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FACS Fluorescence-activated cell sorting
FDR False Discovery Rate
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Aims of the thesis

Single-cell RNA sequencing (scRNA-seq) enables us to profile the gene expression of individual
cells. As this technology has rapidly evolved over the last decade, it has provided us with the
ability to discover previously unknown cell types and to analyze expression patterns during
differentiation, development and cancer with single cell resolution. So while scRNA-seq is
becoming an important tool for biology and medicine, it is still a fast-evolving technology
and many experimental and computational challenges have not been resolved yet.

The core of my work focuses on the implementation of a realistic simulation frame-
work for scRNA-seq experiments. This enabled us to explore experimental techniques and
computational tools for generating and analyzing scRNA-seq data.

As a first study, we examined whether whole-transcriptome amplification introduces
unwanted noise or bias in gene expression profiling (Manuscript I). Further investigating
RNA-seq library preparation techniques, we then compared six prominent protocols for which
I implemented simulations that provided us with the ground truth to assess the protocol’s
sensitivity and specificity in detecting differential gene expression (DGE) (Manuscript II). To
provide the simulation framework as a user-friendly tool, I extended it further and wrapped it
up as a user-friendly R-package, powsimR, enabling researchers to evaluate statistical power
and sample size requirements for bulk and single-cell RNA-seq experiments (Manuscript
III). We also developed zUMIs, a fast and flexible pipeline for RNA-seq with UMIs. Again
powsimR simulations were instrumental to evaluate whether the inclusion of intron mapping
in gene expression quantification affected the power to detect DGE (Manuscript IV). Lastly,
I used powsimR to systematically evaluate ≈ 3’000 scRNA-seq analysis pipelines and how
choices of library preparation, mapping, count processing and normalisation affect the ability
to detect differential expression (Manuscript V).

In conclusion, my thesis covers many aspects of the computational analysis essential for
scRNA-seq. I developed a faithful simulation framework that can help in developing and
evaluating methods, introduced the first statistical power analysis tool for scRNA-seq and
showed how computational choices can affect the validity of scRNA-seq experiments.
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Summary

RNA-sequencing (RNA-seq) is an established method to quantify levels of gene expression

genome-wide. The recent development of single cell RNA sequencing (scRNA-seq) protocols

opens up the possibility to systematically characterize cell transcriptomes and their under-

lying developmental and regulatory mechanisms. Since the first publication on single-cell

transcriptomics a decade ago, hundreds of scRNA-seq datasets from a variety of sources have

been released, profiling gene expression of sorted cells, tumors, whole dissociated organs and

even complete organisms. Currently, it is also the main tool to systematically characterize

human cells within the Human Cell Atlas Project.

Given its wide applicability and increasing popularity, many experimental protocols and

computational analysis approaches exist for scRNA-seq. However, the technology remains

experimentally and computationally challenging. Firstly, single cells contain only minute

mRNA amounts that need to be reliably captured and amplified for accurate quantification

by sequencing. Importantly, the Polymerase Chain Reaction (PCR) is commonly used for

amplification which might introduce biases and increase technical variation. Secondly, once

the sequencing results are obtained, finding the best computational processing pipeline can

be a struggle. A number of comparison studies have already been conducted - esp. for bulk

RNA-seq - but usually they deal only with one aspect of the workflow. Furthermore, in how

far the conclusions and recommendations of these studies can be transferred to scRNA-seq is

unknown.

Related to the processing of RNA-sequencing, we investigate the effect of PCR amplifica-

tion on differential expression analysis. We find that computational removal of duplicates has

either a negligible or a negative impact on specificity and sensitivity of differential expression
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analysis, and we therefore recommend not to remove read duplicates by mapping position.

In contrast, if duplicates are identified using unique molecular identifiers (UMIs) tagging

RNA molecules, both specificity and sensitivity improve.

The first integral step of any scRNA-seq experiment is the preparation of sequencing

libraries from the cells. We conducted an independent benchmarking study of popular

library preparation protocols in terms of detection sensitivity, accuracy and precision using

the same mouse embryonic stem cells and exogenous mRNA spike-ins. We recapitulate

our previous finding that technical variance is markedly decreased when using UMIs to

remove duplicates. In order to assign a monetary value to the detected amounts of technical

variance, we developed a simulation framework, that enabled us to compare the power to

detect differentially expressed genes across the scRNA-seq library preparation protocols. Our

experiences during this comparison study led to the development of the sequencing data

processing in zUMIs and the simulation framework and power analysis in powsimR. zUMIs

is a pipeline for processing scRNA-seq data with flexible choices regarding UMI and cell

barcode design. In addition, we showed with powsimR simulations that the inclusion of

intronic reads for gene expression quantification increases the power to detect DE genes and

added it as a unique feature to zUMIs. In powsimR, we present our simulation framework

extending choices concerning data analysis, enabling researchers to assess experimental design

and analysis plans of RNA-seq in terms of statistical power.

Lastly, we conducted a systematic evaluation of scRNA-seq experimental and analytical

pipelines. We found that choices made concerning normalisation and library preparation

protocols have the biggest impact on the validity of scRNA-seq DE analysis. Choosing a good

scRNA-seq pipeline can have the same impact on detecting a biological signal as quadrupling

the cell sample size.

Taken together, we have established and applied a simulation framework that allowed us

to benchmark experimental and computational scRNA-seq protocols and hence inform the

experimental design and method choices of this important technology.



1 | Introduction

In the following sections, I provide the background information necessary for understanding

my work in this thesis, including an introduction to basic cell biology and gene expression,

the technologies we use to measure expression and computational methods for analyzing

the resulting data. The section Gene Expression describes how information flows and

is controlled within a cell and the molecules, especially messenger RNA, involved in these

processes. In the following section, I introduce RNA-Sequencing as a method to study

gene expression, starting with the basic principles of library preparation and data generation

by high-throughput sequencing to covering the established computational approaches that

are used to extract meaning from this kind of sequencing data.

In section Single-cell RNA-Sequencing, I present and discuss new technologies that

have enabled the measurements of gene expression levels of individual cells, detailing the

necessary steps of isolating and capturing of single cells and finally preparing sequencing

libraries. I outline in depth the following computational analysis pipeline, highlighting the

many possible methods to answer research questions utilizing scRNA-seq.

Given the focus of my thesis, namely the development of a simulation framework for

scRNA-seq, I cover in my last introductory section Experimental Design and Power

Analysis. In particular, I outline how simulations are a useful tool not only for statistical

power analysis and sample size calculations, but how simulations are an ideal framework for

evaluating and comparing all aspects of scRNA-seq, including library preparation as well as

computational analysis tools.
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1.1 Gene Expression

The central dogma of molecular biology describes the flow of information within a biological

system1,2. Deoxyribonucleic acid (DNA) is the essential molecular basis for carrying genetic

information within the cell3. The information flow starts with the transcription of DNA

regions, called genes, into ribonucleic acid (RNA). After this process of transcription, the

copies of RNA get translated into proteins. Genes together with the DNA sequences that

regulate when and how much RNA of a gene is transcribed, is defined as the functional part

of the DNA. Together with the nonfunctional DNA, the haploid DNA content of an organism

is called its genome4.

In eukaryotes, when an RNA molecule is transcribed from genes, it initially contains

sequence regions that encode information (exons) that alternate with much larger non-coding

sequence regions (introns). The intronic sequences are removed through a process known as

RNA splicing and a sequence of adenine nucleotides - so called poly(A) tail - is added where

transcription ends at the 3’ end. This splicing process allows multiple forms of a transcript

(isoforms) to be produced from a single gene by selecting which coding sequences are retained

or removed. The expression level of a gene is given by the total number of RNA copies

present within a cell. Ultimately, the mature mRNA transcript is converted to a protein

made up of amino acids in the ribosome. This process is called translation. Proteins are the

building blocks of cells and essential for proper functioning. These functions include tasks

such as metabolism, nutrient transportation, sensing environmental cues and gene expression

regulation.

The regulation of gene expression is the basis to determine the cell’s development and

function within a multi-cellular organism. There are multiple mechanisms contributing to

this regulation. For instance, the chromatin state is given by the set of chromatin-associated

proteins and histone modifications that determine the accessibility of a gene for transcription
5. DNA methylation of cytosine residues of CpG dense promoters is a major driver of gene

expression silencing6, whereas highly transcribed genes have an enriched methylation of

the gene body7. The binding of transcription factors to specific regulatory DNA sequences

such as promoters and enhancers can drive or repress the transcriptional process8. The
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aforementioned maturation process, alternative splicing as well as the lifetime of mRNAs are

examples of mechanisms controlling RNA processing and stability4.

There are many possibilities beyond the regulation of mRNA transcript abundances

that affect the location and efficiency of translation as well as the location and function of

proteins. Nevertheless, the types and amounts of mRNA transcripts set the basis for all of

these processes. Hence, quantifying the mRNA make-up of a cell is highly informative.

1.2 RNA-sequencing

RNA sequencing (RNA-seq) provides a reliable method for measuring RNA expression

levels with high throughput9 (Figure 1.1). In essence, RNA is isolated from a biological

sample, converted to complementary DNA (cDNA) and after the addition of adapters, the

resulting library can be sequenced on a machine as manufactured by the company Illumina.

The sequencing output consists of millions of short nucleotide sequences, so called reads.

Compared to previous assays like probe-based micro-arrays10, RNA-seq is able to cover

a broader range of gene expression levels and in addition, no prior knowledge of coding

sequences is required to measure gene expression11. Furthermore, RNA-seq enables a genome-

wide survey of the transcriptome in contrast to quantitative PCR techniques of single mRNA

species12. Coupled with the rapid decrease in sequencing costs13, RNA-seq has become the

most prevalent method to quantify gene expression14.

AAAAA
TTTTT

AAAAA
TTTTT

AAAAA
TTTTT

AAAAA
TTTTTAAAAA

TTTTT

AAAAA
TTTTT

AAAAA
TTTTTAAAAA

TTTTT
AAAAA
TTTTT

ATTGCATCCGATTAATCGGT

GGGCTATTAAGCTTTCGTCA

GGTCCAATTTTCCAAGCA

ATTGCATCTTCTAATCGGT

ATTGCATCCGATTAATAAT

ATTAATTCCGATTAATCGGT

ATTGCATCCGATTAATCCCT

ATTGCATCCGATTAATCGGT

ATTGCATCCCGTAAATCGGT

GGTCCAACCATTCGGAGCA

1 2 3 4

Figure 1.1. RNA-sequencing workflow.
1) Isolation of RNA from cells or tissues. 2) mRNA fraction is purified and cDNA libraries
are prepared. 3) Sequencing of short nucleotide reads. 4) Quantification of gene expression.
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1.2.1 Library Preparation

The lysis of living cells is the first step in preparing a sample for RNA-seq, whereby the

membrane disintegrates and the cellular content is released into the buffer solution. RNA

molecules can then be isolated, by physical separation (e.g. silica column) or chemical

extraction (e.g. phenol)15. In mammalian cells, the vast majority of RNA molecules are

ribosomal, contributing more than 80 percent of the total RNA content16. On the other

hand, the mRNA fraction only ranges between 2 to 7 percent17. Thus, sequencing the total

RNA content of a sample would reduce our ability to detect this rarer RNA species given

that the total amount of sequencing is a limiting factor in most RNA-seq experiments. Hence,

selection methods are applied18. polyA enrichment is widely used which is achieved by

oligonucleotide probes that bind to the poly(A) tail of mRNA molecules and thereby rRNA

is passively depleted (Figure 1.2). An alternative method is active ribosomal RNA depletion

by Ribonuclease H Enzyme or rRNA-specific probes. In either case, each selection method

has its limitations and the choice of selection method has been shown to result in biases19,20.

Poly-A enrichment

Isolated RNA

AAAAAAA

AAAAAAA

AAAAAAA

AAAAAAA

AAAAAAA

AAAAAAA

AAAAAAA

Reverse 
transcription

AAAAAA
TTTTTTT

AAAAAA
TTTTTTT

AAAAAA
TTTTTTT

AAAAAA
TTTTTTT

AAAAAA
TTTTTTT

AAAAAA
TTTTTTT

PolyA+  RNA full-length cDNAPolyA+  RNA

Fragmentation

Fragmented cDNA

Addition of 
sequencer 
adaptors

RNA-seq cDNA libraryIllumina sequencer

High-Throughput 
Sequencing

Figure 1.2. RNA-seq library preparation.
After RNA extraction, mRNA with polyA-tails are enriched prior to reverse transcription.
The resulting cDNA is fragmented and tagged with sequencing adapters. This final library
is then sequenced on a high-throughput machine, e.g. Illumina Hiseq sequencer (adapted
from Illumina, Inc.21).
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Most sequencing machines only work with DNA, so the sample must first be reverse

transcribed into complementary DNA (cDNA) using a retroviral enzyme18. Furthermore,

mRNA transcripts are usually much longer than the sequencing machines maximal efficient

read length, so that the molecules need to be fragmented before hand22. In some protocols,

fragmentation is performed after conversion to cDNA, e.g. by enzymatic processes23, rather

than at the RNA stage, e.g. by heat fragmentation24. To complete the workflow, it is

necessary to attach adapter sequences to the cDNA libraries that are used to bind the

molecules on the flowcells of the sequencing machines25. Usually these sequences also contain

indexes that enables the multiplexing of samples in an individual sequencing run.

1.2.2 High-throughput sequencing

The Illumina machines with their trademarked Sequence by Synthesis technology are the

most prevalent sequencing platform26 (Figure 1.3). In a first step, the double stranded cDNA

fragments are separated into single stranded DNA so that the sequencing adapters can bind to

complementary sequences on the flow cell (Figure 1.3A). This hybridization happens at both

ends of the fragment, so that a bridge structure is formed along which the complementary

DNA strand is synthesized by enzymes. After repeated rounds of this amplification, clonal

clusters consisting of approximately a thousand copies of each fragment are created27. The

bridge is denatured by adapter cleavage and the amplified single-stranded DNA fragments

are now ready for sequencing28. For that, proprietary modified nucleotides with fluorescent

labels are incorporated, the flow cell is washed to remove unbound fluorophores and the

bound fluorophores are detected by laser excitation and direct imaging27 (Figure 1.3B). The

nucleotides also act as terminators of synthesis for each reaction. After multiple rounds of

these sequencing reactions, the resulting images are processed by e.g. bcl2fastq to produce

millions of nucleotide sequences with associated quality scores (PHRED)28,29

1.2.3 Processing of RNA-sequencing data

Usually, multiple RNA-seq libraries are sequenced on one flow cell together and the libraries

therefore need to be demultiplexed30 (Figure 1.4). This is followed by aligning the reads

to a reference genome. There are specific aligners such as STAR31 that take the splicing
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A)

B)

Figure 1.3. Illumina sequencing workflow.
A) Library fragments are flowed across a flow cell and hybridize with complementary Illumina
adapter oligos. Complementary fragments are extended, amplified via bridge amplification
PCR, and denatured, resulting in clusters of identical single-stranded library fragments. B)
Fragments are primed and sequenced utilizing reversible terminator nucleotides. Base pairs
are identified after laser excitation and fluorescence detection. (taken from Chaitankar et al.
201628, CC BY-NC-ND 4.0 license)
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structure of mRNA transcripts into account in contrast to aligners designed for genomic DNA

sequencing, e.g. bwa32. The expression is then quantified by counting the reads that overlap

annotated genetic features33,34. Quality control of all steps from wet lab to computational

processing are essential35,36: Starting from the library creation, e.g. fragment size distribution,

over sequencing results, e.g. base-calling score distribution and over-representation of polyA

sequence reads, to expression quantification, e.g. read alignments and gene length coverage.

Synthetic spike-in standards such as the RNA controls developed by the External RNA

Controls Consortium (ERCC)37 can be a useful tool to measure sensitivity, accuracy and

possible biases and limitations of RNA-seq experiments38,39.

RNA-seq 
library

Short 
Reads

Demultiplex

Alignment
Sequence

Fragment Distribution Sequence Quality Alignment Rates Gene Body Coverage

Gene 
Counts

Assign mapped 
reads to genes
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Molecules
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Figure 1.4. Computational pipeline for RNA-seq data.
After sequencing the library, the short reads are demultiplexed according to multiplexing
barcodes, aligned to a reference genome, and mappings are assigned to genetic features. The
lower panel illustrates a selection of quality measures and filters for each step.

Once the expression levels are quantified, there is a wide range of possible downstream

analyses that are well established: Genetic sequence variants can be directly identified from

RNA-seq reads that might affect gene expression levels e.g. for eQTL mapping studies40.

RNA-seq can also be used to identify alternative splicing, transcription start sites and isoform

switching as well as the differential abundances over time41. Nevertheless the majority of

RNA-seq studies focus on the comparison of gene expression levels across sample conditions
29. This is usually extended with further downstream analysis such as gene set enrichment

analysis42 and network analysis43.
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1.3 Single-Cell RNA-sequencing

In contrast to bulk experiments, single-cell RNA sequencing (scRNA-seq) enables the inves-

tigation of the transcriptome with single-cell resolution44. This resolution is particularly

important for identifying cell type-specific developments or reactions to perturbations45. In

bulk RNA-seq, this is often hindered by averaging expression profiles over all cells present in

a biological sample, thereby also masking the cellular composition. Hence, studies previously

selected or enriched specific cell types prior to library preparation. However, this separation

might limit the investigation of dynamic interactions in complex systems such as multi-cellular

tissues. With scRNA-seq technologies it is in principle possible to look at the transcriptome

of all the cell types in a tissue simultaneously, allowing a fine-grained look at individual cell

types and enabling the discovery of previously unknown cell types46. The first scRNA-seq

protocol was published in 200944 (Figure 1.5A). While this approach allowed measurements

of the transcriptome in individual cells, it required labor-intensive manual isolation and

library preparation so that the transcriptome of only a few blastomere cells were profiled.

Since then, many scRNA-seq protocols have been developed and the number of cells in

scRNA-seq experiments has scaled exponentially47 (Figure 1.5B).

A)

B)

Figure 1.5. Scale of scRNA-seq experiments.
A) Cell numbers reported in representative publications by publication date. Key technologies
and protocols are marked (figure taken from Svensson et al. 201747, CC BY 4.0 license). B)
The aggregate number of cells measured per month since 2009 (figure taken from Svensson
& da Veiga Beltrame 201948, CC BY-NC-ND 4.0 license).
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1.3.1 Isolating Single Cells

In order to capture cells they must first be dissociated into single cell suspensions. This is

an essential, sometimes overlooked non-trivial task (Figure 1.6). The isolation of already

suspended, cultured cells is rather straightforward, whereas dissociation of cells from solid

tissues like the brain or tumors can be challenging49,50. Furthermore, dissociation treatments

may affect the well-being of the cells as well as their transcriptome. Cells might need different

dissociation times which could lead to depletion of certain cell types and/or clumping of

other cell types due to incomplete dissociation51. Nevertheless, once these obstacles are

overcome, the next major step is the capture of single cells (Figure 1.6). Many studies

have relied on a preselection of cell types using known molecular markers compatible with

Fluorescence-activated cell sorting (FACS) so that individual cells can be directly sorted into

individual wells on a plate, e.g. peripheral blood mononuclear cells (PBMC)52.

Depleted

Lost

Dissociation Isolation

Well-based Drop-based

Figure 1.6. Isolating and capturing single cells for sequencing.
Dissociation can lead to depletion of certain cell types by damage and cell death. The
dissociated cells are isolated and captured using well-based or microfluidic / droplet-based
technologies (single cell capture technologies figures taken from Svensson et al. 201747, CC
BY 4.0 license; schematic FACS figure taken from Dholakia et al. 200753, CC BY 4.0 license).

1.3.2 Capturing Single Cells

Early Single-Cell Capture Technologies

The first commercially available cell capture platform is the Fluidigm C1 instrument54,55.

This system uses microfluidics to separate cells into individual wells on a chip. The captured

cells are then lyzed, the mRNA is reverse transcribed to yield cDNA which is then amplified
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by polymerase chain reaction (PCR). This platform provides opportunities for a range of

experiments but also has a number of known disadvantages and limitations: The chips used

have a fixed size range, meaning that only cells of a particular size can be captured in a

single run. Furthermore, chips have only a limited number of captures, where the 96 well

plate chip is the most commonly used. On top of that, capturing multiple cells is a known

issue56.

Droplet Technologies

Other microfluidic devices have also been developed that rely on droplet chemistry for the

encapsulation of cells in combination with barcoding beads, thereby dramatically increasing

cellular throughput as well as reducing the costs compared to individual barcoding and

amplification of well-based methods57 (Figure 1.5A). On the other hand, given that so many

cells are captured and prepared, single cell transcriptomes are sequenced at a much lower

depth with these devices. Drop-seq58, InDrop59 and InDrops60 were the first representatives

of this approach: The cell suspension are piped into those devices where they form aqueous

droplets, together with the lysis buffer and beads, within mineral oil. Inside the droplets, the

cells are then lyzed and the mRNA molecules hybridize with the primers on the beads. After

this initial capture of single-cell transcriptomes attached to microparticles (STAMPs), the

droplets are broken and pooled for reverse transcription and PCR amplification, resulting in

an individual cDNA library for each cell. Although they differ in some aspects, they can

be set up on a lab bench quite easily, requiring only syringes, automatic plungers and a

microscope58.

A commercially available droplet device is the 10X Genomics Chromium device61. On

this platform a range of applications can be performed, including scRNA-seq for gene

expression profiling as well as scATAC-seq for profiling of open chromatin in single cells.

Furthermore, 10X provides additional support for sequencing analysis with the CellRanger

software, an automated preprocessing pipeline. While droplet-based approaches feature

similar throughput, Drop-seq has the lowest cell capture efficiency (3-4% of cells58) while

inDrops and 10X Genomics have far higher efficiencies (65-70% of cells61,60), making these

methods preferable if the number of suspended cells is limited. Furthermore, the use of
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droplets increases throughput by at least an order of magnitude compared to protocols

based on well plates or conventional microfluidics like Fluidigm C1, which is appealing for

large-scale projects such as the Human Cell Atlas46.

1.3.3 Preparing single-cell RNA-seq libraries

After successful cell capture, RNA is obtained and ready to be processed for library preparation

and subsequent sequencing. Protocols consists of these three major steps (Figure 1.7A):

reverse transcription of mRNA into cDNA, followed by amplification and subsequent final

library preparation for sequencing, mostly on Illumina. Individual cells contain very small

amounts of RNA. In order to obtain enough cDNA for sequencing, an amplification step by

polymerase chain reaction (PCR) or in-vitro transcription (IVT) is necessary62,63 (Figure

1.7B). Transcripts may be amplified at different rates by PCR which can distort their

relative proportions within a library. In contrast, IVT is a linear amplification technique

and therefore exhibits less amplification bias. In any case, many methods incorporate short

random nucleotide sequences known as Unique Molecular Identifiers (UMIs) in the oligo-dT

primers needed for the reverse transcription reaction. Furthermore, these primers usually

also contain cell-specific barcodes to increase throughput64,58,61. This early barcoding also

allows the pooling of reactions, saving reagent costs and labor time65.

The addition of UMIs enables the removal of PCR duplicates introduced by library

amplification which improves quantification of gene expression considerably66,67 (Figure

1.7C), especially given that the random UMI sequences nowadays are long enough so that it

is nearly impossible to capture two different transcript copies with the exact same UMI. On

the other hand, because only the ends of each transcript can be tagged, library preparation

methods with UMIs cannot achieve the full length coverage of protocols like Smart-seq2, which

is for example needed for de-novo transcriptome assemblies51. Even so, sequences originating

from transcript sections relatively far from the ends have been observed68. These could point

to the presence of unannotated transcription start sites (TSS) or alternative polyadenylation.

Given that genomic DNA is usually not depleted prior to reverse transcription, oligo-dT

primers could also capture these sequences that contain enough adenine nucleotides. In any

case, studies utilizing cellular barcoding and/or UMI tagging need extra careful processing:
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For once, sequencing errors also occur in the UMI sequences and UMI library composition

can be biased due to preferential amplification of certain barcode and UMI sequences69,70.

As described for bulk RNA-sequencing, the amplified cDNA library is prepared for

sequencing and the Illumina platform is again a popular choice, in combination with the

Nextera kit for fragmentation and adapter incorporation71.
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Figure 1.7. Preparation of scRNA-seq libraries.
A) Typical whole transcriptome amplification strategies are illustrated for two cells ( top:
IVT, bottom: PCR with early pooling). B) Amplified molecules for the blue cell (top: IVT,
bottom: PCR). C) Alignment results (above: blue cell, below: red cell) for three genes (teal,
green, violet). Upper panel: using PCR amplified sequence reads. Lower Panel: uniquely
retained reads based on UMI sequences.
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1.3.4 Analyzing single-cell RNA-seq data

The rapid pace of scRNA-seq protocol development has propagated to computational analysis

methods of the resulting sequencing data. However, both parts have not converged to an

optimum yet. Even though it is possible to define a rough standard processing workflow72,

the possibilities and choices of the computational analysis heavily depend on the research

question as well as experimental setup. Here, I will particularly focus on the data acquisition

and initial preprocessing of samples including data cleaning, quality control and normalisation

to produce a cell by gene expression matrix that can be used to compare transcriptional

profiles across cells in downstream analyses, which range from differential expression analysis

(DEA), cell type identification to trajectory reconstruction.

Quantification of gene expression

After sequencing, the basic data processing for any scRNA-seq experiment involves 1)

demultiplexing of cDNA reads using the Illumina indices and/or cell barcode nucleotide

sequences, 2) alignment and 3) summarising expression by annotated feature, usually genes.

These steps are similar to bulk analysis detailed above. Because cell barcode sequences

are usually unknown or too many, probabilistic demultiplexer are unsuited for the task30.

Therefore, demultiplexing usually relies on automatic detection and subsequent filtering of

barcode lists by either providing a whitelist of expected barcodes or keeping top number of

barcodes, e.g. Cell Ranger61.

Due to the rapid increase in generated cDNA libraries as well as sequencing technologies,

the classical alignment step by genome mapping can be computationally intensive and can

take a significant amount of time73. Quite recently, pseudo-alignment has been implemented

in a number of tools, e.g. kallisto74 and Salmon75, where the raw sequence reads are directly

compared to the transcriptome de Bruijn graph containing k-mer transcript compatibility

classes and then the transcript’s abundance is quantified. These approaches are orders

of magnitude faster than genome alignments while giving similar abundance estimates

for full-length RNA-seq data12,76. However, the power to detect differential expression is

not improved compared to STAR by e.g. a higher accuracy in gene expression estimates
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77. Furthermore, it is unclear in how far pseudo-alignments are affected by the choice of

annotation to build the k-mer index and whether short single end reads mainly covering the

3’ or 5’ end of the transcript are sufficient for this type of alignment, which is the standard

for scRNA-seq protocols with UMIs. Another drawback is the lack of barcode demultiplexing

capabilities of current tools.

An essential part of gene expression quantification of UMI data is deduplication. We

define reads as duplicates when reads with identical UMI sequences align to the same position

so that it is very likely that these reads are the product of PCR duplication instead of

being true copies of a transcript78. Thus, deduplication methods need to separate out

distinct UMIs. A number of tools have been developed when using conventional alignment.

For example, UMI-tools79 implements network-based adjacency and directional adjacency

methods which considers both edit distance and the relative counts of similar UMIs to

identify PCR/sequencing errors and group them together. A much simpler and hence faster

approach is to apply a sequence quality threshold keeping only high quality UMI sequences
80,58. Pseudo-alignment methods have also implemented add-ons to deal with UMI-based

data sets, e.g. alevin implemented in Salmon81. However, these pipelines are limited in their

flexibility, because they are usually expecting a particular read design (barcode and UMI

sequence lengths) and/or are restricted to one alignment method.

As for bulk analysis, sequencing quality control can be performed on various levels

including the quality scores of the reads themselves and how or where they align to features

of the expression matrix82.

Characteristics of scRNA-seq expression profiles

The result of the alignment is a matrix of counts: Rows are annotated features (genes) and

columns are samples (single cells). The count values therefore show the expression level

of a particular gene in a cell. This is per se not different than the data generated by bulk

RNA-seq, but single-cell expression profiles have a number of unique characteristics that

sets them apart from bulk RNA-seq and therefore attention must be paid in processing.

Single-cell RNA-seq protocols have developed rapidly but the data they produce still presents

a number of challenges. A major obstacle is the small amounts of starting RNA material. In
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a mammalian cell, the total RNA molecules comes down to 10 to 20 pg, where only 1 to

5% of the total cellular RNA are mRNAs83. Existing approaches have greatly improved the

conversion efficiency of mRNA into cDNA from initially 10 to 25 percent63,80,84,51 to nearly

50 percent of transcripts85. Several studies have reported that small reaction volumes can

increase the efficiency of this crucial step64,55. Nevertheless, low conversion efficiency is still

the major bottleneck in terms of gene detection, particularly for lowly expressed transcripts
86 (Figure 1.7A). Increasing the sequencing depth can only alleviate this low sensitivity

to a certain extend82. The small amount of starting material also contributes to high

levels of technical noise as considerable amplification is needed for sequencing, complicating

downstream analysis and making it difficult to detect genuine biological differences between

cells87,88,89 (Figure 1.7B).

In addition, scRNA-seq data sets are very sparse due to these limiting efficiencies usually

coupled with a shallow sequencing depth, i.e. there are many instances where no gene

expression has been measured. Naturally, this could of course be the true biological state

but it could also be the result of confounders distorting the true expression profile of a

cell: Differences in cell cycle stages, random transcriptional bursting or even “unwanted”

environmental events can be seen as nuisance factors90. Technical factors also contribute to

sampling noise by introducing so-called gene expression dropouts86,91. That said, dropouts

and large variability in expression measurements are common phenomena in scRNA-seq

studies that must accounted for in downstream analysis, as otherwise underlying assumptions

of existing methods developed for bulk RNA-seq are violated82.

Preprocessing

Quality control of cells is important as scRNA-seq experiments will contain poor-quality cells

that can be uninformative or lead to misleading results. Particular types of cells that are

commonly removed include damaged cells, doublets where multiple cells have been captured

together92,93 and empty droplets or wells that have been sequenced but do not contain a

cell94. The identification of cell outliers is usually done manually by visualizing various of

the data set, e.g. total number of detected genes per cell, percentage of reads allocated to

spike-in transcripts or mitochondrial genes. Given the distribution of metrics, one can then
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apply thresholds to filter outlying cells out, either as hard cutoff or using median absolute

deviations like the scater package95. Besides the quality control of single cells, there is also

the issue that a large number of genes or transcripts are lowly expressed resulting in very

sparse counts. These features are typically removed. A number of downstream analysis steps,

e.g. dimension reduction, are applied to a count matrix considering only highly variable

genes. However this filtering might actually exaggerate unwanted technical noise rather than

true biological differences. Selecting genes using the Fano Factor as a measure of variability

can also remove marker genes of cell types with low abundances in complex cell mixtures96.

Given the sparsity of gene expression measurements, an alternative has been implemented

in M3Drop where biologically relevant features are identified as outlying measurements of

averaged expression level in relation to dropout rate across heterogeneous cell populations97.

Normalisation

Normalisation is a very important step in any RNA-seq experiments, for bulk as well as

single cells98,99,90,100. First and foremost, it is necessary to correct for variation in the

sequencing depth per library. Classical normalisation methods achieves this by a simple

division by total read counts yielding Counts Per Million (CPM). Methods incorporating

gene length correction such as Fragments Per Kilobase Million (FPKM) or Transcripts Per

Kilobase Million (TPM) transformations can be used. On the other hand, libraries prepared

with UMIs do not require this gene length correction since the transcript ends are mainly

sequenced68. However, these methods assume equal amounts of RNA per sample and a

balanced up- and downregulation, so that the total mRNA content is comparable among

samples98. These assumptions are almost always violated in single-cell data. Firstly, RNA

amounts vary considerably from cell to cell101, especially in complex tissues102. Secondly,

technical variance in combination with biological variation (e.g. transcriptional bursting)

contributes to the high frequency of zeroes and strong intercellular variability in scRNA-seq

data103,99,101. Therefore, cell-wise size factors such as weighted trimmed mean of M-values

(TMM)104 or median of ratios (MR)105 are biased100.

Awareness of the above issues has led to the development of normalisation methods that

are geared towards single cells. scran solves the zero inflation issue by pooling cells and
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then deconvoluting to obtain cell-wise size factors99. SCNorm applies a quantile regression

for bins of genes with similar mean expression to estimate gene-wise size factors106. Both

appear to be able to handle the zero inflation as well as large differences in mean expression

between groups. CENSUS attempts to estimate absolute RNA levels from relative expression

measurements (TPM, FPKM)84. The underlying model has certain assumptions concerning

amplification bias and capture efficiency which have been derived from a small set of

experiments. Therefore, the derived parameters may or may not be applicable to one’s own

data.

Methods operating in a group-aware way - be it by a priori clustering (e.g. scran) or

known cell type annotation (e.g. SCNorm) - result in more reliable size factor estimates, also

for very heterogeneous cell populations with strong expression differences106,99,107,100. In

theory, extrinsic spike-in RNA molecules such as the widely used External RNA Controls

Consortium (ERCC)37,38 allow the decomposition of observed cell-to-cell variability into

technical noise and actual biological factors108,63,109,110,111,112. More importantly, spike-ins

are the only option to also estimate differences in total mRNA content among cells. However,

ERCCs have a number of limitations as it is unclear how well they mimic nascent mRNA

molecules as they are purified, shorter than the average transcript, have shorter poly-A tails

and their concentration ranges deviate from in vivo transcript abundances111,113. Even if

spike-ins properly capture the underlying dynamic, their usage is restricted to protocols

where they can be added which does not include droplet-based capture techniques, yet. These

shortcomings should be addressed in future generations of spike-in mRNAs and will likely

improve normalisation114.

Integration of single-cell RNA-seq data

While earlier studies have mostly only quantified the gene expression of single cells derived

from an individual sample, nowadays studies are common which profile single cells originating

from multiple batches, e.g. scRNA-seq experiments conducted by different labs115, or

individual patients in clinical studies116. In those cases data integration becomes essential to

ensure comparability117. There are already a number of computational approaches available

which were initially developed for bulk RNA-seq, e.g. ComBat118, RUV111 and limma119.
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One drawback of these methods is the assumption that cellular composition of the sample is

the same, e.g. when aliquots of the same cell mixture is processed for sequencing in different

labs120,115.

Given the increased efforts to chart the cellular composition of whole tissues or even

organisms, tools have been developed to not only correct for technical batches but also

allow the integration of these diverse data sets. For example, mnnCorrect implemented

in scran package99 utilizes a mutual nearest neighbors (MNN) approach where the cosine

distance between cells originating from different data sets functions as a measure of similarity

to identify cells belonging to the same neighborhood121. Another prominent example is

implemented in the Seurat package. Here, canonical correlation analysis is carried out

in combination with Dynamic Time Warping to align the different data sets in a shared

multi-dimensional subspace122. Other examples for batch correction and data integration for

single-cell RNA-seq include Scanorama123, scMerge124 and BBKNN125. With the exception

of Scanorama, the majority of methods is unable to correctly integrate data in a scenario with

dataset-specific cell types (Janßen et al. 2019, unpublished). Ultimately, further comparisons

are needed to assess the general applicability and performance of data integration and batch

correction methods for single-cell RNA-seq experiments126,127.

Identification of cell types and states

Bulk RNA-seq experiments usually involve predefined groups of samples, for example diseased

and healthy tissue cells, different tissue types or treatment and control groups29. It is possible

to design scRNA-seq experiments in the same way by sorting cells into known groups based

on surface markers, sampling them at a series of time points or comparing treatment groups,

but often single-cell experiments are more exploratory, e.g. profiling cell types in tissues such

as the mouse retina58 or cortex102. In fact, there are now a number of Cell Atlas projects

attempting to produce a reference of the transcriptional profiles of all the cell types in an

organism (e.g. human46, mouse128,129, C. elegans 130 and flatworm131).

Identifying similar cells in complex tissues, along lineages or differentiation paths is

therefore an integral step in analyzing these data sets and as such, it has been a key focus of

methods development with over two hundred tools released so far132. There are a number of
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unsupervised methods available to identify cell types by grouping, e.g. single-cell Consensus

Clustering (SC3)133, BackSPIN102 and Seurat122 developed specifically for single cells,

but also general purpose classifiers like general Support Vector Machines (SVM)134. The

selection of parameters in these unsupervised methods is difficult and can influence the

interpretation of results, esp. the number of cell clusters selected134,135,136. An alternative is

the classification of cells using comprehensive references, e.g. scPred137, scmap138, scMatch
139 and SingleR140. Using references has the advantage of building on existing, usually

well curated markers to quickly identify cellular identities. On the other hand, since the

classifier is trained on the reference, it is naturally biased towards the composition of the

reference, making the identification of previously unannotated cell types or states difficult
134. But given the ongoing efforts of atlas projects, these references will improve in terms of

completeness and reliability.

Besides the assignment of discrete cellular identities, there are also studies which focus

on ordering cells along a continuous trajectory of cellular types, e.g. the differentiation of

stem cells141. The methods usually rely on a dimensionality reduction technique such as

principal component analysis (PCA). This simplified representation is then used to define a

graph by e.g. minimal spanning tree (MST) through which a path is determined and the

cells are ordered along this continuous trajectory. A recent benchmarking study revealed

that the performance of methods depends on the underlying topology of the data and that

multiple complementary approaches should be used to infer a robust and comprehensive

trajectory142.

Deciding on which cell assignment approach to use depends on the cellular composition,

research questions and experimental design. Both approaches, continuous ordering as well as

assignment of distinct cell types, can be informative.

Differential gene expression

After assigning the identity of single cells by prior knowledge, ordering or clustering, the

analysis naturally focuses on the identification of differences between groups of cells. For

FAC-sorted and clustered cells, this is usually done by identifying genes that are differentially
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expressed between the groups or marker genes that are characteristic for a single cell type

identity. An important first step in differential analysis is defining an appropriate distribution

to allow reliable inference of expression differences. Given that the majority of quantification

methods ultimately result in a matrix of counts, common discrete distributions can be

considered. One option is the Poisson distribution which describes here the probability of

sampling species of RNA out of a pool of RNA molecules at random. A Poisson distribution

is a one parameter distribution where the mean of the distribution is equal to the variance,

thus accounting for sampling noise only. However, counting noise is not the only source of

variance in RNA-seq experiments as technical and biological noise can add additional variance
143. A better fit is the negative binomial distribution including an extra over-dispersion

parameter, allowing the variance in expression to be larger than the mean144. Another way

of defining the NB distribution is that it is a weighted mixture of Poisson distributions where

the rate parameter (i.e. the expected counts) is itself associated with uncertainty following a

Gamma distribution, called a Poisson-Gamma mixture distribution. The negative binomial

distribution also fits the accepted bursting model of gene expression where transcription

can be described in a two-state model, so called molecular-ratchet model, where patterns of

gene expression are governed by on- and off-states of genes as well as waiting times between

consecutive transcription initiation events145,146.

Already established methods for the detection of differential expression in bulk have also

been applied to scRNA-seq data69 since the negative binomial distribution has been found to

fit the observed read count distribution for the majority of expressed genes in single cells63.

However, the early analysis of scRNA-seq data might have been limited by filtering to conform

to the tools requirements (e.g. minimum mean expression cutoff). Furthermore, concerns

have been raised due to the observed differences in distributional characteristics between bulk

and single cells, namely dropouts, high variability and outliers147,86, which might violate

the model assumptions of bulk methods. This drove the development of specialized tools for

scRNA-seq data. SCDE was one of the first methods addressing the zero count inflation by

applying a mixture model of the negative binomial and Poisson distribution and robustifying

the estimation in the presence of strong overdispersion by bootstrapping103. BPSC and D3E

are other examples of mixture modeling approaches whereby a beta-Poisson mixture is used
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to capture the bimodality of scRNA-seq expression profiles148,149.

Instead of mixing distributions to match the observed expression patterns as closely as

possible, there are also other possibilities to cope with the excess of zeroes. For example

MAST incorporates a two-part generalized model by applying a hurdle model150. The first

step is to fit the expression rate, i.e. zero vs. larger counts, as a logistic regression and

conditioning on the resulting probability, the mean gene expression is modeled as a Gaussian

distribution. It is also possible to identify genes that might have the same mean between

groups but differ in variance151 or other characteristics of their expression distribution, e.g.

difference in non-zero fraction across cells152. On the other hand, standard statistical tests

such as Student’s t-test or Mann-Whitney U test that had been unsuitable for bulk RNA-seq

experiments due to the small number of samples, have been used to identify marker genes

in single cell populations94. Nevertheless, these statistical tests are limited to pair-wise

comparison and cannot accommodate complex experimental designs nor correct for unwanted

variation, esp. batch effects.

The detection of differential expression is an essential step in many scRNA-seq ex-

periments but it has been unclear which modeling and testing framework is suitable for

scRNA-seq data. The power simulation framework that I established during my PhD has

contributed to solving this question153,154,155.

Imputation

Another approach to tackling the problem of too many zeros is to use zero-inflated versions

of count distributions for dimensionality reduction (e.g. ZIFA156), factor analysis (e.g. ZINB-

WaVE157) or differential expression testing (e.g. DEsingle158, zingeR158,159). However,

there is still an ongoing debate whether single cell RNA-seq data are truly zero-inflated and

therefore, if there is even the need to include zero-inflation in the modeling160,161,162.

Imputation of zeros has recently received considerable attention as an alternative strategy

to compensate for the sparsity of scRNA-seq163. For instance, there are a number of methods

that aim to identify which observed zeros represent true technical rather than biological

zeros using probabilistic models and impute the missing data accordingly. Examples include

SAVER164, bayNorm165 or scImpute166. Data-smoothing methods on the other hand adjust
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all gene expression levels based on expression in similar cells, denoising the whole profile, e.g.

MAGIC167, netSmooth168 or DrImpute169. However, one major problem of these methods

is that they solely rely on internal information for imputation. This circularity can lead

to the introduction of false structures and inflated correlations between genes and cells

that are actually not present in the samples170. One way to circumvent this issue is to

explore complementary types of data that can inform imputation. There are methods that

incorporate external information, e.g. SAVER-X171 uses atlas-type resources in a transfer

deep learning method or URSM172 that borrows information from matched bulk RNA-seq

data.

That said, imputation has also been put forward as means to smooth and normalize

gene expression profiles across cells173 which in some cases has shown to improve the

reconstruction of cellular differentiation processes163. As part of my work in this thesis, we

therefore investigated in how far imputation can improve normalisation and how much this

change contributes to the overall performance of scRNA-seq analysis pipelines155.

1.4 Experimental design and power analysis

R.A. Fisher formalized three integral principles needed for a sound experimental design
174: 1) replication, 2) randomization and 3) blocking. While these factors are essential

for any successful experiment and subsequent statistical analysis, their application to high

throughput sequencing of RNA have not been straightforward and often neglected, which

may lead to incorrect conclusions in scRNA-seq experiments91.

Experimental design choices concerning replication for genome-wide expression profiling

were discussed in the context of microarray studies175 and updated in the context of RNA-

sequencing176. While high-throughput sequencing technologies have led to a considerable

decrease in costs177, it is still the biggest cost factor for most expression studies. Hence,

one needs to decide on a trade-off between the number of samples and the read depth per

sample. Importantly, the majority of studies, particular differential expression analyses,

benefit more from more replicates than deeper sequencing178,179 (Figure 1.8A). Adhering to

the blocking principle in RNA-seq experiments is most frequently violated, e.g. technical
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limitations require the separation of an experiment into processing batches, which introduces

a source of technical unwanted variation (Figure 1.8B). To avoid confounding the experiment

by these nuisance factors, blocks of batches should be constructed in such a way that samples

per conditions are evenly and preferably randomly spread across these blocks176,180 (Figure

1.8C).

In the case of single-cell RNA-seq experiments, it is possible to decouple the location

and time of sampling from further downstream library preparation by cryopreservation or

methanol fixation of cells after FAC-sorting181,182. For droplet-based methods, a number

of techniques have been developed to enable multiplexing cells from different samples, e.g.

patients, on one single processing run183,184. Early cellular barcoding by transfection185

or during cDNA library preparation186,65 allows pooling of single cells, reducing not only

costs but also the number of processing batches per experimental condition71. As long as

the experimental design is balanced, batch effects can be included as an additional nuisance

covariate in differential expression modelling187, which comes with a loss of degrees of

freedom but ensures that biological and known technical effects on gene expression can be

distinguished.

Therefore, the use of biological replicates, random assignment of samples and a balanced

block design are essential factors underlying any successful scRNA-seq experiment and

subsequent statistical analysis188. In addition to these experimental design considerations,

the choices made for further downstream analysis methods and tools are also important in

terms of possible artifacts or biases influencing scientific conclusions.

1.4.1 Evaluation of single-cell RNA-seq methods

The development of scRNA-seq technologies over the last decade has been staggering.

