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Zusammenfassung

In dieser Dissertation studieren wir die simultanen Realisierungen mehrerer irreduzibler
Representationsräume innerhalb von Matrizenalgebren. Dabei zeigen wir, wie Relationen
zwischen irreduziblen Representationsräumen als Konsequenz davon entstehen, fundamen-
tale und adjungierte Representationsräume als linear unabhängige Unterräume auszudrücken.
Unsere Arbeit gliedert sich in zwei Teile. In beiden Fällen arbeiten wir mit der Al-
gebra M(8,C), welche den Raum der acht-mal-acht-Matrizen aufspannt. Wir wählen
diesen Raum aufgrund seiner Eigenschaften: es ist der kleinstmögliche Raum, der die
verschiedenen Eichrepräsentationen des Standardmodells beinhaltet, er ist isomorph zur
komplexen Cliffordalgebra Cl(6) sowie eine Realisierung linearer Abbildungen auf den kom-
plexifizierten Oktonionen. Im ersten Teil präsentieren wir eine explizite Einbettung der
Eichgruppen des Standardmodells. Im zweiten Teil zeigen wir die Induktion einer direkten
Summenzerlegung der Matrizenalgebra zu einem Satz irreduzibler Repräsentationsräume.
Wir diskutieren die Eigenschaften der irreduziblen Repräsentationsräume innerhalb der
Matrizenalgebra sowie deren Beziehungen zueinander. Wir vergleichen unsere Ergeb-
nisse zu den Eigenschaften von Supersymmetrie, Großer Vereinheitlichter Theorien und
nichtkommutativer Geometrie. Unsere Arbeit stellt keine Herleitung oder Erklärung der
Eichrepräsentationen des Standardmodells dar. Stattdessen schlägt unsere Arbeiten einen
neuen Zugang vor, Kombinationen irreduzibler Repräsentationsräume zu studieren. In-
sofern untersucht unsere Arbeit die Einführung linearer Unabhängigkeit zwischen irre-
duziblen Repräsentationsräumen, die Implikationen dieser zusätzlichen Struktur, wie sie
in endlichdimensionalen Verktorräumen verwirklicht ist, und verbindet unser Ergebnis zu
den irreduziblen Repräsentationsräumen des Standardmodells.
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Abstract

In this thesis we study simultaneous realizations of multiple irreducible representations
spaces within matrix algebras. In so doing we show how relations between irreducible
representation spaces arise as a consequence of expressing fundamental and adjoint rep-
resentation spaces as linearly independent subspaces. Our work proceeds in two parts.
In both cases we work with the algebra M(8,C), which spans the space of eight by eight
complex matrices. This space is chosen as it is: the smallest possible space to simultane-
ously incorporate the different gauge representations of the Standard Model, isomorphic
to the complex Clifford algebra Cl(6), and a realization of the linear maps on the complex-
ified Octonions. In the first part we present an explicit embedding of the Standard Model
gauge groups. Second, we show the induction of a direct sum decomposition of the matrix
algebra into a set of irreducible representation spaces. We discuss the features of and rela-
tionships between the irreducible representation spaces in the matrix algebra, and compare
our results to features of Supersymmetry, Grand Unified Theories, and Noncommutative
Geometry. Our work is not intended to be a derivation or explanation of Standard Model
gauge representations. Instead, our work proposes a novel approach to studying combi-
nations of irreducible representation spaces. As such this work explores the introduction
of linear independence between irreducible representation spaces, the implications of this
additional structure as realized in finite dimensional vector spaces, and relates our results
to the Standard Model’s irreducible representation spaces.
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Chapter 1

Introduction

Our current understanding of physics has been forged over centuries of hard work by
a multitude of people from all around the world. In simplest terms one could say our
understanding of modern physics is based on theories that describe the interactions of
fields. However, this statement barely begins to scratch the surface of what these theories
truly contain. There are many properties which are not immediately apparent, and hidden
features which are only fully understood much later. Symmetries, for example, are central
to invariants and conserved quantities, as discovered over a century ago through the work
of Emmy Noether, Ref. [1]. Often these symmetries are encoded in the building blocks of
theories, like how diffeomorphism invariance is encoded in the use of tensors in Einstein’s
General Relativity, Ref. [2]. In other cases, symmetries are hidden, only becoming apparent
after careful investigation. A prime example of this is the hidden SU(3) symmetry behind
the appearance and interactions of mesons and baryons, whose identification helped lead
to the development of quantum chromodynamics, Ref. [3, 4].

Symmetries, of course, only account for some of the hidden features of field theories.
For example, the way in which theories are expressed is not unique, and reformulations
can provide new perspectives and insights into existing theories. Additionally, another
property encoded in these theories are the constraints which determine the physical degrees
of freedom of fields, and whose formulation requires a great deal of mathematical tools to
uncover. Dirac and Bergmann independently started the process of studying the constraints
of field theories in the 1950’s, Ref. [5, 6, 7, 8]. This process of identifying constraints for
first order theories was generalized in the late 1970’s, Ref. [9], with much of the formalism
cemented in the 1990’s, Ref. [10]. Even so constraints in field theories continues to be a
topic of research to this day. For example, the relationships between constraints and gauge
generators is an active area of active research, Ref. [12], and is demonstrated for the case
of Electromagnetism by Pitts, Ref. [11].

My doctorate has focused on such hidden structures of field theories. My earlier work,
Ref. [13], studied a reformulation of bimetric theory. Bimetric theory is a theory of two
(or more) interacting metric fields, i.e. spin-2 fields, with a unique low energy interaction
structure, Ref. [14]. For consistency only one metric may interact with matter, referred
to as the physical metric. My contribution to Ref. [13] was to integrate out the “non-
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physical” metric and derive the resultant ghost free infinite derivative theory of gravity.
This reformulation incorporated the effect of the additional, not directly observable, metric
as an infinite series of gravitational self-interactions. This new, but classically equivalent,
theory allowed for a physically consistent interpretation of the ghost degree of freedom
in Weyl squared gravity, as originating from a finite truncation of this infinite series of
gravitational self-interactions. This work received interest from String Theory, whose low-
energy gravitational sector also describes interactions of spin-2 fields, Ref. [15, 16].

From there, I proceeded to study the construction of field theories from their con-
straint algebra. This study considered first order field theories, for spin-1 abelian fields, in
a Minkowski spacetime. My contribution to the resultant pair of publications, Ref. [17, 18],
was a construction mechanism of the most general Lagrangian compatible with the con-
straint algebra; i.e. the construction of all ghost-free interactions of the abelian spin-1
fields from the constraint enforcing relations. This allowed for model independent defini-
tions of both Maxwell and Proca fields in terms of their constraint structure, and led to
the most general first-order theory of interacting Maxwell and Proca fields in a Minkowski
spacetime.

My later work takes a different approach to studying underlying structures of field
theories. Instead of working with specific theories and constraint structures, my later
publications, Ref. [19, 20],1 focus on studying irreducible representation spaces as realized in
matrix algebras. These works extend the idea of studying hidden structures of field theories
to studying combinations of irreducible representation spaces of groups, which are the
building blocks of modern particle theory. In particular this research concerns the relations
and restrictions on a set of irreducible representation spaces when simultaneously realized
as subspaces of a larger, but finite, dimensional vector space. The following dissertation is
based on this idea.

1.1 Motivation and Research Question

The research presented in this dissertation is based on the idea of having relations be-
tween particles at the level of their representation spaces. This idea is not new, and has
already been explored in formulations such as Supersymmetry (SUSY), Grand Unified
Theories (GUTs), and Non-commutative Geometry (NCG). We will refer to these meth-
ods of establishing relationships between irreducible representation spaces as “unification
approaches”, and provide a brief review in section 1.3. In these unification approaches the
different representations of the symmetry groups exist in different spaces. For example,
fundamental representations are often described by column vectors while adjoint repre-
sentations tend to be realized as matrices which act on these column vectors. As these
are distinct vector spaces we have linear independence within our adjoint representations
and within our fundamental representations, but not between the adjoint and fundamental
representation spaces. We wish to extend this property of linear independence of elements
within a representation space to linear independence of elements in distinct representation

1For Ref. [19] I was responsible for all calculations and most analysis.
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spaces. This implies the simultaneous realization of adjoint and fundamental gauge2 repre-
sentations within one space; or in other words, as linearly independent subspaces. In this
context we will also be considering multiplicities of representations as the appearance of
multiple linearly independent subspaces transforming identically. Of course, in an infinite
dimensional vector space one can include infinitely many linearly independent irreducible
representation spaces. Instead, we will be interested in studying finite dimensional vector
spaces.

For this to be possible we must study vector spaces which can realize both fundamental
and adjoint representations. As mentioned, fundamental representations are realized as
column vectors. However, as adjoint representations are realized by matrices which act on
column vectors we cannot use column vectors to describe both the fundamental and adjoint
representations. Instead, we require a vector space which also has a well defined operation
of composition of elements. This is required not only to describe the action of adjoint
representations on fundamental representations, but also to describe the action of adjoint
representations on themselves. The simplest choice for such a space is a matrix algebra,
with composition of elements described by matrix multiplication. Matrix algebras are a
natural choice because any matrix algebra can always be embedded as a subalgebra of a
larger dimensional matrix space, making them ideal for containing adjoint representations.
We can also represent some N -dimensional fundamental representation by either a N × 1
or 1 × N matrix, i.e. a column or row vector respectively. These simple relations lead us
to the research question we will be investigating in this dissertation:

What features are associated with simultaneous realizations of mul-
tiple representation spaces within a single matrix algebra?

We stress that the purpose of this work is neither to present a unified theory of particle
physics nor to propose any unification scheme. Instead, we will simply study features that
arise when trying to simultaneously realize the adjoint and fundamental representations, as
the building blocks of modern particle theory, in a single vector space. The immediate aim
of this paper is therefore to study features and relationships between the representation
spaces that are simultaneous realized within our matrix algebra. To provide a connection
to modern particle theory, we will compare the resultant representation spaces to those
of the Standard Model. We believe that the results of this work will help yield a deeper
understanding of how to incorporate relationships between representation spaces. This
supports the long term goal of this research, and its further developments, to identify
structures and relationships in sets of representation spaces as to aid the development of
unification approaches in particle theory.

2Note that we will in general refer to gauge transformations and gauge representations without any
reference to a spacetime structure. We abuse the terminology of “gauge groups” in this thesis to instead
denote groups not associated to the transformations of spacetime. In practice the groups we will be using
are the unitary groups, which have a natural connection to the Standard Model gauge groups.
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1.2 Outline

In section 1.3 we introduce the unification approaches of Supersymmetry (SUSY), Grand
Unified Theories (GUTs), and Noncommutative Geometry (NCG). Highlighting features
inherent to these different approaches provides a solid basis for understanding various
results and features of our work.

Next, in section 1.4, we provide further motivation for our choice of matrix algebras as
the space in which to study simultaneous realization of gauge representations. We motivate
this choice in the context of Clifford algebras and matrix realisations of Standard Model
representations. In subsection 1.4.2 we also introduce the space of eight by eight complex
matrices, M(8,C), as the smallest matrix algebra which may simultaneously realize all
the different Standard Model gauge representations, including multiplicities and conjugate
representations. This will be the primary algebra of focus for the entirety of the thesis.
Proceeding onto our own work, we show in chapter 2 how one may embed the Standard
Model gauge representations, including three generations, within our matrix algebra. In
this chapter the selection of groups and irreducible representation spaces is ad-hoc, as we
seek only an explicit identification with the Standard Model representations.

We comment on emergent features and relationships of the irreducible representations of
this Standard Model embedding in chapter 3, and discuss how these could be implemented
as principles in a bottom up construction approach to identifying irreducible representation
spaces in a matrix algebra. This provides the basis for the work of chapter 4 where
we show how to induce a direct sum decomposition of the matrix algebra M(8,C), as
a realization of the space of linear maps on the complex Octonions C ⊗ O, into a set
of irreducible representation spaces. We split these subspaces into three distinct classes,
which we compare to the Standard Model representations in subsections 4.5.1 - 4.5.3.
In subsection 4.5.4 we comment on uniqueness of the induced representation spaces. In
section 4.6 we discuss the equivalence, from the perspective of the linear maps M(V ) on V ,
of interpreting the space V as either a vector space or as an algebra. This presents avenues
for generalizing our work to view the matrix algebra as representing linear maps on larger
classes of spaces.

Having presented two ways in which the simultaneous realization of gauge represen-
tations is achieved, in section 4.7 we compare results and implications of these two ap-
proaches. Here we highlight advantages of the approach in chapter 4 from the perspective
of understanding how certain conditions on our linear maps imply specific relations on
the irreducible representation spaces. In particular, we highlight that the Standard Model
only contains specific combinations of gauge and Lorentz representations, i.e. no spinors
transforming in adjoint representations of gauge groups. This leads us to the following
work of section 4.8, where we show how irreducible Lorentz representations be identified
in the space of linear maps on M(2,C).

In section 5.1 we return to the unification approaches introduced in section 1.3, dis-
cussing how our results compare to SUSY, GUT, and NCG. We discuss generalizations to
our construction in section 5.2, and comment on potential implications. We summarize
our work and provide concluding remarks in chapter 6.
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1.3 Established Unification Approaches

In this section we discuss three approaches to imposing relations between irreducible rep-
resentation spaces. There is a vast literature of various approaches to unification, and we
comment only on a few here in this thesis. We will discuss their motivations and some fea-
tures inherent to their formulation. In addition we will show how all these approaches, to
some degree, incorporate linear independence between different irreducible representation
spaces. This further motivates the idea of extending linear independence to be applicable
between all irreducible representation spaces. The studies of SUSY, GUT, and NCG are
well developed and so we are only able to comment on some of the many features and appli-
cations of these approaches. We provide reference to supplementary works that elaborate
on points not discussed here.

1.3.1 Supersymmetry (SUSY)

SUSY describes a set of transformation, compatible with Lorentz and gauge symmetries
while satisfying the Coleman-Mandula no-go theorem of Ref. [21], which relate the bosonic
and fermionic Lorentz representations of the Standard Model. Historically, according to the
review by Zumino in Ref. [22], SUSY was discovered three times independently, Ref. [23,
24, 25]. Of these, the first discovery of SUSY transformations was motivated by extending
spacetime symmetries to restrict the action beyond one which is simply Lorentz invariant,
Ref. [23]. This was made possible because SUSY introduces transformations between
bosonic and fermionic degrees of freedom, and the combinations of terms which respect
such transformations are a restricted subset of those which are Lorentz invariant.

Of course, in modern physics there are other motivations for studying SUSY. In partic-
ular its application to String Theory results in Superstring Theory, Ref. [26], which yields
both bosonic and fermionic degrees of freedom. Additionally the Minimally Symmetric
Standard Model, the minimal application of SUSY to the Standard Model particle con-
tent, both provides a close gauge coupling unification at large energies and reduces the
sensitivity of the Higgs mass to radiative corrections, Ref. [27]. A defining property of
SUSY is that it is a spacetime symmetry, not a gauge symmetry. As such it only has the
potential of relating different Lorentz representations with identical gauge representations.
However, Standard Model vector fields transform under different gauge representations to
the fermionic fields. This means that the Minimally Symmetric Standard Model does not
provide any relations between Standard Model particles, but instead doubles the particle
content. To date there are no detections of supersymmetric particles.

A common description for SUSY involves the use of the superspace formulation. This
is a vector space that includes both bosonic and Grassmann, or fermionic, dimensions,
Ref. [27]. As such the superspace formulation is a method of incorporating different ir-
reducible representation spaces as linearly independent subspaces of a larger space, i.e.
the superspace. This is conceptually very similar to the work of this paper.3 For more

3The superspace of SUSY is not a matrix algebra, so while conceptually very similar ideas their imple-
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information on SUSY we refer the reader to Ref. [27]

1.3.2 Grand Unified Theories

GUTs have a different approach than SUSY to providing relationships between irreducible
representation spaces. Instead of trying to relate the different Lorentz representations,
GUTs try to describe the different Standard Model representations as originating from
irreducible representations of some larger unified group. This is achieved by selecting
a suitable group of which the Standard Model gauge group GSM = SU(3) × SU(2)L ×
U(1)Y is a subgroup. The Standard Model symmetry transformations are then recovered
by spontaneously breaking this larger group through the use of additional scalar degrees
of freedom. Therefore, GUTs appear as a natural extension of the idea of spontaneous
symmetry breaking in the Higgs sector of the Standard Model. Further, by calculating
the beta functions of the electroweak and strong forces, in the Standard Model there is
an apparent convergence of the gauge coupling values at large energies of ΛGUT ≈ 1016

GeV, Ref. [32].4 The quantization of electromagnetic charge can also be explained through
the use of GUTs, Ref. [29]. Together these observations motivate the idea that at the
scale ΛGUT all the different Standard Model forces should unify into a single force, and
thus be described by a single gauge group. While there are several different proposals for
the unifying group of GUTs, in this section we will chose to focus only on two prominent
GUTs: SU(5) and SO(10). We will discuss the Pati-Salam model, Ref. [30], in the context
of SO(10), as it is itself not a true GUT.

The first GUT was proposed by Howard Georgi and Sheldon Glashow in 1974, Ref. [31],
and was based on the gauge group SU(5). This proposed theory unified the distinct gauge
symmetries of the Standard Model into one group, and provided the different lepton and
quark gauge representations as originating from restricted irreducible representations of
SU(5). As such the theory incorporates certain combinations of Standard Model repre-
sentations into a larger space. For example, when considering the restriction of the 10
representation of SU(5) we have that

10→ (3, 2)⊕ (3̄, 1)⊕ (1, 1) (1.1)

of irreducible SU(3)×SU(2) representation spaces, Ref. [31]. Here (a,b) denotes a vector
space transforming in the a representation of SU(3) and the b representation of SU(2).
Clearly, the SU(5) GUT does achieve linear independence between some of the irreducible
representation spaces contained in the Standard Model, but not between all representation
spaces.

The SU(5) GUT is not capable of predicting the multiplicity of the fundamental repre-
sentations, i.e. generations of leptons and quarks. Further, due to the existence of gauge
bosons in SU(5) not belonging to the GSM gauge group, the theory predicts proton decay.

mentations are rather different.
4Note that this apparent convergence is not as close as the one predicted from the Minimally Symmetric

Standard Model, discussed in subsection 1.3.1.
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Proton decay is also predicted by the scalar sector which spontaneously breaks the SU(5)
gauge symmetry. Current limits on proton decay have ruled out the minimal SU(5), but
not other variants like flipped SU(5) and SUSY SU(5), Ref. [33]. For more information on
SUSY applied to SU(5) we refer the reader to Ref. [34, 35]

The other GUT we will mention is SO(10). This name is only by convention as the gauge
group under consideration is actually Spin(10), the double cover of SO(10), Ref. [36]. This
GUT is particularly interesting, because the irreducible 16 representation exactly encodes
one generation of left handed particles and antiparticles. Similarly, the conjugate repre-
sentation 16 encodes one generation of right handed particles and antiparticles, including
the right handed neutrino. In this context we should also discuss the SU(2)×SU(2)×SU(4)
gauge group of the Pati-Salam model, Ref. [30]. This model is based on a gauge group
which can be written as a direct product of simply connected Lie groups, as such it does
not have one unifying group structure and therefore cannot be called a GUT. However, it
still presents a partially unified structure through the SU(4) group. Specifically, the lepton
becomes interpreted as the fourth colour of SU(4), and is mixed with the three colours
of SU(3)⊂SU(4). Additionally, Pati-Salam introduces a symmetry between left handed
and right handed fermions by the inclusion of another copy of SU(2) which only acts on
right handed particles. Neither SO(10) nor Pati-Salam theories predict the generations of
fermions.5 Both the SU(5) GUT and the SU(2)×SU(2)×SU(4) Pati-Salam theory can be
recovered from the SO(10) GUT.

Clearly GUTs are very attractive unification approaches, in that they attempt to ex-
plain the observed particle content of matter simply from restricted representations of a
single group. In this way GUTs indeed provide relationships between the irreducible rep-
resentation spaces of the Standard Model, by having the different particles identified with
restricted subspaces of irreducible representation spaces of the grand unified group. This
is certainly a nice feature of a theory, but struggles to incorporate the different generations
of the Standard Model. This is because GUTs only consider the different representations
of groups, but offer no guidelines on their multiplicities. One could of course gauge the
flavour symmetry of the generations by having the three generations lie in a three dimen-
sional representation of some group. In the context of GUTs this would require larger
unification groups and thus many more bosonic degrees of freedom, Ref. [38]. For more
information on GUTs we refer the interested reader to the above cited works.

1.3.3 Noncommutative Geometry

The main idea behind NCG is to geometrize the origin of the Standard Model gauge group,
as to have one theory capable of reproducing both the Standard Model particle content and
gravitational effects. This requires going from a picture of geometry using real variables

5It is worth noting that in the original proposal of Pati-Salam only two of the three generations were
known. Their original proposal, built on SU(4)×SU(4)×SU(4) actually included all the two generations
known at the time. Here the two generations of SU(2) representation spaces formed the C4 representation
of SU(4), Ref. [30, 37]. However such a set-up fails due to the existence of a third generation, and thus
“modern” Pati-Salam does not predict the three generations.
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to a picture involving self adjoint functions on a Hilbert space, referred to as a spectral
geometry, Ref. [39]. This requires an algebra of coordinates, described by the self-adjoint
functions, which map to a noncommutative space, as detailed in the above reference. Then
by studying the automorphisms of this algebra one recovers the diffeomorphism group of
the manifold as the outer automorphisms. The inner automorphisms are instead identified
with the “internal” symmetries, i.e. gauge symmetries. The action for the theory is
constructed from the spectral decomposition of the algebra. For a thorough review we
refer the reader to Ref. [39, 40, 41].

A crucial feature of NCG is that the different fermionic representations span a finite-
dimensional Hilbert space, and there is an operator algebra acting on this Hilbert space
as matrices acting on a vector space. In this way NCG obtains fermionic particles in
fundamental representations. The bosons, as internal fluctuations of the operator algebra,
also receive the correct transformation rules. By bosons we mean all integer spin particles,
i.e. the graviton, gauge fields, and Higgs field. Indeed the Higgs field arises in the same
way as gauge fields, but differs in its representation due to left and right handed fermions
lying in distinct elements of a finite dimensional space. The Higgs boson is then the “gauge
field” that corresponds to a finite separation of points, as opposed to the vector gauge fields
that correspond to infinitesimal separations of points.

NCG can be viewed as a unification approach where the different bosons are unified
and the different fermions are unified, but bosons are not unified with fermions as they lie
in different spaces. Therefore linear independence is achieved between certain irreducible
representation spaces, but not all. As a side note, SUSY has been employed in this context
to see whether one could also formulate a NCG where fermions and bosons are on equal
footing, Ref. [42, 43, 44]. This collection of three papers conclude that it is possible to
obtain a theory with particle content matching the Minimally Symmetric Standard Model.
However the coefficients of interaction terms are such that the standard action functional,
the method used in NCG to generate an action, is in fact not supersymmetric.

There are many attractive features of NCG. For example the relation of diffeomorphisms
and gauge transformations as outer and inner automorphisms results in the graviton as the
outer fluctuations and gauge bosons plus Higgs as the inner fluctuations of the operator
algebra, Ref. [41]. This makes NCG particularly interesting in that it addresses both the
gauge and spatial nature of fields. Additionally, NCG formulates the entire action from
the action functional, which depends only on the spectrum of the operator algebra. Thus
NCG not only presents a particle content, but also a system for describing the interactions
of the constituent particles. However, similar to GUTs, NCG offers no explanation for the
origin of precisely three generations of fermionic particles.
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n Cl(n)
2m M(2m,C)

2m+1 M(2m,C)⊕M(2m,C)

Figure 1.1: Relationship between Clifford and matrix algebras over C.

1.4 Particle Representations in Matrix Algebras

1.4.1 Clifford Algebras as Matrix Algebras

We start our discussion of particle representations in matrix algebras by first discussing
Clifford algebras. Clifford algebras are also often referred to as Geometric algebras, because
they allow for geometric interpretations of algebraic operations. For an introduction to
Clifford algebras we refer the reader to Ref. [45]. In simple terms, the structure of a
Clifford algebra can be understood from some generating vector space V , over the field F,
and a quadratic form Q : V × V → F. This quadratic form can then be extended to act
on all of

∧
V , the exterior space of V . Combining this with the exterior product yields the

Clifford product as a bilinear map · such that, for p ≥ q,

· :
p∧
V ×

q∧
V →

q⊕
i=−q

p+i∧
V. (1.2)

For detailed description of Clifford algebras we refer the reader again to Ref. [45].

