1)) =




w
(1)
IL(x1)
...

w
(1)
IL(xT )


 (1.4)

where Θ(1) = {W(1) ∈ R|L|×d}, and IL : L → {1 . . . |L|} is a bijective indexing function
over the vocabulary.
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Figure 1.1: Running example: Biomedical NER tagger for diseases.

The second layer F (2) is a bidirectional LSTM with parameters Θ(2) (see Section 1.4.3.1),
which translates the non-contextualized embeddings into contextualized embeddings. This
part of the model is often referred to as the encoder:

H ∈ R|X|×d′ ; H =




h1
...

hT


 = F (2)(E; Θ(2)) (1.5)

The third layer F (3) is a position-wise linear layer with parameters Θ(3) = {W(3) ∈
R|Y|×d′ ,b(3) ∈ R|Y|}. It transforms H into a matrix of logits (one logit per token and
possible NER tag):

O ∈ R|X|×|Y|; O =




o1
...

oT


 = F (3)(H; Θ(3)); ot = W(3)ht + b(3) (1.6)

We apply the softmax function to each ot, to derive a probability distribution. Let
IY : Y → {1 . . . |Y|} be a bijective indexing function over the tags. Then:

P̂t(y|X; Θ) =
exp(ot,IY (y))∑

y′∈Y exp(ot,IY (y′))
=⇒ P̂t(y|X; Θ) ∝ exp(ot,IY (y)) (1.7)

where Θ = Θ(1) ∪Θ(2) ∪Θ(3). At test time, we would choose the tag that maximizes P̂t:

ŷt = argmax
y∈Y

P̂t(y|X; Θ) (1.8)
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1.2.2.3 Loss functions

During training, the goal is to find the parameters Θ that minimize a loss L(Θ). Usually,
L is the sum or average of a datapoint-level loss function l over the training set:

L(Θ) =
1

|D(train)|
∑

(X,Y )∈D(train)

l(Θ;X, Y ) (1.9)

The exact formulation of l depends on the task at hand. For a regression task, where
Y = R, it might be the squared error of the predicted and true scalars:

l(Θ;X, Y ) = (F(X; Θ)− Y )2 (1.10)

For a classification task, where Y is a set of discrete labels (categories), the loss might
be the negative log likelihood (NLL) of the true label. In our NER example, a typical loss
function would be the average negative log likelihood of the true tags:

l(Θ;X, Y ) = − 1

|X|

|X|∑

t=1

ln P̂t(yt|X; Θ) (1.11)

1.2.2.4 Gradient descent

The loss is usually minimized via gradient descent. Let ∇θL(Θ) denote the gradient of the
loss with respect to some parameter θ ∈ Θ, and let η > 0 be our learning rate. Then the
gradient update would be:

θ(new) = θ(old) − η∇θL(Θ)

= θ(old) − η

|D(train)|
∑

(X,Y )∈D(train)

∇θl(Θ;X, Y ) (1.12)

In practice, updates are not normally performed on the entire training set. Instead,
mini-batch gradient descent calculates each update on a batch B(train), which contains a
few dozen or hundred datapoints from D(train):

θ(new) = θ(old) − η

|B(train)|
∑

(X,Y )∈B(train)
∇θl(Θ;X, Y ) (1.13)

The special case where every batch contains a single datapoint (i.e., B(train) = {(X, Y )})
is called stochastic gradient descent (Bottou, 2010):

θ(new) = θ(old) − η∇θl(Θ;X, Y ) (1.14)

1.2.3 The problem of data sparsity

In a single-task setup, the parameters Θ are trained exclusively on D(train). This means
that any information that is not present in D(train) cannot be learned. This may lead to
poor performance on the test data, especially if D(train) is small.
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Running example: Assume that the test set of our biomedical NER task contains a
sentence with the word VaD, which is an abbreviation for vascular dementia. Assume
further that while vascular dementia has occurred in D(train), VaD has not. A single-task
model may therefore be unable to tag VaD as a disease entity.

1.3 Transfer learning

In this section, we introduce the transfer learning paradigm. Transfer learning addresses
data sparsity by transferring knowledge between tasks (Pan and Yang, 2009; Ruder, 2019,
inter alia). A transfer learning scenario has at least two tasks: a target task TT , which is
the task that we are actually interested in, and a source task TS, which is used to improve
performance on TT .

Transfer learning scenarios can be characterized by the ways in which the source and
target tasks differ. Following Ruder (2019, p.44), we distinguish between scenarios where
the mismatch is between the tasks themselves (i.e., their output spaces) and scenarios where
the mismatch is between their domains (i.e., their feature spaces or feature probability
distributions).

1.3.1 Task mismatches

Task mismatches occur when YS 6= YT . For instance, TS may be a part-of-speech tag-
ging task with YS = {NOUN,VERB, . . .}+, while TT is an NER tagging task with YT =
{B, I,O}+. Ruder (2019) further differentiates between multi-task transfer learning, where
TS and TT are learned simultaneously, and sequential transfer learning, where TS is used
to pretrain some (or all) layers the model used for TT . Since this thesis does not cover
multi-task scenarios, we only describe sequential transfer learning.

1.3.1.1 Sequential transfer learning

With sequential transfer learning, some (or all) layers of the target model FT are transferred

from a source model FS. Let FS = F (L)
S ◦ . . . ◦ F (1)

S with parameters ΘS be a model that

was pretrained on the training set D(train)
S of a source task TS (or several source tasks).

Let (F (M)
S . . .F (N)

S ), with parameters Θ̄S ⊆ ΘS, be a list of layers designated for transfer.
Usually, these layers are contiguous, i.e., they can be written as:

F̄S = F (N)
S ◦ . . . ◦ F (M)

S (1.15)

After pretraining, F̄S becomes a building block of FT . The second building block are
normally some task-specific layers, denoted F̄T , with randomly initialized parameters Θ̄T .
Usually, F̄S forms the lower layer(s) of FT , while F̄T forms the upper layer(s):

FT = F̄T ◦ F̄S (1.16)
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One way to conceptualize this model is to say that F̄S produces pretrained embeddings
(contextualized or not) for F̄T . Depending on the architecture, F̄S may be as simple as an
embedding lookup layer (see Figure 1.2a), or as complex as a deep stack of Transformer
blocks (see Figure 1.2b). The depth of F̄T will usually be chosen based on whether F̄S is
complex enough to do the heavy lifting during target task training.

Zero-shot transfer: A special case of sequential transfer learning arises when TT is a
zero-shot task without a training set D(train)

T . This includes target tasks that are reformu-
lated as a version of the source task (Radford et al., 2019; Petroni et al., 2019; Brown et al.,
2020, inter alia), or unsupervised text similarity tasks that are formulated as an embedding
similarity problem (see Chapters 4, 5). In these cases, there are usually no task-specific
layers, i.e., FT = F̄S (see Figure 1.2c).

Freezing versus finetuning: If a training set D(train)
T exists, the task-specific parameters

Θ̄T are usually trained on it after transfer. An important design choice is whether to
“freeze” the pretrained parameters Θ̄S, or to train (“finetune”) them along with Θ̄T . With
contextualized embeddings, finetuning is usually reported to be more successful (Devlin
et al., 2019); with non-contextualized embeddings, both options are popular.

Representation learning: The special case where TS is an unsupervised task is often
referred to as representation learning (Bengio et al., 2013). Recently, the distinction be-
tween representation learning and supervised sequential transfer learning has been blurred
by models that are pretrained on a mix of supervised and unsupervised data (Conneau
et al., 2017; Cer et al., 2018; Liu et al., 2019a, inter alia). Furthermore, some training
or retrofitting methods for non-contextualized embeddings are supervised as well (Faruqui
et al., 2015; Rothe et al., 2016; Glavaš and Vulić, 2018; Dufter and Schütze, 2019, inter
alia). In this thesis, we will not usually make a distinction between representation learn-
ing and supervised transfer learning. Instead, we will use the terms representations or
embeddings to refer to the outputs of pretrained models, regardless of whether they were
pretrained on supervised or unsupervised source tasks (or both).

Running example: To illustrate the usefulness of sequential transfer learning, we return
to our running example. This time, assume that we have access to a language model FS,
as described in Section 1.2.1.3, which was pretrained on a large corpus of unlabeled text
data. Let F̄S be the embedding lookup and encoder layers of FS, which produce a matrix
of contextualized word embeddings H ∈ R|X|×d′ . We plug H into Equation 1.6, effectively
replacing the two lower layers of FT (yellow in Figure 1.1).

Now, assume that when FS was pretrained, it learned that the phrase vascular dementia
and its abbreviation VaD occur in similar contexts. Thus, the lower layers F̄S learned to
assign similar contextualized embeddings to occurrences of vascular dementia and VaD.
So when the task-specific final linear layer F̄T (blue in Figure 1.1) learns to tag vascular
dementia as a disease, it has a better chance of correctly tagging VaD as well.
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(a)

σco-occurence

drive the car

drive

VERB ART NOUN

bus

Embedding lookup

Embedding lookup Embedding lookup

BiLSTM 1

…

Feed Forward & Softmax

BiLSTM L

Target task: Part-Of-Speech taggingSource task: Word2Vec  
(skip gram with negative sampling)

(b) drive the car

VERB ART NOUN

Embedding lookup

Transformer Block 1

…

Feed Forward & Softmax

Transformer Block L

Embedding lookup

Transformer Block 1

…
Transformer Block L

[MASK] the

Feed Forward & Softmax

drive

bus

Target task: Part-Of-Speech taggingSource task: Masked Language Modeling

(c) taxis are

yellow

Embedding lookup

Transformer Block 1

…
Transformer Block L

[MASK]

Feed Forward & Softmax

Embedding lookup

Transformer Block 1

…
Transformer Block L

[MASK] the

Feed Forward & Softmax

drive

bus

Source task: Masked Language Modeling Target task: Unsupervised QA

Figure 1.2: Examples of sequential transfer learning (schematic). Yellow: F̄S. Blue:
F̄T . Green: Other layers in FS. (a) Deep task-specific BiLSTM on top of pretrained
non-contextualized Word2Vec embeddings. (b) Shallow task-specific classifier on top of
pretrained contextualized BERT layers. (c) Pretrained BERT model used for a zero-shot
target task, without any task-specific layers.
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1.3.2 Domain mismatches

Domain mismatches are situations where the source and target tasks differ in terms of
their input data. Following Ruder (2019), we further differentiate between situations where
XS 6= XT (called feature space mismatches below) and situations where PS(XS) 6= PT (XT )
(domain mismatches in the narrow sense).

1.3.2.1 Feature space mismatches

In NLP, feature space mismatches typically occur when XS and XT are defined over different
vocabularies LS 6= LT . According to Ruder (2019)’s taxonomy, this issue mainly arises in
cross-lingual transfer. In Chapter 3, we address a monolingual scenario where LS contains
wordpiece tokens (i.e., words and subwords), while LT ⊃ LS contains wordpiece and entity
tokens.

1.3.2.2 Domain mismatches (narrow sense)

Domain mismatches in the narrow sense are situations where PS(XS) and PT (XT ) represent
different types of text. For instance, the source data might contain text from Wikipedia,
while the target data contains text from biomedical publications. Methods that deal with
domain mismatch are usually called domain adaptation. We address domain mismatch
problems in Chapters 2 and 4.

1.3.3 Task and domain mismatches combined

Of course, task mismatches and domain mismatches are not mutually exclusive. For in-
stance, a neural network that was pretrained as a language model on Wikipedia is doubly-
mismatched for biomedical NER: It does not know the target domain (biomedical publi-
cations), and it does not know the target task (NER tagging).

Often, these double-mismatches are addressed via a two-step procedure, where a model
first undergoes additional pretraining on more suitable data, followed by finetuning on the
target task (Howard and Ruder, 2018; Beltagy et al., 2019; Alsentzer et al., 2019; Peng
et al., 2019; Lee et al., 2020, inter alia). But since contextualized embedding models are
expensive to pretrain, this approach may not always be practical.

1.4 Neural network architectures for NLP

In this section, we describe some commonly used neural network architectures for NLP.
First, we briefly discuss tokenization methods.
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characters: c, h, e, s, t, , p, a, i, n, , a, n, d, , t, a, c, h, y, c, a, r, d, i, a

words: chest, pain, and, [UNK] (assume that tachycardia 6∈ L)

wordpieces (BERT): chest, pain, and, ta, ##chy, ##card, ##ia

sentencepieces (T5): chest, pain, and, , t, a, chy, cardi, a

Figure 1.3: Four ways of tokenizing the string chest pain and tachycardia. stands for the
white-space character, ## signals a non-initial wordpiece.

1.4.1 Tokenization

Let C be a vocabulary of characters (or bytes), and let C+ be the set of all possible strings.
Tokenization can be formalized as a function Z : C+ → L+, where L is a finite set of
so-called “tokens”. These tokens are the atomic units of input to the lowest layer of the
neural network.

The simplest way of achieving tokenization is to perform character (or byte) tokeniza-
tion, by defining Z(X) = X. Character tokenization breaks up semantically meaningful
units (such as words), and places the burden of reconstructing their meaning onto the
downstream model. Alternatively, one can use a rule-based word tokenizer (e.g., a white-
space and punctuation tokenizer) and define L to be the top-k most frequent words in the
training set. Problems with word tokenization include the inability to represent unknown
words x 6∈ L, and the need for language-specific rule engineering (e.g., deciding what counts
as a punctuation mark, how to tokenize abbreviations, etc.).

Wordpiece (Wu et al., 2016) and sentencepiece (Kudo and Richardson, 2018) tokeniza-
tion provide a middle ground between character tokenization and word tokenization. Both
are data-driven algorithms that build a vocabulary of subwords (“pieces”) from unlabeled
text. Frequent words are represented as a single piece, while less frequent words are tok-
enized (see Figure 1.3).

1.4.2 Architectures for non-contextualized embeddings

1.4.2.1 Word vectors

The simplest form of non-contextualized embeddings are word vectors. Let IL : L →
{1 . . . |L|} be a bijective indexing function, and let W ∈ R|L|×d be a parameter matrix.
The word vector of x ∈ L is defined as e = wIL(x). To embed a tokenized text X = x1 . . . xT ,
we simply stack the vectors of the tokens:

E =




e1
...

eT


 =




wIL(x1)
...

wIL(xT )
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Note that non-contextualized embeddings can be more complex than atomic word vec-
tors. For instance, FastText (Bojanowski et al., 2017, see Section 1.5.1.2) calculates word
embeddings as an average of word and subword vectors. The resulting embeddings are still
non-contextualized (at the sentence level), since the subwords of some word xt in sentence
X do not depend on any other words xt′ , where t′ 6= t.

1.4.2.2 Sentence embeddings from non-contextualized embeddings

Assume that we want to represent a sentence X = x1 . . . xT as a single sentence embedding
s ∈ Rd. A simple way of achieving this is to take a weighted average over the non-
contextualized embeddings of its tokens:

s =
1

|X|

|X|∑

t=1

A(xt)et =
1

|X|

|X|∑

t=1

A(xt)wIL(xt)

A : L → R is an optional weighting function, which is usually chosen to down-weight
frequent word types (Arora et al., 2017; Ethayarajh, 2018). Despite their simplicity and
their inability to encode word order, averaged non-contextualized word embeddings are
surprisingly effective sentence embeddings for some tasks (Conneau and Kiela, 2018). We
use them as part of our sentence meta-embeddings in Chapters 4 and 5.

1.4.3 Architectures for contextualized embeddings

1.4.3.1 LSTM

Long Short-Term Memory Networks (LSTMs) (Hochreiter and Schmidhuber, 1997) are
recurrent neural networks. Given some sentence X = x1 . . . xT , they usually produce one
contextualized embedding ht per token xt.

Let E ∈ R|X|×d be a matrix of embeddings associated with the tokens of X (e.g.,
a matrix of non-contextualized embeddings as described in Section 1.4.2.1). Let Θ =
{W(i),W(f),W(o),W(g) ∈ Rd′×d,U(i),U(f),U(o),U(g) ∈ Rd′×d′ ,b(i),b(f),b(o),b(g) ∈ Rd′}
be parameters. The LSTM architecture is recursively defined as:

h0 = 0

c0 = 0

it = σ(W(i)et + U(i)ht−1 + b(i))

ft = σ(W(f)et + U(f)ht−1 + b(f))

ot = σ(W(o)et + U(o)ht−1 + b(o))

gt = tanh(W(g)et + U(g)ht−1 + b(g))

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(1.17)
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where σ and tanh are the elementwise sigmoid and hyperbolic tangent functions, and �
is the Hadamard product. Conceptually, ct is the model’s long term memory. The input
gate it controls what information is written into ct, while the forget gate ft controls what
information is discarded. The output gate ot controls what information from ct is exposed
to ht.

Often, LSTMs are defined bidirectionally. A bidirectional LSTM (BiLSTM) consists

of two LSTMs with separate sets of parameters
→
Θ,
←
Θ. The first LSTM reads the input

left-to-right, while the other reads it right-to-left. With a BiLSTM, the contextualized

embedding of xt is usually defined as ht = [
→
ht;
←
ht].

1.4.3.2 Transformer

A more recent successful architecture is the Transformer (Vaswani et al., 2017). In contrast
to LSTMs, Transformers do not have an inductive bias towards sequential processing. Also,
Transformers are not (inherently) autoregressive and therefore easy to parallelize.

Transformers are stacks of “blocks”. Let X = x1 . . . xT be our input, i.e., a sequence of
tokens. Each block F (l) receives as input a matrix of token embeddings H(l−1) ∈ R|X|×d,
and outputs a new matrix H(l) ∈ R|X|×d. Each block consists of a multi-head self-attention
layer and a feed-forward layer, which are surrounded by layer normalization and residual
connections. Here, we describe each component in detail.

Layer Norm

Feed-Forward Layer

+

Layer Norm

Multi-Head Attention

+

Token + Position Embeddings

Transformer Block 1

Transformer Block 2

⋯

Transformer Block L

Figure 1.4: Transformer architecture (encoder only), following Figure 1 in Vaswani et al.
(2017).
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Self-attention: Self-attention layers (Lin et al., 2017) model the interactions of tokens
via an attention matrix. Here, we describe scaled dot product self-attention (Vaswani et al.,
2017): Let Θ(attn) = {W(q),W(k) ∈ Rd×dk ,W(v) ∈ Rd×dv}. The first step is to transform
H into query, key and value matrices Q,K ∈ R|X|×dk ,V ∈ R|X|×dv :

Q = HW(q)

K = HW(k)

V = HW(v)

(1.18)

The attention matrix A ∈ (0, 1)|X|×|X| is defined by the softmax function, taken over the
scaled dot products of query and key vectors. Often, at,t′ is interpreted as the “attention”
that xt pays to xt′ .

at,t′ =
exp(

qt·kt′√
dk

)
∑|X|

t′′=1 exp(
qt·kt′′√

dk
)

(1.19)

The final step is a simple attention-weighted sum over the value vectors:

F (attn)(H; Θ(attn)) = AV

Multi-head self-attention: Multi-head self-attention is the application of several self-
attention layers (“heads”) in parallel. Let (F (attn)

1 . . .F (attn)
M ) be self-attention layers with

separate parameters (Θ
(attn)
1 . . .Θ

(attn)
M ). Let Θ(mha) = {W(o) ∈ RMdv×d}∪Θattn

1 ∪. . .∪Θ
(attn)
M .

The multi-head self-attention layer is defined as the concatenation of all heads, down-
projected by W(o):

F (mha)(H; Θ(mha)) = [F (attn)
1 (H; Θ

(attn)
1 ); . . . ;F (attn)

M (H; Θ
(attn)
M )]W(o) (1.20)

Feed-forward layer: The feed-forward layer consists of two linear layers, with an el-
ementwise non-linearity G in between. It is applied position-wise. Let Θ(ff) = {W(1) ∈
Rd′×d,W(2) ∈ Rd×d′ ,b(1) ∈ Rd′ ,b(2) ∈ Rd} be parameters. Then:

F (ff)(H; Θ(ff)) =




W(2)G(W(1)h1 + b(1)) + b(2)

...
W(2)G(W(1)hT + b(1)) + b(2)


 (1.21)

Residual connection and layer normalization: Every multi-head self-attention layer
and every feed-forward layer is wrapped with a residual connection, followed by position-
wise layer normalization (Ba et al., 2016). Let Θ(norm) = {γ ∈ Rd,β ∈ Rd}. Then layer
normalization is defined as:

F (norm)(H; Θ(norm)) =




γ � h1−µ1
s1

+ β
...

γ � hT−µT
sT

+ β


 (1.22)
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where

µt =
1

d

d∑

i=1

ht,i; st =

√√√√1

d

d∑

i=1

(ht,i − µt)2 (1.23)

Let F (norm-mha),F (norm-ff) be two separate layer normalization layers. Then the l’th
Transformer block is defined as:

H′(l) = F (norm-mha)(F (mha)(H(l−1); Θ(mha)) + H(l−1); Θ(norm-mha))

H(l) = F (l)(H(l−1); Θ(l)) = F (norm-ff)(F (ff)(H′(l); Θ(ff)) + H′(l); Θ(norm-ff))
(1.24)

where Θ(l) = Θ(mha) ∪Θ(ff) ∪Θ(norm-mha) ∪Θ(norm-ff).

Input embeddings: The input to the first Transformer block, H(0), is a matrix of non-
contextualized embeddings from an embedding lookup layer with parameter W ∈ R|L|×d,
as described in Section 1.4.2.1, For most pretrained Transformers, L is a moderately-sized
vocabulary of wordpieces or sentencepieces (see Section 1.4.1).

Vanilla self-attention is unable to differentiate between two sentences that contain the
same non-contextualized embeddings in a different word order. Hence, information about
position-in-sentence is usually injected by position embeddings. Let P ∈ R|X|×d be a
lookup parameter matrix for position embeddings, which may be trainable (Devlin et al.,
2019) or deterministic (Vaswani et al., 2017). Then the input to the first block is:

H(0) = F (0)(X; Θ(0)) =




wIL(x1) + p1
...

wIL(xT ) + pT


 (1.25)

Some models add additional embeddings to H(0). For instance, BERT has an additional
parameter matrix G ∈ R2×d, which signals the difference between two texts (see Section
1.5.2.2). The set of trainable parameters used inside F (0) is denoted Θ(0).

Putting it all together: Let Θ(tf) = Θ(0) ∪ Θ(1) ∪ . . . ∪ Θ(L). The full Transformer
architecture is defined as:

F (tf)(X; Θ(tf)) = (F (L) ◦ . . . ◦ F (1) ◦ F (0))(X; Θ(L) . . .Θ(1),Θ(0)) (1.26)

See Figure 1.4 for a depiction of the architecture.

1.5 Pretrained models

In this section, we introduce some popular pretrained models, which we use and evaluate
in this thesis. For our purpose, a pretrained model is characterized by its source task (or

source tasks) TS with dataset D(train)
S , a source architecture FS with parameters ΘS, and a

transferred architecture F̄S with parameters Θ̄S. Usually, Θ̄S ⊆ ΘS.
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Architecture output embeddings contextualized?

Word2Vec embedding lookup word embeddings no
FastText embedding lookup & average word embeddings no
GloVe embedding lookup word embeddings no
Wikipedia2Vec embedding lookup word & entity embeddings no
ParaNMT embedding lookup & average sentence embeddings no

ELMo character CNN & BiLSTM word embeddings yes
BERT Transformer wordpiece & sentence embeddings yes
InferSent BiLSTM sentence embeddings yes
USE Transformer sentence embeddings yes
SBERT Transformer sentence embeddings yes

Source task(s) supervised?

Word2Vec classification: word co-occurrence no
FastText classification: word co-occurrence no
GloVe regression: word co-occurrence no
Wikipedia2Vec see Word2Vec (above) & classification: Wikipedia links partially
ParaNMT classification: synthetic paraphrases weakly

ELMo autoregressive language modeling no
BERT masked language modeling & next sentence prediction no
InferSent see GloVe (above) & natural language inference partially
USE skip-thought & conversation & natural language inference partially
SBERT see BERT (above) & natural language inference partially

citation described in used in

Word2Vec Mikolov et al. (2013c) Section 1.5.1.1 Chapter 2
FastText Bojanowski et al. (2017) Section 1.5.1.2 Chapter 4
GloVe Pennington et al. (2014) Section 1.5.1.3 Chapter 4
Wikipedia2Vec Yamada et al. (2016) Section 1.5.1.4 Chapter 3
ParaNMT Wieting and Gimpel (2018) Section 1.5.1.5 Chapters 4 and 5

ELMo Peters et al. (2018) Section 1.5.2.1 Chapter 4
BERT Devlin et al. (2019) Section 1.5.2.2 Chapters 4, 2 and 3
InferSent Conneau et al. (2017) Section 1.5.2.3 Chapter 4
USE Cer et al. (2018) Section 1.5.2.4 Chapters 4 and 5
SBERT Reimers and Gurevych (2019) Section 1.5.2.5 Chapter 5

Table 1.1: Summary of pretrained models that are used in this thesis.
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wI(car)

wI(bus)wI(Obama)
wI(president)

Figure 1.5: Schematic depiction of pretrained Word2Vec vectors: Words that are semanti-
cally similar (that appear in similar textual contexts) get similar word vectors.