Nowadays, one can choose from multiple methods for every experimental step, particularly

for computational data analyses. Deciding which one to use can be difficult and depends on

a number of factors. These range from expression data generation aspects covering capture

efficiency of RNA molecules, accuracy and precision of expression measurements by the library

preparation protocol to computational aspects including performance, scalability, accessibility

and suitability. Computational methods usually show their effectiveness by demonstrating
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Figure 1.8. Experimental design for scRNA-seq experiments.
A) Few biological replicates with deep sequencing versus many biological replicates with
shallow sequencing. B) Confounded design: Cells are isolated from each biological replicate
per condition at potentially different times onto separate plates. Prepared libraries are
sequenced on separate lanes of the sequencer. C) Balanced design: All samples are evenly
distributed across all stages of the experiment, thus reducing the sources of technical variation
in the experiment.
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their performance for a particular task and that they are at least as good as existing methods.

Delivering this proof can be difficult using real data sets alone because the underlying truth

is almost always unknown. By generating samples where the true differences are known

or have been validated by control measurements12,189, one can construct a so-called gold

standard. However, these standards are usually difficult to produce and inherently can only

cover a limited number of possible scenarios. Furthermore, only recently a benchmarking

study has provided such a sample mixture of single cells190.

On the other hand, computer simulations are in principle limitless in their ability to

capture real-world scenarios. For bulk RNA-seq, a number of tools have already been

developed. These range from simulations assuming an underlying probability distribution for

gene expression, e.g. Negative Binomial191,192 to resampling approaches using observed gene

expression profiles193,194. Synthetic data sets produced by simulations have already been

particularly useful for method development and evaluation of bulk RNA-seq experiments
189,194,195. Due to these reasons and the aforementioned lack of gold standards, in silico

simulations based on parametric distributions have also been the approach taken by many

early methods for scRNA-seq analysis. Unfortunately, these methods suffered from a lack of

documentation and therefore reproducibility. In addition, these simulation frameworks were

limited to synthetic data generation alone without the possibility to evaluate experimental

designs.

1.4.2 Statistical Hypothesis Testing and Errors

Each hypothesis test results in a binary decision: Accept or reject the null hypothesis

stating in the case of differential gene expression analysis that there is no difference in gene

expression between groups. When combined with the binary truth, four distinct outcomes

result, including correct and wrong conclusions (Figure 1.9A). There are two types of error

involved196. Type I error or false positivity means that one rejects a true null hypothesis. On

the other hand, Type II error or false negativity is the failure to reject a false null hypothesis.

These decision errors happen with a particular probability or “rate”. A statistical test is

constructed such that it aims at controlling the type I error rate at a specified level, which is

referred to as the nominal significance level and denoted by α. The test typically succeeds
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in controlling the type I error rate at its nominal level if all assumptions underlying the

theoretical construction of the test are fulfilled. The type II error rate, which is denoted by

β, is generally not controlled by the test. This error rate depends on the type I error rate,

the effect size, the variability in the data and the sample size. It is more convenient to work

with the power of a test, which is simply defined as 1 - β. For a given α, effect size, and

variance, the sample size can be calculated so that the statistical test also controls βand

hence a certain level of power is ensured.

A test with a low type I error rate is called specific, while a low type II error rate is

called sensitive. There is a trade-off between these two types, decreasing one type results

in an increase of the other196 (Figure 1.9B). The standard procedure is to achieve an exact

type I error control, meaning that the true error rate should not exceed the prespecified

nominal level while minimizing the type II error rate so as to maximize the statistical power

(1 – β)197.

Multiple Testing Problem

In the case of gene expression data, one is interested in determining the association for a

large number of features with the outcome, e.g. response to drug treatment. Assuming that

the multiple tests are independent, the probability of making at least one Type I error is

equal to 1-(1-α)m, where m is the number of tests198. The impact of this multiple testing

problem (MTP) on the error rate has to be accounted for in the decision rule.

In the case of a single hypothesis test, the type I error rate is clearly defined. On the

other hand, when moving to multiple hypothesis testing, the definition of type I error rate is

not straightforward any more199. There are two widely used frameworks that extent these

concepts to multiple testing: The Family-Wise Error Rate (FWER) and the False Discovery

Rate (FDR)200,201. Both aim to control the probability of rejecting a true null hypothesis

below the nominal level of the decision rule. The methods actually adjust and combine

the raw p-values of the individual tests197. For example, controlling FDR at level αmeans

that the set of rejected hypotheses is chosen in such a way that the false discovery rate is

at most α. Benjamini and Hochberg defined the most well known FDR procedure as the

expected proportion of rejected null hypotheses which are falsely rejected among all rejected
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hypotheses conditioning on the number of rejections202.

The control over the error can be strong or weak203. Strong control means that the

rate is correctly controlled independent of the proportion of true and false null hypotheses,

whereas weak control is only achieved if all null hypotheses are true198,197. The available

methods also have differing levels of conservatism, i.e. controlling the rate in such a way

that less hypotheses are rejected. The loss in sensitivity is greater, i.e. a decreased chance of

identifying true differences between treatment groups, when the multiple testing procedure

is more conservative. The preference of strong control with moderate conservatism are also

the main reasons why the FWER has been basically abandoned in favor of FDR procedures

for high-throughput sequencing data analysis.

1.4.3 Statistical Power Analysis for RNA-sequencing ex-
periments

The statistical power of a hypothesis test is the probability to correctly reject the false null

hypothesis in favor of the true alternative hypothesis196. There are a number of factors that

determine the power level in a general univariate test: alpha level, one versus two-tailed test,

sample size and effect size. Conventionally, the aim is to achieve a power of 80%. In the case

of gene expression data, one needs to extend the definition of power to accommodate the large

number of statistical tests performed. As with false positives, the concept of false negatives

and therefore power can be defined in multiple ways. The average power, i.e. E(TP )/m1, is

commonly employed (Figure 1.9A). There is also the option to consider the global power, i.e.

probability of rejecting at least one null hypothesis Pr(TP ≥ 1) = Pr(FN ≤ m1˘1)198,204.

A number of sample size estimators and power analysis tools developed for bulk RNA-

sequencing are available205. The majority rely on pilot or publicly available data to derive

parameters for count data simulations based on parametric distributions (e.g. PROPER
206, Scotty207) but the count simulations usually assume a constant technical variance per

gene resulting in unreliable power calculations for lowly and variably expressed DE genes205.

Furthermore, some of these tools base their power calculations on testing results of certain

DE-tools assuming an ensured FDR control. They also do not consider other steps of the

computational pipeline like normalisation in their calculations.
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At its core, sample size calculations are an important step in conducting research since

it is essential to ensure sufficient statistical power for detecting anticipated effects. In

addition, journals are increasingly adopting methods such as reporting statements concerning

experimental design plans (e.g. Nature Neuroscience208) and editors emphasize the need for

thorough experimental design plans in preclinical trials209. However, there is a considerable

lack of tools for power analysis and sample size calculations for scRNA-seq experiments.

As part of my thesis, I developed the first tool for statistical power analysis and sample

size calculations of bulk and single-cell RNA-seq experiments154 using simulations closely

resembling observed gene expression profiles153,210.
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The impact of amplification on 
differential expression analyses by 
RNA-seq
Swati Parekh, Christoph Ziegenhain, Beate Vieth, Wolfgang Enard & Ines Hellmann

Currently, quantitative RNA-seq methods are pushed to work with increasingly small starting amounts 
of RNA that require amplification. However, it is unclear how much noise or bias amplification 
introduces and how this affects precision and accuracy of RNA quantification. To assess the effects 
of amplification, reads that originated from the same RNA molecule (PCR-duplicates) need to be 
identified. Computationally, read duplicates are defined by their mapping position, which does not 
distinguish PCR- from natural duplicates and hence it is unclear how to treat duplicated reads. Here, 
we generate and analyse RNA-seq data sets prepared using three different protocols (Smart-Seq, 
TruSeq and UMI-seq). We find that a large fraction of computationally identified read duplicates are 
not PCR duplicates and can be explained by sampling and fragmentation bias. Consequently, the 
computational removal of duplicates does improve neither accuracy nor precision and can actually 
worsen the power and the False Discovery Rate (FDR) for differential gene expression. Even when 
duplicates are experimentally identified by unique molecular identifiers (UMIs), power and FDR are only 
mildly improved. However, the pooling of samples as made possible by the early barcoding of the UMI-
protocol leads to an appreciable increase in the power to detect differentially expressed genes.

High throughput RNA sequencing methods (RNA-seq) are currently replacing microarrays as the method of 
choice for gene expression quantification1–5. For many applications RNA-seq technologies are required to become 
more sensitive, the goal being to detect rare transcripts in single cells. However, sensitivity, accuracy and precision 
of transcript quantification strongly depend on how the mRNA is converted into the cDNA that is eventually 
sequenced6. Especially when starting from low amounts of RNA, amplification is necessary to generate enough 
cDNA for sequencing7,8. While it is known that PCR does not amplify all sequences equally well9–11, PCR ampli-
fication is used in popular RNA-seq library preparation protocols such as TruSeq or Smart-Seq12. However, it is 
unclear how PCR bias affects quantitative RNA-seq analyses and to what extent PCR amplification adds noise and 
hence reduces the precision of transcript quantification. For detecting differentially expressed genes this is even 
more important than accuracy because it influences the power and potentially the false discovery rate.

RNA-seq library preparation methods are designed with different goals in mind. TruSeq is a method of choice, 
if there is sufficient starting material, while the Smart-Seq protocol is better suited for low starting amounts13,14. 
Furthermore, methods using UMIs and cellular barcodes have been optimized for low starting amounts and 
low costs, to generate RNA-seq profiles from single cells7,15. To achieve these goals, the methods differ in a num-
ber of steps that will also impact the probability of read duplicates and their detection (Fig. 1). TruSeq uses 
heat-fragmentation of mRNA and the only amplification is the amplification of the sequencing library. Thus all PCR 
duplicates can be identified by their mapping positions. In contrast, in the Smart-Seq protocol full length mRNAs 
are reverse transcribed, pre-amplified and the amplified cDNA is then fragmented with a Tn5 transposase12.  
Consequently, PCR duplicates that arise during the pre-amplification step can not be identified by their mapping 
positions. UMI-seq also amplifies full-length cDNA, but unique molecular identifiers (UMIs) as well as library 
barcodes are already introduced during reverse transcription before pre-amplification16. This early barcoding 
allows all samples to be pooled right after reverse transcription. The primer sequences required for the library 
amplification are introduced at the 3′  end during reverse transcription. Thus, PCR-duplicates in UMI-seq data 
can always be identified via the UMI. In summary, while PCR-duplicates can be unambiguously identified in 
UMI-seq, for Smart-Seq and TruSeq PCR-duplicates are identified computationally as read duplicates. However, 
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such read duplicates can also arise by sampling independent molecules. The chance that such natural duplicates, 
i.e. read duplicates that originated from different mRNA molecules, occur for a transcript of a given length, 
increases with expression levels and fragmentation bias.

That said, it is unclear whether removing read duplicates computationally improves accuracy and precision by 
reducing PCR bias and noise or whether it decreases accuracy and precision by removing genuine information. 
Here, we investigate the impact of PCR amplification on RNA-seq by analyzing datasets prepared with Smart-Seq, 
TruSeq and UMI-seq as well as different amounts of amplification. We investigate the source of read duplicates 
by analysing PCR bias and fragmentation bias, assess the accuracy using ERCCs - spike-in mRNAs of known 
concentrations17,18 - and assess precision using power simulations using PROPER19.

Results
Selection of datasets.  We analyse five different datasets that represent three popular RNA-seq library 
preparation methods. We started with two benchmarking datasets from the literature2 that sequenced five rep-
licates of bulk mRNA using the TruSeq protocol on commercially available reference mRNAs: the Universal 
Human Reference RNA (UHRR; Agilent Technologies) and the Human Brain Reference RNA (HBRR, 
ThermoFisher Scientific). To ensure comparability, we also used UHRR aliquots to produce Smart-Seq and UMI-
seq datasets in house (Table 1). However, we also wanted to include a single cell dataset, representing the most 
extreme and the most interesting case for low starting amounts of RNA. To this end, we chose to reanalyze the 
first published single cell dataset from Wu et al.20 that sequenced the cancer cell line HCT116. The library prepa-
ration method used for the single cell data is also Smart-Seq and thus comparable to our UHRR-Smart-Seq data. 

Figure 1.  Schematic of library preparation protocols and datasets. The upper panel details the steps for the 
three sequencing library preparation methods analysed in this study. In the UMI-seq flow-chart red and purple 
tags represent the sample barcodes and the green and yellow tags the UMIs.
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The only drawback that we have to keep in mind for this dataset, is that it also contains true biological variation 
that we cannot control for, whereas the bulk datasets using the reference mRNAs should only show technical 
variation.

All datasets contain ERCC-spike-ins, which allows us to compare the accuracy of the quantification of 
RNA-levels. Furthermore, all datasets except the UHRR-UMI-seq have paired-end sequencing, which should 
provide more information for the computational identification of PCR duplicates.

Natural duplicates are expected to be common.  The number of computationally identified paired-end 
read duplicates (PE-duplicates) varies between 6% and 19% for the bulk data and 1% and 59% for the single cell 
data. Since single-end data is commonly used for gene expression quantification, we also consider the mapping of 
the first read of every pair. The resulting fractions of computationally identified duplicates from single-end reads 
(SE-duplicates) are much higher. For the bulk data, it ranges from 36–74% and for the single cell data from 6–94% 
(Table 2, Fig. 2a). Surprisingly, out of the bulk datasets, the UMI-seq data show on average the highest duplicate 
fractions with 66% (Range: 64–68%), whereas all those duplicates are bona-fide PCR-duplicates. In the UHRR 
Smart-Seq data, which is the most similar dataset to the UMI-seq data, we only identified 12% PE-duplicates 
computationally (Fig. 2a). Although these numbers are not strictly comparable due to some differences in the 
library preparation (e.g. 5 more PCR-cycles for the UMI-data see Table 1 and a stronger 3′  bias (Supplementary 
Figure S1)), it nevertheless strongly indicates that many PCR-duplicates in Smart-Seq libraries occur during 
pre-amplification and thus cannot be detected by computational means.

Generally, the fraction of read duplicates is expected to depend on library complexity, fragmentation method 
and sequencing depth. Sequencing depth is the factor that gives us the most straight-forward predictions and in 
the case of SE-duplicates they are by in large independent of other parameters such as the fragment size distri-
bution. As expected, we observe a positive correlation between the number of reads that were sequenced and the 
fraction of SE-duplicates (Fig. 2b,c). In order to test to what extent simple sampling can explain the number of 
SE-duplicates, we calculate the expected fraction of SE-duplicates, given the observed number of reads per gene 
and the gene lengths (see Methods, Fig. 2b,c). Note that in the case of Smart-Seq this approach will only evaluate 
the effect of the library PCR, but be oblivious to PCR duplicates that arose during pre-amplification. We find that 
for TruSeq and Smart-Seq the majority of SE-duplicates are expected under this simple model of random sam-
pling (Fig. 2b,c). For the TruSeq data our simple model underestimates the fraction of duplicates on average by 
10% (8.1–13.6%), for the single cell Smart-Seq data by 19% (0.3–67%) and for the bulk Smart-Seq data by 16.6% 
(11.5–22.3%). Thus, irrespective of the library preparation protocol a large fraction of computationally identified 
SE-duplicates could easily be natural duplicates (Fig. 2b,c).

In contrast to this simple sampling expectation for SE-duplicates, fragments produced during 
PCR-amplification after adapter ligation, will necessarily produce fragments with the same 5′  and 3′  end and 
consequently will have identical mapping for both ends. If the sampling was shallow enough so that we would not 
expect to draw the same 5′  end twice by chance, the 3′  end position should also be identical and no reads with 
only one matching 5′  end are expected. If same 5′  ends are more frequent due to biased fragmentation, we expect 
a higher ratio of SE- to PE-duplicates. Thus, the relationship between PE- and SE-duplicates contains information 
about the relative amounts of duplicates produced by fragmentation as compared to amplification. More specifi-
cally, we expect that the fragmentation component of the PE- vs. SE-duplicates should be captured by a quadratic 
fit with an intercept of zero (Fig. 3).

The only dataset for which the quadratic term is not significant is the UHRR-TruSeq dataset. This could be 
seen as an indication of a higher proportion of PCR-duplicates, but it is more likely due to the low sample size 
of only 5 replicates. More importantly, the quadratic term is significant and positive for the HBRR TruSeq, the 
UHRR Smart-Seq and the scHCT116 datasets, supporting the notion that at least for those datasets library PCR 

Study ID GSE-ID Lab
Sample 

size
Reads per sample 

(Mean ± SD million)
Read 

Length
PCR 

cycles

scHCT116 Smart-Seq GSE51254 Quake 96 1.8 ±  1.1 101 21* +  12

UHRR Smart-Seq GSE75823 Enard 10 1.5 ±  1.1 50 10* +  12

UHRR UMI-seq GSE75823 Enard 12 9 ±  1 46 15* +  12

UHRR TruSeq GSE49712 SEQC 5 125 ±  33 101 15

HBRR TruSeq GSE49712 SEQC 5 140 ±  29 101 15

Table 1.   Description of the datasets analysed. *preamplification PCR-cycles.

Study Name
Fraction PE-

duplicates
Fraction SE-

duplicates

HBRR TruSeq 0.06–0.16 0.62–0.71

scHCT116 Smart-Seq 0.013–0.59 0.064–0.94

UHRR Smart-Seq 0.081–0.18 0.36–0.47

UHRR TruSeq 0.087–0.18 0.66–0.74

UHRR UMI-seq 0.65–0.68*

Table 2.   Fraction of duplicates per sample. *Fraction of duplicates based on UMI counts.
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Figure 2.  The Fraction of SE-duplicates increases with the total number of reads. In panel (a), we plot the 
fraction of computationally identified SE-duplicates (blue) and PE-duplicates (yellow) per sample. For the 
UMI-seq data, we identify duplicates only based on the experimental evidence provided by the UMIs. The black 
line marks the median for each dataset. If the correlation between sequencing depth and duplicates is due to 
sampling and fragmentation, we can quantify this impact. In (b), we plot the observed SE-duplicate fractions 
(red) and expected fractions (sampling–green, sampling +  fragmentation–blue). (c) The left panel shows the 
two Smart-Seq datasets (UHRR- blue, scHCT116- green) and the right panel the TruSeq data (HBRR- red, 
UHRR- purple). Filled circles represent the observed fraction of SE-duplicates. Open symbols represent 
simulated data: Open diamonds mark the expected fractions of SE-duplicates under a simple sampling model 
and open circles are the expectations for a sampling model with fragmentation bias. The lines are the log-linear 
fits between sampling depth and SE-duplicates per dataset.

Figure 3.  The relation between SE- and PE-duplicates. The relation between SE- and PE-duplicates is 
expected to follow a quadratic function, if the majority of duplicates are natural, i.e. due to fragmentation and 
sampling. Here, we show a quadratic fit for the different datasets (UHRR-TruSeq–purple, HBRR-TruSeq–red, 
UHRR-Smart-Seq–blue, scHCT116–green).
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amplification is not the dominant source of duplicates. This is also consistent with our finding that most observed 
SE-duplicates are simply due to sampling (Supplementary Table S1 and Fig. 3).

Fragmentation is biased.  The model above assumes that fragmentation does occur randomly. However, 
some sites are more likely to break than others and this might increase the fraction of SE-duplicates. To evaluate 
the impact and nature of fragmentation bias, we analysed ERCC spike-ins because they are exactly the same in all 
datasets. First, we test whether the variance in the frequency of 5′  end mapping positions of ERCCs in one sample 
can explain a significant part of this variance in other samples prepared with the same method. On average, we 
find R2s of 0.77 and 0.85 for the Smart-Seq and TruSeq protocols, respectively. Note, that this high R2 holds for 
samples that were prepared in different labs: for example the R2 between the Smart-Seq samples prepared in our 
lab and the single cell data from the Quake lab ranges between 0.56–0.90. In contrast, if the R2 is calculated for the 
comparison between one TruSeq and one Smart-Seq library, it drops to 0.0012 (Fig. 4a,b). Because the UMI-seq 
method specifically enriches for reads close to the 3′  end of the transcript, we cannot compare fragmentation 
across the entire length of the transcript. However, if we limit ourselves to the 600 most 3′  basepairs, we still 
find that the fragmentation pattern of the UMI-seq data shows a higher concordance with the two other data-
sets prepared also using the Smart-Seq protocol (mean R2 =  0.08) than with the TruSeq data (mean R2 =  0.002; 
Supplementary Figure S2). All in all, this is strong evidence that fragmentation reproducibly prefers the same sites 
given a library preparation protocol and thus read sampling is not random.

Figure 4.  The fragmentation patterns of the ERCCs are highly reproducible for different samples 
prepared with the same RNA-seq library method. (a) Here, we plot the fraction of 5′  read ends per position 
of ERCC-00002. Because the TruSeq libries (blue) had read lengths of 100 bases, we do not consider the 
ends (grey dashed lines) for the calculation of the pair-wise R2 values. Also, note that UMI-seq creates a 
stronger 3′  bias. (b) Violin plot of the adjusted R2 of a linear model of 5′  read ends from different samples. 
The reproducibility of fragmentation is highest between Smart-Seq samples (orange), a little lower between 
the TruSeq samples and there is no correlation between samples from one Smart-Seq and one TruSeq sample 
(middle, green).
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To identify potential causes for these non-random fragmentation patterns, we correlated the GC-content of the 
15 bases around a given position with the number of 5′  read ends. This explained very little of the fragmentation 
patterns in the TruSeq-data (median R2 =  0.0064, 59% of the pair-wise comparisons significant with p <  0.05), 
and none in the Smart-Seq data (median R2 =  0.00002, 18% significant with p <  0.05, Supplementary Figure S3a 
and Supplementary Table S2). Next, we built a binding motif for the Transposase21 from our UHRR-Smart-Seq 
data and, unsurprisingly, found that the motif has a very low information content (Supplementary Figure S3b) 
and accordingly a weak effect on the 5′  read end count (median R2 =  0.0019, 48% & 58% significant with p <  0.05 
for scHCT116 & UHRR Smart-Seq, Supplementary Figure S3a and Supplementary Table S2).

Although we could not identify the cause for the fragmentation bias in the sequence patterns around the frag-
mentation site, we can still quantify the maximal impact of fragmentation bias on the number of SE-duplicates, 
simply by adjusting the effective length of the transcripts. For the TruSeq data, we estimate that a fragmentation 
bias that reduces the effective length by ~2-fold gives a reasonably good fit, leaving on average 1% (0.1–3.0%) of 
the SE-duplicates unexplained. For the UHRR-Smart-Seq data, a ~38.5-fold reduction in the effective length is 
needed and leaves only 3% (0.6–5.1%) of the duplicates unexplained. For the single cell data, the fragmentation 
bias that gives overall the best fit is a ~8-fold reduction, however the fit is worse since the fraction of unexplained 
duplicates is still at ~7% and varies between 0.3% and 61% (Fig. 2b,c). In summary, we find that fragmentation 
bias contributes considerably to computationally identified read duplicates and is stronger for Smart-Seq, i.e. for 
enzymatic fragmentation, than for TruSeq, i.e. heat fragmentation.

Removal of duplicates does not improve the accuracy of quantification.  To evaluate the impact of 
PCR duplicates on the accuracy of transcript quantification, we use again the ERCC spike-in mRNAs. Although, 
the absolute amounts of ERCC-spike ins might vary due to handling, the relative abundances of these 92 reference 
mRNAs can serve as a standard for quantification. Ideally, the known concentrations of the ERCCs should explain 
the complete variance in read counts and any deviations are a sign of measurement errors. We calculate the R2 val-
ues of a log-linear fit of transcripts per million (TPM) versus ERCC concentration to quantify how well TPM esti-
mates molecular concentrations and compare the fit among the different duplicate treatments. In no instance does 
removing read duplicates improve the fit, but in most cases the fit gets significantly worse (t-test, p <  2 ×  10−3) 
except for the computational PE-duplicate removal of the UHRR-Smart-Seq and the duplicate removal using 
UMIs (Fig. 5). These results also hold when we use a more complex linear model including ERCC-length and 
GC-content (Supplementary Figure S4).

Removal of duplicates does not improve power.  Most of the time we are not interested in absolute 
quantification, but are content to find relative differences, i.e. differentially expressed (DE) genes between groups 
of samples. The extra noise from the PCR-amplification has the potential to create false positives as well as to 
obscure truly DE genes. In order to assess the impact of duplicates on the power and the false discovery rate 
(FDR) to detect DE genes, we simulated data based on the estimated gene expression distributions of the five 
datasets. For comparability, we first equalized the sampling depth by reducing the number of mapped reads to 3 

Figure 5.  Removing duplicates does not improve the accuracy of expression quantification as measured 
using the ERCC spike-ins. Expression levels as quantified in transcripts per million reads (TPM) are a good 
predictor of the concentrations of the ERCC spike-ins. The log-linear fit of TPM vs. Molarity for one exemplary 
sample of the UHRR-TruSeq dataset is shown in (a). The most accurate prediction of ERCC molarity is the 
TPM estimator using all reads (grey). Removing duplicates as PE (yellow) makes the fit a little worse and 
removing SE-duplicates (blue) much worse. The adjusted R2 for all samples are summarized in (b), the median 
for each dataset is marked as black line. The R2 of the TPM estimate from the removal of PCR-duplicates using 
UMIs (green) is surprisingly similar to keeping PCR-duplicates (grey).
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million and 1 million for bulk and single cell data, respectively. Next, we estimated gene-wise base mean expres-
sion and dispersion using DESeq222.

There are no big differences in the distributions of mean baseline expression and dispersion estimates from the 
different duplicate treatments for the two Smart-Seq datasets, whereas there is a shift towards lower means and 
higher dispersions, when removing SE-duplicates for the TruSeq datasets. Dispersions shift only to lower values 
if we exclude duplicates based on identification by UMIs (Fig. 6a, Supplementary Figure S5). The empirical mean 
and dispersion distributions are then used to simulate two groups with six replicates for bulk-RNA-seq datasets 
and 45 replicates for the single cell dataset. In all cases we simulate that 5% of the genes are differentially expressed 
with log2-fold changes drawn from a normal distribution with N (0, 1.5)19. We analysed 100 simulations per 
data-set using DESeq2 and calculate FDR and power for detecting DE-genes with a log 2-fold change of at least 
0.5.

Except for the UHRR-UMI-seq dataset, the nominal FDR that we set to α =  5% is exceeded: the means vary 
between 5.4% and 10.1%, whereas the HBRR TruSeq has the lowest and the scHCT116 Smart-Seq data the high-
est FDR (Fig. 6d). Computational removal of SE-duplicates increases the FDR by ~2% in the HBRR-TruSeq and 
the UHRR-TruSeq, has no significant impact on the scHCT116 dataset and, surprisingly, improves the FDR by 

Figure 6.  Duplicate removal has little influence on the power and FDR to detect DE-genes in comparison 
to the library preparation method. We estimated the distributions of mean expression and dispersion across 
genes for each dataset using DESeq2 after downsampling the datasets to 3 or 1 million reads. The distributions 
are estimated for the data including all reads (grey), removing PE-duplicates (yellow), removing SE-duplicates 
(blue) and for the UHRR-UMI-seq dataset removing duplicates using UMIs (green). We summarize 
distributions of dispersion/mean in (a). The estimated mean and dispersion distributions served as input for our 
power simulations using PROPER19. We did 100 simulations per dataset, whereas each dataset had two groups 
of six replicates (45 for scHT116) with 5% of the genes being differentially expressed between groups. In panel 
(b), we report the marginal power to detect a log2-fold change of 0.5 and in panel (d) the corresponding FDR, 
whereas the nominal FDR was set to α =  0.05 (dashed line). In panel (c), we plot our estimates of the marginal 
power against the number of PCR-cycles for each dataset. Error bars are standard deviation to the mean 
marginal power over 100 simulations. We find a surprisingly simple linear decline in power with the number 
of PCR-cycles, if we only consider datasets where PCR amplification was done separately for each sample of the 
dataset (violet). To confirm this simple fit we added two other datasets: (1) Bulk Smart-Seq dataset of mouse 
brain bulk RNA amplified using 20 PCR-cycles and (2) Single cell Smart-Seq dataset of 96 mouse embryonic 
stem cells that were amplified using 33 cycles. The only outlier is the UMI-seq dataset for which samples were 
pooled prior to amplification (green).
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1% in the UHRR-Smart-Seq data (Fig. 6d). The computational removal of PE-duplicates harbors less potential for 
harm, in that it leaves the FDR unchanged for both TruSeq datasets and even slightly improves the FDR for the 
Smart-Seq datasets. Again, the only substantial improvement is achieved by duplicate removal using UMIs, which 
reduces the FDR from 7% to 3%. (t-test, p <  1 ×  10−15).

The differences in the power are more striking. As for the FDR, the major differences are not between dupli-
cate treatments, but between the datasets. For the TruSeq and the UHRR-UMI-seq datasets, the average power 
to detect a log2-fold change of 0.5 is ~80% (Fig. 6b). For those datasets the changes in power due to duplicate 
removal are only marginal and for the computational removal using PE-duplicates it actually decreases the power 
for the TruSeq datasets by 2%, while for the UMI-seq data duplicate removal increases power by 2%. The power 
for the UHRR-Smart-Seq and the scHCT116 Smart-Seq datasets is much lower with 52% and 27%, respectively, 
and duplicate removal increases the power by only 1%.

The large differences in power between the datasets are unlikely to be ameliorated by increasing the number of 
replicates per group. In addition to the 6 and 45 replicates for which the results are reported above, we also con-
ducted simulations for 12 and 90 replicates for bulk and the single cell data, respectively. This doubling in replicate 
number increases the power for the UHRR-Smart-Seq dataset only from 52 to 63% and for the single cell dataset 
from 27 to 34% (Supplementary Figure S6, Supplementary Table 3).

Discussion
RNA-seq has become a standard method for gene expression quantification and in most cases the sequencing 
library preparation involves amplification steps. Ideally, we would like to count the number of RNA molecules in 
the sample and thus would want to keep only one read per molecule. A common strategy applied for amplification 
correction in SNP-calling and ChIP-Seq protocols23,24 is to simply remove reads based on their 5′  ends, so called 
read duplicates. Here, we show that this strategy is not suitable for RNA-seq data, because the majority of such 
SE-duplicates is likely due to sampling. For highly transcribed genes, it is simply unavoidable that multiple reads 
have the same 5′  end, also if they originated from different RNA-molecules. We find that only ~10% (TruSeq) 
and ~20% (Smart-Seq) of the read duplicates cannot be explained by a simple sampling model with random frag-
mentation. This fraction decreases even more, if we factor in that the fragmentation of mRNA or cDNA during 
library preparation is clearly non-random, as evidenced by a strong correlation between the 5′  read positions of 
the ERCC-spike-ins across samples. Because local sequence content has little or no detectable effect on fragmen-
tation, we cannot predict fragmentation, but we can quantify the observed effect. For example, we find that a frag-
mentation bias that halves the number of break points can fit the observed proportion of duplicates for TruSeq 
libraries well. For the Smart-Seq datasets, fragmentation biases would have to be much higher to explain the 
observed numbers of read duplicates. Furthermore, the fit between model estimates and the observed duplicate 
fractions is worse than for the TruSeq data and the model estimates for fragmentation bias are also inconsistent 
between the datasets (38.5 for the UHRR and 8 for the scHCT116).

Since computational methods cannot distinguish between fragmentation and PCR duplicates, the removal of 
read duplicates could introduce a bias rather than removing it. Using the ERCC-spike-ins, we can indeed show 
that removing duplicates computationally does not improve a fit to the known concentrations, but rather makes it 
worse, especially if only single-end reads are available (Fig. 5). This is in line with our observation that most single 
end duplicates are due to sampling and fragmentation. Hence, removing duplicates is similar to a saturation effect 
known for microarrays25–27.

Moreover, the Smart-Seq protocol, which was designed for small starting amounts, involves PCR amplifica-
tion before the final fragmentation of the sequencing library. Thus in the case of Smart-Seq, computational meth-
ods cannot identify PCR duplicates that occur during the pre-amplification step. When we use unique molecular 
identifiers (UMIs), we find that 66% of the reads are PCR duplicates and only 34% originate from independent 
mRNA molecules. In contrast, when using paired-end mapping for a comparable Smart-Seq library, we identify 
13% as duplicates and 87% as unique. This might in part be due to the fact that in UMI-Seq we sequence mainly 
3′  ends of transcripts, thus decreasing the complexity of the library, which in turn increases the potential for 
PCR duplicates for a given sequencing depth (Fig. 4a, Supplementary Figure S1). However, it is unlikely that 
library complexity can explain the 53% difference in duplicate occurrence. This difference is more likely to be due 
to PCR-duplicates that are generated during pre-amplification and thus remain undetectable by computational 
means.

All in all, computational methods are limited when it comes to removing PCR-duplicates, but how much noise 
or bias do PCR duplicates introduce? In other words, we want to know how PCR-duplicates impact the power and 
the false discovery rate for the detection of differentially expressed genes. Both, power and FDR, are determined 
by the gene-wise mean expression and dispersion. Based on simulated differential expression using the empiri-
cally determined mean and dispersion distributions, we find that computational removal of duplicates has either 
a negligible or a negative impact on FDR and power, and we therefore recommend not to remove read duplicates. 
In contrast, if PCR duplicates are removed using UMIs, both FDR and power improve. Even though the effects in 
the bulk data analysed here are relatively small: FDR is improved by 4% and the power by 2%, UMIs will become 
more important when using smaller amounts of starting material as it is the case for single-cell RNA-seq6,28.

The major differences in power are between the datasets with the TruSeq and the UMI-seq data achieving a 
power of around 80%, the UHRR-Smart-Seq 52% and the single cell Smart-Seq data (scHCT116) only 27%. Note 
that this apparently bad performance of the single cell Smart-Seq data is at least in part due to an unfair compar-
ison. While all the other datasets were produced using commercially available mRNA and thus represent true 
technical replicates, the single cell data necessarily represent biological replicates and thus are expected to have a 
larger inherent variance and thus lower power.

However, also the UHRR Smart-Seq bulk data achieves with 52% a much lower power than the other bulk 
datasets. One possible explanation for the differences in power is the total number of PCR-cycles involved in 
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the library preparation. With every PCR-cycle the power to detect a log 2-fold change of 0.5 appears to drop by 
2.4% (Fig. 6c). The only exception is the UMI-seq dataset, that gives a power of 81%, even if duplicates are not 
removed, which is comparable to the power reached with TruSeq data despite the UMI-seq method having 12 
more PCR-cycles. Technically UMI-seq is most similar to the Smart-Seq method. The biggest difference between 
the two methods is that all UMI-seq libraries are pooled before PCR-amplification, suggesting that the PCR-noise 
is due to the different PCR-reactions and not due to amplification efficiency per-se.

We conclude that computational removal of duplicates is not recommendable for differential expression anal-
ysis and if sufficient starting material is available so that only few PCR-cycles are necessary, the loss in power due 
to PCR duplicates is negligible. However, if more amplification is needed, power would be improved if all samples 
are pooled early on, and for really low amounts as for single cell data also the gain in power that is achieved by 
removing PCR-duplicates using UMIs will become important.

Methods
Datasets.  We used six datasets representing the TruSeq, Smart-Seq and UMI-seq protocols and varying 
amounts of starting material from bulk RNA or single cell RNA. All analysed datasets contain the ERCCs spike-in 
RNAs. This is a set of 92 artifical poly-adenylated RNAs designed to match the characteristics of naturally occur-
ring RNAs with respect to their length (273–2022 bp), their GC-content (31–53%) and concentrations of the 
ERCCs (0.01–30,000 attomol/μl). The recommended ERCC spike-in amounts result in 5–107 ERCC RNA mole-
cules in the cDNA synthesis reaction.

To reduce biological variation, we used the well-characterized Universal Human Reference RNA (UHRR; 
Agilent Technologies) for the two datasets produced for this study. We downloaded UHRR- and HBRR-TruSeq 
data from SEQC/MAQC-III2. Finally, we also analyse the single cell data published in Wu et al.20, for which the 
colorectal cancer cell-line HCT116 was used (Table 1). The input mostly being commercially distributed human 
samples, we expect all biological samples analysed in this study to have similarly high quality and complexity. All 
data that were generated for this project were submitted to GEO under accession GSE75823.

RNA-seq library preparation and sequencing.  For the Smart-Seq libraries, 250 ng of Universal Human 
Reference RNA (UHRR; Agilent Technologies) and ERCC spike-in control mix I (Life Technologies) were used 
and cDNA was synthesized as described in the Smart-Seq2 protocol from Picelli et al.13. However, because we 
used more mRNA to begin with, we reduced the number of pre-amplification PCR cycles to 9 cycles instead of 
the 18–21 recommended in Picelli et al.13. 1 ng of pre-amplified cDNA was then used as input for Tn5 transposon 
tagmentation by the Nextera XT Kit (Illumina), followed by 12 PCR cycles of library amplification. For sequenc-
ing, equal amounts of all libraries were pooled.

For the UMI-seq libraries, we started with 10 ng of UHRR-RNA to synthesise cDNA as described in Soumillon 
et al.16. This protocol is very similar to the Smart-Seq protocol, however the first strand cDNA is decorated with 
sample-specific barcodes and unique molecular identifiers. The barcoded cDNA from all samples was then 
pooled, purified and unincorporated primers digested with Exonuclease I (NEB). Pre-amplification was per-
formed by single-primer PCR for 15 cycles. 1 ng of full-length cDNA was then used as input for the Nextera XT 
library preparation with the modification of adding a custom i5 primer to enrich for barcoded 3′  ends.

Library pools were sequenced on an Illumina HiSeq1500. The Smart-Seq libraries were sequenced using 50 
cycles of paired-end sequencing on a High-Output flow-cell. The UMI-seq libraries were sequenced on a rapid 
flow-cell with paired-end layout, where the first read contains the sequences of the sample barcode and the UMI 
sequence using 17 cycles. The second read contains the actual cDNA fragment with 46 cycles.

Data Processing.  For Smart-Seq and TruSeq libraries, the sequenced reads were mapped to the 
human genome (hg19) and the splice site information from the ensembl annotation (GRCh37.75) using 
STAR(version:2.4.0.1)29 with the default parameters, reporting only the best hit per read. The genome index was 
created with –sjdbOverhang ‘readlength-1’. Because the ERCCs are transcript sequences no splice-aware mapping 
is neccessary and therefore we used NextGenMap for the ERCCs30. Except for three parameters, (1) the maxi-
mum fragment size which was set to 10 kb, (2) the minimum identity set to 90% and (3) reporting only the best 
hit per read, we also used the default parameters for NextGenMap. Note that we also included hg19 and did not 
map to ERCC sequences only. The mapped reads were assigned to genes [Ensembl database annotation version 
GRCh37.75] using FeatureCount from the bioconductor package Rsubread31 (see Supplementary text).

For UMI-seq data, cDNA reads were mapped to the transcriptome as recommended in Soumillon et al.16 
using the Ensembl annotation [version GRCh37.75] and NextGenMap30 (Supplementary text). If either the sam-
ple barcode or the UMI had at least one base with sequence quality ≤10 or contained ‘N’s the read was discarded. 
Next, we generated count tables for reads or UMIs per gene. Finally, mitochondrial and ambiguously assigned 
reads were removed from all libraries.

Duplicate detection and removal.  We defined single-end (SE) read duplicates as reads that map to the 
same 5′  position, have the same strand and the same CIGAR value. Because we cannot determine the exact map-
ping position for 5′  soft clipped reads, we discard them. To flag paired-end duplicates (PE), we used the same 
requirements as for the SE-duplicates, those requirements had just to be fulfilled for both reads of a pair.

Model for the fraction of sampling and fragmentation duplicates.  We obtain an expectation for 
the number of reads if duplicates are identified via their 5′  position and only one read per 5′  end position is kept. 
The only input parameters are the observed number of reads per gene (rG) and the effective length of the gene 
(LeG =  L −  2 ×  read-length). Then the expected number of unique reads can be estiamted as
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In order to estimate the level of fragmentation bias, we simply modified the effective length LeG by a factor 

f ×  LeG.

Fragmentation pattern analysis.  To compare fragmentation sites across libraries, we counted 5′  read 
starts per position for the ERCCs across all datasets using samtools and in house perl scripts. To avoid edge effects 
in later analyses, we excluded the first and last 100 bases of each ERCC, whereas 100 bases is the maximum read 
length of datasets analysed here.

We generated a Position Weight Matrix (PWM) for the transposase (Tn5) motif by simply stacking up the 30 
bases of the putative Transposase binding sites from all UHRR-Smart-Seq reads. Those 30 bases are identified as 6 
bases upstream of the 5′  read end and the 24 downstream21. The resulting PWM was then used to calculate motif 
scores across the ERCCs using the Bioconductor package PWMEnrich32.

Power evaluation for differential expression.  For power analysis, we estimated the mean baseline 
expression and dispersion for all datasets after downsampling them to 3 and 1 million reads for bulk and single 
cell data, respectively. This was done for all three duplicate treatments (keep all, remove SE and remove PE) using 
DESeq222 with standard parameters. Furthermore, genes with very low dispersions (< 0.001) were removed. We 
chose the sample sizes 3, 6 and 12 per condition for the bulk data and 30, 45 and 90 for the single cell dataset, 
because they seemed to be a good representation of the current literature. For the simulations, we use an in-house 
adaptation of the Bioconductor-package PROPER19. As suggested in Wu et al.19, we set the fraction of differ-
entially expressed genes between groups to 0.05 and the log2-fold change for the DE-genes was drawn from a 
normal distribution with N (0, 1.5). We generated 100 simulations per original input data-set and analysed them 
using DESeq2. Next, we calculated the power to detect a log2-fold change of at least 0.5 and the according FDR 
using α =  0.05.
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Figure S1: 3’ bias in fragmentation site is prominent in UMI-seq. The histogram showing distance of
the fragmentation site from 3’ end of the gene measured from ERCC spike-ins of length ∼ 2kb. Colors represent
library preparation methods, ’blue’ - Smart-Seq, ’orange’ - TruSeq, ’green’ - UMI-seq.
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Figure S2: The fragmentation patterns of the most 3’ 600bp of ERCCs are relatively reproducible
between Smart-Seq and UMI-seq. Violin plots of the adjusted R2 from a linear model between fraction of
5’read ends from different samples. The adjusted R2 are calculated considering full length for Smart-Seq and
TruSeq methods whereas for comparison to UMI-seq the most 3’ 600bp are considered. The reproducibility of
fragmentation is highest within Smart-Seq (orange) and TruSeq samples (blue). Fragmentation reproducibility
between Smart-Seq and UMI-seq samples(green) is higher than compared to TruSeq(green), as both methods use
transposase tagmentation.
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Figure S3: Fragmentation does not appear to have a cutting site preference. Colors of the violin
plots represent library preparation methods, ’blue - Smart-Seq, ’orange’ - TruSeq and dots are colored by the
significance of the fit where ’red’ - pvalue ≤ 0.05 and ’black’ - pvalue > 0.05. a) The left panel shows violin plots
of the adjusted R2 of linear model fit between background corrected GC content of 15bases window and fraction
of 5’read ends of the middle base in the window for each ERCC spike-in and the right panel shows the adjusted
R2 of linear model fit between Tn5 motif score calculated for ERCC spike-in RNAs. b) Sequence logo of the Tn5
motif derived from UHRR Smart-Seq dataset.
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baseline expression) measured by DESeq2 for each study. Different duplicates treatments are represented by
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All rmdupPE rmdupSE UMI

scHCT116 Smart−Seq

UHRR Smart−Seq
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HBRR TruSeq
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Figure S6: Power to detect differential expression increases with increased sample size. The box-
plot shows marginal power to detect 0.5 log2foldchange at 5% nominal FDR for different sample sizes. Colors
gradient from light to dark represent sample sizes 3,6 and 12 for the bulk and 30,45 and 90 for the single cell
datasets.
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Supplementary text

Detailed commands used for mapping are given below.