Clifford algebras appear in Standard Model physics and in unification approaches such
as GUTs, to be elaborated on later in this section. As these Clifford algebras are finite-
dimensional associative algebras over fields, they are all representable by a product of
finitely many matrix algebras over division algebras, Ref. [46]. For Clifford algebras over
the complex numbers the identification with matrix algebras is simply given by figure 1.1,
Ref. [47].

As the algebras are isomorphic, we can extend ideas and motivations appearing from
Clifford algebras directly to matrix algebras. It is worth noting that there is additional
structure in Clifford algebras, such as the natural grading inherited from the exterior
algebra, which is not apparent in matrix algebras.6 Therefore one may ask: why work
with matrices and not directly with the Clifford algebras themselves? The answer is two-
fold. First matrices are more well known to the general physics community, and makes
the following work more easily accessible. Second, the work of chapter 4 centres on the
study of linear maps, which are representable as matrices but do not in general contain a
natural grading. In this paper the matrix algebra of focus, M(8,C), has a Clifford algebra
equivalent. This is elaborated on in chapter 2.

6Of course one can always identify these structures in matrix algebras with a suitable isomorphism.



10 1. Introduction

Clifford Algebras in the Standard Model

Different Clifford algebraic structures appear in the Standard Model. Most notably, the
fermionic sector generates the structure of a Clifford algebra through use of the gamma
matrices {γµ}3

µ=0. These have a quadratic form given by

Q(γµ, γν) := {γµ, γν} = 2ηµν , (1.3)

where {·, ·} denotes the anticommutator. From this quadratic form we can identify the
relevant algebra as Cl(1,3), the real Clifford algebra generated by the vector space R1,3.
This algebra is commonly referred to as the Clifford algebra of spacetime or, within Clifford
algebras, simply as the Spacetime algebra. For Dirac spinors the generators for Lorentz
transformations are represented by the antisymmetric product of gamma matrices

Sµν =
1

2
[γµ, γν ]. (1.4)

When viewing the γµ as generating elements of the Clifford algebra of spacetime, the
Lorentz generators (1.4) correspond to γµ ∧ γν ∈

∧2
R1,3. That is, they are bi-vectors

in the Clifford algebra and can be viewed as oriented planes in R1,3, i.e. as spacetime
rotations.

This makes it clear that Clifford algebraic relations are implicit in the formulation of
Standard Model physics. This appearance can also be made explicit, as it is possible to
write the Dirac Lagrangian purely in terms of Clifford algebra elements. This is the case
even if the Dirac spinor is coupled to an electromagnetic field, Ref. [52]. In this setup
the vector space representation of the electromagnetic field and the spinor representation
of the Dirac field appear simultaneously, i.e. as linearly independent subspaces. This
is a further motivation for our exploration of simultaneous realisations of distinct gauge
representations in a matrix algebra.

For completeness we mention that the Clifford algebra Cl(1,3) has also been used to
simply formulate a gauge theory of gravitational interactions, where displacements and
Lorentz rotations are gauged separately, Ref. [48, 49].

Clifford Algebras for Unification

Besides the implicit use of Clifford algebras within the Standard Model, Clifford algebras
also receive attention from unification approaches due to the idea of a “binary code” for
the fermionic particles. The idea is discussed in detail in Ref. [50] with connection to
GUTs. Therefore we will only provide a brief sketch of the arguments here, and refer the
interested reader to the above cited work.

The idea of a binary code appears naturally from studying the restricted representations
of SU(5) on

∧
C5 as describing one generation of Standard Model particles. To see this

lets denote a basis for C5 by u, d, r, g, b where u, d denotes up-type, down-type and r, g, b
denotes red, green, blue. Then the “colourless” basis elements of

∧
C5 are

1, u, d, u ∧ d, r ∧ g ∧ b, u ∧ r ∧ g ∧ b, d ∧ r ∧ g ∧ b, u ∧ d ∧ r ∧ g ∧ b. (1.5)
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These eight colourless basis elements are identified with the left and right handed electron,
positron, neutrino, and antineutrino. Similarly the “coloured” basis elements, which span
the rest of the space, are identified with the left handed, right handed, and respective
antiparticles of the up and down quarks.

With this identification, the restricted representations of SU(5) on the exterior algebra∧
C5 yield the gauge transformations of 16 fermions and 16 anti-fermions of one generation

of the Standard Model, with the inclusion of right handed neutrinos. This is referred to as
a “binary code” because of the simple identification with a binary string. Specifically, let
a 1 denote the appearance of a basis element and a zero denote its absence in the exterior
product, then we have the identification

n1n2n3n4n5 ∼ un1 ∧ dn2 ∧ rn3 ∧ gn4 ∧ bn5 , (1.6)

where n1n2n3n4n5 is a five bit string and the power on the right hand side is defined in
terms of the exterior product. The range of each ni is {0, 1}, and so we can describe the
different basis elements, which are identified with particles, by their 5 bit string, i.e. their
binary code.

Now clearly
∧
C5 is not a space of matrices, but by inclusion of a Clifford product we can

map
∧
C5 to Cl(5), the complex Clifford algebra of dimension 32, see table 1.1. This idea

of a binary code is not restricted to Cl(5), but can be generalized to any complex Clifford
algebra. Indeed, the u, d, r, g, b basis elements of the generating space C5 are identified as
representing charges of SU(2) and SU(3). Thus for a gauge theory with charges {ci}ni=1, of
unitary groups, one may construct the algebra Cl(n) and identify particle representations
with irreducible representation spaces appearing in the algebra.

In this text we neither aim to construct a GUT from a Clifford algebra nor to present
an approach to unification. Further, in this idea of a “binary code” one implements only
fermions, and keeps the gauge representations as separate. This differs from our goal of
studying these representations as linearly independent subspaces. Nevertheless, this binary
code exemplifies the potential of considering different irreducible representation spaces as
subspaces of a matrix algebra. We have shown how Clifford algebras, and therefore matrix
algebras, relate to Standard Model representations. Next, we proceed with the explicit
realization of Standard Model representations as matrices.

1.4.2 Matrices for Standard Model Representations

Matrix Representation of Individual Particles

Having discussed matrices through the use of Clifford algebras, we turn our attention to
employing matrices explicitly in the Standard Model. Matrices are relevant to Standard
Model representations, as they can describe both the adjoint and fundamental represen-
tations. As mentioned, the fundamental representation, seen as a column or row vector,
can be incorporated as the column or row of a matrix, i.e. as a left or right ideal of a
matrix algebra. Of course, in the Standard Model, particles transform under more than
one gauge group. There are three different symmetry groups in the gauge sector, namely
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SU(3), SU(2)L, and U(1)Y . The subscript L on SU(2) denotes that this group only acts on
left handed fermions, and the Y on the U(1) group denotes that this is the group generated
by the weak hypercharge. A crucial property is that any particle will be at most in the
fundamental representation of two non-abelian gauge groups. This is significant as we can
then encode the fundamental representation of SU(3) as acting from the left on a matrix
and of SU(2) as acting from the right. That is SU(3) and SU(2) would preserve left and
right ideals respectively; we refer to this matrix representation, whose transformation is
the simultaneous left and right action of two groups, as a bi-representation.7

Let us make these statements explicit. The adjoint representations are: the traceless
Hermitian 2×2 matrices, i.e. the Pauli matrices, spanning the adjoint representation of
SU(2)L; and the traceless Hermitian 3×3 matrices, i.e. the Gell-Mann matrices, spanning
the adjoint representation of SU(3). For the fundamental representations we have left
handed fermions, right handed fermions, and the Higgs doublet. Left handed quarks exist
as a doublet of SU(2)L and a triplet of SU(3); they can be represented by 3×2 matrices with
SU(3) acting from the left and SU(2) acting from the right. Left handed leptons also exist
as a doublet of SU(2)L, but a singlet of SU(3). These can be expressed as 1×2 matrices.
In contrast, right handed fermions are singlets of SU(2)L. Therefore to simultaneously
describe a left handed up and a down type quark one requires two sets of 3×1 matrices,
i.e. a 3×1 matrix for each left handed quark. We also have the right handed electron,
as a 1×1 matrix. Adding the right handed neutrino would require another 1×1 matrix.
Additionally, there are three generations of fermions. Thus to simultaneously describe the
transformation of all Standard Model particles would necessitate three copies of the above-
mentioned matrices describing fundamental representations. Finally, the Higgs doublet
as a singlet of SU(3) and doublet of SU(2)L requires a 1×2 matrix to describe its gauge
representation. In addition we also have the U(1)Y field, which does not transform under
SU(2)L and SU(3). The U(1)Y field is represented by a scalar, i.e. a 1×1 matrix, when
acting on any of the above-mentioned irreducible representation spaces.

The Smallest Matrix Space for Particle Representations

Clearly all the different gauge transformations of the Standard Model can independently
be represented by matrices. However, just being able to express the Standard Model gauge
structures in terms of matrices is not enough to study the simultaneous realization of
distinct gauge representations. In order to study these representations simultaneously we
will consider them as distinct sub-matrices of a larger matrix algebra. To do so we must
first select a relevant matrix algebra to work with. It is clear that with a large enough
algebra one can embed practically any collection of irreducible representation spaces. We
wish to proceed by selecting a minimal algebra, i.e. the algebra of smallest dimension
while still incorporating all Standard Model gauge group representation spaces including
multiplicities.

7This terminology is similar to that used when discussing “bi-unitary” transformations which diago-
nalize the Yukawa couplings.
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The simplest requirement we can impose on the algebra is its dimension. As we wish
to study simultaneous realization of gauge representations it is clear that the different
representations must be linearly independent, just as was the case for fundamental SU(5)
representations in

∧
C5, discussed in subsection 1.4.1. Thus we need a space which is large

enough such that it can fit all the necessary particle representations as linearly independent
subspaces. For the Standard Model this implies considering all the gauge representations
of three generations of fermions and anti-fermions, a Higgs doublet, and our gauge groups.
Lets preform this counting. Each generation of fermions appears in 1 (quark) triplet and
1 (lepton) singlet of SU(3). All fermions come in pairs where for left-handed fermions
and the SU(3) singlet Higgs these pairs are in a doublet of SU(2). Additionally, fermions
possess independent antiparticles transforming in conjugate representations. The adjoint
representations of the Standard Model are further spanned by 12 gauge generators. In total,
this adds up to 12+2·2·(3·(3+1))+2 = 62 dimensions required to describe all the different
representation spaces, including multiplicities, of the Standard Model gauge group. Note
that actually, the above counting includes right handed neutrinos, which are not part of
the Standard Model particle content. Excluding the three right handed neutrinos and their
anti-particles from the count would leave us with 56 dimensions. However, as

Dim{M(7,C)} < 56 < 62 < Dim{M(8,C)}, (1.7)

the inclusion of right handed neutrinos does not affect our choice of M(8,C) as the smallest
possible complex matrix algebra for incorporating all Standard Model representations.

In this paper we choose to use complex matrix algebras due to the appearance of
complex numbers both in the adjoint and fundamental representations. In principle one
could employ real matrix algebras by inclusion of a linear complex structure to take the
place of the unit complex imaginary. However, if this operator cannot be expressed as
an element of the matrix algebra itself, we cannot formulate our representation spaces
as subspaces of the matrix algebra; preventing the goal of this research. Additionally,
there would be uncertainty in how to define this complex structure on our space. So, for
simplicity and definiteness we choose to work with complex matrix algebras.

In chapter 2 we show explicitly how all the different gauge representations of the Stan-
dard Model can be realized simultaneously in M(8,C) subalgebras of M(2,C)⊗M(8,C) ∼=
M(16,C), where M(n,C) is the space of n× n complex matrices. The tensor product with
M(2,C) is to incorporate Lorentz representations, which are needed in order to produce
the SU(2)L and U(1)Y transformations that distinguish based on chirality. The Lorentz
representations in M(2,C) are elaborated on in section 2.2.
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Chapter 2

Simultaneous Realization of Standard
Model Representations

2.1 Preliminaries: Matrix-Clifford Equivalence

In subsection 1.4.1 we commented on the Clifford algebra equivalence of our matrix algebra
of choice, which for describing the gauge representations will be M(8,C). This algebra is
isomorphic to the complex 64 dimensional Clifford algebra Cl(6), introduced in Appendix
B.1, which we will use as a starting point for our work. Specifically, using the isomorphism
defined in Appendix B.2, there exists a C ⊕ C3 ⊕ (C⊕ C3)

∗
vector space structure of left

ideals of this algebra, where complex conjugation changes between the triplet and conjugate
triplet representations of SU(3). The structure of this decomposition is also identical to the
C4 ⊕ C4∗ SU(4)-structure of the Pati-Salam model, shown in Ref. [50], after the breaking
of SU(4) into U(1)×SU(3). For an analysis of the SU(3) representations that appears in
Cl(6) we refer the reader to Ref. [51].

This presents a convenient way of describing SU(3) transformations of leptons and
quarks along with their antiparticles, which has the SU(3) structure C ⊕ C3 for one gen-
eration of leptons and quarks and C∗ ⊕ C3∗ for the respective antiparticles. Complex
conjugation in the Clifford algebra Cl(6) does not correspond to complex conjugation in
the matrix algebra M(8,C). Instead we obtain a new operator ∗̄ in M(8,C) which is identi-
fied with complex conjugation ∗ in the Clifford algebra, via the isomorphism described in
Appendix B.2. We will refer to the ∗̄ operation as complex conjugation for the remainder
of chapter 2.

We note that while we indeed draw these properties from the Clifford algebra Cl(6),
the entirety of this section is written from the standpoint of M(8,C) and does not require
an understanding of the Clifford algebra structure. Thus the Clifford algebra isomorphism
simply motivates our starting point for how to describe the SU(3) transformations of our
irreducible representation spaces, and introduces an operator ∗̄ to describe the transition
between complex conjugate representation spaces.
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2.2 Preliminaries: Lorentz Representations

In this chapter we investigate the embedding of the Standard Model gauge representations
within the matrix algebra M(16,C). Specifically, we examine what features arise as a conse-
quence of a simultaneous realization of all Standard Model representations within the same
matrix algebra. In particular, because we wish to have the different gauge structures of left
and right handed fields, this requires the inclusion of Lorentz representations. The smallest
space which can incorporate simultaneous left and right handed chiral fields is of complex
dimension 4. Since we are interested in matrix algebras we will therefore consider M(2,C)
as describing the Lorentz representations of SL(2,C). We note that M(2,C) is isomorphic
to the complexified Pauli-algebra, along with an identity element, and as such is also iso-
morphic to the real “Algebra of Physical Space”, Cl(3), which describes spinors, scalars,
and vectors; Ref. [52]. However, for convenience we will use the isomorphism to C ⊗ H,
the algebra of complexified Quaternions. This is because the complex Quaternions yield
simple forms for describing Lorentz representations and their respective conjugate repre-
sentations. For example, within the complex Quaternions linearly independent left and
right handed spinor representation spaces are simply related by complex conjugation. This
draws a simple connection to how complex conjugation relates conjugate representations
in Cl(6).

The specific details of the Quaternions are not needed to understand the following
appearance of representations, and so we present only the most basic ingredients here. For
more details on the Quaternions and their complexification, as well as the isomorphism to
M(2,C), we refer the reader to Appendix A. The Quaternions are spanned by four basis
elements. This basis can be expressed as the identity element and three {εi}3

i=1, which
are imaginary roots of −1 and have commutation relations isomorphic to so(3). Under
complexification we can separate the algebra into two R1,3 vector spaces

M(2,C) ∼= C⊗H = SpanR{1, iε1, iε2, iε3} ⊕ SpanR{i, ε1, ε2, ε3}. (2.1)

where for any a in either of the R1,3 vector subspaces of (2.1) and Λ ∈ SL(2,C) ⊂ C⊗H,
a transformation of the type

a→ ΛaΛ† (2.2)

describes the transformations of a spacetime vector. Here the † operation in C ⊗ H is
such that it reproduces Hermitian conjugation in M(2,C), see Appendix A. For the left
and right handed spinors we note that the projector onto left handed spinors P and the
projector onto right handed spinors P̄ are related by complex conjugation. These project
onto distinct left ideals of the algebra C⊗H. Thus by describing one ideal as contining all
left handed spinors we naturally obtain right handed spinors in the second ideal, with the
correct transformation properties under complex conjugation in C ⊗ H.1 Finally, scalar
particles appear as the centre of C⊗H which is just C itself, as expected.

1Note that these different left ideals correspond to distinct columns in M(2,C).
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This demonstrates the ability to encode all the necessary Lorentz representations for
describing Standard Model representation spaces within only M(2,C). So while for gauge
transformations we are interested in the matrix algebra M(8,C), we are viewing it as a
subalgebra of M(16,C) = M(2,C)⊗CM(8,C); where ⊗F denotes the tensor product over
the field F.2 However, because of the simple tensor structure of the product between the
space responsible for gauge representations and the one responsible for Lorentz represen-
tations, we will be able to restrict our attention predominantly to M(8,C). Indeed linear
independence of our irreducible representation spaces in M(16,C) reduces to linear inde-
pendence of the irreducible representation spaces in M(8,C). This is not a general feature
of the algebra M(16,C), but rather a consequence of how we chose to express the different
irreducible subspaces in M(8,C). Specifically, this behaviour is a consequence of letting the
gauge representation spaces associated with left handed spinor transformations and those
associated with right handed spinor transformations occupy the same subspace in M(8,C).
This is possible as they occupy different ideals in M(2,C) and are therefore linearly inde-
pendent in M(16,C). Thus in the following work the only reference to M(2,C) will be in
ensuring distinct transformations between left and right handed spinors. This implies that
we will be considering right handed neutrinos in the construction. However, as these are
singlet representations, one can always project out their components without affecting the
structure of the rest of the representation spaces. This demonstrates that the inclusion of
right handed neutrinos will not affect the validity of our claims about this Standard Model
embedding.

Additionally, in our embedding of Standard Model irreducible representation spaces we
will not be associating a field to the generators of Lorentz representations, i.e. we will not
be including the spin connection field. This is equivalent to how the Lorentz group only
acts globally in the Standard Model.

2.3 Summary of Results

The result of our embedding of Standard Model representations is the direct sum decom-
position of the matrix space M(8,C) as

M(8,C) = C ⊗
[
su(3) ⊕ su(2) ⊕ u(1)

]
⊕ 3 ·

[
F3 ⊕ F3̄ ⊕ F1 ⊕ F1̄

]
⊕ Fφ ⊕ PAdd .

(2.3)

The first three subspaces correspond to the adjoint representations which satisfy the com-
mutation relations dictated by their respective Lie algebras. Specifically, as we are con-
sidering complex matrix algebras, we find the complexification of the Lie algebras of the
Standard Model. Together with the two sets of Lorentz vector representations described in
section 2.2, this implies that considering the complexification of the Lie algebra in M(8,C) is
equivalent to considering both the hermitian and anti-hermitian vector spaces in M(16,C).

2Note that for brevity, ⊗ without a subscript denotes the tensor product over the real numbers.
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It is currently not clear whether there is any significance in this appearance of double vector
representations. Indeed, while we are here only concerned with representation spaces, in a
proper theory construction it is not possible to say whether all representations will even be
present in the action. For example, we refer the reader to subsection 5.1.3 for comments
on how only one real adjoint representation is recovered in NCG.

The Fi subspaces denote the SU(3) transformations of our fundamental representations.
For left handed fermions these are shown to all transform as doublets under SU(2) for
right handed fermions they are singlets of SU(2). Fφ is instead the Higgs SU(2)-doublet
representation. Under SU(3) F3 transforms as a triplet, F3̄ as an anti-triplet, and F1, F1̄, Fφ
as singlets. Correct hypercharge assignments stem from application of the u(1) generator
of U(1).

In the following we discuss in detail how the space M(8,C) decomposes, as per (2.3),
into the direct sum of the irreducible representation spaces of the gauge group of the
Standard Model. As mentioned before, and part of the counting in subsection 1.4.2, for
the transformations associated to fermionic particles we will be simultaneously realizing
both the fundamental representations and their respective conjugates. As expected from
our counting of subsection 1.4.2, we find a two dimensional subspace, denoted PAdd, which
is not identified with any of the Standard Model representation spaces or right handed
neutrinos.

2.4 Technical Summary

2.4.1 Choosing a basis of M(8,C)

Let RI with I = 1, . . . , 8 be a complete set of basis vectors of C8, chosen such that their
inner product is3

RI
†RJ = δIJ . (2.4)

We furthermore define 8 vectors {V +
a , V

−
a } with a = 0, . . . , 3 and express them as linear

combinations of the above basis vectors,

V ±a =
8∑
I=1

a±aIRI . (2.5)

The complex coefficients a±aI are chosen such that the V ±a are linearly independent and
their inner products satisfy4

(V ±a )†V ±b = δab , (V ±a )†V ∓b = 0 . (2.6)

3These basis vectors also satisfy RI
∗̄ :=

(
0 η
η 0

)
RI

∗ = RI+4, where η = diag(1,−1,−1,−1). The ∗̄ is

an operation in M(8,C) that corresponds to complex conjugation in Cl(6), as described in appendix B.2.
4Additionally, we will require that (V ±

a )∗̄ = V ∓
a which implies

(
a+
aI

)∗
= a−a(I+4).
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Note that the vectors {V +
a , V

−
a } form another orthonormal basis of C8.

Out of the basis vectors RI one can construct a basis MIJ of M(8,C) using the outer
product,

MIJ = RIR
†
J , I, J = 1, . . . , 8 . (2.7)

The irreducible representation spaces of the Standard Model gauge group will be identified
with 62 linearly independent combinations of these basis elements.

2.4.2 Identification with particles

Using the basis vectors defined in the previous subsection, we identify the Standard Model
representation spaces within the algebra M(8,C) as follows.

The SU(3) generators. The su(3) Lie algebra is spanned by the generators,

λ1 = R2 (R1)† +R1 (R2)† −R6 (R5)† −R5 (R6)† ,

λ2 = iR2 (R1)† − iR1 (R2)† + iR6 (R5)† − iR5 (R6)† ,

λ3 = R1 (R1)† −R2 (R2)† −R5 (R5)† +R6 (R6)† ,

λ4 = R1 (R3)† +R3 (R1)† −R5 (R7)† −R7 (R5)† ,

λ5 = iR3 (R1)† − iR1 (R3)† + iR7 (R5)† − iR5 (R7)† ,

λ6 = R3 (R2)† +R2 (R3)† −R7 (R6)† −R6 (R7)† ,

λ7 = iR3 (R2)† − iR2 (R3)† + iR7 (R6)† − iR6 (R7)† ,

λ8 =
1√
3

[
R1 (R1)† +R2 (R2)† − 2R3 (R3)† −R5 (R5)† −R6 (R6)† + 2R7 (R7)†

]
. (2.8)

Using the orthonormality relations (2.4), it is easy to verify that these elements indeed
satisfy the su(3) commutation relations.

The U(1) generator. The element of M(8,C) responsible for U(1)Y transformations is,

Q = −R4(R4)† − 1

3

3∑
I=1

RI(RI)
† − 2

3

7∑
I=5

RI(RI)
†. (2.9)

Note that this basis element commutes with su(3), which as we will show is crucial for a
consistent formulation of charge distributions.
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The SU(2) generators. The su(2) Lie algebra is spanned by the generators,

T1 =
3∑

a=0

V −a
(
V +
a

)†
+ V +

a

(
V −a
)†
,

T2 =
3∑

a=0

iV +
a

(
V −a
)† − iV −a (V +

a

)†
,

T3 =
3∑

a=0

V +
a

(
V +
a

)† − V −a (V −a )† . (2.10)

As for su(3), the orthonormality relations (2.6) imply the desired su(2) commutation rela-
tions.

The fermions. The 16 elements of M(8,C) which transform as one generation of particles
and antiparticles under the gauge groups correspond to{

RI

(
V ±a
)† ∣∣∣I = 1, ..., 8

}
, (2.11)

where the index a ∈ {1, 2, 3} labels the generation. The elements with I ∈ {1, 2, 3, 4}
correspond to particle representations, i.e. fundamental representations, while those with
I ∈ {5, 6, 7, 8} correspond to antiparticle representations, i.e. anti-fundamental represen-
tations.

The Higgs. The 2 elements describing the Higgs doublet are{
R4

(
V ±φ
)† }

, (2.12)

for a linear combination,

V ±φ =
3∑

a=0

h±a V
±
a , (2.13)

where h±a ∈ C, and (h+
a )
∗

= h−a with h±0 6= 0.