Depending on the architecture, pretrained models differ with respect to the type of
embeddings that they return (e.g., sentence embeddings, word(-piece) embeddings), and
whether the embeddings are contextualized. The source task determines whether a given
pretrained model is classified as supervised or unsupervised. Table 1.1 summarizes the
models described in this section.

1.5.1 Pretrained models for non-contextualized embeddings

1.5.1.1 Word2Vec

Word2Vec (Mikolov et al., 2013a,c) is a model for non-contextualized word embeddings. In
Chapter 2, we pretrain Word2Vec on biomedical texts, and inject the resulting embeddings
into BERT. Here, we describe the skip-gram negative sampling variant of Word2Vec.

Let L be a finite vocabulary of word types, and let IL be the associated indexing
function. Let Θ̄S = {W ∈ R|L|×d}. When using Word2Vec for transfer learning, one would
typically initialize the rows of the word embedding lookup layer of a target model with:

F̄S(x; Θ̄S) = wIL(x) (1.27)

During pretraining, Word2Vec predicts whether a given word pair x, x′ ∈ L is a true
co-occurrence in the unsupervised training set D(train)

S , or a random word pair (negative
sample). Let ΘS = Θ̄S ∪ {V}, where V ∈ R|L|×d is another parameter matrix. Then the
score of the word pair x, x′ is:

FS(x, x′; ΘS) = F̄S(x; Θ̄S)TvIL(x′) (1.28)
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Let N be a context size, and let M be the number of negative samples per true pair.
Let x(−) ∼ L be random words (negative samples) drawn from the vocabulary.1 The
parameters ΘS are trained, via stochastic gradient descent, to minimize the following loss:

L(ΘS) = −
∑

X∈D(train)
S

∑

t∈{1...|X|}

∑

t′∈{1...|X|}:
0<|t−t′|≤N

(
ln σ(FS(xt, xt′ ; ΘS))+

M∑

m=1

ln σ(−FS(xt, x
(−); ΘS))

)

(1.29)
Conceptually, the loss function pulls together the w and v vectors of word pairs that

are truly observed, while pushing apart the w and v vectors of random pairs. As a result,
words that tend to occur in similar contexts end up with similar w vectors. For instance,
if bus often co-occurs with drive, and car also often co-occurs with drive, then bus and car
have similar w vectors (see Figure 1.5).

1.5.1.2 FastText

Recall that L is only a finite subset of the infinite set of possible words. One problem with
Word2Vec is therefore its inability to assign vectors to unseen words. FastText (Bojanowski
et al., 2017) is an extension of Word2Vec that addresses this problem. We use averaged
FastText embeddings as part of our sentence meta-embeddings in Chapter 4.

Let L′ ⊂ C+ be a limited vocabulary of subwords (character n-grams between some
minimum and maximum length), and let IL′ be the associated indexing function. Let
Z : C+ → L′+ be a function that enumerates the subwords of any known or unknown
word, e.g., Z(bus) = {#bus,#bu, bus$, us$, bu, . . .}. Let W′ ∈ R|L′|×d be an additional
parameter matrix in ΘS and Θ̄S. Then for transfer learning purposes, the embedding of x
is defined as:

F̄S(x; Θ̄S) =

{
1

|Z(x)|+1
(wIL(x) +

∑
x′∈Z(x) w′IL′ (x′)) if x ∈ L

1
|Z(x)|

∑
x′∈Z(x) w′IL′ (x′) otherwise

(1.30)

FastText is pretrained in the same way as Word2Vec. The only difference is that we
use the compositional word vectors from Equation 1.30 in Equation 1.28.

1.5.1.3 GloVe

GloVe (Global Vectors for Word Representation) (Pennington et al., 2014) is another pre-
trained model for non-contextualized word embeddings. We use averaged GloVe embed-
dings as part of our sentence meta-embeddings in Chapter 4.

Like Word2Vec, GloVe is defined over a finite word vocabulary L with indexing function
IL. Let Θ̄S = {W,W′ ∈ R|L|×d} be two parameter matrices. When using GloVe for
transfer learning, Pennington et al. (2014) recommend representing a word x ∈ L as:

F̄S(x; Θ̄S) = wIL(x) + w′IL(x) (1.31)

1In practice, the negative samples are not drawn uniformly, but as a function of their frequency in

D(train)
S , with undersampling for very frequent words.
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During pretraining, GloVe learns to predict the co-occurrence counts of word pairs. Let
C(x, x′) be the number of times that x, x′ ∈ L occurred together within a window of size

N in an unsupervised training set D(train)
S . Let ΘS = Θ̄S ∪ {b,b′ ∈ R|L|}. GloVe predicts

the co-occurrence count as:

FS(x, x′; ΘS) = exp(wT
IL(x)w

′
IL(x′) + bIL(x) + b′IL(x′)) (1.32)

The loss is the weighted squared error of the true and predicted logarithmic counts:

L(ΘS) =
∑

x∈L

∑

x′∈L
A(C(x, x′))(ln FS(x, x′; ΘS)− ln C(x, x′))2 (1.33)

where

A(c) =

{(
c

100

) 3
4 if c < 100

1 otherwise
(1.34)

1.5.1.4 Wikipedia2Vec

Wikipedia2Vec (Yamada et al., 2016, 2020) is a variant of Word2Vec that learns a joint
embedding space of non-contextualized word and entity embeddings. In Chapter 3, we
inject pretrained Wikipedia2Vec entity embeddings into the BERT model.

Let L = L(word) ∪ L(ent) (with L(word) ∩ L(ent) = ∅), be a finite vocabulary of words and
entities (Wikipedia pages) with indexing function IL. Let Θ̄S = {W ∈ R|L|×d} be the
associated parameter matrix. When using Wikipedia2Vec for transfer learning, one would
typically initialize the rows of a word or entity embedding lookup layer with:

F̄S(x; Θ̄S) = wIL(x) (1.35)

During pretraining, Wikipedia2Vec predicts whether a given word pair, entity pair or
word-entity pair x, x′ ∈ L is a true co-occurrence in Wikipedia, or a randomly selected
pair. Let ΘS = Θ̄S ∪ {V ∈ R|L|×d}, where V is another parameter matrix. The score of
x, x′ is defined as:

FS(x, x′; ΘS) = F̄S(x, Θ̄S)TvIL(x′) (1.36)

Wikipedia2Vec has three source tasks with losses L(1),L(2),L(3). The first task is stan-
dard skip-gram with negative sampling, i.e., L(1) is Equation 1.29.

The second task is to classify which entity pairs are neighbors in the Wikipedia link
graph. Let N (c) be the set of neighbors of entity c, and let M be the number of nega-
tive samples per positive pair. Let c(−) ∼ L(ent) be randomly selected entities (negative
samples). Then the loss is:

L(2)(ΘS) = −
∑

c∈L(ent)

∑

c(+)∈N (c)

(
ln σ(FS(c, c(+); ΘS)) +

M∑

m=1

ln σ(−FS(c, c(−); ΘS))
)

(1.37)
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wI(car)

wI(bus)wI(Obama)
wI(president)

wI(E/Barack_Obama)

wI(E/Bill_Clinton)

Figure 1.6: Schematic depiction of pretrained Wikipedia2Vec vectors: Words that are
semantically similar get similar word vectors (yellow and yellow vectors). Entities that are
semantically similar get similar entity vectors (red and red vectors). Entities and their
names get similar word and entity vectors (yellow and red vectors).

The third task is a variant of skip-gram with negative sampling, where the model
predicts which words occur with which entity hyperlinks (and vice versa). Let H(X) =
{(t1, n1, c1) . . . (tH , nH , cH)} be a set of start positions, lengths and entities pertaining to
sentence X, such that Xt:t+n is a hyperlink towards the Wikipedia page of c ∈ L(ent). Let
N be a context size, and let x(−) ∼ L(word) be randomly selected words, as described in
Section 1.5.1.1. Then the third loss is:

L(3)(ΘS) = −
∑

X∈D(train)
S

∑

(t,n,c)∈
H(X)

∑

t′∈{1...|X|}:
(t−N≤t′<t)∨

(t+n<t′≤t+n+N)

(
lnσ(FS(c, xt′ ; ΘS)) + ln σ(FS(xt′ , c; ΘS))

+
M∑

m=1

(
lnσ(−FS(xt′ , c

(−); ΘS)) + ln σ(−FS(c, x(−); ΘS))
))

(1.38)
The joint loss is L(ΘS) = L(1)(ΘS) + L(2)(ΘS) + L(3)(ΘS). Minimizing this loss yields

a vector space where:

• semantically similar words have similar word vectors (e.g., car and bus)

• semantically similar entities have similar entity vectors (e.g., E/Barack Obama and
E/Bill Clinton)

• entities and the words that are used to refer to them have similar entity and word
vectors (e.g., E/Barack Obama and Obama)

See Figure 1.6 for a schematic depiction of a Wikipedia2Vec embedding space.
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1.5.1.5 ParaNMT

ParaNMT (Wieting and Gimpel, 2018) is a pretrained model that produces sentence em-
beddings for sentence similarity tasks. Here, we describe a variant of ParaNMT that is
based on averaged non-contextualized word and 3-gram embeddings. We use it as part of
our sentence meta-embeddings in Chapter 5.

Let L be a vocabulary of words with indexing function IL, and let L′ be a vocabulary of
character 3-grams with indexing function IL′ . Let ΘS = Θ̄S = {W ∈ R|L|×d,W′ ∈ R|L′|×d′}
be the associated parameter matrices. Let X = x1 . . . xT be a word-tokenized sentence,
and let Z : C+ → L′+ be a function that enumerates the character 3-grams of a given
word, similar to the function described in Section 1.5.1.2. Then, ParaNMT embeds X as:

F̄S(X; Θ̄S) =
[ 1

|X|

|X|∑

t=1

wIL(xt) ;
1

∑|X|
t=1 |Z(xt)|

|X|∑

t=1

∑

x′∈Z(xt)

w′IL′ (x′)

]
(1.39)

During pretraining, ParaNMT learns to distinguish true synthetic paraphrases from
random paraphrases. To generate synthetic paraphrases, Wieting and Gimpel (2018) trans-
late English sentences into another language and back, using a separate Neural Machine
Translation system. ParaNMT is therefore a weakly supervised pretrained model.

Let D(train)
S be a corpus of sentences X and their true paraphrases X(+). Let X(−) be

random paraphrases, e.g., the paraphrases of other, randomly drawn sentences. Then, the
loss function is the max margin loss of the cosine similarities, with margin δ:

L(ΘS) =
∑

(X,X(+))∈D(train)
S

max
(

0, δ − sim(F̄S(X; Θ̄S), F̄S(X(+); Θ̄S))

+ sim(F̄S(X; Θ̄S), F̄S(X(−); Θ̄S))
) (1.40)

where

sim(s, s′) =
sT s′

||s||2||s′||2
(1.41)

1.5.2 Pretrained models for contextualized embeddings

1.5.2.1 ELMo

ELMo (Embeddings from Language Models) (Peters et al., 2018) was one of the first
pretrained contextualized embedding models for NLP. In Chapter 4, we use ELMo as a
baseline for duplicate question detection.

ELMo is a multi-layer BiLSTM. Let X = x1 . . . xT be a sequence of words from vocab-
ulary L. Every xt is further tokenized into a sequence of characters, which are encoded
into a non-contextualized word embedding et by a character CNN with parameters Θ(cnn).
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The input to the BiLSTM is defined as:

←
H

(0)

=
→
H

(0)

=




e1
...

eT




The input is fed into two stacks of multi-layer left-to-right and right-to-left LSTMs,

whose parameters are denoted
→
Θ and

←
Θ. The output are two sets of contextualized word

embeddings, {
→
H

(1)

. . .
→
H

(L)

} and {
←
H

(1)

. . .
←
H

(L)

}, with H(∗) ∈ R|X|×d. When transfer-
ring ELMo to a downstream task, the contextualized embeddings are usually combined via
a weighted sum, with trainable scalar parameters:

F̄S(X; Θ̄S) = γ
L∑

l=0

λl[
→
H

(l)

;
←
H

(l)

] (1.42)

The transferred parameters are thus:

Θ̄S = {γ, λ0 . . . λL} ∪Θ(cnn) ∪
→
Θ ∪

←
Θ (1.43)

During pretraining, the LSTMs serve as left-to-right and right-to-left autoregressive
language models. Let F (lm) : Rd → R|L| be an additional linear layer with parameters

Θ(lm). Let ΘS = Θ(cnn) ∪
→
Θ ∪

←
Θ ∪ Θ(lm). Then the autoregressive language models are

defined as: →
P̂ (y|X1:t−1; ΘS) ∝ exp(F (lm)(

→
ht−1; Θ(lm))IL(y))

←
P̂ (y|Xt+1:|X|; ΘS) ∝ exp(F (lm)(

←
ht+1; Θ(lm))IL(y))

(1.44)

ELMo is trained to minimize the negative log likelihood of the tokens of the source
training set:

L(ΘS) = −
∑

X∈D(train)
S

1

|X|

|X|∑

t=1

(
ln
→
P̂ (xt|X1:t−1; ΘS) + ln

←
P̂ (xt|Xt+1:|X|; ΘS)

)
(1.45)

While ELMo is a bidirectional LSTM, its bidirectionality is “shallow”, since its forward
and backward LSTMs do not communicate with each other. If they did, the forward LSTM
would receive information about words to the right of the current position (and vice versa),
which would render the language modeling task trivial.

1.5.2.2 BERT

BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019)
was proposed as a solution to the lack of deep bidirectionality in autoregressive language

47



models. It has since become one of the most popular pretrained models in the NLP
community (Wolf et al., 2020). We use BERT in Chapters 2, 3 and 4.

BERT is a pretrained Transformer model. One of its innovative features is the ability
to encode single texts X and text pairs X(1), X(2) with the same architecture. Single texts
are tokenized as:

X = [CLS], x1 . . . xT , [SEP] (1.46)

where [SEP], [CLS] ∈ L are special tokens. Text pairs are tokenized as:

X = [CLS], x
(1)
1 . . . x

(1)
T1
, [SEP], x

(2)
1 . . . x

(2)
T2
, [SEP] (1.47)

To differentiate between text pairs, BERT adds special trainable embeddings g(1),g(2) ∈ Rd

to Equation 1.25. For simplicity, we will abstract away from the special tokens and the
single text/text pair distinction, and refer to any input as X = x1 . . . xT .

BERT produces contextualized token embeddings H ∈ R|X|×d, where H = F (tf)(X; Θ(tf))
(see Section 1.4.3.2). It can also produce one sentence embedding s ∈ Rd that summarizes
the entire input. Let F (pool) be an additional linear layer with parameters Θ(pool). Then:

s = tanh(F (pool)(h1; Θ(pool))) (1.48)

When using BERT for transfer learning, one would either define F̄S(X; Θ̄S) = H or
F̄S(X; Θ̄S) = s, depending on the type of embedding that is required. The transferred
parameters are thus Θ̄S = Θ(tf) or Θ̄S = Θ(tf) ∪Θ(pool).

BERT is pretrained on two source tasks: masked language modeling (MLM) and next
sentence prediction (NSP). Let Θ(mlm) and Θ(nsp) be the parameters associated with each
task. The full set of source model parameters is thus:

ΘS = Θ̄S ∪Θ(mlm) ∪Θ(nsp) (1.49)

NSP: NSP is a binary classification task. Given two texts X(1), X(2), which are con-
catenated into a single input X = x1 . . . xT as described above, the model is trained to
predict whether X(1) and X(2) are consecutive sequences of the source training set D(train)

S ,
or whether they are randomly combined. (In practice, the true input to NSP is a noisy
version of X, denoted X̄, which will be described below.)

The classification is done by a linear layer F (nsp) : Rd → R2, which sits on top of the sen-
tence embedding s. The output space of the NSP task is Y = {C(onsecutive),R(andom)}.
The probability of Y ∈ Y is predicted as:

P̂ (nsp)(Y |X̄; ΘS) ∝ exp(F (nsp)(s; Θ(nsp))IY(Y )
) (1.50)

The loss is the negative log likelihood of the true labels, which are created during the
preprocessing of the training set:

L(nsp)(ΘS) = −
∑

(X,Y )∈D(train)
S

ln P̂ (nsp)(Y |X̄; ΘS) (1.51)
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MLM: The MLM task defines the noisy input X̄ by selecting up to 15% of available
token positions in X for masking. Let Q(X) ⊂ {1 . . . |X|} be the set of selected positions,
and let r ∼ U(0, 1) be a random uniform variable. Let [MASK] ∈ L be a special token.
Then X̄ is constructed as follows:

x̄t =





[MASK] if t ∈ Q(X) ∧ r ≤ 0.8

x′ ∼ L if t ∈ Q(X) ∧ 0.8 < r ≤ 0.9

xt otherwise

(1.52)

The model tries to reconstruct the original tokens. To do so, it predicts probability
distributions over L via a feed forward layer F (mlm), which sits on top of the contextualized
token embeddings:

P̂
(mlm)
t (y|X̄; ΘS) ∝ exp(F (mlm)

S (ht; Θ(mlm))IL(y)) (1.53)

The MLM loss is the average negative log likelihood of the original tokens:

L(mlm)(ΘS) = −
∑

(X,Y )∈D(train)
S

1

|Q(X)|
∑

t∈Q(X)

ln P̂
(mlm)
t (xt|X̄; ΘS) (1.54)

MLM is not an autoregressive objective. This means that if two words xt, xt′ are masked
at the same time, the model cannot learn P̂t(xt|xt′) or P̂t′(xt′ |xt). The more recently
proposed XLNet model (Yang et al., 2019) addresses this problem by factorizing the word
order. Empirical studies by Liu et al. (2019b) suggest that the non-autoregressive nature of
MLM is not a big problem in practice, especially if masking patterns vary between training
epochs.

1.5.2.3 InferSent

InferSent (Conneau et al., 2017) is a sentence encoder for sentence-level transfer learning.
It produces one embedding s ∈ Rd per sentence X. In Chapter 4, we use InferSent as a
baseline for duplicate question detection.

InferSent is a BiLSTM on top of non-contextualized word vectors. Let Θ̄S be the
combined parameters of the BiLSTM and word vectors, and let H be the matrix of contex-
tualized word embeddings returned by the BiLSTM, as described in Section 1.4.3.1. The
sentence embedding is derived by global max pooling:

F̄S(X; Θ̄S) = s =




maxt(ht,1)
...

maxt(ht,d)


 (1.55)

The non-contextualized embeddings are initialized with pretrained GloVe embeddings,
i.e., some parameters of InferSent were implicitly pretrained on the GloVe task (see Sec-
tion 1.5.1.3). Additionally, the BiLSTM is pretrained on the Stanford natural language
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inference (SNLI) dataset (Bowman et al., 2015), which is a popular dataset for sentence-
level transfer learning. SNLI is a sentence-pair classification task, where a model pre-
dicts what relationship holds between premise and hypothesis sentences. The input space
is the space of possible sentence pairs X = L+ × L+, and the output space is Y =
{E(ntails),C(ontradicts),N(eutral)}.

Let F (nli) be a feed forward layer with parameters Θ(nli) = {W(1) ∈ Rd′×4d,W(2) ∈
R|Y|×d′ ,b(1) ∈ Rd′ ,b(2) ∈ R|Y|} and an elementwise non-linearity G. F (nli) operates on the
concatenated sentence embeddings, their elementwise absolute difference and Hadamard
product:

F (nli)(s(1), s(2); Θ(nli)) = W(2)G(W(1)[s(1); s(2); abs(s(1)−s(2)); s(1)�s(2)]+b(1))+b(2) (1.56)

Let ΘS = Θ̄S ∪ Θ(nli). The probability of the label Y ∈ Y , given a premise-hypothesis
pair, is defined as:

P̂ (Y |X(1), X(2); ΘS) ∝ exp
(
F (nli)(F̄S(X(1); Θ̄S), F̄S(X(2); Θ̄S); Θ(nli))IY (Y )

)
(1.57)

The loss is then simply the negative log likelihood of the true labels in the SNLI training
set:

L(ΘS) = −
∑

((X(1),X(2)),Y )∈D(train)
S

ln P̂ (Y |X(1), X(2); ΘS) (1.58)

1.5.2.4 USE

USE (Universal Sentence Encoder) (Cer et al., 2018) is a more recent pretrained sentence
encoder, which is based on the Transformer architecture. In contrast to InferSent and the
other pretrained models described in this section, the source code and some of the training
data of USE are not publicly available. As a result, it is difficult to reproduce or customize
the pretraining process, and the model is normally used as an “off-the-shelf” blackbox. We
use USE as part of our sentence meta-embeddings in Chapters 4 and 5.

Like InferSent, USE produces one sentence embedding s ∈ Rd per input X. The model
is pretrained on the following source tasks:

• Skip-thought (Kiros et al., 2015), which is similar to the NSP task.

• Response prediction (Henderson et al., 2017; Yang et al., 2018): Selecting the correct
next turn in conversational data.

• SNLI (Bowman et al., 2015), see Section 1.5.2.3.
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1.5.2.5 SBERT

Without additional supervision, sentence embeddings from BERT are not optimally suited
for sentence similarity tasks. SBERT (SentenceBERT) (Reimers and Gurevych, 2019) is a
modification of BERT that addresses this problem. We use SBERT as part of our sentence
meta-embeddings in Chapter 5.

SBERT embeds sentences by taking the unweighted average over the contextualized
token embeddings returned by the BERT architecture:

F̄S(X; Θ̄S) =
1

|X|

|X|∑

t=1

ht (1.59)

where ht and Θ̄S = Θ(tf) are defined in Section 1.5.2.2.
Due to the initialization with BERT, SBERT is implicitly pretrained on the MLM

and NSP tasks described in Section 1.5.2.2. Additionally, Reimers and Gurevych (2019)
pretrain SBERT on SNLI (Bowman et al., 2015), using an architecture that is similar to
the one described in Section 1.5.2.3. There are versions of SBERT that are pretrained on
other sentence pair tasks as well, however, we use the SNLI-only version in Chapter 5.

1.6 Summary of introduction

In Section 1.1.1, we stated the motivation of this thesis: Contextualized embeddings are
powerful, but they are expensive to pretrain and adapt. A worthwhile alternative is to
enhance existing contextualized embedding models with cheaper non-contextualized em-
beddings.

In Section 1.1.2, we stated our contributions to this line of research: injecting non-
contextualized word or entity embeddings into the BERT model (Chapters 2, 3), and cre-
ating meta-embeddings from contextualized and non-contextualized sentence embeddings
(Chapters 4, 5).

In Sections 1.2 through 1.5, we provided some necessary background information: We
introduced core concepts of deep learning and transfer learning, and we described the
architectures and pretrained models that are used in this thesis.

The remainder of this thesis consists of the four publications that were outlined in
Section 1.1.2.
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Abstract

Domain adaptation of Pretrained Language
Models (PTLMs) is typically achieved by un-
supervised pretraining on target-domain text.
While successful, this approach is expensive
in terms of hardware, runtime and CO2 emis-
sions. Here, we propose a cheaper alternative:
We train Word2Vec on target-domain text and
align the resulting word vectors with the word-
piece vectors of a general-domain PTLM. We
evaluate on eight English biomedical Named
Entity Recognition (NER) tasks and compare
against the recently proposed BioBERT model.
We cover over 60% of the BioBERT – BERT
F1 delta, at 5% of BioBERT’s CO2 footprint
and 2% of its cloud compute cost. We also
show how to quickly adapt an existing general-
domain Question Answering (QA) model to an
emerging domain: the Covid-19 pandemic.1

1 Introduction

Pretrained Language Models (PTLMs) such as
BERT (Devlin et al., 2019) have spearheaded ad-
vances on many NLP tasks. Usually, PTLMs
are pretrained on unlabeled general-domain and/or
mixed-domain text, such as Wikipedia, digital
books or the Common Crawl corpus.