STAR genome generate

STAR –runThreadN 10 –runMode genomeGenerate –genomeDir hg19STARindex –genomeFastaFiles hg19.fa –sjdbGTFfile

GRCh37.75.gtf –sjdbOverhang ‘readLen-1‘

STAR mapping

STAR –readFilesIn R1.fastq R2.fastq –runThreadN 10 –outFileNamePrefix samplename –outFilterMultimapNmax 1

–outSAMunmapped Within –outSAMtype BAM SortedByCoordinate –sjdbGTFfile GRCh37.75.gtf –genomeDir hg19STARindex

–sjdbOverhang ‘readLen-1‘ –outFilterType BySJout –outSJfilterReads Unique

NextGenMap mapping

For ERCC spike-ins

ngm.4.12 -1 R1.fastq -2 R2.fastq -t 10 -i 0.9 -X 10000 -r ERCCs.fa -o samplename.sam

For UMI-seq data

ngm.4.12 -q R1.fastq -t 10 -i 0.9 -r GRCh37.75.fa -o samplename.sam

Supplementary tables

Table S1: Summary of squared terms from quadratic fit between PE-dup and SE-dup (PE-dup ∼ SE-dup+(SE-
dup)2+0)

Study name Beta2 Std. Error t value Pr(> |t|)
scHCT116 Smart-Seq 0.542 0.0302 17.94 0.0000

UHRR Smart-Seq 1.168 0.246 4.739 0.001
UHRR TruSeq 0.840 0.619 1.356 0.268
HBRR TruSeq 1.134 0.338 3.350 0.044

Table S2: Median R2 and percentage of significant ERCCs for the lm fit between GC content/Tn5 motif score
and 5’ read ends

Study name
GC Tn5

R2 %Significant* R2 %Significant*
scHCT116 Smart-Seq -0.00027 16% 0.00112 49%
UHRR Smart-Seq 0.00020 19% 0.00174 59%
UHRR TruSeq 0.00614 57% 0.00077 43%
HBRR TruSeq 0.00657 61% 0.00077 43%
*Percentage of ERCCS with p-value ≤ 0.05
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In Brief

Ziegenhain et al. generated data from

mouse ESCs to systematically evaluate

six prominent scRNA-seq methods. They

used power simulations to compare cost

efficiencies, allowing for informed choice

among existing protocols and providing a

framework for future comparisons.
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SUMMARY

Single-cell RNA sequencing (scRNA-seq) offers new
possibilities to address biological and medical ques-
tions. However, systematic comparisons of the per-
formance of diverse scRNA-seq protocols are lack-
ing. We generated data from 583 mouse embryonic
stem cells to evaluate six prominent scRNA-seq
methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-
seq, Smart-seq, and Smart-seq2. While Smart-seq2
detected the most genes per cell and across cells,
CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq
quantified mRNA levels with less amplification noise
due to the use of unique molecular identifiers (UMIs).
Power simulations at different sequencing depths
showed that Drop-seq is more cost-efficient for tran-
scriptome quantification of large numbers of cells,
while MARS-seq, SCRB-seq, and Smart-seq2 are
more efficient when analyzing fewer cells. Our quan-
titative comparison offers the basis for an informed
choice among six prominent scRNA-seq methods,
and it provides a framework for benchmarking
further improvements of scRNA-seq protocols.

INTRODUCTION

Genome-wide quantification of mRNA transcripts is highly infor-

mative for characterizing cellular states and molecular circuitries

(ENCODE Project Consortium, 2012). Ideally, such data are

collected with high spatial resolution, and single-cell RNA

sequencing (scRNA-seq) now allows for transcriptome-wide an-

alyses of individual cells, revealing exciting biological and med-

ical insights (Kolodziejczyk et al., 2015a; Wagner et al., 2016).

scRNA-seq requires the isolation and lysis of single cells, the

conversion of their RNA into cDNA, and the amplification of

cDNA to generate high-throughput sequencing libraries. As the

amount of starting material is so small, this process results in

substantial technical variation (Kolodziejczyk et al., 2015a; Wag-

ner et al., 2016).

One type of technical variable is the sensitivity of a scRNA-

seq method (i.e., the probability to capture and convert a

particular mRNA transcript present in a single cell into a

cDNA molecule present in the library). Another variable of in-

terest is the accuracy (i.e., how well the read quantification

corresponds to the actual concentration of mRNAs), and a

third type is the precision with which this amplification occurs

(i.e., the technical variation of the quantification). The combi-

nation of sensitivity, precision, and number of cells analyzed

determines the power to detect relative differences in expres-

sion levels. Finally, the monetary cost to reach a desired level

of power is of high practical relevance. To make a well-

informed choice among available scRNA-seq methods, it is

important to quantify these parameters comparably. Some

strengths and weaknesses of different methods are already

known. For example, it has previously been shown that

scRNA-seq conducted in the small volumes available in the

automated microfluidic platform from Fluidigm (C1 platform)

outperforms CEL-seq2, Smart-seq, or other commercially

available kits in microliter volumes (Hashimshony et al.,

2016; Wu et al., 2014). Furthermore, the Smart-seq protocol

has been optimized for sensitivity, more even full-length

coverage, accuracy, and cost (Picelli et al., 2013), and this

improved Smart-seq2 protocol (Picelli et al., 2014b) has also

become widely used (Gokce et al., 2016; Reinius et al.,

2016; Tirosh et al., 2016).

Other protocols have sacrificed full-length coverage in order

to sequence part of the primer used for cDNA generation. This

enables early barcoding of libraries (i.e., the incorporation of

cell-specific barcodes), allowing for multiplexing the cDNA

amplification and thereby increasing the throughput of scRNA-

seq library generation by one to three orders of magnitude

(Hashimshony et al., 2012; Jaitin et al., 2014; Klein et al., 2015;

Macosko et al., 2015; Soumillon et al., 2014). Additionally, this

approach allows the incorporation of unique molecular identi-

fiers (UMIs), random nucleotide sequences that tag individual

Molecular Cell 65, 631–643, February 16, 2017 ª 2017 Elsevier Inc. 631
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mRNA molecules and, hence, allow for the distinction between

original molecules and amplification duplicates that derive from

the cDNA or library amplification (Kivioja et al., 2011). Utilization

of UMI information improves quantification of mRNA molecules

(Gr€un et al., 2014; Islam et al., 2014), and it has been imple-

mented in several scRNA-seq protocols, such as STRT (Islam

et al., 2014), CEL-seq (Gr€un et al., 2014; Hashimshony et al.,

2016), CEL-seq2 (Hashimshony et al., 2016), Drop-seq (Ma-

cosko et al., 2015), inDrop (Klein et al., 2015), MARS-seq (Jaitin

et al., 2014), and SCRB-seq (Soumillon et al., 2014).

However, a thorough and systematic comparison of relevant

parameters across scRNA-seq methods is still lacking. To

address this issue, we generated 583 scRNA-seq libraries from

mouse embryonic stem cells (mESCs), using six different

methods in two replicates, and we compared their sensitivity,

accuracy, precision, power, and efficiency (Figure 1).

RESULTS

Generation of scRNA-Seq Libraries
Variation in gene expression as observed among single cells is

caused by biological and technical variation (Kolodziejczyk

et al., 2015a; Wagner et al., 2016). We used mESCs cultured

under two inhibitor/leukemia inhibitory factor (2i/LIF) condi-

tions to obtain a relatively homogeneous cell population

(Gr€un et al., 2014; Kolodziejczyk et al., 2015b), so that biolog-

ical variation was similar among experiments and, hence, we

mainly compared technical variation. In addition, we spiked

in 92 poly-adenylated synthetic RNA transcripts of known con-

centration designed by the External RNA Control Consortium

(ERCCs) (Jiang et al., 2011). For all six tested scRNA-seq

methods (Figure 2), we generated libraries in two independent

replicates.

Figure 1. Schematic Overview of the Experimental and Computational Workflow

Mouse embryonic stem cells (mESCs) cultured in 2i/LIF and ERCC spike-in RNAs were used to generate single-cell RNA-seq data with six different library

preparation methods (CEL-seq2/C1, Drop-seq, MARS-seq, SCRB-seq, Smart-seq/C1, and Smart-seq2). The methods differ in the usage of unique molecular

identifier (UMI) sequences, which allow the discrimination between reads derived from original mRNA molecules and duplicates generated during cDNA

amplification. Data processing was identical across methods, and the given cell numbers per method and replicate were used to compare sensitivity, accuracy,

precision, power, and cost efficiency. The six scRNA-seq methods are denoted by color throughout the figures of this study as follows: purple, CEL-seq2/C1;

orange, Drop-seq; brown, MARS-seq; green, SCRB-seq; blue, Smart-seq; and yellow, Smart-seq2. See also Figures S1 and S2.

632 Molecular Cell 65, 631–643, February 16, 2017

2.2 Protocol Benchmarking 59



For each replicate of the Smart-seq protocol, we performed

one run on the C1 platform from Fluidigm (Smart-seq/C1) using

microfluidic chips that automatically capture up to 96 cells (Wu

et al., 2014). We imaged captured cells, added lysis buffer

together with the ERCCs, and we used the commercially avail-

able Smart-seq kit (Clontech) to generate full-length double-

stranded cDNA that we converted into 96 sequencing libraries

by tagmentation (Nextera, Illumina).

For each replicate of the Smart-seq2 protocol, we sorted

mESCs by fluorescence activated cell sorting (FACS) into

96-well PCR plates containing lysis buffer and the ERCCs. We

generated cDNA as described (Picelli et al., 2013, 2014b), and

we used an in-house-produced Tn5 transposase (Picelli et al.,

2014a) to generate 96 libraries by tagmentation. While Smart-

Seq/C1 and Smart-seq2 are very similar protocols that generate

full-length libraries, they differ in how cells are isolated, their re-

action volume, and in that the Smart-seq2 chemistry has been

systematically optimized (Picelli et al., 2013, 2014b). The main

disadvantage of both Smart-seq protocols is that the generation

of full-length cDNA libraries precludes an early barcoding step

and the incorporation of UMIs.

For each replicate of the SCRB-seq protocol (Soumillon et al.,

2014), we also sorted mESCs by FACS into 96-well PCR plates

containing lysis buffer and the ERCCs. Similar to the Smart-

seq protocols, cDNA was generated by oligo-dT priming,

template switching, and PCR amplification of full-length cDNA.

However, the oligo-dT primers contained well-specific (i.e.,

cell-specific) barcodes and UMIs. Hence, cDNA from one plate

could be pooled and then converted into sequencing libraries,

using a modified tagmentation approach that enriches for the

30 ends. SCRB-seq is optimized for small volumes and few

handling steps.

The fourth method evaluated was Drop-seq, a recently devel-

opedmicrodroplet-based approach (Macosko et al., 2015). Here

a flow of beads suspended in lysis buffer and a flow of a single-

cell suspension were brought together in a microfluidic chip that

generated nanoliter-sized emulsion droplets. On each bead,

oligo-dT primers carrying a UMI and a unique, bead-specific bar-

code were covalently bound. Cells were lysed within these drop-

lets, their mRNAbound to the oligo-dT-carrying beads, and, after

breaking the droplets, cDNA and library generation was per-

formed for all cells in parallel in one single tube. The ratio of

beads to cells (20:1) ensured that the vast majority of beads

had either no cell or one cell in its droplet. Hence, similar to

SCRB-seq, each cDNA molecule was labeled with a bead-spe-

cific (i.e., cell-specific) barcode and a UMI. We confirmed that

Figure 2. Schematic Overview of Library Preparation Steps

For details, see the text. See also Table S1.
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the Drop-seq protocol worked well in our setup bymixing mouse

and human T cells, as recommended by Macosko et al. (2015)

(Figure S1A). The main advantage of the protocol is that a high

number of scRNA-seq libraries can be generated at low cost.

One disadvantage of Drop-seq is that the simultaneous inclusion

of ERCC spike-ins is quite expensive, as their addition would

generate cDNA from ERCCs also in beads that have zero cells

and thus would double the sequencing costs. As a proxy for

the missing ERCC data, we used a published dataset (Macosko

et al., 2015), where ERCC spike-ins were sequenced using the

Drop-seq method without single-cell transcriptomes.

As a fifth method we chose CEL-seq2 (Hashimshony et al.,

2016), an improved version of the original CEL-seq (Hashimsh-

ony et al., 2012) protocol, as implemented for microfluidic chips

on Fluidigm’s C1 (Hashimshony et al., 2016). As for Smart-seq/

C1, this allowed us to capture 96 cells in two independent repli-

cates and to include ERCCs in the cell lysis step. Similar to Drop-

seq and SCRB-seq, cDNA was tagged with barcodes and UMIs;

but, in contrast to the four PCR-based methods described

above, CEL-seq2 relies on linear amplification by in vitro tran-

scription after the initial reverse transcription. The amplified, bar-

coded RNAs were harvested from the chip, pooled, fragmented,

and reverse transcribed to obtain sequencing libraries.

MARS-seq, the sixth method evaluated, is a high-throughput

implementation of the original CEL-seq method (Jaitin et al.,

2014). In this protocol, cells were sorted by FACS in 384-well

plates containing lysis buffer and the ERCCs. As in CEL-seq

and CEL-seq2, amplified RNA with barcodes and UMIs were

generated by in vitro transcription, but libraries were prepared

on a liquid-handling platform. An overview of the methods and

their workflows is provided in Figure 2 and in Table S1.

Processing of scRNA-Seq Data
For each method, we generated at least 48 libraries per replicate

and sequenced between 241 and 866million reads (Figure 1; Fig-

ure S1B). All data were processed identically, with cDNA reads

clipped to 45bpandmapped usingSpliced TranscriptsAlignment

to a Reference (STAR) (Dobin et al., 2013) and UMIs quantified

using the Drop-seq pipeline (Macosko et al., 2015). To adjust for

differences in sequencing depths, we selected all libraries with

at least one million reads, and we downsampled them to one

million reads each. This resulted in 96, 79, 73, 93, 162, and 187 li-

braries for CEL-seq2/C1, Drop-seq, MARS-seq, SCRB-seq,

Smart-seq/C1, and Smart-seq2, respectively.

To exclude doublets (libraries generated from two or more

cells) in the Smart-seq/C1 data, we analyzed microscope im-

ages and identified 16 reaction chambers with multiple cells.

For the four UMI methods, we calculated the number of UMIs

per library, and we found that libraries that have more than twice

themean total UMI count can be readily identified (Figure S1C). It

is unclear whether these libraries were generated from two sepa-

rate cells (doublets) or, for example, from one large cell before

mitosis. However, for the purpose of this method comparison,

we removed these three to nine libraries. To filter out low-quality

libraries, we used a method that exploits the fact that transcript

detection and abundance in low-quality libraries correlate poorly

with high-quality libraries as well as with other low-quality li-

braries (Petropoulos et al., 2016). Therefore, we determined

the maximum Spearman correlation coefficient for each cell

in all-to-all comparisons that allowed us to identify low-quality

libraries as outliers of the distributions of correlation coefficients

by visual inspection (Figure S1D). This filtering led to the

removal of 21, 0, 4, 0, 16, and 30 cells for CEL-seq2/C1, Drop-

seq, MARS-seq, SCRB-seq, Smart-seq/C1, and Smart-seq2,

respectively.

In summary, we processed and filtered our data so that we

ended up with a total of 583 high-quality scRNA-seq libraries

that could be used for a fair comparison of the sensitivity, accu-

racy, precision, power, and efficiency of the methods.

Single-Cell Libraries Are Sequenced to a Reasonable
Level of Saturation at One Million Reads
For all six methods, >50% of the reads could be unambiguously

mapped to the mouse genome (Figure 3A), which is comparable

to previous results (Jaitin et al., 2014; Wu et al., 2014). Overall,

between 48% (Smart-seq2) and 30% (Smart-seq/C1) of all reads

were exonic and, thus, were used to quantify gene expression

levels. However, the UMI data showed that only 14%, 5%,

7%, and 15% of the exonic reads were derived from indepen-

dent mRNA molecules for CEL-seq2/C1, Drop-seq, MARS-

seq, and SCRB-seq, respectively (Figure 3A). To quantify the

relationship between the number of detected genes or mRNA

molecules and the number of reads in more detail, we down-

sampled reads to varying depths, and we estimated to what

extent libraries were sequenced to saturation (Figure S2). The

number of unique mRNA molecules plateaued at 56,760 UMIs

per library for CEL-seq2/C1 and 26,210 UMIs per library for

MARS-seq, was still marginally increasing at 17,210 UMIs per li-

brary for Drop-seq, and was considerably increasing at

49,980 UMIs per library for SCRB-seq (Figure S2C). Notably,

CEL-seq2/C1 and MARS-seq showed a steeper slope at low

sequencing depths than both Drop-seq and SCRB-seq, poten-

tially due to a less biased amplification by in vitro transcription.

Hence, among the UMI methods, CEL-seq2/C1 and SCRB-seq

libraries had the highest complexity of mRNA molecules, and

this complexity was sequenced to a reasonable level of satura-

tion with one million reads.

To investigate saturation also for non-UMI-based methods,

we applied a similar approach at the gene level by counting

the number of genes detected by at least one read. By fitting

an asymptote to the downsampled data, we estimated that

�90% (Drop-seq and SCRB-seq) to 100% (CEL-seq2/C1,

MARS-seq, Smart-Seq/C1, and Smart-seq2) of all genes pre-

sent in a library were detected at one million reads (Figure 3B;

Figure S2A). In particular, the deep sequencing of Smart-seq2 li-

braries showed clearly that the number of detected genes did not

change when increasing the sequencing depth from one million

to five million reads per cell (Figure S2B).

All in all, these analyses show that scRNA-seq libraries were

sequenced to a reasonable level of saturation at one million

reads, a cutoff that also has been suggested previously for

scRNA-seq datasets (Wu et al., 2014). While it can be more

efficient to invest in more cells at lower coverage (see our power

analyses below), one million reads per cell is a reasonable

sequencing depth for our purpose of comparing scRNA-seq

methods.
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Smart-Seq2 Has the Highest Sensitivity
Taking the number of detected genes per cell as a measure of

sensitivity, we found that Drop-seq andMARS-seqhad the lowest

sensitivity, with a median of 4,811 and 4,763 genes detected per

cell, respectively, while CEL-seq2/C1, SCRB-seq, and Smart-

seq/C1 detected a median of 7,536, 7,906, and 7,572 genes per
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Figure 3. Sensitivity of scRNA-Seq Methods
(A) Percentage of reads (downsampled to one million per cell) that cannot be mapped to the mouse genome (gray) are mapped to regions outside exons (orange)

or inside exons (blue). For UMI methods, dark blue denotes the exonic reads with unique UMIs.

(B) Median number of genes detected per cell (countsR1) when downsampling total read counts to the indicated depths. Dashed lines above one million reads

represent extrapolated asymptotic fits.

(C) Number of genes detected (countsR1) per cell. Each dot represents a cell and each box represents the median and first and third quartiles per replicate and

method.

(D) Cumulative number of genes detected as more cells are added. The order of cells considered was drawn randomly 100 times to display mean ± SD (shaded

area). See also Figures S3 and S4.
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cell (Figure3C).Smart-seq2detected thehighestnumberofgenes

per cell with a median of 9,138. To compare the total number of

genes detected across many cells, we pooled the sequence

data of 65 cells per method, and we detected �19,000 genes for

CEL-Seq2/C1, �17,000 for MARS-seq, �18,000 for Drop-seq

and SCRB-Seq, �20,000 for Smart-seq/C1, and �21,000 for

Smart-seq2 (Figure 3D). While the majority of genes (�13,000)
were detected by all methods, �400 genes were specific to

each of the 30 countingmethods, and�1,000 geneswere specific

to each of the two full-length methods (Figure S3A). This higher

sensitivity of both full-length methods also was apparent when

plotting the genes detected in all available cells, as the 30 counting
methods leveled off below 20,000 genes while the two full-length

methods leveledoff above20,000genes (Figure3D). Suchadiffer-

ence could be caused by genes that have 30 ends that are difficult
tomap.However,we found that genes specific toSmart-seq2and

Smart-seq/C1map as well to 30 ends as genes with similar length

distribution that are not specifically detected by full-length

methods (Figure S3B). Hence, it seems that full-length methods

turn a slightly higher fraction of transcripts into sequenceablemol-

ecules than 30 counting methods and are more sensitive in this

respect. Importantly, method-specific genes are detected in

very few cells (87% of genes occur in one or two cells) with very

low counts (mean counts < 0.2, Figure S3C). This suggests that

they are unlikely to remain method specific at higher expression

levels and that their impact on conclusions drawn from scRNA-

seq data is rather limited (Lun et al., 2016).

Next, we investigated how reads are distributed along the

mRNA transcripts for all genes. As expected, the 30 counting

methods showed a strong bias of reads mapped to the 30 end
(Figure S3D). However, it is worthmentioning that a considerable

fraction of reads also covered other segments of the transcripts,

probably due to internal oligo-dT priming (Nam et al., 2002).

Smart-seq2 showed a more even coverage than Smart-seq,

confirming previous findings (Picelli et al., 2013). A general differ-

ence in expression values between 30 counting and full-length

methods also was reflected in their strong separation by the first

principal component, explaining 37% of the total variance, and

when taking into account that one needs to normalize for gene

length for the full-length methods (Figure S4E).

As an absolute measure of sensitivity, we compared the prob-

ability of detecting the 92 spiked-in ERCCs, for which the num-

ber of molecules available for library construction is known (Fig-

ures S4A and S4B). We determined the detection probability of

each ERCC RNA as the proportion of cells with at least one

read or UMI count for the particular ERCC molecule (Marinov

et al., 2014). For Drop-seq, we used the previously published

ERCC-only dataset (Macosko et al., 2015), and for the other

five methods, 2%–5% of the one million reads per cell mapped

to ERCCs that were sequenced to complete saturation at that

level (Figure S5B). A 50% detection probability was reached at

�7, 11, 14, 16, 17, and 28 ERCC molecules for Smart-seq2,

Smart-seq/C1, CEL-seq2/C1, SCRB-seq, Drop-seq, and

MARS-seq, respectively (Figure S4C). Notably, the sensitivity

estimated from the number of detected genes does not fully

agree with the comparison based on ERCCs. While Smart-

seq2 was the most sensitive method in both cases, Drop-seq

performed better and SCRB-seq and MARS-seq performed

worse when using ERCCs. The separate generation and

sequencing of the Drop-seq ERCC libraries could be a possible

explanation for their higher sensitivity. However, it remains un-

clear why SCRB-seq and MARS-seq had a substantially lower

sensitivity when using ERCCs. It has been noted before that

ERCCs can be problematic for modeling endogenous mRNAs

(Risso et al., 2014), potentially due to their shorter length, shorter

poly-A tail, and their missing 50 cap (Gr€un and van Oudenaarden,

2015; Stegle et al., 2015). While ERCCs are still useful to gauge

the absolute range of sensitivities, the thousands of endogenous

mRNAs are likely to be a more reliable estimate for comparing

sensitivities as we used the same cell type for all methods.

In summary, we find that Smart-seq2 is the most sensitive

method, as it detects the highest number of genes per cell and

the most genes in total across cells and has the most even

coverage across transcripts. Smart-seq/C1 is slightly less sensi-

tive per cell and detects almost the same number of genes

across cells with slightly less even coverage. Among the 30

counting methods, CEL-seq2/C1 and SCRB-seq detect about

as many genes per cell as Smart-seq/C1, whereas Drop-seq

and MARS-seq detect considerably fewer genes.

Accuracy of scRNA-Seq Methods
To measure the accuracy of transcript level quantifications, we

compared the observed expression values (counts per million

or UMIs per million) with the known concentrations of the 92

ERCC transcripts (Figure S5A). For each cell, we calculated the

coefficient of determination (R2) for a linear model fit (Figure 4).

Methods differed significantly in their accuracy (Kruskal-Wallis
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Figure 4. Accuracy of scRNA-Seq Methods

ERCC expression values (counts per million reads for Smart-seq/C1 and

Smart-seq2 and UMIs per million reads for all others) were correlated to their

annotated molarity. Shown are the distributions of correlation coefficients

(adjusted R2 of linear regression model) across methods. Each dot represents

a cell/bead and each box represents the median and first and third quartiles.

See also Figure S5.
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test, p < 2.2e�16), but all methods had a fairly high R2 ranging

between 0.83 (MARS-seq) and 0.91 (Smart-seq2). This suggests

that, for all methods, transcript concentrations across this broad

range can be predicted fairly well from expression values. As ex-

pected, accuracy was worse for narrower and especially for

lower concentration ranges (Figure S5C). It is worth emphasizing

that the accuracy assessed here refers to absolute expression

levels across genes within cells. This accuracy can be important,

for example, to identify marker genes with a high absolute mRNA

expression level. However, the small differences in accuracy

seen here will rarely be a decisive factor when choosing among

the six protocols.

Precision of Amplified Genes Is Strongly Increased
by UMIs
While a high accuracy is necessary to compare absolute expres-

sion levels, one of the most common experimental aims is to

compare relative expression levels to identify differentially ex-

pressed genes or different cell types. Hence, the precision (i.e.,

0.45 0.72 0.74 0.42 0.45 0.26

C
E

L−
se

q2
/C

1

D
ro

p−
se

q

M
A

R
S
−s

eq

S
C

R
B
−s

eq

S
m

ar
t−

se
q/

C
1

S
m

ar
t−

se
q2

0.00

0.25

0.50

0.75

1.00

D
ro

po
ut

 p
ro

ba
bi

lit
y

A

0.95 2.98 2.17 2.04 1.14 0.59

−5

0

5

10

C
E

L−
se

q2
/C

1

D
ro

p−
se

q

M
A

R
S
−s

eq

S
C

R
B
−s

eq

S
m

ar
t−

se
q/

C
1

S
m

ar
t−

se
q2

Ex
tr

a−
Po

is
so

n 
Va

ria
bi

lit
y 

(r
ea

ds
) 0.19 0.29 0.41 0.15

−5

0

5

10

C
E

L−
se

q2
/C

1

D
ro

p−
se

q

M
A

R
S
−s

eq

S
C

R
B
−s

eq

Ex
tr

a−
Po

is
so

n 
Va

ria
bi

lit
y 

(U
M

Is
)

B

Figure 5. Precision of scRNA-Seq Methods

We compared precision among methods using

the 13,361 genes detected in at least 25% of all

cells by any method in a subsample of 65 cells per

method.

(A) Distributions of dropout rates across the

13,361 genes are shown as violin plots, and me-

dians are shown as bars and numbers.

(B) Extra Poisson variability across the 13,361

genes was calculated by subtracting the ex-

pected amount of variation due to Poisson sam-

pling (square root of mean divided by mean)

from the CV (SD divided by mean). Distributions

are shown as violin plots and medians are

shown as bars and numbers. For 349, 336, 474,

165, 201, and 146 genes for CEL-seq2/C1, Drop-

seq, MARS-seq, SCRB-seq, Smart-seq/C1, and

Smart-seq2, respectively, no extra Poisson vari-

ability could be calculated. See also Figures S6

and S7.

the reproducibility of the expression-level

estimate) is amajor factor when choosing

a method. As we used the same cell type

under the same culture conditions for all

methods, the amount of biological varia-

tion should be the same in the cells

analyzed by each of the six methods.

Hence, we can assume that differences

in the total variation among methods

are due to differences in their technical

variation. Technical variation is substan-

tial in scRNA-seq data primarily because

a substantial fraction of mRNAs is lost

during cDNA generation and small

amounts of cDNA get amplified. There-

fore, both the dropout probability and

the amplification noise need to be

considered when quantifying variation.

Indeed, a mixture model including a dropout probability and a

negative binomial distribution, modeling the overdispersion in

the count data, have been shown to represent scRNA-seq

data better than the negative binomial alone (Finak et al., 2015;

Kharchenko et al., 2014).

To compare precision without penalizing more sensitive

methods, we selected a common set of 13,361 genes that

were detected in 25% of the cells by at least one method (Fig-

ure S6A). We then analyzed these genes in a subsample of 65

cells per method to avoid a bias due to unequal numbers of cells.

We estimated the dropout probability as the fraction of cells with

zero counts (Figure 5A; Figure S6B). As expected from the num-

ber of detected genes per cell (Figure 3C), MARS-seq had the

highest median dropout probability (74%) and Smart-seq2 had

the lowest (26%) (Figure 5A). To estimate the amplification noise

of detected genes, we calculated the coefficient of variation (CV,

SD divided by the mean, including zeros), and we subtracted the

expected amount of variation due to Poisson sampling (i.e., the

square root of the mean divided by the mean). This was possible
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for 96.5% (MARS-seq) to 98.9% (Smart-seq2) of all the 13,361

genes. This extra Poisson variability includes biological variation

(assumed to be the same across methods in our data) and tech-

nical variation, and the latter includes noise introduced by ampli-

fication (Brennecke et al., 2013; Gr€un et al., 2014; Stegle et al.,

2015). That amplification noise can be a major factor is seen

by the strong increase of extra Poisson variability when ignoring

UMIs and considering read counts only (Figure 5B, left; Fig-

ure S7A). This is expected, as UMIs should remove amplification

noise, which has been described previously for CEL-seq (Gr€un

et al., 2014). For SCRB-seq and Drop-seq, which are PCR-

based methods, UMIs removed even more extra Poisson vari-

ability than for CEL-seq2/C1 and MARS-seq (Figure 5B), which

is in line with the notion that amplification by PCR is more noisy

than amplification by in vitro transcription. Of note, Smart-seq2

had the lowest amplification noise when just considering reads

(Figure 5B, left), potentially because its higher sensitivity requires

less amplification and, hence, leads to less noise.

In summary, Smart-seq2 detects the common set of 13,361

genes in more cells than the UMI methods, but it has, as ex-

pected, more amplification noise than the UMI-based methods.

How the different combinations of dropout rate and amplification

noise affect the power of themethods is not evident, neither from

this analysis nor from the total coefficient of variation that ignores

the strong mean variance and mean dropout dependencies of

scRNA-seq data (Figure S7B).

Power Is Determined by aCombination of Dropout Rates
and Amplification Noise and Is Highest for SCRB-Seq
To estimate the combined impact of sensitivity and precision on

the power to detect differential gene expression, we simulated

scRNA-seq data given the observed dropout rates and variance

for the 13,361 genes. As these depend strongly on the expres-

sion level of a gene, it is important to retain the mean variance

and mean dropout relationships. To this end, we estimated the

mean, the variance (i.e., the dispersion parameter of the negative

binomial distribution), and the dropout rate for each gene and

method. We then fitted a cubic smoothing spline to the resulting

pairs of mean and dispersion estimates to predict the dispersion

of a gene given its mean (Figure S8A). Furthermore, we applied a

local polynomial regression model to account for the dropout

probability given a gene’s mean expression (Figure S8B).

When simulating data according to these fits, we recovered dis-

tributions of dropout rates and variance closely matching the

observed data (Figures S8C and S8D). To compare the power

for differential gene expression among the methods, we simu-

lated read counts for two groups of n cells and added log-fold

changes to 5%of the 13,361 genes in one group. Tomimic a bio-

logically realistic scenario, these log-fold changes were drawn

from observed differences between microglial subpopulations

from a previously published dataset (Zeisel et al., 2015). Simu-

lated datasets were tested for differential expression using

limma (Ritchie et al., 2015), and the true positive rate (TPR) and

the false discovery rate (FDR) were calculated. Of note, this

does include undetected genes, i.e., the 2.5% (SCRB-seq) to

6.8% (MARS-seq) of the 13,361 genes that had fewer than two

measurements in a particular method (Figure S6B) and for which

we could not estimate the variance. In our simulations, these

genes could be drawn as differentially expressed, and in our

TPR they were then counted as false negatives for the particular

method. Hence, our power simulation framework considers the

full range of dropout rates and is not biased against more sensi-

tive methods.

First, we analyzed how the number of cells affects TPR and

FDR by running 100 simulations each for a range of 16 to 512

cells per group (Figure 6A). FDRs were similar in all methods

ranging from 3.9% to 8.7% (Figure S9A). TPRs differed consid-

erably amongmethods and SCRB-seq performed best, reaching

a median TPR of 80% with 64 cells. CEL-seq2/C1, Drop-seq,

MARS-seq, and Smart-seq2 performed slightly worse, reaching

80% power with 86, 99, 110, and 95 cells per group, respec-

tively, while Smart-seq/C1 needed 150 cells to reach 80%power

(Figure 6A). When disregarding UMIs, Smart-seq2 performed

best (Figure 6B), as expected from its low dropout rate and its

low amplification noise when considering reads only (Figure 5B).

Furthermore, power dropped especially for Drop-seq and

SCRB-seq (Figure 6B), as expected from the strong increase in

amplification noise of these two methods when considering

reads only (Figure 5B). When we stratified our analysis (consid-

ering UMIs) across five bins of expression levels, the ranking of

methods was recapitulated and showed that the lowest expres-

sion bin strongly limited the TPR in all methods (Figure S9B). This

ranking also was recapitulated when we analyzed a set of 19

genes previously reported to contain cell-cycle variation in the

2i/LIF culture condition (Kolodziejczyk et al., 2015b). The vari-

ance of these cell-cycle genes was clearly higher than the vari-

ance of 19 pluripotency and housekeeping (ribosomal) genes

in all methods. The p value of that difference was lowest for

SCRB-seq, the most powerful method, and highest for Smart-

seq/C1, the least powerful method (Figure S10D).

Notably, this power analysis, as well as the sensitivity, accu-

racy, and precision parameters analyzed above, includes the

variation that is generated in the two technical replicates

(batches) per method that we performed (Figure 1). These esti-

mates were very similar among our technical replicates, and,

hence, ourmethod comparison is valid with respect to batch var-

iations (Figures S10B–S10D). In addition, as batch effects are

known to be highly relevant for interpreting scRNA-seq data

(Hicks et al., 2015), we gauged the magnitude of batch effects

with respect to identifying differentially expressed genes. To

this end, we used limma to identify differentially expressed genes

between batches (FDR < 1%), using 25 randomly selected cells

per batch andmethod. All methods had significantly more genes

differentially expressed between batches than expected from

permutations (zero to four genes), with a median of 119 (Drop-

seq) to �1,135 (CEL-seq2/C1) differentially expressed genes

(Figure S10A). Notably, genes were affected at random across

methods, as there was no significant overlap among them

(extended hypergeometric test [Kalinka, 2013], p > 0.84). Hence,

this analysis once more emphasizes that batches are important

to consider in the design of scRNA-seq experiments (Hicks et al.,

2015). While a quantitative comparison of the magnitude of

batch effects among methods would require substantially more

technical replicates per method, the methods differ in their flex-

ibility to incorporate batch effect into the experimental design,

which is an important aspect to consider as discussed below.
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As a next step, we analyzed how the performance of the six

methods depends on sequencing depth. To this end, we per-

formed power simulations as above, but we estimated the

mean dispersion and mean dropout relationships from data

downsampled to 500,000 or 250,000 reads per cell. Overall,

the decrease in power was moderate (Figure 6C; Table 1) and

followed the drop in sensitivity at different sequencing depths

(Figure 3B). While Smart-seq2 and CEL-seq2/C1 needed just

1.3-fold more cells at 0.25 million reads than at one million reads

to reach 80% power, SCRB-seq and Drop-seq required 2.6-fold

more cells (Table 1). In summary, SCRB-seq is themost powerful

method at one million reads and half a million reads, but CEL-

seq2/C1 is the most powerful method at a sequencing depth

of 250,000 reads. The optimal balance between the number of

cells and their sequencing depth depends on many factors,
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Figure 6. Power of scRNA-Seq Methods

Using the empirical mean/dispersion and mean/

dropout relationships (Figures S8A and S8B), we

simulated data for two groups of n cells each for

which 5% of the 13,361 genes were differentially

expressed, with log-fold changes drawn from

observed differences between microglial sub-

populations from a previously published dataset

(Zeisel et al., 2015). The simulated data were then

tested for differential expression using limma

(Ritchie et al., 2015), from which the average true

positive rate (TPR) and the average false discov-

ery rate (FDR) were calculated (Figure S9A).

(A) TPR for one million reads per cell for sample

sizes n = 16, n = 32, n = 64, n = 128, n = 256, and

n = 512 per group. Boxplots represent the median

and first and third quartiles of 100 simulations.

(B) TPR for one million reads per cell for n = 64 per

group with and without using UMI information.

Boxplots represent the median and first and third

quartiles of 100 simulations.

(C) TPRs as in (A) using mean/dispersion

and mean/dropout estimates from one million

(as in A), 0.5 million, and 0.25 million reads. Line

areas indicate the median power with SE from

100 simulations. See also Figures S8–S10 and

Table 1.

including the scientific questions ad-

dressed, the experimental design, or the

sample availability. However, the mone-

tary cost is certainly an important one,

and we used the results of our simula-

tions to compare the costs among the

methods for a given level of power.

Cost Efficiency Is Similarly High for
Drop-Seq, MARS-Seq, SCRB-Seq,
and Smart-Seq2
Given the number of cells needed to

reach 80% power as simulated above

for three sequencing depths (Figure 6C),

we calculated the minimal costs to

generate and sequence these libraries.

For example, at a sequencing depth of one million reads,

SCRB-seq requires 64 cells per group to reach 80% power.

Generating 128 SCRB-seq libraries costs�260$ and generating

128 million reads costs �640$. Note that the necessary paired-

end reads for CEL-seq2/C1, SCRB-seq, MARS-seq, and Drop-

seq can be generated using a 50-cycle sequencing kit, and,

hence, we assume that sequencing costs are the same for all

methods.

Calculating minimal costs this way, Drop-seq (690$) is the

most cost-effective method when sequencing 254 cells at a

depth of 250,000 reads, and SCRB-seq (810$), MARS-seq

(820$), and Smart-seq2 (1,090$) are slightly more expensive at

the same performance (Table 1). For Smart-seq2 it should be

stressed that the use of in-house-produced Tn5 transposase

(Picelli et al., 2014a) is required to keep the cost at this level, as
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was done in our experiments. When instead using the Tn5 trans-

posase of the commercial Nextera kit as described (Picelli et al.,

2014b), the costs for Smart-seq2 are 10-fold higher. Even if one

reduces the amount of Nextera transposase to a quarter, as done

in the Smart-seq/C1 protocol, the Smart-seq2 protocol is still

four times more expensive than the early barcoding methods.

CEL-seq2/C1 is fairly expensive due to the microfluidic chips

that make up 69% of the library costs, and Smart-seq/C1 is

almost 13-fold less efficient than Drop-seq due to its high library

costs that arise from the microfluidic chips, the commercial

Smart-seq kit, and the costs for commercial Nextera XT kits.

Of note, these calculations are the minimal costs of the exper-

iment and several factors are not considered, such as labor

costs, costs to set up the methods, costs to isolate cells of inter-

est, or costs due to practical constraints in generating a fixed

number of scRNA-seq libraries with a fixed number of reads. In

many experimental settings, independent biological and/or tech-

nical replicates are needed when investigating particular factors,

such as genotypes or developmental time points, and Smart-

seq/C1, CEL-seq2/C1, and Drop-seq are less flexible in distrib-

uting scRNA-seq libraries across replicates than the other three

methods that use PCR plates. Furthermore, the costs are

increased by unequal sampling from the included cells as well

as from sequencing reads from cells that are excluded. In our

case, between 6% (SCRB-seq) and 32% (Drop-seq) of the reads

came from cell barcodes that were not included. While it is diffi-

cult to exactly calculate and compare these costs among

methods, it is clear that they will increase the costs for Drop-

seq relatively more than for the other methods. In summary,

we find that Drop-seq, SCRB-seq, and MARS-seq are the

most cost-effective methods, closely followed by Smart-seq2,

if using an in-house-produced transposase.

DISCUSSION

Here we have provided an in-depth comparison of six prominent

scRNA-seq protocols. To this end, we generated data for all six

compared methods from the same cells, cultured under the

same condition in the same laboratory. While there would be

manymore datasets andmethods for a comparison of the sensi-

tivity and accuracy of the ERCCs (Svensson et al., 2016), our

approach provides a more controlled and comprehensive com-

parison across thousands of endogenous genes. This is impor-

tant, as can be seen by the different sensitivity estimates that

we obtained for Drop-seq, MARS-seq, and SCRB-seq using

the ERCCs. In our comparison, we clearly find that Smart-seq2

is the most sensitive method, closely followed by SCRB-seq,

Smart-seq/C1, and CEL-seq2/C1, while Drop-seq and MARS-

seq detect nearly 50% fewer genes per cell (Figures 3B and

3C). In addition, Smart-seq2 shows themost even read coverage

across transcripts (Figure S3D), making it the most appropriate

method for the detection of alternative splice forms and for ana-

lyses of allele-specific expression using SNPs (Deng et al., 2014;

Reinius et al., 2016). Hence, Smart-seq2 is certainly the most

suitable method when an annotation of single-cell transcrip-

tomes is the focus. Furthermore, we find that Smart-seq2 is

also themost accurate method (i.e., it has the highest correlation

of known ERCC spike-in concentrations and read counts per

million), which is probably related to its higher sensitivity. Hence,

differences in expression values across transcripts within the

same cell predict differences in the actual concentrations of

these transcripts well. All methods do this rather well, at least

for higher expression levels, and we think that the small differ-

ences among methods will rarely be a decisive factor. Impor-

tantly, the accuracy of estimating transcript concentrations

across cells (relevant, e.g., for comparing the total RNA content

of cells) depends on different factors and cannot be compared

well among the tested methods as it would require known con-

centration differences of transcripts across cells. However, it is

likely that methods that can use UMIs and ERCCs (CEL-seq2/

C1, MARS-seq, and SCRB-seq) would have a strong advantage

in this respect.

How well relative expression levels of the same genes can be

compared across cells depends on two factors. First, how often

(i.e., in how many cells and from how many molecules) it is

measured. Second, with how much technical variation (i.e.,

with how much noise, e.g., from amplification) it is measured.

For the first factor (dropout probability), we find Smart-seq2 to

be the best method (Figure 5A), as expected from its high gene

detection sensitivity. For the second factor (extra Poisson vari-

ability), we find the four UMI methods to perform better (Fig-

ure 5B), as expected from their ability to eliminate variation intro-

duced by amplification. To assess the combined effect of these

two factors, we performed simulations for differential gene

Table 1. Cost Efficiency Extrapolation for Single-Cell RNA-Seq Experiments

Method TPRa FDRa (%) Cell per Groupb Library Cost ($) Minimal Costc ($)

CEL-seq2/C1 0.8 �6.1 86/100/110 �9 �2,420/2,310/2,250
Drop-seq 0.8 �8.4 99/135/254 �0.1 �1,010/700/690
MARS-seq 0.8 �7.3 110/135/160 �1.3 �1,380/1,030/820
SCRB-seq 0.8 �6.1 64/90/166 �2 �900/810/1,080
Smart-seq/C1 0.8 �4.9 150/172/215 �25 �9,010/9,440/11,290
Smart-seq2 (commercial) 0.8 �5.2 95/105/128 �30 �10,470/11,040/13,160
Smart-seq2 (in-house Tn5) 0.8 �5.2 95/105/128 �3 �1,520/1,160/1,090
See also Figure 6.
aTrue positive rate and false discovery rate are based on simulations (Figure 6; Figure S9).
bSequencing depth of one, 0.5, and 0.25 million reads.
cAssuming $5 per one million reads.
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expression scenarios (Figure 6). This allowed us to translate the

sensitivity and precision parameters into the practically relevant

power to detect differentially expressed genes. Of note, our po-

wer estimates include the variation that is caused by the two

different replicates per method that constitutes an important

part of the variation. Our simulations show that, at a sequencing

depth of one million reads, SCRB-seq has the highest power,

probably due to a good balance of high sensitivity and low ampli-

fication noise. Furthermore, amplification noise and power

strongly depend on the use of UMIs, especially for the PCR-

based methods (Figures 5B and 6B; Figure S7). Notably, this is

due to the large amount of amplification needed for scRNA-

seq libraries, as the effect of UMIs on power for bulk RNA-seq

libraries is negligible (Parekh et al., 2016).

Perhaps practically most important, our power simulations

also allow us to compare the efficiency of the methods by calcu-

lating the costs to generate the data for a given level of power.

Using minimal cost calculations, we find that Drop-seq is the

most cost-effective method, closely followed by SCRB-seq,

MARS-seq, and Smart-seq2. However, Drop-seq costs are likely

to be more underestimated, due to lower flexibility in generating

a specified number of libraries and the higher fraction of reads

that come from bad cells. Hence, all four UMI methods are in

practice probably similarly cost-effective. In contrast, for

Smart-seq2 to be similarly cost-effective it is absolutely neces-

sary to use in-house-produced transposase or to drastically

reduce volumes of commercial transposase kits (Lamble et al.,

2013; Mora-Castilla et al., 2016).

Given comparable efficiencies of Drop-seq, MARS-seq,

SCRB-seq, and Smart-seq2, additional factors will play a

role when choosing a suitable method for a particular ques-

tion. Due to its low library costs, Drop-seq is probably prefer-

able when analyzing large numbers of cells at low coverage

(e.g., to find rare cell types). On the other hand, Drop-seq in

its current setup requires a relatively large amount of cells

(>6,500 for 1 min of flow). Hence, if few and/or unstable cells

are isolated by FACS, the SCRB-seq, MARS-seq, or Smart-

seq2 protocols are probably preferable. Additional advantages

of these methods over Drop-seq include that technical varia-

tion can be estimated from ERCCs for each cell, which can

be helpful to estimate biological variation (Kim et al., 2015;

Vallejos et al., 2016), and that the exact same setup can be

used to generate bulk RNA-seq libraries. While SCRB-seq is

slightly more cost-effective than MARS-seq and has the

advantage that one does not need to produce the transposase

in-house, Smart-seq2 is preferable when transcriptome anno-

tation, identification of sequence variants, or the quantification

of different splice forms is of interest. Furthermore, the pres-

ence of batch effects shows that experiments need to be

designed in a way that does not confound batches with bio-

logical factors (Hicks et al., 2015). Practically, plate-based

methods might currently accommodate complex experimental

designs with various biological factors more easily than micro-

fluidic chips.