The transformation laws. The transformation laws for the different subspaces of
M(8,C) follow directly from identifying the correct transformations of the corresponding
Standard Model irreducible representation spaces. As these transformations are all well
known, we will not be presenting their explicit forms here. For every symmetry transfor-
mation there are corresponding elements in M(8,C) whose action on subspaces of M(8,C)
reproduces the transformations of Standard Model particles. Additionally, for fundamen-
tal representation spaces related by complex conjugation, their transformation properties
are also complex conjugate of each other. This implies anti-particle transformations are
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given by the complex conjugate representation rather than the hermitian conjugate repre-
sentation. As the complex conjugate and the dual representations coincide for the groups
under consideration, Ref. [53], this is consistent with the Standard Model representations.
The symmetry transformations of the irreducible representation spaces are described in
subsection 2.5.1 for the groups SU(3), U(1)Y , and SU(2)L.

Linear independence. The necessary and sufficient conditions for linear independence
of (2.8)-(2.12) are(

a+
01 a+

02 a+
03

)T 6∝
(
(a+

05)∗ (a+
06)∗ (a+

07)∗
)T

,(
a+

01 a+
02 a+

03

)T 6⊥
(
(a+

05)∗ (a+
06)∗ (a+

07)∗
)T

, h±0 6= 0 , (2.14)

where neither of the two C3 vectors above may be the zero vector, along with the condition

|a+
8,4|2 6= S(|a+

4,8|2) for S(x) :=
1

6

(
− 1− 10x+

√
25 + 8x+ 64x2

)
. (2.15)

Separately, care must be taken to chose elements a+
aI , for a ∈ {0, 1, 2, 3}, such that the

orthonormality relations in (2.6) are satisfied. The conditions (2.14) and (2.15), which are
derived in section 2.6, are very weak and still allow for a lot of freedom in choosing our
basis elements. In fact, the set {a±aI} still contains 28 real parameters after all conditions
for orthogonality, conjugation and linear independence have been imposed. The linear
independence of (2.8)–(2.12) ensures the direct sum decomposition of M(8,C) in (2.3).

2.5 Identifying Representation Spaces

We now show how to arrive at the set of linearly independent representation spaces associ-
ated to the different Standard Model particles. As we are embedding these representation
spaces within the algebra M(8,C), we will start simply by assigning a set of 24 linearly
independent elements of M(8,C) to all weak isospin doublets of the Standard Model asso-
ciated to fermionic particles. Demanding these representation spaces be linearly indepen-
dent from their complex conjugates yields another 24 weak isospin doublets associated to
fermionic antiparticles. After including the Higgs doublet in a similar fashion, we identify
the relevant gauge generators by demanding correct transformation laws for our irreducible
representations as given by the matrix algebra acting on itself.

Fermions and Higgs

Starting from the basis vectors introduced in subsection 2.4.1, consider the following ele-
ments of M(8,C), {

RI

(
V +
a

)† ∣∣∣I = 1, ..., 4
}
. (2.16)
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For a = 1, 2, 3, these will be identified with the fermions of the Standard Model. As
will become clear later, the “+” index denotes that the particles corresponding to these
elements have weak isospin value “up”. Their companion particles of weak isospin “down”
are denoted by {

RI

(
V −a
)† ∣∣∣I = 1, ..., 4

}
. (2.17)

Hence the set of elements {
RI

(
V ±a
)† ∣∣∣I = 1, ..., 4

}
(2.18)

describes one generation of weak isospin doublets, where the generation is labelled by
a ∈ {1, 2, 3}.

Next we will assign SU(3) charges to these basis elements. We choose, arbitrarily, to
assign the SU(3) charges (red, green, blue) to I = (1, 2, 3) respectively, and to make I = 4
a singlet of SU(3). For hypercharges consistent with the Standard Model charge allocations
we must include considerations of their Lorentz representation, so we postpone this until
we have described all the relevant SU(2) and SU(3) charge assignments.5

Having described three generations of particles, we now identify their respective anti-
particles. Since we want particles and antiparticles to have opposite electroweak charge
and be related via the complex conjugation operation ∗̄, we choose the vectors V ±a such
that, (

V ±a
)∗̄

= V ∓a . (2.19)

Note that this relationship implicitly uses that the 2 and 2∗ representations of SU(2) are
related by a similarity transformation. We then have that,(

RI

(
V ±a
)†)∗̄

= (RI)
∗̄ (V ∓a )† . (2.20)

Since in our construction the representation spaces associated to particle and antiparticle
transformations are described by linearly independent subspaces, this implies (2.20) must
be linearly independent from (2.18). We thus demand our basis vectors to satisfy,

(RI)
∗̄ = RI+4. (2.21)

Then the antiparticle states corresponding to (2.18) are{
RI

(
V ∓a
)† ∣∣∣I = 5, ..., 8

}
. (2.22)

5Note that for Hypercharge transformations we have non-trivial actions on left and right handed spinors.
For SU(2)L transformations case is simpler to implement, as since it acts trivially on right handed spinors
incorporating the effect of chiral discrimination only involves the inclusion of the projector P onto left
handed spinors.
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To summarize, for each a ∈ {1, 2, 3} we have one full generation of fundamental and
anti-fundamental representation spaces of the form{

RI

(
V ±a
)† ∣∣∣I = 1, ..., 8

}
. (2.23)

Here, I = 8 denotes a singlet of SU(3) and I = (5, 6, 7) are assigned the SU(3) charges
(anti-red, anti-green, anti-blue) respectively.6

Next we turn to the Higgs doublet representation which must have the same charge
assignment as the SU(3) singlet of (2.18). This leads us to elements of the type{

R4

(
V ±φ
)† }

. (2.24)

Here V ±φ , as defined in (2.13), are linear combinations of the V ±a which must include V ±0
for (2.24) to be linearly independent from (2.23). The complex conjugate of (2.24) yields
another pair of elements, {

R8

(
V ∓φ
)† }

. (2.25)

While these basis elements have charge assignments opposite to those of the Higgs doublet
representation, they cannot be made linearly independent from the rest of the irreducible
representation spaces identified with the Standard Model particle content. This means
that for the Higgs doublet representation we cannot not have an independent conjugate
representation when embedded in M(8,C).

This condition agrees with the implementation of the Higgs doublet in the Standard
Model. While the Yukawa interactions require both the Higgs doublet and its conjugate,
the same two complex parameters which describe the Higgs doublet appear in the conju-
gate doublet (see, for instance, Ref. [54]). Therefore, in the Standard Model the conjugate
doublet is not associated to an independent particle, by construction. Conversely, in this
embedding of Standard Model representations within the algebra M(8,C) the lack of an
independent conjugate Higgs doublet is unavoidable, following directly from the identifi-
cation of irreducible representation spaces as linearly independent basis elements.

2.5.1 The gauge generators

Here we identify the gauge generators by imposing the desired gauge transformation prop-
erties of the particle states (2.18) and (2.24). Before we begin, let us denote an arbitrary
gauge transformation, given by some operatorO. In the Standard Model particles and anti-
particles are acted upon by the same gauge generators, albeit in different representations.
Specifically for a fundamental transformation

K → OK (2.26)

6We note of course that it is arbitrary to which elements we associate the different colour charges, and
we assign an allocation only for definiteness.
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and the hermitian conjugate transformation

K† → (OK)† = K†O†, (2.27)

O and O† can be expressed via the same basis of generators. However, here the conjugate
fundamental representations here span complex conjugate basis elements, which do not
necessarily lie in the same space. Thus, we seek transformation operators O which, for any
K in (2.18) or (2.24), satisfy

(OK)∗̄
!

= OK ∗̄. (2.28)

In the following this will be used to identify the form of our gauge generators.7 We note
that the Higgs doublet space transforms in the same way as a left handed lepton doublet
of SU(2).

SU(3) transformations To identify the su(3) generators, let us consider again the
fermionic particles in (2.18), which span an SU(3) invariant subspace. Hence, an SU(3)
transformation acting on these states should be of the form,

RI

(
V ±a
)† 7−→∑

J

cIJRJ

(
V ±a
)†
, (2.29)

with cIJ ∈ C. The transformation matrix itself will be a linear combination of the full set of
basis elements (2.7). These basis elements act from left on the fundamental representations
as,

RKRJ
†RI

(
V ±a
)†

= δIJRK

(
V ±a
)†
. (2.30)

We can then deduce the form of SU(3) generators by demanding that their action leaves
the elements of (2.18) with I = 4 invariant. The most general expression satisfying this is,

λ̄I =
3∑

K,L=1

ΩIKLRK(RL)† , ΩIKL ∈ C , I = 1, . . . , 8 . (2.31)

The coefficients ΩIJK are fixed by assigning the SU(3) colour charges to the index I = 1, 2, 3
of our fermions. Then the λ̄I become maps between the different colour charges, as desired.

The generators acting on the anti-particle states (2.22) can then be identified by using
(2.28). Clearly by complex conjugation the SU(3) generators that transform the conjugate
fundamental representations must be λ̄∗̄. We need a transformation which reduces to λI
when acting on the fundamental representation spaces and λ̄∗̄ when acting on the anti-
fundamental representation spaces.

7Note while the operations of gauge transformations should satisfy this criteria, it is not required of
the gauge generators themselves.
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Now, due to (2.21), λ̄I and λ̄∗̄I are linearly independent. Further still, λ̄I and λ̄∗̄I com-
mute and λ̄I annihilates the anti-fundamental representation spaces while λ̄∗̄I annihilates
fundamental representation spaces under left multiplication. Thus we may instead identify
one transformation given by the set of generators,

λI = λ̄I − λ̄∗̄I , I = 1, . . . , 8 , (2.32)

which satisfies (2.28). This gives precisely the expressions in (2.8). Now, eiλI correctly
transform both particle and anti-particle states, and the generators λI will be the ones
associated to the gauge field of su(3). This simple identification between transformation
operator and generator of the symmetry transformation is possible simply because left and
right handed fermions in the Standard Model have the same SU(3) representations. This
is not the case for U(1)Y and SU(2)L representations, as we will show in the remainder of
this subsection.

Note that the Higgs elements (2.24) and the corresponding complex conjugate elements
are automatically invariant under SU(3) transformations, just like the singlet states of
(2.23).

UY (1) transformations Similarly to the SU(3) charges, hypercharges must also be as-
signed to the index I and so the hypercharge transformation must also act from the left.
Since the UY (1) transformation does not transition between colours, it must be constructed
only out of elements of the form RI(RI)

†, which takes the index I to the index I. However,
here we must take a bit more care than with the implementation of SU(3) transformations,
namely because the U(1)Y transformations discriminate between left and right handed
chiral fermions. We also have discrimination between up-type and down-type particles
for right handed particles, i.e. particles of different weak charge, which exist in distinct
left ideals. It is clear that for U(1) transformations we cannot write down any one gen-
erator which acts by the same action on all the elements in (2.18), unlike the case for
SU(3) transformations. However, we still need one element in M(8,C) which can describe
U(1) transformations in order to be able to make claims about linear independence of our
irreducible representation spaces.

We will be able to achieve the formulation of such a U(1) generator by incorporating
four different projectors in M(8,C). We have a pair of projects which specify particle vs.
anti-particle gauge representations, these are:

R :=
4∑
I=1

RI(RI)
† (2.33)

R̄ := R∗̄ =
8∑
I=5

RI(RI)
† (2.34)

where via left action R singles out particle transformations and R̄ singles out anti-particle
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transformations. Similarly, we require the projectors

V :=
∑
a

V −a (V −a )† (2.35)

V̄ := V ∗̄ =
∑
a

V +
a (V +

a )†, (2.36)

where via right action V will single out “up-type” particles and V̄ will single out “down-
type” particles. Since we will require these projectors to act either from the left or the right
we will define simultaneous multiplication on M(8,C) from the left by X and from the right
by Y , for some X, Y ∈ M(8,C), as the operation X|Y . Explicitly, for any K ∈ M(8,C),
(X|Y )K := XKY . Then, defining the element

Q := −R4(R4)† − 1

3

3∑
I=1

RI(RI)
† − 2

3

7∑
I=5

RI(RI)
†, (2.37)

we may write a general U(1)Y transformation operator, of the (anti-)fundamental repre-
sentations associated to fermionic sector, as the action via the operator

Ŷ :=
[
QR|1 +QR̄|

(
2V − V̄

)]
P (2.38)

+
[
Q∗̄R̄|1 +Q∗̄R|

(
V − 2V̄

)]
P̄ . (2.39)

Here we see for the first time the appearance of the chirality projectors P and P̄ as intro-
duced in section 2.2. Thus we have the basis element Q in M(8,C) acting on the different
subspaces of (2.18) generate the correct transformations, and that the different actions on
these subspaces are described by the operator Ŷ . That is, to accurately describe U(1)Y
transformations we must include these projects ad-hoc. Note that although we have intro-
duced an operator here, this is just for compactness, indeed all the U(1)Y transformations
of M(8,C) are described in terms of the element Q or its conjugate. We emphasize that this
relationship between operator for transformations and element of M(8,C) is also present
for SU(3) transformations, albeit much more trivial.

Since SU(3) transformations act from the left and commute with the projectors R and
R̄, and do not distinguish based on chirality, this would imply that the relevant operator
would be

λ̂I := Rλ̄I |1− R̄λ̄∗̄I |1 =
(
λ̄I − λ̄∗̄I

)
|1 = λI |1, (2.40)

where we have used λ̄I as defined in (2.31). At this stage one may wonder why we chose
to consider λI as the SU(3) generators, instead of choosing λ̄I and employing similar
transformation rules via projectors as in (2.40). The necessity of considering λI instead of
λ̄I arises from the need for linear independence of our irreducible representation spaces,
section 2.6.

Both the basis element Q, and the corresponding operator Ŷ , defined in this way
automatically commutes with the SU(3) transformations. This is crucial since action of
both the groups SU(3) and UY (1) transformations are described by matrix multiplication
from the left and we need to be able to treat them as independent transformations.
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SU(2)L transformations Finally, we turn our attention to the SU(2)L transformations.
These transformations act on any irreducible representation space in (2.18) and (2.24) as,

RI

(
V ±a
)† 7−→ c+RI

(
V +
a

)†
+ c−RI

(
V −a
)†
, (2.41)

with c± ∈ C. Again we would like to express this operation in terms of matrix multiplica-
tion of the elements. However, in this case we are forced to use right multiplication, as the
elements in (2.18) and (2.24) with V +

a and V −a are in different left-invariant subspaces, i.e.
different left ideals. Therefore, there is no matrix multiplication on the left which could
transition between weak-isospin ± states.

When acting from the right with V ±a
(
V l
a

)†
on these matrix elements, we have that,

RI

(
V ±a
)†
V ±b
(
V l
c

)†
= δabRI

(
V l
c

)†
. (2.42)

where we have used (2.6). These transformations only affect the ± index, and not the
generation index a on V ±a as required.

The SU(2)L transformations must act differently on matrix elements RI(V
±
a )† depend-

ing on whether I ∈ {1, 2, 3, 4} or I ∈ {5, 6, 7, 8} respectively, as fundamental SU(2) and
SU(3) representations are correlated in the Standard Model. Further, they must also dis-
criminate based on the chiral representation of particles. Thus we know we will need to
employ projectors in a similar fashion to what was done for the operator Ŷ describing
U(1)Y transformations. Indeed, we have that SU(2)L transformations are described via
the operators

T̂j := (R|Tj)P −
(
R̄|T ∗̄j

)
P̄ (2.43)

such that SU(2)L transformations of (2.18) can collectively be written as

K → eiT̂jK, (2.44)

with Ti as given by (2.10). This ensures that only left handed particles, and the corre-
sponding right handed antiparticles, transform under SU(2)L. Similar to the U(1)Y , case
the SU(2)L transformations reduce to actions of Tj on the various subspaces of M(8,C).
Having identified the different irreducible representation subspaces of M(8,C) we then pro-
ceed to find the conditions for their linear independence.

2.6 Conditions for Linear independence

We now verify that all elements assigned to the 62 different particle types of the Standard
Model can be made linearly independent. We emphasise in our embedding of the Standard
Model gauge representation spaces in M(8,C), we consider only complex subspaces and
their linear independence. This means we will be using the complexification of the Lie
algebras for linear independence.
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The relevant subspaces are spanned by elements of the form:

Generations & anti-generations :
{
RI

(
V ±a
)† }8

I=1
with a = 1, 2, 3 (2.45a)

Higgs doublet :
{
R4

(
V ±φ
)† }

(2.45b)

SU(3) generators :
{
λI

}8

I=1
(2.45c)

SU(2) generators :
{
Tj

}3

j=1
(2.45d)

Hypercharge generator : Q (2.45e)

By construction all generations and anti-generations are linearly independent from each
other. We use that

V +
0 =

8∑
I=1

aIRI , V −0 =
4∑
I=1

(aI+4)∗RI +
8∑
I=5

(aI−4)∗RI , (2.46)

where, for notational simplicity, we have renamed a+
0I → aI . Our requirement (2.19) fixes

the coefficients in V −0 . Due to the orthogonality of the V ±a , any element K in (2.45a)
satisfies

KV ±0 = 0 . (2.47)

This observation provides us with a necessary and sufficient condition for any linear com-
bination S of elements in (2.45b)-(2.45e) to be linearly independent both from each other
and from (2.45a). Namely we must have that at least one of SV +

0 and SV −0 does not
vanish. In order to achieve this, we simply need to exclude those sets of {aI} for which
there exists at least one linear combination S such that SV ±0 = 0.

To this end, note that in the RI(RJ)† basis we may write any complex linear combina-
tion of su(3) generators in block-diagonal matrix form as

λ = Diagonal
{
M, 0,−MT, 0

}
(2.48)

where the zeros are just scalars, or 1×1 matrices, and M is a general 3×3 complex traceless
matrix. We then write an arbitrary linear combination of (2.45b)-(2.45e) as

S = λ+ cjTj + d+R4

(
V +
φ

)†
+ d−R4

(
V −φ
)†

+ gQ, (2.49)

with ci, d
±, g ∈ C. We now need to find those aI for which SV ±0 = 0 if and only if λ = 0

and cj = d± = g = 0.

Conditions for cj = d± = g = 0

Let us define the two following vectors in C3,

a :=
(
a1 a2 a3

)T
, ā :=

(
a5 a6 a7

)T
. (2.50)
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The equation SV +
0 = 0 is equivalent to two vector and two scalar equations,

Ma+ (c1 + ic2) ā∗ +

(
c3 +

2

3
g

)
a = 0 , (2.51a)

−MTā+ (c1 + ic2) a∗ +

(
c3 +

1

3
g

)
ā = 0 , (2.51b)

(c1 + ic2) a∗8 + c3a4 + d+
(
h+

0

)∗
= 0 , (2.51c)

(c1 + ic2) a∗4 + (c3 + g) a8 = 0 . (2.51d)

Similarly, SV −0 = 0 gives,

Mā∗ + (c1 − ic2) a+

(
−c3 +

2

3
g

)
ā∗ = 0 , (2.52a)

−MTa∗ + (c1 − ic2) ā+

(
−c3 +

1

3
g

)
a∗ = 0 , (2.52b)

(c1 − ic2) a4 − c3a
∗
8 + d−h+

0 = 0 , (2.52c)

(c1 − ic2) a8 + (−c3 + g) a∗4 = 0 . (2.52d)

From equations (2.51a) and (2.51b) we find that,

(c1 + ic2)
(
|a|2 + |ā|2

)
= − (2c3 + g) (aTā) , (2.53)

while equations (2.52a) and (2.52b) yield,

(c1 − ic2)
(
|a|2 + |ā|2

)
= − (−2c3 + g) (a†ā∗) . (2.54)

Together we then have that,(
|a|2 + |ā|2

) (
− ic1 Im(aTā) + ic2 Re(aTā)

)
= −2c3|āTa|2 , (2.55)

and (
|a|2 + |ā|2

) (
c1 Re(aTā) + c2 Im(aTā)

)
= −g|āTa|2 . (2.56)

We have four equations (2.51d), (2.52d), (2.55) and (2.56) which are only dependent
on the four parameters {ci} and g. We combine a∗4(2.51d) and a8(2.52d) such that, with a
bit of manipulation, we get the pair of equations

c1

(
|a4|2a∗4a∗8 + |a8|2a4a8

)
+ ic2

(
|a4|2a∗4a∗8 − |a8|2a4a8

)
= −2g|a4a8|2 (2.57)

c1

(
|a4|2a∗4a∗8 − |a8|2a4a8

)
+ ic2

(
|a4|2a∗4a∗8 + |a8|2a4a8

)
= −2c3|a4a8|2 . (2.58)
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Since V +
0 and V −0 are orthonormal vectors, this implies that,

aTā = −a4a8 and |a|2 + |ā|2 = 1− |a4|2 − |a8|2. (2.59)

From (2.55-2.58) we obtain two distinct equations relating the parameters c1 and c2. While
the actual forms of these equations are rather messy, we can schematically write them as

f1c1 = f2c2 and f3c1 = f4c2 , (2.60)

where fi = fi(a4, a8) are functions of a4 and a8. The pair of equations (2.60) then have
two possible solutions. Either

f1f4 = f2f3 , (2.61)

and the two equations relating c1 and c2 are equivalent; or

f1f4 6= f2f3 , (2.62)

in which case the only valid solution for the parameters c1 and c2 is c1 = c2 = 0. The
case (2.62) is the one of interest, as if c1 and c2 both vanish it is evident that by equations
(2.51c), (2.51d), (2.52c), and (2.52d) that c3 = g = d± = 0. Condition (2.62) simplifies to

|a4|2|a8|2
(

2− |a4|2 − |a8|2 − 10|a4|2|a8|2 − 3|a4|4 − 3|a8|2
)
6= 0 (2.63)

which implies that

|a4|, |a8| 6= 0 , (2.64)

and for |a4,8|2 ∈ (0, 2
3
)

|a8,4|2 6= S(|a4,8|2) , (2.65)

where

S(x) :=
1

6

(
− 1− 10x+

√
25 + 8x+ 64x2

)
. (2.66)

Thus we have found the necessary and sufficient conditions for cj = d± = g = 0, without
considering the final parameter λ encoded by the 3×3 matrixM . We now turn our attention
to ensuring that this parameter must also vanish for equations (2.51a)-(2.52d) to hold.

Conditions for λ = 0

With cj = d± = g = 0, the equations (2.51a)-(2.52d) reduce to λV ±0 = 0. Writing any
linear combination λ in terms of its generators as

λ = b1λ1 + b2λ2 + b3λ3 + b5λ5 + b6λ6 + b7λ7 + b8λ8 , bi ∈ C , (2.67)
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we use the explicit form for λI in (2.8) and define the two matrices,

mS ≡

b3 + b8 b1 b4

b1 b8 − b3 b6

b4 b6 −2b8

 , mA ≡

 0 −b2 −b5

b2 0 −b7

b5 b7 0

 . (2.68)

It is straightforward to verify that the matrix equations λV ±0 = 0 are equivalent to,

a , ā∗ ∈ Kern
(
mS + imA

)
∩Kern

(
mS − imA

)
. (2.69)

Here, Kern(S) denotes the kernel of S, and ∩ denotes the intersection of the two kernels.
This in turn implies,

a , ā∗ ∈ Kern
(
mS

)
∩Kern

(
mA

)
. (2.70)

It is easy to convince oneself that, since mS is a traceless symmetric matrix and mA is
antisymmetric, neither of them can have rank 1.8 Hence, they must have rank 3, 2 or 0. If
the matrices in (2.68) are both trivial this implies λ = 0, and thus we have achieved linear
independence. If either of the matrices has rank 3 then λV ±0 6= 0 for any V ±0 6= 0, and
again we have achieved linear independence. This leaves us with the case where at least
one of the matrices has rank 2 and a kernel of dimension 1. Then for both vectors in (2.70)
to lie in the same one dimensional space we would require a ∝ ā∗, as neither vector may
be the zero vector for the solutions cj = d± = g = 0 to hold. Ergo, if a 6∝ ā∗̄ then linear
independence of (2.45a)-(2.45e) ensured when also taking into account conditions (2.64)
and (2.65).

All together the sufficient and necessary conditions for (2.45a)-(2.45e) to be linearly
independent are: (

a1 a2 a3

)T 6∝
(
a∗5 a∗6 a∗7

)T
,(

a1 a2 a3

)T 6⊥
(
a∗5 a∗6 a∗7

)T
, (2.71)

and

|a8,4|2 6= S(|a4,8|2) , h±0 6= 0 , (2.72)

with S(x) as in (2.66).

Note that neither vector a nor ā∗ may be the zero vector, as this would imply or-
thogonality of the two vectors. Further, the orthogonality condition (2.71) of a and ā∗ is
equivalent to condition (2.64) by equation (2.59).