When applying PTLMs to specific domains, it
can be useful to domain-adapt them. Domain adap-
tation of PTLMs has typically been achieved by pre-
training on target-domain text. One such model is
BioBERT (Lee et al., 2020), which was initialized
from general-domain BERT and then pretrained
on biomedical scientific publications. The domain
adaptation is shown to be helpful for target-domain
tasks such as biomedical Named Entity Recogni-
tion (NER) or Question Answering (QA). On the
downside, the computational cost of pretraining can
be considerable: BioBERTv1.0 was adapted for ten

1www.github.com/npoe/covid-qa

days on eight large GPUs (see Table 1), which is
expensive, environmentally unfriendly, prohibitive
for small research labs and students, and may delay
prototyping on emerging domains.

We therefore propose a fast, CPU-only domain-
adaptation method for PTLMs: We train
Word2Vec (Mikolov et al., 2013a) on target-domain
text and align the resulting word vectors with the
wordpiece vectors of an existing general-domain
PTLM. The PTLM thus gains domain-specific lexi-
cal knowledge in the form of additional word vec-
tors, but its deeper layers remain unchanged. Since
Word2Vec and the vector space alignment are effi-
cient models, the process requires a fraction of the
resources associated with pretraining the PTLM
itself, and it can be done on CPU.

In Section 4, we use the proposed method to
domain-adapt BERT on PubMed+PMC (the data
used for BioBERTv1.0) and/or CORD-19 (Covid-
19 Open Research Dataset). We improve over
general-domain BERT on eight out of eight biomed-
ical NER tasks, using a fraction of the compute cost
associated with BioBERT. In Section 5, we show
how to quickly adapt an existing Question Answer-
ing model to text about the Covid-19 pandemic,
without any target-domain Language Model pre-
training or finetuning.

2 Related work

2.1 The BERT PTLM

For our purpose, a PTLM consists of three parts:
A tokenizer TLM : L+ → L+

LM, a wordpiece em-
bedding lookup function ELM : LLM → RdLM

and an encoder function FLM. LLM is a lim-
ited vocabulary of wordpieces. All words from
the natural language L+ that are not in LLM

are tokenized into sequences of shorter word-
pieces, e.g., dementia becomes dem ##ent ##ia.
Given a sentence S = [w1, . . . , wT ], tokenized
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size Domain adaptation hardware Power(W) Time(h) CO2(lbs) Google Cloud $

BioBERTv1.0 base 8 NVIDIA v100 GPUs (32GB) 1505 240 544 1421 – 4762
BioBERTv1.1 base 8 NVIDIA v100 GPUs (32GB) 1505 552 1252 3268 – 10952
GreenBioBERT (Section 4) base 12 Intel Xeon E7-8857 CPUs, 30GB RAM 1560 12 28 16 – 76
GreenCovidSQuADBERT (Section 5) large 12 Intel Xeon E7-8857 CPUs, 40GB RAM 1560 24 56 32 – 152

Table 1: Domain adaptation cost. CO2 emissions are calculated according to Strubell et al. (2019). Since our
hardware configuration is not available on Google Cloud, we take an m1-ultramem-40 instance (40 vCPUs, 961GB
RAM) to estimate an upper bound on our Google Cloud cost.

as TLM(S) = [TLM(w1); . . . ; TLM(wT )], ELM em-
beds every wordpiece in TLM(S) into a real-valued,
trainable wordpiece vector. The wordpiece vec-
tors of the entire sequence are stacked and fed into
FLM. Note that we consider position and segment
embeddings to be a part of FLM rather than ELM.

In the case of BERT, FLM is a Transformer
(Vaswani et al., 2017), followed by a final Feed-
Forward Net. During pretraining, the Feed-
Forward Net predicts the identity of masked word-
pieces. When finetuning on a supervised task, it is
usually replaced with a randomly initialized layer.

2.2 Domain-adapted PTLMs

Domain adaptation of PTLMs is typically achieved
by pretraining on unlabeled target-domain text.
Some examples of such models are BioBERT
(Lee et al., 2020), which was pretrained on the
PubMed and/or PubMed Central (PMC) corpora,
SciBERT (Beltagy et al., 2019), which was pre-
trained on papers from SemanticScholar, Clinical-
BERT (Alsentzer et al., 2019; Huang et al., 2019a)
and ClinicalXLNet (Huang et al., 2019b), which
were pretrained on clinical patient notes, and Adapt-
aBERT (Han and Eisenstein, 2019), which was
pretrained on Early Modern English text. In most
cases, a domain-adapted PTLM is initialized from
a general-domain PTLM (e.g., standard BERT),
though Beltagy et al. (2019) report better results
with a model that was pretrained from scratch with
a custom wordpiece vocabulary. In this paper, we
focus on BioBERT, as its domain adaptation cor-
pora are publicly available.

Acc@1 Acc@5 Acc@10

train (19.8K words) 53.6 63.5 65.7
heldout (2.2K words) 39.4 51.6 54.3

Table 2: LW2V → LLM alignment accuracy (%), i.e.,
how often the identical string is in the top-K nearest
neighbors.

2.3 Word vectors
Word vectors are distributed representations of
words that are trained on unlabeled text. Con-
trary to PTLMs, word vectors are non-contextual,
i.e., a word type is always assigned the same vec-
tor, regardless of context. In this paper, we use
Word2Vec (Mikolov et al., 2013a) to train word
vectors. We will denote the Word2Vec lookup func-
tion as EW2V : LW2V → RdW2V .

2.4 Word vector space alignment
Word vector space alignment has most frequently
been explored in the context of cross-lingual word
embeddings. For instance, Mikolov et al. (2013b)
align English and Spanish Word2Vec spaces by a
simple linear transformation. Wang et al. (2019)
use a related method to align cross-lingual word
vectors and multilingual BERT wordpiece vectors.
In this paper, we apply the method to the problem
of domain adaptation within the same language.

3 Method

In the following, we assume access to a general-
domain PTLM, as described in Section 2.1, and a
corpus of unlabeled target-domain text.

3.1 Creating new input vectors
In a first step, we train Word2Vec on the target-
domain corpus. In a second step, we take the in-
tersection of LLM and LW2V. In practice, the in-
tersection mostly contains wordpieces from LLM

that correspond to standalone words. It also con-
tains single characters and other noise, however, we
found that filtering them does not improve align-
ment quality. In a third step, we use the intersec-
tion to fit an unconstrained linear transformation
W ∈ RdLM×dW2V via least squares:

argmin
W

∑

x∈LLM∩LW2V

||WEW2V(x)− ELM(x)||22

Intuitively, W makes Word2Vec vectors “look
like” the PTLM’s native wordpiece vectors, just
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Query NNs of query in ELM[LLM] NNs of query in WEW2V[LW2V]

query ∈ LW2V ∩ LLM

Boldface: Training vector pairs

surgeon physician, psychiatrist, surgery surgeon, urologist, neurosurgeon
surgeon surgeon, physician, researcher neurosurgeon, urologist, radiologist
depression Depression, recession, depressed depression, Depression, hopelessness
depression depression, anxiety, anxiousness depressive, insomnia, Depression
fatal lethal, deadly, disastrous fatal, lethal, deadly
fatal fatal, catastrophic, disastrous lethal, devastating, disastrous

query ∈ LW2V − LLM

ventricular cardiac, pulmonary, mitochondrial atrial, ventricle, RV
dementia diabetes, Alzheimer, autism VaD, MCI, AD
suppressants medications, medicines, medication suppressant, prokinetics, painkillers
anesthesiologist surgeon, technician, psychiatrist anesthetist, anaesthesiologist, anaesthetist
nephrotoxicity toxicity, inflammation, contamination hepatotoxicity, ototoxicity, cardiotoxicity
impairment inability, disruption, disorders impairments, deficits, deterioration

Table 3: Examples of within-space and cross-space nearest neighbors (NNs) by cosine similarity in Green-
BioBERT’s wordpiece embedding layer. Blue: Original wordpiece space. Green: Aligned Word2Vec space.

like cross-lingual alignment makes word vectors
from one language “look like” word vectors from
another language. In Table 2, we report word align-
ment accuracy when we split LLM ∩ LW2V into a
training and development set.2 In Table 3, we show
examples of within-space and cross-space nearest
neighbors after alignment.

3.2 Updating the wordpiece embedding layer

Next, we redefine the wordpiece embedding layer
of the PTLM. The most radical strategy would be to
replace the entire layer with the aligned Word2Vec
vectors:

ÊLM : LW2V → RdLM ; ÊLM(x) = WEW2V(x)

In initial experiments, this strategy led to a
drop in performance, presumably because func-
tion words are not well represented by Word2Vec,
and replacing them disrupts BERT’s syntactic abil-
ities. To prevent this problem, we leave existing
wordpiece vectors intact and only add new ones:

ÊLM : LLM ∪ LW2V → RdLM ;

ÊLM(x) =

{
ELM(x) if x ∈ LLM

WEW2V(x) otherwise
(1)

3.3 Updating the tokenizer

In a final step, we update the tokenizer to account
for the added words. Let TLM be the standard
BERT tokenizer, and let T̂LM be the tokenizer that
treats all words in LLM ∪ LW2V as one-wordpiece
tokens, while tokenizing any other words as usual.

In practice, a given word may or may not benefit
from being tokenized by T̂LM instead of TLM. To

2Since we are not primarily interested in word alignment
accuracy, we use the entire intersection as a training set in all
other experiments.

give a concrete example, 82% of the words in the
BC5CDR NER dataset that end in the suffix -ia are
part of a disease entity (e.g., dementia). TLM tok-
enizes this word as dem ##ent ##ia, thereby expos-
ing this strong orthographic cue to the model. As
a result, TLM improves recall on -ia diseases. But
there are many cases where wordpiece tokeniza-
tion is meaningless or misleading. For instance
euthymia (not a disease) is tokenized by TLM as e
##uth ##ym ##ia, making it likely to be classified
as a disease. By contrast, T̂LM gives euthymia a
one-wordpiece representation that depends only on
distributional semantics. We find that using T̂LM
improves precision on -ia diseases.

To combine these complementary strengths, we
use a 50/50 mixture of TLM-tokenization and T̂LM-
tokenization when finetuning the PTLM on a task.
At test time, we use both tokenizers and mean-pool
the outputs. Let o(S; T ) be some output of interest
(e.g., a logit), given sentence S tokenized by T .
We predict:

ô(S) =
o(S; TLM) + o(S; T̂LM)

2

4 Experiment 1: Biomedical NER

In this section, we use the proposed method to
create GreenBioBERT, an inexpensive and envi-
ronmentally friendly alternative to BioBERT. Re-
call that BioBERTv1.0 (biobert v1.0 pubmed pmc)
was initialized from general-domain BERT (bert-
base-cased) and then pretrained on PubMed+PMC.

4.1 Domain adaptation
We train Word2Vec with vector size dW2V =
dLM = 768 on PubMed+PMC (see Appendix for
details). Then, we update the wordpiece embed-
ding layer and tokenizer of general-domain BERT
(bert-base-cased) as described in Section 3.
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BERT (ref) BioBERTv1.0 (ref) BioBERTv1.1 (ref) GreenBioBERT
Biomedical NER task (NER task ID) (Lee et al., 2020) (Lee et al., 2020) (Lee et al., 2020) (with standard error of the mean)

BC5CDR-disease (Li et al., 2016) (1) 81.97 / 82.48 / 82.41 85.86 / 87.27 / 86.56 86.47 / 87.84 / 87.15 84.88 (.07) / 85.29 (.12) / 85.08 (.08)
NCBI-disease (Doğan et al., 2014) (2) 84.12 / 87.19 / 85.63 89.04 / 89.69 / 89.36 88.22 / 91.25 / 89.71 85.49 (.23) / 86.41 (.15) / 85.94 (.16)
BC5CDR-chem (Li et al., 2016) (3) 90.94 / 91.38 / 91.16 93.27 / 93.61 / 93.44 93.68 / 93.26 / 93.47 93.82 (.11) / 92.35 (.17) / 93.08 (.07)
BC4CHEMD (Krallinger et al., 2015) (4) 91.19 / 88.92 / 90.04 92.23 / 90.61 / 91.41 92.80 / 91.92 / 92.36 92.80 (.04) / 89.78 (.07) / 91.26 (.04)
BC2GM (Smith et al., 2008) (5) 81.17 / 82.42 / 81.79 85.16 / 83.65 / 84.40 84.32 / 85.12 / 84.72 83.34 (.15) / 83.58 (.09) / 83.45 (.10)
JNLPBA (Kim et al., 2004) (6) 69.57 / 81.20 / 74.94 72.68 / 83.21 / 77.59 72.24 / 83.56 / 77.49 71.93 (.12) / 82.58 (.12) / 76.89 (.10)
LINNAEUS (Gerner et al., 2010) (7) 91.17 / 84.30 / 87.60 93.84 / 86.11 / 89.81 90.77 / 85.83 / 88.24 92.50 (.17) / 84.54 (.26) / 88.34 (.18)
Species-800 (Pafilis et al., 2013) (8) 69.35 / 74.05 / 71.63 72.84 / 77.97 / 75.31 72.80 / 75.36 / 74.06 73.19 (.26) / 75.47 (.33) / 74.31 (.24)

Table 4: Biomedical NER test set precision / recall / F1 (%). “(ref)”: Reference scores from Lee et al. (2020).
Boldface: Best model in row. Underlined: Best model without target-domain LM pretraining.
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Figure 1: NER test set F1, transformed as (x −
BERT(ref))/(BioBERTv1.0(ref) − BERT(ref)). This
plot shows what portion of the reported BioBERT –
BERT F1 delta is covered. “(ref)”: Reference scores
from Lee et al. (2020). “(repro)”: Results of our repro-
duction experiments. Error bars: Standard error of the
mean.

NER task ID (1) (2) (3) (4) (5) (6) (7) (8)

non-aligned -4.88 -3.50 -4.13 -3.34 -2.34 -0.56 -0.84 -4.63
random init -4.33 -3.60 -3.19 -3.19 -1.92 -0.50 -0.84 -3.58

Table 5: Absolute drop in dev set F1 when using non-
aligned word vectors or randomly initialized word vec-
tors, instead of aligned word vectors.

4.2 Finetuning

We finetune GreenBioBERT on the eight publicly
available NER tasks used in Lee et al. (2020). We
also do reproduction experiments with general-
domain BERT and BioBERTv1.0, using the same
setup as our model. See Appendix for details on
preprocessing and hyperparameters. Since some of
the datasets are sensitive to the random seed, we
report mean and standard error over eight runs.

4.3 Results and discussion

Table 4 shows entity-level precision, recall and F1,
as measured by the CoNLL NER scorer. For ease
of visualization, Figure 1 shows test set F1 shifted
and scaled as

f(x) =
x− BERT(ref)

BioBERTv1.0(ref) − BERT(ref)

where BERT(ref) and BioBERTv1.0(ref) are re-
ported scores from Lee et al. (2020). In other
words, the figure shows what portion of the re-
ported BioBERT – BERT F1 delta is covered by
our less expensive GreenBioBERT model. On av-
erage, we cover between 61% and 70% of the delta
(61% for BioBERTv1.0, 70% for BioBERTv1.1,
and 61% if we take our reproduction experiments
as reference points).

4.3.1 Ablation study
To test whether the improvements over general-
domain BERT are due to the aligned Word2Vec
vectors, or just to the availability of additional word
vectors in general, we perform an ablation study
where we replace the aligned vectors with their
non-aligned counterparts (by setting W = 1 in Eq.
1) or with randomly initialized vectors. Table 5
shows that dev set F1 drops on all datasets under
these circumstances, i.e., vector space alignment
seems to be important.

5 Experiment 2: Covid-19 QA

In this section, we use the proposed method to
quickly adapt an existing general-domain QA
model to an emerging target domain: the Covid-19
pandemic. Our baseline model is SQuADBERT,3

an existing BERT model that was finetuned on the
general-domain SQuAD dataset (Rajpurkar et al.,
2016). We evaluate on Deepset-AI Covid-QA
(Möller et al., 2020), a SQuAD-style dataset with
2019 annotated span-selection questions about 147
papers from CORD-19 (Covid-19 Open Research
Dataset).4 We assume that there is no labeled target-
domain data for finetuning on the task, and instead
use the entire Covid-QA dataset as a test set. This
is a realistic setup for an emerging domain without
annotated training data.

3www.huggingface.co/bert-large-uncased-
whole-word-masking-finetuned-squad

4https://pages.semanticscholar.org/
coronavirus-research
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domain adaptation corpus size EM F1 substr

SQuADBERT ——– 33.04 58.24 65.87

GreenCovid- CORD-19 only 2GB 34.62 60.09 68.20
SQuADBERT CORD-19+PubMed+PMC 94GB 34.32 60.23 68.00

Table 6: Results (%) on Deepset-AI Covid-QA. EM
(exact answer match) and F1 (token-level F1 score) are
evaluated with the SQuAD scorer. “substr”: Predic-
tions that are a substring of the gold answer. Much
higher than EM, because many gold answers are not
minimal answer spans (see Appendix, “Notes on Covid-
QA”, for an example).

5.1 Domain adaptation

We train Word2Vec with vector size dW2V =
dLM = 1024 on CORD-19 and/or PubMed+PMC.
The process takes less than an hour on CORD-
19 and about one day on the combined corpus,
again without the need for a GPU. Then, we update
SQuADBERT’s wordpiece embedding layer and
tokenizer, as described in Section 3. We refer to
the resulting model as GreenCovidSQuADBERT.

5.2 Results and discussion

Table 6 shows that GreenCovidSQuADBERT out-
performs general-domain SQuADBERT on all mea-
sures. Interestingly, the small CORD-19 corpus is
enough to achieve this result (compare “CORD-19
only” and “CORD-19+PubMed+PMC”), presum-
ably because it is specific to the target domain and
contains the Covid-QA context papers.

6 Conclusion

As a reaction to the trend towards high-resource
models, we have proposed an inexpensive, CPU-
only method for domain-adapting Pretrained Lan-
guage Models: We train Word2Vec vectors on
target-domain data and align them with the word-
piece vector space of a general-domain PTLM.

On eight biomedical NER tasks, we cover over
60% of the BioBERT – BERT F1 delta, at 5%
of BioBERT’s domain adaptation CO2 footprint
and 2% of its cloud compute cost. We have also
shown how to rapidly adapt an existing BERT QA
model to an emerging domain – the Covid-19 pan-
demic – without the need for target-domain Lan-
guage Model pretraining or finetuning.

We hope that our approach will benefit practi-
tioners with limited time or resources, and that it
will encourage environmentally friendlier NLP.

Acknowledgements

This research was funded by Siemens AG. We
thank our anonymous reviewers for their helpful
comments.

References
Emily Alsentzer, John Murphy, William Boag, Wei-

Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clin-
ical BERT embeddings. In 2nd Clinical Natural
Language Processing Workshop, pages 72–78, Min-
neapolis, USA.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In EMNLP-IJCNLP, pages 3606–3611, Hong Kong,
China.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186, Min-
neapolis, USA.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A Smith. 2019. Show your
work: Improved reporting of experimental results.
In EMNLP-IJCNLP, pages 2185–2194, Hong Kong,
China.
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Inexpensive Domain Adaptation of
Pretrained Language Models (Appendix)

Word2Vec training

We downloaded the PubMed, PMC and CORD-19
corpora from:

• https://ftp.ncbi.nlm.nih.gov/pub/
pmc/oa_bulk/ [20 January 2020, 68GB raw text]

• https://ftp.ncbi.nlm.nih.gov/pubmed/
baseline/ [20 January 2020, 24GB raw text]

• https://pages.semanticscholar.org/
coronavirus-research [17 April 2020, 2GB
raw text]

We extract all abstracts and text bodies and apply
the BERT basic tokenizer (a rule-based word tok-
enizer that standard BERT uses before wordpiece
tokenization). Then, we train CBOW Word2Vec5

with negative sampling. We use default parame-
ters except for the vector size (which we set to
dW2V = dLM).

Experiment 1: Biomedical NER

Pretrained models
General-domain BERT and BioBERTv1.0 were
downloaded from:

• www.storage.googleapis.com/bert_
models/2018_10_18/cased_L-12_H-
768_A-12.zip

• www.github.com/naver/biobert-
pretrained

Data
We downloaded the NER datasets by follow-
ing instructions on www.github.com/dmis-lab/

biobert#Datasets. For detailed dataset statistics,
see Lee et al. (2020).

Preprocessing
We use Lee et al. (2020)’s preprocessing strategy:
We cut all sentences into chunks of 30 or fewer
whitespace-tokenized words (without splitting in-
side labeled spans). Then, we tokenize every chunk
S with T = TLM or T = T̂LM and add special
tokens:

X = [CLS] T (S) [SEP]

Word-initial wordpieces in T (S) are labeled as
B(egin), I(nside) or O(utside), while non-word-
initial wordpieces are labeled as X(ignore).

5www.github.com/tmikolov/word2vec

Modeling, training and inference
We follow Lee et al. (2020)’s implementation
(www.github.com/dmis-lab/biobert): We add
a randomly initialized softmax classifier on top
of the last BERT layer to predict the labels. We
finetune the entire model to minimize negative log
likelihood, with the AdamW optimizer (Loshchilov
and Hutter, 2018) and a linear learning rate sched-
uler (10% warmup). All finetuning runs were done
on a GeForce Titan X GPU (12GB).

At inference time, we gather the output logits
of word-initial wordpieces only. Since the number
of word-initial wordpieces is the same for TLM(S)
and T̂LM(S), this makes mean-pooling the logits
straightforward.

Hyperparameters
We tune the batch size and peak learning rate on
the development set (metric: F1), using the same
hyperparameter space as Lee et al. (2020):

Batch size: [10, 16, 32, 64]6

Learning rate: [1 · 10−5, 3 · 10−5, 5 · 10−5]

We train for 100 epochs, which is the upper end
of the 50–100 range recommended by the original
authors. After selecting the best configuration for
every task and model (see Table 7), we train the
final model on the concatenation of training and
development set, as was done by Lee et al. (2020).
See Figure 2 for expected maximum development
set F1 as a function of the number of evaluated hy-
perparameter configurations (Dodge et al., 2019).

Experiment 2: Covid-19 QA

Pretrained model
We downloaded the SQuADBERT baseline from:

• www.huggingface.co/bert-large-
uncased-whole-word-masking-
finetuned-squad

Data
We downloaded the Deepset-AI Covid-QA dataset
from:

• www.github.com/deepset-ai/COVID-
QA/blob/master/data/question-
answering/COVID-QA.json [24 June 2020]

6Since LINNAEUS and BC4CHEM have longer maximum
tokenized chunk lengths than the other datasets, our hardware
was insufficient to evaluate batch size 64 on them.
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At the time of writing, the dataset contains 2019
questions and gold answer spans. Every question
is associated with one of 147 research papers (con-
texts) from CORD-19.7 Since we do not do target-
domain finetuning, we treat the entire dataset as a
test set.

Preprocessing

We tokenize every question-context pair (Q,C)
with T = TLM or T = T̂LM, which yields
(T (Q), T (C)). Since T (C) is usually too long
to be digested in a single forward pass, we de-
fine a sliding window with width and stride N =

floor(509−|T (Q)|
2 ). At step n, the “active” win-

dow is between a
(l)
n = (n − 1)N + 1 and a

(r)
n =

min(|C|, nN). The input is defined as:

X(n) = [CLS] T (Q) [SEP]

T (C)
a
(l)
n −p(l)n :a

(r)
n +p

(r)
n

[SEP]

p
(l)
n and p

(r)
n are chosen such that |X(n)| = 512,

and such that the active window is in the center of
the input (if possible).

Modeling and inference

Feeding X(n) into the QA model yields start log-
its h′(start,n) ∈ R|X(n)| and end logits h′(end,n) ∈
R|X(n)|. We extract and concatenate the slices that
correspond to the active windows of all steps:

h(∗) ∈ R|T (C)|

h(∗) = [h
′(∗,1)
a
(l)
1 :a

(r)
1

; . . . ;h
′(∗,n)
a
(l)
n :a

(r)
n

; . . .]

Next, we map the logits from the wordpiece level
to the word level. This allows us to mean-pool the
outputs of TLM and T̂LM even when |TLM(C)| 6=
|T̂LM(C)|.

Let ci be a word in C and let T (C)j:j+|T (ci)| be
the corresponding wordpieces. The start and end
logits of ci are:

o
(∗)
i = maxj≤j′≤j+|T (ci)|[h

(∗)
j′ ]

Finally, we return the answer span Ck:k′ that
maximizes o

(start)
k + o

(end)
k′ , subject to the con-

straints that k′ does not precede k and the answer
contains no more than 500 characters.