We find that Drop-seq, MARS-seq, SCRB-seq, and Smart-

seq2 (using in-house transposase) are 2- to 13-fold more cost

efficient than CEL-seq2/C1, Smart-seq/C1, and Smart-seq2

(using commercial transposase). Hence, the latter methods

would need to increase in their power and/or decrease in their

costs to be competitive. The efficiency of the Fluidigm C1 plat-

form can be further increased bymicrofluidic chips with a higher

throughput, as available in the high-throughput (HT) mRNA-seq

integrated fluidic circuit (IFC) chip. While CEL-seq2/C1 has

been found to more sensitive than the plate-based version of

CEL-seq2 (Hashimshony et al., 2016), the latter might be

more efficient when considering its lower costs. Our finding

that Smart-seq2 is themost sensitive protocol also hints toward

further possible improvements of SCRB-seq and Drop-seq. As

these methods also rely on template switching and PCR ampli-

fication, the improvements found in the systematic optimization

of Smart-seq2 (Picelli et al., 2013) also could improve the sensi-

tivity of SCRB-seq and Drop-seq. Furthermore, the costs of

SCRB-seq libraries per cell can be halved when switching to

a 384-well format (Soumillon et al., 2014). Similarly, improve-

ments made for CEL-seq2 (Hashimshony et al., 2016) could

be incorporated into the MARS-seq protocol. Hence, it is clear

that scRNA-seq protocols will become even more efficient in

the future. The results of our comparative analyses of six

currently prominent scRNA-seq methods may facilitate such

developments, and they provide a framework for method eval-

uation in the future.

In summary, we systematically compared six prominent

scRNA-seq methods and found that Drop-seq is preferable

when quantifying transcriptomes of large numbers of cells

with low sequencing depth, SCRB-seq and MARS-seq is pref-

erable when quantifying transcriptomes of fewer cells, and

Smart-seq2 is preferable when annotating and/or quantifying

transcriptomes of fewer cells as long one can use in-house-

produced transposase. Our analysis allows an informed

choice among the tested methods, and it provides a frame-

work for benchmarking future improvements in scRNA-seq

methodologies.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Esgro recombinant mouse LIF Millipore ESG1107

CHIR99021 Axon Med Chem 1386

PD0325901 Axon Med Chem 1408

2-Mercaptoethanol Sigma-Aldrich M3148

FBS Sigma-Aldrich F7524

Penicillin/Streptomycin Sigma-Aldrich P4333

MEM non-essential amino acids Sigma-Aldrich M7145

L-glutamine Sigma-Aldrich G7513

Dulbecco’s modified Eagle’s medium Sigma-Aldrich D6429

Perfluoroctanol Sigma-Aldrich 370533

Maxima H- Reverse Transcriptase Thermo Fisher Scientific EP0753

SuperScript II Life Technologies 18064071

Exonuclease I New England Biolabs M0293L

RNAprotect Cell Reagent QIAGEN 76526

RNase inhibitor Promega N2515

RNase inhibitor Lucigen 30281-2-LU

Phusion HF buffer New England Biolabs B0518S

Proteinase K Ambion AM2546

KAPA HiFi HotStart polymerase KAPA Biosystems KAPBKK2602

Phusion HF PCR Master Mix Thermo Fisher Scientific F531L

dNTPs New England Biolabs N0447L

Triton X-100 Sigma-Aldrich T8787

SDS Sigma-Aldrich L3771

Tn5 transposase Picelli et al., 2014a N/A

Critical Commercial Assays

C1 Single-Cell System Fluidigm N/A

C1 IFC for Open App (10-17 mm) Fluidigm 100-8134

C1 IFC for mRNA-seq (10-17 mm) Fluidigm 100-6041

Nextera XT DNA Sample Preparation Kit Illumina FC-131-1096

SMARTer Ultra Low RNA Kit for Fluidigm C1 Clontech 634833

MinElute Gel Extraction Kit QIAGEN 28606

Deposited Data

single-cell RNA-seq data This paper GEO: GSE75790

Drop-seq ERCC data Macosko et al., 2015 GEO: GSE66694

Experimental Models: Cell Lines

J1 mouse embryonic stem cells Li et al., 1992 N/A

Sequence-Based Reagents

Nextera XT Index Kit Illumina FC-121-1012

SCRB-seq P5 primer, AATGATACGGCGACCACCG

AGATCTACACTCTTTCCCTACACGACGCTCTTC

CG*A*T*C*T, * PTO bond

IDT N/A

SCRB-seq oligo-dT primer, Biotin-ACACTCTTTCCCT

ACACGACGCTCTTCCGATCT[BC6][N10][T30]VN

IDT ‘‘TruGrade Ultramer’’

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the corresponding author

Wolfgang Enard (enard@biologie.uni-muenchen.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

J1 mouse embryonic stem cells (Li et al., 1992) were maintained on gelatin-coated dishes in Dulbecco’s modified Eagle’s medium

supplemented with 16% fetal bovine serum (FBS, Sigma-Aldrich), 0.1mM b-mercaptoethanol (Sigma-Aldrich), 2mML-glutamine, 1x

MEM non-essential amino acids, 100 U/ml penicillin, 100 mg/ml streptomycin (Sigma-Aldrich), 1000 U/ml recombinant mouse LIF

(Millipore) and 2i (1 mM PD032591 and 3 mM CHIR99021 (Axon Medchem, Netherlands). J1 embryonic stem cells were obtained

from E. Li and T. Chen and mycoplasma free determined by a PCR-based test. Cell line authentication was not recently performed.

METHOD DETAILS

Published data
Drop-seq ERCC (Macosko et al., 2015) data were obtained under accession GEO: GSE66694. Raw fastq files were extracted using

the SRA toolkit (2.3.5). We trimmed cDNA reads to the same length and processed raw reads in the same way as data sequenced for

this study.

Single cell RNA-seq library preparations
CEL-seq2/C1

CEL-seq2/C1 libraries were generated as previously described (Hashimshony et al., 2016). Briefly, cells (200,000/ml), ERCC spike-

ins, reagents and barcoded oligo-dT primers (Sigma-Aldrich) were loaded on a 10-17 mm C1 Open-App microfluidic IFC (Fluidigm).

Cell lysis, reverse transcription, second strand synthesis and in-vitro transcription were performed on-chip. Subsequently, harvested

aRNA was pooled from 48 capture sites. After fragmentation and clean-up, 5 ml of aRNA was used to construct final libraries by

reverse transcription (SuperScript II, Thermo Fisher) and library PCR (Phusion HF, Thermo Fisher).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SCRB-seq template-switch oligo, iCiGiCACACTCTTTCC

CTACACGACGCrGrGrG

Eurogentech N/A

Drop-seq P5 primer, AATGATACGGCGACCACCGAGA

TCTACACGCCT GTCCGCGGAAGCAGTGGTATCAACG

CAGAGT*A*C, * PTO bond

IDT N/A

Drop-seq oligo-dT primer beads, Bead–Linker-

TTTTTTTAAGCAGTGGTATCAAC

GCAGAGTAC[BC12][N8][T30]

Chemgenes MACOSKO-2011-10

Drop-seq template-switch oligo, AAGCAGTGGTATCA

ACGCAGAGTGAATrGrGrG

IDT N/A

CEL-seq2 oligo-dT primer, GCCGGTAATACGACTCACTATA

GGGAGTTCTACAGTCCGACGATC[N6][BC6][T25]

Sigma-Aldrich N/A

ERCC RNA Spike-In Mix Ambion 4456740

Software and Algorithms

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

Drop-seq tools Macosko et al.,

2015

http://mccarrolllab.com/dropseq/

featureCounts Liao et al., 2013 https://bioconductor.org/packages/release/

bioc/html/Rsubread.html

R N/A www.r-project.org

Other

Drop-seq PDMS device Nanoshift Drop-seq

2% E-Gel Agarose EX Gels Life Technologies G402002

Molecular Cell 65, 631–643.e1–e4, February 16, 2017 e2

72 2. Results



Drop-seq

Drop-seq experiments were performed as published (Macosko et al., 2015) and successful establishment of the method in our lab

was confirmed by a species-mixing experiment (Figure S1A). For this work, J1 mES cells (100/ml) and barcode-beads (120/ml, Chem-

genes) were co-flown in Drop-seq PDMS devices (Nanoshift) at rates of 4000 ml/hr. Collected emulsions were broken by addition of

perfluorooctanol (Sigma-Aldrich) and mRNA on beads was reverse transcribed (Maxima RT, Thermo Fisher). Unused primers were

degraded by addition of Exonuclease I (New England Biolabs). Washed beads were counted and aliquoted for pre-amplification

(2000 beads / reaction). Nextera XT libraries were constructed from 1 ng of pre-amplified cDNA with a custom P5 primer (IDT).

MARS-seq

To construct single cell libraries from polyA-tailed RNA, we appliedmassively parallel single-cell RNA sequencing (MARS-Seq) (Jaitin

et al., 2014). Briefly, single cells were FACS-sorted into 384-well plates, containing lysis buffer and reverse-transcription (RT) primers.

The RT primers contained the single cell barcodes and unique molecular identifiers (UMIs) for subsequent de-multiplexing and

correction for amplification biases, respectively. Spike-in transcripts (ERCC, Ambion) were added, polyA-containing RNA was con-

verted into cDNA as previously described and then pooled using an automated pipeline (liquid handling robotics). Subsequently,

samples were linearly amplified by in vitro transcription, fragmented, and 30 ends were converted into sequencing libraries. The li-

braries consisted of 48 single cell pools.

SCRB-seq

RNA was stabilized by resuspending cells in RNAprotect Cell Reagent (QIAGEN) and RNase inhibitors (Promega). Prior to FACS

sorting, cells were diluted in PBS (Invitrogen). Single cells were sorted into 5 ml lysis buffer consisting of a 1/500 dilution of Phusion

HF buffer (New England Biolabs) and ERCC spike-ins (Ambion), spun down and frozen at �80�C. Plates were thawed and libraries

prepared as described previously (Soumillon et al., 2014). Briefly, RNA was desiccated after protein digestion by Proteinase K (Am-

bion). RNA was reverse transcribed using barcoded oligo-dT primers (IDT) and products pooled and concentrated. Unincorporated

barcode primers were digested using Exonuclease I (New England Biolabs). Pre-amplification of cDNA pools were done with the

KAPA HiFi HotStart polymerase (KAPA Biosystems). Nextera XT libraries were constructed from 1 ng of pre-amplified cDNA with

a custom P5 primer (IDT).

Smart-seq/C1

Smart-seq/C1 libraries were prepared on the Fluidigm C1 system using the SMARTer Ultra Low RNA Kit (Clontech) according to the

manufacturer’s protocol. Cells were loaded on a 10-17 mm RNA-seq microfluidic IFC at a concentration of 200,000/ml. Capture site

occupancy was surveyed using the Operetta (Perkin Elmer) automated imaging platform.

Smart-seq2

mESCswere sorted into 96-well PCR plates containing 2 ml lysis buffer (1.9 ml 0.2%Triton X-100; 0.1 ml RNase inhibitor (Lucigen)) and

spike-in RNAs (Ambion), spun down and frozen at�80�C. To generate Smart-seq2 libraries, priming buffermix containing dNTPs and

oligo-dT primers was added to the cell lysate and denatured at 72�C. cDNA synthesis and pre-amplification of cDNA was performed

as described previously (Picelli et al., 2014b, 2013). Sequencing libraries were constructed from 2.5 ng of pre-amplified cDNA using

an in-house generated Tn5 transposase (Picelli et al., 2014a). Briefly, 5 ml cDNA was incubated with 15 ml tagmentation mix (1 ml of

Tn5; 2 ml 10x TAPS MgCl2 Tagmentation buffer; 5 ml 40% PEG8000; 7 ml water) for 8 min at 55�C. Tn5 was inactivated and released

from the DNA by the addition of 5 ml 0.2% SDS and 5 min incubation at room temperature. Sequencing library amplification was per-

formed using 5 ml Nextera XT Index primers (Illumina) that had been first diluted 1:5 in water and 15 ml PCR mix (1 ml KAPA HiFi DNA

polymerase (KAPA Biosystems); 10ml 5x KAPA HiFi buffer; 1.5 ml 10mM dNTPs; 2.5ml water) in 10 PCR cycles. Barcoded libraries

were purified and pooled at equimolar ratios.

DNA sequencing
For SCRB-seq and Drop-seq, final library pools were size-selected on 2% E-Gel Agarose EX Gels (Invitrogen) by excising a range of

300-800 bp and extracting DNA using the MinElute Kit (QIAGEN) according to the manufacturer’s protocol.

Smart-seq/C1, CEL-seq2/C1, Drop-seq and SCRB-seq library pools were sequenced on an Illumina HiSeq1500. Smart-seq2

pools were sequenced on Illumina HiSeq2500 (Replicate A) and HiSeq2000 (Replicate B) platforms. MARS-seq library pools were

sequenced on an Illumina HiSeq2500 using the Rapid mode. Smart-seq/C1 and Smart-seq2 libraries were sequenced 45 cycles sin-

gle-end, whereas CEL-seq2/C1, Drop-seq and SCRB-seq libraries were sequenced paired-end with 15-20 cycles to decode cell

barcodes andUMI from read 1 and 45 cycles into the cDNA fragment. MARS-seq libraries were paired-end sequencedwith 52 cycles

on read 1 into the cDNA and 15 bases for read 2 to obtain cell barcodes and UMIs. Similar sequencing qualities were confirmed by

FastQC v0.10.1 (Figure S1B).

QUANTIFICATION AND STATISTICAL ANALYSIS

Basic data processing and sequence alignment
Smart-seq/C1/Smart-seq2 libraries (i5 and i7) and CELseq2/C1/Drop-seq/SCRB-seq pools (i7) were demultiplexed from the Illumina

barcode reads using deML (Renaud et al., 2015). MARS-seq library pools were demultiplexed with the standard Illumina pipeline. All

reads were trimmed to the same length of 45 bp by cutadapt (Martin, 2011) (v1.8.3) and mapped to the mouse genome (mm10)
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including mitochondrial genome sequences and unassigned scaffolds concatenated with the ERCC spike-in reference. Alignments

were calculated using STAR 2.4.0 (Dobin et al., 2013) using all default parameters.

For libraries containing UMIs, cell- and gene-wise count/UMI tables were generated using the published Drop-seq pipeline (v1.0)

(Macosko et al., 2015). We discarded the last 2 bases of the Drop-seq cell and molecular barcodes to account for bead synthesis

errors. For Smart-seq/C1 and Smart-seq2, features were assigned and counted using the Rsubread package (v1.20.2) (Liao

et al., 2013).

Power Simulations
We developed a framework in R for statistical power evaluation of differential gene expression in single cells. For each method, we

estimated the mean expression, dispersion and dropout probability per gene from the same number of cells per method. In the read

count simulations, we followed the framework proposed in Polyester (Frazee et al., 2015), i.e., we retained the observed mean-vari-

ance dependency by applying a cubic smoothing spline fit to capture the heteroscedasticity observed. Furthermore, we included a

local polynomial regression fit for the mean-dropout relationship. In each iteration, we simulated count measurements for the 13,361

genes for sample sizes of 24, 25, 26, 27, 28 and 29 cells per group. The read count for a gene i in a cell j is modeled as a product of a

binomial and negative binomial distribution:

Xij � Bðp= 1� p0Þ � NBðm; qÞ:
Themean expressionmagnitude mwas randomly drawn from the empirical distribution. 5 percent of the genes were defined as differ-

entially expressed with an effect size drawn from the observed fold changes betweenmicroglial subpopulations in Zeisel et al. (Zeisel

et al., 2015). The dispersion q and dropout probability p0 were predicted by above mentioned fits.

For each method and sample size, 100 RNA-seq experiments were simulated and tested for differential expression using limma

(Ritchie et al., 2015) in combination with voom (Law et al., 2014) (v3.26.7). The power simulation framework was implemented in

R (v3.3.0).

ERCC capture efficiency
To estimate the singlemolecule capture efficiency, we assume that the success or failure of detecting an ERCC is a binomial process,

as described before (Marinov et al., 2014). Detections are independent from each other and are thus regarded as independent Ber-

noulli trials. We recorded the number of cells with nonzero and zero read or UMI counts for each ERCC per method and applied a

maximum likelihood estimation to fit the probability of successful detection. The fit line was shaded with the 95%Wilson score con-

fidence interval.

Cost efficiency calculation
We based our cost efficiency extrapolation on the power simulations starting from empirical data at different sequencing depths

(250,000 reads, 500,000 reads, 1,000,000 reads; Figure 6C). We determined the number of cells required per method and depth

for adequate power (80%) by an asymptotic fit to the median powers. For the calculation of sequencing cost, we assumed 5V

per million raw reads, independent of method. Although UMI-based methods need paired-end sequencing, we assumed a 50 cycle

sequencing kit is sufficient for all methods. We used prices in Euro as a basis and consider an exchange course of 1:1 for the given

prices in USD.

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw and analyzed scRNA-seq data reported in this paper is GEO: GSE75790.
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Figure S2
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Figure S4
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Figure S6
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Figure S8
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Supplementary Figure Legends

Figure S1 (related to Figure 1) | Quality control and filtering. A Drop-seq species mixing 
experiment using human and murine T-cells. For each cell-barcode human- and mouse read 

numbers are plotted. B Per-base quality scores were summarized using FastQC. Lines 
indicate median Phred quality score with upper and lower quartile shaded. C Total UMI 

content per cell, with the filter cutoff (two times mean) shown as black lines. Violin plots 
indicate the density of the UMI content distribution per replicate. D Nearest-neighbor filtering 

based on the maximum pairwise Spearman’s rho for each cell. Violin plots indicate the 
density of rho distribution per replicate. Black lines indicate the employed cutoffs.

Figure S2 (related to Figure 1) | Downsampling of scRNA-seq libraries. A Detected genes 

(>= 1 count) in relation to indicated sequencing depths. The ranges of the boxes indicate the 
upper and lower quartiles of cells and horizontal bars indicate the medians. B Boxplots of 

the number of detected genes in high-depth sequencing of Smart-seq2 libraries, showing a 
plateau above 1 million reads. C Boxplots of the number of detected UMIs per cell in relation 

to indicated sequencing depths.

Figure S3 (related to Figure 3) | Sensitivity A The overlap of detected genes (>= 1 count) 
between methods for 65 random cells is displayed as a barplot. Colors indicate the level of 

overlap: Green (detected in all methods), dark blue (detected in five methods) ,yellow 
(detected in four methods), orange (detected in three methods), light blue (detected in two 

methods), grey (method-specific detection). B Gene body coverage (left to right equalling 5’ 
to 3’) of ~3000 genes detected by Smart-seq/C1 and/or Smart-seq2 (right panel) versus a 

random control set of 3000 genes detected by all methods. C Method-specific detected 
genes are shown as scatter plots with their rate of detection and mean counts over all cells. 

D For genes and their transcript variants of at least 2 kb length, we calculated the fraction of 
reads mapping to positions relative to the 3’ end. For each method, we show mapping 

positions and a fit line per replicate. The dashed line indicates theoretical even distribution of 
reads across the 2.5 kb window. (E) Gene expression values were normalized as transcripts 

per million TPM or UMIs per million UPM. Principal component analysis was performed on 
the 1000 most variable genes to display the major variance between single cells. The 200 

genes with the highest loading for PC1 were analysed and neither showed significant 
enrichment in GO categories (GOrilla) nor in technical properties such as gene length or GC 

content.
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Figure S4 (related to Figure 3) | Detection probabilities were estimated from ERCC 

dropouts, where the RNA molecule number is known. A Thick lines indicate the maximum-
likelihood estimate of the detection probability with the thin lines showing the 

95% confidence interval of the fit. B Shown are per-method maximum-likelihood estimates of 
mRNA detection probabilities. C Sensitivity per method estimated as the 50% probability to 

detect a transcript. The 95% confidence interval of estimate is displayed as error bars.

Figure S5 (related to Figure 4) | A Exemplary correlations of ERCC expression values 
(transcripts per million TPM or UMIs per million UPM) with annotated concentrations. For 

each method, we chose a representative cell/bead with a linear model correlation coefficient 
close to the median of all cells. B Detection of ERCC genes (>= 1 count) in relation to 

sampling depth. Each boxplot represents the median, upper and lower quartile of all cells 
within each method. C Accuracy of scRNA-seq methods. ERCC expression values were 

correlated to their annotated molarity. Shown are the distributions of correlation coefficients 
(adjusted R2 of linear regression model) across methods for for bins of ERCC molarity. Each 

boxplot represents the median, first and third quartile for the R2 in the indicated bin.

Figure S6 (related to Figure 5) | Gene detection sparsity. A For all detected genes (>= 1 
CPM) per method, we calculated the rate of detection. Histograms show this measure for 

detection sparsity. Filled bars represent the genes detected in at least 25% of cells of each 
method along with the number of these reproducibly detected genes. B For genes detected 

in at least 25% of cells of any method, we calculate the rate of detection in 65 random cells.

Figure S7 (related to Figure 5) | Variation in scRNA-seq data. A Gene-wise mean and 
coefficient of variation from all cells are shown as scatterplots for all methods. The black line 

indicates variance according to the poisson distribution. The two populations of genes seen 
for read-count data are unamplified genes (close to Poisson, one or very few reads per UMI) 

and amplified genes (higher CV for a given mean, several reads per UMI). B Gene-wise 
coefficient of variation (CV) of scRNA-seq data were calculated for all cells including 

detection dropouts. Violin plots are shown for UMI and read-count based quantification 
indicating the density of the distribution.

Figure S8 (related to Figure 6) | A-B Power simulation parameters estimated from 1 million 

reads per cell. A Mean expression and size parameters were estimated for each method 
and their functional relation was approximated by a smooth spline fit. B The dropout 

probability p0 was calculated per gene and shown in relation to mean expression levels. We 

fitted this relationship using a local polynomial regression. C-D Validation of power 

simulation framework. C Gene-wise Extra-Poisson Variability was calculated from empirical 
data and simulated data without addition of differentially expressed genes. Shown are the 

distributions with the black line indicating the median. D Gene-wise dropout rate distributions 
are shown from empirical data and simulated data. The black line indicates the median 

dropout rate.

Figure S9 (related to Figure 6 and Table 1) | A FDR. Simulations were performed using 
empirical mean, dispersion and dropout relationships (see Figure S8). For variable sample 

sizes of n=16, n=32, n=64, n=128, n=256 and n=512, we show points representing the mean 
FDR of 100 simulations with standard error. B | Stratified analysis of power. Shown are TPR 

for 1 million reads per cell for sample sizes n=16, n=32, n=64, n=128, n=256 and n=512 per 
group. Genes are grouped in five percentiles of mean expression with lines representing the 

median TPR of 100 simulations.

Figure S10 (related to Figure 6) | A-D Batch effects A For each method, we test for 
differential expression between random subsets of 25 cells per group (left box) and subsets 

of 25 cells of each batch (right box) in 20 permutations using limma. Shown are the number 
of significantly differentially expressed genes (FDR <0.01) as boxplots. B Sensitivity is 

shown as the number of detected genes (>= 1 count) per batch. C Accuracy is shown per 
batch as the correlation coefficient of observed expression (TPM/UPM) to annotated ERCC 

molecule numbers. D Precision is shown per batch as the Extra-Poisson Variability for the 
common 13,361 genes. For 3’ counting methods, UMI quantification is shown. The 

distribution was only shown between values of 0 and 3 to make differences more visible. D 
Cell cycle analysis. For each method, we show the coefficient of variation (CV) for a set of 

19 cell cycle genes previously found to be variable in 2i/LIF cultured mESCs (Kolodziejczyk, 
2015) (left violin) compared to 19 ribosomal and pluripotency genes. Numbers above the 

violins indicate p-values of a t-test between the two groups.  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Supplementary Tables

Table S1 (related to Figure 2): Overview of single-cell RNA-seq methods. 
* in-house produced Tn5 / commercial Tn5 

Method CEL-seq2/C1 Drop-seq MARS-seq SCRB-seq Smart-seq/C1 Smart-seq2

Single-cell 

isolation

automated in 

the C1 

system

droplets FACS FACS automated in 

the C1 

system

FACS

ERCC  

spike-ins

yes no yes yes yes yes

UMI 6 bp 8 bp 8 bp 10 bp no no

Full-length 

coverage

no no no no yes yes

1st strand 
synthesis

oligo-dT oligo-dT oligo-dT oligo-dT oligo-dT oligo-dT

2nd strand 

synthesis

RNAseH / 

DNA Pol

template 

switching

RNAseH / 

DNA Pol

template 

switching

template 

switching

template 

switching

Amplification IVT PCR IVT PCR PCR PCR

Imaging of 
cells possible

yes no no no yes no

Protocol 

usable for 

bulk

yes no yes yes yes yes

Sequencing paired-end paired-
end

paired-end paired-end single-end single-end

Library  

cost /cell

~9.5€ ~0.1€ ~1.3€ ~2€ ~25€ ~3/30*
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Abstract

Summary: Power analysis is essential to optimize the design of RNA-seq experiments and to as-

sess and compare the power to detect differentially expressed genes in RNA-seq data. PowsimR is

a flexible tool to simulate and evaluate differential expression from bulk and especially single-cell

RNA-seq data making it suitable for a priori and posterior power analyses.

Availability and implementation: The R package and associated tutorial are freely available at

https://github.com/bvieth/powsimR.

Contact: vieth@bio.lmu.de or hellmann@bio.lmu.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA-sequencing (RNA-seq) is an established method to quantify

levels of gene expression genome-wide (Mortazavi et al., 2008).

Furthermore, the recent development of very sensitive RNA-seq

protocols, such as Smart-seq2 and CEL-seq (Hashimshony et al.,

2012; Picelli et al., 2014) allows transcriptional profiling at single-

cell resolution and droplet devices make single cell transcriptomics

high-throughput, allowing to characterize thousands or even mil-

lions of single cells (Klein et al., 2015; Macosko et al., 2015; Zheng

et al., 2017).

Even though technical possibilities are vast, scarcity of sample

material and financial consideration are still limiting factors

(Ziegenhain et al., 2017), so that a rigorous assessment of experi-

mental design remains a necessity (Auer and Doerge, 2010; Conesa

et al., 2016). The number of replicates required to achieve the

desired statistical power is mainly determined by technical noise and

biological variability (Conesa et al., 2016) and both are considerably

larger if the biological replicates are single cells. Crucially, it is com-

mon that genes are detected in only a subset of cells and such drop-

out events are thought to be rooted in the stochasticity of single-cell

library preparation (Kharchenko et al., 2014). Thus dropouts in

single-cell RNA-seq are not a pure sampling problem that can be

solved by deeper sequencing (Bacher and Kendziorski, 2016). In

order to model dropout rates it is absolutely necessary to model the

mean-variance relationship inherent in RNA-seq data. Even though

current power assessment tools use the negative binomial or similar

models that have an inherent mean-variance relationship, they do

not explicitly estimate and model the observed relationship, but ra-

ther draw mean and variance separately (reviewed in Poplawski and

Binder, 2017).

In powsimR, we have implemented a flexible tool to assess

power and sample size requirements for differential expression

(DE) analysis of single cell and bulk RNA-seq experiments.

Even though powsimR does not evaluate clustering of cells, we

believe that powsimR can provide information also for RNA-seq

experiment with unlabeled cells: The power for cluster ana-

lysis should be proportional the power to detect differentially ex-

pressed genes. For our read count simulations, we (i) reliably

model the mean, dispersion and dropout distributions as well as

the relationship between those factors from the data. (ii) Simulate

read counts from the empirical mean-variance- and dropout rela-

tions, while offering flexible choices of the number of differen-

tially expressed genes, effect sizes and DE testing method.

(iii) Finally, we evaluate the power over various sample sizes. We

use the embryonic stem cell data from Kolodziejczyk et al. (2015)

to illustrate powsimR’s utility to plan and evaluate RNA-seq

experiments.

VC The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3486
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2 powsimR

2.1 Estimation of RNA-seq characteristics
An important step in the simulation framework is the reliable repre-

sentation of the characteristics of the observed data. In agreement

with others (Grün et al., 2014; Lun et al., 2016; Mi et al., 2015), we

find that the read distribution for most genes is sufficiently captured

by the negative binomial. We analyzed 18 single cell datasets using

unique molecular identifiers (UMIs) to control for amplification du-

plicates and 20 without duplicate control. The negative binomial pro-

vides an adequate fit for 54% of the genes for the non-UMI-methods

and 39% of the genes for UMI-methods, while the zero-inflated nega-

tive binomial was only adequate for 2.8% of the non-UMI-methods.

In contrast, for the UMI-methods a simple Poisson distribution fits

well for some studies (Soumillon et al., 2014; Ziegenhain et al., 2017)

(Supplementary File S2). Furthermore, when comparing the fit of the

other commonly used distributions, the negative binomial was most

often the best fitting one for both non-UMI (57%) and UMI-methods

(66%), while the zero inflated negative binomial improves the fit for

only 19% and 1.6% (Supplementary Fig. S4). Therefore the default

sampling distribution in powsimR is the negative binomial (Fig. 1),

however the user has also the option to choose the zero-inflated nega-

tive binomial.

2.2 Simulation of read counts and differential

expression
Simulations in powsimR can be based on provided data or on user-

specified parameters. We first draw the mean expression for each

gene. The expected dispersion given the mean is then determined

using a locally weighted polynomial regression fit of the observed

mean-dispersion relationship and to capture the variability of the

observed dispersion estimates, a local variability prediction band

(r¼1.96) is applied to the fit (Fig. 1A). Note, that using the fitted

mean-dispersion spline is the feature that critically distinguishes

powsimR from other simulation tools that draw the dispersion

estimate for a gene independently of the mean. Our explicit model

of mean and dispersion across genes allows us to reproduce the

mean-variance as well as mean-dropout relationship observed

(Supplementary Fig. S2, Supplementary File S2).

To simulate DE genes, the user can specify the number of genes

as well as the fraction of DE genes as log2 fold changes (LFC). Here,

we assume that the grouping of samples is correct. For the

Kolodziejczyk data, we found that a narrow gamma distribution

mimicked the observed LFC distribution well (Supplementary Fig.

S3). The set-up for the expression levels and differential expression

can be re-used for different simulation instances, allowing an easier

comparison of experimental designs.

Finally, the user can specify the number of samples per group as

well as their relative sequencing depth and the number of simula-

tions. The simulated count tables are then directly used for DE ana-

lysis. In powsimR, we have integrated 8 R-packages for DE analysis

for bulk and single cell data (limma (Ritchie et al., 2015), edgeR

(Robinson et al., 2010), DESeq2 (Love et al., 2014), ROTS

(Seyednasrollah et al., 2015), baySeq (Hardcastle, 2016), DSS (Wu

et al., 2013), NOISeq (Tarazona et al., 2015), EBSeq (Leng et al.,

2013)) and five packages that were specifically developed for single-

cell RNA-seq (MAST (Finak et al., 2015), scde (Kharchenko et al.,

2014), BPSC (Vu et al., 2016), scDD (Korthauer et al., 2016), mon-

ocle (Qiu et al., 2017)). For a review on choosing an appropriate

method for bulk data, we refer to the work of others e.g. Schurch

et al. (2016). Based on our analysis of the single-cell data from

Kolodziejczyk et al. (2015), using standard settings for each tool we

found that MAST performed best for this dataset given the same

simulations as compared to results of other DE-tools.

2.3 Evaluating statistical power
Finally, powsimR integrates estimated and simulated expression dif-

ferences to calculate marginal and conditional error matrices. To

calculate these matrices, the user can specify nominal significance

levels, methods for multiple testing correction and gene filtering

schemes. Amongst the error matrix statistics, the power (True

Positive Rate; TPR) and the False Discovery Rate (FDR) are the

most informative for questions of experimental design. For easy

comparison, powsimR plots power and FDR for a list of sample size

choices either conditional on the mean expression (Wu et al., 2014)

or simply as marginal values (Fig. 1). For example for the

Kolodziejczyk data, 384 single cells for each condition would be suf-

ficient to detect>80% of the DE genes with a well controlled FDR

of 5%. Given the lower sample sizes actually used in Kolodziejczyk

et al. (2015), our power analysis suggests that only 60% of all DE

genes could be detected.

Fig. 1. powsimR schematic overview. (A) The mean-dispersion relationship is estimated from RNA-seq data, which can be either single cell or bulk data. The user

can provide their own count tables or one of our five example datasets and choose whether to fit a negative binomial or a zero-inflated negative binomial. The

plot shows the mean-dispersion estimated, assuming a negative binomial for the Kolodziejczyk-data, the red line is the loess fit, that we later use for the simula-

tions. (B) These distribution parameters are then used to set-up the simulations. For better comparability, the parameters for the simulation of differential expres-

sion are set separately. (C) Finally, the TPR and FDR are calculated. Both can be either returned as marginal estimates per sample configuration (top), or stratified

according to the estimates of mean expression, dispersion or dropout-rate (bottom)
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3 Conclusion

In summary, powsimR can not only estimate sample sizes necessary

to achieve a certain power, but also informs about the power to detect

DE in a dataset at hand. We believe that this type of posterior analysis

will become more and more important, if results from different stud-

ies are compared. Often enough researchers are left to wonder why

there is a lack of overlap in DE-genes when comparing similar experi-

ments. powsimR will allow the researcher to distinguish between ac-

tual discrepancies and incongruities due to lack of power.
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powsimR: Power analysis for bulk and single cell RNA-seq

experiments

Supplementary Information

by

Beate Vieth1, Christoph Ziegenhain1, Swati Parekh1, Wolfgang Enard1 and Ines Hellmann1

1Anthropology & Human Genomics, Department of Biology II,

Ludwig-Maximilians University, Munich, Germany

1 Determining the best fitting distribution per gene

To determine the best fitting distribution to the observed RNA-seq count data, we compare the theoretical

fit of the Poisson, negative binomial (NB), zero-inflated Poisson (ZIP) and zero-inflated negative binomial

(ZINB) and Beta-Poisson (BP) distribution to the empirical RNA-seq read counts [2, 8, 3]. We used the

following statistics to evaluate which distribution fits best:

• goodness of fit (GOF) statistics based on Chi-square statistic using residual deviances and degrees of

freedom (Chi-square test).

• Akaike Information Criterium (AIC).

• Likelihood Ratio Test (LRT) for nested models, i.e. testing whether estimating a dispersion parameter

in the NB models is appropriate.

• Vuong Test (VT) for non-nested models, i.e. testing whether assuming zero-inflation results in a better

fit.

• Comparing the observed dropouts to the zero count prediction of the models.

Note that the goodness of fit statistics could not be calculated for the BP, however, since it already the

AIC statistic suggested that the BP fit worse than the other distributions and could neither predict the

dropouts correctly (Figure S1, Supplementary File S2), we did not follow this further.

We analyzed 8 published single cell RNA-seq studies ([1, 9, 11, 6, 7, 14, 13, 15]) produced using 9 different

RNA-seq library preparation methods (Smart-seq/C1, Smart-seq2, MARS-seq, SCRB-seq, STRT, STRT-

UMI, Drop-seq, 10XGenomics, CEL-seq2). For illustrative purposes, we focus on Kolodziejczk et al. (2015)

[9], but the distribution analysis for all can be found in Supplementary File S2.

For the Kolodziejczk et al. (2015) data, we found that the NB distribution is an adequate fit (Figure

S1): The Chi-Square test indicates that the NB is appropriate for at least 40 % of the genes (Figure S1 A).

Moreover, the AIC suggests that the NB is in 60% of the cases better than the Poisson, ZIP, ZINB and BP

(Figure S1 B). The ZINB is the only of the commonly used distributions that comes close, providing the best

fit for 40% of all compared genes, however this difference is only significant for 6% (Figure S1D).

One of the major differences between the methods is the use of Unique Molecular Identifiers (UMIs) that

allow for confident removal of PCR-duplicates [5, 15]. For all protocols considered, we evaluated the fit of

the 5 different distributions, and for the vast majority the NB would be the distribution of choice (Figure

S2). This is especially true for the UMI-methods: Here no zero-inflation is needed for modeling the gene

expression distribution. On the contrary, also a simple Poisson often provides the best fit (Figure S4).

Next, we assess the fit of the dropout rate by comparing expected and predicted zero counts per gene.

Interestingly, even though the negative binomial does not model dropouts explicitly, the deviation of predicted

zero counts from the expected under the NB distribution is relatively small (Figure S1 C). The ZINB only gives

1
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a small advantage with respect to dropouts. The comparison of models by LRT and VT illustrates the small

improvement of the model fit by assuming a ZINB distribution (10%) (FigureS1 D) for the Kolodziejczk

data, which is comparable to the average for non-UMI methods, and much lower for the UMI-methods

(<5%)(Figure S4 and Figure S3).

We thus refrain from using a mixture distribution, however for some of the protocols that do not utilize

UMIs, such as e.g. Smart-Seq2, the ZINB might provide a better fit and should be used as a sampling

distribution in the power simulations.
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Figure S1: A) Goodness of fit of the model per gene assessed with a Chi-square test based on residual
deviance and degrees of freedom. B) The fraction of genes for which the respective distribution has the
lowest AIC and additionally the distribution with the lowest AIC as well as not rejected by the goodness of
fit statistic. C) Observed versus predicted dropouts per distributional model and gene. D) Model assessment
per gene based on Likelihood Ratio Test for nested models and Vung Test for non-nested models.
The same plot representing other datasets can be found in Supplementary File S2.
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Figure S2: The negative binomial gives the best fit for the majority of genes (i.e. lowest AIC) for all
UMI datasets. For protocols that do not account for PCR duplicates, the zero-inflated negative binomial
often has a lower AIC, however this is mainly due to genes that cannot be fitted very well in general (GOF
p-value<=0.05).

2 Read Count Simulation Framework

We have implemented a read count simulation framework assuming an underlying negative binomial distri-

bution. To predict the dispersion θ given a random draw of an observed mean expression value µ, we apply a

locally weighted polynomial regression fit. Furthermore, to capture the variability of the observed dispersion

estimates, a local variability prediction band is applied (R package msir [12]). The read count for gene i in

sample j is then given by:

Xij ∼ NB(µ, θ) (1)

The mean, dispersion and dropout rates of an example read count simulation closely resembles the observed

estimates for the Kolodziejczk data set (Figure S5).

For bulk RNA-seq experiments, the negative binomial alone is not able to capture the observed number

of dropouts appropriately. Here, we predict the dropout probability (p0) using a decreasing constrained

B-splines regression (CRAN R package cobs [10]) of dropout rate against mean expression to determine the

mean expression value µDP5, where the dropout probability is expected to fall below 5%. For all genes with
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Figure S3: Model assessment per gene based on likelihood ratio test for nested models and Vuong test for
non-nested models shows that zero-inflated negative binomial significantly improves the fit for maximally
25% of the genes (STRT protocol).

µi < µDP5 we do not estimate a gene specific dropout probability, but sample the dropout probability from

all genes with < µDP5. With these parameters, the read count for a gene i in a sample j is modeled as a

product of a negative binomial multiplied with an indicator whether that sample was a dropout or not, which

is determined using binomial sampling:

Xij ∼ I ∗NB(µ, θ),where I ∈ {0, 1} (2)

P (I = 0) = B(1− p0) (3)

The necessity of this apparently unintuitive zero inflation for bulk data is illustrated by the dataset from

Eizirik et al. 2012 [4]. Note that dropouts occur across genes with different mean expression levels so that

there is only a very weak relationship between mean expression and dropout probabilities (Figure S6).

For the simulations of expression changes, the user can freely define a distribution, a list of log2-fold

changes or simply a constant. We recommend to simulate with a realistic log2-fold change distribution, which

we determined for the Kolodziejczyk et al. (2015) [9] as a narrow Γ(α, β)- distribution plus −1 × Γ(α, β)

(Figure S7).
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Figure S4: 6 UMI-protocols (STRT-UMI, Cel-SEq2, Drop-seq, MARS-seq, SCRB-seq,10XGenomics) are
compared to 3 protocols not using UMIs (Smartseq/C1, SmartSeq2, STRT), showing that zero-inflation is
only relevant for non-UMI-methods. A) The fraction of genes for which the respective distribution has the
lowest AIC and additionally the distribution with the lowest AIC is not to rejected by the goodness of fit
statistic. D) Model assessment per gene based on likelihood ratio test for nested models and Vuong test for
non-nested models.

Figure S5: A) Dispersion versus mean. B) Dropout versus mean.
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Figure S6: For bulk RNA-seq, the simulations include dropout sampling to better mimic the observed
mean-dropout relation. A) Dispersion versus mean with locally weighted polynomial regression fit (orange
line) and variability prediction band (dashed orange line). B) Dropout versus mean with red box indicating
genes with < µDP5 from which the dropout probability will be sampled from.
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Figure S7: Log2 fold changes between serum+LiF and 2i+LiF cultured cells (Kolodziejczk et al. 2015).
Red line indicates the density of a theoretical narrow gamma distribution (shape and rate equal to 3).

6

3 Included RNA-seq Experiments

We provide raw count matrices for several published single cell data sets (Table S1 on github (https://github.

com/bvieth/powsimRData). Furthermore, the vignette gives an example on how to access RNA-seq datasets

in online repositories such as recount (https://jhubiostatistics.shinyapps.io/recount/).

Table S1: Key properties of the example data-sets included in powsimR.

Study Accession Species No.
Cells

Cell-
type*

Library
prepara-
tion

UMI Remarks

1 Kolodziejczk et al.
(2015) [9]

E-MTAB-
2600

Mouse 869 ESC Smart-seq
C1

no different growth me-
dia

2 Islam et al. (2011)
[6]

GSE29087 Mouse 48 ESC STRT-seq no -

3 Islam et al. (2014)
[7]

GSE46980 Mouse 96 ESC STRT-seq
C1

yes -

4 Buettner et al.
(2015) [1]

E-MTAB-
2805

Mouse 288 ESC Smart-seq
C1

no FACs-sorted for
cell-cycle

5 Soumillon et al.
(2014) [13]

GSE53638 Human 12,000 adipo-
cytes

SCRB-
seq

yes time-series

* ESC - embryonic stem cells
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2.3.1 Updates to powsimR

I have continued to develop the powsimR package, improving the package infrastructure

and implementing additional methods. This section briefly describes changes to the software

since its publication. The most significant changes include the extension of the simulation

framework as well as implementing additional methods. There is now the possibility to

simulate technical batches of samples or cells. The simulation of spike-in ERCCs110 is now

also possible so that users can now utilize spike-in-aware normalisation and DE testing

methods. In addition, I implemented additional normalisation and DE testing methods so

that the user can now choose between 12 and 15 methods, respectively. Due to the increased

attention for imputing scRNA-seq data, I included five imputation methods that can be

applied prior to normalisation as well as DE testing can now be run on the imputed data.

While working on “A Systematic Evaluation of scRNA-seq pipelines”, I considered additional

performance metrics related to DE testing results which are now also available in the package.

Besides the traditional metrics of statistical power analysis (TPR, FPR, FDR, etc.), users

can also use composite measures such as TPR versus FDR curve as advocated by Soneson

and Robinson 2016211. Estimating the deviance in simulated versus estimated library size

factors as well as the error in log2 fold changes is now also available to evaluate normalisation,

imputation and DE-testing choices. Given the increased throughput of scRNA-seq in the

last couple of years, researchers might be interested in statistical power analysis where more

cells are included but without an increase in total sequencing. Thus, I have included flexible

downsampling of simulated read counts.
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Abstract

Background: Single-cell RNA-sequencing (scRNA-seq) experiments typically analyze hundreds or thousands of cells after
amplification of the cDNA. The high throughput is made possible by the early introduction of sample-specific bar codes
(BCs), and the amplification bias is alleviated by unique molecular identifiers (UMIs). Thus, the ideal analysis pipeline for
scRNA-seq data needs to efficiently tabulate reads according to both BC and UMI. Findings: zUMIs is a pipeline that can
handle both known and random BCs and also efficiently collapse UMIs, either just for exon mapping reads or for both exon
and intron mapping reads. If BC annotation is missing, zUMIs can accurately detect intact cells from the distribution of
sequencing reads. Another unique feature of zUMIs is the adaptive downsampling function that facilitates dealing with
hugely varying library sizes but also allows the user to evaluate whether the library has been sequenced to saturation. To
illustrate the utility of zUMIs, we analyzed a single-nucleus RNA-seq dataset and show that more than 35% of all reads map
to introns. Also, we show that these intronic reads are informative about expression levels, significantly increasing the
number of detected genes and improving the cluster resolution. Conclusions: zUMIs flexibility makes if possible to
accommodate data generated with any of the major scRNA-seq protocols that use BCs and UMIs and is the most
feature-rich, fast, and user-friendly pipeline to process such scRNA-seq data.