8If the symmetric matrix has rank 1, it only has 1 non-vanishing eigenvalue and can therefore not be
traceless. As the antisymmetric matrix mA must have zeros on its diagonal component, it can trivially
not have rank 1.
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2.7 Main Features

Having provided the explicit realization of all Standard Model gauge representations within
M(8,C), as a subalgebra of M(16,C), we comment on some of the main features which are
present in our direct sum decomposition.

Starting with the adjoint representation spaces in M(8,C), we have that gauge trans-
formations are described by matrix multiplication. This is also the case in the Standard
Model. However, instead of the matrices acting on column vectors they here act on other
matrices in the same space. Thus symmetry transformations are described by the matrix
algebra acting on itself in such a way that it preserves the irreducible representation spaces
and their invariant products. Therefore the inclusion of fundamental and adjoint represen-
tations in the same space excludes the need to define operator algebras acting on the spaces
of our fermions.9 THe symmetry transformations can also be seen as transformations on
the basis elements of the matrix algebra which leaves the irreducible representation spaces
invariant. In this way the symmetry transformations become redundancies in our direct
sum decomposition.

Of course, in our derivation we found the complexified Lie algebras, while Standard
Model physics only considers the real su(N) Lie algebras for the gauge groups. While we
commented on this earlier, it is prudent to emphasise that at the level of simply embedding
representation spaces into M(16,C) there is no fundamental reason for why only the real
part of these complex Lie algebras should be physical. This complexification may be
understood as the simultaneous appearance of two vector representations in M(2,C), which
are the space of hermitian vectors VH and anti-hermitian vectors iVH . Regardless, this
explicit realization of Standard Model representations offers no mechanism for which to
select only the real Lie algebras.

Another relevant point for the discussion of gauge transformations is the appearance of
two sets of basis vectors {RI} and {V ±a } for C8. While there is a lot of freedom in how to
define these two sets of basis elements, indeed only certain combinations of values are not
allowed, the two sets may not be identical while still achieving linear independence of our
irreducible representation spaces. This is evident from (2.71) alone, which implies each of
the basis elements V ±0 must be the linear combination of at least two elements of {RI}.
As a result all our fundamental representations appear as outer products of two different
sets of basis elements of C8, while our adjoint representations are all expressed as the
outer product of only one set of basis elements. The requirement that our two sets of basis
elements be non-identical is interesting from the perspective of inducing representations. It
suggests that the matrices describing fundamental representations map between different
copies of C8, while the matrices describing adjoint representations preserve map within a
copy of C8. This idea will be employed as a basic ingredient for the work in chapter 4.
This line of reasoning will then offer a natural explanation for why we do not consider
SU(2) transformations of SU(3) or visa versa; indeed, while these generators span linearly

9Note that the use of operators in defining our symmetry transformations does not imply our adjoint
representations belong to an operator algebra. Rather this simply describes how our symmetry generators
act on the different representation spaces.
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independent subspaces of the same matrix algebra, they do not commute. This construction
differs from the formulation of Lie algebras in the Standard Model, which are elements of
different spaces and act on different objects and trivially commute.

Apart from the form of the Lie algebras, the subspace describing the Higgs doublet
representation is interesting from the perspective of understanding coupling constants in
theories. It is clear that, for most choices of parameters, the contraction of V ±φ with any of
the vectors V ±a is non-zero. This provides a setup in which the different coupling strength
between generations of fermions and the Higgs can be encoded into the form of the Higgs
doublet field itself.
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Chapter 3

Octonions and the Algebra of Linear
Maps

In the previous chapter we showed an embedding of the Standard Model gauge represen-
tations within M(16,C), where the gauge transformations were associated to the algebra
M(8,C). The starting point for this embedding was the identification of the matrix algebra
with the Clifford algebra mathdsCl(6), from which we identified SU(3) transformations
resulting in a C⊕C3⊕C∗⊕C3∗ decomposition of column vectors within the matrix algebra.
Alternatively we could have viewed the space M(8,C) as representing linear maps acting
on some vector space with a C⊕ C3 ⊕ C∗ ⊕ C3∗ decomposition under SU(3).

There is in fact an eight dimensional complex vector space which naturally contains
such an SU(3) decomposition, namely the algebra C⊗ O of complexified Octonions. Fur-
thermore this algebra also has natural decompositions under SU(2), albeit of a different
form than presented in chapter 2. Therefore, while the choice of representations in the pre-
vious section was ad-hoc to embed Standard Model representations, considering M(8,C) as
representing endofunctions of the complexified Octonions will allow us to induce irreducible
representation spaces in M(8,C). However, before proceeding with such an induction we
first provide a basic introduction to the Octonions and their complexification.

3.1 Overview and Matrix Algebra

The Octonions form an eight dimensional non-associative and non-commutative algebra.
In simplest terms: it is a unital algebra of seven square roots of -1, denoted {ei}7

i=1, with
unity often denoted 1 or e0. In this thesis we will always denote the unity element by
e0, and reserve 1 for the SU(3) singlet representation. The algebra’s first appearance in
a publication was by A. Cayley in 1845, as a result the Octonions are also referred to as
Cayley numbers or the Cayley algebra, Ref. [55]. There are several different and equivalent
ways to define the multiplication rules for the Octonions, which is to say several equivalent
ways to define a basis. Here we chose a particular basis which makes the multiplicative
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structure simpler:

eiej = −ejei for i 6= j; e2
i = −1, e1e2 = e4;

eiej = ek =⇒ ei+1ej+1 = ek+1 (3.1)

eiej = ek =⇒ e2ie2j = e2k, mod 7.

where i, j, k ∈ {1, ..., 7}. Note that by mod 7 we mean ei+7n := ei, for all i ∈ {1, ..., 7} and
n ∈ N, such that e7 = e7, e8 = e1, etc. This definition of the Octonions is the same as the
one used in Ref. [56], and can be visualised through the Fano plane, see figure 3.1. The
Fano plane should be understood such that all lines wrap around on themselves and contain
three elements, e.g. the line from e4 to e6 continues to connect e6 to e3. Multiplication
is understood from this diagram pairwise, by defining eiej as going from ei through ej to
the next element on the line. For example, e1e2 takes e1 through e2 to yield e4. Going
against the direction of the arrows yields the same rule but with an overall minus sign, i.e.
e2e1 = −e1e2 = −e4.

With these multiplication rules one can see that all the Quaternion subalgebras of O
are described by any three elements lying on the same line in the diagram. Another core
feature of the Octonions, which is prominent in this diagram, is their non-associativity.
This can be seen by looking at the multiplication of any three elements not on the same
line in the Fano plane. For example, the two expressions

e1(e3e6) = e1e4 = e2 and (e1e3)e6 = e7e6 = −e2 (3.2)

differ by an overall sign. Associativity is preserved only if multiplying elements within
Quaternionic subalgebras of O, i.e. multiplication of any elements lying on a single line in
figure 3.1.

The last line of (3.1) describes a discrete automorphism of the Octonions we will refer to
as index doubling, a term only valid under definition (3.1) of the multiplicative structure.
This automorphism forms the cyclic group C3 as performing the index doubling thrice
returns the same element. This transformation can be visualized in the Fano plane by
rotating the triangle by 2π/3 counter clockwise. The continuous automorphism group of
the Octonions is G2, the smallest of the exceptional Lie groups. There is a lot of literature
about this group and its properties, and we will only mention a few of relevance to this
paper. For a more comprehensive overview of the Octonions, as well as their relation to
all the exceptional Lie groups, we refer the reader to Ref. [57].

One feature which is of interest to us is, as mentioned, the SU(3) subgroup of G2. There
are several distinct, but overlapping, SU(3)⊂ G2 and each can be identified with the sub-
group of G2 which leaves invariant some unit imaginary element ei. As the automorphisms
must trivially leave the identity e0 invariant, this implies that selecting a SU(3) subalgebra
of G2 is equivalent to restricting to only the transformations which preserve a complex
subalgebra of O, as SpanR{e0, ei} ∼= C. The remaining space, SpanR{ej|j 6= 0, i} is then
a six dimensional real subspace which transforms irreducibly under SU(3). This space
must naturally transform in some triplet representation, as the only representations of real
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Figure 3.1: The Fano Plane for Octonionic Multiplication

dimension 6 which are irreducible representation of SU(3) are the triplet representations 3
and 3∗. Under complexification this six dimensional real space is separated into a pair of
three dimensional complex spaces. Here SU(3) acts on SpanC{ej : j 6= 0, i} as the direct
sum 3⊕ 3∗ of irreducible representation spaces of SU(3). As the complex subspace of O is
invariant under SU(3), it is clear that SU(3) acts on C⊗ O as 1⊕ 3⊕ 1∗ ⊕ 3∗, where the
symbol ∗ both denotes that the spaces transform in the complex conjugate representation of
SU(3) and that these subspaces are themselves related by complex conjugation. Note that
the complex conjugation operation describing both relations between vector subspaces and
representation spaces in C⊗O is possible since the SU(3) group action on C⊗O commutes
with complex conjugation. This SU(3) decomposition of the complexified Octonions is of
interest since it exactly mirrors the SU(3) representation of one generation of leptons and
quarks along with their antiparticles, as mentioned in section 2.1.

There are also several SU(2) subgroups of G2, some of these appear as SU(2)⊂SU(3).
In chapter 4 we consider SU(2) subgroups of G2 which are such that they preserve element
wise a Quaternionic subalgebra of O. These SU(2)⊂ G2 fall into three sets when under
index doubling. There are three SU(2) subgroups which are related by index doubling
and preserve e7, three SU(2) subgroups which are related by index doubling but do not
preserve e7, and one SU(2) subgroup which is invariant under index doubling and preserves
the elements e1, e2, e4. This follows immediately from the 7 different lines of Fano plane,
figure 3.1.

Thus, by using the SU(3) and SU(2) subgroups of G2, we show that it is possible
to induce a direct sum decomposition of M(C ⊗ O) into irreducible representations of
SU(2)×SU(3). This allows for a more natural way to study simultaneous realizations of
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gauge representations in the space of matrices M(8,C), while still considering groups which
are of interest to particle theory.

3.2 Past Appearances in Physics

The use of Octonions in physics is not new. For example, the Octonions were seriously
studied in the 1970’s, Ref. [58, 59], as an alternative approach to the then newly proposed
QCD scheme of quarks. The idea behind using the Octonions in this setting was to explain
the non-observability of quarks. Having quarks describe states which lie outside the space
of observables was achieved though the use of a “fictitious Hilbert space” based on the
Octonions. The non-observability of the quark states then follows from the fact that an
algebra of observable states requires a Hilbert space over an associative algebra, which the
Octonions are not.1 We refer the reader to the above references for simple examples of
why non-associativity fails to yield a Hilbert space of observables. The Hilbert space of
observables was instead the Hilbert space of SU(3) singlets. This lead to Hadrons being
the only observables of the theory, as single quark states are charged under SU(3).

The Octonions also appear as ingredients of the unique exceptional Euclidean Jordan
algebra, J3. This algebra has itself been the central object of study in several papers
trying to identify the Standard Model symmetries as related to the exceptional Lie groups,
Ref. [60, 61, 62, 63].

There are several relations between the Octonions and String Theory. In particular we
comment on the work of John C. Baez and John Huerta, Ref. [64, 65], which relate the
dimensions of String Theory to those of the normed division algebras. The Octonions as an
eight dimensional division algebra are then related to either 10 dimensional minimal super
Yang-Mills theories or 11 dimensional classical super-2-brane theories. These relationships
are established well beyond the level of dimensional arguments and we refer the interested
reader to the above citations. See also Ref. [66] for a formulation of M-theory algebra in
terms of Octonions and Refs. [67, 68] for additional relations between G2, the Octonions
and M-Theory. Further, the Octonion algebra itself can arise in String Theory from string
R-flux algebras, Ref. [69]. While we will not be using these relationships to String Theory
in our present work, it highlights the range and depth of applications of the Octonions as
the largest of the normed division algebras.

For the purpose of this dissertation, we have chosen to work with the algebra of the
complexified Octonions simply because: its restricted symmetry groups are those of the
Standard Model; its decomposition under SU(3) contains the same SU(3) representation
spaces as one generation of leptons and quarks; and the resultant space of maps from the
algebra to itself is that of eight by eight complex matrices, which as we showed in chapter
2 is the minimal matrix algebra for encoding the set of Standard Model representations.
As a side benefit we note that the Octonions have been seen to arise in many different

1Note that as we will be focused on the maps M(C⊗O) and not on the complexified octonions themselves
this would not be an issue of our formulation.
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fields. As such it is our belief that working with such a proliferous algebra will help make
our results and ideas more applicable to other fields of physics.



40 3. Octonions and the Algebra of Linear Maps



Chapter 4

Inducing Gauge Transformations in
Matrix Algebras

Here we go beyond a simple embedding of Standard Model gauge representations, and
discuss how irreducible representation spaces can be induced in a matrix algebra. The
purpose of this line of reasoning is not to reproduce Standard Model physics, but instead
to induce a direct sum decomposition of a matrix algebra into irreducible representation
spaces. The subspaces will then be analysed and compared with those of the Standard
Model.

To this end we will be using the complexified Octonions, as introduced in chapter 3.
Consequently we will not be needing to take the route through Cl(6) to obtain the matrix
algebra M(8,C). Therefore we will be defining the operation of complex conjugation directly
in C⊗O, and by extension also in M(C⊗O), and have no need for two different operations
∗̄ and ∗; unlike the case for chapter 2. Thus, in the following section there is only one
operation of complex conjugation which will be denoted by the standard operation ∗. We
will describe how this operation acts on the vector space C ⊗ O, and the resultant effect
in the matrix algebra.

4.1 Method of induction

Before we begin, we must explain what we mean by inducing representations, what this
implies, and how we will achieve such an induction. First, by inducing representations we
mean using the features of some underlying space V to generate irreducible representation
spaces in the space of maps M(V ) on V . Here we will be using the complexified Octonions
as our underlying space, i.e. V = C ⊗ O. The features we will be using for our direct
sum decomposition are the restricted representations of C ⊗ O under action of G2, the
continuous automorphism group of the Octonions.

Of course, we also need a mechanism for which we will use the restricted representations
of C⊗O to generate irreducible representations in M(C⊗O). This first requires considering
what types of representation we wish to generate through our process of induction. This is
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important, as the space M(C⊗O) is realized simply by eight by eight dimensional matrices,
which we could interpret as a set of 64 singlet states unless we have a construction which
specifies how irreducible representations should be identified. In other words, the algebra
M(C ⊗ O) is just that, an algebra without any prior relation to particle theory. So it is
clear that one would necessarily have to impose additional conditions, or structure, on the
algebra in order to allow for an identification of irreducible representation spaces which can
be compared to Standard Model particles. In our work we will refer to this imposition of
conditions on the algebra M(C⊗O) as “principles” of our construction, i.e. the principles
which allow for the induction of a direct sum decomposition into irreducible representation
spaces.

As mentioned, the purpose of this paper is to investigate how the different types of
irreducible representation spaces of the Standard Model can simultaneously be realized in
the same space. This implies that we wish for a construction which will yield at least
adjoint representations of non-abelian Lie algebras and fundamental representations of
these same algebras.1 To ensure the appearance of adjoint and fundamental representation
spaces of non-abelian Lie groups, we draw inspiration from some of the main features of our
explicit embedding highlighted in section 2.7. Specifically, we found that the fundamental
representations were most easily expressed in terms of matrices composed of two distinct set
of basis vectors. Additionally, our su(2) and su(3) Lie algebras appeared as endofunctions
on these basis elements that preserved certain decomposition of some eight dimensional
row or column vector. I.e. preserved irreducible representation spaces of some C8. In order
to recover adjoint representations we will consider subspaces of M(C ⊗ O) which act as
endofunctions on C⊗O while preserving restricted representations. To obtain fundamental
representations we will use maps between restricted representations on C ⊗ O. This is
detailed as principle 2 in section 4.2. For notational simplicity and ease of reading we
will refer to the space V , here C ⊗ O, as the “base space” upon which the maps M(V )
act. Additionally we will also demand that invariants can be formed via the contraction
of elements in the resultant matrix algebra, as the formation of invariants is central to the
construction of any gauge theory.

Finally, we also demand that we provide a complete decomposition of M(C ⊗ O) into
irreducible representation spaces of the relevant restricted group actions on C ⊗ O. One
of the less attractive features of the explicit embedding of chapter 2 is the appearance of
the subspace PAdd. This space describes the residual components left over once the Stan-
dard Model gauge representations, as well as those of right handed neutrinos, have been
embedded in M(8,C). These components were not problematic for our explicit embedding,
by dimensional counting their existence was inevitable. However, when inducing represen-
tations we do not have any reason why there would be additional components. Indeed,
why should only a certain part of the algebra be understood in terms of irreducible rep-
resentation spaces? Nor do we have any limit on the dimensionality of the space spanned
by these additional components. Thus allowing for an arbitrary PAdd in our induced di-

1Note that this only demands which types of transformations must be present, and does not exclude
the appearance of other representations.
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rect sum decomposition prevents making any definite claims about the set of irreducible
representation spaces. So, for definiteness and consistency of interpretation, we will only
permit sets of irreducible representation spaces whose direct sum is precisely the entirety
of the space M(C⊗O).

In the following section we formulate the above points into four construction principles,
which we will use to construct a direct sum decomposition of M(C ⊗ O) into irreducible
representation spaces of SU(2)×SU(3).

4.2 The Setup

In the previous section we introduced and motivated the notion of principles of construc-
tion that we will use to induce a direct sum decomposition of M(8,C) into irreducible
representation spaces. Here we present these principles in a concise form.

1. We consider only spaces of maps transforming in irreducible representations of the
subgroups of G2 that element-wise preserves some definite complex or Quaternionic
subalgebra of O.

2. We consider two distinct sets of maps:

· Those which map from C⊗O|C to C⊗O|H.

· Those corresponding to a Lie algebra of maps describing a redundancy in the
decomposition of M(C⊗O).

3. The Lie algebras corresponding to automorphisms of O|C and O|H must be present
in the decomposition.

4. Invariants may be formed using map composition and trace operations of elements
and their Hermitian conjugates.2

For principle 2, we have defined O|X be the algebra O with symmetry group G′ ⊂ G2 such
that G′(a) = a, ∀a ∈ X ⊂ O, i.e. G′ is a restricted representation of G2 on O.

Let us elaborate on these principles. For principle 1, automorphisms ofO which preserve
some complex subalgebra, O|C, and those which preserve some Quaternionic subalgebra,
O|H, form the groups SU(3) and SU(2) respectively, as subgroups of G2. So we are not
employing ad-hoc defined groups, as was the case in chapter 2, but those corresponding to
transformations which are inherent to the multiplicative structure of the algebra. In simple
terms, the first principle provides a process by which definite subgroups of G2 are selected
as transformation groups of our direct sum decomposition. Principle 2 then provides a

2Note that we could not chose to form invariants with inverse matrix elements, as not all irreducible
representation spaces have matrix inverses. Second we cannot form invariants using transposition of matrix
elements, as this does not form SU(N) invariants and we already have two special unitary transformations
present. Thus Hermitian conjugation is the only matrix operation applicable for forming invariants between
our irreducible representation spaces.
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process by which M(C⊗O) is broken down into a direct sum decomposition of irreducible
representation spaces of these same subgroups. The choice to incorporate maps from O|C to
O|H, and not visa-versa, both restricts the freedom in identifying irreducible representation
spaces and simplifies the calculations of linear independence.

From just these two principles one may not ensure uniqueness of the direct sum de-
composition. This is evident from the fact that the third principle implies a starting point
for the decomposition. Otherwise we could simply span the space M(C ⊗ O) by maps
from C⊗ O|C to C⊗ O|H. Then we would have a set of only fundamental representation
spaces, and no adjoint representations. To ensure we find a unique set of SU(2)×SU(3)
irreducible representation spaces in our direct sum decomposition we must minimally have
a unique starting point. Principles 3 and 4 are together simply the statement that we wish
to study representations relevant for gauge theories. This implies minimally that we need
the appearance of adjoint representations in the direct sum decomposition, which we will
take as our starting point, and the ability to form invariants.

On another note, the results of chapter 2 relied on defining fundamental representations,
and then identifying the Lie Algebras elements which described the transformation of these
subspaces. Here the approach is different not only in that we derive our group structures
from an underlying algebra, but also in the starting point of imposing the group structure,
here SU(2)×SU(3), and then identifying the various irreducible representation spaces of
these transformations.

4.3 Results

Before proceeding with the process of identifying the irreducible representation spaces of
M(C⊗O), we first present the complete set of these subspaces for conciseness and ease to
the reader.

The adjoint representations which appear are those which correspond to the complexi-
fied Lie algebras:

• C⊗ u(1)

• C⊗ su(2)

• C⊗ su(3)

The complexified SU(2) and SU(3) Lie algebras naturally correspond to the appearance
of the SU(2) and SU(3) subgroups of G2, as discussed in previous sections. However, the
complexified U(1) Lie algebra3 corresponds not to any automorphism group of G2, but

3Normally in particle theory we do not discuss generators of a U(1) group or a u(1) Lie algebra. This
is because when restricted to irreducible representation spaces the generator for a U(1) group becomes
just a scalar and the Lie algebra is trivial. While the Lie algebra is indeed trivial in our construction, the
generator takes on a specific form in M(C⊗O) which describes the charge distribution of the irreducible
representation spaces. This makes it constructive to refer to a U(1) generator, as well as grouping its
representation space into the set of complexified Lie algebras.
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instead to a “residual redundancy” in how to define the different irreducible representation
spaces of M(C ⊗ O). Here the term “residual redundancy” denotes a redundancy in the
decomposition which does not arise from the algebra C⊗O itself, but rather as a further
redundancy of the SU(2)×SU(3) invariants that may be formed from elements in M(C⊗O)
as per principle 4. As a result the relative charges of the corresponding U(1) generator will
not be fixed.

Similar to the work of chapter 2, there is no apparent process by which to select only
the real Lie algebras. Thus we find the complexified Lie algebras as the linearly indepen-
dent irreducible adjoint representation spaces. Even so, it is the Lie groups generated by
the real Lie algebras u(1), su(2), and su(3) that describe redundancies of the direct sum
decomposition of M(C⊗O).

In the maps from C⊗O|C to C⊗O|H we find:

• Eight singlets of SU(2)×SU(3)

• Two singlets under SU(3) which transform as 2 under SU(2)

• Two singlets under SU(3) which transform as 2∗ under SU(2)

• Four singlets under SU(2) which transform as 3 under SU(3)

• Four singlets under SU(2) which transform as 3∗ under SU(3)

• Two sets of 12-dimensional real vector spaces which transform in the doublet repre-
sentation of SU(2) and the triplet representation of SU(3).

While fundamental representations are common in the Standard Model, the 12-dimensional
real representations seem quite out of place. We will discuss these representation spaces in
subsection 4.5.3. As the relative charges of our U(1) transformation are not fixed we have
not included charge assignments for the above representation spaces.

All the fundamental representations are contained in a set of 4 reducible representation
spaces F1, F1∗ , F3, and F3∗ . Note the F -spaces here are distinct from the ones introduced
in chapter 2, i.e. the Fi spaces. As we are talking about two different constructions there
should be no confusion about to which direct sum decomposition these subspaces belong.
A similar notation has been kept simply as they describe the SU(3) transformations of
the representation spaces. Here the spaces F1 and F1∗ contain all singlets of SU(3), with
F3 and F3∗ describing only fundamental representations of SU(3) and their conjugates.
The 12-dimensional real representation spaces are denoted Hα

1 and Hβ
2 , where α and β are

complex parameters describing the exact structure of our spaces. The condition α, β 6= ±1
is required for linear independence. All together this yields the direct sum decomposition

M(C⊗O) = C⊗
(
u(1)⊕ su(2)⊕ su(3)

)
⊕F3 ⊕F3∗ ⊕F1 ⊕F1∗ ⊕Hα

1 ⊕H
β
2 . (4.1)

In the following subsection we will show how we stepwise construct the above direct
sum decomposition of our matrix algebra. A detailed analysis of properties of these dif-
ferent irreducible representation spaces is given in section 4.5. Note, that by properties
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of the irreducible representation spaces we naturally mean features of their realization
within M(C ⊗ O), i.e. those which are besides the properties associated purely to their
representation.

4.4 Construction

Here we show how to induce a direct sum decomposition of M(C ⊗ O) into a unique set
of irreducible representation spaces of SU(2)×SU(3). We start by defining the adjoint
representations associated with our SU(2) and SU(3) symmetries, as per principle 3.