7www.github.com/deepset-ai/COVID-
QA/issues/103

Notes on Covid-QA
There are some important differences between
Covid-QA and SQuAD, which make the task chal-
lenging:

• The Covid-QA contexts are full documents
rather than single paragraphs. Thus, the cor-
rect answer may appear several times, often
with slightly different wordings. But only a
single occurrence is annotated as correct, e.g.:

Question: What was the prevalence of Coro-
navirus OC43 in community samples in
Ilorin, Nigeria?

Correct: 13.3% (95% CI 6.9-23.6%) # from
main text

Predicted: 13.3%, 10/75 # from abstract

• SQuAD gold answers are defined as the
“shortest span in the paragraph that answered
the question” (Rajpurkar et al., 2016, p. 4),
but many Covid-QA gold answers are longer
and contain non-essential context, e.g.:

Question: When was the Middle East Res-
piratory Syndrome Coronavirus isolated
first?

Correct: (MERS-CoV) was first isolated in
2012, in a 60-year-old man who died in
Jeddah, KSA due to severe acute pneu-
monia and multiple organ failure

Predicted: 2012

These differences are part of the reason why the
exact match score is lower than the word-level F1
score and the substring score (see Table 6, bottom,
main paper).
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BERT (repro) BioBERTv1.0 (repro) GreenBioBERT
Biomedical NER task (ID) hyperparams dev set F1 hyperparams dev set F1 hyperparams dev set F1

BC5CDR-disease (1) 32, 3 · 10−5 82.12 10, 1 · 10−5 85.15 32, 1 · 10−5 83.90
NCBI-disease (2) 32, 3 · 10−5 87.52 32, 1 · 10−5 87.99 10, 3 · 10−5 88.43
BC5CDR-chem (3) 64, 3 · 10−5 91.00 32, 1 · 10−5 93.36 10, 1 · 10−5 92.59
BC4CHEMD (4) 16, 1 · 10−5 88.02 32, 1 · 10−5 89.35 16, 1 · 10−5 88.53
BC2GM (5) 32, 1 · 10−5 83.91 64, 3 · 10−5 85.54 64, 3 · 10−5 84.25
JNLPBA (6) 32, 5 · 10−5 85.18 32, 5 · 10−5 85.30 10, 3 · 10−5 85.10
LINNAEUS (7) 16, 1 · 10−5 96.67 32, 1 · 10−5 97.22 10, 1 · 10−5 96.49
Species-800 (8) 32, 1 · 10−5 72.70 32, 1 · 10−5 77.34 16, 1 · 10−5 75.93

Table 7: Best hyperparameters (batch size, peak learning rate) and best dev set F1 per NER task and model. BERT
(repro) and BioBERTv1.0 (repro) refer to our reproduction experiments.
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Figure 2: Expected maximum F1 on NER development sets as a function of the number of evaluated hyperparam-
eter configurations. Numbers in brackets are NER task IDs (see Table 7).
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Abstract

We present a novel way of injecting factual
knowledge about entities into the pretrained
BERT model (Devlin et al., 2019): We align
Wikipedia2Vec entity vectors (Yamada et al.,
2016) with BERT’s native wordpiece vector
space and use the aligned entity vectors as if
they were wordpiece vectors. The resulting
entity-enhanced version of BERT (called E-
BERT) is similar in spirit to ERNIE (Zhang
et al., 2019) and KnowBert (Peters et al.,
2019), but it requires no expensive further pre-
training of the BERT encoder. We evaluate
E-BERT on unsupervised question answering
(QA), supervised relation classification (RC)
and entity linking (EL). On all three tasks, E-
BERT outperforms BERT and other baselines.
We also show quantitatively that the original
BERT model is overly reliant on the surface
form of entity names (e.g., guessing that some-
one with an Italian-sounding name speaks Ital-
ian), and that E-BERT mitigates this problem.

1 Introduction

BERT (Devlin et al., 2019) and its successors (e.g.,
Yang et al. (2019); Liu et al. (2019); Wang et al.
(2019b)) continue to achieve state of the art per-
formance on various NLP tasks. Recently, there
has been interest in enhancing BERT with factual
knowledge about entities (Zhang et al., 2019; Pe-
ters et al., 2019). To this end, we introduce E-
BERT: We align Wikipedia2Vec entity vectors (Ya-
mada et al., 2016) with BERT’s wordpiece vector
space (Section 3.1) and feed the aligned vectors
into BERT as if they were wordpiece vectors (Sec-
tion 3.2). Importantly, we do not make any changes
to the BERT encoder itself, and we do no additional
pretraining. This stands in contrast to previous
entity-enhanced versions of BERT, such as ERNIE
or KnowBert, which require additional encoder pre-
training.

In Section 4, we evaluate our approach on
LAMA (Petroni et al., 2019), a recent unsupervised
QA benchmark for pretrained Language Models
(LMs). We set a new state of the art on LAMA,
with improvements over original BERT, ERNIE
and KnowBert. We also find that the original BERT
model is overly reliant on the surface form of en-
tity names, e.g., it predicts that a person with an
Italian-sounding name speaks Italian, regardless of
whether this is factually correct. To quantify this ef-
fect, we create LAMA-UHN (UnHelpfulNames),
a subset of LAMA where questions with overly
helpful entity names were deleted (Section 4.4).

In Section 5, we show how to apply E-BERT
to two entity-centric downstream tasks: relation
classification (Section 5.1) and entity linking (Sec-
tion 5.2). On the former task, we feed aligned entity
vectors as inputs, on the latter, they serve as inputs
and outputs. In both cases, E-BERT outperforms
original BERT and other baselines.

Summary of contributions.

• Introduction of E-BERT: Feeding entity vec-
tors into BERT without additional encoder
pretraining. (Section 3)

• Evaluation on the LAMA unsupervised QA
benchmark: E-BERT outperforms BERT,
ERNIE and KnowBert. (Section 4)

• LAMA-UHN: A harder version of the LAMA
benchmark with less informative entity names.
(Section 4.4)

• Evaluation on supervised relation classifica-
tion (Section 5.1) and entity linking (Sec-
tion 5.2).

• Upon publication, we will release LAMA-
UHN as well as E-BERTBASE and E-
BERTLARGE.1

1https://github.com/npoe/ebert
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2 Related work

2.1 BERT
BERT (Bidirectional Encoder Representations
from Transformers) is a Transformer (Vaswani
et al., 2017) that was pretrained as a masked LM
(MLM) on unlabeled text. At its base, BERT seg-
ments text into wordpieces from a vocabulary LWP.
Wordpieces are embedded into real-valued vectors
by a lookup function (denoted EBERT : LWP →
RdBERT). The wordpiece vectors are combined
with position and segment embeddings and then
fed into a stack of Transformer layers (the encoder,
denoted FBERT). During pretraining, some word-
pieces are replaced by a special [MASK] token.
The output of BERT is fed into a final feed-forward
net (the MLM head, denoted FMLM), to predict
the identity of the masked wordpieces. After pre-
training, the MLM head is usually replaced by a
task-specific layer, and the entire model is finetuned
on supervised data.

2.2 Entity-enhanced BERT
This paper adds to recent work on entity-enhanced
BERT models, most notably ERNIE (Zhang et al.,
2019) and KnowBert (Peters et al., 2019). ERNIE
and KnowBert are based on the design principle
that BERT be adapted to entity vectors: They intro-
duce new encoder layers to feed pretrained entity
vectors into the Transformer, and they require addi-
tional pretraining to integrate the new parameters.
In contrast, E-BERT’s design principle is that en-
tity vectors be adapted to BERT, which makes our
approach more efficient (see Section 3.3).

Two other knowledge-enhanced MLMs are KEP-
LER (Wang et al., 2019c) and K-Adapter (Wang
et al., 2020), which are based on Roberta (Liu et al.,
2019) rather than BERT. Their factual knowledge
does not stem from entity vectors – instead, they
are trained in a multi-task setting on relation classi-
fication and knowledge base completion.

2.3 Wikipedia2Vec
Wikipedia2Vec (Yamada et al., 2016) embeds
words and entities (Wikipedia URLs) into a com-
mon space. Given a vocabulary of words LWord

and a vocabulary of entities LEnt, it learns a lookup
embedding function EWikipedia : LWord ∪ LEnt →
RdWikipedia . The Wikipedia2Vec loss has three com-
ponents: (1) skipgram Word2Vec (Mikolov et al.,
2013a) operating on LWord, (2) a graph loss op-
erating on the Wikipedia hyperlink graph, whose

vertices are LEnt and (3) a version of Word2Vec
where words are predicted from entities. Loss (3)
ensures that entities and words are embedded into
the same space.

2.4 Vector space alignment
Our vector space alignment strategy is inspired by
cross-lingual word vector alignment (e.g., Mikolov
et al. (2013b); Smith et al. (2017)). A related
method was recently applied by Wang et al. (2019a)
to map cross-lingual word vectors into the multilin-
gual BERT wordpiece vector space.

2.5 Unsupervised QA
QA has typically been tackled as a supervised prob-
lem (e.g., Das et al. (2017); Sun et al. (2018)). Re-
cently, there has been interest in using unsupervised
LMs such as GPT-2 or BERT for this task (Radford
et al., 2019; Petroni et al., 2019). Davison et al.
(2019) mine unsupervised commonsense knowl-
edge from BERT, and Jiang et al. (2019) show the
importance of using good prompts for unsupervised
QA. None of this prior work differentiates quantita-
tively between factual knowledge of LMs and their
ability to reason about the surface form of entity
names.

3 E-BERT

3.1 Aligning entity and wordpiece vectors
Conceptually, we want to transform the vectors of
the entity vector space EWikipedia[LEnt] in such a
way that they look to BERT like vectors from its
native wordpiece vector space EBERT[LWP]. We
model the transformation as an unconstrained lin-
ear mapping W ∈ RdBERT×dWikipedia . Since LWP

does not contain any entities (i.e., LWP ∩ LEnt =
{}), we fit the mapping on LWP ∩ LWord:

�

x∈LWP∩LWord

||WEWikipedia(x) − EBERT(x)||22

Since Wikipedia2Vec embeds LWord and LEnt into
the same space (see Section 2.3), W can be applied
to LEnt as well. We define the E-BERT embedding
function as:

EE-BERT : LEnt → RdBERT

EE-BERT(a) = WEWikipedia(a)

Table 1 shows that despite its simplicity, the
linear mapping achieves high alignment accuracies
on seen and unseen vector pairs.
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Acc@1 Acc@5 Acc@10

train (19.6K words) 90.9 95.7 96.6
development (2.2K words) 83.0 90.9 92.6

Table 1: LWord → LWP alignment accuracy (%),
i.e., how often the correct wordpiece vector is among
the top-K Nearest Neighbors (by cosine) of an aligned
Wikipedia2Vec word vector. In this table, we hold out
10 % of LWP∩LWord as a development set. In all other
experiments, we fit W on the entire intersection.

3.2 Using aligned entity vectors
We explore two strategies for feeding the aligned
entity vectors into the BERT encoder:

E-BERT-concat. E-BERT-concat combines en-
tity IDs and wordpieces by string concatenation,
with the slash symbol as separator (Schick and
Schütze, 2019). For example, the wordpiece-
tokenized input

The native language of Jean Mara ##is is [MASK] .2

becomes

The native language of Jean Marais / Jean Mara ##is is
[MASK] .

The entity ID (bold) is embedded by EE-BERT and
all wordpieces (italics) are embedded by EBERT

(see Figure 1). After the embedding operation, the
sequence of vectors is combined with position and
segment embeddings and fed into FBERT, just like
any normal sequence of wordpiece vectors.

E-BERT-concat is comparable to ERNIE or
KnowBert, which also represent entities as a com-
bination of surface form (wordpieces) and entity
vectors. But in contrast to ERNIE and KnowBERT,
we do not change or further pretrain the BERT
encoder itself.

E-BERT-replace. For ablation purposes, we de-
fine another variant of E-BERT that substitutes the
entity surface form with the entity vector. With
E-BERT-replace, our example becomes:

The native language of Jean Marais is [MASK] .

A note on entity links. So far, we assume that
we know which Wikipedia entity ID a given string
refers to, i.e., that we have access to gold entity
links. Depending on the nature of the task, these
gold entity links may be given as part of the dataset
(RC task), or they may be heuristically annotated

2For readability, we omit the special tokens [CLS] and
[SEP] from all examples.

The native language of Jean Marais / Jean Mara ##is ...

EBERT[LWP] EWikipedia[LEnt]

FBERT (BERT encoder)

EWikipedia[LWord]

W

BERT wordpiece layer Wikipedia2Vec

(linear transformation
fitted on intersection

before training)

EE-BERT[LEnt] =

WEWikipedia[LEnt]

(wordpiece vector space) (word vector space) (entity vector space)

(aligned entity vector space)

Figure 1: Schematic depiction of E-BERT-concat.

(see Appendix on how to reverse-map LAMA en-
tity names). In other scenarios, we need an entity
linker. In this respect, E-BERT is comparable to
ERNIE but not to KnowBert, which has a built-in
latent entity linker. Alternatively, we can train E-
BERT as an entity linker first (see Section 5.2) and
then use the resulting model to annotate training
data for a different task.

3.3 Implementation

We train cased Wikipedia2Vec on a re-
cent Wikipedia dump (2019-09-02), setting
dWikipedia = dBERT. We ignore Wikipedia
pages with fewer than 5 links (Wikipedia2Vec’s
default), with the exception of entities needed for
the downstream entity linking experiments (see
Section 5.2). This results in an entity vocabulary
of size |LEnt| = 2.7M.3

Computational cost. Training Wikipedia2Vec
took us ∼6 hours on 32 CPUs, and the cost of
fitting the linear transformation W is negligible.
We did not require a GPU. For comparison, Know-
Bert W+W was pretrained for 1.25M steps on up to
four Titan RTX GPUs, and ERNIE took one epoch
on the English Wikipedia. (ERNIE’s pretraining
hardware was not disclosed, but it seems likely that
a GPU was involved.)

4 Unsupervised QA

4.1 Data

The LAMA (LAnguage Model Analysis) bench-
mark (Petroni et al., 2019) probes for “factual and
commonsense knowledge” of pretrained LMs. In

3Due to the link threshold and some Wikidata-Wikipedia
mismatches, we lack entity vectors for 6% of LAMA ques-
tions and 10% of FewRel sentences (RC experiment, see Sec-
tion 5.1). In these cases, we fall back onto using wordpieces
only, i.e., onto standard BERT behavior.
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this paper, we use LAMA-Google-RE and LAMA-
T-REx (Elsahar et al., 2018), which are aimed at
factual knowledge. Contrary to most previous work
on QA, LAMA tests LMs without supervised fine-
tuning. Petroni et al. (2019) claim that BERT’s per-
formance on LAMA is comparable with a knowl-
edge base (KB) automatically extracted from text,
and speculate that BERT and similar models “might
become a viable alternative” to such KBs.

The LAMA task follows this schema: Given
a KB triple (sub, rel, obj), the object is elicited
with a relation-specific cloze-style question, e.g.,
(Jean Marais, native-language, French) be-
comes: “The native language of Jean Marais is
[MASK].”4 The model predicts a probability distri-
bution over a limited vocabulary LLAMA ⊂ LWP

to replace [MASK], which is evaluated against the
surface form of the object (here: French).

4.2 Baselines

Our primary baselines are cased BERTBASE and
BERTLARGE

5 as evaluated in Petroni et al. (2019).
We also test ERNIE (Zhang et al., 2019)6 and
KnowBert W+W (Peters et al., 2019),7 two
entity-enhanced BERTBASE-type models.8 E-BERT,
ERNIE and KnowBert have entity vocabularies of
size 2.7M, 5M and 470K, respectively. As this
might put KnowBert at a disadvantage, Table 4
also reports performance on the subset of questions
whose gold subject is known to KnowBert.

4.3 Evaluation measure

We use the same evaluation measure as Petroni
et al. (2019): For a given k, we count a question
as 1 if the correct answer is among the top-k pre-
dictions and as 0 otherwise. Petroni et al. (2019)
call this measure Precision@k (P@k). Since this is
not in line with the typical use of the term “preci-

4LAMA provides oracle entity IDs, however, they are not
used by the BERT baseline. For a fair evaluation, we ignore
them too and instead use the Wikidata query API (https://
query.wikidata.org) to infer entity IDs from surface
forms. See Appendix for details.

5https://github.com/huggingface/
transformers

6https://github.com/thunlp/ERNIE
7https://github.com/allenai/kb
8ERNIE and KnowBert are uncased models. We therefore

lowercase all questions for them and restrict predictions to the
intersection of their wordpiece vocabulary with lowercased
LLAMA. As a result, ERNIE and KnowBert select answers
from ∼18K candidates (instead of ∼21K), which should work
in their favor. We verify that all lowercased answers appear
in this vocabulary, i.e., ERNIE and KnowBert are in principle
able to answer all questions correctly.

original E-BERT- E-BERT- ERNIE Know-
BERT replace concat Bert

Jean Marais French French French french french
Daniel Ceccaldi Italian French French french italian
Orane Demazis Albanian French French french french
Sylvia Lopez Spanish French Spanish spanish spanish
Annick Alane English French French english english

Table 2: Native language (LAMA-T-REx:P103) of
French-speaking actors according to different models.
Model size is BASE.

sion” in information retrieval (Manning et al., 2008,
p. 161), we call the evaluation measure Hits@k.
Like Petroni et al. (2019), we first average within
relations and then across relations.

4.4 LAMA-UHN

Imagine a person who claims to know a lot of facts.
During a quiz, you ask them about the native lan-
guage of actor Jean Marais. They correctly answer
“French.” For a moment you are impressed, until
you realize that Jean is a typical French name. So
you ask the same question about Daniel Ceccaldi (a
French actor with an Italian-sounding name). This
time, the person says “Italian.”

If this quiz were a QA benchmark, the person
would have achieved a respectable Hits@1 score
of 50%. Yet, you doubt that they really knew the
first answer.

Qualitative inspection of BERT’s answers to
LAMA suggests that the model often behaves less
like a KB and more like the person just described.
In Table 2 for instance, BERT predicts native lan-
guages that are plausible for people’s names, even
when there is no factual basis for these predictions.
This kind of name-based reasoning is a useful strat-
egy for getting a high score on LAMA, as the cor-
rect answer and the best name-based guess tend to
coincide (e.g., people with Italian-sounding names
frequently speak Italian). Hence, LAMA in its cur-
rent form cannot differentiate whether a model is
good at reasoning about (the surface form of) entity
names, good at memorizing facts, or both. To quan-
tify the effect, we create LAMA-UHN (UnHelpful
Names), a subset of LAMA where overly helpful
entity names are heuristically deleted:

Heuristic 1 (string match filter). We first delete
all KB triples (questions) where the correct answer
(e.g., Apple) is a case-insensitive substring of the
subject entity name (e.g., Apple Watch). This af-
fects 12% of all triples, and up to 81% for individ-
ual relations (see Table 3, top).
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Heuristic Relation % deleted Example of a deleted question

1 string match filter

T-REx:P176 (manufacturer) 81% Fiat Multipla is produced by [MASK:Fiat].
T-REx:P138 (named after) 75% Christmas Island is named after [MASK:Christmas].
T-REx:P1001 (applies to jurisdiction) 73% Australian Senate is a legal term in [MASK:Australia].
T-REx:P279 (subclass of) 51% lenticular galaxy is a subclass of [MASK:galaxy].
T-REx:P31 (instance of) 39% [Tantalon Castle] is a [MASK:castle].

2 person name filter

T-REx:P1412 (language used) 63% Fulvio Tomizza used to communicate in [MASK:Italian]. (1,1)
T-REx:P103 (native language) 58% The native language of Tommy Nilsson is [MASK:Swedish]. (-,1)
T-REx:P27 (nationality) 56% Harumi Inoue is a [MASK:Japan] citizen. (1,-)
T-REx:P20 (place of death) 31% Avraham Harman died in [MASK:Jerusalem]. (1,-)
T-REx:P19 (place of birth) 23% [Christel Bodenstein] was born in [MASK:Munich]. (3,3)

Table 3: Statistics and examples of LAMA questions with helpful entity names, which were deleted from LAMA-
UHN. We show the top-5 most strongly affected relations per heuristic. Numbers in brackets indicate which part(s)
of the person name triggered the person name filter, e.g., (-,1) means that the correct answer was ranked first for
the person’s last name, but was not in the top-3 for their first name.

Model size BASE LARGE

Dataset
Model original E-BERT- E-BERT- ERNIE Know- original E-BERT- E-BERT- K-

BERT replace concat Bert BERT replace concat Adapter

0 (original LAMA) 29.2 29.1 36.2 30.4 31.7 30.6 28.5 34.2 27.6
All 1 22.3 29.2 32.6 25.5 25.6 24.6 28.6 30.8 -
subjects 2 (LAMA-UHN) 20.2 28.2 31.1 24.7 24.6 23.0 27.8 29.5 21.7

LAMA-UHN complement 52.7 25.9 56.8 36.2 47.0 52.7 32.1 34.5 -

KnowBert 0 (original LAMA) 32.0 28.5 35.8 30.4 32.0 33.1 28.2 34.9 -
subjects 1 24.8 28.6 32.0 25.7 25.9 27.0 28.3 31.5 -
only 2 (LAMA-UHN) 22.8 27.7 30.6 24.9 25.1 25.5 27.4 30.6 -

Table 4: Mean Hits@1 on LAMA-Google-RE and LAMA-T-REx combined. 0: original LAMA dataset (Petroni
et al., 2019), 1: after string match filter, 2: after string match filter and person name filter (LAMA-UHN). “LAMA-
UHN complement”: Evaluating on all questions that were deleted from LAMA-UHN. “KnowBert subjects only”:
Evaluating on questions whose gold subject is in the KnowBert entity vocabulary. Results for K-Adapter are
calculated from Wang et al. (2020, Table 5). See Appendix for individual relations.

Heuristic 2 (person name filter). Entity names
can be revealing in ways that are more subtle than
string matches. As illustrated by our Jean Marais
example, a person’s name can be a useful prior for
guessing their native language and by extension,
their nationality, place of birth, etc. We therefore
use cloze-style questions to elicit name associations
inherent in BERT, and delete triples that correlate
with them.

The heuristic is best explained via an example.
Consider again (Jean Marais, native-language,
French). We whitespace-tokenize the subject’s
surface form Jean Marais into Jean and Marais.
If BERT considers either name to be a common
French name, then a correct answer is insufficient
evidence for factual knowledge about the entity
Jean Marais. On the other hand, if neither Jean
nor Marais are considered French, but a correct
answer is given regardless, we consider it sufficient
evidence of factual knowledge.

We query BERT with “[X] is a common name
in the following language: [MASK].” for [X] =
Jean and [X] = Marais. (Depending on the rela-
tion, we replace “language” with “city” or “coun-

try”.) If French is among the top-3 answers for
either question, we delete the original triple. We
apply this heuristic to T-REx:P19 (place of birth),
T-REx:P20 (place of death), T-REx:P27 (national-
ity), T-REx:P103 (native language), T-REx:P1412
(language used), Google-RE:place-of-death and
Google-RE:place-of-birth. See Table 3 (bottom)
for examples and statistics.

4.5 Results and discussion

Table 4 shows mean Hits@1 on the original LAMA
dataset (0), after applying the string match filter (1),
and after applying both filters (2, LAMA-UHN).
We also show mean Hits@1 on the LAMA-UHN
complement, i.e., on the set of all questions with
helpful entity names.

E-BERT-concatBASE sets a new state of the art
on LAMA, with major gains over original BERT.
To understand why, compare the performances
of original BERTBASE and E-BERT-replaceBASE

on LAMA-UHN and the LAMA-UHN comple-
ment: On LAMA-UHN, BERTBASE drops by
9% (relative to original LAMA), while E-BERT-
replaceBASE drops by less than 1%. On the comple-
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Figure 2: Left y-axis (bars): delta in mean Hits@1 relative to BERT on individual LAMA relations. Right y-axis
(crosses): frequency of questions where the answer is a substring of the subject entity name (i.e., questions that
would be deleted by the string match filter). Model size: BASE. Due to space constraints, we only show relations
with max absolute delta ≥ 0.075.

ment, BERTBASE gains over 20%, while E-BERT-
replaceBASE drops slightly. This suggests that
BERT’s performance on original LAMA is partly
due to the exploitation of helpful entity names,
while that of E-BERT-replace is due to factual
knowledge. Since E-BERT-concatBASE has access
to entity names and entity vectors, it can leverage
and combine these complementary sources of in-
formation.