Keywords: single-cell RNA-sequencing; digital gene expression; unique molecular identifiers; pipeline

Introduction

The recent development of increasingly sensitive protocols al-
lows for the generation of RNA-sequencing (RNA-seq) libraries
of single cells [1]. The throughput of such single-cell RNA-seq
(scRNA-seq) protocols is rapidly increasing, enabling the pro-
filing of tens of thousands of cells [2, 3] and opening exciting
possibilities to analyze cellular identities [4, 5]. As the required
amplification from such small starting amounts introduces sub-
stantial amounts of noise [6], many scRNA-seq protocols incor-

porate unique molecular identifiers (UMIs) to label individual
cDNA molecules with a random nucleotide sequence before am-
plification [7]. This enables the computational removal of am-
plification noise and thus increases the power to detect expres-
sion differences between cells [8, 9]. To increase the throughput,
many protocols also incorporate sample-specific bar codes (BCs)
to label all cDNA molecules of a single cell with a nucleotide se-
quence before library generation [10]. This allows for early pool-
ing, which further decreases amplification noise [6]. Addition-
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2 zUMIs - RNA-seq with UMIs

Table 1: Features of available UMI pipelines for the quantification of gene expression data.

Name Reference
Open

source
Quality

filter
UMI

collapsing Mapper
BC

detection Intron
Down-

sampling

Compatible
UMI library
protocols

Cell Ranger [2] yes BC+UMI Hamming
distance

STAR A no yes [2]

CEL-seq [15] yes BC+UMI Identity
only

bowtie2 WL no no [15, 46]

dropEst [16] yes BC Frequency-
based

TopHat2 or
Kallisto

WL,top-
n,EM

yes no [2, 13, 19]

Drop-seq-
tools

[13] no BC+UMI Hamming
distance

STAR WL,top-n no no [13, 15, 17]

scPipe [47] yes BC+UMI Hamming
distance

subread WL,top-n no no [13, 17, 18, 46]

umis [14] yes BC Frequency-
based

Kallisto WL,top-
n,EM

no no [2, 13, 17–19,
46, 48]

UMI-tools [25] yes BC+UMI Network-
based

BWA WL no no [17, 19]

zUMIs This work yes BC+UMI Hamming
distance

STAR A,WL,top-n yes yes [2, 3, 12, 13,
15, 17, 18, 21,

46, 48]

We consider whether the pipeline is open source, has sequence quality filters for cell BCs and UMIs, mappers, UMI-collapsing options, options for BC detection (A,

automatically infer intact BCs; WL, extract only the given list of known BCs; top-n, order BCs according the number of reads and keep the top n BCs; EM, merge BCs
with given edit distance), whether it can count intron mapping reads, whether it offers a utility to make varying library sizes more comparable via downsampling,
and finally with which RNA-seq library preparation protocols is it compatible

ally, for cell types such as primary neurons, it has been proven
to be more feasible to isolate RNA from single nuclei rather than
whole cells [11, 12]. This decreases mRNA amounts further so
that it has been suggested to count intron mapping reads origi-
nating from nascent RNAs as part of single-cell expression pro-
files [11]. However, the few bioinformatic tools that process RNA-
seq data with UMIs and BCs have limitations (Table 1). For ex-
ample, the Drop-seq-tools is not an open source [13]. While Cell
Ranger is open, it is exceedingly difficult to adapt the code to
new or unknown sample BCs and other library types. Other tools
are specifically designed to work with one mapping algorithm
and focus mainly on transcriptome references [14, 15]. Further-
more, the only other UMI-RNA-seq pipeline providing the utility
to also consider intron mapping reads, dropEst [16], is only appli-
cable to droplet-based protocols. Here, we present zUMIs, a fast
and flexible pipeline that overcomes these limitations.

Findings

zUMIs is a pipeline to process RNA-seq data that were mul-
tiplexed using cell BCs and also contain UMIs. Read-pairs are
filtered to remove reads with low-quality BCs or UMIs based
on sequence and then mapped to a reference genome (Fig.1).
Next, zUMIs generates UMI and read count tables for exon and
exon+intron counting. We reason that very low input material
such as from single nuclei sequencing might profit from in-
cluding reads that potentially originate from nascent RNAs. An-
other unique feature of zUMIs is that it allows for downsampling
of reads before collapsing UMIs, thus enabling the user to as-
sess whether a library was sequenced to saturation or whether
deeper sequencing is necessary to depict the full mRNA com-
plexity. Furthermore, zUMIs is flexible with respect to the length
and sequences of the BCs and UMIs, supporting protocols that
have both sequences in one read [2, 3, 12, 13, 15, 17, 18] as well
as protocols that provide UMI and BC in separate reads [19–21].
This makes zUMIs the only tool that is easily compatible with all
major UMI-based scRNA-seq protocols.

Implementation and Operation
Filtering and mapping

The first step in our pipeline is to filter reads that have low-
quality BCs according to a user-defined threshold (Fig.1). This
step eliminates the majority of spurious BCs and thus greatly
reduces the number of BCs that need to be considered for count-
ing. Similarly, we also filter low-quality UMIs.

The remaining reads are then mapped to the genome using
the splice-aware aligner STAR [22]. The user is free to customize
mapping by using the options of STAR. Furthermore, if the user
wishes to use a different mapper, it is also possible to provide
zUMIs with an aligned bam file instead of the fastq file with the
cDNA sequence, with the sole requirement that only one map-
ping position per read is reported in the bam file.

Transcript counting

Next, reads are assigned to genes. In order to distinguish exon
and intron counts, we generate two mutually exclusive an-
notation files from the provided gtf, one detailing exon posi-
tions, the other introns. Based on those annotations, Rsubread
featureCounts [23] is used to first assign reads to exons and af-
terward to check whether the remaining reads fall into introns,
in other words, if a read is overlapping with intronic and ex-
onic sequences, it will be assigned to the exon only. The output
is then read into R using data.table [24], generating count ta-
bles for UMIs and reads per gene per BC. We then collapse UMIs
that were mapped either to the exon or intron of the same gene.
Note that only the processing of intron and exon reads together
allows for properly collapse of UMIs that can be sampled from
the intronic as well as from the exonic part of the same nascent
mRNA molecule.

Per default, we only collapse UMIs by sequence identity. If
there is a risk that a large proportion of UMIs remains under-
collapsed due to sequence errors, zUMIs provides the option to
collapse UMIs within a given Hamming distance. We compare
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Parekh et al. 3

Figure 1: Schematic of the zUMIs pipeline. Each of the gray panels from left to right depicts a step of the zUMIs pipeline. First, fastq files are filtered according to
user-defined bar code (BC) and unique molecular identifier (UMI) quality thresholds. Next, the remaining cDNA reads are mapped to the reference genome using STAR.

Gene-wise read and UMI count tables are generated for exon, intron, and exon+intron overlapping reads. To obtain comparable library sizes, reads can be downsampled
to a desired range during the counting step. In addition, zUMIs also generates data and plots for several quality measures, such as the number of detected genes/UMIs
per BCe and distribution of reads into mapping feature categories.
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Figure 2: Comparison of different UMI collapsing methods. We compared Drop-seq-tools and UMI-tools with zUMIs using our HEK dataset (227 mio reads). (A) Run time

to count exonic UMIs using zUMIs (hamming distance = 0), UMI-tools (”unique” mode) and Drop-seq-tools (edit distance = 0). (B) Box plots of correlation coefficients
of gene-wise UMI counts of the same cell generated with different methods. UMI counts generated using zUMIs (quality filter “1 base under phred 17” or hamming
distance = 1) were correlated to UMI counts generated using Drop-seq-tools (quality filter “1 base under phred 17” ) and UMI-tools (“directional adjacency” mode). (C)
Comparison of the total number of UMIs per cell derived from different counting methods to “unfiltered” counts. (D) Violin plots of gene-wise dispersion estimates
with different quality filtering and UMI collapsing methods.
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4 zUMIs - RNA-seq with UMIs

the two zUMIs UMI-collapsing options to the recommended di-
rectional adjacency approach implemented in UMI-tools [25] us-
ing our in-house example dataset (see Methods section). zUMIs
identity collapsing yields nearly identical UMI counts per cell
as UMI-tools, while Hamming distance yields increasingly fewer
UMIs per cell with increasing sequencing depth (Fig.2C). Smith
et al [25] suggest that edit distance collapsing without consid-
ering the relative frequencies of UMIs might indeed overreach
and overcollapse the UMIs. We suspect that this is indeed what
happens in our example data, where we find that gene-wise dis-
persion estimates appear suspiciously truncated as expected if
several counts are unduly reduce to one, the minimal number
after collapsing (Fig.2D).

However, note that the above-described differences are mi-
nor. By and large, there is good agreement between UMI counts
obtained by UMI-tools [25], the Drop-seq pipeline [13], and zU-
MIs. The correlation between gene-wise counts of the same cell
is >0.99 for all comparisons (Fig. 2B). In light of this, we consider
the >3 times higher processing speed of zUMIs to be a decisive
advantage (Fig.2A).

Cell BC selection

In order to be compatible with well-based and droplet-based
scRNA-seq methods, zUMIs needs to be able to deal with known
as well as random BCs. As default behavior, zUMIs infers which
BCs mark good cells from the data (Fig.3A, 3B). To this end, we
fit a k-dimensional multivariate normal distribution using the
R-package mclust [26, 27] for the number of reads/BC, where k
is empirically determined by mclust via the Bayesian informa-
tion criterion. We reason that only the kth normal distribution
with the largest mean contains BCs that identify reads originat-
ing from intact cells. We exclude all BCs that fall in the lower
1% tail of this kth normal distribution to exclude spurious BCs.
The HEK dataset used here contains 96 cells with known BCs
and zUMIs identifies 99 BCs as intact, including all the 96 known
BCs. Also, for the single-nucleus RNA-seq from Habib et al. [12],
zUMIs identified a reasonable number of cells; Habib et al. report
10,877 nuclei and zUMIs identified 11,013 intact nuclei. However,
we recommend to always check the elbow plot generated by zU-
MIs (Fig.3B) to confirm that the cutoff used by zUMIs is valid for a
given dataset. In cases where the number of BCs or BC sequences
are known, it is preferable to use this information. If zUMIs is ei-
ther given the number of expected BCs or is provided with a list
of BC sequences, it will use this information and forgo automatic
inference.

Downsampling

scRNA-seq library sizes can vary by orders of magnitude, which
complicates normalization [28, 29]. A straight-forward solution
for this issue is to downsample overrepresented libraries [30].
zUMIs has an built-in function for downsampling datasets to a
user-specified number of reads or a range of reads. By default,
zUMIs downsamples all selected BCs to be within three absolute
deviations from the median number of reads per BC (Fig.3C). Al-
ternatively, the user can provide a target sequencing depth, and
zUMIs will downsample to the specified read number or omit
the cell from the downsampled count table if fewer reads were
present. Furthermore, zUMIs also allows the user to specify a
multiple target read number at once for downsampling. This
feature is helpful if the user wishes to determine whether the
RNA-seq library was sequenced to saturation or whether fur-
ther sequencing would increase the number of detected genes

or UMIs enough to justify the extra cost. In our HEK-cell exam-
ple dataset, the number of detected genes starts leveling off at
1 million reads. Sequencing double that amount would only in-
crease the number of detected genes from 9,000 to 10,600 when
counting exon reads (Fig.3D). In line with previous findings [8,
14], the saturation curve of exon+intron counting runs parallel
to the one for exon counting, both indicating that a sequencing
depth of 1 million reads per cell is sufficient for these libraries.

Output and statistics

zUMIs outputs three UMI and three read count tables: gene-wise
counts for traditional exon counting, one for intron and one for
exon+intron counts. If a user chooses the downsampling option,
six additional count tables per target read count are provided. To
evaluate library quality, zUMIs summarizes the mapping statis-
tics of the reads. While exon and intron mapping reads likely
represent mRNA quantities, a high fraction of intergenic and un-
mapped reads indicates low-quality libraries. Another measure
of RNA-seq library quality is the complexity of the library, for
which the number of detected genes and the number of iden-
tified UMIs are good measures (Fig.1). We processed 227 mil-
lion reads with zUMIs and quantified expression levels for exon
and intron counts on a Unix machine using up to 16 threads,
which took less than 3 hours. Increasing the number of reads
increases the processing time approximately linearly, where fil-
tering, mapping, and counting each take up roughly one third of
the total time (Fig.3E). We also observed that the peak random
access memory usage for processing datasets of 227, 500, and
1,000 million pairs was 42 Gb, 89 Gb, and 172 Gb, respectively.
Finally, zUMIs could process the largest scRNA-seq dataset re-
ported to date with around 1.3 million brain cells and 30 billion
read-pairs generated with 10xGenomics Chromium (see Meth-
ods section) on a 22-core processor in only 7 days.

Intron counting

Recently, it has been shown that intron mapping reads in RNA-
seq likely originate from nascent mRNAs and are useful for gene
expression estimates [31, 32]. Additionally, novel approaches
leverage the ratios of intron and exon mapping reads to infer
information on transcription dynamics and cell states [33]. To
address this new aspect of analysis, zUMIs also counts and col-
lapses intron-only mapping reads as well as intron and exon
mapping reads from the same gene with the same UMI. To as-
sess the information gain from intronic reads to estimate gene
expression levels, we analyzed a publicly available DroNc-seq
dataset from mouse brain ([12]; see Methods section). For the
∼11,000 single nuclei of this dataset, the fraction of intron map-
ping reads of all reads goes up to 61%. Thus, if intronic reads
are considered, the mean number of detected genes per cell
increases from 1,041 for exon counts to 1,995 for exon+intron
counts. Next, we used the resulting UMI count tables to investi-
gate whether exon+intron counting improves the identification
of cell types, as suggested by Lake et al. [11]. The validity and ac-
curacy of counting introns for single-nucleus sequencing meth-
ods has recently been demonstrated [34]. Following the Seurat
pipeline to cluster cells [35, 36], we find that using exon+intron
counts discriminates 28 clusters, while we could only discrimi-
nate 19 clusters using exon counts (Fig.4A, 4B). The larger num-
ber of clusters is not simply due to the increase in the counted
UMIs and genes. When we permute the intron counts across
cells and add them to the exon counts, the added noise actu-
ally reduces the number of identifiable clusters (Fig.4E).
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Figure 3: Utilities of zUMIs. Each of the panels shows the utilities of zUMIs pipeline. The plots from A–D show the results from the example HEK dataset used here.

(A) The plot shows a density distribution of reads per BC. Cell BCs with reads right of the blue line are selected. (B) The plot shows the cumulative read distribution in
the example HEK dataset where the BCs in light blue are the selected cells. (C) The bar plot shows the number of reads per selected cell BC with the red lines showing
upper and lower median absolute deviation (MAD) cutoffs for adaptive downsampling. Here, the cells below the lower MAD have very low coverage and are discarded
in downsampled count tables. (D) Cells were downsampled to six depths from 100,000 to 3,000,000 reads. For each sequencing depth, the genes detected per cell are

shown. (E) Runtime for three datasets with 227, 500, and 1,000 million read-pairs. The runtime is divided in the main steps of the zUMIs pipeline as follows: filtering,
mapping, counting, and summarizing. Each dataset was processed using 16 threads (“-p 16”).

We continue to further characterize the seven clusters that
were subdivided by the addition of intron counts (Fig.4D). First,
we identify DE genes between the newly formed clusters. If we
count only exon reads, there appear to be, on average, only 10
DE genes between the subgroups, while exon+intron counting
yields ∼10 times more DE genes, thus corroborating the signal
found with clustering. The log2-fold changes of those additional
DE genes estimated with either counting strategy are generally
in good agreement; especially large log2-fold changes are de-
tected with both exon and exon+intron counting (Fig.4F). Genes
that are detected as DE in only one of our counting strategies
have small log2-fold changes, and there are more of these small
changes detected using exon+intron counting.

Detecting more genes naturally increases the chance to also
detect more informative genes. Here, we cross-reference the
gene list with marker genes for transcriptomic subtypes de-
tected for major cell types of the mouse brain [37] and find that
∼5% of the additional genes are also marker genes, which cor-
responds well to the general frequency of marker genes among
the detected genes (4%). In the same vein, we also detect propor-
tionally more DE genes with exon+intron counting compared to
exon counting. Thus, including introns simply allows us to bet-
ter detect present transcripts, while leaving the proportions of
interest unaltered. Having a closer look at cluster 7, it was split
into a bigger (7) and a smaller cluster (24) using exon+intron
counting (Fig.4A-C), we find one marker gene (Il1rapl2) to be
DE between the subclusters using exon+intron counting, while
Il1rapl2 had only spurious counts using exon counts. Il1rapl2 is
a marker for transcriptomic subtypes of GABAergic Pvalb-type

neurons [37], suggesting that the split of cluster 7 might be bio-
logically meaningful (Fig.4E).

In order to evaluate the power gained by exon+intron count-
ing in a more systematic way, we perform power simulations us-
ing empirical mean and dispersion distributions from the largest
and most uniform cluster (∼1,500 cells) [9]. For a fair comparison,
we include all detected genes, which is equivalent to the num-
ber of genes detected with exon+intron counting. Also, since we
call a gene detected as soon as one count is associated, exon
counting is necessarily a subset of exon+intron. Thus, there are,
on average, 4 times more genes in the lowest expression quan-
tile for exon counting than for exon+intron counting (Fig.4H). For
those genes, expression is too spurious to be used for differen-
tial expression analysis; for exon+intron counting, we have, on
average, 60% power to detect a DE gene in the first mean expres-
sion bin with a well-controlled false discovery rate (FDR) (Fig.4G).
In summary, the increased power for exon+intron counting and
probably also the larger number of clusters are due to better de-
tection of lowly expressed genes. Furthermore, we think that al-
though potentially noisy, the large number of additionally de-
tected genes makes exon+intron counting worthwhile, espe-
cially for single-nuclei sequencing techniques that are enriched
for nuclear nascent RNA transcripts, such as DroNc-seq [12]. Ad-
ditionally, exon+intron counting may help in extracting as much
information as possible from low coverage data as generated
in the context of high-throughput cell atlas efforts (e.g., 10,000–
20,000 reads/cell [38, 39]. Last, users should always exclude the
possibility of intronic reads stemming from genomic DNA con-
tamination in the library preparation by confirming low inter-
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Figure 4: Contribution of intron reads to biological insights. We analyzed published single-nucleus RNA-seq data from mouse prefrontal cortex (PFC) and hippocampus
[12] to assess the utility of counting intron in addition to exon reads. We processed the raw data with zUMIs to obtain expression tables with exon reads as well as
exon+intron reads and then used the R-package Seurat [35, 36] to cluster cells. With exon counts, we identified 19 clusters (A), and with exon+intron counts we identified

27 clusters (B). Clusters are represented as t-SNE plots and colored according to the most frequent cell-type assignment in the original article [12]: glutamatergic neurons
from the prefrontal cortex (exPFC), GABAergic interneurons (GABA), pyramidal neurons from the hippocampal CA region (CA), granule neurons from the hippocampal
dentate gyrus region (DG), astrocytes (ASC), microglia (MG), oligodendrocytes (ODC), oligodendrocyte precursor cells (OPC), neuronal stem cells (NSC), smooth muscle
cells (SMC) and endothelial cells (END). Different shades of those clusters indicate that multiple clusters had the same major cell type assigned. If we randomly sample

counts from the intron data and add them to the exon counting, the noise reduces the number of clusters and the Seurat pipeline can only identify 9–11 clusters (E).
The composition of each cluster based on exon+intron is detailed in panel (C), and cells that were not assigned a cell type in [12] are displayed as empty. The boxes
mark the clusters that were not split when using exon data only. For example, cluster 7 from exon counting, which mainly consists of GABAergic neurons, was split
into clusters 7, 24 (506, 66 cells) when using exon+intron counting. In (D), we show the numbers of genes that were differentially expressed (DE) (limma p-adj <0.05)

between the clusters found only with exon+intron counts. The panel numbers represent the exon counting cluster numbers and the y-axis the exon+intron counting
cluster number. The log2-fold changes corresponding to these contrasts are also used in (G). Among the genes that were additionally detected to be DE by exon+intron
counting was the marker gene Il1rapl2 (limma p-adj = 10−5). In (F), we present a violin plot of the normalized counts for Il1rapl2 in cells of the GABAergic subclusters
7 and 24. Log2-fold changes calculated with exon+intron counts correlate well with exon counts (G). Note that for exon counting only, half as many genes could be

evaluated as for exon+intron counting and thus only half of the exon+intron genes are depicted in (G). Large log2 fold changes (LFCs) are found to be significant with
both counting strategies (purple points are close to the bisecting line). We conducted simulations based on mean and dispersion measured using exon cluster 0 (1,616
cells, ∼90% exPFC). In (I) we show the expected true positive rate and the false discovery rate for a scenario comparing 300 vs 300 cells. Results for exon and exon+intron
counting were stratified into five quantiles according to the mean expression of genes, where stratum 1 contains lowly expressed genes and stratum 5 the most highly

expressed genes. The numbers of genes falling into each of the bins using exon+intron and exon counting are depicted in (H).

genic mapping fractions using the statistics output provided by
zUMIs.

Conclusion

zUMIs is a fast and flexible pipeline for processing raw reads to
obtain count tables for RNA-seq data using UMIs. To our knowl-
edge, it is the only open source pipeline that has a BC and
UMI quality filter, allows intron counting, and has an integrated
downsampling functionality. These features ensure that zUMIs
is applicable to most experimental designs of RNA-seq data,
including single-nucleus sequencing techniques, droplet-based
methods where the BC is unknown, as well as plate-based UMI-
methods with known BCs. Finally, zUMIs is computationally ef-
ficient, user-friendly, and easy to install.

Methods

Analyzed RNA-seq datasets

HEK293T cells were cultured in DMEM high glucose with L-
glutamine (Biowest) supplemented with 10% fetal bovine serum
(Thermo Fisher) and 1% penicillin/streptomycin (Sigma-Aldrich)
in a 37◦C incubator with 5% carbon dioxide. Cells were passaged
and split every 2 or 3 days. For single-cell RNA-seq, HEK293T
cells were dissociated by incubation with 0.25% Trypsin (Sigma-
Aldrich) for 5 minutes at 37◦C. The single-cell suspension was
washed twice with phosphate-buffered saline, and dead cells
were stained with Zombie Yellow (Biolegend) according to the
manufacturer’s protocol. Single cells were sorted into DNA
LoBind 96-well polymerase chain reaction (PCR) plates (Eppen-
dorf) containing lysis buffer with a Sony SH-800 cell sorter in 3-
drop purity mode using a 100-μmnozzle. Next, single-cell RNA-
seq libraries were constructed from one 96-well plate using a
slightly modified version of the mcSCRB-seq protocol. Reverse
transcription was performed as described previously [40], with
the only change being the use of KAPA HiFi HotStart enzyme for
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PCR amplification of cDNA. Resulting libraries were sequenced
using an Illumina HiSeq1500 with 16 cycles in Read 1 to decode
cell BCs (6 bases) and UMIs (10 bases) and 50 cycles in Read 2 to
sequence into the cDNA fragment, obtaining ∼227 million reads.
Raw fastq files were processed using zUMIs, mapping to the hu-
man genome (hg38) and Ensembl gene models (GRCh38.84).

In addition, we analyzed data from 1.3 million mouse brain
cells generated on the 10xGenomics Chromium platform [2]. Se-
quences were downloaded from the National Center for Biotech-
nology Information Sequence Read Archive under accession
number SRP096558. The data consist of 30 billion read-pairs
from 133 individual samples. In these data, read 1 contains 16 bp
for the cell BC and 10 bp for the UMI and read 2 contains 114 bp
of cDNA. zUMIs was run using default settings, and we allowed
7 threads per job for a total of up to 42 threads on an Intel Xeon
E5-2699 22-core processor.

Finally, we obtained mouse brain DroNc-seq read data [12]
from the Broad Institute Single Cell Portal [41]. This dataset con-
sists of ∼1,615 million read-pairs from ∼11,000 single nuclei.
Read 1 contains a 12 bpcell BC and a 8 bpUMI and read 2 60 bpof
cDNA.

The two mouse datasets were mapped to genome version
mm10 and applying Ensembl gene models (GRCm38.75).

Power simulations and DE analysis

We evaluated the power to detect differential expression with
the help of the powsimR package [9]. For the DroNc-seq dataset,
we estimated the parameters of the negative binomial dis-
tribution from one of the identified clusters, namely, cluster
0, compromising 1,500 glutamatergic neuronal cells from the
prefrontal cortex (Fig.4D). Since we detect more genes with
exon+intron counting (4,433 compared to 1,782), we included
this phenomenon in our read count simulation by drawing mean
expression values for a total of 4,433 genes. This means that
the table includes sparse counts for the exon counting. Log2-
fold changes were drawn from a gamma distribution with shape
equal to 1 and scale equal to 2. In each of the 25 simulation it-
erations, we draw an equal sample size of 300 cells per group
and test for differential expression using limma-trend [42] on
log2 counts per million (CPM) values with scran [43] library size
correction. The true positive rate and FDR are stratified over the
empirical mean expression quantile bins.

For the differential expression analysis between clusters, we
use the same DE estimation procedure as in the simulations:
scran normalization followed by limma-trend DE-analysis (c.f.
[44]).

Cluster identification

After processing the DroNc-seq data [12] with zUMIs as de-
scribed above, we cluster cells based on UMI counts derived from
exons only and exons+introns reads using the Seurat pipeline
[35, 36]. First, cells with fewer than 200 detected genes were fil-
tered out. The filtered data were normalized using the LogNor-
malize function. We then scale the data by regressing out the
effects of the number of transcripts and genes detected per cell
using the ScaleData function. The normalized and scaled data
are then used to identify the most variable genes by fitting a
relationship between mean expression (ExpMean) and disper-
sion (LogVMR) using the FindVariableGenes function. The iden-
tified variable genes are used for principle component analysis,
and the top 20 principle components are then used to find clus-
ters using graph-based clustering as implemented in FindClus-

ters. To illustrate that the additional clusters found by count-
ing exon+intron reads are not spurious, we use intron-only UMI
counts from the same data to add to the observed exon-only
counts. More specifically, to each gene we add scran-size factor-
corrected intron counts from the same gene after permuting
them across cells. We assessed the cluster numbers from 100
such permutations.

Comparison of UMI collapsing strategies

In order to validate zUMIs and compare different UMI collaps-
ing methods, we used the HEK dataset described above. We ran
zUMIs (1) without quality filtering, (2) filtering for onebase un-
der Phred 17, and (3) collapsing similar UMI sequences within a
hamming distance of 1. To compare with other available tools,
we ran the same dataset using the Drop-seq-tools version 1.13
[13] and quality filter “1 base under Phred 17” without edit dis-
tance collapsing. Last, the HEK dataset was used with UMI tools
[25] in (1) “unique” and (2) “directional adjacency” mode with
edit distance set to 1. Also, we compared the output of zU-
MIs from the DroNc-seq dataset when using default parame-
ters (“1 base under Phred 20”) to UMI-tools in (1) “unique,” (2)
“directional adjacency,” and (3) “cluster” settings. For each set-
ting and tool combination, we compared per-cell/per-nuclei UMI
contents in a linear model fit.

Availability of source code and requirements� Project name: zUMIs� Project home page: https://github.com/sdparekh/zUMIs� Operating system(s): UNIX� Programming language: shell, R, perl� Other requirements: STAR >= 2.5.3a, R >= 3.4, Rsubread >=
1.26.1, pigz >= 2.3 & samtools >= 1.1� License: GNU GPLv3.0� Research Resource Identification Initiative ID: SCR 016139

Availability of supporting data

All data that were generated for this project were submitted to
GEO under accession GSE99822. An archival copy of the source
code and test data are available via the GigaScience repository
GigaDB [45].
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2.4.1 Updates to zUMIs

My colleagues Swati Parekh, Christoph Ziegenhain and Ines Hellmann regularly improve

and update zUMis since its publication. I help with testing implementations and changes as

well as with documentation.

The most significant changes are listed below:

• Setup of all parameters in a convenient YAML config file, also implemented as a R

shiny app.

• Compatibility with non-UMI protocols, such as Smart-seq2, and paired end cDNA

reads.

• Increased processing speed (at least 2x faster)

• Parallelize filtering step

• Parallelize Hamming distance UMI collapsing

• Extensive use of the R package data.table and its pipes for constructing gene expression

matrices

• Mapping by piping STAR SAM output into threaded samtools BAM compression

• Possibility to integrate transgenes or external references like ERCC spike ins on the

fly.

Minor changes include:

• Optional downstream velocyto analysis (La Manno et al. 2018)

• Optional output of zUMIs results in loomR format (Butler et al. 2018)

• Automatic barcode detection guided by incorporating cell barcode whitelists

• Extracting cell barcode sequences from fastq files with frameshifts (e.g. ddSeq protocol
212)
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The recent rapid spread of single cell RNA sequencing (scRNA-seq) methods has created a

large variety of experimental and computational pipelines for which best practices have not

yet been established. Here, we use simulations based on five scRNA-seq library protocols in

combination with nine realistic differential expression (DE) setups to systematically evaluate

three mapping, four imputation, seven normalisation and four differential expression testing

approaches resulting in ~3000 pipelines, allowing us to also assess interactions among

pipeline steps. We find that choices of normalisation and library preparation protocols have

the biggest impact on scRNA-seq analyses. Specifically, we find that library preparation

determines the ability to detect symmetric expression differences, while normalisation

dominates pipeline performance in asymmetric DE-setups. Finally, we illustrate the impor-

tance of informed choices by showing that a good scRNA-seq pipeline can have the same

impact on detecting a biological signal as quadrupling the sample size.
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Many experimental protocols and computational analysis
approaches exist for single cell RNA sequencing
(scRNA-seq). Furthermore, scRNA-seq analyses can

have different goals including differential expression (DE) ana-
lysis, clustering of cells, classification of cells and trajectory
reconstruction1. All these goals have the first analysis steps in
common in that they require expression counts or normalised
counts. Here, we focus on these important first choices made in
any scRNA-seq study, using DE-inference as performance read-
out. Benchmarking studies exist only separately for each analysis
step, which are library preparation protocols2,3, alignment4,5,
annotations6, count matrix preprocessing7,8 and normalisation9.
However, the impact of the combined choices of the separate
analysis steps on overall pipeline performance has not been
quantified. In order to achieve a fair and unbiased comparison of
computational pipelines, simulations of realistic data sets are
necessary. This is because the ground truth of real data is
unknown and alternatives, such as concordance analyses are
bound to favour similar and not necessarily better methods.

To this end, we integrate popular methods for each analysis
step into our simulation framework powsimR10. As the basis for
simulations, powsimR uses raw count matrices to describe the
mean-variance relationship of gene expression measures. This
includes the variance introduced during the experiment itself as
well as extra variance due to the first to computational steps of
expression quantification. Adding DE then provides us with
detailed performance measures based on how faithfully DE-genes
can be recovered.

One main assumption in traditional DE-analysis is that dif-
ferences in expression are symmetric. This implies that either a
small fraction of genes is DE while the expression of the majority
of genes remains constant or similar numbers of genes are up-
and down-regulated so that the mean total mRNA content does
differ between groups11. This assumption is no longer true when
diverse cell types are considered. For example, Zeisel et al.12 find
up to 60% DE genes and differing amounts of total mRNA levels
between cell types. This issue of asymmetry is conceptually one of
the characteristics that distinguishes single cell from bulk RNA-
seq and has not been addressed so far. Therefore, we simulate
varying numbers of DE-genes in conjunction with small to large
differences in mRNA content including the entire spectrum of
possible DE-settings.

Realistic simulations in conjunction with a wide array of
scRNA-seq methods, allow us not only to quantify the perfor-
mance of individual pipeline steps, but also to quantify inter-
dependencies among the steps. Moreover, the relative importance
of the various steps to the overall pipeline can be estimated.
Hence, our analysis provides sound recommendations regarding
the construction of an optimal computational scRNA-seq pipe-
line for the data at hand.

Results
scRNA-seq data and simulations. The starting point for our
comprehensive pipeline comparison is a representative selection
of scRNA-seq library preparation protocols (Fig. 1a). Here, we
included one full-length method (Smart-seq213) and four UMI
methods2,14–16. The UMI strategies encompass two plate-based
(SCRB-seq, CEL-seq2) and the most common non-commercial
and commercial droplet-based protocols (Drop-seq, 10X Chro-
mium). CEL-seq2 differs from SCRB-seq in that it relies on linear
amplification by in vitro transcription, while SCRB-seq relies on
PCR amplification using the same strategy as 10X Chromium (see
Ziegenhain et al.2,17 for a detailed discussion). We then combine
the library preparation protocols with three mapping approa-
ches18–20 and three annotation schemes21–23 resulting in 45

distinct raw count matrices (see “Methods”). We simulated 27
distinct DE-setups per matrix, each with 20 replicates, resulting in
a total of 19,980 simulated data sets (Fig. 1b).

Genome-mapping quantifies gene expression with high accu-
racy. We first investigated how expression quantification is
affected by different alignment methods using our selection of
scRNA-seq experiments. For each of the three following strategies
we picked one the most popular methods (Supplementary Fig. 2):
(1) alignment of reads to the genome using splice-aware align-
ment (STAR18), (2) alignment to the transcriptome (BWA19) and
(3) pseudo-alignment of reads guided by a transcriptome (kal-
listo24).We then combined these with three annotation schemes
including two curated schemes (RefSeq21 and Vega23) and the
more inclusive GENCODE22 (Supplementary Table 2).

First, we assessed the performance by the number of reads or
UMIs that were aligned and assigned to genes (Fig. 2a and
Supplementary Fig. 3). Alignment rates of reads are comparable
across all scRNA-seq protocols. Assignment rates on the other
hand show some interaction between mapper and protocol. All
mappers, aligned and assigned more reads using GENCODE as
compared to RefSeq annotation, whereas the pseudo-aligner
kallisto profited most from the more comprehensive annotation
of GENCODE and here in particular the 3’UMI protocols (Figure
2A). Generally, STAR in combination with GENCODE aligned
(82–86%) and assigned (37–63%) the most reads, while kallisto
assigned consistently the fewest reads (20-40%) (Figure 2D).
BWA assigned an intermediate fraction of reads (22–44%), but—
suspiciously—these were distributed across more UMIs. As reads
with the same UMI are more likely to originate from the same
mRNA molecule and thus the same gene, the average number of
genes with which one UMI sequence is associated, can be seen as
a measure of false mapping. Indeed, we find that the same UMI is
associated with more genes when mapped by BWA than when
mapped by STAR (Fig. 2b). This indicates a high false mapping
rate, that probably inflates the number of genes that are detected
by BWA (Fig. 2c and Supplementary Fig. 4).

This said, it remains to be seen what impact the differences in
read or UMI counts obtained through the different alignment
strategies and annotations have on the power to detect DE-genes.

As already indicated from the low fraction of assigned reads,
kallisto has the lowest mean expression and the highest gene
dropout rates (Fig. 2d and Supplementary Figs. 7 and 8) and, as
expected from a high fraction of falsely mapped reads, BWA has
the largest variance. To estimate the impact that these statistics
have on the power to detect DE-genes, we use the mean-variance
relationship to simulate data sets with DE-genes (Fig. 2d, e). As
previously reported2, UMI protocols have a noticeably higher
power than Smart-seq2 (Fig. 2f). Moreover for Smart-seq2, we find
that kallisto, especially with RefSeq annotation, performs slightly
better than STAR, while for UMI-methods STAR performs better
(Fig. 2f and Supplementary Fig. 9).

In summary, using BWA to map to the transcriptome
introduces noise, thus considerably reducing the power to detect
DE-genes as compared to genome alignment using STAR or the
pseudo-alignment strategy kallisto, but given the lower mapping
rate of kallisto STAR with GENCODE is generally preferable.

Many asymmetric changes pose a problem without spike-ins.
The next step in any RNA-seq analysis is the normalisation of the
count matrix. The main idea here is that the resulting size factors
correct for differing sequencing depths. In order to improve
normalisation, spike-ins as an added standard can help, but are
not feasible for all scRNA-seq library preparations. Another
avenue to improve normalisation would be to deal with sparsity
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by imputing missing data prior to normalisation as discussed in
the next chapter (Fig. 1c). To begin with, we compare how much
the estimated size factors deviate from the truth. As long as there
is only a small proportion of DE-genes or if the differences are
symmetric, estimated size factors are not too far from the simu-
lated ones and there are no large differences among methods
(Fig. 3a and Supplementary Figs. 10 and 11). However with
increasing asymmetry, size factors deviate more and more and the
single cell methods scran25 and SCnorm26 perform markedly
better than the bulk methods TMM27, MR28 and Positive Counts
as well as the single cell method Linnorm29. Census30 is an outlier
in that it has a constant deviation of 0.1, which is due to filling in
1 when library sizes could not be calculated.

To determine the effect of these deviations on downstream
analyses, we evaluated the performance of DE inference using
different normalisation methods (Fig. 3b and Supplementary
Figs. 12–15). Firstly, the differences in the TPR across normal-
isation methods are only minor, only Linnorm performed
consistently worse (Supplementary Fig. 13). In contrast, the
ability to control the FDR heavily depends on the normalisation

method (Supplementary Fig. 14). For small numbers of DE-genes
or symmetrically distributed changes, the FDR is well controlled
for all methods except Linnorm. However, with an increasing
number and asymmetry of DE-genes, only SCnorm and scran
keep FDR control, provided that cells are grouped or clustered
prior to normalisation. In our most extreme scenario with 60%
DE-genes and complete asymmetry, all methods except Census
loose FDR control. SCnorm, scran, Positive Counts and MR
regain FDR control with spike-ins for 60% completely asym-
metric DE-genes (Supplementary Fig. 14). Given similar TPR of
the methods, this FDR control determines the pAUC (Fig. 3b, c).

Since in real data it is usually unknown what proportion of
genes is DE and whether cells contain differing levels of mRNA,
we recommend a method that is robust under all tested scenarios.
Thus, for most experimental setups scran is a good choice, only
for Smart-seq2 data without spike-ins, Census might be a better
choice.

Imputation has little impact on pipeline performance. If the
main reason why normalisation methods perform worse for
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scRNA-seq than for bulk data is the sparsity of the count matrix,
reducing this sparsity by either more stringent filtering or
imputation of missing values should remedy the problem31. Here,
we test the impact of frequency filtering and three imputation
approaches (DrImpute32, scone33, SAVER34) on normalisation
performance. Note, that we use the imputation or filtering only to

obtain size factor estimates, that are then used together with the
raw count matrix for DE-testing.

We find that simple frequency filtering has no effect on
normalisation results (Fig. 3d). Performance as measured by
pAUC is identical to using raw counts. In contrast, imputation
can have an effect on performance and there are large differences
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among methods. Imputation with DrImpute and scone rarely
increased the pAUC and occasionally as in the case of SCRB-seq
with MR normalisation, the pAUC even decreased by 100 and
76%, respectively due to worse FDR control relative to using raw
counts (Supplementary Fig. 18). In contrast, these two imputation
methods achieved an appreciable increase in pAUC together with
scran normalisation, ~28, 4 and 9% for 10× Genomics, SCRB-seq
and Smart-seq2 data, respectively. SAVER on the other hand
never made things worse, irrespective of data set and normal-
isation method but was able to rescue FDR control for
MR normalisation of UMI data, even in a completely asymmetric
DE-pattern.

These observations suggest that data sets with a high gene
dropout rate might benefit more from imputation than data
sets with a relatively low gene dropout rate (Supplementary
Figs. 16–18). In order to further investigate the effect of
imputation on sparse data, we downsampled the Smart-seq2
and SCRB-seq data, which were originally based on 1 million
reads/cell, to make them more comparable to the 10X-HGMM
data with on average of 60,000 reads/cell. A radical down-
sampling to 10% of the original sequencing depth decreases the
number of detected genes for SCRB-seq by only 1%, suggesting
that the original RNA-seq library was sequenced to saturation.
In contrast, the Smart-seq2 data were much less saturated at 1
million reads/cell: Downsampling reduced the number of
detected genes by 34%. However, the relative effect of
imputation on performance remains small. This is probably
due to the fact that the main effect of downsampling is a
reduction in the detected genes, which also cannot be imputed.
Thus, if a good normalisation method is used to begin with
(e.g. scran with clustering), the improvement by imputation
remains relatively small.

Good normalisation removes the need for specialised DE-tools.
The final step in our pipeline analysis is the detection of DE-
genes. Recently, Soneson et al.31 benchmarked 36 DE approaches
and found that edgeR27, MAST35, limma-trend36 and even the T-
Test performed well. Moreover, they found that for edgeR, it is
important to incorporate an estimate of the dropout rate per cell.
Therefore, we combine edgeR here with zingeR37.

Both edgeR-zingeR and limma-trend in combination with a
good normalisation reach similar pAUCs as using the simulated
size factors (Fig. 4). However, in the case of edgeR-zingeR this
performance is achieved by a higher TPR paid while loosing FDR
control (see Supplementary Figs. 19–21), even in the case of
symmetric DE-settings (Supplementary Figs. 22–24).

Nevertheless, we find that DE-analysis performance strongly
depends on the normalisation method and on the library
preparation method. In combination with the simulated size
factors or scran normalisation, even a T-Test performs well.

Conversely, in combination with MR or SCnorm, the T-Test has
an increased FDR (Supplementary Fig. 20). SCnorms bad
performance with a T-Test was surprising given SCnorms good
performance with limma-trend (Fig. 3b). One explanation could be
the relatively large deviation of SCnorm derived size factors (Fig. 3a
and Supplementary Fig. 11) which inflate the expression estimates.

Furthermore, we find that MAST performs consistently worse
than the other DE-tools when applied to UMI-based data, but
-except in combination with SCnorm- it is doing fine with Smart-
seq2 data. Interestingly, Census normalisation in combination
with edgeR-zingeR outperformed limma-trend with Smart-seq2
(Supplementary Fig. 25).

In concordance with Soneson et al.31, we found that limma-
trend, a DE-tool developed for bulk RNA-seq data showed the
most robust performance. Moreover, library preparation and
normalisation appeared to have a stronger effect on pipeline
performance than the choice of DE-tool.

Normalisation is overall the most influential step. Because
we tested a nearly exhaustive number of ~3000 possible scRNA-
seq pipelines, starting with the choice of library preparation
protocol and ending with DE-testing, we can estimate the
contribution of each separate step to pipeline performance for
our different DE-settings (Fig. 1b). We used a beta regression
model to explain the variance in pipeline performance with
the choices made at the seven pipeline steps (1) library pre-
paration protocol, (2) spike-in usage, (3) alignment method, (4)
annotation scheme, (5) preprocessing of counts, (6) normal-
isation and (7) DE-tool as explanatory variables. We used the
difference in pseudo-R2 between the full model including
all seven pipeline steps and leave-one-out reduced models to
measure the contribution of each separate step to overall
performance.

All pipeline choices together (the full model) explain ~50 and
~60% of the variance in performance, for 20 and 60% DE-genes,
respectively (Fig. 5a). Choices of preprocessing the count matrix
contribute very little (ΔR2 ≤ 1%). The same is true for annotation
(ΔR2 ≤ 2%) and aligner choices (ΔR2 ≤ 5%). For aligner and
annotation, it is important to note that these are upper bounds,
because our simulations do not include differences in gene
detection rates (Fig. 2c).

Surprisingly, the choice of DE-tool only matters for symmetric
DE-setups (ΔR2

DE¼0:2 ¼ 15%; ΔR2
DE¼0:6 ¼ 11%), and the choice of

library preparation protocol has an even bigger impact on
performance for symmetric DE-setups (ΔR2

Symmetric ¼ 17� 29%)
and additionally for 5% asymmetric changes (ΔR2

5%Asymmetric ¼ 17%).
Normalisation choices have overall a large impact in all DE-settings
(ΔR2= 12–38%), where the importance increases with increasing
levels of DE-genes and increasing asymmetry. Spike-ins are

Fig. 2 Expression Quantification. a Read alignment and assignment rates per library preparation protocol stratified over aligner and annotation. The lighter
shade represents the percentage of the total reads that could be aligned and the darker shade the percentage that also was uniquely assigned (see also
Supplementary Fig. 3). For comparability, cells were downsampled to 1 million reads/cell, with the exception of 10× Genomics data that were only
sequenced to on average 60,000 reads/cell. Hence, these data are farther from saturation and have a higher UMI/read ratio. b Number of genes per UMI
with >1 reads for BWA and STAR alignment using the SCRB-seq data set and GENCODE annotation. Colours denote number bins of UMIs. c Number of
genes detected per Library Preparation Protocol stratified over Aligner and Annotation (i.e. at least 10% nonzero expression values) (see also
Supplementary Fig. 4). d Estimated mean expression, dispersion and gene dropout rates for SCRB-seq and Smart-seq2 data using STAR, BWA or kallisto
alignments with GENCODE annotation (see also Supplementary Fig. 7). e Mean-dispersion fitting line applying a cubic smoothing spline with 95%
variability bands for SCRB-seq and Smart-seq2 data using STAR, BWA or kallisto alignments with GENCODE annotation (see also Supplementary Fig. 8).
f The effect of quantification choices on the power (TPR) to detect differential expression stratified over library preparation and aligner. The expression of
10,000 detected genes over 768 cells (384 cells per group) were simulated given the observed mean-variance relation per protocol. Five percent of the
simulated genes are differentially expressed following a symmetric narrow gamma distribution. Unfiltered counts were normalised using scran. Differential
expression was tested using limma-trend (see also Supplementary Fig. 9)
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only necessary if many asymmetric changes are expected and
have little or no impact if only 5% of the genes are DE or the changes
are symmetric (Fig. 5a). Moreover, for completely asymmetric
DE-patterns, the regression model did not converge without
normalisation and spike-ins, because their absence or presence alone
pushed the MCCs to the extremes.