4.4.1 The Non-Abelian Adjoint Representations

The SU(3) subgroup of G2 splits our 8-dimensional complex vector space into 4 irreducible
representation spaces:

V =
(
1⊕ 3

)
⊕
(
1∗ ⊕ 3∗

)
, (4.2)

where again the complex conjugate denotes both the subspaces’ transformations under
SU(3), and that the different subspaces are themselves related by complex conjugation.
Here 1 is a singlet and 3 is a triplet of SU(3), as discussed in section 3.1. Similarly we have
the irreducible representation spaces of SU(2)

V =
(
1⊕ 1′ ⊕ 2

)
⊕
(
1∗ ⊕ 1′

∗ ⊕ 2∗
)
. (4.3)

where we have introduced both an underline and a prime notation on our SU(2) singlet
states to emphasize that, in general, they do not correspond to the singlet states of SU(3),
see Appendix C. The only difference between the singlet states is that they constitute
different subspaces of V , this will be important to ensure linear independence of our maps.
For brevity we will group the singlet states of SU(2) into a four dimensional complex vector
space 12. The subspace 2 transforms as a doublet of SU(2).

Considering maps from the vector space V to itself it is clear that the Lie algebras
corresponding to the SU(3) and SU(2) Lie groups are themselves realized as endofunction
on V that preserve the irreducible representations. I.e.

su(3) :
(
1⊕ 3

)
⊕
(
1∗ ⊕ 3∗

)
→
(
1⊕ 3

)
⊕
(
1∗ ⊕ 3∗

)
, (4.4)

and similarly

su(2) : 12 ⊕ 2⊕ 2∗ → 12 ⊕ 2⊕ 2∗ (4.5)

where the Lie algebras satisfy their respective commutation relations, and transform in the
adjoint representation of their associated Lie groups.

Further, su(3) and su(2) are here linearly independent subalgebras of g2 and conse-
quently linearly independent subspaces of M(C ⊗ O). This is because the representation



4.4 Construction 47

of g2 acting on some vector space V is naturally a subset of GL(V ) ⊂ M(V ). We then find
the adjoint representations C ⊗ (su(2)⊕ su(3)) as the starting point for our direct sum
decomposition of M(C⊗O).

We note that su(2) and su(3) are real subalgebras of g2, and so a generator τ ∈ su(2)
or su(3) satisfies τ ∗ = −τ .4 Additionally, we have only considered the groups SU(N), even
though the decompositions (4.2) and (4.3) are left invariant under the respective GL(N,C)
groups, i.e. the groups of general linear transformations on CN . This relates to principle 4,
and we will comment on the appearance of additional U(1) transformations in subsection
4.4.4.

4.4.2 Fundamental and Singlet Representations

Consider then the maps which are trivially linearly independent from su(3). These are
the maps F1 ⊕ F1∗ : 1⊕ 1∗ → C⊗ O. But are these maps also linearly independent from
C⊗ (su(3)⊕ su(2))? To investigate this we note that the overlap of 1⊕ 1∗ and 2⊕ 2∗ is a
one dimensional space containing the unit imaginary d ∈ O used in defining the complex
subalgebra kept invariant by SU(3), see Appendix C. The space of maps {d} → C ⊗ O
appears as the subset of F1 ⊕ F1∗ which share a non-trivial intersection with the domain
of the maps in C ⊗ (su(2)⊕ su(3)). Thus we need only ensure that there is no map in
these complexified Lie algebras which is such that it acts only on {d}. In other words we
need only ensure that no map in C⊗ (su(2)⊕ su(3)) is rank 1 for linear independence with
F1 ⊕F1∗ .

Now, su(2) is defined as the Lie algebra of the Lie subgroup of G2 that element-wise
preserves some Quaternionic subspace SpanR{e0, a, b, c} ⊂ O. Then it is evident that su(2)
may not act on d without also acting on some dx ∈ SpanC{da, db, dc} /∈ (1⊕ 1∗). This
follows immediately from the observation that any element in C ⊗ su(2) is an even-rank
matrix. To see this note that for some element τ ∈ C⊗ su(2), we have

σ = τ |2 ⇐⇒ −σT = τ |2∗ (4.6)

where X|y is the dim(y)×dim(y) matrix representation of element X ∈ M(C⊗O) restricted
to act on a subspace y ⊂ C ⊗ O, and σ is some complex linear combination of the Pauli
matrices. This then implies that any element in C⊗ su(2) must act non-trivially on both
2 and 2∗, implying it must be an even rank matrix as matrix transposition does not affect
rank.

Now a similar relationship as (4.6) holds for τ ∈ C⊗ su(3),

σ = τ |3 ⇐⇒ −σT = τ |3∗ (4.7)

where now the σ matrices describe complex linear combinations of the Gell-Mann matrices.
These matrices are also complex linearly independent, and clearly any element of C⊗su(3)

4This uses the physics convention of the fundamental representation of SU(N) generated by hermitian
elements. In the mathematics convention where SU(N) is generated by skew-hermitian elements we have
instead τ∗ = τ .
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must also be an even rank matrix. The sum of two even rank matrices is another even
rank matrix. Consequently, F1 ⊕F1∗ is linearly independent from C⊗ (su(2)⊕ su(3)).5

Now lets repeat this line of thought, but starting with the maps which are trivially
linearly independent from su(2). Excluding any overlap with the spaces F1 and F1∗ , we
have the spaces of maps F3 : 3→ 12 and F3∗ : 3∗ → 12. The domain and range of F3⊕F3∗

which intersects with the domain and range of Ξ := F1⊕F1∗ ⊕C⊗ (su(2)⊕ su(3)) is then
the space of maps 3⊕ 3→ SpanC{a, b, c}.

As C ⊗ su(3) is the only element of Ξ which acts on the same domain as F3 ⊕ F3∗ ,
we first establish that these two subspaces are linearly independent. These spaces are
linearly independent if there is no map in C⊗ su(3) which is such that its range is entirely
contained in 12. Consider then some elements x ∈ 3 and y ∈ 3∗ such that there exists a
map M ∈ C ⊗ su(3) for which M(x + y) = M(x) + M(y) ∈ SpanC{a, b, c}. Let, without
loss of generality, 3 be spanned by the basis elements {αi} and 3∗ spanned by {α∗i } such
that αi + α∗i ∈ SpanC{a, b, c} and αi − α∗i ∈ SpanC{da, db, dc}, see Appendix C. Then our
map M must be such that

M(x) =
∑
i

γiαi and M(y) =
∑
i

γ̄iα
∗
i (4.8)

where γi ∈ C, and γi − γ̄i = 0. Then the same map M will be such that M(x − y) =
M(x) −M(y) ∈ SpanC{da, db, dc} /∈ Range{F3 ⊕ F3∗}. Therefore, we cannot construct
any map in C ⊗ su(3) which is such that it corresponds to a map in F3 ⊕ F3∗ , and thus
these two spaces are linearly independent.

There is no map in F1⊕F1∗⊕C⊗su(2) with domain 3⊕3∗ and range SpanC{1, a, b, c}. To
ensure linear independence of the two subspaces F3⊕F3∗⊕C⊗su(3) and F1⊕F1∗⊕C⊗su(2),
we need only ensure there exists no map in F1 ⊕ F1∗ ⊕ C ⊗ su(2) which has domain and
range in SpanC{da, db, dc}.

The space C⊗ su(2) describes the only set of maps in F1 ⊕F1∗ ⊕ C⊗ su(2) acting on
SpanC{da, db, dc}, and this space acts on 2 and 2∗ in complex conjugate representations.
As 2 and 2∗ can be defined, without loss of generality, to be eigenstates of a, and generators
of su(2) satisfy (4.6), there is no map in C⊗ su(2) which maps some dx to dy without also
mapping some dz to d, for dx, dy, dz ∈ SpanC{da, db, dc}. Since the maps in F1 ⊕ F1∗ do
not act on SpanC{da, db, dc}, this implies that there is no map in F1 ⊕ F1∗ ⊕ C ⊗ su(2)
with domain and range in SpanC{da, db, dc}. As a result, we have linear independence
of F3 ⊕ F3∗ ⊕ C ⊗ su(3) from F1 ⊕ F1∗ ⊕ C ⊗ su(2), which is to say that all irreducible
representation spaces identified so far are linearly independent.

4.4.3 The 12-Dimensional Real Vector Subspaces

Together the set of maps C⊗su(2), C⊗su(3), F3, F3∗ , F1, and F1∗ span a 51 C-dimensional
subspace of the 64 C-dimensional space M(C⊗O). Therefore there exists a 13 dimensional

5Note that this argument for linear independence relies on the full-rank nature of any M ∈ C ⊗ su(2)
when restricted to act on 2 or 2∗. As we will see in subsection 4.4.4, this is precisely what demands our
additional U(1) transformations must act on the same decomposition as SU(3).
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space linearly independent maps not encapsulated by the irreducible representation spaces
thus far described. The only subspace of M(C ⊗ O) which has not been fully spanned is
the space of maps 3⊕ 3∗ → 2⊕ 2∗. The rest of the space being fully spanned by the maps
F3, F3∗ , F1, and F1∗ .

The maps in the subspace of M(C ⊗ O) which map 3 ⊕ 3∗ to 2 ⊕ 2∗ break down into
four distinct ideals corresponding to the spaces of maps:

φ : 3→ 2, φ∗ : 3∗ → 2∗, ψ : 3∗ → 2, ψ∗ : 3→ 2∗. (4.9)

As these maps belong to different ideals than F1, F1∗ , F3, and F3∗ , linear independence
between these subspaces is trivial. Further, any map in φ⊕φ∗⊕ψ⊕ψ∗⊕C⊗(su(2)⊕ su(3))
is linearly independent from F1 ⊕F1∗ ⊕F3 ⊕F3∗ if and only if the projection of this map
on the space 3⊕ 3∗ → 2⊕ 2∗ is non-zero.

Any generator, i.e. basis element, γ of our Lie algebras satisfies γ∗ = −γ. So clearly
our complexified Lie group elements can be written as a combination of basis elements
{κi} which satisfy κ∗i = ±κi. Since the operation of projecting on the space of maps
3⊕ 3∗ → 2⊕ 2∗ is invariant under complex conjugation, this implies that after projecting
the generators κi on this space we still have basis elements which are invariant, up to an
overall sign, under complex conjugation. Thus to ensure that any map in φ⊕ φ∗ ⊕ ψ⊕ ψ∗
is linearly independent from our complexified Lie algebras, we need only ensure our linear
combination is not expressible in terms of basis elements which are invariant, up to an
overall sign, under complex conjugation.

Let the space φ be spanned by basis elements φi as a 12-dimensional real vector space.
Then we can span φ∗ by the basis elements φ∗i . Similarly we span ψ and ψ∗ by the 12
basis elements ψi and ψ∗i respectively. That is, we treat our spaces of complex dimension
6 as spaces of real dimension 12. In addition to requiring linear independence with the
projection of our complexified Lie algebras, we also require that our spaces are irreducible
representations of the Lie groups. Correspondingly, we must find which sets of maps, out
of all the maps in 3 ⊕ 3∗ → 2 ⊕ 2∗, span irreducible representation spaces, to be denoted
by the letter H and referred to as H-spaces, of SU(2)×SU(3) while still being linearly
independent. This greatly restricts our choice of relevant spaces, H, as all the subspaces
in (4.9) are all irreducible representation spaces of SU(2)×SU(3). Thus for any relevant
subspace H, we must have that the projection of H on any of the subspaces in (4.9) is
either the zero element or the entire space.

The argument for linear independence of our H-spaces and the complexified Lie algebra
centres on these H-spaces not containing any elements A that satisfy A∗ = ±A. As such
we can analyse subspaces of φ⊕ φ∗ and ψ ⊕ ψ∗ independently. Thus we will only present
the following analysis for the subspace φ ⊕ φ∗, with the arguments for ψ ⊕ ψ∗ following
analogously. Clearly, we cannot use the entirety of φ⊕ φ∗, as it is no difficult task to find
basis elements in this space which are their own complex conjugate. Indeed, we can at
most span a 12-dimensional real subspace of the 24-dimensional real subspace φ⊕φ∗. This
follows immediately from the observation that choosing 13 or more basis elements in the
24-dimensional real space requires choosing some φ ∈ φ and its corresponding φ∗ ∈ φ∗,
such that φ+ φ∗ is a basis element which is its own complex conjugate.
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Additionally, since the projection of H on φ is either {0} or φ, and similarly for φ∗, H
must be spanned by basis elements

{φi + f(φi)}12
i=1, (4.10)

where f : φ → φ∗ is either the zero map (i.e. maps all elements to the zero element)
or some bijection. This bijection must be such that for φ → UφV , with U ∈ SU(3) and
V ∈ SU(2), we have f(φ) → f(UφV ) ≡ U∗f(φ)V ∗. As the 3 and 3∗ representations of
SU(3) are distinct representations they cannot be transformed into each other via a linear
map, i.e. matrix multiplication. From this we know that f must contain the operation
of complex conjugation. Then any other operation in f must commute with the group
elements U and V , which implies multiplication by an overall scalar.

Thus we can write our relevant subspaces as

Hα := SpanR{φi + αφ∗i } (4.11)

for some α ∈ C. Note that we are considering this space as a real vector space, as opposed
to our previous analysis which has always focused on complex vector spaces. This is because
for some complex coefficient γ ∈ C in front of one of our basis elements,

γ(φi + αφi) = (γφi) + α(γ∗φi)
∗ (4.12)

does not yield a vector of the form φ+αφ∗ unless γ ∈ R, and so is an element of Hα ⇐⇒
γ ∈ R. This feature arises because f is an anti-linear map, and so commutes only with
multiplication by real numbers. Ergo, the space Hα is only a vector space under real scalar
multiplication.

Next we must identify the range of values we may chose for α ∈ C while still retaining
linear independence from the projection of the complexified Lie algebras. To do this we
need only exclude those values for α for which there exists some A ∈ Hα for which we also
have A∗ ∈ Hα. Without loss of generality, we write A = φ1 +αφ∗1 for some φ1 ∈ φ. We may
then span Hα by the basis elements {A, φi + αφ∗i }12

i=2. Hα has a non-trivial intersection
with the projection of the complexified Lie groups if and only if there exists some set of
real parameters {di} such that

A∗ = φ∗1 + α∗φ1 =
∑
i

di (φi + αφ∗i ) ∈ Hα
1 . (4.13)

Now since all the basis elements φi are linearly independent this implies a non-trivial
intersection with the projection of the complexified Lie algebras if and only if

1 = d1α and α∗ = d1. (4.14)

This implies clearly that we may only have a non-trivial intersection if α = ±1, as
d1 ∈ R demands α ∈ R. Employing the same arguments straightforwardly to the space
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ψ ⊕ ψ∗, we find the pair of 12-dimensional real vector spaces

Hα
1 := SpanR

{
h ∈ M(V ); h = φ1 + φ2‖φ1 : 3→ 2, φ2 : 3∗ → 2∗; s.t. φ2 = αφ∗1

}
, (4.15)

Hβ
2 := SpanR

{
h ∈ M(V ); h = ψ1 + ψ2‖ψ1 : 3∗ → 2, ψ2 : 3→ 2∗; s.t. ψ2 = βψ∗1

}
, (4.16)

for some α, β ∈ C, where α, β 6= ±1 is required for linear independence. Note that while
the spaces Hα

1 and Hβ
2 describe spaces of complex matrices, they each have the structure of

a 12-dimensional real vector space. Thus together, H := Hα
1 ⊕H

β
2 span a 24 dimensional

real vector subspace of M(8,C).

Let us also take a brief moment to comment on the limits of α, β ∈ C. Clearly as
|α|, |β| → 0 we have that Hα

1 and Hβ
2 go to φ and ψ respectively. In these limits we recover

a fundamental 6-dimensional complex vector space representations of SU(2)×SU(3), i.e.
the tensor product of a doublet of SU(2) and triplet of SU(3). On the other hand, in
(4.15) and (4.16) we could, for any |α|, |β| > 0, have used the relations φ1 = α−1φ∗2 and
ψ1 = α−1ψ∗2. So in this case we see that the limits |α|, |β| → ∞ implies Hα

1 and Hβ
2 go

to φ∗ and ψ∗ respectively. In this limit we recover the complex conjugate representation
spaces to the limit |α|, |β| → 0. This relationship of our limits is a general feature of the

interesting behaviour of these H-spaces, namely under complex conjugation Hα
1 ↔ H

(α−1)
1

and Hβ
2 ↔ H

(β−1)
2 . This differs from our complexified Lie algebras, which are invariant

under complex conjugation, and from our fundamental representations Fn, which all have
corresponding complex conjugate spaces F∗n ≡ Fn∗ . In subsection 4.5.3 we further discuss
this behaviour under complex conjugation as well as other interesting features about these
representation spaces.

We comment here on the identification of these H-spaces as the spaces which are
not expressible in terms of complex conjugate invariant basis elements. Naturally this
may seem like a sufficient, but not necessary, condition for linear independence with our
complexified Lie algebras. In reality this condition is both sufficient and necessary. When
projected onto the space 3⊕3∗ → 2⊕2∗, our complexified Lie algebras C⊗ (su(2)⊕ su(3))
span an 11-dimensional complex subspace. On the other hand, the set of all elements
γ∗ = −γ together span a 12-dimensional complex subspace. Thus at first glance the
condition that no elements h in our H-spaces are of the form h∗ = ±h may seem too
restrictive. However, as we are only interested in irreducible representations it is clear that
our H-spaces must be of real dimension divisible by four.6 As such we may minimally
have irreducible representation spaces of complex dimension 6 or real dimension 12. This
implies that having any one element h∗ = ±h in our H-spaces demands having some 12-
dimensional real subspace of elements transforming as h∗ = ±h. Clearly this is not possible
without overlapping with elements in C⊗ (su(2)⊕ su(3)), and thus we must only consider
maps which are not expressible as h∗ = ±h.

6The space of maps 3→ 2 is a six dimensional complex map but a 12 dimensional real map. The even
nature of complex spaces then manifests itself as the divisibility of four when considered in terms of real
dimensions.
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Additionally, we comment on the vector space structure of our H-spaces. While these
H−spaces are real vector spaces under scalar multiplication, they do transform as a triplet
of SU(3) and a doublet of SU(2), as is evident purely from dimensional counting. However
due to the different transformations of φi and φ∗i the complex structure cannot simply
be represented by multiplication via i, the complex unit imaginary. Instead, the complex
linear structure describing the complex nature of the fundamental transformations of the
space Hα

1 becomes multiplication by i on φ and by −i on φ∗. This is evident from the
appearance of the anti-linear bijection f .

In total we now have only a one dimensional complex subspace left to span the entirety
of M(8,C). This remaining subspace is found in the following subsection.

4.4.4 An Additional Symmetry Arises

The maps defined in subsections 4.4.1, 4.4.2, and 4.4.3 together span a 126 R-dimensional
subspace of M(8,C).7 We only lack two real vectors in M(C ⊗ O) to fully span the space
of maps. These maps must be invariant under transformations of SU(2)×SU(3). Further,
since we have exhausted the set of possible maps from the decomposition (4.2) to (4.3), it
is clear that this remaining map must be an endofunction on one of the decompositions.
The only type of map which satisfies all the criteria is a map which acts as a U(1) charge
generator on either of the decompositions (4.2) or (4.3).

However, unlike the su(2) and su(3) Lie algebras, which correspond to SU(2) and
SU(3) subgroups of G2 respectively, there is no U(1) subgroup of G2 which preserves either
decomposition of C⊗O. Thus this U(1) group does not describe any redundancy in defining
subalgebras C⊗O. Instead it describes a redundancy in the direct sum decomposition of
M(C ⊗ O). Indeed, looking at the gauge-invariant terms we could construct with the so
far defined irreducible representation spaces in

C⊗
(
su(2)⊕ su(3)

)
⊕F3 ⊕F3∗ ⊕F1 ⊕F1∗ ⊕Hα

1 ⊕H
β
2 ⊂ M(8,C), (4.17)

it is clear that any SU(2) invariant subspace could be extended to a U(2) invariant subspace,
and similarly for SU(3) invariant subspaces. This is because the maps of our irreducible
representation spaces are not invertible. That is, these maps are not bijections on C ⊗
O. Thus the only operation which yields SU(N) invariant terms is matrix multiplication
of a map in (4.17) with the hermitian conjugate of another map in (4.17).8 Ergo, our
invariants can at most have a redundancy under unitary transformations. This relates
directly to principle 4 and the absence of GL(N,C) transformations in subsection 4.4.1. So
we must then find what type of U(1) transformations leave the so far defined irreducible
representation spaces invariant. This is most easily done by focusing on the generator Y
of our U(1) transformations. Note that this Y will be an element of M(C⊗O) and is not
associated with the operator Ŷ introduced in chapter 2.

7We here are referring to real, as opposed to complex, dimensions due to the appearance of the real
vector spaces Hα

1 and Hβ
2 .

8Note that we require hermitian conjugation due to the appearance of our SU(N) transformations.
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Consider the condition for the spaces Hα
1 and Hα

2 to be invariant under U(1) trans-
formations. Both of these spaces involve the use of an anti-linear function in relating the
complex conjugate subspaces of M(C⊗O). It is clear that for Ỹ describing the projection

of Y on the space of maps 3⊕ 3∗ → 2⊕ 2∗, we must have Ỹ ∗ = −Ỹ for our U(1) transfor-
mations to leave Hα

1 ⊕Hα
2 invariant. This condition also yields linear independence of the

spaces C ⊗ (u(1)⊕ su(2)⊕ su(3)) and Hα
1 ⊕ Hα

2 , as discussed in subsection 4.4.3. While
it may be appealing to have Y act on all of C ⊗ O in such a way that Y ∗ = −Y , as this
implies complex conjugate basis elements have opposite U(1) charges, within our setup
there is no reason to impose this restriction. Thus we do not know the relative charge
assignment of Y, only that the generator acts as multiplication by a scalar on any of the
irreducible representation spaces of (4.2) or (4.3), dependent on which decomposition this
charge generator acts.

We first discuss the case in which the U(1) transformations act on the same decom-
position as SU(2), i.e. on (4.3). Let us then investigate the linear independence of
C⊗

(
u(1)⊕ su(2)⊕ su(3)

)
with F1⊕F1∗⊕F3⊕F3∗ . This is equivalent to investigating the

linear independence of all vectors in C⊗
(
u(1)⊕su(2)⊕su(3)

)
when projected on the space

of maps 3 ⊕ 3∗ → 2 ⊕ 2∗. In this case the spaces 2 and 2∗ are eigenspaces of Y , with op-
posite eigenvalues. Also, 2 and 2∗ can each be spanned by a pair of eigenvectors, also with
opposite eigenvalues, for some generator of su(2). With a linear combination of Y and the
diagonal generator of su(2), we may then define a map on 2⊕2∗ which becomes a rank one
diagonal real matrix when acting only on 2 or 2∗. This is important, because it allows us
to create maps M ∈ u(1)⊕ su(2) which have both domain and range in SpanC{da, db, dc},
and is rank 1 when restricted to act on 2 or 2∗. Then as M |2 = −M |2∗ , for basis elements
dx − idy ∈ 2 this implies M(dx) = −idy and M(dy) = idx, with dx, dy ∈ {da, db, dc}.9
Now in su(3) we have the basis of 3 in terms of elements αi = εi− idεi for any εi ∈ {a, b, c}
as these are eigenvectors under action of d ∈ O, Appendix C. We introduce the pair of
basis elements {x− idx, y− idy} in 3 and {x+ idx, y + idy} in 3∗. On these pairs of basis

elements there exists a map M̃ ∈ su(3) which acts as

M̃(x± idx) = −i(y ± idy) and M̃(y ± idy) = i(x± idx)

=⇒ M̃(dx) = −idy and M̃(dy) = idx (4.18)

That is, we have the relationship M = M̃ . Therefore M̃−M = 0, and so M̃−M is a linear
combination of elements in C⊗(u(1)⊕ su(2)⊕ su(3)) which is vanishing on 3⊕3∗ → 2⊕2∗.

In other words M and M̃ are not linearly independent on 3⊕3∗ → 2⊕2∗. Ergo, we cannot
have a linearly independent generator Y of a U(1) transformation which acts on the same
decomposition, (4.3), as SU(2).