For a more in-depth analysis, Figure 2 shows
Delta(Hits@1) w.r.t. BERT (bars, left axis) on
individual relations, along with the frequency of
questions whose correct answer is a substring of
the subject name (crosses, right axis). The losses
of E-BERT-replace are almost exclusively on re-
lations with a high frequency of “easy” substring
answers, while its gains are on relations where such
answers are rare. E-BERT-concat mitigates most of
the losses of E-BERT-replace while keeping most
of its gains. Figure 3 shows that gains of E-BERT-
concat over BERT, KnowBert and ERNIE in terms
of mean Hits@k are especially big for k > 1. This
means that while E-BERT-concat is moderately bet-
ter than the baselines at giving the correct answer,
it is a lot better at “almost giving the correct an-
swer”. Petroni et al. (2019) speculate that even
when factual knowledge is not salient enough for a
top-1 answer, it may still be useful when finetuning
on a downstream task.

5 Downstream tasks

We now demonstrate how to use E-BERT on two
downstream tasks: relation classification (RC) and
entity linking (EL). In both experiments, we keep
the embedding layer (EBERT and/or EE-BERT) fixed
but finetune all other encoder parameters. We use
the BERTBASE architecture throughout.

5.1 Relation classification
In relation classification (RC), a model learns to
predict the directed relation of entities asub and
aobj from text. For instance, given the sentence

Taylor was later part of the ensemble cast in MGM ’s classic
World War II drama “ Battleground ” ( 1949 ) .

with surface forms Battleground and World War
II referring to asub = Battleground (film) and
aobj = Word War II, the model should predict
the relation primary-topic-of-work. We have
three ways of embedding this example:

original BERT (wordpieces): [...] classic World War II
drama “ Battle ##ground ” ( 1949 ) .

E-BERT-concat: [...] classic World War II / World War II
drama “ Battleground (film) / Battle ##ground ” ( 1949 ) .

E-BERT-replace: [...] classic World War II drama “ Bat-
tleground (film) ” ( 1949 ) .

As before, entity IDs (bold) are embedded by
EE-BERT and wordpieces (italics) by EBERT.

Baselines. To assess the impact of vector
space alignment, we train two additional
models (Wikipedia2Vec-BERT-concat and
Wikipedia2Vec-BERT-replace) that feed non-
aligned Wikipedia2Vec vectors directly into BERT
(i.e., they use EWikipedia instead of EE-BERT to
embed entity IDs).

Data. We evaluate on a preprocessed dataset
from Zhang et al. (2019), which is a subset of the
FewRel corpus (Sun et al., 2018) (see Appendix
for details). We use the FewRel oracle entity IDs,
which are also used by ERNIE. Our entity cover-
age is lower than ERNIE’s (90% vs. 96%), which
should put us at a disadvantage. See Appendix for
details on data and preprocessing.
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Figure 3: Mean Hits@k for different k. Model size: BASE. The x-axis is on a logarithmic scale.

dev set test set

P R F1 P R F1

original BERT 85.88 85.81 85.75 85.57 85.51 85.45
E-BERT-concat 88.35 88.29 88.19 88.51 88.46 88.38
E-BERT-replace 87.24 87.15 87.09 87.34 87.33 87.22

Wikipedia2Vec-BERT-concat 85.96 85.71 85.69 85.94 85.93 85.84
Wikipedia2Vec-BERT-replace 77.25 77.11 77.07 77.63 77.52 77.45

ERNIE (Zhang et al., 2019) - - - 88.49 88.44 88.32

Table 5: RC macro precision, recall and F1 (%).

Modeling and hyperparameters. We adopt the
setup and hyperparameters of Zhang et al. (2019):
We use the # and $ tokens to mark subject and
object spans in the input, and we feed the last con-
textualized vector of the [CLS] token into a ran-
domly initialized softmax classifier. Like Zhang
et al. (2019), we use the Adam optimizer (Kingma
and Ba, 2014) with a linear learning rate scheduler
(10% warmup) and a batch size of 32. We tune the
number of training epochs and the peak learning
rate on the same parameter ranges as Zhang et al.
(2019). See Appendix for details.

Results and discussion. E-BERT-concat per-
forms better than original BERT and slightly bet-
ter than ERNIE (Table 5). Recall that ERNIE re-
quired additional encoder pretraining to achieve
this result. Interestingly, E-BERT-replace (which is
entity-only) beats original BERT (which is surface-
form-only), i.e., aligned entity vectors seem to be
more useful than entity names for this task. The
drop in F1 from E-BERT to Wikipedia2Vec-BERT
shows the importance of vector space alignment.

5.2 Entity linking

Entity linking (EL) is the task of detecting entity
spans in a text and linking them to the underlying
entity ID. While there are recent advances in fully
end-to-end EL (Broscheit, 2019), the task is typi-
cally broken down into three steps: (1) detecting
spans that are potential entity spans, (2) generat-
ing sets of candidate entities for these spans, (3)
selecting the correct candidate for each span.

For steps (1) and (2), we use KnowBert’s candi-
date generator (Peters et al., 2019), which is based
on a precomputed span-entity co-occurrence ta-
ble (Hoffart et al., 2011). Given an input sen-
tence, the generator finds all spans that occur in
the table, and annotates each with a set of can-
didates A = {a1 . . . aN} and prior probabilities
{p(a1) . . . p(aN )}. Note that the candidates and
priors are span- but not context-specific, and that
the generator may over-generate. For step (3),
our model must therefore learn to (a) reject over-
generated spans and (b) disambiguate candidates
based on context.

Modeling. Recall that BERT was pretrained as a
masked LM (MLM). Given a wordpiece-tokenized
input X with xi = [MASK], it predicts a probabil-
ity distribution over LWP to replace xi:

p(w|X) ∝ exp(ew · FMLM(hi) + bw) (1)

where hi is the contextualized embedding of
[MASK], bw is a learned bias and ew = EBERT(w).
(See also Section 2.1 for notation.) Since
EE-BERT[LEnt] is aligned with EBERT[LWP], the
pretrained MLM should have a good initialization
for predicting entities from context as well.
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Tony Adams
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and [E-MASK] / P ##latt * are both injured ...
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p(David Platt (footballer)|X)

EE-BERT[A]

log(p(a))

FMLM (MLM head)

1
|A|

�
EE-BERT(Platt (Florida)) + . . . +

EE-BERT(David Platt (footballer))
�

FBERT (BERT encoder)

�

A
∪

{�
} e�, b�

(aligned entity vectors
of candidates)

(candidate priors)

(trainable params)

�
A

Figure 4: Schematic depiction of E-BERT-MLM in in-
ference mode, predicting an entity vector for the name
“Platt” in context. Blue: EBERT wordpiece vectors.
Red: EE-BERT entity vectors. The candidates A and
their priors p(a) are given by the candidate generator.
Assume that the entity Tony Adams (footballer) was
decoded in a previous iteration (see “Iterative refine-
ment”).

Based on this intuition, our E-BERT-MLM
model repurposes the MLM for the entity selection
step. Given a wordpiece-tokenized span s1 . . . sTs

with left context l1 . . . lTl
, right context r1 . . . rTr ,

candidates A and priors p(a), we define:

X = l1 . . . lTl
[E-MASK] / s1 . . . sTs* r1 . . . rTr

All tokens in X except [E-MASK] are em-
bedded by EBERT. [E-MASK] is embedded
as 1

|A|
�

a∈A EE-BERT(a), to inform the encoder
about its options for the current span. (See Table 6
for an ablation with the standard [MASK] token.)

The output probability distribution for [E-
MASK] is not defined over LWP but over A ∪ {�},
where � stands for rejected spans (see below):

p(a|X) ∝ exp(ea · FMLM(hTl+1) + ba) (2)

where ea = EE-BERT(a) and ba = log(p(a)).9

The null-entity � has parameters e�, b� that are
trained from scratch.

Finetuning. We finetune E-BERT-MLM on the
training set to minimize

�
(X,â) −log(p(â|X)),

where (X, â) are pairs of potential spans and their
gold entities. If X has no gold entity (if it was
over-generated), then â = �.10

9To understand why we set ba = log(p(a)), assume that
the priors are implicitly generated as p(a) = exp(ba)/Z, with
Z =

�
a� exp(ba�). It follows that ba = log(p(a))+log(Z).

Since log(Z) is the same for all a�, and the softmax function is
invariant to constant offsets, we can drop log(Z) from Eq. 2.

10If â �= � ∧ â �∈ A, we remove the span from the training
set. We do not do this at test time, i.e., we evaluate on all gold
standard entities.

AIDA-A (dev) AIDA-B (test)
Micro Macro Micro Macro

E-BERT-MLM 90.8 89.1 85.0 84.2
w/o iterative refinement 90.6 89.0 - -
w/ standard [MASK] token 90.3 88.8 - -

Wikipedia2Vec-BERT-MLM 88.7 86.4 80.6 81.0
Wikipedia2Vec-BERT-random 88.2 86.1 80.5 81.2

Kolitsas et al. (2018) 89.4 86.6 82.4 82.6
Broscheit (2019) 86.0 - 79.3 -
KnowBert (Peters et al., 2019) 82.1 - 73.7 -
Chen et al. (2019)† 92.6 93.6 87.5 87.7

Table 6: F1 (%) on AIDA after finetuning. †Might
not be comparable: Chen et al. (2019) evaluate on in-
vocabulary entities only, without ensuring (or report-
ing) the vocabulary’s coverage of the AIDA data.

Iterative refinement. We found it useful to iter-
atively refine predictions during inference, similar
to techniques from non-autoregressive Machine
Translation (Ghazvininejad et al., 2019). We start
with a wordpiece-tokenized input, e.g.:

Adams and P ##latt are both injured and will miss England
’s opening World Cup qualifier ...

We make predictions for all potential spans that the
candidate generator finds in the input. We gather
all spans with argmaxa[p(a|X)] �= �, sort them by
1−p(�|X) and replace the top-k11 non-overlapping
spans with the predicted entity. Our previous ex-
ample might be partially decoded as:

Tony Adams (footballer) and P ##latt are both injured
and will miss England ’s opening 1998 FIFA World Cup
qualifier ...

In the next iteration, decoded entities (bold) are
represented by EE-BERT in the input, while non-
decoded spans continue to be represented by
EBERT (see Figure 4). We set the maximum num-
ber of iterations to J = 3, as there were no im-
provements beyond that point on the dev set.

Baselines. We train two baselines that combine
BERT and Wikipedia2Vec without vector space
alignment:

Wikipedia2Vec-BERT-MLM: BERT and its pre-
trained MLM head, finetuned to predict non-
aligned Wikipedia2Vec vectors. In practice,
this means replacing EE-BERT with EWikipedia

in Eq. 2. Embedding the [E-MASK] token
with non-aligned EWikipedia led to a drop in
dev set micro F1, therefore we report this base-
line with the standard [MASK] token.

11k = ceil( j(m+n)
J

) − m, where 1 ≤ j ≤ J is the current
iteration, m is the number of already decoded entities from
previous iterations, and n = |{X : argmaxa[p(a|X)] �= �}|.
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Figure 5: AIDA dev set micro F1 after every epoch.

Wikipedia2Vec-BERT-random: Like Wikipe-
dia2Vec-BERT-MLM, but the MLM head is
replaced by a randomly initialized layer.

Data. We train and evaluate on AIDA, a news
dataset annotated with Wikipedia URLs (Hoffart
et al., 2011). To ensure coverage of the necessary
entities, we include all gold entities and all genera-
tor candidates in the entity vocabulary LEnt, even
if they fall under the Wikipedia2Vec link threshold
(see Section 3.3). While this is based on the unreal-
istic assumption that we know the contents of the
test set in advance, it is necessary for comparability
with Peters et al. (2019), Kolitsas et al. (2018) and
Broscheit (2019), who also design their entity vo-
cabulary around the data. See Appendix for more
details on data and preprocessing. We evaluate
strong match F1, i.e., a prediction must have the
same start, end and entity (URL) as the gold stan-
dard. URLs that redirect to the same Wikipedia
page are considered equivalent.

Hyperparameters. We train with Adam and a
linear learning rate scheduler (10% warmup) for
10 epochs, and we select the best epoch on the dev
set. Peak learning rate and batch size are tuned on
the dev set (see Appendix).

P R F1

E-BERT-MLM 21.1 61.8 31.5
w/ standard [MASK] token 23.3 65.2 34.3

Wikipedia2Vec-BERT-MLM 1.3 8.3 2.3
Wikipedia2Vec-BERT-random 1.3 6.8 2.2

Table 7: AIDA dev set micro precision / recall / F1 (%)
before finetuning. Results without iterative refinement.

Results and discussion. Table 6 shows that E-
BERT-MLM is competitive with previous work
on AIDA. The aligned entity vectors play a key
role in this performance, as they give the model a

good initialization for predicting entities from con-
text. When we remove this initialization by using
non-aligned entity vectors (Wikipedia2Vec-BERT
baselines), we get worse unsupervised performance
(Table 7), slower convergence during finetuning
(Figure 5), and a lower final F1 (Table 6).

6 Conclusion

We introduced E-BERT, an efficient yet effective
way of injecting factual knowledge about entities
into the BERT pretrained Language Model. We
showed how to align Wikipedia2Vec entity vec-
tors with BERT’s wordpiece vector space, and how
to feed the aligned vectors into BERT as if they
were wordpiece vectors. In doing so, we made no
changes to the BERT encoder itself. This stands in
contrast to other entity-enhanced versions of BERT,
such as ERNIE or KnowBert, which add encoder
layers and require expensive further pretraining.

We set a new state of the art on LAMA, a recent
unsupervised QA benchmark. Furthermore, we
presented evidence that the original BERT model
sometimes relies on the surface forms of entity
names (rather than “true” factual knowledge) for
this task. To quantify this effect, we introduced
LAMA-UHN, a subset of LAMA where questions
with helpful entity names are deleted.

We also showed how to apply E-BERT to two
supervised tasks: relation classification and entity
linking. On both tasks, we achieve results com-
petitive with or better than existing baselines, but
without the need for expensive pretraining.
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E-BERT: Efficient-Yet-Effective Entity
Embeddings for BERT (Appendix)

Unsupervised QA (LAMA)

Data
We downloaded the LAMA dataset from https://

dl.fbaipublicfiles.com/LAMA/data.zip. We
use the LAMA-T-REx and LAMA-Google-RE re-
lations, which are aimed at factual knowledge. Ta-
ble 10 shows results on indiviual relations, as well
as the number of questions per relation before and
after applying the LAMA-UHN heuristics.

Preprocessing
As mentioned in Section 4.1, we do not use
LAMA’s oracle entity IDs. Instead, we map sur-
face forms to entity IDs via the Wikidata query
API (https://query.wikidata.org). For exam-
ple, to look up Jean Marais:
SELECT ?id ?str WHERE {

?id rdfs:label ?str .
VALUES ?str { 'Jean Marais'@en } .
FILTER((LANG(?str)) = 'en') .

}

If more than one Wikidata ID is returned, we
select the lowest one. We then map Wikidata IDs
to the corresponding Wikipedia URLs:
SELECT ?id ?wikiurl WHERE {

VALUES ?id { wd:Q168359 } .
?wikiurl schema:about ?id .
?wikiurl schema:inLanguage 'en' .
FILTER REGEX(str(?wikiurl),

'.*en.wikipedia.org.*') .
}

Relation classification

Data
The RC dataset, which is a subset of the FewRel
corpus, was compiled by Zhang et al. (2019). We
downloaded it from https://cloud.tsinghua.

edu.cn/f/32668247e4fd4f9789f2/. Table 8
shows dataset statistics.

Preprocessing
The dataset contains sentences with annotated sub-
ject and object entity mentions, their oracle entity
IDs and their relation (which must be predicted).
We use the BERT wordpiece tokenizer to tokenize
the sentence and insert special wordpieces to mark
the entity mentions: # for subjects and $ for ob-
jects. Then, we insert the entity IDs. For example,
an input to E-BERT-concat would look like this:

[CLS] Taylor was later part of the ensemble cast in
MGM ’s classic $ World War II / World War II $ drama

“ # Battleground (film) / Battle ##ground # ” ( 1949 ) .
[SEP]

We use the oracle entity IDs of the dataset, which
are also used by ERNIE (Zhang et al., 2019).

Hyperparameters
We tune peak learning rate and number of epochs
on the dev set (selection criterion: macro F1). We
do a full search over the same hyperparameter
space as Zhang et al. (2019):

Learning rate: [2 · 10−5, 3 · 10−5,5 · 10−5]

Number of epochs: [3, 4, 5, 6, 7, 8, 9,10]

The best configuration for E-BERT-concat is
marked in bold. Figure 6 shows expected maxi-
mum performance as a function of the number of
evaluated configurations (Dodge et al., 2019).

Entity linking (AIDA)

Data
We downloaded the AIDA dataset from:

• https://allennlp.s3-us-west-2.

amazonaws.com/knowbert/wiki_entity_

linking/aida_train.txt

• https://allennlp.s3-us-west-2.

amazonaws.com/knowbert/wiki_entity_

linking/aida_dev.txt

• https://allennlp.s3-us-west-2.

amazonaws.com/knowbert/wiki_entity_

linking/aida_test.txt

Preprocessing
Each AIDA file contains documents with annotated
entity spans (which must be predicted). The doc-
uments are already whitespace tokenized, and we
further tokenize words into wordpieces with the
standard BERT tokenizer. If a document is too
long (length > 512), we split it into smaller chunks
by (a) finding the sentence boundary that is closest
to the document midpoint, (b) splitting the doc-
ument, and (c) repeating this process recursively
until all chunks are short enough. Table 9 shows
dataset statistics.

Hyperparameters
We tune batch size and peak learning rate on the
AIDA dev set (selection criterion: strong match
micro F1). We do a full search over the following
hyperparameter space:
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Batch size: [16, 32, 64,128]

Learning rate: [2 · 10−5, 3 · 10−5, 5 · 10−5]

The best configuration for E-BERT-MLM is
marked in bold. Figure 7 shows expected maxi-
mum performance as a function of the number of
evaluated configurations (Dodge et al., 2019).

# relations 80
# unique entities 54648

train dev test

# samples 8000 16000 16000
# samples per relation 100 200 200

Table 8: Relation classification dataset statistics.

# unique gold entities 5574
# unique candidate entities 463663

train dev test

# documents 946 216 231
# documents (after chunking) 1111 276 271
# potential spans (candidate generator) 153103 38012 34936
# gold entities 18454 4778 4478

Table 9: Entity linking (AIDA) dataset statistics.
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Figure 6: Relation classification: Expected maximum
macro F1 (dev set) as a function of the number of hy-
perparameter configurations.
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Figure 7: Entity linking: Expected maximum micro F1
(dev set) as a function of the number of hyperparameter
configurations.
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Model size: BASE LARGE

Relation (dataset)
Model original E-BERT E-BERT- ERNIE Know- original E-BERT- E-BERT- number of

BERT replace concat Bert BERT replace concat questions

T-REx:P17 (0, original LAMA) 31.3 53.7 52.4 55.3 23.7 36.5 43.3 42.8 930
T-REx:P17 (1) 31.0 55.0 53.3 55.5 23.2 36.2 44.5 43.3 885
T-REx:P17 (2, LAMA-UHN) 31.0 55.0 53.3 55.5 23.2 36.2 44.5 43.3 885

T-REx:P19 (0, original LAMA) 21.1 26.4 28.1 28.7 23.3 22.2 24.6 25.3 944
T-REx:P19 (1) 20.6 26.5 27.5 28.2 22.9 21.8 24.5 24.8 933
T-REx:P19 (2, LAMA-UHN) 9.8 20.3 18.7 19.4 12.2 11.7 18.1 15.5 728

T-REx:P20 (0, original LAMA) 27.9 29.7 35.8 16.6 31.1 31.7 37.1 33.5 953
T-REx:P20 (1) 28.2 29.9 36.0 16.5 31.0 32.0 37.2 33.8 944
T-REx:P20 (2, LAMA-UHN) 15.5 21.5 23.3 8.4 20.0 18.9 27.3 22.6 656

T-REx:P27 (0, original LAMA) 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 966
T-REx:P27 (1) 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 945
T-REx:P27 (2, LAMA-UHN) 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.2 423

T-REx:P30 (0, original LAMA) 25.4 69.9 69.8 66.8 24.0 28.0 75.0 60.4 975
T-REx:P30 (1) 25.1 70.3 69.9 66.6 23.9 27.5 75.0 60.3 963
T-REx:P30 (2, LAMA-UHN) 25.1 70.3 69.9 66.6 23.9 27.5 75.0 60.3 963

T-REx:P31 (0, original LAMA) 36.7 25.5 46.9 43.7 18.7 30.2 12.3 16.1 922
T-REx:P31 (1) 21.1 28.4 35.8 30.3 12.4 16.3 9.9 9.8 564
T-REx:P31 (2, LAMA-UHN) 21.1 28.4 35.8 30.3 12.4 16.3 9.9 9.8 564

T-REx:P36 (0, original LAMA) 62.2 42.1 61.6 57.3 62.2 67.0 44.7 66.0 703
T-REx:P36 (1) 51.5 41.9 53.9 45.9 51.7 57.5 43.8 58.8 534
T-REx:P36 (2, LAMA-UHN) 51.5 41.9 53.9 45.9 51.7 57.5 43.8 58.8 534

T-REx:P37 (0, original LAMA) 54.6 51.2 56.5 60.2 53.1 61.5 54.3 62.7 966
T-REx:P37 (1) 52.9 51.6 55.5 59.4 51.9 60.5 54.2 62.1 924
T-REx:P37 (2, LAMA-UHN) 52.9 51.6 55.5 59.4 51.9 60.5 54.2 62.1 924

T-REx:P39 (0, original LAMA) 8.0 22.9 22.5 17.0 17.2 4.7 8.1 8.6 892
T-REx:P39 (1) 7.5 23.0 22.3 17.1 16.5 4.6 8.1 8.5 878
T-REx:P39 (2, LAMA-UHN) 7.5 23.0 22.3 17.1 16.5 4.6 8.1 8.5 878

T-REx:P47 (0, original LAMA) 13.7 8.9 10.8 9.8 14.0 18.2 15.1 15.9 922
T-REx:P47 (1) 13.6 9.1 10.7 9.6 13.9 18.6 15.2 15.9 904
T-REx:P47 (2, LAMA-UHN) 13.6 9.1 10.7 9.6 13.9 18.6 15.2 15.9 904

T-REx:P101 (0, original LAMA) 9.9 37.8 40.8 16.7 12.2 11.5 37.8 36.1 696
T-REx:P101 (1) 9.5 38.2 40.9 16.1 11.4 10.8 38.0 35.8 685
T-REx:P101 (2, LAMA-UHN) 9.5 38.2 40.9 16.1 11.4 10.8 38.0 35.8 685

T-REx:P103 (0, original LAMA) 72.2 85.8 86.8 85.5 73.4 78.2 84.4 84.9 977
T-REx:P103 (1) 72.1 85.7 86.8 85.4 73.3 78.2 84.4 84.9 975
T-REx:P103 (2, LAMA-UHN) 45.8 81.9 74.7 83.6 72.2 58.6 81.2 71.1 415

T-REx:P106 (0, original LAMA) 0.6 6.5 5.4 8.4 1.6 0.6 4.3 2.1 958
T-REx:P106 (1) 0.6 6.5 5.4 8.4 1.6 0.6 4.3 2.1 958
T-REx:P106 (2, LAMA-UHN) 0.6 6.5 5.4 8.4 1.6 0.6 4.3 2.1 958

T-REx:P108 (0, original LAMA) 6.8 9.9 23.2 14.1 10.7 1.6 11.7 15.9 383
T-REx:P108 (1) 6.5 9.9 23.0 13.9 10.5 1.3 11.8 16.0 382
T-REx:P108 (2, LAMA-UHN) 6.5 9.9 23.0 13.9 10.5 1.3 11.8 16.0 382

T-REx:P127 (0, original LAMA) 34.8 24.0 34.9 36.2 31.4 34.8 25.3 35.8 687
T-REx:P127 (1) 14.2 19.7 23.5 17.1 15.5 14.6 21.1 24.6 451
T-REx:P127 (2, LAMA-UHN) 14.2 19.7 23.5 17.1 15.5 14.6 21.1 24.6 451

Table 10: Mean Hits@1 and number of questions per LAMA relation. 0: original LAMA dataset, 1: after applying
heuristic 1 (string match filter), 2: after applying both heuristics (LAMA-UHN).
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Model size: BASE LARGE

Relation (dataset)
Model original E-BERT E-BERT- ERNIE Know- original E-BERT- E-BERT- number of

BERT replace concat Bert BERT replace concat questions

T-REx:P131 (0, original LAMA) 23.3 33.4 36.4 37.3 27.7 26.3 31.4 37.2 881
T-REx:P131 (1) 16.7 32.0 33.9 32.7 21.5 20.1 31.0 33.4 706
T-REx:P131 (2, LAMA-UHN) 16.7 32.0 33.9 32.7 21.5 20.1 31.0 33.4 706