For the best performing pipeline [SCRB-seq+ STAR+
GENCODE+ SAVER imputation+ scran with clustering+
limma-trend], using 384 cells per group instead of 96 improves

performance only by 6.5–8%. Sample size is more important if a
naive pipeline is used. For [SCRB-seq+ BWA+GENCODE+
no count matrix preprocessing+MR+ T-Test] the perfor-
mance gain by increasing sample size is 10–12% and even
worse, for many asymmetric DE-genes, lower sample sizes
occasionally appear to perform better (Fig. 5b and Supplemen-
tary Fig. 26). Next, we tested our pipeline on publicly available
10× Genomics data set containing the expression profiles of
approx. 1000 human peripheral mononuclear blood cells
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(PBMC)16. First, we classified the cells using SingleR38 into the
celltypes available in the Blueprint Epigenomics Reference39

distinguishing Monocytes, NK-cells, CD8+ T-cells, CD4+ T-
cells and B-cells (Fig. 5c, d). We applied the previously defined
good (STAR+ gencode+ SAVER imputation+ scran with
clustering+ limma-trend) and naive (BWA+ gencode+ no
preprocessing+MR+ T-Test) pipeline to identify DE-genes
between the cell types. Cross-referencing the identified

DE-genes with known differences in marker gene expression39,
we find that the good pipeline always identifies a higher fraction
of the marker genes as DE than the naive pipeline (Fig. 5e).
Comparing NK-cells and CD8+ T-cells, the good pipeline
identifies 148 known markers as DE, while the naive pipeline
finds only 54. The diminished separation between those two
cell-types using the naive pipeline is already visible in the
UMAP (Fig. 5d).

Fig. 3 Normalisation choices determines DE-analysis performance, not count preprocessing. The data in panels a–c are based on Smart-seq2 data, all
panels are based on two groups of 384 cells, STAR alignment with GENCODE annotation was used for quantification. a The root mean squared error
(RMSE) of estimated library size factors per normalisation method is plotted for 20% asymmetric DE-genes (see also Supplementary Fig. 11) (Box and
whisker plot with centre line=median, bounds of box= 25th and 75th percentile, whiskers= 1.5 * interquartile range from the lower and upper bounds of
the box). b The discriminatory ability determined by the partial area under the curve (mean pAUC ± s.d.) based on DE testing with limma-trend for
normalisation without spike-ins per DE-pattern. The grey ribbon indicates the mean pAUC ± s.d. given simulated size factors (see also Supplementary
Figs. 13–15). c Using spike-ins for normalisation for 60% completely asymmetric DE-genes. d Effect of preprocessing the count matrix for 20% asymmetric
DE-genes without spike-ins. Counts were either left asis (‘none’), filtered or imputed prior to normalisation. The derived scaling factors were then used for
normalisation and DE testing was performed on raw counts using limma-trend (see also Supplementary Figs. 16–18). This procedure was applied to the full
count matrix (circle) and to the count matrix downsampled to 10% of its original sequencing depth (triangular). Missing data points are due to failing
imputation runs with the sparser data
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In summary, we identify normalisation and library preparation
as the most influential choices and the observation that
differences in computational steps alone can significantly lower
the required sample size nicely illustrates the importance of
bioinformatic choices.

Discussion
Here we evaluate the performance of complete computational
pipelines for the analysis of scRNA-seq data under realistic
conditions with large numbers of DE-genes and differences in
total mRNA contents between groups (Fig. 1). Furthermore, our
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simulations allow us not only to investigate the influence of
choices made at each pipeline step separately, but also to estimate
the relative importance and interactions between different steps
of an entire scRNA-seq analysis pipeline. We implemented all
assessed computational methods and more in powsimR, so that
users can easily evaluate pipeline performance given their own
data and expected DE-settings.

Beginning with the creation of the raw count matrix, we find
that transcriptome mapping with BWA19 appears to recover the
largest number of genes. However, many of these are probably
due to falsely mapped reads, also increase expression variance
which ultimately results in a lower sensitivity (Fig. 2c–f). In
contrast, the pseudo-alignment method kallisto24 appears to
assign reads precisely, but looses a lot of reads leading to a lower
mean expression. Finally, a genome mapping approach using the
splice-aware aligner STAR18 in conjunction with GENCODE
annotation recovers the most reads with the highest accuracy
(Fig. 5f).

Concerning the preprocessing of the count matrix, we found in
concordance with Andrews et al.40 that in particular for sparse
data such as 10X, SAVER34 imputation before normalisation
improves performance, while filtering genes has no effect with
our data sets and combinations of normalisation and DE-testing
methods.

The choice that had the largest impact on performance
throughout all tested DE-settings is the choice of normalisation
method. Only for symmetric changes, the choice of library pre-
paration protocol had a slightly larger impact than normalisation.
In line with Evans et al. (2018)11, we found that normalisation
performance of bulk methods and also some of the single cell
methods declined with asymmetry (Fig. 3b). In particular, for
60% completely asymmetric DE-genes only Census retained FDR
control. Unfortunately, Census is not recommended for the use
with UMI-counts. Thus, for UMI-counts and 60% completely
asymmetric changes, only the use of spike-ins could restore test
performance. In the debate about the usefulness of spike-ins17,41,
we land on the pro side: Our simulations clearly show that spike-
ins are useful in DE-testing settings with asymmetric changes
which is likely to be a common phenomenon in scRNA-seq data.
Due to good performance across DE-settings and its speed
(Supplementary Figs. 22 and 27) we would recommend scran
with prior clustering as the best choice for normalisation (Fig. 5f).

The choice in DE-testing method, our final pipeline step had
relatively little impact on overall pipeline performance. A good
normalisation prior to DE-testing alleviates the need for more
complex and thus vulnerable methods, such as for example
MASTs hurdle model which implicitly assumes that the CPM
values were generated from zero inflated negative binomial count
distribution. Indeed, we previously showed that also scRNA-seq
data fit a negative binomial distribution rather well and that the
previously reported zero-inflation in scRNA-seq data is mainly
due to amplification noise which is removed in UMI-data10.
Hence, it is not surprising that in concordance with Soneson

et al.31, we find that relatively straight forward DE-testing
methods adapted from bulk RNA-seq perform well with scRNA-
seq data.

Finally, we want to remark that paying attention to the details
in a computational pipeline and in particular to normalisation
pays off. The effect of using a good pipeline as compared to a
naively compiled one has a similar or even greater effect on the
potential to detect a biological signal in scRNA-seq data as an
increase in cell numbers from 96 to 384 cells per group (Fig. 5b).

Methods
Single cell RNA-seq data sets. The starting point for our comprehensive pipeline
comparison is the scRNA-seq library preparation (Fig. 1a). In our comparison, we
included the gene expression profiles of mouse embryonic stem cells (mESC) as
published in Ziegenhain et al.2 (Supplementary Fig. 1). We selected four data sets
for our comparison: Smart-seq213 a well-based full-length scRNA-seq protocol,
CEL-seq215 a well-based 3′ UMI-protocol using linear amplification, SCRB-seq a
well-based 3′ UMI-protocol with PCR amplification2,42 and Drop-seq14 a droplet-
based 3′ UMI-protocol. In addition, 92 poly-adenylated synthetic RNA transcripts
of known concentration designed by the External RNA Control Consortium
(ERCCs)43 were spiked in for all methods except Drop-seq. All raw cDNA
sequencing reads were cut to a length of 45 bases and downsampled to one million
cDNA reads per cell (Supplementary Table 1 and Supplementary Fig. 1).

Finally, we added a 10X Chromium data set sequencing mouse NIH3T3 cells16,
yielding ~400 good cells with on average ~60,000 reads/cell and another 10X data
set analysing ~1000 human peripheral blood mononuclear cells (PBMCs).

These choices of library preparation protocols cover the diversity in current
protocols without imposing partiality due to biological differences and technical
handling.

Gene expression quantification. For genome mapping and quantification of the
UMI-data with a splice-aware aligner, we used the zUMIs44 (v.0.0.3) pipeline with
STAR18 (v.2.5.3a) and the mouse genome (Mus_musculus.GRm38) together with
annotation files (gtf) for GENCODE (vM15), Vega (VEGA68) and RefSeq (Release
85) (Supplementary Table 2). zUMIs is a fast and flexible pipeline for processing
scRNA-seq data where cell barcode or UMI reads with low sequence quality reads
are filtered out prior to UMI collapsing by sequence identity which yields identical
count results as UMI-tools44,45. For Smart-Seq2 we use the same pipeline settings
as in zUMIs, simply omitting the UMI collapsing step (Supplementary Table 3).

For transcriptome alignment, we downloaded transcriptome fasta files
corresponding to the annotations listed above. We used BWA19 (v0.7.12) to align
the scRNA-seq reads to these transcriptomes. We only removed reads that aligned
equally well to transcripts of different genes as truly multi-mapped. The remaining
reads were tallied up per gene. For UMI data, the reads were collapsed per gene by
identity, similar to the strategy recommended in zUMIs.

For kallisto24 (v0.43.1), a transcriptome-guided pseudo-alignment method, we
followed the recommended quantification procedure for scRNA-seq data to yield
abundance estimates per equivalence class. To be comparable with other alignment
methods, the counts per equivalence class were collapsed per gene. The counts of
equivalence classes representing multiple genes were filtered out. For SCRB-seq,
CEL-seq2, Drop-seq and 10× Genomics libraries, we chose the UMI-aware
quantification option. The ERCC spike-in sequences were appended to the genome
or transcriptome sequences for quantification.

Simulations. We used powsimR to estimate, simulate and evaluate single cell
RNA-seq experiments10. PowsimR has been independently validated for bench-
marking DE-approaches31 and consistently reproduces the mean-variance rela-
tionship and dropout rates of genes of scRNA-seq data (see also Supplementary
Fig. 28). The gene expression quantification using three different aligners in
combination with three annotations per library preparation protocol produced 45
count matrices. These count matrices are the basis for our estimation in powsimR.

Fig. 5 Evaluation of analysis pipeline. a, b The expression of 10000 genes over 768 cells were simulated and 5, 20 or 60% of the genes were differentially
expressed following a symmetric or asymmetric narrow gamma distribution. This simulation setup was applied to protocols, alignments, annotations,
preprocessing of counts, normalisation and DE tools. For each analysis set, the Matthew Correlation Coefficient (mean MCC ± s.d.) was averaged over
20 simulations and rescaled to [0, 1] interval. The MCC was used as a response variable in beta regression models with log-log link function. a The
contribution of each covariate in the full model (~Protocol+Aligner+Annotation+ Preprocessing+Normalisation+DE-Tool). b Performance according
to sample size, 1 good and 1 naive pipeline (see also Supplementary Fig. 26). c–e The expression of ~1000 human PBMcs profiled with 10× Genomics were
processed using the good and naive pipeline. Cell types were identified with SingleR classification using the Blueprint Epigenomics Reference. Cell types are
represented in a UMAP, for good c and naive d pipeline, respectively. True marker genes, i.e., given by the reference, per pairwise comparison of cell types
for the good and naive pipeline are given in e where genes needed to have a adjusted p-value < 0.1, absolute log2 fold change threshold (>0.1) and
expressed in at least 10% of the cells to be considered. f Pipeline recommendations for UMI and Smart-seq2 data
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Genes needed at least one read or UMI count in at least one cell to be considered in
the estimation for simulation parameters. Since we10 and others46,47 have found
previously, we assume that UMI counts follow a negative binomial distribution and
only Smart-seq2 needs the inclusion of zero-inflation. To simulate spike-in data, we
added an implementation of the simulation framework for pure technical variation
of spike-ins described in Kim et al.48 to powsimR. The parameters required for
these simulations were estimated from 92 ERCC spike-ins in the SCRB-seq, CEL-
seq2 and Smart-seq2 data, respectively2. To evaluate the effect of differing
sequencing depths, we added a new module to powsimR that estimates the degree
of PCR amplification for UMI data. This allows the user to downsample a read
count matrix by binomial thinning as implemented in edgeR thinCounts()27 and
then to reconstruct the corresponding UMI count matrix base on the estimated
PCR amplification rates.

For a detailed evaluation of the pipelines, we simulated two groups of cells for
pairwise comparisons with the following three sample size setups: 96 vs. 96, 384 vs.
384 or 50 vs. 200 cells (Fig. 1b). For simplicity, we kept the number of genes that we
simulated constant at 10,000. To introduce slight variation in expression capture,
we draw a different size factor for each cell from a narrow normal distribution (X ~
N(μ= 1, σ= 0.1)) (Fig. 1b). This distribution fits the considered data sets well,
irrespective of the applied library preparation method. Furthermore, the two
groups of cells can have 5, 20 or 60% differentially expressed genes. To capture the
asymmetry of observed expression differences, we considered three setups of DE-
patterns: symmetric (50% up- and 50% downregulated), asymmetric (75% up- and
25% downregulated) or completely asymmetric (100% upregulated). The
magnitude of expression change is drawn from a narrow gamma distribution (X ~
Γ(α= 1, β= 2)) defining the log2 fold change, which is then added to the sampled
mean expression. The combination of these parameters results in a total of 27 DE-
setups that were then applied to the parameter estimates from 37 different count
matrices to simulate 20 replicates for each setting, producing a total of
19,980 simulated data sets.

These data sets were then analysed by a nearly exhaustive number of
combinations of four imputation strategies (scone, SAVER, DrImpute), gene
dropout filtering (remove genes with more than 80% zero expression values)
together with seven normalisation approaches (TMM, MR, Linnorm, Census,
Linnorm, scran, SCnorm) with or without spike-ins, depending on library
preparation protocol and method (Fig. 1c). Normalisation factors were then
derived as described in Soneson et al.31 and used in conjunction with the raw count
matrices for DE-testing using four representative approaches (T-Test, limma-trend,
edgeR-zingeR, MAST). The resulting p-values were corrected for multiple testing
with Benjamini-Hochberg FDR and we applied a threshold level of 10% to define
positive test results. All these steps were seamlessly implemented into powsimR
(github: https://github.com/bvieth/powsimR). In total we analysed 2,979 different
RNA-seq pipelines.

Evaluation metrics. To evaluate the normalisation results, we determined the root
mean squared error (RMSE) of a robust linear model using the difference between
estimated and simulated library size factors as response variable in rlm() imple-
mented in R-package MASS49 (v.7.3–51.1) (Supplementary Fig. 10)9.

All other measures are based on the final results of an entire scRNA-seq
pipeline ending with DE-testing. Knowing the identity of the genes that were
simulated to show differing expression levels and the results of the DE-testing, we
used a number of metrics related to the confusion matrix tabulating the number of
true positives, false positives, true negatives and false negatives. We define the
power to detect DE with the TPR (TPR ¼ TP

TPþFN). The false discovery rate is
defined as FDR ¼ FP

FPþTP. We combine these two measures in a TPR versus FDR
curve to quantify the trade-off between true and false discoveries in a genome-wide
multiple testing setup as advocated by50. We then summarise these curves by their
partial area under curve (pAUC) of TPR versus observed FDR that still ensures
FDR control at the nominal level of 10% (Supplementary Fig. 11). This way of
calculating the AUC is ideal for data with relatively high true negative rates as the
partial integration does not punish methods that are over-conservative, i.e. that stay
way below the nominal FDR.

To summarise the whole confusion matrix in one representative value we chose
the Matthews Correlation Coefficient (MCC ¼ TP�TN � FP�FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ
p ),

because it is a balanced measure ensuring a reliable comparison of method
performance across all DE-settings50,51. As for the pAUC, we calculated the maximal
value of MCC where the cutoff still ensured FDR control at the nominal level of 10%.

To quantify the relative contribution of each step in the analysis pipeline, we
used the MCC as a response variable in a beta regression model implemented in R-
package betareg (v.3.1–1)52 with each individual pipeline step. Because the MCC
assumes the extremes of 0 and 1 in some DE-settings, we applied the recommended

transformation, namely MCCtransformed ¼ MCC�ðn�1Þþ0:5
n , where n is the sample

size53. The contribution is then given by the difference between the full model
pseudo-R2 containing all covariates versus a model leaving one step out at a time.
This is then scaled to the total variance explained to give relative ΔR2 percentages.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Any relevant data are available from the authors upon reasonable request. The scRNA-
seq data used in this manuscript are all publicly available, and they are summarised in
Supplementary Table 1. The SCRB-seq, Smart-seq2, Drop-seq, CEL-seq2 data are
available at the Gene Expression Omnibus (GEO) under accession code GSE75790. The
HGMM and PBMC data sets are available at 10x Genomics’s official website (https://
support.10xgenomics.com/single-cell-gene-expression/datasets). The data produced by
the analysis in this manuscript is freely available from the following zenodo data
repository (https://doi.org/10.5281/zenodo.3364466).

Code availability
The software and code used are summarised in Supplementary Tables 3 and 4. A
compendium containing processing scripts and detailed instructions to reproduce the
analysis for this manuscript is freely available from the following GitHub repository
(https://github.com/bvieth/scRNA-seq-pipelines).
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Supplementary Figure 1: Schematic overview of scRNA-seq data sets. In our comparison, we in-
cluded the gene expression profiles of mouse embryonic stem cells (mESC) as published in1. Briefly, the
mESC were cultured under two inhibitor/leukemia inhibitory factor (2i /LIF) conditions to ensure rather
homogeneous cell populations2. We selected four scRNA-seq methods (Smart-seq2, SCRB-seq, Drop-seq,
CEL-seq2) that were used to construct libraries in two independent replicate batches. In addition, 92
poly-adenylated synthetic RNA transcripts of known concentration designed by the External RNA Con-
trol Consortium (ERCCs)3 were spiked in for all methods except Drop-seq. All raw sequencing reads
were cut and downsampled to 45 base long one million cDNA reads per cell. We included two commonly
used expression quantification approaches, namely reference-guided alignment in STAR and bwa as well
as pseudoalignment in kallisto in combination with three annotations. Furthermore, we downloaded a
scRNA-seq data set from 10X Genomics Support, namely the 1k 1:1 Mixture of Fresh Frozen Human
(HEK293T) and Mouse (NH3T3) Cells4 generated using the v2 gene expression chemistry. We proceeded
with approx. 400 mouse cells with 70000 reads/cell on average.
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Supplementary Figure 5: Properties of genes detected by the different mapping strategies. Mappa-
bility is represented as 10M25, where M25 is the lower quartile of the mappability scores6 across the gene.
All other gene properties were extracted from the corresponding annotation file. Genes detected by all
three mappers tend to have higher expression levels. The only other consistent pattern is that genes only
detected by kallisto have on average a lower expression and genes that escape detection by kallisto have
slightly lower mappability. Box and whisker plot with centre line = median, bounds of box = 25th and
75th percentile, whiskers = 1.5 * interquartile range from the lower and upper bounds of the box.

4

Supplementary Figure 6: Differences in genes detected with RefSeq and Gencode annotation. We used
the matching between RefSeq and Gencode transcript annotations that is provided by Gencode and then
summarise detection at the gene level. Comparing the genes found using Gencode vs. RefSeq annotation,
we find that for the 3-prime method SCRB-seq both annotations yield approximately the same number
of genes, but ∼1,000 appear annotation-specific. The Gencode annotation is more comprehensive, in
that it contains more and often longer transcripts and indeed the Gencode-specific genes are longer and
thus 3 mapping reads are easily lost. The RefSeq specific transcripts are more puzzling and the only
distinguishing feature that we see is that they appear more GC-rich. For full-length data generated with
Smart-seq2, Gencode detects 2,500 more genes than RefSeq and there are almost no RefSeq specific genes.
Genes detected with Gencode only are longer and have on average more exons and transcripts. Box and
whisker plot with centre line = median, bounds of box = 25th and 75th percentile, whiskers = 1.5 *
interquartile range from the lower and upper bounds of the box.
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Supplementary Figure 9: The effect of quantification choices on detecting differential expression. The
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differentially expressed following an asymmetric narrow gamma distribution. Any gene correctly called
differentially expressed at FDR 10% contributed to the True Positive Rate (TPR). The TPR per library
preparation method stratified over aligner and annotation is plotted. Box and whisker plot with centre
line = median, bounds of box = 25th and 75th percentile, whiskers = 1.5 * interquartile range from the
lower and upper bounds of the box.

8

RMSE = 0.012 RMSE = 0.027 RMSE = 0.161

0.75 1.00 1.25 1.50 0.75 1.00 1.25 1.50 0.75 1.00 1.25 1.50

0.75

1.00

1.25

1.50

True Size Factors

E
st

im
at

ed
 S

iz
e 

Fa
ct

or
s

Supplementary Figure 10: Illustration for RMSE evaluation of library size factors. The expression
of 10,000 genes over 768 cells (384 cells per group (red and cyan points) were simulated and 20% of the
genes were differentially expressed following an asymmetric narrow gamma distribution. To compare the
estimated library size factors with the simulated library size factors, the factors were centred and scaled.
The root mean squared error (RMSE) of a robust linear regression represents the deviation between
estimated and simulated size factors.

9

2.5
P

ipeline
B

enchm
arking

129



Symmetric Asymmetric Completely 
Asymmetric

5%
 D

E
20%

 D
E

60%
 D

E

0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2

MR
PosCounts

TMM
Census
Linnorm

SCnorm with groups
SCnorm with cluster

scran
scran with groups
scran with cluster

MR
PosCounts

TMM
Census
Linnorm

SCnorm with groups
SCnorm with cluster

scran
scran with groups
scran with cluster

MR
PosCounts

TMM
Census
Linnorm

SCnorm with groups
SCnorm with cluster

scran
scran with groups
scran with cluster

RMSE

Deviance between estimated and simulated library size factors (RMSE) for Smart−seq2 dataA

Symmetric Asymmetric Completely 
Asymmetric

5%
 D

E
20%

 D
E

60%
 D

E

0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2

MR

PosCounts

TMM

Linnorm

SCnorm with groups

SCnorm with cluster

scran

scran with groups

scran with cluster

MR

PosCounts

TMM

Linnorm

SCnorm with groups

SCnorm with cluster

scran

scran with groups

scran with cluster

MR

PosCounts

TMM

Linnorm

SCnorm with groups

SCnorm with cluster

scran

scran with groups

scran with cluster

RMSE

Deviance between estimated and simulated library size factors (RMSE) for UMI dataB
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A Smart-seq2 data B UMI data.
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Supplementary Figure 13: Power to detect true differential expression per normalisation method.
The expression of 10,000 genes over 768 cells (384 cells per group) were simulated and 5%, 20% or 60% of
the genes were differentially expressed following a symmetric, an asymmetric or a completely asymmetric
narrow gamma distribution. The power to detect DE (mean TPR ± s.d.) based on DE-testing with
limma-trend per normalisation method is plotted. The lighter shade indicates the usage of spike-ins for
normalisation. The grey ribbon indicates the TPR given simulated size factors (mean TPR ± s.d.).
A Smart-seq2 data B UMI data.
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Supplementary Figure 14: Control over false discoveries per normalisation method. The expression
of 10,000 genes over 768 cells (384 cells per group) were simulated and 5%, 20% or 60% of the genes were
differentially expressed following a symmetric, an asymmetric or a completely asymmetric narrow gamma
distribution. The BH-FDR control based on DE-testing with limma-trend per normalisation method is
plotted (mean FDR ± s.d.). The lighter shade indicates the usage of spike-ins for normalisation. The
dashed line indicates the nominal FDR level of 10%. The grey ribbon indicates the FDR given simulated
size factors (mean FDR ± s.d.).
A Smart-seq2 data B UMI data.
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Trade−off between power and false discoveries (pAUC)  for UMI dataB

Supplementary Figure 15: Trade-off between power and false discoveries per normalisation method.
The expression of 10,000 genes over 768 cells (384 cells per group) were simulated and 5%, 20% or 60% of
the genes were differentially expressed following a symmetric, an asymmetric or a completely asymmetric
narrow gamma distribution. The discriminatory ability determined by the partial area under the curve
(pAUC) based on DE-testing with limma-trend for normalisation per DE-setup is plotted (mean pAUC
± s.d.). The lighter shade indicates the usage of spike-ins for normalisation. The grey ribbon indicates
the pAUC given simulated size factors (mean pAUC ± s.d.).
A Smart-seq2 data B UMI data.
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Supplementary Figure 16: Power of normalisation method using filtered or imputed counts. The
expression of 10,000 genes over 768 cells (384 cells per group) were simulated and 20% of the genes were
differentially expressed following an asymmetric narrow gamma distribution. The power to detect DE
(TPR) based on DE-testing with limma-trend per count preprocessing approach stratified over library
preparation protocol and normalisation method is plotted (mean TPR ± s.d.).
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FDR control of normalisation methods using filtered or imputed counts

Supplementary Figure 17: FDR control of normalisation method using filtered or imputed counts.
The expression of 10,000 genes over 768 cells (384 cells per group) were simulated and 20% of the
genes were differentially expressed following an asymmetric narrow gamma distribution. The BH-FDR
control based on DE-testing with limma-trend per count preprocessing approach stratified over library
preparation protocol and normalisation method is plotted (mean FDR ± s.d.). The dashed line indicates
the nominal FDR level of 10%.
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Performance of normalisation methods using filtered or imputed counts (pAUC)

Supplementary Figure 18: Trade-off between power and false discoveries per normalisation method
using filtered or imputed counts. The expression of 10,000 genes over 768 cells (384 cells per group) were
simulated and 20% of the genes were differentially expressed following an asymmetric narrow gamma
distribution. The discriminatory ability determined by the partial area under the curve (pAUC) based
on DE-testing with limma-trend per count preprocessing approach stratified over library preparation
protocol and normalisation method is plotted (mean pAUC ± s.d.).
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Power of DE methods to detect 20% Asymmetric

Supplementary Figure 19: Power of DE-tools for 20% Asymmetric. The expression of 10,000 genes
over 768 cells (384 cells per group) were simulated given the observed mean-variance relation per protocol.
20% of the simulated genes are differentially expressed following an asymmetric narrow gamma distri-
bution. Unfiltered counts were normalised using simulated library size factors or applying normalisation
methods. Differential expression was tested using T-Test, limma-trend, MAST or edgeR-zingeR. The
power to detect differential expression is plotted (mean TPR ± s.d.).
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FDR control of DE methods in the presence of 20% Asymmetric

Supplementary Figure 20: FDR control of DE-tools for 20% Asymmetric. The expression of 10,000
genes over 768 cells (384 cells per group) were simulated given the observed mean-variance relation
per protocol. 20% of the simulated genes are differentially expressed following an asymmetric narrow
gamma distribution. Unfiltered counts were normalised using simulated library size factors or applying
normalisation methods. Differential expression was tested using T-Test, limma-trend, MAST or edgeR-
zingeR. The FDR control of the DE-methods is plotted (mean FDR ± s.d.). The dashed line indicates
the nominal FDR level of 10%.
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Performance of DE methods to detect 20% Asymmetric

Supplementary Figure 21: The trade-off between power and false discoveries of DE-tools for 20%
Asymmetric. The expression of 10,000 genes over 768 cells (384 cells per group) were simulated given
the observed mean-variance relation per protocol. 20% of the simulated genes are differentially expressed
following an asymmetric narrow gamma distribution. Unfiltered counts were normalised using simulated
library size factors or applying normalisation methods. Differential expression was tested using T-Test,
limma-trend, MAST or edgeR-zingeR. The discriminatory ability determined by the partial area under
the curve (pAUC) based on the TPR-FDR curve is plotted (mean pAUC ± s.d.).
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Supplementary Figure 22: Power of DE-tools for 20% Symmetric. The expression of 10,000 genes
over 768 cells (384 cells per group) were simulated given the observed mean-variance relation per protocol.
20% of the simulated genes are differentially expressed following a symmetric narrow gamma distribution.
Unfiltered counts were normalised using simulated library size factors or applying normalisation methods.
Differential expression was tested using T-Test, limma-trend, MAST or edgeR-zingeR. The power to
detect differential expression is plotted (mean TPR ± s.d.).
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Supplementary Figure 23: FDR control of DE-tools for 20% Symmetric. The expression of 10,000
genes over 768 cells (384 cells per group) were simulated given the observed mean-variance relation
per protocol. 20% of the simulated genes are differentially expressed following a symmetric narrow
gamma distribution. Unfiltered counts were normalised using simulated library size factors or applying
normalisation methods. Differential expression was tested using T-Test, limma-trend, MAST or edgeR-
zingeR. The FDR control of the DE-methods is plotted (mean FDR ± s.d.). The dashed line indicates
the nominal FDR level of 10%.
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Supplementary Figure 24: The trade-off between power and false discoveries of DE-tools for 20%
Symmetric. The expression of 10,000 genes over 768 cells (384 cells per group) were simulated given the
observed mean-variance relation per protocol. 20% of the simulated genes are differentially expressed
following a symmetric narrow gamma distribution. Unfiltered counts were normalised using simulated
library size factors or applying normalisation methods. Differential expression was tested using T-Test,
limma-trend, MAST or edgeR-zingeR. The discriminatory ability determined by the partial area under
the curve (pAUC) based on the TPR-FDR curve is plotted ( mean pAUC ± s.d.).
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Supplementary Figure 25: Performance of DE-tools using Census normalisation. The expression of
10,000 genes over 768 cells (384 cells per group) were simulated given the observed mean-variance relation
of Smart-seq2 data. 20% of the simulated genes are differentially expressed following an asymmetric nar-
row gamma distribution. Unfiltered counts were normalised using Census method. Differential expression
was tested using T-Test, limma-trend, MAST or edgeR-zingeR. The lighter shade indicates the usage of
spike-ins for normalisation.
A) The discriminatory ability determined by the partial area under the curve (pAUC) based on the
TPR-FDR curve is plotted (mean pAUC ± s.d.). B) FDR control (mean FDR ± s.d.). The dashed line
indicates the nominal FDR level of 10%. C) The power (TPR) to detect differential expression (mean
TPR ± s.d.).
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Supplementary Figure 26: Performance of pipelines. The expression of 10000 genes in 184, 250 or 768
cells were simulated and 5%, 20% or 60% of the genes were differentially expressed following a symmetric,
asymmetric or completely asymmetric narrow gamma distribution. This simulation setup was applied to
one good pipeline (SCRB-seq + STAR + GENCODE + no preprocessing + scran + limma-trend) and
one naive pipeline (SCRB-seq + STAR + GENCODE + no preprocessing + MR + T-Test). For each
analysis set, the Matthew Correlation Coefficient was averaged over 20 simulations (mean MCC ± s.d.)
and rescaled to [0,1] interval.
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Supplementary Tables

Protocol Description Cell Pro-
cessing

Full
Length

UMI Number
of cells

ERCC
Spike-ins

Raw reads
per cell

CEL-seq2 J1 mESC
cultured
in 2i/LIF
medium
(two
batches)

Fluidigm
C1

- + 48 + 48 + 1 million

Drop-seq J1 mESC
cultured
in 2i/LIF
medium
(two
batches)

Droplets - + 45 + 34 - 1 million

SCRB-seq J1 mESC
cultured
in 2i/LIF
medium
(two
batches)

FACS - + 44 + 49 + 1 million

Smart-
seq2

J1 mESC
cultured
in 2i/LIF
medium
(two
batches)

FACS + - 40 + 45 + 1 million

10X
Genomics

NH3T3
mouse
cells
(origi-
nally 1:1
mixture
of hu-
man and
mouse
cells with
a total of
1k cells)

10X Ge-
nomics
Chromium

- + 473 - ˜60 thou-
sand

10X
Genomics

Peripheral
blood
mononu-
clear cells
(PBMC)

10X Ge-
nomics
Chromium

- + 1022 - ˜54 thou-
sand

Supplementary Table 1: Description of single cell RNA-sequencing data sets.
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Name Version Number
of Tran-
scripts

Number
of Genes

Number
of Exons
per Tran-
script

Number
of Tran-
scripts
per Gene

Transcript
Length

Gene
Length

GENCODE M15 131195 52636 6 2 1690 2348
Vega 68 110696 41175 6 3 1718 2671
RefSeq
(curated)

85 34890 - 9 - 2852 -

Supplementary Table 2: Description of Mus musculus transcript annotations.

Name Command Ver-
sion

Ref.

BWA bwa index -p [annotation transcriptome ercc.fa] 0.7.12
9

kallisto kallisto index -i [annotation transcriptome ercc.fa] 0.43.1
5

BWA bwa aln -t [bwa-index] [protocol cDNA reads.fastq] >
[protocol.reads.sai]

0.7.12
9

BWA bwa samse [reads.sai] [protocol cDNA reads.fastq] >
[aligned.sam]

0.7.12
9

kallisto
&Smart-
seq2

kallisto pseudo -i [kallisto-index] -o
[outputpath] -b [protocol cDNA reads.fastq]
--single -l [Mean FragmentLength Protocol] -d
[SD FragmentLength Protocol]

0.43.1
5

kallisto &
UMI

kallisto pseudo -i [kallisto-index] -o
[outputpath] -b [protocol cDNA reads.fastq]
--single --umi -l [Mean FragmentLength Protocol] -d
[SD FragmentLength Protocol]

0.43.1
5

STAR zU-
MIs

STAR --runThreadN 12 --runMode genomeGenerate
--genomeDir /index/star/[annotation]
--genomeFastaFiles [mm10 genome annotation ercc.fa]
--sjdbGTFfile [mm10 genome annotation ercc.gtf]
--sjdbOverhang 44

2.5.3a
10

zUMIs bash <path-to-zUMIs>/zUMIs-master.sh -y
parameters.yaml ter.sh -f [protocol barcode reads.fq.gz]
-r [protocol cDNA reads.fq.gz] -n [protocol-batch] -g
[star-index] -a [mm10 genome annotation ercc.gtf]
-c [cell-barcode-range] -m [umi-barcode-range]
-l [read-length] -b [expected-cell-barcodes.txt]
-o [outputpath] -d 1000000 -R no -S yes -s 0 -i
[zUMIs-pipeline-path]

0.0.3
11

Supplementary Table 3: Alignment and assignment commands for expression quantification.
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Pipeline Step Method Name Version Reference
Preprocessing Gene Dropout Filtering - -
Preprocessing DrImpute 1.0 12

Preprocessing scone 1.6.1 13

Preprocessing SAVER 1.1.1 14

Normalisation MR in DESeq2 1.22.2 15

Normalisation PosCounts in DESeq2 1.22.2 15

Normalisation TMM in edgeR 3.24.3 16

Normalisation Census in monocle 2.10.1 17

Normalisation Linnorm 2.6.1 18

Normalisation SCnorm 1.4.3 19

Normalisation scran 1.10.1 20

DE-tool T-Test in stats 3.5.3 21

DE-tool limma-trend 3.38.3 22

DE-tool MAST 1.8.2 23

DE-tool edgeR-zingeR 0.1.0 24

Supplementary Table 4: Description of implemented methods in powsimR.
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3 | Discussion

The recent development of single-cell RNA sequencing protocols enables the quantification of

genome-wide expression profiles of thousands to millions of single cells opening up possibilities

to systematically characterize cells and the underlying developmental and regulatory mecha-

nisms213,88,214,215,86. Since the first publication on single-cell transcriptomics by Tang and

coworkers in 200944, hundreds of single-cell RNA-seq data sets from a variety of sources have

been released, profiling gene expression of sorted cells216,52, tumors217,50, whole dissociated

organs58,102 and even complete organisms130,131. Currently, it is also the main tool to

systematically characterize cells in several Atlas Projects like the Human Cell Atlas46,218.

Furthermore, scRNA-seq provides a powerful tool to reconstruct developmental patterns

by sampling cells during differentiation processes219,220,45 and to characterize intratumoral

heterogeneity221.

As scRNA-seq is increasingly used by many labs but still very novel, best practices are not

yet defined, neither for wet lab protocols nor for computational analysis tools. Quantitative

and independent investigations of scRNA-seq workflows is urgently needed to guide important

decisions on experimental design choices. I contributed to these efforts during my PhD by

developing realistic simulations for single-cell RNA-sequencing experiments, powsimR, and

showed that statistical power analysis is an ideal framework not only to determine the best

experimental design in terms of sample size plans but is also integral for evaluation and

comparison of all steps in a RNA-seq workflow.
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Establishing realistic simulations for statistical
power analysis of scRNA-seq experiments
(Manuscript III)

An integral first step in designing a simulation framework based on probability distributions

is finding the most appropriate sampling distribution for count data. Thus we evaluated

the fit of five distributions, namely the negative binomial (NB), the zero inflated negative

binomial (ZINB), Poisson (P), zero-inflated Poisson (ZIP) and the Beta-Poisson (BP) for a

total of 8 published studies that utilized 9 different RNA-seq library preparation methods154.

Similar to previous studies63,99, we found that even though single-cell data are very sparse

with low mean expression values compared to bulk data, the majority of gene expression

distributions is still best modeled by a negative binomial distribution. The zero-inflated

negative binomial is only the best fitting distribution for at most a quarter of the genes,

if amplification noise cannot be removed by experimental means63,210. We thus refrain

from using a mixture distribution, however for some of the protocols that do not utilize

UMIs, such as e.g. Smart-Seq2, the ZINB might provide a better fit and should be used

as a sampling distribution in the simulations of scRNA-seq experiments. In any case, both

distributions, NB and ZINB, are implemented in powsimR. Given the chosen distributions,

we estimate the observed mean, dispersion and zero, also called gene dropout, expression

values per gene. We then explicitly model the observed mean-dispersion relationship by a

locally weighted polynomial regression fit to simulate expression values closely mimicking

the observed mean-variance distribution as well as the gene dropout rates.

This simulation framework is the core of powsimR on which we then build a flexible tool

to assess statistical power and sample size requirements for differential expression analysis

of RNA-seq experiments. Firstly, we include all integral steps of a typical DE analysis

pipeline: We have implemented 8 preprocessing and imputation, 9 normalisation methods

and 14 DE-tools. Secondly, we offer a flexible framework to define effect sizes, sample

size and sequencing depth designs, and possible batch effects. Thirdly, the test results are

integrated to calculate error matrices for evaluation, where the True Positive Rate (TPR)

and False Discovery Rate (FDR) are the most informative in relation to experimental design
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question of RNA-seq experiments. Particularly, these matrices can be conditional on mean,

dispersion and dropout values so that for example sample size designs can also be evaluated

in terms of power to detect a significant biological differences for lowly expressed or highly

variable expressed genes. In addition to providing a framework to design sample size plans

ensuring sufficient statistical power, powsimR can also inform about the power to detect

a biological signal in a data set at hand. This is particularly useful for posterior power

analyses to compare conducted experiments in order to rule out lack of power as the reason

for incongruities in DE genes. Furthermore, the quality of synthetic data generated by

powsimR has been independently validated222 and the simulation framework has also been

used to conduct a comprehensive evaluation of differential testing algorithms153. powsimR’s

simulation and statistical power analysis capabilities formed an integral part of our analyses

in the following research studies which also contributed significantly to its ongoing further

development and extension.

Power of scRNA-seq library preparation proto-
cols is determined by capture efficiency and am-
plification noise (Manuscript I & II)

We used a preliminary version of powsimR in two other studies223,210. In Parekh et al.

2016, we investigated the impact of whole transcriptome amplification by PCR on the

sensitivity, accuracy and precision of gene expression quantification. PCR amplification is

an essential step in single-cell RNA-sequencing because single cells contain only very small

amounts of mRNA that results in many duplicates. To that end, we analysed bulk and

single-cell data sets generated with three library preparation protocols which differ in amount

of starting material, fragmentation method, number and occurrence of amplification cycles

as well as cellular and molecular barcoding abilities. At that time, one strategy to deal

with amplification bias was to identify so called PCR duplicates computationally, based on

their 5’ end mapping position224,225. Based on this definition, we identified read duplicates

as a common phenomenon, especially in the common single-end sequencing read design

which can be explained by a random sampling model. However, we could show that this
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strategy for RNA-seq data introduces more problems than it solves, because fragmentation

in RNA-seq libraries is non random and thus the same sequence fragment could also have

originated from distinct RNA molecules and is not a result of biased amplification. These

natural duplicates have also previously been observed in high fractions in other data sets
226. We determined that the chance to incorrectly remove natural duplicates instead of PCR

duplicates by mapping position increases with higher expression levels of the gene and deeper

sequencing depths. In addition, and fragmentation bias of the library preparation method.

Given these findings, we evaluated the impact of PCR duplicates and their computational

removal on the accuracy of transcript quantification using ERCC spike-ins and could prove

that in no case does the removal of read duplicates improve relative abundance estimation of

gene expression.

Most importantly, we investigated how much noise or bias PCR amplification introduces,

how this affects the power to detect differential expression and whether duplicate removal

has a positive or negative effect on error rates. To this end, we used a preliminary version of

powsimR to simulate differential expression using the observed mean-variance relationship of

count data with and without duplicates. We could prove that tagging sequences originating

from the same RNA molecule by unique molecular identifiers (UMIs) did significantly

lower the technical variance compared to computational removal. This decrease in variance

contributed to the larger statistical power of UMI libraries while ensuring control over false

detections. On the other hand, the computational removal of PCR-duplicates resulted in a

decrease in power and an FDR exceeding the nominal level. In conclusion, we advise against

the pure computational removal of read duplicates due to the associated loss of natural

duplicates arising from sampling of real independent molecules. Instead, we recommend the

early pooling and tagging of RNA molecules by UMIs.

Following up on this, we conducted an in-depth comparison of six popular single-cell

RNA-seq library preparation protocols in Ziegenhain et al. 2017 (Smart-seq55, Smart-seq2
227, CEL-seq264, SCRB-seq65, Drop-seq58 and MARS-seq228). Four of the methods use

UMIs of which one protocol utilizes in vitro transcription for linear amplification (IVT)

instead of exponential amplification by polymerase chain reaction (PCR). In their current

implementation, three protocols are well-plate based while two were run on a microfluidic
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system and one utilizes droplets. The protocols were applied to identically processed mouse

embryonic stem cells in two batches supplemented with ERCC spike-ins38, providing an

ideal benchmarking data set to quantitatively measure and compare sensitivity, accuracy

and precision.

The capacity of a protocol to observe the transcriptome as completely as possible, i.e.

its sensitivity, is especially important in scRNA-seq experiments. Here, the limiting step is

mainly the reverse transcription and second strand synthesis reactions of minute starting RNA

material. Currently, the estimated efficiency to capture mRNA molecules is between 10 to

50%85,63,80. While it was found that reaction volumes in the nanoliter range, as implemented

in microfluidic devices, can improve sensitivity64,80,229,55, we found that the currently most

sensitive protocols are still plate-based, particularly Smart-seq2, in our comparison as well

as other benchmarks120,115,229. Another important aspect of scRNA-seq protocols is the

accuracy of gene expression estimates. Exogenous RNA molecules (ERCC,SIRV)37,38,230

spanning various known concentration ranges are spiked into single-cell lysates, can be used

for accuracy estimation. Similar to another study229, we found scRNA-seq methods are

accurate and thus quantify expression levels well. However, spike-ins have their limitations

and in how far the accuracy estimation based on spike-ins can be translated to cellular gene

expression is still under debate. Lastly, precision describes the variability of measured gene

expression estimates. As discussed earlier, considerable amplification from the minute starting

material is needed in single-cell RNA-seq experiments, introducing amplification noise as we

showed previously223. This technical variation exceeding the expectation of Poisson sampling

of molecules is Extra-Poisson variability. As we showed previously, incorporating unique

molecular identifiers (UMIs) makes it possible to distinguish read duplicates from natural

duplicate molecules and thus technical noise generated during amplification can be removed.

However, we found here that the variability is more pronounced in PCR-based methods with

exponential amplification than in linear IVT amplification.

Nevertheless, accuracy and precision are not independent parameters, both are strongly

coupled to sensitivity. For accuracy measured by spike-ins, the correlation coefficient is largely

dependent on the number of ERCC transcripts detected in the cell, and thus is strongly

linked to sensitivity. Similarly, accuracy is not strongly affected by sequencing depth229, as
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long as transcripts remain detected. Likewise, precision is not an independent entity. For

full-length scRNA-seq protocols, where UMIs cannot yet be easily accommodated to remove

amplification noise, more sensitive protocols like Smart-seq2227 show significantly lower

Extra-Poisson Variability as the larger initial cDNA complexity requires less amplification.