We then turn our attention to investigating a U(1) generator which acts on the same
decomposition as our SU(3) transformations, i.e. on (4.2). Again, we need only ensure

9Note that we are not writing the span here, as we are interested just vectors dx, dy in the set of three
elements {da, db, dc}. This is fully general as we have defined our 2 and 2∗ states to be eigenstates of one
of {a, b, c}, which implies the existence of basis elements dεj ± idεj1 where [εj , εk] = iεjklεk.
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that any non-zero linear combination of elements of our complexified Lie algebras has a
non-zero projection on the space of maps 3⊕ 3∗ → 2⊕ 2∗. In this case we have the same
situation as in subsection 4.4.2, but with SU(3)→U(3), since we are only interested in the
action of the maps on 3⊕ 3∗. Note that this greatly simplifies our analysis. Indeed, when
analysing linear independence of our irreducible representation spaces in subsection 4.4.2
we used the rank-2 nature of su(2) when restricted to act on 2 or 2∗. However, we only used
the even-rank nature of su(3). Then as none of the arguments in subsection 4.4.2 relied
on the special nature of the special unitary group SU(3), it is clear that the arguments
for linear independence of F1 ⊕F1∗ ⊕F3 ⊕F3∗ with C⊗

(
su(2)⊕ su(3)

)
extends to linear

independence with C⊗
(
u(1)⊕ su(2)⊕ su(3)

)
for U(1) transformations acting on the same

decomposition as SU(3).
In other words, the U(1) transformation matrix must act from the left on our states

F1 ⊕ F1∗ ⊕ F3 ⊕ F3∗ ⊕ Hα
1 ⊕ H

β
2 , and Y may take different values when acting on 1, 1∗,

and 3. The relative charges of Y are only fixed between acting on 3 and 3∗ as Ỹ ∗ =
−Ỹ . For the purpose of this dissertation, i.e. studying the simultaneous appearance of
irreducible representation spaces, there is no mechanism for which to fix the relative charge
assignment of Y . In a full gauge theory, such as the Standard Model, consistent U(1) charge
distributions are restricted by gauge anomaly cancellation, Refs. [70, 71, 72].

Having defined our U(1) transformations, up to relative charges, we then have a full
direct sum decomposition of our space M(C ⊗ O) of maps as in (4.1), which we rewrite
here for convenience:

M(C⊗O) = C⊗
(
u(1)⊕ su(2)⊕ su(3)

)
⊕F3 ⊕F3∗ ⊕F1 ⊕F1∗ ⊕Hα

1 ⊕H
β
2 (4.19)

Clearly this decomposition is valid for any relative charge assignments in Y . Having spent
this section predominantly focused on identifying the set of linearly independent irreducible
representation spaces, we next turn our attention to analysing some features of these
representations.

4.5 Comments on Decomposition

There are three distinct types of spaces in the decomposition (4.1). We will refer to
these different types of subspaces, suggestively, as: gauge-like spaces, F-spaces, and H-
spaces. Naturally, the gauge-like spaces will be the complexified Lie algebras themselves
as, like gauge fields, they transform in the adjoint representation. The F-spaces transform
either as a singlet or in the (anti-)fundamental representation of our unitary groups, hence
the suggestive “F” to denote either the “fermion-like” gauge transformations. Finally
the H-spaces are quite different from the rest of the spaces so far considered. They are
real vector spaces in terms of scalar multiplication, yet still transform in the complex
fundamental representation of SU(2)×SU(3). We show in subsection 4.5.3 that invariants
formed with these irreducible representation spaces can be understood in terms of six
dimensional complex vector spaces transforming as triplets of SU(3) and doublets of SU(2).
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We will show that due to this feature, the H−spaces mirror certain properties of the
Standard Model Higgs, but under different gauge groups. Consequently, we have used the
letter “H” to denote that these representation spaces, to the extent that we can make
comparisons between objects transforming under different groups, are “Higgs-like”.

Decomposition (4.1) only has four parameters in its definition. These are the param-
eters α, β 6= ±1, and the two parameter describing the relative charge assignment of our
U(1) field. The irreducible representation spaces contained in the decomposition remain
the same under any choice of these parameters, but this is not the case for invariants
formed of different irreducible representation spaces. Indeed, changes to these parameters
will be equivalent to scalar multiplication of these invariants. Thus the parameters α and β
suggestively encode interaction strengths between irreducible representation spaces. With-
out a full theory it is of course impossible to make precise statements about interactions;
however, we will show in subsection 4.5.3 that the specific realization of the representations
does indicate distinct coupling values.

4.5.1 Gauge-like Subspaces

For adjoint representations we have the complexification of the Lie algebras u(1), su(2),
and su(3). The su(N) Lie algebras arise from restricted representations of the automor-
phism group G2, and their complexification is required to fully span the algebra M(C⊗O).
The U(1) transformations do not originate from the automorphism group of the Octonions.
Instead, this redundancy corresponds to the fact that invariants constructed out of the ir-
reducible representation spaces of SU(2)×SU(3) in M(C⊗O) are invariant under unitary
transformation, not just special unitary transformations. This, combined with the require-
ments of linear independence and a full direct sum decomposition of M(C⊗O), demands
the existence of a U(1) transformation acting on the same decomposition as SU(3) and a
corresponding C⊗ u(1) subspace of M(C⊗O). Resultantly, it is valid to say that, within
the setup shown here, the appearance of the SU(2)×SU(3) symmetry structure demands
the existence of an additional U(1) symmetry.

One important point of discussion is that gauge fields in the Standard Model take values
in the real Lie algebras, and not their complexification. However, as stated before, the
corresponding representations are still those of the (special)unitary groups. This implies
that, for example, the linearly independent subspaces su(3) and isu(3) are both irreducible
representation spaces of the group SU(3). It is clear that for agreement with Standard
Model representations there must then be some selection mechanism by which one of these
irreducible representation spaces does not appear as associated to a physical field. However
finding such a mechanism would require both the merger of our gauge representations
with Lorentz representations, as gauge fields are described by objects which are both
spacetime and Lie algebra vectors, and the formulation of a theory in which such a selection
mechanism can be defined. As both the formulation of a full theory and simultaneous
incorporation of gauge and Lorentz representations are beyond the scope of this paper,
so is the discussion of the complexification of our Lie algebras. We do note that the
appearance of the complexified Lie algebras is similar to the appearance of gauge fields in
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NCG, and we comment on this in subsection 5.1.3.

4.5.2 The F - Spaces

To offer a concise presentation of the irreducible representation spaces contained in the
decomposition (4.1), we write out the set of fundamental representation spaces contained
in the F - subspaces of M(C⊗O) as

F3 contains 4× (3, 1) (4.20)

F3∗ contains 4× (3∗, 1) (4.21)

F1 contains (1, 2) + (1, 2∗) + 4× (1, 1) (4.22)

F1∗ contains (1, 2∗) + (1, 2) + 4× (1, 1) (4.23)

with the notation (a, b) describing a space transforming in the a representation of SU(3) and
b representation of SU(2). As before we have omitted any U(1) charge assignment, as the
relative charges are not fixed. Note that in (4.20)-(4.23) we have no particles simultaneously
transforming under SU(3) and SU(2). Thus, it is clear that in this construction not all
representation spaces are realized in the direct sum decomposition of M(C ⊗ O). Further
still the fundamental representations of (4.20)-(4.23) appear in distinct multiplicities.

These distinct multiplicities of the irreducible representation spaces in the F−spaces
arise as a direct consequence of simultaneously incorporating both adjoint and fundamental
representations within the same algebra of linear maps. This can be seen from the ori-
gin of our F−spaces as the irreducible representation spaces which were trivially linearly
independent from either su(2) or su(3) by virtue of belonging to different ideals. These
two Lie algebras themselves belong to ideals of distinct dimensions, i.e. are represented by
matrices of different size. Explicitly, in the SU(2) decomposition we had 4 singlets, while
in the SU(3) decomposition we only had two singlets. Therefore it is no surprise that we
obtain different multiplicities of the different fundamental representation spaces.

In the Standard Model not all fundamental representations of our gauge groups are
present. There are no right handed doublets of SU(2). This implies that while we observe
the representation (3, 2), and the corresponding conjugate representation, we do not observe
any particles transforming in the (3∗, 2), or the conjugate, representation. For comparison
with Standard Model representations, it is an attractive feature that not all fundamental
representations appear in the direct sum decomposition. Of course, in our set up we do
not have either of the representations (3, 2), (3, 2∗), or their conjugates. This, in addition
to the lack of Lorentz representations, means we cannot draw a direct comparison with our
representations and those of the Standard Model. However, we still find the general feature
of different multiplicities of representation spaces. We highlight this natural appearance
of distinct multiplicities of gauge groups as a feature of interest in comparing sets of
representation spaces with those of the Standard Model.10

10Note here that having distinct multiplicities also considers representation spaces which do not appear
at all in the direct sum decomposition, as these representation spaces have multiplicity zero.
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4.5.3 H- Spaces

The remaining spaces to analyse in our decomposition (4.1) are Hα
1 and Hβ

2 . Due to
the similarity in the structure of the spaces Hα

1 and Hβ
2 , we will only analyse the space

Hα
1 , with similar arguments applicable for Hα

2 . While the complex structure in Hα
1 is not

simply multiplication by i, we can understand the space in terms of maps φ : 3→ 2, where
indeed the complex structure is multiplication by i, see subsection 4.4.3. According to the
definition of Hα

1 in (4.15), elements of this space are maps h on C ⊗ O which map 3 to 2
and 3∗ to 2∗ such that

h = φ+ αφ∗, (4.24)

where φ∗ : 3 → 2. As φ and φ∗ belong to different left and right ideals of M(C ⊗ O), any
invariants formed with h and irreducible representation spaces of Fi reduce to invariants
formed with these irreducible representations in Fi and either φ or φ∗. Then as all the 12
real parameters of Hα

1 are encoded in the 6 complex parameters of φ, one can fully describe
the different possible map compositions with Hα

1 by the set of complex parameters in φ.
Now as α 6= ±1, there are no maps in Hα

1 whose conjugate map is also Hα
1 . Further there

is no independent conjugate space to Hα
1 in the direct sum decomposition (4.1).11 However,

we still have that for the map φ, which transforms in the fundamental representation, there
is always a conjugate map φ∗ transforming in the complex conjugate representation.

In the case one were to write down a theory of interacting fields transforming in irre-
ducible representations, one could then parametrize all the interactions and dynamics of
Hα

1 in terms of the maps φ transforming in the fundamental representation. This would of
course require also including φ∗, but without independent dynamics and not as a separate
field. In other words, φ∗ would only be required to accurately describe interactions be-
tween fields. In the Standard Model, Yukawa interactions require the explicit appearance
of both the Higgs doublet Φ and the conjugate Φ∗, which has opposite charge assignments
to Φ, Ref. [54]. Thus by viewing our space Hα

1 as described by maps φ transforming in the
fundamental representations of our gauge groups, we recover a picture which, to the extent
that we can draw comparisons to field theory, is quite similar to the Standard Model Higgs
doublet. Of course in the Standard Model the Higgs doublet and its conjugate are needed
to give masses to the different components of the left-handed SU(2) doublets, for example
to up- and down-type quarks. This is not possible in our construction as φ and φ∗ not only
live in different ideals but also act on the non-similar 3 and 3∗ representations of SU(3).12

Instead the respective maps φ and φ∗ must form contractions between respective conjugate
representations.

11Note that even for α = i, under complex conjugation Hi
1 → H−i

1 = iHi
1. The space Hα

1 is a real vector
space, and it is simple to check that it is R-linearly independent from the space iHα

1 for any α ∈ C.
12The Higgs doublet transforms under SU(2) as its only non-abelian gauge group. Since the conjugate

representation 2∗ is related by a similarity transformation to the doublet representation 2, this means that
the Higgs doublet and its conjugate may still form invariants with fields transforming in the 2̄ of SU(2).
Both of these invariants are required, as after spontaneous symmetry breaking the Higgs doublet gives
mass to one component of the fermionic SU(2) doublet while the conjugate Higgs doublet gives mass to
the other component of the fermionic SU(2) doublet.
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When considering such contractions the factor α may then be interpreted as a relative
coupling parameter between φ and φ∗. That is, as a coupling that incorporates a dis-
crimination between the fundamental and anti-fundamental representations. We highlight
this discrimination between conjugate representations as a feature of interest, as nature
certainly seems to discriminates between these representations. Indeed, our universe is
composed primarily of matter and not anti-matter. In the Standard Model, the Higgs dou-
blet also couples to up- and down-type quarks with different coupling strengths. Therefore
it would be interesting to see whether, in another set-up, one may recover similar spaces to
Hα

1 which only transform under the non-abelian group SU(2). In such a case the parameter
α could potentially become interpreted as a relative coupling strength between elements
with opposite weak charge. This would present a natural mechanism by which to generate
different masses of particles.

In the above analysis we discussed features of the H-spaces in comparison to the Stan-
dard Model Higgs doublet. Naturally there are limitations to how close a connection we can
make. One feature which is essential to the Higgs doublet is its scalar nature under Lorentz
transformations. This is not a feature on which we can provide comparison as our direct
sum decomposition contains no Lorentz representations. Further, any discussion about
dynamics is also not possible, since we have no theory for our sets of representations. This
prevents any discussion regarding spontaneous symmetry breaking. As such, the above
arguments are focused only on the statements we can make about representations. These
are: for the map φ complex conjugation results in a representation space with opposite
charges, just as is the case for the Higgs doublet; the maps φ and φ∗ are described by the
same real components, just like the Higgs doublet and its complex conjugate; and finally
φ and φ∗ form invariants with different representations, this is also the case for the Higgs
doublet.13 Thus for the available points of comparison there is a strong similarity between
the H-spaces and Standard Model Higgs doublet. To make or more definitive statements
requires inclusion of spacetime symmetries and the formulation of an action.

We conclude our analysis of these H-spaces by noting that their appearance is uniquely
required by the appearance of our adjoint representations. This arises as a consequence
of the H-spaces belonging to the same left ideals as C ⊗ su(3) and the same right ideals
as C ⊗ su(2). This differs from our F -spaces which share an ideal with at most one of
the non-abelian adjoint representations. This suggests the appearance of such H-spaces
is not unique to the setup shown here, and could correspond to a more general feature
of incorporating irreducible representation spaces as linearly independent maps between
restricted representations.

4.5.4 Uniqueness of Decomposition

In this subsection we discuss uniqueness up to linear combination of maps. That is to
say, instead of considering F3 and F3∗ we could consider linear combinations of these

13As right handed up- and down-type quarks are singlets of SU(2) with different U(1) charges they are
distinct irreducible representation spaces of the Standard Model gauge group.
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two spaces. For example, we could have one space spanned by elements A satisfying
A∗ = −A, and span the other space by elements with similar properties to those of our H-
spaces. We do not view this as modifying the uniqueness of our decomposition, as it is just
forming linear combinations of the established irreducible representations. Therefore in
the following we will only discuss distinct decompositions whose irreducible representation
spaces, with correct transformations, cannot be recovered as linear combinations of the
irreducible representation space in (4.1).

As we have restricted our attention to irreducible representation spaces we know we may
only have maps between the irreducible restricted representations of O|C,H. We demanded
by principle 3 the existence of the complexified Lie algebras C⊗(su(2)⊕ su(3)). Further, we
calculated Hα

1 and Hβ
2 as spanning the two most general irreducible representation spaces

which map 3⊕3∗ to 2⊕2∗ while maintaining linear independence with the complexified Lie
algebras. This in turn demands the existence of our C⊗ u(1) subspace. Thus the question
of uniqueness regards the representations contained in our F -spaces, as the projection on
3 ⊕ 3 → 2 ⊕ 2 of the maps Hα

1 ⊕ H
β
2 ⊕ C ⊗ (u(1)⊕ su(2)⊕ su(3)) fully spans the space.

The sets of irreducible representation spaces in the F -spaces are exactly those which span
the remaining ideals of M(C⊗O), and of course they too are all needed to span the space
of maps. However, they may not be needed in their exact form. For example, the map
{e0} → {e0} is contained in F1 ⊕ F1∗ but is also indistinguishable from maps preserving
either the SU(3) decomposition (4.2) or the SU(2) decomposition (4.3). This is because
this map is a singlet under SU(2)×SU(3) regardless of whether this map is interpreted
as a singlet map between our two C ⊗ O|C and C ⊗ O|H, or as an endofunction on one
of these structures. It is clear that the SU(2)×SU(3) representations in the direct sum
decomposition (4.1) are unique. However, this does not mean that the singlet states of
SU(2)×SU(3) have a unique structure, and could in principle transform under other group
actions if such representations could be made linearly independent.

This ambiguity preventing the uniqueness of the direct sum decomposition (4.1), be-
yond uniqueness SU(2)×SU(3) representations, originates from the existence of multiple
singlet states of our non-abelian gauge groups. However, in the Standard Model we do
not have any particles which are singlets under all the non-abelian groups if we include
Lorentz representations; that is, there are no singlets of both SO(1,3) and SU(2)×SU(3).
This highlights a relevance to focus on constructions in which no singlet states exist, for
comparison with Standard Model representations. Based on our results here, we expect
uniqueness of the direct sum decomposition to be achievable in such a construction.

4.6 Vector Spaces or Algebras?

In the construction presented here we showed how features of the complexified Octonions
could be employed to induce a direct sum decomposition on the space of maps M(C⊗O).
As noted earlier, this space is realized as the space of eight by eight complex matrices
M(8,C) with matrix multiplication corresponding to map composition. Thus from the
perspective of the matrix algebra, we cannot distinguish whether the maps act on an
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algebra or simply a vector space, as the space of linear maps does not capture information
about the multiplicative structure of the space on which they act. Therefore one could
equivalently work simply with maps on vector spaces instead of maps on an algebra. In
this subsection we comment on some advantages and disadvantages of each approach.

The primary advantage in working with vector spaces, and not algebras, is more free-
dom in how to chose symmetry groups. Indeed we could simply have used some vector
space V with transformations given by G instead of focusing on some algebra A with trans-
formations given by Aut{A}, the automorphism group of A. In this case we would have
the ability to incorporate, within the same matrix algebra, more variations of simultaneous
realizations of distinct representations. Alternatively one can also let the same group G
act on different spaces. For example SL(2,C) can act on C2, a space of complex dimen-
sion 2, but also on M(2,C), a space of complex dimension 4. This freedom in studying
maps on vector spaces may ultimately yield direct sum decompositions with properties not
achievable when considering only linear maps on algebras.

Of course, the setup of section 4.2, by which we identified the irreducible representation
spaces in the space of maps, could not be the same if studying the linear maps on a vector
space. This follows immediately from vector spaces not having any defined multiplicative
structure, and thus there is no notions of subalgebras by which to define symmetry groups
or decompositions as we did for C ⊗ O. Instead, we would require some other process by
which to select irreducible representation spaces of V , and maps between them. This is
not necessarily an advantage or disadvantage, but does signify a difference in approaching
the construction of a direct sum decomposition of the space. For example, one could have
multiple copies of V , each transforming under different groups G, and maps on and between
these spaces. This is very similar to what was done in chapter 2.

4.7 Inducing Vs. Embedding Representations

In both the approach of chapters 2 and 4 a central property was the use of linear indepen-
dence between irreducible representation spaces. Naturally this is the core investigation
of our research, and as such the appearance of similar features in the two constructions
should not come as a complete surprise. Additionally, we identified interesting features
in chapter 2, from the perspective of understanding how representation spaces arise and
how they compare with the Standard Model, and used ideas gained from these features
to identify mechanisms by which we may obtain a set of irreducible representation spaces
that are interesting in comparison with modern particle theory. This necessarily implies
the existence of many points of similarity between the two approaches. In this section
we will discuss merits and advantages of the different approaches in understanding the
simultaneous realisation of multiple representation spaces.

The requirement of linear independence in chapter 2 was the origin behind the sub-
space identified with Higgs doublet transformations not having an independent complex
conjugate subspace. Similarly, in the induction process of chapter 4 linear independence
implied existence of the H−spaces, which we argued showed similar features to the Stan-
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dard Model implementation of the Higgs doublet representation in interactions. We found
two distinct properties under map composition between these “Higgs-like” representations
of chapters 2 and 4. In chapter 2 the subspace identified with the Higgs doublet represen-
tation had the potential to include a non-zero projection on subspaces describing fermion
transformations. As we commented before, this non-zero intersection implies the interac-
tion strengths between the Higgs doublet and different generations of fermions could be
incorporated into how these representations appear as subspaces within a matrix algebra.
Clearly, the explicit embedding of the Standard Model yielded insights into how to form
invariants between representation spaces within M(8,C) and, as all interactions of fields are
described in terms of invariants, therefore gave insight into how interactions would appear
in such a construction. This feature arose precisely because we demanded the existence of
three generations of fermionic representation spaces in chapter 2.

On the other hand, in chapter 4 we found representation spaces, i.e. the H−spaces,
which necessitated the inclusion of parameter α and β to distinguish map compositions
with respective conjugate representations. As discussed, this could potentially describe
interactions with matter-antimatter asymmetry, or an asymmetry between interactions of
up- and down-type particles,14 a feature we did not see in the explicit embedding of chapter
2. Both of these features are required to yield the mass spectrum seen in the Standard
Model Yukawa interactions. This makes it clear that in the study of simultaneous real-
izations of representation spaces, both the embedding and induction of these “Higgs-like”
representation spaces yielded interesting insight into the encoding of interaction strengths.

This presents the idea that the explicit embedding of Standard Model representation
spaces is useful for understanding what relationships between representation spaces can
be imposed by the inclusion of linear independence. Inducing representations instead
indicates what sets of linearly independent representation spaces are consistent with certain
underlying structures, i.e. like the SU(2) and SU(3) decompositions of C ⊗ O in chapter
4. To exemplify this, note that in chapter 2 there was no fundamental reason, apart from
matching with Standard Model representations, to not include higher representations of
the gauge groups, i.e. like the 6-dimensional representation of SU(3). If in chapter 4 we
had included maps M from 3∗ to 3, these maps would have transformed as M → UMUT

when 3(∗) → U (∗)3(∗), and thus contained the 6 representation of SU(3). However, such
maps do not form a Lie algebra describing the redundancy of the direct sum decomposition
of M(C ⊗ O), i.e. principle 2.15 So for the particular setup we presented in section 4.2,
the appearance of the 6 representation of SU(3) is not possible. This shows that the set of
irreducible representation spaces that may arise when inducing these spaces in the matrix
algebra is heavily dependent on the principles by which the induction occurs. This is
of course to be expected. Indeed we wanted certain features out of our representation
spaces, as discussed in chapter 3. Even so, it demonstrates certain relationships which are

14We reiterate our disclaimer here that in principle we cannot make definite statements about inter-
action structures without an action. Our statements originate from an interpretation of features of map
composition as a strong indication of interaction structures.

15Indeed because maps M : 3(∗) → 3 have different right and left ideals the set of such maps do not even
form a matrix subalgebra, much less a Lie algebra.
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uncovered when inducing representation spaces. We believe more work in this direction
could lead to a deeper understanding of how one may simultaneously incorporate different
representation spaces within an algebra of linear maps.

Apart from linear independence between irreducible representation spaces, it is inter-
esting to consider how the different groups acted on the irreducible representation spaces
in these approaches to studying the simultaneous realization of gauge representations. In
both chapters we achieved the fundamental transformations of SU(2)×SU(3) through em-
ploying bi-representations, with SU(3) acting from the left and SU(2) acting from the
right. However, as chapter 2 was just an embedding of Standard Model representations,
it offered no explanation for the origin of adjoint and fundamental representations. This
resulted in the use of ad-hoc projectors which ruined the simplicity of the construction. In
contrast, when inducing the direct sum decomposition in chapter 4, adjoint representations
were seen as describing endofunctions preserving C ⊗ O|C,H, while fundamental represen-
tations were endofunctions of C⊗O which mapped C⊗O|C to C⊗O|H. Here the idea of
projectors can have the natural origin as describing subspaces of different decompositions
transforming under different gauge groups. As such the induction of irreducible repre-
sentation spaces provided a mechanism by which the different adjoint and fundamental
representations could both be seen as endofunctions obeying different properties. Further,
it also provided a mechanism through which it was evident we could not have SU(3) trans-
formations of SU(2) or visa-versa, something which needed to be imposed additionally in
chapter 2. Such a natural inclusion of different transformations could help understand how
to construct theories which have only the types of irreducible representations seen in the
Standard Model. The ambition of such work is not only to have vector-adjoint represen-
tation and spinor-fundamental representations, i.e. the matching of gauge and Lorentz
representations seen in the standard model. For example, understanding how represen-
tations of these groups combine for different constructions could help uncover structures
that result in chiral discrimination of gauge groups, deepening our understanding of this
phenomenon.