T-REx:P136 (0, original LAMA) 0.8 5.2 9.1 0.6 0.6 1.3 6.9 13.1 931
T-REx:P136 (1) 0.2 5.1 8.7 0.2 0.1 0.2 6.9 12.2 913
T-REx:P136 (2, LAMA-UHN) 0.2 5.1 8.7 0.2 0.1 0.2 6.9 12.2 913

T-REx:P138 (0, original LAMA) 61.6 8.8 26.5 0.2 63.7 45.1 2.6 24.0 645
T-REx:P138 (1) 5.0 10.0 8.8 0.0 6.9 4.4 4.4 6.2 160
T-REx:P138 (2, LAMA-UHN) 5.0 10.0 8.8 0.0 6.9 4.4 4.4 6.2 160

T-REx:P140 (0, original LAMA) 0.6 0.6 1.1 0.0 0.8 0.6 1.1 0.6 473
T-REx:P140 (1) 0.4 0.6 0.9 0.0 0.6 0.4 0.9 0.4 467
T-REx:P140 (2, LAMA-UHN) 0.4 0.6 0.9 0.0 0.6 0.4 0.9 0.4 467

T-REx:P159 (0, original LAMA) 32.4 30.3 48.3 41.8 36.8 34.7 22.3 45.2 967
T-REx:P159 (1) 23.1 31.6 41.9 34.4 28.7 25.6 20.9 37.8 843
T-REx:P159 (2, LAMA-UHN) 23.1 31.6 41.9 34.4 28.7 25.6 20.9 37.8 843

T-REx:P176 (0, original LAMA) 85.6 41.6 74.6 81.8 90.0 87.5 36.6 81.3 982
T-REx:P176 (1) 31.4 42.9 51.8 26.2 51.3 40.8 44.5 57.1 191
T-REx:P176 (2, LAMA-UHN) 31.4 42.9 51.8 26.2 51.3 40.8 44.5 57.1 191

T-REx:P178 (0, original LAMA) 62.8 49.8 66.6 60.1 70.3 70.8 51.2 69.4 592
T-REx:P178 (1) 40.7 42.6 51.6 36.9 52.2 53.6 51.1 57.7 366
T-REx:P178 (2, LAMA-UHN) 40.7 42.6 51.6 36.9 52.2 53.6 51.1 57.7 366

T-REx:P190 (0, original LAMA) 2.4 2.9 2.5 2.6 2.8 2.3 2.3 2.8 995
T-REx:P190 (1) 1.5 2.4 1.6 1.6 2.0 1.7 1.9 2.3 981
T-REx:P190 (2, LAMA-UHN) 1.5 2.4 1.6 1.6 2.0 1.7 1.9 2.3 981

T-REx:P264 (0, original LAMA) 9.6 30.5 33.6 13.3 21.2 8.2 23.1 15.6 429
T-REx:P264 (1) 9.6 30.6 33.4 13.3 21.3 8.2 23.1 15.7 428
T-REx:P264 (2, LAMA-UHN) 9.6 30.6 33.4 13.3 21.3 8.2 23.1 15.7 428

T-REx:P276 (0, original LAMA) 41.5 23.8 47.7 48.4 43.3 43.8 23.1 51.8 959
T-REx:P276 (1) 19.8 26.1 31.7 27.0 20.6 23.4 25.0 36.0 625
T-REx:P276 (2, LAMA-UHN) 19.8 26.1 31.7 27.0 20.6 23.4 25.0 36.0 625

T-REx:P279 (0, original LAMA) 30.7 14.7 30.7 29.4 31.6 33.5 15.5 29.8 963
T-REx:P279 (1) 3.8 8.6 8.0 4.6 5.3 6.8 8.6 10.1 474
T-REx:P279 (2, LAMA-UHN) 3.8 8.6 8.0 4.6 5.3 6.8 8.6 10.1 474

T-REx:P361 (0, original LAMA) 23.6 19.6 23.0 25.8 26.6 27.4 22.3 25.4 932
T-REx:P361 (1) 12.6 17.9 17.7 13.7 15.3 18.5 20.2 22.0 633
T-REx:P361 (2, LAMA-UHN) 12.6 17.9 17.7 13.7 15.3 18.5 20.2 22.0 633

T-REx:P364 (0, original LAMA) 44.5 61.7 64.0 48.0 40.9 51.1 60.6 61.3 856
T-REx:P364 (1) 43.5 61.7 63.5 47.4 40.0 50.7 60.5 61.2 841
T-REx:P364 (2, LAMA-UHN) 43.5 61.7 63.5 47.4 40.0 50.7 60.5 61.2 841

T-REx:P407 (0, original LAMA) 59.2 68.0 68.8 53.8 60.1 62.1 57.9 56.3 877
T-REx:P407 (1) 57.6 69.5 67.9 53.1 58.6 61.0 59.0 55.2 834
T-REx:P407 (2, LAMA-UHN) 57.6 69.5 67.9 53.1 58.6 61.0 59.0 55.2 834

T-REx:P413 (0, original LAMA) 0.5 0.1 0.0 0.0 41.7 4.1 14.0 7.0 952
T-REx:P413 (1) 0.5 0.1 0.0 0.0 41.7 4.1 14.0 7.0 952
T-REx:P413 (2, LAMA-UHN) 0.5 0.1 0.0 0.0 41.7 4.1 14.0 7.0 952

Table 11: Mean Hits@1 and number of questions per LAMA relation (cont’d). 0: original LAMA dataset, 1: after
applying heuristic 1 (string match filter), 2: after applying both heuristics (LAMA-UHN).

86



818

Model size: BASE LARGE

Relation (dataset
Model original E-BERT E-BERT- ERNIE Know- original E-BERT- E-BERT- number of

BERT replace concat Bert BERT replace concat questions

T-REx:P449 (0, original LAMA) 20.9 30.9 34.7 33.8 57.0 24.0 32.5 28.6 881
T-REx:P449 (1) 18.8 31.1 33.4 32.0 56.0 21.8 32.9 27.5 848
T-REx:P449 (2, LAMA-UHN) 18.8 31.1 33.4 32.0 56.0 21.8 32.9 27.5 848

T-REx:P463 (0, original LAMA) 67.1 61.8 68.9 43.1 35.6 61.3 52.0 66.7 225
T-REx:P463 (1) 67.1 61.8 68.9 43.1 35.6 61.3 52.0 66.7 225
T-REx:P463 (2, LAMA-UHN) 67.1 61.8 68.9 43.1 35.6 61.3 52.0 66.7 225

T-REx:P495 (0, original LAMA) 16.5 46.3 48.3 1.0 30.8 29.7 56.7 46.9 909
T-REx:P495 (1) 15.0 46.0 47.5 0.9 29.6 28.5 56.6 46.2 892
T-REx:P495 (2, LAMA-UHN) 15.0 46.0 47.5 0.9 29.6 28.5 56.6 46.2 892

T-REx:P527 (0, original LAMA) 11.1 7.4 11.9 5.4 12.9 10.5 8.9 12.9 976
T-REx:P527 (1) 5.7 7.6 8.7 0.5 3.0 4.2 8.7 6.3 804
T-REx:P527 (2, LAMA-UHN) 5.7 7.6 8.7 0.5 3.0 4.2 8.7 6.3 804

T-REx:P530 (0, original LAMA) 2.8 1.8 2.0 2.3 2.8 2.7 2.3 2.8 996
T-REx:P530 (1) 2.8 1.8 2.0 2.3 2.8 2.7 2.3 2.8 996
T-REx:P530 (2, LAMA-UHN) 2.8 1.8 2.0 2.3 2.8 2.7 2.3 2.8 996

T-REx:P740 (0, original LAMA) 7.6 10.5 14.7 0.0 10.4 6.0 13.1 10.4 936
T-REx:P740 (1) 5.9 10.3 13.5 0.0 9.0 5.2 12.7 9.5 910
T-REx:P740 (2, LAMA-UHN) 5.9 10.3 13.5 0.0 9.0 5.2 12.7 9.5 910

T-REx:P937 (0, original LAMA) 29.8 33.0 38.8 40.0 32.3 24.9 28.3 34.5 954
T-REx:P937 (1) 29.9 32.9 38.7 39.9 32.2 24.8 28.2 34.4 950
T-REx:P937 (2, LAMA-UHN) 29.9 32.9 38.7 39.9 32.2 24.8 28.2 34.4 950

T-REx:P1001 (0, original LAMA) 70.5 56.9 76.0 75.7 73.0 73.3 49.5 78.0 701
T-REx:P1001 (1) 38.1 67.7 66.7 65.6 43.4 40.7 60.3 66.7 189
T-REx:P1001 (2, LAMA-UHN) 38.1 67.7 66.7 65.6 43.4 40.7 60.3 66.7 189

T-REx:P1303 (0, original LAMA) 7.6 20.3 26.6 5.3 9.1 12.5 29.7 33.2 949
T-REx:P1303 (1) 7.6 20.3 26.6 5.3 9.1 12.5 29.7 33.2 949
T-REx:P1303 (2, LAMA-UHN) 7.6 20.3 26.6 5.3 9.1 12.5 29.7 33.2 949

T-REx:P1376 (0, original LAMA) 73.9 41.5 62.0 71.8 75.2 82.1 47.4 70.1 234
T-REx:P1376 (1) 74.8 42.2 62.8 73.4 75.2 83.5 48.6 72.0 218
T-REx:P1376 (2, LAMA-UHN) 74.8 42.2 62.8 73.4 75.2 83.5 48.6 72.0 218

T-REx:P1412 (0, original LAMA) 65.0 54.0 67.8 73.1 69.2 63.6 49.3 61.2 969
T-REx:P1412 (1) 65.0 54.0 67.8 73.1 69.2 63.6 49.3 61.2 969
T-REx:P1412 (2, LAMA-UHN) 37.7 42.9 47.4 69.2 65.7 51.5 43.5 54.8 361

Google-RE:date of birth (0) 1.6 1.5 1.9 1.9 2.4 1.5 1.5 1.3 1825
Google-RE:date of birth (1) 1.6 1.5 1.9 1.9 2.4 1.5 1.5 1.3 1825
Google-RE:date of birth (2) 1.6 1.5 1.9 1.9 2.4 1.5 1.5 1.3 1825

Google-RE:place of birth (0) 14.9 16.2 16.9 17.7 17.4 16.1 14.8 16.6 2937
Google-RE:place of birth (1) 14.9 16.2 16.8 17.7 17.4 16.0 14.8 16.6 2934
Google-RE:place of birth (2) 5.9 9.4 8.2 10.3 9.4 7.2 8.5 7.9 2451

Google-RE:place of death (0) 13.1 12.8 14.9 6.4 13.4 14.0 17.0 14.9 766
Google-RE:place of death (1) 13.1 12.8 14.9 6.4 13.4 14.0 17.0 14.9 766
Google-RE:place of death (2) 6.6 7.5 7.8 2.0 7.5 7.6 11.8 8.9 655

Table 12: Mean Hits@1 and number of questions per LAMA relation (cont’d). 0: original LAMA dataset, 1: after
applying heuristic 1 (string match filter), 2: after applying both heuristics (LAMA-UHN).
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Abstract

We address the problem of Duplicate Question
Detection (DQD) in low-resource domain-
specific Community Question Answering fo-
rums. Our multi-view framework MV-DASE
combines an ensemble of sentence encoders
via Generalized Canonical Correlation Anal-
ysis, using unlabeled data only. In our ex-
periments, the ensemble includes generic and
domain-specific averaged word embeddings,
domain-finetuned BERT and the Universal
Sentence Encoder. We evaluate MV-DASE
on the CQADupStack corpus and on addi-
tional low-resource Stack Exchange forums.
Combining the strengths of different encoders,
we significantly outperform BM25, all single-
view systems as well as a recent supervised
domain-adversarial DQD method.

1 Introduction

Duplicate Question Detection is the task of finding
questions in a database that are equivalent to an
incoming query. Many Community Question An-
swering (CQA) forums leave this task to the col-
lective memory of their users. This results in un-
necessary manual work for community members
as well as delayed access to answers (Hoogeveen
et al., 2015).

Automatic DQD is often approached as a super-
vised problem with community-generated training
labels. However, smaller CQA forums may suf-
fer from label sparsity: On Stack Exchange, 50%
of forums have fewer than 160 user-labeled dupli-
cates, and 25% have fewer than 50 (see Figure 1).1

To overcome this problem, two avenues have
been explored: The first is supervised domain-
adversarial training on a label-rich source fo-
rum (Shah et al., 2018), which works best when

1archive.org/details/stackexchange [data
dump: 2018-12-20]

100 101 102 103 104 105 106
#D
#Q

Figure 1: Distribution (log-scale box plot) of number of
questions (#Q) and number of labeled duplicates (#D)
on Stack Exchange. N = 165 forums.

source and target domains are related. The sec-
ond is unsupervised DQD via representation learn-
ing (Charlet and Damnati, 2017; Lau and Baldwin,
2016), which requires only unlabeled questions.
In this paper, we take the unsupervised avenue.

A major challenge in the context of domain-
specific CQA forums is that language usage may
differ from the “generic” domains of existing rep-
resentations. To illustrate this point, compare
the following Nearest Neighbor lists of the word
“tree”, based either on generic GloVe embeddings
(Pennington et al., 2014) or on FastText embed-
dings (Bojanowski et al., 2017) that were trained
on specific CQA forums:

generic (GloVe): trees, branches, leaf
chess: searches, prune, modify
outdoors: trees, trunk, trunks
gis: strtree, rtree, btree
wordpress: trees, hierachy, hierarchial
gaming: trees, treehouse, skills

Charlet and Damnati (2017) and Lau and Bald-
win (2016) report that representations trained on
in-domain data perform better on unsupervised
DQD than generic representations. But in a
low-resource setting, the amount of unlabeled in-
domain data is limited. This can result in low cov-
erage or quality, as illustrated by the in-domain
embedding neighbors of “tree” in the smallest fo-
rum from our dataset:

windowsphone: dreamspark, l535ds, generally
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generic domain-specific

contextualized fG: GloVe fD: FastText
(in-domain)

noncontextualized fU : USE fB : BERT
(domain-finetuned)

Table 1: Ensemble used in our experiments.

It is therefore desirable to combine the over-
all quality and coverage of generic representations
with the domain-specificity of in-domain repre-
sentations via multi-view learning. There is a
large body of work on multi-view word embed-
dings (see Section 2.3), including domain adapted
word embeddings (Sarma et al., 2018).

Recent representation learning techniques go
beyond the word level and embed larger contexts
(e.g., sentences) jointly (Peters et al., 2018; De-
vlin et al., 2019; Cer et al., 2018). To reflect this
paradigm shift, we take multi-view representation
learning from the word to the sentence level and
propose MV-DASE (Multi-View Domain Adapted
Sentence Embeddings), a framework that com-
bines an ensemble of sentence encoders via Gen-
eralized Canonical Correlation Analysis (see Sec-
tion 3.1).

MV-DASE uses unlabeled in-domain data
only, making it applicable to the problem of un-
supervised DQD. As a framework, it is agnostic
to the internal specifics of its ensemble. In Sec-
tion 3.2, we describe an ensemble of different sen-
tence encoders: domain-specific and generic, con-
textualized and noncontextualized (see Table 1).
In Sections 4 and 5, we demonstrate that MV-
DASE is effective at duplicate retrieval on the
CQADupStack corpus (Hoogeveen et al., 2015)
and on additional low-resource Stack Exchange
forums. Significance tests show significant gains
over BM25, all single-view systems and domain-
adversarial supervised training as proposed by
Shah et al. (2018). In Sections 6 and 7, we suc-
cessfully evaluate MV-DASE on two additional
benchmarks: the SemEval-2017 DQD shared
task (Nakov et al., 2017) as well as the unsuper-
vised STS Benchmark (Cer et al., 2017).

2 Related Work

2.1 Duplicate Question Detection

Most prior work on DQD (e.g., Bogdanova et al.
(2015); Dos Santos et al. (2015); Baldwin et al.
(2016); Zhang et al. (2017); Rodrigues et al.

(2017); Hoogeveen et al. (2018)) focuses on su-
pervised architectures. As discussed, these ap-
proaches are not applicable to forums with few or
no labeled duplicates.

Shah et al. (2018) tackle label sparsity by
domain-adversarial training (ADA). More specif-
ically, they train a bidirectional Long-Short
Term Memory Network (LSTM) (Hochreiter and
Schmidhuber, 1997) on a label-rich source forum,
while minimizing the distance between source and
target domain representations. Their approach
beats BM25 and a simple transfer baseline in cases
where source and target domain are closely related
(e.g., AskUbuntu→SuperUser), but not on more
distant pairings. This is not ideal, as the existence
of a big related source forum is not guaranteed.

An alternative is unsupervised DQD via rep-
resentation learning, which does not require any
labels. Charlet and Damnati (2017) use a word
embedding-based soft cosine distance for dupli-
cate ranking. In a recent DQD shared task
(SemEval-2017 task 3B, Nakov et al. (2017)),
their best unsupervised system trails the best su-
pervised system by only 2% Mean Average Preci-
sion (MAP). This seems reasonable, given that the
implicit objective of many representation learning
methods (similar representations for similar ob-
jects) is closely related to the notion of a duplicate.

Charlet and Damnati (2017) report overall
better results when embeddings are trained on
domain-specific data rather than Wikipedia. How-
ever, they make no attempts to combine the two
domains. Lau and Baldwin (2016) evaluate two
representation learning techniques (doc2vec (Le
and Mikolov, 2014) and word2vec (Mikolov et al.,
2013a)) on CQADupStack. They also report bet-
ter results when representations are learned on
domain-specific rather than generic data.

2.2 Sentence embeddings and STS

Unsupervised DQD is related to the task of unsu-
pervised Semantic Textual Similarity (STS), i.e.,
sentence similarity scoring (Cer et al., 2017).
Arora et al. (2017) show that a weighted average
over pre-trained word embeddings, followed by
principal component removal, is a strong baseline
for STS. We use their weighting scheme, Smooth
Inverse Frequency (SIF), in Section 3.2.

Averaged word embeddings are insensitive to
word order. This stands in contrast to contextu-
alized encoders, such as LSTMs or Transform-
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ers (Vaswani et al., 2017). Contextualized en-
coders are typically trained as unsupervised lan-
guage models (Peters et al., 2018; Devlin et al.,
2019) or on supervised transfer tasks (Conneau
et al., 2017; Cer et al., 2018). At the time of writ-
ing, weighted averaged word embeddings achieve
better results than contextualized encoders on un-
supervised STS.2

2.3 Multi-view word embeddings
Multi-view representation learning is an umbrella
term for methods that transform different rep-
resentations of the same entities into a com-
mon space. In NLP, it has typically been ap-
plied to word embeddings. A famous example is
the cross-lingual projection of word embeddings
(Mikolov et al., 2013b; Faruqui and Dyer, 2014).
Monolingually, Rastogi et al. (2015) use Gener-
alized Canonical Correlation Analysis (GCCA) to
project different word representations into a com-
mon space. Yin and Schütze (2016) combine word
embeddings by concatenation, truncated Singular
Value Decomposition and linear projections; Bol-
legala and Bao (2018) use autoencoders. Sarma
et al. (2018) correlate generic and domain-specific
word embeddings by Canonical Correlation Anal-
ysis (CCA).

All of these methods are post-training, i.e., they
are applied to fully trained word embeddings.
MV-DASE falls into the same category, albeit at
the sentence level (see Section 3.1). Other meth-
ods, which we will call in-training, encourage
the alignment of embeddings during training (e.g.,
Bollegala et al. (2015); Yang et al. (2017)).

2.4 Multi-view sentence embeddings
Multi-view sentence embeddings are less fre-
quently explored than multi-view word embed-
dings. One exception is Tang and de Sa (2019),
who train a recurrent neural network and an av-
erage word embedding encoder jointly on an un-
labeled corpus. This method is in-training, i.e., it
cannot be used to combine pre-existing encoders.

Kiela et al. (2018) dynamically integrate an en-
semble of word embeddings into a task-specific
LSTM. They require labeled data and the result-
ing embeddings are task-specific.

Sarma et al. (2018) marry domain-adapted word
embeddings (see Section 2.3) with InferSent (Con-
neau et al., 2017), a bidirectional LSTM sentence

2http://ixa2.si.ehu.es/stswiki/index.
php/STSbenchmark

encoder trained on Stanford Natural Language In-
ference (SNLI) (Bowman et al., 2015). They ini-
tialize InferSent with the adapted embeddings and
then retrain it on SNLI. Note that this approach
is not feasible when the training regime of an en-
coder cannot be reproduced, e.g., when the origi-
nal training data is not publicly available.

3 Method

We now describe MV-DASE as a general frame-
work. For details on the ensemble used in this pa-
per, see Section 3.2.

3.1 Framework
GCCA basics. Given zero-mean random vec-
tors x1 ∈ Rd1 ,x2 ∈ Rd2 , Canonical Correla-
tion Analysis (CCA) finds linear transformations
θ1 ∈ Rd1 ,θ2 ∈ Rd2 such that θT

1 x1 and θT
2 x2

are maximally correlated. Bach and Jordan (2002)
show that CCA reduces to a generalized eigen-
value problem. A generalized eigenvalue problem
finds scalar-vector pairs (ρ,θ) that satisfy Aθ =
ρBθ for matrices A,B. Here, A,B are the fol-
lowing block matrices:

[
0 Σ1,2

Σ2,1 0

]
θ = ρ

[
Σ1,1 0

0 Σ2,2

]
θ (1)

where Σ1,1,Σ2,2 are the covariance matrices of
x1,x2 and Σ1,2,Σ2,1 are their cross-covariance
matrices. We stack all d eigenvectors into an op-
erator Θ ∈ Rd×d1+d2 . Using this operator, multi-
view representations are projected as:

xmv = Θ

[
x1

x2

]
(2)

Generalized CCA (GCCA) generalizes CCA to
three or more random vectors x1 . . .xJ . There are
several variants of GCCA (Kettenring, 1971); we
follow Bach and Jordan (2002) and solve a multi-
view version of Equation 1:




0 Σ... Σ1,J

Σ... 0 Σ...

ΣJ,1 Σ... 0


θ

= ρ




Σ1,1 0 0
0 Σ... 0
0 0 ΣJ,J


θ

(3)

For stability, we add τσjIj to every covariance
matrix Σj,j , where τ is a hyperparameter (here:
τ = 0.1), Ij is the identity matrix and σj is the
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average variance of xj . Like in the two-view case,
we stack all d eigenvectors into an operator: Θ ∈
Rd×∑j dj .
GCCA application. Assume that we have an
ensemble of J sentence encoders. The j’th en-
coder is denoted fj : S → Rdj , where S is the
set of all possible in-domain strings (here: in-
domain questions) and dj is determined by fj .
Assume also that we have a sample from S, i.e.,
a corpus of unlabeled in-domain strings, denoted
S = {s1, . . . , sN}. From this corpus, we create
one training matrix Xj per encoder:

Xj ∈ RN×dj =




fj(s1)
...

fj(sN )


 (4)

From Xj we estimate mean vector x̄j ∈ Rdj ,
covariance matrix Σj,j ∈ Rdj×dj and cross-
covariance matrices Σj,j′ ∈ Rdj×dj′ . We then
apply GCCA as described before, yielding Θ ∈
Rd×∑j dj . The multi-view embedding of a new
input q (e.g., a test query) is:

fmv(q) = Θ



f1(q)− x̄1

...
fJ(q)− x̄J


 (5)

3.2 Ensemble
We use MV-DASE on the following ensemble:

• weighted averaged generic GloVe vectors
(Pennington et al., 2014)
• weighted averaged domain-specific FastText

vectors (Bojanowski et al., 2017)
• Universal Sentence Encoder (USE) (Cer

et al., 2018)
• domain-finetuned BERT (Devlin et al., 2019)

In this section, we describe the encoders in de-
tail. Note that the choice of encoders is orthog-
onal to the framework and other resources could
be used. Where possible, we base our selection
on the literature: We choose USE over InferSent
due to better performance on STS (Perone et al.,
2018), and BERT over ELMo (Peters et al., 2018)
due to better performance on linguistic probing
tasks (Liu et al., 2019a). The choice of GloVe for
generic word embeddings is based on Sarma et al.
(2018).
Weighted averaged word embeddings. We de-
note generic and domain-specific word embed-
dings of some word type i as wG,i ∈ RdG and

fG fD fB
(GloVe) (FastText) (BERT)

no SIF .089 .083 .134
wiki SIF .128 .100 .159
in-domain SIF .147 .104 .176

fB (BERT) ELMo

generic .138 .103
domain-finetuned .176 .155

Table 2: Mean Average Precision (MAP) averaged over
heldout forums. Top: MAP as a function of whether
and where SIF weights are estimated. Bottom: MAP of
generic vs. domain-finetuned BERT and ELMo. Eval-
uation setup is as described in Section 4, using four
heldout forums. Gray: best in column.

wD,i ∈ RdD . For wG,i, we use pre-trained 300-d
GloVe vectors.3 wD,i are trained using skipgram
FastText4 (100-d, default parameters) on the in-
domain corpus S. We SIF-weight all word em-
beddings by a · (a+p(i))−1, where p(i) is the uni-
gram probability of the word type and the smooth-
ing factor (here: a = 10−3) is taken from Arora
et al. (2017). We find that probabilities estimated
on S produce better results than the Wikipedia-
based probabilities provided by Arora et al. (2017)
(see Table 2, top), hence this is what we use below.
After weighting, we perform top-3 principal com-
ponent removal on the embedding matrices, which
is beneficial for word-level similarity tasks (Mu
et al., 2018). We denote the new embeddings of
word type i as ŵG,i, ŵD,i. The embedding of a
tokenized string s = (s1, . . . , sT ) is computed by
averaging:

fG(s) =
1

T

T∑

t=1

ŵG,st fD(s) =
1

T

T∑

t=1

ŵD,st

Contextualized encoders. USE and BERT are
downloaded as pre-trained models.5 6 USE is a
Transformer trained on SkipThought (Kiros et al.,
2015), conversation response prediction (Hender-
son et al., 2017) and SNLI. It outputs a single 512-
d sentence embedding, which we use as-is. Below,
USE is denoted fU .