On the other hand, IVT amplified libraries showed the highest sensitivity at lower sequencing

depth among the UMI methods.

In summary, given our findings concerning these parameters individually as well as their

interdependencies, no single best library preparation protocol exists. Thus, as the more

simple descriptive statistics have limitations in comparing performance, we chose simulations

in order to investigate the combined effects of sensitivity and precision on the power of

each method to detect a meaning biological expression difference154. As a first step, we

selected a common subset of genes for estimation and simulation in powsimR. Of note, we

included the presence of undetected genes in our simulations, so that the power simulations

considered the full range of observed gene dropout rates and is not biased against more

sensitive methods. Given the low technical variance of the methods, we chose to draw effect

sizes from the observed distribution of fold changes with moderate differences between two

microglial subpopulations as previously profiled by Zeisel et al. 2015102. We found that

the UMI well-plate based library preparation protocol SCRB-seq achieved 80% power with

the smallest sample size of 64 cells per group. This is most likely due to the fairly high

sensitivity, second to Smart-seq2, and reduced amplification noise due to the use of UMIs. In

addition, we investigated in how far the power depends on sequencing depth. Interestingly,

UMI protocols utilizing in vitro amplification were less affected by downsampling due to

the lower technical noise in our comparison. Indeed, a recent benchmark of scRNA-seq

protocols also applied downsampling and found that IVT amplified libraries retained a high

sensitivity as well as high accuracy in cell type classification115. Sequencing costs are still

substantial in large scale cell atlas projects (e.g. mouse cell atlas129), even with the strong

decrease in sequencing costs13. Therefore, finding an optimal balance between replication

and sequencing depth under sample availability and budget constraints has recently received

considerable attention188,231,179. In this comparison, we could show that achieving uniform

amplification contributes to information content maximization obtained by scRNA-seq.
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In conclusion, we conducted the first comprehensive comparison of scRNA-seq library

preparation protocols. With our power simulations, we were able to translate our findings

into experimental costs for a given setup and in that way enumerate the cost efficiency of

each method in a meaningful way. This enables researchers to make informed choices.

Quantification of intronic expression supplements
power of UMI scRNA-seq methods
(Manuscript IV)

The novelty of the recent scRNA-seq methods containing UMIs and cell barcodes also poses

a challenge for the basic data processing to yield UMI count matrices from sequencing reads.

At the time, no analysis pipeline existed that included all functionalities that we wished for

in a fast manner. Therefore, we developed a fast and flexible pipeline for the analysis of

scRNA-seq data, zUMIs232. zUMIs can handle data from all kinds of scRNA-seq protocols:

Firstly, it can use known cell barcodes and also automatically identify the barcodes that

are likely to be associated with intact cells. Specifically, we fit a k-dimensional multivariate

normal distribution to the number of reads per cellular barcode and choose only the last

peak with the largest average to automatically select the barcodes with the most number of

associated reads. This straight-forward approach is able to differentiate viable cells from

debris which is particularly important for droplet-based methods and microfluidic devices that

contain unknown numbers of barcoded cell transcriptomes94,70. In addition, we evaluated

several methods to reliably identify cellular barcodes and UMIs and found that sequencing

quality (PHRED score) filtering is a fast and accurate approach. Secondly, users can flexibly

define the locations and lengths of cell barcode, UMI and cDNA sequences in the input

sequencing files. Lastly, zUMIs provides basic summary statistics for quality control as well as

more specialised analyses. Particularly, zUMis is the only pipeline that offers a downsampling

utility that allows users to assess whether the library has been sequenced to saturation.

Specifically, we have implemented adaptive downsampling of overrepresented libraries that

are within three absolute median deviations of all sequenced libraries95. Apart from library

saturation analysis, downsampling of UMI data has been suggested as a normalisation
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approach for relative expression comparisons across single cells233.

Recently, a number of scRNA-seq library preparation protocols have been developed and

applied to isolated single nuclei of cells234,235,236,237. Nuclei can usually be rapidly and easily

isolated from lightly fixed, frozen tissues and archived without the extended incubation and

processing required for isolating single cells. On the other hand, the sequenced libraries of

single nuclei contain a significant fraction of nascent, unspliced mRNAs. We were therefore

interested in extending gene expression estimation with intronic mapping reads in zUMIs.

We could show that including intronic reads in gene expression quantification achieved an

increased resolution of identifiable clusters and an increased number of marker genes detected

thereby improving the sensitivity and precision of gene expression estimation in scRNA-seq

data sets. In order to evaluate the power gained by counting exon as well as intron mapping

reads in gene expression quantification, we performed power simulations using powsimR. We

could show that the power to detect differential expression differences of lowly expressed

genes is higher when intronic mapping reads are considered.In addition, this increase in

power does not come at the cost of an increased false detection rates. In conclusion, this

makes exon plus intron counting worthwhile, especially from low coverage data enriched

with nuclear nascent RNA transcripts. Furthermore, there is the exciting possibility with

RNA velocity to reconstruct cell lineage and developmental trajectories238. For that, the

abundance of unspliced and spliced RNA needs to be estimated from scRNA-seq data, and

zUMIs is one of the few tools providing this functionality.

Library preparation and normalisation methods
have the biggest impact on the performance of
scRNA-seq studies (Manuscript V)

Many experimental protocols and computational analysis approaches exist for scRNA-seq.

Often, computational pipelines used in scRNA-seq studies are pieced together without

thorough quantitative evaluation. If such benchmarking efforts exists, they at best cover only

separate and distinct analysis steps of a pipeline. As the performance measures differ among

the comparisons they do not allow to quantify how the steps interact and how individual
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steps impact the performance of an entire computational pipeline. Especially the impact

of the combined choices of the separate analysis steps on overall pipeline performance has

not been quantified yet. At a minimum, this includes choices of (1) library preparation

protocols, (2) mapping and annotation, (3) preprocessing of the count matrix by filtering or

imputation, and (4) normalisation to allow comparisons across cells. The resulting filtered

and normalised count matrix is the most downstream standard output of any scRNA-seq

pipeline. From here on out the types of analyses diverge, ranging from differential expression

(DE) analysis, cluster analysis, classification of cells to the analysis of trajectories86.

In order to achieve a fair and unbiased comparison of computational pipelines, simulations

of realistic data sets are necessary. This is because the ground truth for real data sets is

unknown and alternatives, such as concordance analyses are bound to favor similar methods

and not necessarily better methods. To this end, we integrated frequently used methods for

each analysis step into our simulation framework powsimR154,210. As the basis for realistic

simulations, powsimR uses a raw count matrix to define the technical variance and model the

mean-variance relationship of gene expression levels. By adding varying levels of differential

expression, we can measure the sensitivity and specificity of each pipeline based on how

faithfully DE-genes are recovered.

A number of publications already conducted detailed performance evaluations of RNA-seq

to genome mapping73,239, therefore we chose to rather evaluate BWA32, STAR31 and kallisto
74, three popular aligners that reflect the overall breadth in current approaches. Similarly, we

tried to cover several preprocessing approaches including the imputation methods SAVER164,

DrImpute169 and scone240, while other imputation methods turned out to be prohibitively

slow (e.g. scImpute166). Finally, the sparsity of scRNA-seq count matrices poses a formidable

challenge to normalisation and several methods have been developed to tackle this problem,

ranging from applying bulk methods such as TMM104, DESeq’s Median-Ratio (MR)105 and

adaptations thereof (PosCounts), converting relative RNA-seq expression levels into absolute

transcript counts as in Census84, pooling and deconvoluting with scran99 to regression based

methods implemented in SCnorm106 and Linnorm241. Additionally, there are a number

of studies evaluating the performance of differential gene expression analysis methods for

scRNA-seq data147,242,153. Based on these comparisons, we chose four representative methods:
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two methods usually applied to bulk data, T-Test and limma243, and two methods developed

for scRNA-seq, MAST150 and zingeR159.

One main assumption in traditional DE-analysis is that differences in expression are

symmetric, preferably only a small fraction of genes of interest is DE while the expression

of the majority of genes remains constant and hence that the total mRNA content is

approximately the same in all samples98. This is no longer true when diverse cell types are

considered, e.g. in the brain102. Thus, in contrast to other studies, we simulated varying

numbers of DE-genes in conjunction with small to large differences in mRNA content, thus

covering the entire spectrum of possible DE-settings.

Our realistic simulations in conjunction with the wide array of methods, allow us not only

to quantify the performance within each pipeline step, but also to quantify interdependencies

among the pipeline steps and their relative importance within the whole pipeline. We

found that library preparation and normalisation methods have the biggest impact on the

performance of scRNA-seq studies. More specifically, library protocols determine the ability

to detect small symmetric differences. On the other hand, normalisation choices have the

biggest effect when comparing asymmetric and very diverged expression profiles, where

prior cell clustering or the usage of spike-ins improves performance. Interestingly, choices of

imputation has little effect on performance, even for very sparse data. More markedly, it

actually increased the false detection in our comparison. In line with previous findings153, we

could show that DE-tools specifically developed for scRNA-seq experiments were not superior

to bulk tools. Rather, a good normalisation prior to testing alleviates the need for more

complex approaches assuming zero-inflated distributions. Another recent benchmarking effort

of scRNA-seq pipeline identified another interdependence, namely between normalisation

and trajectory reconstruction as well as data integration methods190. Thus, normalisation

determines the performance of many downstream analyses.

In addition, we investigated the effect on marker gene detection in a complex mixtures

of cells using our recommended pipeline and could show that it performed better than the

naive approach of using established bulk RNA-sequencing analysis techniques to single-cell

RNA-seq expression data. Thus we could prove that our simulation and evaluation using DE

testing results of pairwise comparisons can be translated to more complex tasks such as cell
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type classification and marker gene detection in unknown cell mixtures.

Optimizing single-cell RNA sequencing

With our analyses we can provide sound recommendations for constructing an optimal scRNA-

seq pipeline covering all essential steps from library preparation to differential expression

analysis223,232,154,155,210. Nevertheless, recommendations should not be equated with defining

a universally applicable pipeline that will fit any and all research questions.

Validation of new library preparation protocols by external sources such as smFISH

are essential in method development and evaluation of new library preparation protocols,

but only two protocols out of the eleven considered in a recent benchmark115 included this
63,59. Benchmarking efforts have recently extended the evaluation of library preparation

methods to the capture efficiencies particularly of rare, but well-defined cell types using

complex mixtures of cells120,115, highlighting the importance of more upstream processes of

the scRNA-seq pipeline. Attempts to improve the single cell capture rate can also been seen

in the recent development of new well-plate technologies spanning low cost, easy installable

methods like Microwell-seq128 and Seq-Well244 to commercial automated systems like Celsee
245 and ICELL8246.

In any case, the increased number of cells profiled, particularly in cell atlas projects
46,129, covering millions of cells across tissues and subjects, necessitates the development

of reproducible and reliable computational pipelines beginning with the preprocessing of

sequencing reads to generate count matrices of gene expression247. For example, pseudoalign-

ment quantification show promising trade-offs in terms of efficiency, accuracy and processing

speed248,155. But the evaluation of these alternative methods is limited to comparing gene

detection and accuracy of expression estimates. Therefore, read sequencing simulations

(e.g. Flux simulator249) need to be extended to the current designs of library preparation

protocols, including options for transposome mediated fragmentation, 3’ prime coverage of

transcripts and most importantly simulation of sequencing reads of cellular barcodes and

UMIs used for tagging mRNA molecules and cells (Valtierra et al., unpublished). Generating

these realistic read sequences could further help to systematically compare different alignment
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approaches and in how far these methods are sensitive to differences in library generation.

In any case, one possible limitation of pseudoalignments already evident is that if the gene

expression of cells in species with subpar annotations are profiled, the k-mer read matching

might be biased. Classical genome alignments to closely related species with good genome

annotations should then be considered250. Another route, albeit associated with an increase

in costs and still under active development, is the construction of reference transcriptomes

for example by Nanopore native RNA sequencing251,252. Long-read sequencing technologies

in general allow the identification of new isoforms and isoform features such as splice sites,

transcription start and polyA sites, thereby helping to unambiguously annotate and quantify

transcriptomes253. Nevertheless, given the overall decrease in sequencing costs, other types

of measurements besides scRNA-seq can be useful supplements. Conventional bulk RNA-seq

for example should be regarded as a reference for estimating the likelihood of dropout events

and data smoothing approaches254, and not only as an outdated averaging of gene expression

profiles.

In summary, single-cell omics technologies are rapidly evolving and more widely applicable.

Single-cell RNA-sequencing in particular is integral to characterizing cellular phenotypes. By

developing realistic simulations for scRNA-seq experiments with powsimR, we have provided

an excellent framework for benchmarking efforts, conducted detailed method comparisons

and provided guidance in setting up experiments.
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Single-cell RNA sequencing is clearly a transformative tool with wide applicability to biological

and biomedical questions but researchers need more guidance to choose an appropriate

library preparation method and computational analysis pipeline for their experiment. My

contribution to this effort is in developing a realistic and versatile simulation framework for

scRNA-seq. Using this framework, we were able to generate synthetic data closely resembling

observed expression profiles that we used to conduct statistical power analysis and evaluate

computational as well as library preparation methods for scRNA-seq. In that regard, I have

made a significant contribution to the new field of single-cell RNA sequencing data analysis

with my thesis work. The increase in throughput of scRNA-seq has been tremendous, making

cell atlases projects realistic, feasible and fast endeavors. Given the mission statement of the

Human Cell Atlas, namely profiling and mapping of cell types, the precise definition of a cell

type and in particular how expression governs cellular identity and makes it unique to all

other cells, is paramount. Therefore, we will extend our realistic simulation framework to

complex cell mixtures to determine the signal-to-noise ratio needed to delineate distinct cell

types and thereby contribute to the ongoing efforts of cell atlas projects. Very recently, many

protocols have been developed to enable multiple measurements from the same individual

cells, including methylation, chromatin state, protein expression, lineage tracing or spatial

location255,117. These advancements offer exciting new possibilities to characterize individual

cells at an even greater resolution but also pose great challenges with regard to multi-omics

data integration256. I am confident that simulations of realistic synthetic multi-omics data

will be integral to method development and systematic benchmarking efforts, and by that

ultimately help us in our endeavors to better understand the cell.



156 4. Conclusion and Outlook



Bibliography

1. F H Crick. On protein synthesis. Symp. Soc. Exp. Biol., 12:138–163, 1958.

2. F Crick. Central dogma of molecular biology. Nature, 227(5258):561–563, 1970.

3. J D Watson and F H Crick. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid.

Nature, 171(4356):737–738, 1953.

4. Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, and Peter

Walter. Molecular Biology of the Cell. Norton & Company, 6th revised edition. revised edition, 2014. ISBN

9780815344643.

5. Sandy L Klemm, Zohar Shipony, and William J Greenleaf. Chromatin accessibility and the regulatory

epigenome. Nat. Rev. Genet., 20(4):207–220, 2019.

6. Assaf Zemach, Ivy E McDaniel, Pedro Silva, and Daniel Zilberman. Genome-wide evolutionary analysis of

eukaryotic DNA methylation. Science, 328(5980):916–919, 2010.

7. Ryan Lister, Mattia Pelizzola, Robert H Dowen, R David Hawkins, Gary Hon, Julian Tonti-Filippini,

Joseph R Nery, Leonard Lee, Zhen Ye, Que-Minh Ngo, Lee Edsall, Jessica Antosiewicz-Bourget, Ron Stew-

art, Victor Ruotti, A Harvey Millar, James A Thomson, Bing Ren, and Joseph R Ecker. Human DNA

methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271):315–322, 2009.

8. Robin Andersson. Promoter or enhancer, what’s the difference? deconstruction of established distinctions

and presentation of a unifying model. Bioessays, 37(3):314–323, 2015.

9. Zhong Wang, Mark Gerstein, and Michael Snyder. RNA-Seq: a revolutionary tool for transcriptomics. Nat.

Rev. Genet., 10(1):57–63, 2009.

10. A Schulze and J Downward. Navigating gene expression using microarrays–a technology review. Nat. Cell

Biol., 3(8):E190–5, 2001.

11. Shanrong Zhao, Wai-Ping Fung-Leung, Anton Bittner, Karen Ngo, and Xuejun Liu. Comparison of RNA-Seq

and microarray in transcriptome profiling of activated T cells. PLoS One, 9(1):e78644, 2014.



158 BIBLIOGRAPHY

12. Celine Everaert, Manuel Luypaert, Jesper L V Maag, Quek Xiu Cheng, Marcel E Dinger, Jan Hellemans,

and Pieter Mestdagh. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-

qPCR expression data. Sci. Rep., 7(1):1559, 2017.

13. Wetterstrand KA. DNA sequencing costs: Data from the NHGRI genome sequencing program (GSP).

www.genome.gov/sequencingcostsdata. Accessed: 2019-9-20.

14. Jason A Reuter, Damek V Spacek, and Michael P Snyder. High-throughput sequencing technologies. Mol.

Cell, 58(4):586–597, 2015.

15. I Vomelová, Z Vanícková, and A Sedo. Methods of RNA purification. all ways (should) lead to rome. Folia

Biol., 55(6):243–251, 2009.

16. Arnold Berk, Chris A Kaiser, Harvey Lodish, Angelika Amon, Hidde Ploegh, Anthony Bretscher, Monty

Krieger, and Kelsey C Martin. Molecular Cell Biology. WH Freeman, 8 edition, 2016. ISBN 9781464187445.

17. Alexander F Palazzo and Eliza S Lee. Non-coding RNA: what is functional and what is junk? Front. Genet.,

6:2, 2015.

18. Kimberly R Kukurba and Stephen B Montgomery. RNA sequencing and analysis. Cold Spring Harb. Protoc.,

2015(11):951–969, 2015.

19. Morgane Boone, Andries De Koker, and Nico Callewaert. Capturing the ’ome’: the expanding molecular

toolbox for RNA and DNA library construction. Nucleic Acids Res., 46(6):2701–2721, 2018.

20. Shanrong Zhao, Ying Zhang, Ramya Gamini, Baohong Zhang, and David von Schack. Evaluation of two

main RNA-seq approaches for gene quantification in clinical RNA sequencing: polya+ selection versus rRNA

depletion. Sci. Rep., 8(1):4781, 2018.

21. Illumina, Inc. An introduction to Next-Generation sequencing technology. 2017.

22. Malachi Griffith, Jason R Walker, Nicholas C Spies, Benjamin J Ainscough, and Obi L Griffith. Informatics

for RNA sequencing: A web resource for analysis on the cloud. PLoS Comput. Biol., 11(8):e1004393, 2015.

23. Andrew Adey, Hilary G Morrison, Asan, Xu Xun, Jacob O Kitzman, Emily H Turner, Bethany Stackhouse,

Alexandra P MacKenzie, Nicholas C Caruccio, Xiuqing Zhang, and Jay Shendure. Rapid, low-input, low-

bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol., 11

(12):R119, 2010.

24. Ali Mortazavi, Brian A Williams, Kenneth McCue, Lorian Schaeffer, and Barbara Wold. Mapping and

quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5(7):621–628, 2008.

25. Sara Goodwin, John D McPherson, and W Richard McCombie. Coming of age: ten years of next-generation

sequencing technologies. Nat. Rev. Genet., 17(6):333–351, 2016.

www.genome.gov/sequencingcostsdata


BIBLIOGRAPHY 159

26. H P J Buermans and J T den Dunnen. Next generation sequencing technology: Advances and applications.

Biochim. Biophys. Acta, 1842(10):1932–1941, 2014.

27. Barton E Slatko, Andrew F Gardner, and Frederick M Ausubel. Overview of Next-Generation sequencing

technologies. Curr. Protoc. Mol. Biol., 122(1):e59, April 2018. ISSN 1934-3639, 1934-3647. doi: 10.1002/

cpmb.59.

28. Vijender Chaitankar, Gökhan Karakülah, Rinki Ratnapriya, Felipe O Giuste, Matthew J Brooks, and Anand

Swaroop. Next generation sequencing technology and genomewide data analysis: Perspectives for retinal

research. Prog. Retin. Eye Res., 55:1–31, 2016.

29. Ana Conesa, Pedro Madrigal, Sonia Tarazona, David Gomez-Cabrero, Alejandra Cervera, Andrew McPher-

son, Michał Wojciech Szcześniak, Daniel J Gaffney, Laura L Elo, Xuegong Zhang, and Ali Mortazavi. A

survey of best practices for RNA-seq data analysis. Genome Biol., 17:13, 2016.

30. Gabriel Renaud, Udo Stenzel, Tomislav Maricic, Victor Wiebe, and Janet Kelso. deML: robust demultiplex-

ing of illumina sequences using a likelihood-based approach. Bioinformatics, 31(5):770–772, 2015.

31. Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha, Philippe Batut,

Mark Chaisson, and Thomas R Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29

(1):15–21, 2013.

32. Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform.

Bioinformatics, 25(14):1754–1760, 2009.

33. Yang Liao, Gordon K Smyth, and Wei Shi. The subread aligner: fast, accurate and scalable read mapping

by seed-and-vote. Nucleic Acids Res., 41(10):e108, May 2013. ISSN 0305-1048, 1362-4962. doi: 10.1093/

nar/gkt214.

34. Simon Anders, Paul Theodor Pyl, and Wolfgang Huber. HTSeq–a python framework to work with high-

throughput sequencing data. Bioinformatics, 31(2):166–169, January 2015. ISSN 1367-4803, 1367-4811. doi:

10.1093/bioinformatics/btu638.

35. Xing Li, Asha Nair, Shengqin Wang, and Liguo Wang. Quality control of RNA-seq experiments. Methods

Mol. Biol., 1269:137–146, 2015.

36. Quanhu Sheng, Kasey Vickers, Shilin Zhao, Jing Wang, David C Samuels, Olivia Koues, Yu Shyr, and Yan

Guo. Multi-perspective quality control of illumina RNA sequencing data analysis. Brief. Funct. Genomics,

16(4):194–204, 2017.

37. Shawn C Baker, Steven R Bauer, Richard P Beyer, James D Brenton, Bud Bromley, John Burrill, He-

len Causton, Michael P Conley, Rosalie Elespuru, Michael Fero, Carole Foy, James Fuscoe, Xiaolian Gao,

David Lee Gerhold, Patrick Gilles, Federico Goodsaid, Xu Guo, Joe Hackett, Richard D Hockett, Pran-

vera Ikonomi, Rafael A Irizarry, Ernest S Kawasaki, Tamma Kaysser-Kranich, Kathleen Kerr, Gretchen



160 BIBLIOGRAPHY

Kiser, Walter H Koch, Kathy Y Lee, Chunmei Liu, Z Lewis Liu, Anne Lucas, Chitra F Manohar, Garry

Miyada, Zora Modrusan, Helen Parkes, Raj K Puri, Laura Reid, Thomas B Ryder, Marc Salit, Raymond R

Samaha, Uwe Scherf, Timothy J Sendera, Robert A Setterquist, Leming Shi, Richard Shippy, Jesus V So-

riano, Elizabeth A Wagar, Janet A Warrington, Mickey Williams, Frederike Wilmer, Mike Wilson, Paul K

Wolber, Xiaoning Wu, Renata Zadro, and External RNA Controls Consortium. The external RNA controls

consortium: a progress report. Nat. Methods, 2(10):731–734, 2005.

38. Lichun Jiang, Felix Schlesinger, Carrie A Davis, Yu Zhang, Renhua Li, Marc Salit, Thomas R Gingeras, and

Brian Oliver. Synthetic spike-in standards for RNA-seq experiments. Genome Res., 21(9):1543–1551, 2011.

39. Seqc/Maqc-III Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility and informa-

tion content by the sequencing quality control consortium. Nat. Biotechnol., 32(9):903–914, 2014.

40. Patrick Deelen, Daria V Zhernakova, Mark de Haan, Marijke van der Sijde, Marc Jan Bonder, Juha Kar-

jalainen, K Joeri van der Velde, Kristin M Abbott, Jingyuan Fu, Cisca Wijmenga, Richard J Sinke, Morris A

Swertz, and Lude Franke. Calling genotypes from public RNA-sequencing data enables identification of ge-

netic variants that affect gene-expression levels. Genome Med., 7(1):30, 2015.

41. Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke J van Baren, Steven L

Salzberg, Barbara J Wold, and Lior Pachter. Transcript assembly and quantification by RNA-Seq reveals

unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28(5):511–515,

2010.

42. Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert, Michael A

Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander, and Jill P Mesirov. Gene set

enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc.

Natl. Acad. Sci. U. S. A., 102(43):15545–15550, 2005.

43. Wei Zhao, Peter Langfelder, Tova Fuller, Jun Dong, Ai Li, and Steve Hovarth. Weighted gene coexpression

network analysis: State of the art. J. Biopharm. Stat., 20(2):281–300, 2010.

44. Fuchou Tang, Catalin Barbacioru, Yangzhou Wang, Ellen Nordman, Clarence Lee, Nanlan Xu, Xiaohui

Wang, John Bodeau, Brian B Tuch, Asim Siddiqui, Kaiqin Lao, and M Azim Surani. mRNA-Seq whole-

transcriptome analysis of a single cell. Nat. Methods, 6(5):377–382, 2009.

45. Daniel E Wagner, Caleb Weinreb, Zach M Collins, James A Briggs, Sean G Megason, and Allon M Klein.

Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science, 360(6392):

981–987, 2018.

46. Aviv Regev, Sarah A Teichmann, Eric S Lander, Ido Amit, Christophe Benoist, Ewan Birney, Bernd Bo-

denmiller, Peter Campbell, Piero Carninci, Menna Clatworthy, Hans Clevers, Bart Deplancke, Ian Dunham,

James Eberwine, Roland Eils, Wolfgang Enard, Andrew Farmer, Lars Fugger, Berthold Göttgens, Nir Ha-

cohen, Muzlifah Haniffa, Martin Hemberg, Seung Kim, Paul Klenerman, Arnold Kriegstein, Ed Lein, Sten



BIBLIOGRAPHY 161

Linnarsson, Emma Lundberg, Joakim Lundeberg, Partha Majumder, John C Marioni, Miriam Merad, Musa

Mhlanga, Martijn Nawijn, Mihai Netea, Garry Nolan, Dana Pe’er, Anthony Phillipakis, Chris P Ponting,

Stephen Quake, Wolf Reik, Orit Rozenblatt-Rosen, Joshua Sanes, Rahul Satija, Ton N Schumacher, Alex

Shalek, Ehud Shapiro, Padmanee Sharma, Jay W Shin, Oliver Stegle, Michael Stratton, Michael J T Stub-

bington, Fabian J Theis, Matthias Uhlen, Alexander van Oudenaarden, Allon Wagner, Fiona Watt, Jonathan

Weissman, Barbara Wold, Ramnik Xavier, Nir Yosef, and Human Cell Atlas Meeting Participants. The hu-

man cell atlas. Elife, 6, 2017.

47. Valentine Svensson, Roser Vento-Tormo, and Sarah A Teichmann. Exponential scaling of single-cell RNA-seq

in the last decade. 2017.

48. Valentine Svensson and Eduardo da Veiga Beltrame. A curated database reveals trends in single cell tran-

scriptomics. 2019.

49. Jean-Francois Poulin, Bosiljka Tasic, Jens Hjerling-Leffler, Jeffrey M Trimarchi, and Rajeshwar Awatramani.

Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci., 19(9):1131–1141, 2016.

50. Itay Tirosh, Benjamin Izar, Sanjay M Prakadan, Marc H Wadsworth, Daniel Treacy, John J Trombetta, Asaf

Rotem, Christopher Rodman, Christine Lian, George Murphy, Mohammad Fallahi-Sichani, Ken Dutton-

Regester, Jia-Ren Lin, Ofir Cohen, Parin Shah, Diana Lu, Alex S Genshaft, Travis K Hughes, Carly G K

Ziegler, Samuel W Kazer, Aleth Gaillard, Kellie E Kolb, Alexandra-Chloé Villani, Cory M Johannessen,

Aleksandr Y Andreev, Eliezer M Van Allen, Monica Bertagnolli, Peter K Sorger, Ryan J Sullivan, Keith T

Flaherty, Dennie T Frederick, Judit Jané-Valbuena, Charles H Yoon, Orit Rozenblatt-Rosen, Alex K Shalek,

Aviv Regev, and Levi A Garraway. Dissecting the multicellular ecosystem of metastatic melanoma by single-

cell RNA-seq. Science, 352(6282):189–196, 2016.

51. Christoph Ziegenhain, Beate Vieth, Swati Parekh, Ines Hellmann, and Wolfgang Enard. Quantitative single-

cell transcriptomics. Brief. Funct. Genomics, 17(4):220–232, 2018.

52. Alexandra-Chloé Villani, Rahul Satija, Gary Reynolds, Siranush Sarkizova, Karthik Shekhar, James Fletcher,

Morgane Griesbeck, Andrew Butler, Shiwei Zheng, Suzan Lazo, Laura Jardine, David Dixon, Emily Stephen-

son, Emil Nilsson, Ida Grundberg, David McDonald, Andrew Filby, Weibo Li, Philip L De Jager, Orit

Rozenblatt-Rosen, Andrew A Lane, Muzlifah Haniffa, Aviv Regev, and Nir Hacohen. Single-cell RNA-seq

reveals new types of human blood dendritic cells, monocytes, and progenitors. Science, 356(6335), 2017.

53. Kishan Dholakia, Michael P MacDonald, Pavel Zemánek, and Tomás Cizmár. Cellular and colloidal separa-

tion using optical forces. Methods Cell Biol., 82:467–495, 2007.

54. Robert Durruthy-Durruthy and Manisha Ray. Using fluidigm C1 to generate Single-Cell Full-Length cDNA

libraries for mRNA sequencing. Methods Mol. Biol., 1706:199–221, 2018.

55. Angela R Wu, Norma F Neff, Tomer Kalisky, Piero Dalerba, Barbara Treutlein, Michael E Rothenberg,

Francis M Mburu, Gary L Mantalas, Sopheak Sim, Michael F Clarke, and Stephen R Quake. Quantitative

assessment of single-cell RNA-sequencing methods. Nat. Methods, 11(1):41–46, 2014.



162 BIBLIOGRAPHY

56. Yurong Xin, Jinrang Kim, Min Ni, Yi Wei, Haruka Okamoto, Joseph Lee, Christina Adler, Katie Cavino,

Andrew J Murphy, George D Yancopoulos, Hsin Chieh Lin, and Jesper Gromada. Use of the fluidigm C1

platform for RNA sequencing of single mouse pancreatic islet cells. Proc. Natl. Acad. Sci. U. S. A., 113

(12):3293–3298, 2016.

57. Robert Salomon, Dominik Kaczorowski, Fatima Valdes-Mora, Robert E Nordon, Adrian Neild, Nona Farbehi,

Nenad Bartonicek, and David Gallego-Ortega. Droplet-based single cell RNAseq tools: a practical guide.

Lab Chip, 19(10):1706–1727, May 2019. ISSN 1473-0197, 1473-0189. doi: 10.1039/c8lc01239c.

58. Evan Z Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa Goldman, Itay

Tirosh, Allison R Bialas, Nolan Kamitaki, Emily MMartersteck, John J Trombetta, David AWeitz, Joshua R

Sanes, Alex K Shalek, Aviv Regev, and Steven A McCarroll. Highly parallel genome-wide expression profiling

of individual cells using nanoliter droplets. Cell, 161(5):1202–1214, 2015.

59. Allon M Klein, Linas Mazutis, Ilke Akartuna, Naren Tallapragada, Adrian Veres, Victor Li, Leonid Peshkin,

David A Weitz, and Marc W Kirschner. Droplet barcoding for single-cell transcriptomics applied to embry-

onic stem cells. Cell, 161(5):1187–1201, 2015.

60. Rapolas Zilionis, Juozas Nainys, Adrian Veres, Virginia Savova, David Zemmour, Allon M Klein, and Linas

Mazutis. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc., 12(1):44–73, 2017.

61. Grace X Y Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W Bent, Ryan Wilson, So-

longo B Ziraldo, Tobias D Wheeler, Geoff P McDermott, Junjie Zhu, Mark T Gregory, Joe Shuga, Luz

Montesclaros, Jason G Underwood, Donald A Masquelier, Stefanie Y Nishimura, Michael Schnall-Levin,

Paul W Wyatt, Christopher M Hindson, Rajiv Bharadwaj, Alexander Wong, Kevin D Ness, Lan W Beppu,

H Joachim Deeg, Christopher McFarland, Keith R Loeb, William J Valente, Nolan G Ericson, Emily A

Stevens, Jerald P Radich, Tarjei S Mikkelsen, Benjamin J Hindson, and Jason H Bielas. Massively parallel

digital transcriptional profiling of single cells. Nat. Commun., 8:14049, 2017.

62. Philip Brennecke, Simon Anders, Jong Kyoung Kim, Aleksandra A Kołodziejczyk, Xiuwei Zhang, Valentina

Proserpio, Bianka Baying, Vladimir Benes, Sarah A Teichmann, John C Marioni, and Marcus G Heisler.

Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods, 10(11):1093–1095, 2013.

63. Dominic Grün, Lennart Kester, and Alexander van Oudenaarden. Validation of noise models for single-cell

transcriptomics. Nat. Methods, 11(6):637–640, 2014.

64. Tamar Hashimshony, Naftalie Senderovich, Gal Avital, Agnes Klochendler, Yaron de Leeuw, Leon Anavy,

Dave Gennert, Shuqiang Li, Kenneth J Livak, Orit Rozenblatt-Rosen, Yuval Dor, Aviv Regev, and Itai Yanai.

CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol., 17:77, 2016.

65. Magali Soumillon, Davide Cacchiarelli, Stefan Semrau, Alexander van Oudenaarden, and Tarjei S Mikkelsen.

Characterization of directed differentiation by high-throughput single-cell RNA-Seq. bioRxiv, page 003236,

2014.



BIBLIOGRAPHY 163

66. Teemu Kivioja, Anna Vähärautio, Kasper Karlsson, Martin Bonke, Martin Enge, Sten Linnarsson, and Jussi

Taipale. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods, 9(1):

72–74, 2011.

67. Katsuyuki Shiroguchi, Tony Z Jia, Peter A Sims, and X Sunney Xie. Digital RNA sequencing minimizes

sequence-dependent bias and amplification noise with optimized single-molecule barcodes. Proceedings of

the National Academy of Sciences, 109(4):1347–1352, 2012.

68. Belinda Phipson, Luke Zappia, and Alicia Oshlack. Gene length and detection bias in single cell RNA

sequencing protocols. F1000Res., 6:595, 2017.

69. Aleksandra A Kolodziejczyk, Jong Kyoung Kim, Valentine Svensson, John C Marioni, and Sarah A Teich-

mann. The technology and biology of Single-Cell RNA sequencing. Mol. Cell, 58(4):610–620, 2015.

70. Viktor Petukhov, Jimin Guo, Ninib Baryawno, Nicolas Severe, David T Scadden, Maria G Samsonova,

and Peter V Kharchenko. dropest: pipeline for accurate estimation of molecular counts in droplet-based

single-cell RNA-seq experiments. Genome Biol., 19(1):78, 2018.

71. Atefeh Lafzi, Catia Moutinho, Simone Picelli, and Holger Heyn. Tutorial: guidelines for the experimental

design of single-cell RNA sequencing studies. Nat. Protoc., 13(12):2742–2757, 2018.

72. Aaron T L Lun, Davis J McCarthy, and John C Marioni. A step-by-step workflow for low-level analysis of

single-cell RNA-seq data with bioconductor. F1000Res., 5:2122, 2016.

73. Giacomo Baruzzo, Katharina E Hayer, Eun Ji Kim, Barbara Di Camillo, Garret A FitzGerald, and Gregory R

Grant. Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat. Methods, 14(2):135–139,

2017.

74. Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal probabilistic RNA-seq

quantification. Nat. Biotechnol., 34(5):525–527, 2016.

75. Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kingsford. Salmon provides fast and

bias-aware quantification of transcript expression. Nat. Methods, 14(4):417–419, 2017.

76. Alexander Kanitz, Foivos Gypas, Andreas J Gruber, Andreas R Gruber, Georges Martin, and Mihaela Za-

volan. Comparative assessment of methods for the computational inference of transcript isoform abundance

from RNA-seq data. Genome Biol., 16:150, 2015.

77. Mingxiang Teng, Michael I Love, Carrie A Davis, Sarah Djebali, Alexander Dobin, Brenton R Graveley,

Sheng Li, Christopher E Mason, Sara Olson, Dmitri Pervouchine, Cricket A Sloan, Xintao Wei, Lijun Zhan,

and Rafael A Irizarry. A benchmark for RNA-seq quantification pipelines. Genome Biol., 17:74, 2016.

78. Vivien Marx. How to deduplicate PCR. Nat. Methods, 14(5):473–476, April 2017. ISSN 1548-7091, 1548-

7105. doi: 10.1038/nmeth.4268.



164 BIBLIOGRAPHY

79. Tom Smith, Andreas Heger, and Ian Sudbery. UMI-tools: modeling sequencing errors in unique molecular

identifiers to improve quantification accuracy. Genome Res., 27(3):491–499, 2017.

80. Saiful Islam, Amit Zeisel, Simon Joost, Gioele La Manno, Pawel Zajac, Maria Kasper, Peter Lönnerberg,

and Sten Linnarsson. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods, 11

(2):163–166, 2014.

81. Avi Srivastava, Laraib Malik, Tom Smith, Ian Sudbery, and Rob Patro. Alevin efficiently estimates accurate

gene abundances from dscRNA-seq data. Genome Biol., 20(1):65, 2019.

82. Rhonda Bacher and Christina Kendziorski. Design and computational analysis of single-cell RNA-sequencing

experiments. Genome Biol., 17:63, 2016.

83. F Han and S J Lillard. In-situ sampling and separation of RNA from individual mammalian cells. Anal.

Chem., 72(17):4073–4079, 2000.

84. Xiaojie Qiu, Andrew Hill, Jonathan Packer, Dejun Lin, Yi-An Ma, and Cole Trapnell. Single-cell mRNA

quantification and differential analysis with census. Nat. Methods, 14(3):309–315, 2017.

85. Johannes W Bagnoli, Christoph Ziegenhain, Aleksandar Janjic, Lucas E Wange, Beate Vieth, Swati Parekh,

Johanna Geuder, Ines Hellmann, and Wolfgang Enard. Sensitive and powerful single-cell RNA sequencing

using mcSCRB-seq. Nat. Commun., 9(1):2937, 2018.

86. Allon Wagner, Aviv Regev, and Nir Yosef. Revealing the vectors of cellular identity with single-cell genomics.

Nat. Biotechnol., 34(11):1145–1160, 2016.

87. Geng Chen, Baitang Ning, and Tieliu Shi. Single-Cell RNA-Seq technologies and related computational

data analysis. Front. Genet., 10:317, 2019.

88. Serena Liu and Cole Trapnell. Single-cell transcriptome sequencing: recent advances and remaining chal-

lenges. F1000Res., 5, 2016.

89. Sanjay M Prakadan, Alex K Shalek, and David A Weitz. Scaling by shrinking: empowering single-cell ’omics’

with microfluidic devices. Nat. Rev. Genet., 18(6):345–361, 2017.

90. Oliver Stegle, Sarah A Teichmann, and John C Marioni. Computational and analytical challenges in single-

cell transcriptomics. Nat. Rev. Genet., 16(3):133–145, 2015.

91. Stephanie C Hicks, F William Townes, Mingxiang Teng, and Rafael A Irizarry. Missing data and technical

variability in single-cell RNA-sequencing experiments. Biostatistics, 19(4):562–578, 2018.

92. Christopher S McGinnis, Lyndsay M Murrow, and Zev J Gartner. DoubletFinder: Doublet detection in

Single-Cell RNA sequencing data using artificial nearest neighbors. Cell Syst, 8(4):329–337.e4, 2019.



BIBLIOGRAPHY 165

93. Samuel L Wolock, Romain Lopez, and Allon M Klein. Scrublet: Computational identification of cell doublets

in Single-Cell transcriptomic data. Cell Syst, 8(4):281–291.e9, 2019.

94. Aaron T L Lun, Samantha Riesenfeld, Tallulah Andrews, The Phuong Dao, Tomas Gomes, participants in

the 1st Human Cell Atlas Jamboree, and John C Marioni. EmptyDrops: distinguishing cells from empty

droplets in droplet-based single-cell RNA sequencing data. Genome Biol., 20(1):63, 2019.

95. Davis J McCarthy, Kieran R Campbell, Aaron T L Lun, and Quin F Wills. Scater: pre-processing, quality

control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics, 33(8):1179–1186,

2017.

96. Lan Jiang, Huidong Chen, Luca Pinello, and Guo-Cheng Yuan. GiniClust: detecting rare cell types from

single-cell gene expression data with gini index. Genome Biol., 17(1):144, 2016.

97. Tallulah S Andrews and Martin Hemberg. M3Drop: dropout-based feature selection for scRNASeq. Bioin-

formatics, 35(16):2865–2867, 2019.

98. Ciaran Evans, Johanna Hardin, and Daniel M Stoebel. Selecting between-sample RNA-Seq normalization

methods from the perspective of their assumptions. Brief. Bioinform., 19(5):776–792, 2018.

99. Aaron T L Lun, Karsten Bach, and John C Marioni. Pooling across cells to normalize single-cell RNA

sequencing data with many zero counts. Genome Biol., 17:75, 2016.

100. Catalina A Vallejos, Davide Risso, Antonio Scialdone, Sandrine Duoptdoit, and John C Marioni. Normalizing

single-cell RNA sequencing data: challenges and opportunities. Nat. Methods, 14(6):565–571, 2017.

101. Georgi K Marinov, Brian A Williams, Ken McCue, Gary P Schroth, Jason Gertz, Richard M Myers, and

Barbara J Wold. From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA

splicing. Genome Res., 24(3):496–510, 2014.

102. Amit Zeisel, Ana B Muñoz-Manchado, Simone Codeluppi, Peter Lönnerberg, Gioele La Manno, Anna Juréus,

Sueli Marques, Hermany Munguba, Liqun He, Christer Betsholtz, Charlotte Rolny, Gonçalo Castelo-Branco,

Jens Hjerling-Leffler, and Sten Linnarsson. Brain structure. cell types in the mouse cortex and hippocampus

revealed by single-cell RNA-seq. Science, 347(6226):1138–1142, 2015.

103. Peter V Kharchenko, Lev Silberstein, and David T Scadden. Bayesian approach to single-cell differential

expression analysis. Nat. Methods, 11(7):740–742, 2014.

104. Mark D Robinson and Alicia Oshlack. A scaling normalization method for differential expression analysis

of RNA-seq data. Genome Biol., 11(3):R25, 2010.

105. Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data. Genome Biol.,

11(10):R106, 2010.



166 BIBLIOGRAPHY

106. Rhonda Bacher, Li-Fang Chu, Ning Leng, Audrey P Gasch, James A Thomson, Ron M Stewart, Michael

Newton, and Christina Kendziorski. SCnorm: robust normalization of single-cell RNA-seq data. Nat.

Methods, 14(6):584–586, 2017.

107. Sandhya Prabhakaran, Elham Azizi, Ambrose Carr, and Dana Pe’er. Dirichlet process mixture model for

correcting technical variation in Single-Cell gene expression data. In International Conference on Machine

Learning, pages 1070–1079, 2016.

108. Bo Ding, Lina Zheng, Yun Zhu, Nan Li, Haiyang Jia, Rizi Ai, Andre Wildberg, and Wei Wang. Normalization

and noise reduction for single cell RNA-seq experiments. Bioinformatics, 31(13):2225–2227, 2015.

109. Shintaro Katayama, Virpi Töhönen, Sten Linnarsson, and Juha Kere. SAMstrt: statistical test for differential

expression in single-cell transcriptome with spike-in normalization. Bioinformatics, 29(22):2943–2945, 2013.

110. Jong Kyoung Kim, Aleksandra A Kolodziejczyk, Tomislav Ilicic, Sarah A Teichmann, and John C Marioni.

Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic

expression. Nat. Commun., 6:8687, 2015.

111. Davide Risso, John Ngai, Terence P Speed, and Sandrine Duoptdoit. Normalization of RNA-seq data using

factor analysis of control genes or samples. Nat. Biotechnol., 32(9):896–902, 2014.

112. Catalina A Vallejos, John C Marioni, and Sylvia Richardson. BASiCS: Bayesian analysis of Single-Cell

sequencing data. PLoS Comput. Biol., 11(6):e1004333, 2015.

113. Po-Yuan Tung, John D Blischak, Chiaowen Joyce Hsiao, David A Knowles, Jonathan E Burnett, Jonathan K

Pritchard, and Yoav Gilad. Batch effects and the effective design of single-cell gene expression studies. Sci.

Rep., 7:39921, 2017.

