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Summary 

 

CD4+ T helper cells orchestrate the adaptive immune response. The differentiation of naïve CD4+ T cells 

into various functionally different subsets of T helper cells ensures the adaptation of the immune 

response to the invading pathogen. The T helper cell subset that is responsible for B cell help during 

affinity maturation in the germinal center (GC) reaction is called T follicular helper (Tfh) cells. 

Therefore, Tfh cells are crucial to develop long-lasting immunity by ensuring the generation of memory 

B cells and high-affinity antibody-producing plasma cells. 

Blood-resident Tfh cells, so called circulating Tfh (cTfh) cells, can be used to investigate human Tfh 

cells instead of lymphoid tissue-resident Tfh cells, which are difficult to assess in humans. Lymphoid 

tissue-resident Tfh cells and cTfh cells both provide B cell help and share similarities in phenotype and 

gene expression. cTfh cells can express other CD4+ T cell subset-defining chemokine receptors and can 

thereby be clustered into different subsets. 

Although increased cTfh cell frequencies have been connected to better vaccination outcome and new 

insights into cTfh cell kinetics might improve the understanding of established vaccinations and impact 

future vaccine design, only few studies investigated cTfh kinetics after vaccination. Most conclusions 

were drawn from annual influenza vaccinations that allow for investigation of recall responses. 

Nevertheless, it is difficult to distinguish between the primary and secondary immune response as 

vaccinees have likely been in contact with influenza virus before vaccination and additionally influenza 

vaccination can have low efficacy. Therefore, I tracked and characterized cTfh and other blood-resident 

immune cells by flow cytometry after challenge with a live virus in the context of a vaccination against 

yellow fever. 

Yellow fever virus (YFV) is endemic in tropical regions. Yellow fever vaccination elicits a strong, long-

lasting immune response with neutralizing antibodies in almost all vaccinees. We were able to show that 

vaccination with the attenuated yellow fever virus elicited an increased frequency of activated cTfh cells 

from three days on after vaccination. The peak frequency of activated cTfh cells was detectable 14 days 

after vaccination. In addition, we observed a shift in the subset composition of cTfh cells during the 

immune response with cTfh1 cells as the most prevalent subpopulation. Those findings were confirmed 

by the detection of YFV-specific CD4+ T cells in the blood with major histocompatibility complex 

(MHC) II tetramers for four known epitopes. Moreover, we found a correlation of frequencies of cTfh1 

cells with the strength of the neutralizing antibody response, which might influence future vaccine 

design. 

Tfh cells have also been implicated in the pathogenesis of several autoimmune diseases and are for 

example contained in ectopic lymphoid structures and implicated in the formation of autoantibodies. 

Multiple sclerosis (MS) often involves ectopic lymphoid structures and oligoclonal bands in the 
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cerebrospinal fluid and multiple studies point to a role of Tfh cells in multiple sclerosis. Yet, cTfh cells 

and the impact of immunomodulatory drugs are not well investigated in patients with MS. Therefore, I 

compared blood-resident T and B cell populations of patients with multiple sclerosis, that either received 

no treatment or different immunomodulatory drugs, with cells derived from healthy donors. 

Although cTfh cells from MS patients were phenotypically not distinguishable from healthy donors, 

immunomodulatory treatment with the sphingosine-1-phosphate receptor (S1PR) 1 blocking drug 

fingolimod resulted in profoundly reduced frequencies of cTfh cells. Additionally, other T cells 

expressing the Tfh cell hallmark chemokine receptor CXCR5, such as T follicular regulatory cells and 

CXCR5+CD8+ T cells, were similarly affected. This provides insight into the migratory pattern of cTfh 

cells as well as a better understanding of the impact of fingolimod on blood-resident lymphocyte 

populations.  

In summary, the findings I present in this thesis contribute to a better understanding of circulating Tfh 

cells after viral challenge and immunomodulation. This might have implications for vaccine design and 

for the treatment of autoimmune diseases.  
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Zusammenfassung 

 

CD4+ T-Helferzellen steuern die adaptive Immunantwort. Die Differenzierung von naiven CD4+ T-

Zellen in verschiedene T-Helferzell-Subtypen mit unterschiedlichen Funktionen sichert die spezifische 

Anpassung der Immunantwort auf das eindringende Pathogen. Follikuläre T-Helferzellen (Tfh) sind für 

die B-Zell-Hilfe während der Affinitätsreifung in der Keimzentrumsreaktion verantwortlich. Indem sie 

sicherstellen, dass B-Gedächtniszellen und hochaffine Antikörper-produzierende Plasmazellen gebildet 

werden, sind Tfh-Zellen essenziell für die Entwicklung langanhaltender Immunität. 