3nlp.stanford.edu/data/glove.42B.300d.
zip

4github.com/facebookresearch/fastText
5tfhub.dev/google/

universal-sentence-encoder-large/3
6tfhub.dev/google/bert_uncased_L-12_

H-768_A-12/1
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BERT is a Transformer that was pre-trained as
a masked language model with next sentence pre-
diction. We find that domain-finetuning BERT on
S results in improvements over generic BERT (see
Table 2, bottom). Note that domain-finetuning
refers to unsupervised training as a masked lan-
guage model, i.e., we only require unlabeled data
(Howard and Ruder, 2018). We use default param-
eters7 except for a reduced batch size of 8.

At test time, we take the following ap-
proach: BERT segments a token sequence s =
(s1, . . . , sT ) into a subword sequence s′ =
([CLS], s′1, . . . , s

′
T ′ , [SEP]), where [CLS] and

[SEP] are special tokens that were used during
pre-training, and T ′ ≥ T . BERT produces one
768-d vector vl,t per subword s′t and layer l ∈
[1, . . . , L], where L is the total number of layers
(here: 12). We SIF-weight all vectors according
to the probability of their subword (estimated on
S) and average over layers and subwords, exclud-
ing the special tokens:

fB(s) =
1

T ′ · L
T ′∑

t=1

L∑

l=1

a

a+ p(s′t)
vl,t

4 Evaluation on Stack Exchange

4.1 Data

Corpora. We evaluate MV-DASE on the
CQADupStack corpus (Hoogeveen et al., 2015),
which is based on a 2014 Stack Exchange dump.
CQADupStack contains 12 forums that have
enough duplicates for supervised training; as a
consequence, it may not be representative of low-
resource domains. We therefore supplement it
with 12 low-resource forums from the 2018-12-20
Stack Exchange dump.8 For our purposes, low-
resource means a forum with 100–200 duplicates,
which we consider sufficient for evaluation but in-
sufficient for supervised training. All duplicates
in the datasets were labeled by unpaid community
members. As a result, false negatives (i.e., un-
flagged duplicates) are common in the gold stan-
dard (Hoogeveen et al., 2016). While we do not
explicitly filter for language, the vast majority of
the data is in English.

7github.com/google-research/bert/blob/
master/run_pretraining.py

8Preprocessed low-resource data can be downloaded here:
github.com/npoe/lowresourcecqa

forum #Q #D #T

C
Q

A
D

up
St

ac
k

fo
ru

m
s

and android 23697 1579 2.4M
eng english 41791 3506 3.4M
gam gaming 46896 2207 4.0M
gis gis 38522 1099 4.6M
mat mathematica 17509 1271 2.6M
phy physics 39355 1769 6.1M
prg programmers 33052 1538 5.6M
sta stats 42921 890 7.2M
tex tex 71090 4939 7.4M
uni unix 48454 1648 5.5M
web webmasters 17911 1143 2.0M
wor wordpress 49146 719 5.6M

lo
w

-r
es

ou
rc

e
fo

ru
m

s

bud buddhism 5350 120 670K
che chess 4539 154 500K
cog cogsci 5687 126 800K
law law 11059 126 1.7M
net networkengineering 11386 154 1.5M
out outdoors 4651 124 580K
pro productivity 2508 127 380K
rev reverseengineering 15619 119 790K
sit sitecore 5605 130 680K
spo sports 4531 127 430K
sqa sqa 8360 166 950K
win windowsphone 3490 192 290K

Table 3: Forum statistics. #Q: total number of ques-
tions, #D: number of labeled duplicates, #T: number of
tokens in training set S. Gray: heldout forums.

Data split. We split every forum into a test and
training set, such that the test set contains all du-
plicates and the training set contains the remain-
ing unlabeled questions.9 The unlabeled training
set is used for FastText training, BERT domain-
finetuning, SIF weight estimation and GCCA.
Test queries are never seen during training, not
even in an unsupervised way. For hyperparam-
eter choices, we hold out two high-resource and
two low-resource forums (highlighted in Table 3).
They are not used for the final evaluation and sig-
nificance tests.
Preprocessing. Every question object consists of
a title (average length 9 words), a body (average
length 125 words), any number of answers or com-
ments, and metadata (e.g., upvotes, view counts).
We preprocess the data with the CQADupStack
package.10 To calculate question representations,
we use the concatenation of question title and
body. We always ignore answers, comments and
metadata, as this information is not usually avail-
able at the time a question is posted.

9We do not use the official CQADupStack train / test split,
as it is meant for supervised training and has comparatively
few duplicates per test set. Since MV-DASE is unsupervised,
we can afford a more robust evaluation on all labeled dupli-
cates.

10github.com/D1Doris/CQADupStack
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heldout test forums M
A

P

A
U

C
(.0

5)

N
D

C
G

P@
3

R
@

3

C
Q

A
D

up
St

ac
k

fo
ru

m
s

and eng gam gis mat prg phy sta tex uni web wor average over test forums

1 BM25 .175 .162 .310 .264 .132 .119 .216 .212 .116 .171 .103 .171 .181 .821 .314 .067 .196

2 fG (GloVe) .121 .093 .202 .148 .056 .084 .152 .153 .063 .120 .085 .093 .115 .755 .233 .042 .123
3 fD (FastText) .123 .083 .211 .169 .079 .091 .172 .175 .085 .136 .084 .107 .131 .817 .261 .047 .138
4 fU (USE) .183 .113 .347 .156 .081 .146 .195 .165 .071 .142 .110 .117 .153 .832 .285 .056 .163
5 fB (BERT) .141 .129 .262 .196 .103 .099 .190 .179 .090 .135 .109 .134 .150 .805 .276 .055 .159

6 MV-DASE .211 .177 .371 .274 .149 .181 .259 .236 .135 .206 .145 .183 .214 .904 .362 .080 .232

7 InferSent .069 .047 .145 .123 .041 .041 .105 .121 .042 .078 .053 .072 .082 .667 .182 .029 .085
8 doc2vec .102 .057 .141 .150 .064 .069 .138 .170 .067 .125 .083 .111 .112 .799 .234 .040 .116
9 ELMo .141 .116 .251 .179 .081 .097 .184 .182 .087 .147 .097 .117 .142 .835 .274 .051 .149

10 word-level CCA .149 .109 .253 .202 .101 .111 .190 .189 .096 .156 .103 .125 .153 .851 .290 .055 .161

11 upper bound 1.00 .351 .999

lo
w

-r
es

ou
rc

e
fo

ru
m

s

bud che cog law net out pro rev sit spo sqa win average over test forums

12 BM25 .276 .195 .269 .345 .167 .373 .196 .186 .430 .465 .275 .349 .306 .842 .461 .116 .345

13 fG (GloVe) .249 .125 .209 .312 .103 .260 .110 .134 .237 .363 .166 .239 .213 .781 .359 .079 .234
14 fD (FastText) .142 .064 .132 .255 .111 .168 .067 .101 .243 .239 .173 .136 .163 .767 .314 .060 .180
15 fU (USE) .332 .247 .384 .458 .152 .513 .214 .144 .282 .448 .221 .244 .306 .880 .470 .119 .352
16 fB (BERT) .261 .173 .221 .335 .137 .348 .171 .143 .324 .489 .194 .257 .262 .812 .411 .099 .294

17 MV-DASE .378 .259 .384 .447 .184 .495 .233 .241 .427 .523 .289 .352 .358 .924 .524 .137 .407

18 InferSent .154 .073 .117 .236 .079 .194 .089 .078 .192 .312 .123 .161 .158 .701 .281 .054 .162
19 doc2vec .133 .058 .117 .239 .146 .145 .057 .080 .192 .141 .140 .090 .135 .759 .279 .048 .143
20 ELMo .222 .140 .228 .332 .137 .248 .136 .092 .247 .433 .171 .278 .230 .837 .387 .084 .252
21 word-level CCA .260 .142 .237 .325 .146 .274 .111 .186 .312 .327 .218 .194 .233 .844 .391 .086 .254

22 ADA .229 .164 .161 .250 .132 .207 .117 .147 .225 .299 .193 .218 .195 .823 .347 .068 .201

23 upper bound 1.00 .341 .999

Table 4: Main results. Left: MAP on individual forums (heldout and test forums). Rightmost five columns: all
metrics averaged over test forums (excluding heldout forums). Gray: best in column.

4.2 Evaluation and Metrics

Given a test query q, we rank all candidates c 6= q
from the same forum by cos(f(q), f(c)), where f
is an encoder (e.g., MV-DASE). Our metrics are
MAP, AUC(.05), Normalized Discounted Cumu-
lative Gain (NDCG), Recall@3 (R@3) and Pre-
cision@3 (P@3). AUC(.05), the area under the
ROC curve up to a false positive rate of .05, is used
by Shah et al. (2018). Note that upper bounds on
P@3 and R@3 are not 1, since most duplicates
have only one original and a few have more than
three.

4.3 Baselines

Unsupervised. Our IR baseline is BM25 (Robert-
son et al., 1995) as implemented in Elasticsearch
6.5.4 (Gormley and Tong, 2015) with default pa-
rameters. We test against all single-view encoders
from our ensemble. The remaining unsupervised
baselines are:

• ELMo (Peters et al., 2018).11 We treat ELMo
like BERT (Section 3.2), i.e., we finetune12

the language model on the in-domain corpus
(3 epochs, batch size 8), SIF-weight all vec-
tors according to in-domain word probability
and then average over layers and tokens.

• Doc2vec (Le and Mikolov, 2014) trained on
the in-domain corpus, using the best DQD
hyperparameters reported in Lau and Bald-
win (2016).

• InferSent V.1.13 (Conneau et al., 2017)

• Our re-implementation of domain-adapted
CCA word embeddings (Sarma et al. (2018),
see Section 2.3). We use the same word
embeddings, SIF weights and component re-
moval described in Section 3.2. Denoted
“word-level CCA” below.

11tfhub.dev/google/elmo/2
12github.com/allenai/bilm-tf/blob/

master/bin/restart.py
13github.com/facebookresearch/InferSent
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MAP AUC(.05)

1 MV-DASE, ¬fG, ¬fD MV-DASE

2 ¬fB ,¬(fG, fD) ¬fB , ¬fD , ¬fG,
¬(fG, fD)

3 BM25, avg, concat,
ADA, word-level CCA,
ELMo, ¬fU , fD , fG,
fB , ¬(fB , fU ), fU

BM25, avg, concat,
doc2vec, ADA, word-
level CCA, ELMo,
fB , fD , fG, ¬fU , fU ,
¬(fB , fU )

4 InferSent, doc2vec InferSent

Table 5: Group rankings by transitive closure of paired
t-tests. ¬fj is MV-DASE without fj (see Table 6). No
particular order inside groups.

ADA. We evaluate the supervised domain-
adversarial method of Shah et al. (2018) (ADA)
on the low-resource forums. Recall that ADA
requires a related labeled source domain. To
achieve this, we pair every low-resource forum
(target) with the CQADupStack forum (source)
with which it has the highest word trigram over-
lap. See supplementary material for more details
and a table of all source-target mappings.14

4.4 Ablation studies

We perform a set of experiments where we omit
views from the ensemble. We also replace GCCA
with naive view concatenation or view averaging.
When averaging, we pad lower-dimensional vec-
tors (Coates and Bollegala, 2018).

4.5 Significance tests

We perform paired t-tests, using the 20 test set
forums as data points.15 We then find groups of
equivalent methods by transitive closure of a ∼
b ≡ p ≥ .05. Group A being ranked higher
than group B means that every method in A per-
forms significantly better than every method in B.
Two methods in the same group may differ signif-
icantly, but there exists a chain between them of
methods with insignificant differences.

5 Discussion

5.1 Comparison with baselines

BM25. BM25 is a tough baseline for DQD: In
terms of MAP, it is better than or comparable to

14We also experiment with Multinomial Adversarial Net-
works (MAN) (Chen and Cardie, 2018), a multi-source multi-
target framework that can be trained on all 24 forums jointly.
Initial results were not competitive with ADA, so we do not
include them here. See supplementary material for details.

15Ten forums for t-tests involving ADA.
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1 ¬fG .002 .000 .000 .000 -.001
2 ¬fD -.002 -.008 -.004 -.001 -.002
3 ¬fU -.030 -.032 -.037 -.012 -.035
4 ¬fB -.010 -.006 -.011 -.003 -.008
5 ¬(fU , fB) -.056 -.042 -.066 -.022 -.065
6 ¬(fG, fD) -.012 -.016 -.017 -.005 -.015

7 concat -.042 -.071 -.058 -.017 -.047
8 avg -.046 -.075 -.064 -.018 -.051

lo
w

-r
es

ou
rc

e

9 ¬fG -.008 -.005 -.010 -.006 -.016
10 ¬fD .007 -.001 .012 .002 .006
11 ¬fU -.058 -.050 -.063 -.023 -.067
12 ¬fB -.017 -.006 -.014 -.010 -.028
13 ¬(fU , fB) -.120 -.069 -.130 -.054 -.160
14 ¬(fG, fD) -.010 -.005 -.007 -.005 -.014

15 concat -.058 -.078 -.070 -.023 -.069
16 avg -.067 -.081 -.080 -.028 -.082

Table 6: Ablation study. Deltas relative to MV-DASE.
Metrics were averaged over test forums before calcu-
lating deltas. concat/avg are naive view concatenation
and averaging. Gray: better than MV-DASE.

every single view (see Table 5). MV-DASE on the
other hand, which is built from the same views,
outperforms BM25 significantly and almost con-
sistently (19 out of 20 test forums), regardless of
the metric. This underlines the usefulness of our
multi-view approach.
Single views. MV-DASE outperforms the views
that make up its ensemble significantly and almost
consistently. There are two exceptions (out of 20
test forums): On law and outdoors, fU (USE) per-
forms slightly better on its own (Table 4, row 15).
Since these forums are less “technical” than most,
we hypothesize that they may be less in need of
domain adaptation.
Word-level CCA. The word-level CCA baseline
by Sarma et al. (2018) outperforms fG and fD on
their own (see Table 4, rows 10, 21), which vali-
dates the approach. The method is directly compa-
rable to MV-DASE¬(fU , fB), i.e., MV-DASE on
generic and domain-specific averaged word em-
beddings (see Table 6). The main differences
between them are (a) the order in which CCA
and averaging are performed and (b) whether the
CCA “vocabulary” is composed of word types or
sentences. Note that in contrast to MV-DASE,
word-level CCA is incompatible with contextu-
alized embeddings, since it requires a context-
independent one-to-one mapping between word
types and vectors.

96



1637

ADA. Supervised domain-adversarial ADA per-
forms significantly worse than unsupervised MV-
DASE (see Table 5). It is comparable to BM25 in
terms of AUC(.05) (the metric used by Shah et al.
(2018)), but not in terms of MAP.

Recall that we restricted the choice of source
domains to the 12 CQADupStack forums.
As a consequence, some target forums were
paired with non-ideal source forums (e.g., en-
glish→buddhism). It is possible that the baseline
would have performed better with a wider choice
of source domains. Nonetheless, this observa-
tion highlights a key advantage of our approach:
It does not depend on the availability of a label-
rich related source domain (or indeed, any labels
at all).
Other baselines. InferSent performs poorly on
the DQD task, which is surprising given its simi-
larity to USE. Recall that InferSent and USE are
pre-trained on sentence-level SNLI, but that the
training regime of USE also contains conversation
response prediction. So USE is expected to be
better equipped to handle (a) multi-sentence doc-
uments and (b) forum-style language.

Doc2vec is trained on the same data as fD, but
performs significantly worse. The difference be-
tween them may be due to the ability of FastText
to exploit orthography. Domain-finetuned ELMo
performs comparably to domain-finetuned BERT
on some forums but not consistently.

5.2 Ablation study

View ablation. On the low-resource forums,
omitting fD has a beneficial effect (Table 6, row
10). This suggests that the in-domain FastText em-
beddings have insufficient quality when learned on
the smallest forums and / or that domain-finetuned
BERT subsumes any positive effect. On the high-
resource CQADupStack forums, domain-specific
embeddings contribute positively, while generic
GloVe does not (rows 1,2). Table 5 shows that
omitting either fG or fD from the ensemble does
not lead to a significant drop in MAP, but omitting
both does.

USE has the biggest positive effect on MV-
DASE (Table 6, rows 3,11), also evidenced by the
fact that omitting it is significantly more harmful
than omitting any other single view (Table 5). Re-
call from Section 3.2 that USE is trained on super-
vised transfer tasks, while the remaining encoders
are fully unsupervised.

GCCA ablation. The naive concatenation or
averaging of views is significantly less effective
than view correlation by GCCA (Table 6, rows
7,8,15,16, and Table 5). This underlines that
multi-view learning is not just about which views
are combined, but also about how. Intuitively,
GCCA discovers which features from the differ-
ent encoders “mean the same thing” in the domain.
By contrast, concatenation treats views as orthog-
onal, while averaging mixes them in an unstruc-
tured way.

6 Evaluation on SemEval-2017 3B

In this section, we evaluate MV-DASE on
SemEval-2017 3B, a DQD shared task based on
the QatarLiving CQA forum. The benchmark pro-
vides manually labeled question pairs for train-
ing as well as additional unlabeled in-domain
data. Since MV-DASE is unsupervised, we dis-
card all training labels and concatenate training
and unlabeled data into a text corpus (≈ 1.5M to-
kens). This corpus is used for FastText training,
BERT domain-finetuning, SIF weight estimation
and GCCA, as described in Section 3.

The test set contains 88 queries q with ten candi-
dates c1 . . . c10 each. We preprocess all data with
the CQADupStack package and concatenate ques-
tion subjects and bodies, before encoding them.
We rank candidates by cos(f(q), f(c)) and evalu-
ate the result with the official shared task scorer.16

In keeping with the original leaderboard, we re-
port MAP and MRR (Mean Reciprocal Rank). We
compare against previous literature as well as all
individual views, view concatenation and averag-
ing. See Table 7 for results. Like we observed on
the Stack Exchange data, MV-DASE outperforms
its individual views, their concatenation and aver-
age. It beats the previous State of the Art (a super-
vised system) by a margin of 2.5% MAP.

7 Evaluation on unsupervised STS

While this paper focuses on Duplicate Question
Detection, MV-DASE is also applicable to other
unsupervised sentence-pair tasks. As proof of con-
cept, we test it on the unsupervised STS Bench-
mark (Cer et al., 2017). Here, the task is to predict
similarity scores y ∈ R for sentence pairs (s1, s2).

16alt.qcri.org/semeval2017/task3/data/
uploads/semeval2017_task3_submissions_
and_scores.zip
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MAP MRR

1 fG (GloVe) 43.13 47.39
2 fD (FastText) 43.38 47.67
3 fU (USE) 48.22 52.73
4 fB (BERT) 43.51 48.52

5 MV-DASE 51.56 56.48
6 concat 44.66 49.84
7 avg 44.95 49.76

8 Filice et al. (2017)* 49.00 52.41
9 Charlet and Damnati (2017)* 47.87 50.97

10 Goyal (2017)* 47.20 53.22
11 Zhang and Wu (2018) 48.53 52.75
12 Yang et al. (2018) 48.97 -
13 Gonzalez et al. (2018) 48.56 52.41

14 IR baseline* 41.85 46.42
15 Random baseline* 29.81 33.02

Table 7: MAP and MRR (percentages) on SemEval-
2017 3B test set. *Shared task top teams (best run
out of three) and baselines as reported in Nakov et al.
(2017), Table 6. Gray: best in column.

We treat the benchmark training set as an un-
labeled corpus, i.e., we discard all labels and de-
stroy the original sentence pairings by shuffling.
The resulting corpus is used for BERT domain-
finetuning, SIF weight estimation and GCCA.
At test time, we measure Pearson’s r between
cos(f(s1), f(s2)) and y, where f is an encoder
(e.g., MV-DASE) and y is the ground truth sim-
ilarity of test set pair (s1, s2).

In this experiment, the ensemble contains USE
(fU ), domain-finetuned BERT (fB) and fG. For
fG, we either use SIF-weighted averaged GloVe
vectors (Section 3.2), or unweighted averaged
ParaNMT17 word and trigram vectors (Wieting
and Gimpel, 2018), which are the current State
of the Art on the unsupervised STS Benchmark
test set (Ethayarajh, 2018). The unlabeled training
set is very small (64K tokens); hence, we do not
include fD in the ensemble, and we finetune the
BERT language model for 10K rather than 100K
steps to avoid overfitting. Like on the DQD tasks,
MV-DASE beats its individual views as well as
naive view concatenation and averaging (see Ta-
ble 8). After adding ParaNMT to the ensemble,
we achieve competitive results.

8 Future Work

Non-Linear GCCA. In Section 3.1, we assumed
that relationships between representations are lin-
ear. This is probably reasonable for word embed-
dings (most cross-lingual word embeddings are

17github.com/jwieting/para-nmt-50m

fG = GloVe fG = ParaNMT

1 fG .731 / .647 .817 / .799
2 fU (USE) .793 / .762 .793 / .762
3 fB (BERT) .779 / .718 .779 / .718

4 MV-DASE .825 / .771 .842 / .804
5 concat .791 / .730 .826 / .772
6 avg .790 / .729 .823 / .771

Table 8: Pearson’s r (dev / test) on the unsupervised
STS Benchmark, using different embeddings for fG.
Gray: best in column. Underlined: current unsuper-
vised SoTA on test set (Wieting and Gimpel, 2018).

linear projections, e.g. Artetxe et al. (2018)), but
it is unclear whether it holds for sentence embed-
dings. Potential avenues for non-linear GCCA in-
clude Kernel GCCA (Tenenhaus et al., 2015) and
Deep GCCA (Benton et al., 2017).
More views. A major advantage of MV-DASE is
that it is agnostic to the number and specifics of
its views. We plan to investigate whether addi-
tional or different views (e.g., encoders learned on
related domains) can increase performance.

9 Conclusion

We have presented a multi-view approach to un-
supervised Duplicate Question Detection in low-
resource, domain-specific Community Question
Answering forums. MV-DASE is a multi-view
sentence embedding framework based on Gener-
alized Canonical Correlation Analysis. It com-
bines domain-specific and generic weighted av-
eraged word embeddings with domain-finetuned
BERT and the Universal Sentence Encoder, using
unlabeled in-domain data only.

Experiments on the CQADupStack corpus and
additional low-resource forums show significant
improvements over BM25 and all single-view
baselines. MV-DASE sets a new State of the Art
on a recent DQD shared task (SemEval-2017 3B),
with a 2.5% MAP improvement over the best su-
pervised system. Finally, an experiment on the
STS Benchmark suggests that MV-DASE has po-
tential on other unsupervised sentence-pair tasks.
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Abstract

We address the task of unsupervised Seman-
tic Textual Similarity (STS) by ensembling di-
verse pre-trained sentence encoders into sen-
tence meta-embeddings. We apply, extend
and evaluate different meta-embedding meth-
ods from the word embedding literature at
the sentence level, including dimensionality re-
duction (Yin and Schütze, 2016), generalized
Canonical Correlation Analysis (Rastogi et al.,
2015) and cross-view auto-encoders (Bolle-
gala and Bao, 2018). Our sentence meta-
embeddings set a new unsupervised State of
The Art (SoTA) on the STS Benchmark and on
the STS12–STS16 datasets, with gains of be-
tween 3.7% and 6.4% Pearson’s r over single-
source systems.