While the approaches of embedding and inducing representation spaces are quite dif-
ferent, it is clear that they are both advantageous, and have each helped uncover different
structures associated to representations in M(8,C). All of this is based on the idea of in-
corporating linear independence of finite-dimensional spaces as a useful tool for the study
of irreducible representation spaces in the context of particle theory. A tool that provides
relationships between and restrictions on sets of irreducible representation spaces. Formu-
lating a deeper understanding of how these relationships originate from the choice of base
space and setup could offer insights into what types of structures should be present in ap-
proaches to unifying particle theory. We conclude this comparison with the emphasis that
we are not implying our work, or generalizations, could directly yield the Standard Model’s
particle content. Rather we suggest that understanding how to incorporate relationships
between irreducible representation spaces may guide future approaches to unification in
particle theory.
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4.8 Towards the Induction of Space-Time Represen-

tations

In this paper we have so far focused only on inducing representations associated with gauge
groups of the Standard Model. The other symmetry of relevance is the Lie group SO(1,3),
or its double cover SL(2,C), generated by the Lie algebra so(1, 3), which is isomorphic to
sl(2,C). In this section we provide some insight into how Lorentz representation spaces
can also be incorporated in a space of linear maps.

To proceed in a similar fashion to the induction of adjoint and fundamental represen-
tations presented earlier in this section, we will consider an algebra whose automorphism
group is SL(2,C). For this choice we will select the algebra we will use C ⊗H ∼= Cl(2) ∼=
M(2,C), presented earlier in section 2.2. We will focus on the double cover SL(2,C) of the
Lorentz group, as simultaneous left and right action of this group on C⊗H ∼=M(2,C) pro-
duces the vector space representation of SO(1,3) transformations, as presented in chapter
2. However, we will not induce a set of representation spaces in this section. The absence
of an induction mechanism is two fold. First, the primary focus of this thesis was to recover
the representation spaces concerned with gauge transformations, not Lorentz transforma-
tions. Second, it is important to recall that the Lorentz representations identified in C⊗H
were not all linearly independent, and linear independence between all the representation
spaces was only achieved by the inclusion of M(8,C) describing transformations under the
action of the gauge groups. Thus it is not even clear whether we can consistently formulate
an induction method based only on the Lorentz transformations themselves.

In section 2.2, we described how vector, spinor, and scalar representations of the Lorentz
group can be embedded in the complexified quaternions and equivalently M(2,C). However
this leaves out the adjoint, or bi-vector, representation of the group. We note that the scalar
transformations are described by

a→ ΛaΛ̃ (4.25)

for some scalar a ∈ Center{C ⊗ H} = C, where Λ̃ ≡ Λ−1 describes Quaternionic con-
jugation. These automorphisms trivially preserve the centre of the algebra, and so they
must also preserve the centre’s compliment, i.e. C⊗ Im{H}.16 As C⊗ Im{H} ∼= sl(2,C),
this subspace of the complexified quaternions transforms in the adjoint representation of
SL(2,C) under (4.25).

Clearly the different Standard Model Lorentz representations may all be encoded in
C ⊗H. However, for the setup of section 4.2 we were interested not in the algebra itself,
but in the endofunctions on the algebra. Instead, we must find a constructive way to view
the algebra M(C ⊗ H). For C ⊗ O this was in many ways simpler, as we could view the
entire algebra from the vector space perspective.17 However with the algebra C ⊗ H we

16Here the “Im” stands for the imaginary part of the quaternions, and denotes the basis elements εj of
the quaternions as these basis elements square to minus one.

17This in fact stems from left and right multiplication within the Octonions being isomorphic, and thus
we can view all maps as matrices acting on the left of the algebra.
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have to take into account the appearance of left and right handed ideals at the level of the
algebra itself.

In previous literature, Ref. [56], the approach to realize Lorentz representations was to
consider that as

C⊗H ∼= Cl(2) (4.26)

and

M(C⊗H) ∼= (C⊗H)⊗C (C⊗H) , (4.27)

we have

M(C⊗H) ∼= Cl(2)⊗C Cl(2) ∼= Cl(4) ∼= C⊗ Cl(1, 3). (4.28)

That is, one may recover the Clifford algebra of spacetime, or rather its complexification,
as the algebra describing the space of endofunctions on C⊗H. The chain of isomorphisms
(4.28) is certainly interesting since, as shown in subsection 1.4.1, the Clifford algebra
of spacetime Cl(1,3) is implicit in Standard Model physics. However, the identification
(4.28) is not ideal for our construction, as it is not clear how one could induce Lorentz
representations in Cl(4) from irreducible representation spaces in C⊗H.

Instead, we will present a different approach to working with M(C⊗H) which is more
in line with the ideas of section 4.2. In addition to using isomorphism (4.26), we will also
employ the identification

C⊗H ∼= C⊗C R1,3, (4.29)

where the R1,3 is the real vector space spanned by {1, iε1, iε2, iε3} as in (2.1).18 The
validity of this identification is apparent from the separation of C⊗H into hermitian and
anti-hermitian real vector spaces as shown in chapter 2. Using (4.27), we have

M(C⊗H) ∼= (C⊗H)⊗C (C⊗H)

∼=
(
C⊗R1,3

)
⊗C (C⊗H)

∼= R1,3 ⊗C (C⊗H) . (4.30)

Here we have chosen to incorporate the complex parameters entirely within C⊗H, leaving
only real parameters in R1,3. Note that isomorphism (4.27) can be visualized as describing
M(C⊗H) as consisting of pairs of matrices acting on the left and on the right of C⊗H ∼=
M(2,C). In this case R1,3 and C ⊗ H in (4.30) can be interpreted as the left and the
right action on respectively. We will use the isomorphism (4.30) as a starting point for
considering endofunctions on C⊗H.

18Note of course that this only describes the vector space structure of the spaces, indeed we will still
have well defined Quaternionic multiplication within C⊗CR1,3. Additionally, tensor product over C is left
in to emphasize that the same unit imaginary i appearing in C also appears in the construction of R1,3.
However, the space R1,3 is still described only in terms of real parameters.
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We will focus on maps between the different irreducible representation spaces of Lorentz
transformations in C⊗H introduced above. Let V denote the vector representations, V ∗

denote covector representations, ΨL and ΨR denote left and right handed spinor repre-
sentations, Φ denote the scalar representation, ω denote the adjoint representation, and
ω∗ denote the complex conjugate of the adjoint representation. Further denote a map in
M (C⊗H), acting on C⊗H as left multiplication of A and right multiplication by B, via
(A,B). I.e. for any A,B,C ∈ C⊗H, (A,B)(C) := ACB. For this map, A and B will be
referred to as the first and second factors of the map respectively. With this notation, we
can describe Lorentz representation of maps between irreducible representations spaces of
C⊗H as:

V →


ΨR via maps transforming as (V ∗,ΨR)

Φ, ω∗ via maps transforming as (V ∗,Φ) , (V ∗, ω∗)
V ∗ via maps transforming as (V ∗, V ∗)

(4.31)

ΨL →


ΨR via maps transforming as (V ∗,Φ)

Φ, ω∗ via maps transforming as
(
V ∗,Ψ†L

)
V ∗ via maps transforming as

(
V ∗,Ψ†R

) (4.32)

Φ, ω →


ΨR via maps transforming as (V ∗,ΨL)

Φ, ω∗ via maps transforming as (V ∗, V )
V ∗ via maps transforming as (V ∗,Φ) , (V ∗, ω)

(4.33)

The maps between the complex conjugate representations follow directly by complex con-
jugation:

V ∗ →


ΨL via maps transforming as (V,ΨL)
Φ, ω via maps transforming as (V,Φ) , (V, ω)
V via maps transforming as (V, V )

(4.34)

ΨR →


ΨL via maps transforming as (V,Φ)

Φ, ω via maps transforming as
(
V,Ψ†R

)
V via maps transforming as

(
V,Ψ†L

) (4.35)

Φ, ω∗ →


ΨL via maps transforming as (V,ΨR)
Φ, ω via maps transforming as (V, V ∗)
V via maps transforming as (V,Φ) , (V, ω∗)

(4.36)
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We have only described maps which are of the form (V, ·) or (V ∗, ·), which is a subset
of all possible maps between our irreducible Lorentz representations. This implies we
considered only the set of maps between irreducible representation spaces of C⊗H which
naturally produces the R1,3 factor seen in (4.30). We considered only maps of this type
due to the interpretation of the individual factors: transformations of the first factor is
that of some four-vector,19 and the transformation of the second factor is some irreducible
Lorentz representation. With a collection of such maps we could, for example, have a set of
elements which span the space of ΨL representation in the second factor, with each element
of ΨL having one or more associated four-vectors in the first factor. This description of
a collection of maps contains the necessary ingredients to describe a left handed spinor
field in spacetime, as spacetime fields assign a Lorentz representation to each point in R1,3,
the space of four-vectors. This argument can be extended to any type of spacetime field
transforming in either the spinor, scalar, vector, or adjoint representations.

The interpretation of the first factor describing a four-vector is of course only appli-
cable for the above set of maps. Indeed, mapping any of the above representations to
themselves the first factor would transform as A→ ΛAΛ̃, and therefore not be consistent
with the transformation of four-vectors. This discussion is not an induction of irreducible
representations as was the case for maps on C⊗O, but instead an example of how certain
structures appear within M(C ⊗ H). More work is required to determine whether there
exist mechanisms by which only the above maps are selected. To this end we provide some
observations unique to the above set of maps.

We observe that any map in M(C⊗H) can be recovered from the above maps via map
composition. This can be seen by noting that the Lorentz representations V , ΨL, Φ, and
ω are all those which under a Lorentz transformation are acted upon from the left via Λ.
Similarly V ∗, ΨR, Φ, and ω∗ are all the Lorentz representations which are acted upon from
the left by Λ∗. Since Φ ≡ C it commutes with the Lorentz group elements Λ, ergo

ΛΦΛ̃ = Λ∗ΦΛ† = Φ. (4.37)

By having all possible maps between these two sets we can then also recreate any map
within these sets via map composition. This itself is not a property unique to the set of
maps in (4.31)-(4.36). However, this collection of maps forms the smallest set of maps, with
the first factor transforming in a four-vector representation, such that mapping between
any of the irreducible Lorentz representations V, V ∗,Φ, ω, ω∗,ΨL,ΨR ∈ C⊗H is achievable
by map composition of two or less maps. In particular mapping any irreducible Lorentz
representation space to itself requires the composition of an even number of these maps.

Another interesting feature of these maps is the appearance of scalar representations in
M(C⊗H). Clearly any map (a1, a2) ∈ M(C⊗H) with the second factor, a2, transforming
as a bi-vector, i.e. as (4.25), also permits having a scalar representation for a2 via equation
(4.37). However, the converse is not true: maps with a scalar representation for the second

19Note that since all we can say for definite is that the first factor transforms in the vector representation
of the Lorentz group it is possible to interpret this factor as describing a spacetime vector, momentum
vector, or otherwise.
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factor do not also imply the existence of a bi-vector representation. To see this discrepancy
look at the difference between the top line in (4.32) and the bottom line in (4.33). Focus
on the maps which only allow for a scalar representation in the second factor. These are
uniquely the maps that take left handed spinor representations of C⊗H to the right handed
spinor representations, and visa-versa. Thus these scalar representations arise uniquely in
the set (4.31)-(4.36) as the maps which connect left and right handed spinor representations.
While this is not necessarily implicative of any underlying connection to particle physics,
it has an interesting similarity to how the Higgs doublet in the Standard Model forms
invariants between the left and right handed Lorentz spinors. To investigate any potential
significance of this observation would require a construction of simultaneous realization of
multiple representations transforming under both Lorentz and gauge transformations.

Here we have showed that it is possible to extend the idea of describing representation
spaces of gauge groups as endofunctions to describing representation spaces of Lorentz
transformations. This resulted in all the different irreducible representation spaces seen in
the Standard Model, as a consequence of our algebra of choice C⊗H. Furthermore, when
using C ⊗ H as our base space we find not only the irreducible Lorentz representations,
but the appearance of a spacetime structure, i.e. the factor of R1,3. While the process of
identifying irreducible Lorentz representations in the space of maps M(C⊗H) is similar in
spirit to the process defined in section 4.2, i.e. mapping between irreducible representation
spaces, they are clearly not directly compatible. In section 4.2 we considered restricted
representations of G2 that preserved certain subalgebras of C ⊗ O. However, there is no
way of obtaining the set of maps in (4.31)-(4.36) from transformations of the underlying
algebra

C⊗H→ Λ (C⊗H) Λ̃ (4.38)

by restricting these transformations to preserve subalgebras of C⊗H. Therefore we cannot
use the same setup as in section 4.2 to induce representation spaces whose transformations
are simultaneous gauge and Lorentz representations, if such a construction is even possible.
Nevertheless, the set of maps (4.31)-(4.36) together with the earlier results of this chapter
demonstrate the applicability of using endofunctions on an vector space as a method of
generating both irreducible Lorentz and gauge representation spaces.
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Chapter 5

Comparison with Unification
Approaches and Outlook

5.1 Comparisons with Established Unification Approaches

In chapters 2 and 4 we detailed two separate approaches to studying the simultaneous real-
ization of multiple gauge representations. This provided a basis for studying consequences
which arise when trying to impose linear independence between different irreducible rep-
resentation spaces. As a result, many of the resultant features that arose from our con-
structions are reminiscent of those associated with the established approaches of section
1.3. We comment on these features here and compare our results to those of the above
referenced unification approaches.

5.1.1 SUSY

As commented in subsection 1.3.1, a crucial feature of SUSY is the appearance of ad-
ditional Lorentz representations for each irreducible gauge representation, with definitive
rules for how these Lorentz representations transform into each other. Since the induced
representation spaces of chapter 4 did not consider Lorentz representations, we will focus
on the explicit embedding of chapter 2 and the Lorentz representations presented in section
4.8.

A main difference between our work and SUSY is that we are not incorporating any
symmetry transformations between the different Lorentz representations. The motivation
behind SUSY was to restricted the allowed interaction terms in the Lagrangian. This
cannot be achieved by our current work, as we are simply producing representations, and
not imposing relations on how they transform into each other. Thus the mechanism by
which SUSY achieves approximate gauge coupling unification and reduces sensitivity of
Higgs mass radiative corrections is not mirrored by our construction. Since the supersym-
metry transformations of SUSY are not pertinent to our discussion we focus instead on its
superspace formulation, and compare this construction to the embedding of chapter 2.
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In our embedding of Standard Model representation spaces, the main feature of the
irreducible Lorentz representation spaces is that they all appeared as subspaces of M(2,C).
This matrix algebra is not large enough to incorporate vector and spinor representations
as linearly independent subspaces. Instead, the linear independence of the Lorentz rep-
resentations is ensured by the space M(8,C) of gauge representations. We stress that
such a relationship does in no way imply a mixing of the Lorentz and gauge generators.
Yet, the linear independence of simultaneous Lorentz and gauge representations realized
as subspaces of the larger matrix algebra M(16,C) ∼= M(2,C)⊗C M(8,C) restricts the set
of allowed SL(2,C)⊗U(1)⊗SU(2)⊗SU(3) representation spaces. This differs from the su-
perspace formulation of SUSY, where the space of Lorentz representations contains both
vector and spinor representations as linearly independent subspaces. In our construction,
we provide one unified space for the Standard Model Lorentz representations, by unify-
ing our gauge representations in another space, such that in their tensor product linear
independence of irreducible representation spaces is ensured.

The embedding of chapter 2 is more compact than the superspace formulation. While
the Minimally Symmetric Standard Model requires a doubling of particle content in its
formulation, in our embedding we found only a two dimensional subspace PAdd ⊂ M(8,C)
not in Standard Model representations, when including right handed neutrinos. However,
the purpose of SUSY is not to provide a common space for describing particles, but rather
to explain structures of interactions and representations. For example, SUSY answers the
question of “why do spinors transform in the fundamental representation and vectors in
the adjoint representation under gauge transformations?” by imposing the corresponding
particles to these representation spaces as only the low energy excitations. In the true
supersymmetry, restored at higher energies, we would then also see vector fields in the
fundamental representation and spinor fields in the adjoint representation of gauge groups.
This is clearly not possible within M(16,C) by purely dimensional counting.

We saw how Lorentz representations can be described via linear maps on M(2,C) in
section 4.8. Here we chose to view the linear maps as pairs of elements of C ⊗ H, which
yielded a vector representation for the first factor and some additional irreducible Lorentz
representation for the second factor. We showed how in this construction one could in-
terpret the vector representation of the first factor as describing some spacetime, and the
second factor as describing the Lorentz representation of fields. However, in principle we
could find maps with any type of representations in the first factor. Therefore one could
also view M(C⊗H) as pairs of Lorentz representations and introduce some operation which
exchanges these pairs. This provides a setup for which to consider SUSY transformations.
Alternatively, we could instead have viewed the linear maps on C ⊗ H as spanning the
Clifford algebra Cl(4), allowing for a simultaneous realization of vector and Dirac spinor
representations as linearly independent subspaces.

While the work presented here focused on describing simultaneous realizations of rep-
resentation spaces that were comparable with Standard Model representation spaces, it
is clearly possible to generalize our construction in such a way as to incorporate addi-
tional combinations of gauge and Lorentz representations. This presents possible avenues
for studying the realization of a set of linearly independent representation spaces which
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respect SUSY transformations. It would be interesting to investigate what types of super-
symmetric theories could be constructed in this way.

5.1.2 Comparison with GUTs

In GUTs, the Standard Model symmetry groups all arise from restricted representations of
the same larger grand unified group GGUT. This was not the case for the work of chapter 2,
where group structures were chosen ad-hoc to reproduce Standard Model gauge transfor-
mations. However, the SU(2)×SU(3) symmetry transformations of chapter 4 did appear as
restricted representations, in this case of the group G2. The difference with the appearance
of the irreducible representation spaces in chapter 4 is that in GUTs the group GGUT is
the true symmetry group of the theory, with the Standard Model groups appearing as the
residual, i.e. the effective low energy, symmetries after spontaneous symmetry breaking
has occurred. In other words, in GUTs the recovery of the Standard Model gauge groups is
a dynamical process. In chapter 4 there is no notion of spontaneous symmetry breaking, as
we are simply mapping between restricted representations. Further, while the SU(2) and
SU(3) transformations appear as subgroups of G2 the same is not true for our U(1) trans-
formations, which arise as a redundancy in how to define the direct sum decomposition.
Thus, in the work presented here, the relevant symmetry groups are directly related to the
redundancy in defining the “particle content”, i.e. the irreducible representation spaces,
themselves. Of course, spontaneous symmetry breaking is not excluded by the construction
of chapter 4. Rather, unlike the case for GUTs, spontaneous symmetry breaking is not
required to obtain representations of distinct groups.

In GUTs the different irreducible representation spaces are just that, they are different
spaces. So while addition is defined within these irreducible representation spaces, and
therefore between the restricted irreducible representation spaces, it is not defined between
elements of different irreducible representation spaces of GGUT. This implies there is no
demand for a finite set of irreducible representation spaces, and one could have arbitrarily
many copies of each irreducible representation and irreducible representations of arbitrarily
large dimensions. Indeed, to obtain three generations of fermions in SU(5) GUT one
requires three copies of the direct sum 1 ⊕ 5̄ ⊕ 10 of irreducible SU(5) representations.1

The requirement of multiple copies of irreducible representation spaces is consequently not
present within the context of GUTs.

This differs fundamentally from the construction presented here, where the 8 and 3
representations of SU(3) both appear as subspaces of M(8,C) ∼= M(C ⊗ O). As a result
in order to fully span the space requires a minimum number of irreducible representation
spaces. Conversely, because the space of maps is a finite dimensional vector space we
also have a limit on the number of irreducible representation spaces that may appear.
In other words, as the construction presented here works both with linear independence
and irreducibility of representation spaces, within a finite dimensional vector space, it

1The singlet state is required if one wishes to include right handed neutrinos, which are singlets under
all gauge groups of the Standard Model.
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presents a more restrictive appearance of irreducible representation spaces than GUTs. For
example, the setup of section 4.2 resulted in the unique the set of SU(2)×SU(3) irreducible
representation spaces. Through the work of chapters 2 and 4, it is clear that multiplicities
of representation spaces may naturally arise from simultaneous realizations of multiple
gauge representations.

We comment that the implementation of the different symmetry transformations is very
similar to that of SU(5) GUT. Returning to the restriction of the 10 representation of SU(5)
in (1.1), it is clear that the (3,2) representation space transforms as a bi-representation of
SU(2)×SU(3). This is not in general the case for GUTs. For example in SO(10) GUT the
16 representation, describing one generation of left handed particles and antiparticles, is
the fundamental representation of Spin(10) and does not imply a bi-representation after
spontaneous symmetry breaking. Thus the way in which transformations are described
within our constructions has a close connection with SU(5) GUT.

This connection with SU(5), however, is only at the level of transformations of our
representation spaces. Another emergent feature of our constructions was the possibility
to encode interaction strengths into the form of the representation spaces themselves.
This was possible precisely because linear independence was extended to hold between all
representation spaces, not just between restricted representations as in GUTs. Based on
the results of chapters 2 and 4, we find it highly suggestive that under a variation of the
constructions presented here one could recover irreducible representation spaces yielding
interaction hierarchies under map composition. It would be interesting to investigate such a
hierarchy in relation to the mass-hierarchy between generations of fermions in the Standard
Model, Ref. [73]. Such considerations are not possible in GUTs without gauging the flavour
symmetry of fermions and introducing a plethora of representation spaces not seen in the
Standard Model.

5.1.3 Non-commutative Geometry

Unlike GUTs and the work of chapter 4, NCG does not base its gauge structure on restricted
representations of some larger group. Therefore it does not derive any symmetry structures,
but rather imposes them. In essence this results in the noncommutative Standard Model as
a phenomenological model found by incorporating the ideas of noncommutative geometry
to Standard Model physics, Ref. [74]. This is different from the work of chapter 4, but is
similar in the imposing of symmetry groups to the embedding of chapter 2.

NCG realizes bosons and fermions as objects of different spaces, trivially implying the
lack of linear independence between their representation spaces. However, the fermionic
states still span a Hilbert space, so linear independence exists between these fundamental
representation spaces. Furthermore, this Hilbert space is the product of an infinite space
with a finite space, where separation of points in this finite space describes the separation
between left and right handed fermions. This separation between left and right handed
spinors is what results in the Yukawa interaction matrix in the Higgs sector. In other
words, the different parameters in the Yukawa interaction matrix arise as a result of how
the fundamental representations, corresponding to fermions, are realized as linearly inde-
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pendent subspaces of the same Hilbert space. This is similar in principle to how matrix
multiplication, or equivalently map composition, in our construction yields different inter-
action strengths precisely because of how our representation spaces are realized linearly
independently within the same space of linear maps.

In practice there are of course many differences between the constructions, not the
least of which is the Higgs boson in NCG as an operator on the space containing fermionic
representations, and not an element of the space itself. However we find that the general
idea of having interaction strengths encoded at the level of representation spaces is mirrored
in both approaches. Additionally, while our work on Lorentz representations in M(C⊗H) is
not yet developed to the same extent as our focus on gauge representations, it is interesting
that the maps uniquely representing scalar fields in section 4.8 are maps between left and
right chiral fermions. This compares to how the Higgs boson in NCG arrises as a finite
difference between left and right handed fields. Thus there is a similar view in the two
approaches of Higgs representations as describing differences or connections between left
and right handed spinor representations.

Another interesting point for comparison is the appearance of particle and antiparticle
representations. In the work presented here, both in chapters 2 and 4, conjugate represen-
tations were realized as independent subspaces in our space of fundamental representations.
Similarly, in NCG particles and antiparticles appear as different basis elements required to
span the Hilbert space of one generation of fermionic states, Ref. [41]. There the particle
and antiparticle representations are related by an antilinear isomorphism. In chapter 4 we
found that the F -spaces came in pairs related by complex conjugation, i.e. an antilinear
isomorphism, and that the complexified Lie algebras were invariant under this operation.
Resultantly, the adjoint and F -space representations we have the same feature as NCG,
with an equivalence between particle and anti-particle representation spaces. The same
is not true when we include the H-spaces, whose complex conjugate representation is not
present in the direct sum decomposition (4.1) of M(C ⊗ O). This presents a contrast be-
tween NCG and our work as the inclusion of an antilinear isomorphism was not part of
the setup of section 4.2.

We note that the use of this antilinear operator is essential to recovering unitary repre-
sentations in NCG. Indeed, the operators which are identified with the the bosonic sector
in NCG are described by complex valued functions “A”. However, the inner fluctuations
of the metric D is defined as

D → D + A+ JAJ−1 (5.1)

where J is the antilinear isomorphism and defines a reality structure on the Hilbert space
of fermions, Ref. [75]. In NCG it is not the complex valued functions A, but the real func-
tions A+JAJ−1 which are present. This process yields the real Lie algebras for the adjoint
representations, as opposed to the complexified Lie algebras. Within our construction we
only recovered the complexified Lie algebras. To develop this work into a theory with rep-
resentations similar to those of the Standard Model fields, it may therefore be necessary
to introduce a reality structure on the space M(8,C), or M(16,C). We do note that J



74 5. Comparison with Unification Approaches and Outlook

acts as an involution for the Hilbert space of single particle fermion states in NCG. How-
ever, we reiterate that the H-spaces in our construction are not invariant under complex
conjugation, unlike our complexified Lie algebras. Thus one must take care if intending
to implement reality structure this at the level of construction principles as discussed in
section 4.2.