114. Aaron T L Lun, Fernando J Calero-Nieto, Liora Haim-Vilmovsky, Berthold Göttgens, and John C Marioni.

Assessing the reliability of spike-in normalization for analyses of single-cell RNA sequencing data. Genome

Res., 27(11):1795–1806, 2017.

115. Elisabetta Mereu, Atefeh Lafzi, Catia Moutinho, Christoph Ziegenhain, Davis J MacCarthy, Adrian Alvarez,

Eduard Batlle, Sagar, Dominic Grün, Julia K Lau, Stéphane C Boutet, Chad Sanada, Aik Ooi, Robert C

Jones, Kelly Kaihara, Chris Brampton, Yasha Talaga, Yohei Sasagawa, Kaori Tanaka, Tetsutaro Hayashi,

Itoshi Nikaido, Cornelius Fischer, Sascha Sauer, Timo Trefzer, Christian Conrad, Xian Adiconis, Lan T

Nguyen, Aviv Regev, Joshua Z Levin, Swati Parekh, Aleksandar Janjic, Lucas E Wange, Johannes W Bagnoli,

Wolfgang Enard, Marta Gut, Rickard Sandberg, Ivo Gut, Oliver Stegle, and Holger Heyn. Benchmarking

Single-Cell RNA sequencing protocols for cell atlas projects. 2019.

116. Andrew S Venteicher, Itay Tirosh, Christine Hebert, Keren Yizhak, Cyril Neftel, Mariella G Filbin, Volker

Hovestadt, Leah E Escalante, Mckenzie L Shaw, Christopher Rodman, Shawn M Gillespie, Danielle Dionne,

Christina C Luo, Hiranmayi Ravichandran, Ravindra Mylvaganam, Christopher Mount, Maristela L Onozato,



BIBLIOGRAPHY 167

Brian V Nahed, Hiroaki Wakimoto, William T Curry, A John Iafrate, Miguel N Rivera, Matthew P Frosch,

Todd R Golub, Priscilla K Brastianos, Gad Getz, Anoop P Patel, Michelle Monje, Daniel P Cahill, Orit

Rozenblatt-Rosen, David N Louis, Bradley E Bernstein, Aviv Regev, and Mario L Suvà. Decoupling genetics,

lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science, 355(6332), March

2017. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.aai8478.

117. Tim Stuart and Rahul Satija. Integrative single-cell analysis. Nat. Rev. Genet., 20(5):257–272, 2019.

118. W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in microarray expression data

using empirical bayes methods. Biostatistics, 8(1):118–127, 2007.

119. Matthew E Ritchie, Belinda Phipson, Di Wu, Yifang Hu, Charity W Law, Wei Shi, and Gordon K Smyth.

limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids

Res., 43(7):e47, 2015.

120. Jiarui Ding, Xian Adiconis, Sean K Simmons, Monika S Kowalczyk, Cynthia C Hession, Nemanja D Mar-

janovic, Travis K Hughes, Marc H Wadsworth, Tyler Burks, Lan T Nguyen, John Y H Kwon, Boaz Barak,

William Ge, Amanda J Kedaigle, Shaina Carroll, Shuqiang Li, Nir Hacohen, Orit Rozenblatt-Rosen, Alex K

Shalek, Alexandra-Chloé Villani, Aviv Regev, and Joshua Z Levin. Systematic comparative analysis of single

cell RNA-sequencing methods. 2019.

121. Laleh Haghverdi, Aaron T L Lun, Michael D Morgan, and John C Marioni. Batch effects in single-cell RNA-

sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol., 36(5):421–427,

2018.

122. Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija. Integrating single-cell

transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 36(5):411–420,

2018.

123. Brian Hie, Bryan Bryson, and Bonnie Berger. Efficient integration of heterogeneous single-cell transcriptomes

using scanorama. Nat. Biotechnol., 37(6):685–691, 2019.

124. Yingxin Lin, Shila Ghazanfar, Kevin Wang, Johann A Gagnon-Bartsch, Kitty K Lo, Xianbin Su, Ze-Guang

Han, John T Ormerod, Terence P Speed, Pengyi Yang, and Jean Y H Yang. scmerge: Integration of multiple

single-cell transcriptomics datasets leveraging stable expression and pseudo-replication. 2018.

125. Jong-Eun Park, Krzysztof Polański, Kerstin Meyer, and Sarah A Teichmann. Fast batch alignment of single

cell transcriptomes unifies multiple mouse cell atlases into an integrated landscape. 2018.

126. Maren Büttner, Zhichao Miao, F Alexander Wolf, Sarah A Teichmann, and Fabian J Theis. A test metric

for assessing single-cell RNA-seq batch correction. Nat. Methods, 16(1):43–49, 2019.

127. Malte D Luecken and Fabian J Theis. Current best practices in single-cell RNA-seq analysis: a tutorial.

Mol. Syst. Biol., 15(6):e8746, 2019.



168 BIBLIOGRAPHY

128. Xiaoping Han, Renying Wang, Yincong Zhou, Lijiang Fei, Huiyu Sun, Shujing Lai, Assieh Saadatpour, Zimin

Zhou, Haide Chen, Fang Ye, Daosheng Huang, Yang Xu, Wentao Huang, Mengmeng Jiang, Xinyi Jiang, Jie

Mao, Yao Chen, Chenyu Lu, Jin Xie, Qun Fang, Yibin Wang, Rui Yue, Tiefeng Li, He Huang, Stuart H

Orkin, Guo-Cheng Yuan, Ming Chen, and Guoji Guo. Mapping the mouse cell atlas by Microwell-Seq. Cell,

172(5):1091–1107.e17, 2018.

129. Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ collection and processing,

Library preparation and sequencing, Computational data analysis, Cell type annotation, Writing group,

Supplemental text writing group, and Principal investigators. Single-cell transcriptomics of 20 mouse organs

creates a tabula muris. Nature, 562(7727):367–372, 2018.

130. Junyue Cao, Jonathan S Packer, Vijay Ramani, Darren A Cusanovich, Chau Huynh, Riza Daza, Xiaojie

Qiu, Choli Lee, Scott N Furlan, Frank J Steemers, Andrew Adey, Robert H Waterston, Cole Trapnell, and

Jay Shendure. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science, 357

(6352):661–667, 2017.

131. Mireya Plass, Jordi Solana, F Alexander Wolf, Salah Ayoub, Aristotelis Misios, Petar Glažar, Benedikt

Obermayer, Fabian J Theis, Christine Kocks, and Nikolaus Rajewsky. Cell type atlas and lineage tree of a

whole complex animal by single-cell transcriptomics. Science, 360(6391):eaaq1723, 2018.

132. Luke Zappia, Belinda Phipson, and Alicia Oshlack. Exploring the single-cell RNA-seq analysis landscape

with the scRNA-tools database. PLoS Comput. Biol., 14(6):e1006245, 2018.

133. Vladimir Yu Kiselev, Kristina Kirschner, Michael T Schaub, Tallulah Andrews, Andrew Yiu, Tamir Chandra,

Kedar N Natarajan, Wolf Reik, Mauricio Barahona, Anthony R Green, and Martin Hemberg. SC3: consensus

clustering of single-cell RNA-seq data. Nat. Methods, 14(5):483–486, 2017.

134. Tamim Abdelaal, Lieke Michielsen, Davy Cats, Dylan Hoogduin, Hailiang Mei, Marcel J T Reinders, and

Ahmed Mahfouz. A comparison of automatic cell identification methods for single-cell RNA sequencing data.

Genome Biol., 20(1):194, 2019.

135. Taiyun Kim, Irene Rui Chen, Yingxin Lin, Andy Yi-Yang Wang, Jean Yee Hwa Yang, and Pengyi Yang.

Impact of similarity metrics on single-cell RNA-seq data clustering. Brief. Bioinform., 2018.

136. Luke Zappia and Alicia Oshlack. Clustering trees: a visualization for evaluating clusterings at multiple

resolutions. Gigascience, 7(7), 2018.

137. José Alquicira-Hernández, Anuja Sathe, Hanlee P Ji, Quan Nguyen, and Joseph E Powell. scpred: Cell type

prediction at single-cell resolution. 2018.

138. Vladimir Yu Kiselev, Andrew Yiu, and Martin Hemberg. scmap: projection of single-cell RNA-seq data

across data sets. Nat. Methods, 15(5):359–362, 2018.



BIBLIOGRAPHY 169

139. Rui Hou, Elena Denisenko, and Alistair R R Forrest. scmatch: a single-cell gene expression profile annotation

tool using reference datasets. Bioinformatics, 2019.

140. Dvir Aran, Agnieszka P Looney, Leqian Liu, Esther Wu, Valerie Fong, Austin Hsu, Suzanna Chak, Ram P

Naikawadi, Paul J Wolters, Adam R Abate, Atul J Butte, and Mallar Bhattacharya. Reference-based analysis

of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol., 20(2):163–172,

2019.

141. Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys. Computational methods for trajectory inference from

single-cell transcriptomics. Eur. J. Immunol., 46(11):2496–2506, 2016.

142. Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of single-cell trajectory

inference methods. Nat. Biotechnol., 37(5):547–554, 2019.

143. Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edger: a bioconductor package for differential

expression analysis of digital gene expression data. Bioinformatics, 26(1):139–140, 2010.

144. Gu Mi, Yanming Di, and Daniel W Schafer. Goodness-of-fit tests and model diagnostics for negative binomial

regression of RNA sequencing data. PLoS One, 10(3):e0119254, 2015.

145. Anne Schwabe, Katja N Rybakova, and Frank J Bruggeman. Transcription stochasticity of complex gene

regulation models. Biophys. J., 103(6):1152–1161, 2012.

146. Vahid Shahrezaei and Peter S Swain. Analytical distributions for stochastic gene expression. Proc. Natl.

Acad. Sci. U. S. A., 105(45):17256–17261, 2008.

147. Alessandra Dal Molin, Giacomo Baruzzo, and Barbara Di Camillo. Single-Cell RNA-Sequencing: Assessment

of differential expression analysis methods. Front. Genet., 8:62, 2017.

148. Mihails Delmans and Martin Hemberg. Discrete distributional differential expression (D3E)–a tool for gene

expression analysis of single-cell RNA-seq data. BMC Bioinformatics, 17:110, 2016.

149. Trung Nghia Vu, Quin F Wills, Krishna R Kalari, Nifang Niu, Liewei Wang, Mattias Rantalainen, and Yudi

Pawitan. Beta-Poisson model for single-cell RNA-seq data analyses. Bioinformatics, 32(14):2128–2135,

2016.

150. Greg Finak, Andrew McDavid, Masanao Yajima, Jingyuan Deng, Vivian Gersuk, Alex K Shalek, Chloe K

Slichter, Hannah W Miller, M Juliana McElrath, Martin Prlic, Peter S Linsley, and Raphael Gottardo.

MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity

in single-cell RNA sequencing data. Genome Biol., 16(1):1–13, 2015.

151. Nils Eling, Arianne C Richard, Sylvia Richardson, John C Marioni, and Catalina A Vallejos. Correcting the

Mean-Variance dependency for differential variability testing using Single-Cell RNA sequencing data. Cell

Syst, 7(3):284–294.e12, 2018.



170 BIBLIOGRAPHY

152. Jingshu Wang, Mo Huang, Eduardo Torre, Hannah Dueck, Sydney Shaffer, John Murray, Arjun Raj, Mingyao

Li, and Nancy R Zhang. Gene expression distribution deconvolution in single-cell RNA sequencing. Proc.

Natl. Acad. Sci. U. S. A., 115(28):E6437–E6446, 2018.

153. Charlotte Soneson and Mark D Robinson. Bias, robustness and scalability in single-cell differential expression

analysis. Nat. Methods, 15(4):255–261, 2018.

154. Beate Vieth, Christoph Ziegenhain, Swati Parekh, Wolfgang Enard, and Ines Hellmann. powsimr: power

analysis for bulk and single cell RNA-seq experiments. Bioinformatics, 33(21):3486–3488, 2017.

155. Beate Vieth, Swati Parekh, Christoph Ziegenhain, Wolfgang Enard, and Ines Hellmann. A systematic

evaluation of single cell RNA-seq analysis pipelines. Nat. Commun., 10(1):4667, 2019.

156. Emma Pierson and Christopher Yau. ZIFA: Dimensionality reduction for zero-inflated single-cell gene ex-

pression analysis. Genome Biol., 16(1):241, 2015.

157. Davide Risso, Fanny Perraudeau, Svetlana Gribkova, Sandrine Duoptdoit, and Jean-Philippe Vert. A general

and flexible method for signal extraction from single-cell RNA-seq data. Nat. Commun., 9(1):284, 2018.

158. Zhun Miao, Ke Deng, Xiaowo Wang, and Xuegong Zhang. DEsingle for detecting three types of differential

expression in single-cell RNA-seq data. Bioinformatics, 34(18):3223–3224, 2018.

159. Koen Van den Berge, Fanny Perraudeau, Charlotte Soneson, Michael I Love, Davide Risso, Jean-Philippe

Vert, Mark D Robinson, Sandrine Duoptdoit, and Lieven Clement. Observation weights unlock bulk RNA-seq

tools for zero inflation and single-cell applications. Genome Biol., 19(1):24, 2018.

160. Lisa Amrhein, Kumar Harsha, and Christiane Fuchs. A mechanistic model for the negative binomial distri-

bution of single-cell mRNA counts. 2019.

161. Valentine Svensson. Droplet scRNA-seq is not zero-inflated. 2019.

162. F William Townes, Stephanie C Hicks, Martin J Aryee, and Rafael A Irizarry. Feature selection and dimen-

sion reduction for single cell RNA-Seq based on a multinomial model. 2019.

163. Lihua Zhang and Shihua Zhang. Comparison of computational methods for imputing single-cell RNA-

sequencing data. IEEE/ACM Trans. Comput. Biol. Bioinform., 2018.

164. Mo Huang, Jingshu Wang, Eduardo Torre, Hannah Dueck, Sydney Shaffer, Roberto Bonasio, John I Mur-

ray, Arjun Raj, Mingyao Li, and Nancy R Zhang. SAVER: gene expression recovery for single-cell RNA

sequencing. Nat. Methods, 15(7):539–542, 2018.

165. Wenhao Tang, Francois Bertaux, Philipp Thomas, Claire Stefanelli, Malika Saint, Samuel Blaise Marguerat,

and Vahid Shahrezaei. baynorm: Bayesian gene expression recovery, imputation and normalisation for single

cell RNA-sequencing data. 2018.



BIBLIOGRAPHY 171

166. Wei Vivian Li and Jingyi Jessica Li. An accurate and robust imputation method scimpute for single-cell

RNA-seq data. Nat. Commun., 9(1):997, 2018.

167. David van Dijk, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail, Ambrose J Carr, Cassandra

Burdziak, Kevin R Moon, Christine L Chaffer, Diwakar Pattabiraman, Brian Bierie, Linas Mazutis, Guy

Wolf, Smita Krishnaswamy, and Dana Pe’er. Recovering gene interactions from Single-Cell data using data

diffusion. Cell, 174(3):716–729.e27, 2018.

168. Jonathan Ronen and Altuna Akalin. netSmooth: Network-smoothing based imputation for single cell RNA-

seq. F1000Res., 7:8, 2018.

169. Wuming Gong, Il-Youp Kwak, Pruthvi Pota, Naoko Koyano-Nakagawa, and Daniel J Garry. DrImpute:

imputing dropout events in single cell RNA sequencing data. BMC Bioinformatics, 19(1):220, 2018.

170. Tallulah S Andrews and Martin Hemberg. False signals induced by single-cell imputation. F1000Res., 7:

1740, 2018.

171. Jingshu Wang, Divyansh Agarwal, Mo Huang, Gang Hu, Zilu Zhou, Chengzhong Ye, and Nancy R Zhang.

Data denoising with transfer learning in single-cell transcriptomics. Nat. Methods, 16(9):875–878, 2019.

172. Lingxue Zhu, Jing Lei, Bernie Devlin, and Kathryn Roeder. A UNIFIED STATISTICAL FRAMEWORK

FOR SINGLE CELL AND BULK RNA SEQUENCING DATA. Ann. Appl. Stat., 12(1):609–632, 2018.

173. Elham Azizi, Sandhya Prabhakaran, Ambrose Carr, and Dana Pe’er. Bayesian inference for single-cell

clustering and imputing. Genomics and Computational Biology, 3(1):46, 2017.

174. Ronald A Fisher. The Design of Experiments. Macmillan Pub Co, 9 edition edition, 1971. ISBN

9780028446905.

175. Gary A Churchill. Fundamentals of experimental design for cDNA microarrays. Nat. Genet., 32 Suppl:

490–495, 2002.

176. Paul L Auer and R W Doerge. Statistical design and analysis of RNA sequencing data. Genetics, 185(2):

405–416, 2010.

177. Andrea Sboner, Xinmeng Jasmine Mu, Dov Greenbaum, Raymond K Auerbach, and Mark B Gerstein. The

real cost of sequencing: higher than you think! Genome Biol., 12(8):125, 2011.

178. Yuwen Liu, Jie Zhou, and Kevin P White. RNA-seq differential expression studies: more sequence or more

replication? Bioinformatics, 30(3):301–304, 2014.

179. Valentine Svensson, Eduardo da Veiga Beltrame, and Lior Pachter. Quantifying the tradeoff between se-

quencing depth and cell number in single-cell RNA-seq. 2019.



172 BIBLIOGRAPHY

180. Douglas C Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 2017. ISBN

9781119113478.

181. Jonathan Alles, Nikos Karaiskos, Samantha D Praktiknjo, Stefanie Grosswendt, Philipp Wahle, Pierre-

Louis Ruffault, Salah Ayoub, Luisa Schreyer, Anastasiya Boltengagen, Carmen Birchmeier, Robert Zinzen,

Christine Kocks, and Nikolaus Rajewsky. Cell fixation and preservation for droplet-based single-cell tran-

scriptomics. BMC Biol., 15(1):44, 2017.

182. Amy Guillaumet-Adkins, Gustavo Rodríguez-Esteban, Elisabetta Mereu, Maria Mendez-Lago, Diego A

Jaitin, Alberto Villanueva, August Vidal, Alex Martinez-Marti, Enriqueta Felip, Ana Vivancos, Hadas

Keren-Shaul, Simon Heath, Marta Gut, Ido Amit, Ivo Gut, and Holger Heyn. Single-cell transcriptome

conservation in cryopreserved cells and tissues. Genome Biol., 18(1):45, 2017.

183. Jase Gehring, Jong Hwee Park, Sisi Chen, Matthew Thomson, and Lior Pachter. Highly multiplexed Single-

Cell RNA-seq for defining cell population and transcriptional spaces. 2018.

184. Christopher S McGinnis, David M Patterson, Juliane Winkler, Daniel N Conrad, Marco Y Hein, Vasudha

Srivastava, Jennifer L Hu, Lyndsay M Murrow, Jonathan S Weissman, Zena Werb, Eric D Chow, and Zev J

Gartner. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat.

Methods, 16(7):619–626, 2019.

185. Dongju Shin, Wookjae Lee, Ji Hyun Lee, and Duhee Bang. Multiplexed single-cell RNA-seq via transient

barcoding for simultaneous expression profiling of various drug perturbations. Sci Adv, 5(5):eaav2249, 2019.

186. Saiful Islam, Una Kjällquist, Annalena Moliner, Pawel Zajac, Jian-Bing Fan, Peter Lönnerberg, and Sten

Linnarsson. Highly multiplexed and strand-specific single-cell RNA 5’ end sequencing. Nat. Protoc., 7(5):

813–828, 2012.

187. Jeffrey T Leek, Robert B Scharpf, Héctor Corrada Bravo, David Simcha, Benjamin Langmead, W Evan

Johnson, Donald Geman, Keith Baggerly, and Rafael A Irizarry. Tackling the widespread and critical

impact of batch effects in high-throughput data. Nat. Rev. Genet., 11(10):733–739, 2010.

188. Jeanette Baran-Gale, Tamir Chandra, and Kristina Kirschner. Experimental design for single-cell RNA

sequencing. Brief. Funct. Genomics, 17(4):233–239, 2018.

189. Franck Rapaport, Raya Khanin, Yupu Liang, Mono Pirun, Azra Krek, Paul Zumbo, Christopher E Ma-

son, Nicholas D Socci, and Doron Betel. Comprehensive evaluation of differential gene expression analysis

methods for RNA-seq data. Genome Biol., 14(9):R95, 2013.

190. Luyi Tian, Xueyi Dong, Saskia Freytag, Kim-Anh Lê Cao, Shian Su, Abolfazl JalalAbadi, Daniela Amann-

Zalcenstein, Tom S Weber, Azadeh Seidi, Jafar S Jabbari, Shalin H Naik, and Matthew E Ritchie. Bench-

marking single cell RNA-sequencing analysis pipelines using mixture control experiments. Nat. Methods, 16

(6):479–487, 2019.



BIBLIOGRAPHY 173

191. Alyssa C Frazee, Andrew E Jaffe, Ben Langmead, and Jeffrey T Leek. Polyester: simulating RNA-seq

datasets with differential transcript expression. Bioinformatics, page btv272, 2015.

192. Charlotte Soneson. compcoder–an R package for benchmarking differential expression methods for RNA-seq

data. Bioinformatics, 30(17):2517–2518, 2014.

193. Sam Benidt and Dan Nettleton. SimSeq: a nonparametric approach to simulation of RNA-sequence datasets.

Bioinformatics, 31(13):2131–2140, 2015.

194. Guillem Rigaill, Sandrine Balzergue, Véronique Brunaud, Eddy Blondet, Andrea Rau, Odile Rogier, José

Caius, Cathy Maugis-Rabusseau, Ludivine Soubigou-Taconnat, Sébastien Aubourg, Claire Lurin, Marie-

Laure Martin-Magniette, and Etienne Delannoy. Synthetic data sets for the identification of key ingredients

for RNA-seq differential analysis. Brief. Bioinform., 19(1):65–76, 2018.

195. Claire R Williams, Alyssa Baccarella, Jay Z Parrish, and Charles C Kim. Empirical assessment of analysis

workflows for differential expression analysis of human samples using RNA-Seq. BMC Bioinformatics, 18

(1):38, 2017.

196. Susan Holmes and Wolfgang Huber. Modern Statistics for Modern Biology. Cambridge University Press,

2018. ISBN 9781108427029.

197. Youngchao Ge, Sandrine Duoptdoit, and Terence P Speed. Resampling-based multiple testing for microarray

data analysis. Test, 12(1):1–77, 2003.

198. Sandrine Duoptdoit, Juliet Popper Shaffer, and Jennifer C Boldrick. Multiple hypothesis testing in microar-

ray experiments. Stat. Sci., 18(1):71–103, 2003.

199. John D Storey. A direct approach to false discovery rates. J. R. Stat. Soc. Series B Stat. Methodol., 64(3):

479–498, 2002.

200. Kouros Owzar, William T Barry, and Sin-Ho Jung. Statistical considerations for analysis of microarray

experiments. Clin. Transl. Sci., 4(6):466–477, 2011.

201. Stanley B Pounds. Estimation and control of multiple testing error rates for microarray studies. Brief.

Bioinform., 7(1):25–36, 2006.

202. Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical and powerful approach

to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol., 57(1):289–300, 1995.

203. P H Westfall, S S Young, and S Paul Wright. On adjusting P-Values for multiplicity. Biometrics, 49(3):

941–945, 1993.

204. Sin-Ho Jung, Heejung Bang, and Stanley Young. Sample size calculation for multiple testing in microarray

data analysis. Biostatistics, 6(1):157–169, January 2005. ISSN 1465-4644. doi: 10.1093/biostatistics/kxh026.



174 BIBLIOGRAPHY

205. Alicia Poplawski and Harald Binder. Feasibility of sample size calculation for RNA-seq studies. Brief.

Bioinform., 19(4):713–720, 2018.

206. Hao Wu, Chi Wang, and Zhijin Wu. PROPER: comprehensive power evaluation for differential expression

using RNA-seq. Bioinformatics, 31(2):233–241, 2015.

207. Michele A Busby, Chip Stewart, Chase A Miller, Krzysztof R Grzeda, and Gabor T Marth. Scotty: a web

tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics, 29(5):

656–657, 2013.

208. Alice Carter, Kate Tilling, and Marcus R Munafò. A systematic review of sample size and power in leading

neuroscience journals. 2017.

209. Marcia McNutt. Journals unite for reproducibility. Science, 346(6210):679, 2014.

210. Christoph Ziegenhain, Beate Vieth, Swati Parekh, Björn Reinius, Amy Guillaumet-Adkins, Martha Smets,

Heinrich Leonhardt, Holger Heyn, Ines Hellmann, and Wolfgang Enard. Comparative analysis of Single-Cell

RNA sequencing methods. Mol. Cell, 65(4):631–643.e4, 2017.

211. Charlotte Soneson and Mark D Robinson. iCOBRA: open, reproducible, standardized and live method

benchmarking. Nat. Methods, 13(4):283, 2016.

212. Illumina | Bio-Rad. https://info.bio-rad.com/ww-ddseq.html?WT.mc_id=170714020573&

WT.srch=1&WT.knsh_id=0b4827f0-7e05-4a40-97b4-312e9824e32f&gclid=CjwKCAjw_

MnmBRAoEiwAPRRWW2gSrNDNuEwU2JTUl4kwosl0qbTod7wr5GH8cPHQl8iPrnQHOuSj_BoC4A8QAvD_BwE.

Accessed: 2019-5-8.

213. Pavithra Kumar, Yuqi Tan, and Patrick Cahan. Understanding development and stem cells using single

cell-based analyses of gene expression. Development, 144(1):17–32, 2017.

214. Ehud Shapiro, Tamir Biezuner, and Sten Linnarsson. Single-cell sequencing-based technologies will revolu-

tionize whole-organism science. Nat. Rev. Genet., 14(9):618–630, 2013.

215. Cole Trapnell. Defining cell types and states with single-cell genomics. Genome Res., 25(10):1491–1498,

2015.

216. Florian Buettner, Kedar N Natarajan, F Paolo Casale, Valentina Proserpio, Antonio Scialdone, Fabian J

Theis, Sarah A Teichmann, John C Marioni, and Oliver Stegle. Computational analysis of cell-to-cell

heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol.,

33(2):155–160, 2015.

217. Woosung Chung, Hye Hyeon Eum, Hae-Ock Lee, Kyung-Min Lee, Han-Byoel Lee, Kyu-Tae Kim, Han Suk

Ryu, Sangmin Kim, Jeong Eon Lee, Yeon Hee Park, Zhengyan Kan, Wonshik Han, and Woong-Yang Park.

Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat.

Commun., 8:15081, 2017.

https://info.bio-rad.com/ww-ddseq.html?WT.mc_id=170714020573&WT.srch=1&WT.knsh_id=0b4827f0-7e05-4a40-97b4-312e9824e32f&gclid=CjwKCAjw_MnmBRAoEiwAPRRWW2gSrNDNuEwU2JTUl4kwosl0qbTod7wr5GH8cPHQl8iPrnQHOuSj_BoC4A8QAvD_BwE
https://info.bio-rad.com/ww-ddseq.html?WT.mc_id=170714020573&WT.srch=1&WT.knsh_id=0b4827f0-7e05-4a40-97b4-312e9824e32f&gclid=CjwKCAjw_MnmBRAoEiwAPRRWW2gSrNDNuEwU2JTUl4kwosl0qbTod7wr5GH8cPHQl8iPrnQHOuSj_BoC4A8QAvD_BwE
https://info.bio-rad.com/ww-ddseq.html?WT.mc_id=170714020573&WT.srch=1&WT.knsh_id=0b4827f0-7e05-4a40-97b4-312e9824e32f&gclid=CjwKCAjw_MnmBRAoEiwAPRRWW2gSrNDNuEwU2JTUl4kwosl0qbTod7wr5GH8cPHQl8iPrnQHOuSj_BoC4A8QAvD_BwE


BIBLIOGRAPHY 175

218. Orit Rozenblatt-Rosen, Michael J T Stubbington, Aviv Regev, and Sarah A Teichmann. The human cell

atlas: from vision to reality. Nature, 550(7677):451–453, 2017.

219. James A Briggs, Caleb Weinreb, Daniel E Wagner, Sean Megason, Leonid Peshkin, Marc W Kirschner,

and Allon M Klein. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution.

Science, 360(6392):eaar5780, 2018.

220. Hannah Hochgerner, Amit Zeisel, Peter Lönnerberg, and Sten Linnarsson. Conserved properties of dentate

gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat. Neurosci.,

21(2):290–299, 2018.

221. Anoop P Patel, Itay Tirosh, John J Trombetta, Alex K Shalek, Shawn M Gillespie, Hiroaki Wakimoto,

Daniel P Cahill, Brian V Nahed, William T Curry, Robert L Martuza, David N Louis, Orit Rozenblatt-

Rosen, Mario L Suvà, Aviv Regev, and Bradley E Bernstein. Single-cell RNA-seq highlights intratumoral

heterogeneity in primary glioblastoma. Science, 344(6190):1396–1401, 2014.

222. Charlotte Soneson and Mark D Robinson. Towards unified quality verification of synthetic count data with

countsimQC. Bioinformatics, 34(4):691–692, 2018.

223. Swati Parekh, Christoph Ziegenhain, Beate Vieth, Wolfgang Enard, and Ines Hellmann. The impact of

amplification on differential expression analyses by RNA-seq. Sci. Rep., 6:25533, 2016.

224. Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo Abeca-

sis, Richard Durbin, and 1000 Genome Project Data Processing Subgroup. The sequence Alignment/Map

format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

225. Picard toolkit. http://broadinstitute.github.io/picard/, 2019.

226. Tuuli Lappalainen, Michael Sammeth, Marc R Friedländer, Peter A C ’t Hoen, Jean Monlong, Manuel A

Rivas, Mar Gonzàlez-Porta, Natalja Kurbatova, Thasso Griebel, Pedro G Ferreira, Matthias Barann, Thomas

Wieland, Liliana Greger, Maarten van Iterson, Jonas Almlöf, Paolo Ribeca, Irina Pulyakhina, Daniela Esser,

Thomas Giger, Andrew Tikhonov, Marc Sultan, Gabrielle Bertier, Daniel G MacArthur, Monkol Lek, Esther

Lizano, Henk P J Buermans, Ismael Padioleau, Thomas Schwarzmayr, Olof Karlberg, Halit Ongen, Helena

Kilpinen, Sergi Beltran, Marta Gut, Katja Kahlem, Vyacheslav Amstislavskiy, Oliver Stegle, Matti Pirinen,

Stephen B Montgomery, Peter Donnelly, Mark I McCarthy, Paul Flicek, Tim M Strom, Geuvadis Consortium,

Hans Lehrach, Stefan Schreiber, Ralf Sudbrak, Angel Carracedo, Stylianos E Antonarakis, Robert Häsler,

Ann-Christine Syvänen, Gert-Jan van Ommen, Alvis Brazma, Thomas Meitinger, Philip Rosenstiel, Roderic

Guigó, Ivo G Gut, Xavier Estivill, and Emmanouil T Dermitzakis. Transcriptome and genome sequencing

uncovers functional variation in humans. Nature, 501(7468):506–511, 2013.

227. Simone Picelli, Omid R Faridani, Åsa K Björklund, Gösta Winberg, Sven Sagasser, and Rickard Sandberg.

Full-length RNA-seq from single cells using smart-seq2. Nat. Protoc., 9:171, 2014.

http://broadinstitute.github.io/picard/


176 BIBLIOGRAPHY

228. Diego Adhemar Jaitin, Ephraim Kenigsberg, Hadas Keren-Shaul, Naama Elefant, Franziska Paul, Irina

Zaretsky, Alexander Mildner, Nadav Cohen, Steffen Jung, Amos Tanay, and Ido Amit. Massively parallel

Single-Cell RNA-Seq for Marker-Free decomposition of tissues into cell types. Science, 343(6172):776–779,

2014.

229. Valentine Svensson, Kedar Nath Natarajan, Lam-Ha Ly, Ricardo J Miragaia, Charlotte Labalette, Iain C

Macaulay, Ana Cvejic, and Sarah A Teichmann. Power analysis of single-cell RNA-sequencing experiments.

Nat. Methods, 14(4):381–387, 2017.

230. L Paul, P Kubala, G Horner, M Ante, I Hollaender, and others. SIRVs: Spike-In RNA variants as external

isoform controls in RNA-sequencing. bioRxiv, 2016.

231. Wei Vivian Li and Jingyi Jessica Li. A statistical simulator scdesign for rational scRNA-seq experimental

design. Bioinformatics, 35(14):i41–i50, 2019.

232. Swati Parekh, Christoph Ziegenhain, Beate Vieth, Wolfgang Enard, and Ines Hellmann. zUMIs - a fast and

flexible pipeline to process RNA sequencing data with UMIs. Gigascience, 7(6), 2018.

233. Dominic Grün and Alexander van Oudenaarden. Design and analysis of Single-Cell sequencing experiments.

Cell, 163(4):799–810, 2015.

234. Naomi Habib, Yinqing Li, Matthias Heidenreich, Lukasz Swiech, Inbal Avraham-Davidi, John J Trombetta,

Cynthia Hession, Feng Zhang, and Aviv Regev. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare

adult newborn neurons. Science, 353(6302):925–928, 2016.

235. Naomi Habib, Inbal Avraham-Davidi, Anindita Basu, Tyler Burks, Karthik Shekhar, Matan Hofree, Sourav R

Choudhury, François Aguet, Ellen Gelfand, Kristin Ardlie, David A Weitz, Orit Rozenblatt-Rosen, Feng

Zhang, and Aviv Regev. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods, 14(10):

955–958, 2017.

236. Benjamin Lacar, Sara B Linker, Baptiste N Jaeger, Suguna Krishnaswami, Jerika Barron, Martijn Kelder,

Sarah Parylak, Apuã Paquola, Pratap Venepally, Mark Novotny, Carolyn O’Connor, Conor Fitzpatrick,

Jennifer Erwin, Jonathan Y Hsu, David Husband, Michael J McConnell, Roger Lasken, and Fred H Gage.

Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun., 7:11022, 2016.

237. Blue B Lake, Rizi Ai, Gwendolyn E Kaeser, Neeraj S Salathia, Yun C Yung, Rui Liu, Andre Wildberg, Derek

Gao, Ho-Lim Fung, Song Chen, Raakhee Vijayaraghavan, Julian Wong, Allison Chen, Xiaoyan Sheng, Fiona

Kaper, Richard Shen, Mostafa Ronaghi, Jian-Bing Fan, Wei Wang, Jerold Chun, and Kun Zhang. Neuronal

subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science, 352(6293):

1586–1590, 2016.

238. Gioele La Manno, Ruslan Soldatov, Amit Zeisel, Emelie Braun, Hannah Hochgerner, Viktor Petukhov,

Katja Lidschreiber, Maria E Kastriti, Peter Lönnerberg, Alessandro Furlan, Jean Fan, Lars E Borm, Zehua



BIBLIOGRAPHY 177

Liu, David van Bruggen, Jimin Guo, Xiaoling He, Roger Barker, Erik Sundström, Gonçalo Castelo-Branco,

Patrick Cramer, Igor Adameyko, Sten Linnarsson, and Peter V Kharchenko. RNA velocity of single cells.

Nature, 560(7719):494–498, 2018.

239. Pär G Engström, Tamara Steijger, Botond Sipos, Gregory R Grant, André Kahles, The RGASP Consor-

tium, Gunnar Rätsch, Nick Goldman, Tim J Hubbard, Jennifer Harrow, Roderic Guigó, and Paul Bertone.

Systematic evaluation of spliced alignment programs for RNA-seq data. Nat. Methods, 10(12):1185–1191,

2013.

240. Michael B Cole, Davide Risso, Allon Wagner, David DeTomaso, John Ngai, Elizabeth Purdom, Sandrine

Duoptdoit, and Nir Yosef. Performance assessment and selection of normalization procedures for Single-Cell

RNA-Seq. Cell Syst, 8(4):315–328.e8, 2019.

241. Shun H Yip, Panwen Wang, Jean-Pierre A Kocher, Pak Chung Sham, and Junwen Wang. Linnorm: improved

statistical analysis for single cell RNA-seq expression data. Nucleic Acids Res., 45(22):e179, 2017.

242. Maria K Jaakkola, Fatemeh Seyednasrollah, Arfa Mehmood, and Laura L Elo. Comparison of methods

to detect differentially expressed genes between single-cell populations. Brief. Bioinform., 18(5):735–743,

2017.

243. Charity W Law, Yunshun Chen, Wei Shi, and Gordon K Smyth. voom: Precision weights unlock linear

model analysis tools for RNA-seq read counts. Genome Biol., 15(2):R29, 2014.

244. Todd M Gierahn, Marc H Wadsworth, 2nd, Travis K Hughes, Bryan D Bryson, Andrew Butler, Rahul Satija,

Sarah Fortune, J Christopher Love, and Alex K Shalek. Seq-Well: portable, low-cost RNA sequencing of

single cells at high throughput. Nat. Methods, 14(4):395–398, 2017.

245. Celsee systems. https://www.celsee.com/systems/. Accessed: 2019-10-2.

246. ICELL8 system. https://www.takarabio.com/learning-centers/automation-systems/

icell8-introduction. Accessed: 2019-10-2.

247. Amit Zeisel, Hannah Hochgerner, Peter Lönnerberg, Anna Johnsson, Fatima Memic, Job van der Zwan,

Martin Häring, Emelie Braun, Lars E Borm, Gioele La Manno, Simone Codeluppi, Alessandro Furlan, Kawai

Lee, Nathan Skene, Kenneth D Harris, Jens Hjerling-Leffler, Ernest Arenas, Patrik Ernfors, Ulrika Marklund,

and Sten Linnarsson. Molecular architecture of the mouse nervous system. Cell, 174(4):999–1014.e22, 2018.

248. Páll Melsted, A Sina Booeshaghi, Fan Gao, Eduardo Beltrame, Lambda Lu, Kristján Eldjárn Hjorleifsson,

Jase Gehring, and Lior Pachter. Modular and efficient pre-processing of single-cell RNA-seq. 2019.

249. Thasso Griebel, Benedikt Zacher, Paolo Ribeca, Emanuele Raineri, Vincent Lacroix, Roderic Guigó, and

Michael Sammeth. Modelling and simulating generic RNA-Seq experiments with the flux simulator. Nucleic

Acids Res., 40(20):10073–10083, 2012.

https://www.celsee.com/systems/
https://www.takarabio.com/learning-centers/automation-systems/icell8-introduction
https://www.takarabio.com/learning-centers/automation-systems/icell8-introduction


178 Bibliography

250. S Parekh, B Vieth, C Ziegenhain, W Enard, and I Hellmann. Strategies for quantitative RNA-seq analyses

among closely related species. bioRxiv, 2018.

251. Daniel P Depledge, Kalanghad Puthankalam Srinivas, Tomohiko Sadaoka, Devin Bready, Yasuko Mori,

Dimitris G Placantonakis, Ian Mohr, and Angus C Wilson. Direct RNA sequencing on nanopore arrays

redefines the transcriptional complexity of a viral pathogen. Nat. Commun., 10(1):754, 2019.

252. Charlotte Soneson, Yao Yao, Anna Bratus-Neuenschwander, Andrea Patrignani, Mark D Robinson, and

Shobbir Hussain. A comprehensive examination of nanopore native RNA sequencing for characterization of

complex transcriptomes. Nat. Commun., 10(1):3359, 2019.

253. Ashley Byrne, Charles Cole, Roger Volden, and Christopher Vollmers. Realizing the potential of full-length

transcriptome sequencing. Philos. Trans. R. Soc. Lond. B Biol. Sci., 374(1786):20190097, 2019.

254. David Laehnemann, Johannes Köster, Ewa Szcureck, Davis McCarthy, Stephanie C Hicks, Mark D Robinson,

Catalina A Vallejos, Niko Beerenwinkel, Kieran R Campbell, Ahmed Mahfouz, Luca Pinello, Pavel Skums,

Alexandros Stamatakis, Camille Stephan-Otto Attolini, Samuel Aparicio, Jasmijn Baaijens, Marleen Balvert,

Buys de Barbanson, Antonio Cappuccio, Giacomo Corleone, Bas Dutilh, Maria Florescu, Victor Guryev,

Rens Holmer, Katharin Jahn, Thamar Jessurun Lobo, Emma M Keizer, Indu Khatri, Szymon M Kiełbasa,

Jan O Korbel, Alexey M Kozlov, Tzu-Hao Kuo, Boudewijn P F Lelieveldt, Ion I Manoptdoiu, John C Marioni,

Tobias Marschall, Felix Mölder, Amir Niknejad, Łukasz Rączkowski, Marcel Reinders, Jeroen de Ridder,

Antoine-Emmanuel Saliba, Antonios Somarakis, Oliver Stegle, Fabian J Theis, Huan Yang, Alex Zelikovsky,

Alice C McHardy, Benjamin J Raphael, Sohrab P Shah, and Alexander Schönhuth. 12 grand challenges in

single-cell data science. Technical Report e27885v1, PeerJ Preprints, 2019.

255. Youjin Hu, Qin An, Katherine Sheu, Brandon Trejo, Shuxin Fan, and Ying Guo. Single cell Multi-Omics

technology: Methodology and application. Front Cell Dev Biol, 6:28, 2018.

256. M Colomé-Tatché and F J Theis. Statistical single cell multi-omics integration. Current Opinion in Systems

Biology, 7:54–59, 2018.



List of Figures

1.1 RNA-sequencing workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 RNA-seq library preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Illumina sequencing workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Computational pipeline for RNA-seq data . . . . . . . . . . . . . . . . . . . . 11

1.5 Scale of scRNA-seq experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Isolating and capturing single cells for sequencing . . . . . . . . . . . . . . . . 13

1.7 Preparation of scRNA-seq libraries . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 Experimental design for scRNA-seq experiments . . . . . . . . . . . . . . . . 28

1.9 Statistical Hypothesis Testing and Errors . . . . . . . . . . . . . . . . . . . . 31



180 List of Figures



Acknowledgements

I got to meet so many interesting and great people during my PhD that I will for sure forget
one or the other. So, my apologies in advance! With that out of the way, here we go:

First and foremost, I want to thank my PhD advisor Wolfgang Enard and my mentor
Ines Hellmann. Both of you have created this incredibly awesome work group with such a
positive atmosphere that I could not wish for more. Thank you so much for your constant
support and advice. Wolfgang, I want to thank you for giving me so much freedom to explore
my interests and Ines for helping me realize them. How you two think and conduct science
has taught me what it really means to do science.

Of course, I have to thank the two other pillars of the holy trinity: Christoph for patiently
answering all my questions concerning the mysteries of the wet lab and Swati for guiding
me through all things related to bioinformatics. Both of you were the best in sharing ideas
over coffee, group raging, hand holding while piping, eating yummy food and so much more.
KK and Commander, without you two this would have not been so much fun. Naturally,
thanks to everyone in the Enard lab: Lu, Johanna and Aleks for nice morning coffees; Daniel
and Jojo for awesome company and beer; Philipp and Zane for your energy and infectious
laughter; my fellow office mates Bria, Ilse and Mari for a great working atmosphere, even
though the air is not sometimes; Karin, Ines B and Steffi for being the best support and
lending a helping hand. Of course, all the great students, past and present, that I had the
privilege to meet and teach on occasions: Michael, Volker, Gunnar, Alex, Lukas, Khalis,
Chris, Zeynep, ... . Thank you all for being great colleagues and friends.

I want to thank my family and friends: Papi, I want to thank you for your support, love
and advice through all my studies and life in general. Tom, even though you are my only
brother, you are the best big brother I could have wished for. Thanks for all your help, in
and out of science and for kicking my butt to get stuff done. I owe a big thanks to mijn
gekke meiden, Fleur, Iris and Nele, you guys have been the best. Last but not least, Rob,
thank you for invading my home country just for me, loving me unconditionally and being
my calm rock supporting me through all my struggles.



182 Acknowledgements



Curriculum Vitae



184 Curriculum Vitae



Curriculum Vitae 185



186 Curriculum Vitae


	Abbreviations
	Publications
	Declaration
	Aims
	Summary
	Introduction
	Gene Expression
	RNA-sequencing
	Library Preparation
	High-throughput sequencing
	Processing of RNA-sequencing data

	Single-Cell RNA-sequencing
	Isolating Single Cells
	Capturing Single Cells
	Preparing single-cell RNA-seq libraries
	Analyzing single-cell RNA-seq data

	Experimental design and power analysis
	Evaluation of single-cell RNA-seq methods
	Statistical Hypothesis Testing and Errors
	Statistical Power Analysis for RNA-sequencing experiments


	Results
	Amplification Noise
	Protocol Benchmarking
	powsimR
	Updates to powsimR

	zUMIs
	Updates to zUMIs

	Pipeline Benchmarking

	Discussion
	Conclusion and Outlook
	Bibliography
	Acknowledgements
	Curriculum Vitae