1 Introduction

Word meta-embeddings have been shown to exceed
single-source word embeddings on word-level se-
mantic benchmarks (Yin and Schütze, 2016; Bolle-
gala and Bao, 2018). Presumably, this is because
they combine the complementary strengths of their
components.

There has been recent interest in pre-trained “uni-
versal” sentence encoders, i.e., functions that en-
code diverse semantic features of sentences into
fixed-size vectors (Conneau et al., 2017). Since
these sentence encoders differ in terms of their ar-
chitecture and training data, we hypothesize that
their strengths are also complementary and that
they can benefit from meta-embeddings.

To test this hypothesis, we adapt different meta-
embedding methods from the word embedding lit-
erature. These include dimensionality reduction
(Yin and Schütze, 2016), cross-view autoencoders
(Bollegala and Bao, 2018) and Generalized Canon-
ical Correlation Analysis (GCCA) (Rastogi et al.,
2015). The latter method was also used by Poerner

and Schütze (2019) for domain-specific Duplicate
Question Detection.

Our sentence encoder ensemble includes three
models from the recent literature: Sentence-BERT
(Reimers and Gurevych, 2019), the Universal Sen-
tence Encoder (Cer et al., 2017) and averaged
ParaNMT vectors (Wieting and Gimpel, 2018).
Our meta-embeddings outperform every one of
their constituent single-source embeddings on
STS12–16 (Agirre et al., 2016) and on the STS
Benchmark (Cer et al., 2017). Crucially, since our
meta-embeddings are agnostic to the contents of
their ensemble, future improvements may be possi-
ble by adding new encoders.

2 Related work

2.1 Word meta-embeddings

Word embeddings are functions that map word
types to vectors. They are typically trained on un-
labeled corpora and capture word semantics (e.g.,
Mikolov et al. (2013); Pennington et al. (2014)).

Word meta-embeddings combine ensembles of
word embeddings by various operations: Yin and
Schütze (2016) use concatenation, SVD and lin-
ear projection, Coates and Bollegala (2018) show
that averaging word embeddings has properties
similar to concatenation. Rastogi et al. (2015)
apply generalized canonical correlation analysis
(GCCA) to an ensemble of word vectors. Bollegala
and Bao (2018) learn word meta-embeddings us-
ing autoencoder architectures. Neill and Bollegala
(2018) evaluate different loss functions for autoen-
coder word meta-embeddings, while Bollegala et al.
(2018) explore locally linear mappings.

2.2 Sentence embeddings

Sentence embeddings are methods that produce
one vector per sentence. They can be grouped into
two categories:

104



7028

F1 (e.g., SBERT)
...

FJ (e.g., USE)

(pre-trained encoders)

S ⊂ S (e.g., BWC)

(unlabeled corpus) X1 ∈ R|S|×d1

...
XJ ∈ R|S|×dJ

(cached training data)

Fit meta-embedding params

(e.g., Θ for GCCA)

(see Sections 3.2, 3.3, 3.4)

Fmeta (s1, s2)

(sentence pair)

ŷ = cos(Fmeta(s1),Fmeta(s2))

(predicted sentence similarity score)

Figure 1: Schematic depiction: Trainable sentence meta-embeddings for unsupervised STS.

(a) Word embedding average sentence encoders
take a (potentially weighted) average of pre-trained
word embeddings. Despite their inability to under-
stand word order, they are surprisingly effective
on sentence similarity tasks (Arora et al., 2017;
Wieting and Gimpel, 2018; Ethayarajh, 2018)

(b) Complex contextualized sentence encoders,
such as Long Short Term Memory Networks
(LSTM) (Hochreiter and Schmidhuber, 1997) or
Transformers (Vaswani et al., 2017). Contextual-
ized encoders can be pre-trained as unsupervised
language models (Peters et al., 2018; Devlin et al.,
2019), but they are usually improved on supervised
transfer tasks such as Natural Language Inference
(Bowman et al., 2015).

2.3 Sentence meta-embeddings
Sentence meta-embeddings have been explored less
frequently than their word-level counterparts. Kiela
et al. (2018) create meta-embeddings by training
an LSTM sentence encoder on top of a set of dy-
namically combined word embeddings. Since this
approach requires labeled data, it is not applicable
to unsupervised STS.

Tang and de Sa (2019) train a Recurrent Neural
Network (RNN) and a word embedding average
encoder jointly on a large corpus to predict similar
representations for neighboring sentences. Their
approach trains both encoders from scratch, i.e., it
cannot be used to combine existing encoders.

Poerner and Schütze (2019) propose a GCCA-
based multi-view sentence encoder that combines
domain-specific and generic sentence embeddings
for unsupervised Duplicate Question Detection. In
this paper, we extend their approach by exploring
a wider range of meta-embedding methods and an
ensemble that is more suited to STS.

2.4 Semantic Textual Similarity (STS)
Semantic Textual Similarity (STS) is the task of
rating the similarity of two natural language sen-
tences on a real-valued scale. Related applications

are semantic search, duplicate detection and sen-
tence clustering.

Supervised SoTA systems for STS typically ap-
ply cross-sentence attention (Devlin et al., 2019;
Raffel et al., 2019). This means that they do not
scale well to many real-world tasks. Supervised
“siamese” models (Reimers and Gurevych, 2019)
on the other hand, while not competitive with cross-
sentence attention, can cache sentence embeddings
independently of one another. For instance, to
calculate the pairwise similarities of N sentences,
a cross-sentence attention system must calculate
O(N2) slow sentence pair embeddings, while the
siamese model calculates O(N) slow sentence em-
beddings and O(N2) fast vector similarities.

Our meta-embeddings are also cacheable (and
hence scalable), but they do not require supervi-
sion.

3 Sentence meta-embedding methods

Below, we assume access to an ensemble of pre-
trained sentence encoders, denoted F1 . . .FJ . Ev-
ery Fj maps from the (infinite) set of possible sen-
tences S to a fixed-size dj-dimensional vector.

Word meta-embeddings are usually learned from
a finite vocabulary of word types (Yin and Schütze,
2016). Sentence embeddings lack such a “vocabu-
lary”, as they can encode any member of S. There-
fore, we train on a sample S ⊂ S, i.e., on a corpus
of unlabeled sentences.

3.1 Naive meta-embeddings

We create naive sentence meta-embeddings by con-
catenating (Yin and Schütze, 2016) or averaging1

(Coates and Bollegala, 2018) sentence embeddings.

Fconc(s′) =



F̂1(s

′)
. . .

F̂J(s′)




1If embeddings have different dimensionalities, we pad the
shorter ones with zeros.
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Favg(s′) =
∑

j

F̂j(s′)
J

Note that we length-normalize all embeddings to
ensure equal weighting:

F̂j(s) =
Fj(s)
||Fj(s)||2

3.2 SVD
Yin and Schütze (2016) use Singular Value De-
composition (SVD) to compactify concatenated
word embeddings. The method is straightfor-
ward to extend to sentence meta-embeddings. Let
Xconc ∈ R|S|×

∑
j dj with

xconc
n = Fconc(sn)− Es∈S [Fconc(s)]

Let USVT ≈ Xconc be the d-truncated SVD. The
SVD meta-embedding of a new sentence s′ is:

F svd(s′) = VT (Fconc(s′)− Es∈S [Fconc(s)])

3.3 GCCA
Given random vectors x1,x2, Canonical Correla-
tion Analysis (CCA) finds linear projections such
that θT1 x1 and θT2 x2 are maximally correlated.
Generalized CCA (GCCA) extends CCA to three
or more random vectors. Bach and Jordan (2002)
show that a variant of GCCA reduces to a general-
ized eigenvalue problem on block matrices:

ρ




Σ1,1 0 0
0 Σ... 0
0 0 ΣJ,J





θ1

. . .
θJ




=




0 Σ... Σ1,J

Σ... 0 Σ...

ΣJ,1 Σ... 0





θ1

. . .
θJ




where

Σj,j′ = Es∈S [(Fj(s)− µj)(Fj′(s)− µj′)
T ]

µj = Es∈S [Fj(s)]

For stability, we add τ
dj

∑dj
n=1 diag(Σj,j)n to

diag(Σj,j), where τ is a hyperparameter. We stack
the eigenvectors of the top-d eigenvalues into ma-
trices Θj ∈ Rd×dj and define the GCCA meta-
embedding of sentence s′ as:

Fgcca(s′) =
J∑

j=1

Θj(Fj(s′)− µj)

Fgcca corresponds to MV-DASE in Poerner and
Schütze (2019).

loss function
MSE MAE KLD (1-COS)2

nu
m

be
r

hi
dd

en
la

ye
rs 0 83.0/84.2 84.2/85.1 83.0/84.2 82.4/83.5

1 82.7/83.9 83.8/84.6 85.1/85.5 83.3/83.4
2 82.5/82.8 81.3/82.1 83.3/83.4 82.3/82.3

τ = 10−2 τ = 10−1 τ = 100 τ = 101 τ = 102

84.2/84.1 84.8/84.7 85.5/85.7 85.5/86.1 84.9/85.9

Table 1: Hyperparameter search on STS Benchmark de-
velopment set for AE (top) and GCCA (bottom). Pear-
son’s r × 100 / Spearman’s ρ× 100.

3.4 Autoencoders (AEs)
Autoencoder meta-embeddings are trained by gra-
dient descent to minimize some cross-embedding
reconstruction loss. For example, Bollegala and
Bao (2018) train feed-forward networks (FFN) to
encode two sets of word embeddings into a shared
space, and then reconstruct them such that mean
squared error with the original embeddings is mini-
mized. Neill and Bollegala (2018) evaluate differ-
ent reconstruction loss functions: Mean Squared
Error (MSE), Mean Absolute Error (MAE), KL-
Divergence (KLD) or squared cosine distance (1-
COS)2.

We extend their approach to sentence encoders
as follows: Every sentence encoder Fj has a train-
able encoder Ej : Rdj → Rd and a trainable de-
coderDj : Rd → Rdj , where d is a hyperparameter.
Our training objective is to reconstruct every em-
bedding xj′ from every Ej(xj). This results in J2

loss terms, which are jointly optimized:

L(x1 . . .xJ) =
∑

j

∑

j′
l(xj′ ,Dj′(Ej(xj)))

where l is one of the reconstruction loss functions
listed above. The autoencoder meta-embedding of
a new sentence s′ is:

Fae(s′) =
∑

j

Ej(Fj(s′))

4 Experiments

4.1 Data
We train on all sentences of length < 60 from
the first file (news.en-00001-of-00100) of the tok-
enized, lowercased Billion Word Corpus (BWC)
(Chelba et al., 2014) (∼302K sentences). We evalu-
ate on STS12 – STS16 (Agirre et al., 2016) and the
unsupervised STS Benchmark test set (Cer et al.,
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dimensionality STS12 STS13 STS14 STS15 STS16 STS-B

single:ParaNMT d = 600 67.5/66.3 62.7/62.8 77.3/74.9 80.3/80.8 78.3/79.1 79.8/78.9
single:USE d = 512 62.6/63.8 57.3/57.8 69.5/66.0 74.8/77.1 73.7/76.4 76.2/74.6
single:SBERT d = 1024 66.9/66.8 63.2/64.8 74.2/74.3 77.3/78.3 72.8/75.7 76.2/79.2

single:ParaNMT – up-projection∗ d = 1024 67.3/66.2 62.1/62.4 77.1/74.7 79.7/80.2 77.9/78.7 79.5/78.6
single:USE – up-projection∗ d = 1024 62.4/63.7 57.0/57.5 69.4/65.9 74.7/77.1 73.6/76.3 76.0/74.5

meta:conc d = 2136 72.7/71.3 68.4/68.6 81.0/79.0 84.1/85.5 82.0/83.8 82.8/83.4
meta:avg d = 1024 72.5/71.2 68.1/68.3 80.8/78.8 83.7/85.1 81.9/83.6 82.5/83.2
meta:svd d = 1024 71.9/70.8 68.3/68.3 80.6/78.6 83.8/85.1 81.6/83.6 83.4/83.8

meta:gcca (hyperparams on dev set) d = 1024 72.8/71.6 69.6/69.4 81.7/79.5 84.2/85.5 81.3/83.3 83.9/84.4
meta:ae (hyperparams on dev set) d = 1024 71.5/70.6 68.5/68.4 80.1/78.5 82.5/83.1 80.4/81.9 82.1/83.3

Ethayarajh (2018) (unsupervised) 68.3/- 66.1/- 78.4/- 79.0/- -/- 79.5/-
Wieting and Gimpel (2018) (unsupervised) 68.0/- 62.8/- 77.5/- 80.3/- 78.3/- 79.9/-
Tang and de Sa (2019) (unsupervised meta) 64.0/- 61.7/- 73.7/- 77.2/- 76.7/- -
Hassan et al. (2019)† (unsupervised meta) 67.7/- 64.6/- 75.6/- 80.3/- 79.3/- 77.7/-
Poerner and Schütze (2019) (unsupervised meta) -/- -/- -/- -/- -/- 80.4/-

Reimers and Gurevych (2019) (sup. siamese SoTA) -/- -/- -/- -/- -/- -/86.2
Raffel et al. (2019) (supervised SoTA) -/- -/- -/- -/- -/- 93.1/92.8

Table 2: Results on STS12–16 and STS Benchmark test set. STS12–16: mean Pearson’s r × 100 / Spearman’s
ρ × 100. STS Benchmark: overall Pearson’s r × 100 / Spearman’s ρ × 100. Evaluated by SentEval (Conneau
and Kiela, 2018). Boldface: best in column (except supervised). Underlined: best single-source method. ∗Results
for up-projections are averaged over 10 random seeds. †Unweighted average computed from Hassan et al. (2019,
Table 8). There is no supervised SoTA on STS12–16, as they are unsupervised benchmarks.

2017).2 These datasets consist of triples (s1, s2, y),
where s1, s2 are sentences and y is their ground
truth semantic similarity. The task is to predict
similarity scores ŷ that correlate well with y. We
predict ŷ = cos(F(s1),F(s2)).

4.2 Metrics

Previous work on STS differs with respect to (a) the
correlation metric and (b) how to aggregate the sub-
testsets of STS12–16. To maximize comparability,
we report both Pearson’s r and Spearman’s ρ. On
STS12–16, we aggregate by a non-weighted aver-
age, which diverges from the original shared tasks
(Agirre et al., 2016) but ensures comparability with
more recent baselines (Wieting and Gimpel, 2018;
Ethayarajh, 2018). Results for individual STS12–
16 sub-testsets can be found in the Appendix.

4.3 Ensemble

We select our ensemble according to the following
criteria: Every encoder should have near-SoTA per-
formance on the unsupervised STS benchmark, and
the encoders should not be too similar with regards
to their training regime. For instance, we do not

2We use SentEval for evaluation (Conneau and Kiela,
2018). Since original SentEval does not support the unsu-
pervised STS Benchmark, we use a non-standard repository
(https://github.com/sidak/SentEval). We man-
ually add the missing STS13-SMT subtask.

use Ethayarajh (2018), which is a near-SoTA unsu-
pervised method that uses the same word vectors
as ParaNMT (see below).

We choose the Universal Sentence Encoder
(USE)3 (Cer et al., 2018), which is a Trans-
former trained on skip-thought, conversation re-
sponse prediction and Natural Language Inference
(NLI), Sentence-BERT (SBERT)4 (Reimers and
Gurevych, 2019), which is a pre-trained BERT
transformer finetuned on NLI, and ParaNMT5 (Wi-
eting and Gimpel, 2018), which averages word and
3-gram vectors trained on backtranslated similar
sentence pairs. To our knowledge, ParaNMT is the
current single-source SoTA on the unsupervised
STS Benchmark.

4.4 Hyperparameters

We set d = 1024 in all experiments, which cor-
responds to the size of the biggest single-source
embedding (SBERT). The value of τ (GCCA), as
well as the autoencoder depth and loss function are
tuned on the STS Benchmark development set (see

3https://tfhub.dev/google/
universal-sentence-encoder/2

4https://github.com/UKPLab/
sentence-transformers. We use the large-nli-
mean-tokens model, which was not finetuned on STS.

5https://github.com/jwieting/
para-nmt-50m
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full without without without
ensemble ParaNMT USE SBERT

meta:svd 85.0/85.4 79.6/81.3 79.7/81.4 83.7/83.5
meta:gcca 85.5/86.1 84.9/84.8 83.8/83.8 85.4/85.4
meta:ae 85.1/85.5 76.5/80.3 82.5/83.5 28.7/41.0

Table 3: Ablation study: Pearson’s r × 100 / Spear-
man’s ρ × 100 on STS Benchmark development set
when one encoder is left out.

Table 1). We train the autoencoder for a fixed num-
ber of 500 epochs with a batch size of 10,000. We
use the Adam optimizer (Kingma and Ba, 2014)
with β1 = 0.9, β2 = 0.999 and learning rate 0.001.

4.5 Baselines
Our main baselines are our single-source embed-
dings. Wieting and Kiela (2019) warn that high-
dimensional sentence representations can have
an advantage over low-dimensional ones, i.e.,
our meta-embeddings might be better than lower-
dimensional single-source embeddings due to size
alone. To exclude this possibility, we also up-
project smaller embeddings by a random d × dj
matrix sampled from:

U(− 1√
dj
,

1√
dj

)

Since the up-projected sentence embeddings per-
form slightly worse than their originals (see Table
2, rows 4–5), we are confident that performance
gains by our meta-embeddings are due to content
rather than size.

4.6 Results
Table 2 shows that even the worst of our meta-
embeddings consistently outperform their single-
source components. This underlines the overall
usefulness of ensembling sentence encoders, irre-
spective of the method used.

GCCA outperforms the other meta-embeddings
on five out of six datasets. We set a new unsu-
pervised SoTA on the unsupervised STS Bench-
mark test set, reducing the gap with the supervised
siamese SoTA of Reimers and Gurevych (2019)
from 7% to 2% Spearman’s ρ.

Interestingly, the naive meta-embedding meth-
ods (concatenation and averaging) are competitive
with SVD and the autoencoder, despite not needing
any unsupervised training. In the case of concatena-
tion, this comes at the cost of increased dimension-
ality, which may be problematic for downstream ap-
plications. The naive averaging method by Coates

and Bollegala (2018) however does not have this
problem, while performing only marginally worse
than concatenation.

4.7 Ablation

Table 3 shows that all single-source embeddings
contribute positively to the meta-embeddings,
which supports their hypothesized complementar-
ity. This result also suggests that further improve-
ments may be possible by extending the ensemble.

4.8 Computational cost

4.8.1 Training

All of our meta-embeddings are fast to train, either
because they have closed-form solutions (GCCA
and SVD) or because they are lightweight feed-
forward nets (autoencoder). The underlying sen-
tence encoders are more complex and slow, but
since we do not update them, we can apply them
to the unlabeled training data once and then reuse
the results as needed.

4.8.2 Inference

As noted in Section 2.4, cross-sentence attention
systems do not scale well to many real-world STS-
type tasks, as they do not allow individual sen-
tence embeddings to be cached. Like Reimers
and Gurevych (2019), our meta-embeddings do
not have this problem. This should make them
more suitable for tasks like sentence clustering or
real-time semantic search.

5 Conclusion

Inspired by the success of word meta-embeddings,
we have shown how to apply different meta-
embedding techniques to ensembles of sentence en-
coders. All sentence meta-embeddings consistently
outperform their individual single-source compo-
nents on the STS Benchmark and the STS12–16
datasets, with a new unsupervised SoTA set by our
GCCA meta-embeddings. Because sentence meta-
embeddings are agnostic to the size and specifics
of their ensemble, it should be possible to add new
encoders to the ensemble, potentially improving
performance further.
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single-source embeddings meta-embeddings

method: ParaNMT SBERT USE conc avg svd gcca ae
dimensionality: d = 600 d = 1024 d = 512 d = 2136 d = 1024 d = 1024 d = 1024 d = 1024

STS12

MSRpar 55.25/55.15 58.11/60.42 34.05/39.24 60.13/60.53 58.90/59.71 59.56/60.24 62.79/63.90 61.64/63.57
MSRvid 88.53/88.48 87.93/89.73 89.46/90.75 91.51/92.16 91.29/91.92 91.28/91.98 91.20/92.29 90.69/91.69
SMTeuroparl 53.15/59.31 59.63/62.40 49.00/62.08 58.99/64.02 60.16/64.73 57.03/62.17 56.40/61.23 55.13/60.14
OnWN 73.42/69.82 68.08/68.51 71.66/65.81 77.89/73.05 77.53/73.00 77.80/73.12 77.90/73.50 75.35/73.03
SMTnews 67.03/58.53 60.75/53.11 68.66/61.29 74.85/66.53 74.54/66.88 73.73/66.48 75.75/67.31 74.91/64.76

STS13

FNWN 53.01/54.44 57.06/57.22 48.07/49.34 64.11/64.91 63.46/64.26 63.28/63.49 62.74/63.54 63.99/64.61
OnWN 75.62/75.80 77.54/80.00 66.64/68.10 80.84/81.13 80.46/80.81 79.89/80.53 84.04/83.65 80.17/81.50
SMT 42.54/41.13 44.54/44.80 43.85/41.80 47.46/44.89 47.87/45.04 48.59/45.58 49.20/46.01 48.92/45.40
headlines 79.52/79.83 73.67/77.17 70.70/71.82 81.13/83.48 80.64/82.96 81.49/83.54 82.58/84.37 80.78/82.13

STS14

OnWN 82.22/83.20 81.51/82.99 74.61/76.01 85.08/ 85.83 85.12/85.84 84.23/85.17 87.34/87.27 84.24/85.09
deft-forum 60.01/59.49 57.66/60.45 50.12/49.43 67.57/66.84 67.09/66.19 66.84/66.20 68.40/67.26 67.22/66.82
deft-news 77.46/72.75 72.62/76.80 68.35/63.35 81.72/79.04 81.60/78.98 80.36/78.31 81.09/79.20 79.59/78.83
headlines 78.85/76.98 73.72/75.41 65.88/62.34 79.64/79.93 79.39/79.86 79.85/79.59 81.68/81.50 80.13/79.77
images 86.14/83.36 84.57/79.42 85.54/80.55 89.52/85.68 89.35/85.51 89.29/85.37 88.83/84.83 87.64/83.42
tweet-news 79.39/73.43 75.12/70.80 72.48/64.24 82.50/76.50 82.12/76.13 83.14/77.17 83.09/77.04 81.61/77.23

STS15

answers-forums 73.54/74.50 64.04/62.78 72.70/75.02 79.33/79.91 78.47/79.12 79.15/79.69 78.39/78.59 72.65/72.21
answers-stud. 77.06/77.87 79.12/80.14 60.99/63.32 81.01/82.10 80.15/81.45 81.02/82.14 80.86/82.18 83.03/83.56
belief 80.28/80.25 77.46/77.46 78.68/82.14 86.14/87.58 85.55/87.01 85.05/86.02 86.38/87.58 82.49/83.07
headlines 81.92/82.28 78.91/81.88 73.26/74.77 83.20/86.03 83.33/86.25 83.48/86.02 84.87/86.72 84.16/85.53
images 88.60/88.87 86.76/89.02 88.39/90.34 90.92/91.95 90.86/91.92 90.46/91.59 90.34/91.85 90.26/91.35

STS16

answer-answer 69.71/68.96 63.41/66.63 72.52/72.72 79.65/78.89 78.93/77.82 79.37/79.21 78.70/78.50 76.83/77.17
headlines 80.47/81.90 75.23/79.33 69.70/75.11 80.97/84.95 80.60/84.53 81.36/85.14 81.41/84.85 80.40/83.17
plagiarism 84.49/85.62 80.78/82.04 74.93/77.42 85.86/87.17 85.88/87.25 85.54/87.36 85.92/87.76 85.01/86.14
postediting 84.53/86.34 81.32/85.87 82.81/86.49 88.18/90.76 87.98/90.51 87.55/90.21 87.01/90.24 86.71/89.28
question-quest. 72.37/72.73 63.38/64.72 68.54/70.25 75.49/77.42 76.05/77.76 74.08/75.93 73.44/74.98 73.25/73.60

Table 4: Pearson’s r / Spearman’s ρ ×100 on individual sub-testsets of STS12–STS16. Boldface: best method in
row.
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