While these are some interesting points of comparison, we note that there are many
features of NCG which are not mirrored by our construction. This is in part because the
theory of NCG in particle physics is well established within the theoretical community,
and has been developed in far greater detail than the work presented here. For example,
NCG has a process by which to construct a theory by considering the spectrum of the
bosonic fluctuations, which includes spacetime effects. Since our construction does not
treat the adjoint representations as arising from operators acting on a Hilbert space of
fermionic states, this construction is not applicable to our work. As we have not induced
simultaneously Lorentz and gauge representations, constructing a theory is well beyond
reach.

5.2 Outlook

5.2.1 Alternative Approaches to Inducing Representation Spaces

In principle there are many different ways one could choose to approach the induction of
representation spaces in a matrix algebra. In chapter 4 we presented a relatively simple
example, motivated by a set of observations described in chapter 3. The construction
principles of section 4.2 are a specific choice of conditions which were imposed in order to
allow for a connection to be made between subspaces of M(C ⊗ O) and Standard Model
representations. These can be grouped as

• Selection rules for identifying subspaces: I.e. Principles 1 and 2

• Rules ensuring representations for gauge theory construction: I.e. Principles 3 and 4

However, we could have chosen other principles to describe other variants of these same
conditions, or changed the conditions themselves. This would presumably change the
resultant direct sum decomposition and its interpretation.

To exemplify this, note that in chapter 4 we decomposed the base space into irreducible
representation spaces of the non-abelian symmetries, and imposed these symmetries as
redundancies via principle 3. However, we also identified these symmetry groups from
the redundancies in the direct sum decomposition. This implies we most likely have a
redundancy in the set of conditions imposed on the direct sum decomposition. Indeed, it
may be that one needs not to pre-define any symmetry groups at all. This would imply
decomposing the base space V via some other conditions, and then deriving the symmetry
groups as those which preserve certain redundancies in the direct sum decomposition of
M(V ). For example, one could induce the U(N) symmetry groups as the requirement that
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the redundancies of the decomposition preserve some norm, i.e. like the Frobenius norm.
This adds additional structure to the algebra M(V ), as it would also be a normed vector
space. In this case different norms could lead to different symmetry transformations and
thus different direct sum decompositions.

The abundant freedom in choosing how to impose conditions on the decomposition of
the space allows for a lot of different approaches. This is beneficial from the perspective
of studying all the different implications of imposing linear independence between irre-
ducible representation spaces. However, the side effect is that it becomes harder to be
exhaustive in an investigation, or even to compare approaches that use different principles
of construction. This presents a challenge towards a deeper understanding of how linear
independence relates different representation spaces. We have not yet found a satisfying
solution to this shortcoming.2 However, underlying similarities of constructions and di-
rect sum decompositions may become apparent with more examples, and this presents a
promising strategy for finding a general solution. Therefore we leave this task of comparing
different constructions to future work.

5.2.2 Multiple Decompositions

Above we talked in general about the potential for many different approaches in the con-
struction of a direct sum decomposition of some space M(V ). Here we wish to highlight
a particular limiting condition in section 4.2 that we included only for simplicity of con-
struction. This was namely that we only had maps on C ⊗ OC,O and maps from C ⊗ OC
to C⊗ OH. There was no fundamental reason to consider only two decompositions, or to
consider only maps from one decomposition to the other and not visa-versa.

Visually, one could represent our work in this section via figure 5.1. This construction
was sufficient to demonstrate the appearance of relationships between the different irre-
ducible representation spaces as a result of linear independence, while being as simplistic as
possible. However, if trying to use this construction to obtain relationships which mimic
complex Standard Model features, such as chiral discrimination of gauge groups, more
decompositions are needed. This is clear since if each decomposition is associated with
one non-abelian gauge group, we need maps to different decompositions for left and right
handed fermions. This requires minimally three different decompositions, as in figure 5.2,
where for example we have a third decomposition of the base space with some additional
symmetry group G′, and corresponding Lie algebra g′. This construction with three de-
compositions is not in principle different from Pati-Salam type constructions. For example,
in the case G′ = SU(2) we would have the same type of group structure as Pati-Salam
type theories after SU(4) → U(1) × SU(3). It is also interesting that here a “Higgs-like”
representations could indeed map between the gauge representations associated to left and
right handed fermions. This would draw a closer connection between the realization of
scalar representations in section 4.8 and the gauge representations of subsection 4.5.3.

2We note the obvious solution, which is to only compare decompositions based on similar construction
principles. However, such a discrimination could also inhibit the research objective of studying general
features of simultaneous realizations of multiple representation spaces.



76 5. Comparison with Unification Approaches and Outlook

Figure 5.1: Pictographic illustration of maps in chapter 4

Figure 5.2: Pictographic illustration of maps between three decompositions
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Figure 5.2 is of course only suggestive of what may be achievable within the simul-
taneous realization of multiple representation spaces. Even so, it is clear that there is a
large range of applicability of the work presented here. Therefore, it is our belief that
generalizations and future developments of this work may yield useful tools for deepening
our understanding of how to formulate unification approaches in particle theory.



78 5. Comparison with Unification Approaches and Outlook



Chapter 6

Summary and Conclusions

In this thesis we have provided early results in the study of simultaneous realizations of
irreducible representation spaces. On the simplest level these results demonstrate explicitly
the possibility of spanning a matrix algebra with a set of irreducible representation spaces.
This was the results of our complete direct sum decomposition (4.1) of M(8,C) into induced
representation spaces. However, there are many additional interesting features on this
set of irreducible representation spaces. These originate from the requirement of linear
independence. Some of these features were identified in the Standard Model embedding
of chapter 2, while others required a less ad-hoc approach and emerged in chapter 4. For
brevity and to provide emphasis, we will focus on three main features discussed throughout
this text.

The first of feature we will discuss is the compact formulation of Lorentz and gauge rep-
resentation spaces seen in chapter 2. Specifically, in this section all Lorentz representations
were realized in the space, M(2,C), and all gauge representations were realized in the space,
M(8,C). A key component to the compact formulation was the lack of linear independence
between the different Lorentz representations. Indeed, excluding the adjoint representation
associated to gauging the Lorentz group, the only two Lorentz representations which were
linearly independent were the left and right handed spinors. As such we found that when
realising these Lorentz and gauge representation spaces simultaneously in M(16,C), linear
independence of different representation spaces was ensured by the linear independence of
their components in M(8,C). This implied that within our construction we could not have
both vector and spinor transformations for the same gauge representation space. While
this relationship is partly a consequence of our choice of matrix algebras in chapter 2, it is
also explicitly linked to the demand of linear independence. This distinct spinor or vector
transformation associated with gauge representation spaces is also a central feature of the
Standard Model, and we find its emergence within our explicit embedding of representation
spaces particularly interesting. As this feature concerned the simultaneous realization of
Lorentz and gauge representations we discussed it particularly in the context of SUSY in
subsection 5.1.1.

The second feature we will emphasize is the appearance of representation spaces with-
out conjugates. This is the case for both approaches discussed in chapters 2 and 4. In
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chapter 2 this subspace corresponded to the Higgs doublet representation. The form of
the Higgs doublet representation was there included ad-hoc, in order to produce a match-
ing with the representation spaces of the Standard Model. Even so, we found that linear
independence demanded the absence of an independent conjugate Higgs doublet represen-
tation in the direct sum decomposition (2.3). This feature again appeared when looking at
the induced irreducible representation spaces derived in subsection 4.4.3. Here we found
two irreducible representation spaces, i.e. our H-spaces, which did not possess linearly
independent conjugate representations. The reappearance of this feature in our induced
representation spaces is a strong indicator that this could be a general feature of many
matrix algebra decompositions. In subsection 4.5.3 we show how these spaces has proper-
ties naturally identifiable with the properties of the Standard Model Higgs representation.
In particular, we found in both approaches that these “Higgs-like” representations also
had the potential of encoding interaction strengths, when viewing interactions from the
perspective of map compositions in M(8,C). In chapter 2 this was manifest in the ability
to encode different interaction strengths between generations in the choice of parameters
in V ±φ . On the other hand, in chapter 4 we found that the relative interaction strengths
between the H-spaces and conjugate irreducible representations in our F -spaces to be
described by the parameters α and β. The Standard Model Higgs field has relative inter-
action strengths both between generations and between conjugate representations, yielding
distinct masses for up- and down-type quarks. Therefore the natural appearance of these
“Higgs-like” representations in our direct sum decompositions strongly motivates further
studies of simultaneous realizations of multiple representation spaces.

The final feature we wish to discuss is the appearance of three distinct types of repre-
sentation spaces in chapter 4. The three types of representation spaces we found were those
which were self-conjugate, i.e. the adjoint representations; those which came in conjugate
pairs, i.e. the representations in the F -spaces; and those which neither were self-conjugate
nor appeared in conjugate pairs, i.e. our H-spaces discussed above. This feature of three
types of representation spaces is reliant on the specific setup of section 4.2. This follows
from subspaces of our Matrix algebras only having transformations described by the si-
multaneous action of at most two other matrices, i.e. matrix multiplication from the left
and right. This is the case whether these two matrices correspond to elements of the same
group or elements of different groups. So this demand, of Lie algebras as the only end-
ofunctions which return the decomposition upon they act, removes the potential for any
other representation described by the simultaneous action of two elements from the same
group, like the 6 representation of SU(3). Ergo, we may only transform the rest of our
subspaces via matrix multiplication of at most one element of each group, yielding singlet
and fundamental representations. We have shown how with only one simple condition,
namely endofunctions which preserve decompositions are described by Lie algebras, we
automatically recover only the types of representation spaces seen in the Standard Model.
This demonstrates that simultaneous realization of representation spaces within a matrix
algebra can yield strong restrictions from simple conditions. As the simple condition of Lie
algebra endofunctions can result in a parallel with the types of Standard Model transforma-
tions, it would be interesting to investigate the other combinations of conditions can result
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in Standard Model features within these direct sum decompositions of matrix algebras.
While main focus of this paper was on the simultaneous realization of representation

spaces of the groups SU(2) and SU(3), in section 4.8 we demonstrated how Lorentz repre-
sentations could also be encoded as endofunctions between the irreducible representation
spaces of the Lorentz group in M(2,C). There we saw how certain sets of maps could
yielded the necessary components to represent spacetime fields. There are also many ele-
ments of the space M(C⊗H) which would not describe the structure of spacetime fields.
Thus an interesting avenue of research would be to find conditions or constructions which
would yield only the maps (4.31)-(4.36). There are several different ways of viewing the
endofunctions on M(C⊗H), from spacetime fields to pairs of representations. For example,
as mentioned in subsection 5.1.1, we could consider the C⊗ Cl(1,3) representation of the
endofunctions and look for representations compatible with SUSY transformations. One
could also work with other base spaces than C ⊗ H from which to induce Lorentz repre-
sentations. Another interesting application of inducing Lorentz representations would be
to formulate action construction mechanisms based on these sets of representation spaces.
This would open up avenues for further comparisons with NCG and its spectral action
principle. Finally, and as emphasized multiple times throughout this text, we comment
on inducing combined Lorentz and gauge representation spaces. Such combinations could
potentially be used to identify and study constructions that describe chiral discrimina-
tion of gauge representations. These structures are clearly of interesting for unification
approaches in particle theory, as the Standard Model contains two chirally discriminating
gauge groups: SU(2)L and U(1)Y .

It is clear that many interesting results have been found in this exploration of the si-
multaneous realizations of irreducible representation spaces. Even so, the works presented
here encompass only a small part of the available research directions associated with in-
corporating linear independence between irreducible representation spaces. Indeed, we
focused only on maps between vector spaces, in the context of viewing algebras as vector
spaces with multiplicative structure. However, one can also study maps on: inner product
spaces, Hilbert spaces, metric spaces, etc. Of course, it may turn out that not all of these
considerations are relevant to particle theory. Still, based on the findings of this thesis, we
speculate that a general understanding of how to incorporate linear independence between
irreducible representation spaces may yield insight into structures capable of describing the
different representation spaces seen in the Standard Model, and consequently help advance
the development of unification approaches in particle theory.
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Appendix A

The Complexified Quaternions and
M(2,C)

The Quaternions can be defined in many equivalent ways, but here we chose the most
direct approach by defining the multiplication rules for elements within the algebra. The
Quaternions have three square roots of -1 which satisfy

[εj, εk] =
∑
l

εjklεl and ε2
j = −1 (A.1)

where εjkl is the completely antisymmetric tensor. The relations (A.1) is identical to the
relations for the Pauli matrices {σi} if we identify εj with iσj. As the sigma matrices span
the hermitian traceless part of M(2,C), under complexification and by including unity it
is apparent that C ⊗H ∼= M(2,C), with multiplication in C ⊗H being identified directly
with matrix multiplication in M(2,C). Since the Pauli matrices are hermitian, this means
that under hermitian conjugation (iσj)

† = −iσj becomes identified with −εj. Thus we
have that operation of hermitian conjugation in M(2,C) translates simply to C⊗H, with
ε†j = −εj.

Defining complex conjugation in C ⊗H, we have ε∗j = εj. Ergo, complex conjugation
in C ⊗ H does not correspond to complex conjugation in M(2,C). Instead we have that
complex conjugation in the complexified Quaternions corresponds to some operation ∗̄ in
M(2,C) with

A∗̄ := (iσ2)A∗ (iσ2)† , for A ∈ M(2,C), (A.2)

where ∗ is the standard operation of complex conjugation. Note that this strange form
of complex conjugation is rather similar to the form we will be employing in M(8,C), see
equation (B.10). This similarity is actually a consequence of the fact that C⊗H is isomor-
phic to Cl(2), the four dimensional complex Clifford algebra generated by C2. This means
we could obtain M(2,C) equivalently from Cl(2), just like we obtain M(8,C) from Cl(6) by
the use of a nilpotent generating space, see Appendix B.1. We note that the combination
of complex and hermitian conjugation results in the anti-automorphism of Quaternionic
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conjugation ε̃j ≡ (εj)
∗† = −εj. The Lie algebra for the Lorentz transformations is given

by

sl(2,C) = SpanC{ε1, ε2, ε3}, (A.3)

from which it is evident that Λ̃ = Λ−1.
For a detailed discussion of the different irreducible Lorentz representation spaces of

C⊗H we refer the reader to Ref. [56]. With the above results, the Lorentz representations
of C⊗H discussed in chapter 2 and section 4.8 follow directly.



Appendix B

The Matrix Algebra M(8,C)

B.1 The Clifford Algebra Cl(6)

We briefly review basic properties of the 6-dimensional Clifford algebra. For the standard
basis of the Clifford algebra we could write the generating space as spanned by a set of
basis elements {ēi}6

i=1 which satisfy {ēi, ēj} = −2δij. While this is the most common way
to introduce the generating space for a Clifford Algebra, we will here consider instead two
sets of nilpotent basis elements. Then the generating space of Cl(6) can be spanned by the
two sets of vectors {αi}3

i=1 and {α†i}3
i=1, where

α1 :=
1

2
(−ē5 + iē4) α2 :=

1

2
(−ē3 + iē1) α3 :=

1

2
(−ē6 + iē2) , (B.1)

and hermitian conjugation † is an anti-automorphism, implying i∗ = −i and α∗ = −α†.
These generating vectors satisfy the anti-commutation relations,

{αi, α†j} = δij , {αi, αj} = 0 , {α†i , α
†
j} = 0 . (B.2)

Note that this is identical to the commutation relations of creation and annihilation oper-
ators as discussed in Ref. [56].

We will here not work with the elements of the generating space, but rather with the
full set of basis elements which span the space Cl(6). To this end we define ω := α1α2α3

and the projectors

P0 := ω†ω , Pi := αiω
†ωα†i . (B.3)

Let moreover P̄a := P ∗a for all a ∈ {0, 1, 2, 3}. It follows from (B.2) that ω is annihilated
by right or left action of any αi. The projector P0 was used in [56] to find the Standard
Model structure associated to one generation of fermions, but did not employ the use of
the projectors Pi introduced here.

The above 8 projectors are linearly independent and split our space into 8 complex
linearly independent subspaces. Specifically, each one of these projectors will define a left
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ideal. The space
←−−−−
C⊗OPb can then be spanned by 8 linearly independent basis vectors,

Bab := αaω
†ωα†b; Aab := α†aωα

†
b a ∈ {0, 1, 2, 3} . (B.4)

The basis vectors which span
←−−−−
C⊗OP ∗b are found by taking the complex conjugate of (B.4),

which we will denote by

B̄ab := α†aωω
†αb Āab := αaω

†αb a ∈ {0, 1, 2, 3} . (B.5)

This provides a compact way of writing all basis elements of Cl(6) in terms ofBab, B̄ab, Aab, Āab.

B.2 Cl(6) ∼= M(8,C)

We will now demonstrate that Cl(6) is isomorphic to the algebra of 8×8 complex matrices
M(8,C). Clearly the vector spaces over which the two algebras are defined are isomorphic
by virtue of having the same dimension. We thus only need to show that the Clifford
product in Cl(6) is identified with the matrix product in M(8,C).

Let {MIJ} be a basis of M(8,C). A basis element MIJ is a matrix with one entry equal
to 1 (in the Ith row and Jth column), while all other entries are zero. A general matrix F
in M(8,C) can then be written as F =

∑
I,J F

IJMIJ . The matrix product of two matrices
F,H ∈ M(8,C) expressed in this basis reads,

FH =
∑
I,L

(∑
J

F IJHJL

)
MIL . (B.6)

Next we identify the basis MIJ with the basis elements of Cl(6) via

MIJ ←→


B(I−1)(J−1) for I, J ∈ {1, 2, 3, 4}
A(I−5)(J−1) for I ∈ {5, 6, 7, 8}, J ∈ {1, 2, 3, 4}
Ā(I−1)(J−5) for I ∈ {1, 2, 3, 4}, J ∈ {5, 6, 7, 8}
B̄(I−5)(J−5) for I, J ∈ {5, 6, 7, 8}

(B.7)

Under this identification, we can evaluate the Clifford algebra product of two basis elements
and obtain,

MIJMKL = δJKMIL . (B.8)

This reproduces precisely the standard matrix product of M(8,C) in (B.6).
Hermitian conjugation of elements of Cl(6) correspond to the usual hermitian conju-

gation of matrices in M(8,C), so we will not distinguish between hermitian conjugation
in the two algebras and label both the operations by †. Specifically, for any M ∈ M(8,C)
we have that M † := (M∗)T where T is the matrix transpose. The situation is different
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for the operation of complex conjugation. Due to the Clifford algebra property α∗ = −α†,
complex conjugation acts on the Cl(6) basis elements (B.4) and (B.5) as,

(Bab)
∗ =

∑
c,d

ηacB̄cdηdb , (Aab)
∗ =

∑
c,d

ηacĀcdηdb , (B.9)

where η is a diagonal matrix with entries {1,−1,−1,−1}.1
From (B.7) and (B.9), it is clear that, in the matrix representation, complex conjugation

necessarily affects the index structure. Namely, matrices M ∈ M(8,C) satisfy,

M ∗̄ :=

(
0 η
η 0

)
M∗

(
0 η
η 0

)
, (B.10)

where, in order to distinguish complex conjugation in the two algebras, we have introduced
the symbol ∗̄ to denote Cl(6) complex conjugation in the matrix representations. We
continue to use ∗ to denote the conjugation of complex numbers.

As our matrix space can be written as the outer product of two vector spaces C8, this
implies that, for any V ∈ C8, we have that,

V ∗̄ ≡
(

0 η
η 0

)
V ∗. (B.11)

In assigning basis elements of Cl(6) to Standard Model particle types in chapter 2 we use
the matrix representation M(8,C). This simplifies the analysis of linear independence and
makes the paper more accessible to readers less familiar with Clifford algebras. However,
we stress that we use properties, like the complex conjugation ∗̄, associated to the complex
Clifford algebra Cl(6). We will later see how such a representation of complex conjugation
naturally arises when considering maps on C⊗O.

1Even though η is the same as the Minkowski metric in Cartesian coordinates, this is just an artefact
of how we chose to represent our basis elements, and not related to Lorentz transformations.
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Appendix C

SU(2) and SU(3) Decompositions of
C⊗O

We here prove statements given in chapter 4 about the irreducible representation spaces of
C⊗O under SU(2) and SU(3). Firstly, we note that any SU(3)⊂ G2 appears uniquely as
the subgroup of G2 that preserves some unit imaginary element of O. This is naturally in
addition to the identity element which is invariant under G2. As unit imaginary elements
square to −1, SU(3)⊂ G2 is the group which preserves some unique complex structure on
O. We can extend this idea to preserve two unit imaginary elements of O. However, leaving
any two unit imaginary elements a, b ∈ O invariant implies that their product c := ab must
also be left invariant, where c ∈ O must also be an imaginary unit element. Therefore,
the next smallest subgroup of G2 will be such that it element-wise leaves a Quaternionic
subalgebra Span{1, a, b, c} ⊂ O invariant. This group is precisely SU(2)⊂ G2.

Note that if one wishes to extend this construction further one immediately encounters
that the only subgroup of G2 which keeps four unit imaginary Octonionic elements invariant
is the trivial group {I} ⊂ G2, where I is the identity element of G2. This is because
given a Quaternionic triplet {a, b, c} and some other unit imaginary d, preserving all these
elements also implies preserving their products. Or in other words, preserving all elements
{a, b, c, d, (ad), (bd), (cd)}, where ad denotes the Octonionic product of the elements a and
d. However, this set spans all unit imaginary elements of O, and thus we are leaving all of O
invariant. This shows the only unique non-trivial subalgebras of G2 related to element-wise
invariant subspaces of O are SU(3) and SU(2).1

Now, the three distinct C-subalgebras of a Quaternionic subalgebra correspond precisely
to the fact that each SU(3) contains three distinct SU(2) subgroups. Therefore, to ensure
that SU(2) is not a subgroup of SU(3), we must ensure that the Quaternionic subspace
preserved by SU(2) does not contain the complex subspace preserved by SU(3). Let the
complex subspace preserved by SU(3) be spanned by the basis elements {1, d} and the
Quaternionic subspace preserved by SU(2) be spanned by basis elements {1, a, b, c}, such

1Note that we could also define U(1) transformations which leave elements of O invariant, however
these U(1) groups would exist as subgroups of either SU(3) or SU(2).
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that d /∈ Span{1, a, b, c}. It becomes clear that the triplet, 3, and conjugate-triplet, 3∗,
subspaces of C⊗O are in distinct eigenspaces of left action of d. In particular,

3 = Span{a− i(da), b− i(db), c− i(dc)} (C.1)

3∗ = Span{a+ i(da), b+ i(db), c+ i(dc)} (C.2)

Similarly the 2 and 2∗ subspaces of C⊗O together span

2⊕ 2∗ = Span{d, (da), (db), (dc)} (C.3)

The subspaces 2 and 2∗ are then defined as the conjugate pair of eigen-subspaces of (C.3)
under left action of some element in the preserved Quaternionic subalgebra.2 It is easy to
verify that we have 3 ∩ 2 = 3 ∩ 2∗ = {0}. Further, 12 ≡ Span{1, a, b, c}, which is clearly
linearly independent from either 3 or 3∗, but not from 3⊕ 3∗.

We express the eigenspaces of our SU(2) transformations in a similar way to our SU(3)
eigenspaces. Without loss of generality let {ε1, ε2, ε3} ≡ {a, b, c} be such that {εi} satisfies
the commutation relation of unit Quaternionic basis elements. Then for some arbitrary εj
we may define 2 and 2∗ as

2 := Span{d+ i(dεj), (dεj+1) + i(dεj+2)} (C.4)

2∗ := Span{d− i(dεj), (dεj+1)− i(dεj+2)} (C.5)

where the indices on εj are defined up to mod 3, i.e. ε4 ≡ ε1.

2Clearly there is more freedom in how to pick 2 and 2∗ than we had freedom in picking our 3 and 3∗.
However, picking some arbitrary 2 and 2∗ pair only corresponds to a basis choice in the SU(2) decomposition
of C⊗O.
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Boston, MA. https://doi.org/10.1007/978-0-8176-8190-6 1
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