Tfh-Zellen im Blut, so genannte zirkulierende („circulating“) Tfh-Zellen (cTfh), können dazu verwendet 

werden, humane Tfh-Zellen zu untersuchen, anstatt dafür Tfh-Zellen aus den Lymphknoten zu 

verwenden, deren Probennahme invasiv und daher schwierig ist. Tfh-Zellen in Lymphknoten und cTfh-

Zellen leisten beide B-Zell-Hilfe und teilen phänotypische und genexpressionelle Gemeinsamkeiten. 

cTfh-Zellen können Chemokinrezeptoren anderer CD4+ T-Zell-Subtypen exprimieren und dadurch 

ebenfalls in verschiedene Subtypen unterteilt werden. 

Obwohl erhöhte cTfh-Zell-Frequenzen mit einem besseren Impfresultat in Verbindung gebracht 

wurden,  neue Erkenntnisse über die Kinetik von cTfh-Zellen das Verständnis von etablierten Impfungen 

verbessern könnten und diese Erkenntnisse die Entwicklung neuer Impfstoffe beeinflussen könnten, 

haben sich bisher nur wenige Studien mit der cTfh Kinetik nach Impfungen beschäftigt. Die meisten 

Rückschlüsse wurden von jährlichen Grippeimpfungen gezogen, die es erlauben eine Gedächtnisantwort 

zu untersuchen. Allerdings ist es im Falle von Impfungen gegen Influenzaviren schwierig, zwischen 

einer primären und sekundären Immunantwort zu unterscheiden, da die geimpften Personen mit einer 

hohen Wahrscheinlichkeit schon zuvor mit Influenzaviren in Kontakt waren und Grippeimpfungen 

manchmal nicht vollen Impfschutz vermitteln. Daher habe ich cTfh-Zellen und andere Immunzellen im 

Blut nach einer Immunisierung mit einem lebenden Virus im Rahmen einer Gelbfieberimpfung mithilfe 

von Durchflusszytometrie untersucht. 

Das Gelbfiebervirus ist endemisch in den Tropen. Die Impfung gegen Gelbfieber führt zu einer starken, 

langanhaltenden Immunantwort mit neutralisierenden Antikörpern bei beinahe allen geimpften 

Personen. Wir konnten zeigen, dass die Impfung mit dem attenuierten Gelbfiebervirus eine erhöhte 

Frequenz von aktivierten cTfh-Zellen ab Tag drei nach der Impfung zur Folge hatte. Die höchste 

Frequenz an aktivierten cTfh-Zellen wurde nach 14 Tagen erreicht. Zusätzlich konnten wir während der 

Immunantwort eine Veränderung der Zusammensetzung der cTfh-Zellen erkennen, bei der cTfh1-Zellen 

dominierten. Mithilfe von Haupthistokompatibilitätskomplex („major histocompatibility complex“, 

MHC) II Tetrameren, die mit vier bekannten Epitopen beladen waren, wurden diese Beobachtungen 

durch den Nachweis von Gelbfiebervirus-spezifischen CD4+ T-Zellen im Blut bestätigt. Außerdem 
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fanden wir eine Korrelation zwischen der Frequenz von cTfh1-Zellen und der Stärke der 

neutralisierenden Antikörper Antwort, was die Entwicklung von Impfstoffen beeinflussen könnte. 

Tfh-Zellen sind auch in der Pathogenese von Autoimmunkrankheiten beschrieben, kommen 

beispielsweise in ektopischen lymphoiden Strukturen vor und sind potenziell an der Bildung von 

Autoantikörpern beteiligt. Multiple Sklerose (MS) geht oft mit der Bildung ektopischer lymphoider 

Strukturen und oligoklonaler Banden im Liquor einher und mehrere Studien schreiben Tfh-Zellen eine 

Rolle in Multipler Sklerose zu. Allerdings sind cTfh-Zellen und der Einfluss immunmodulierender 

Medikamente bei MS Patienten nicht gut untersucht. Daher habe ich T-Zellen und B-Zellen im Blut von 

Patienten mit Multipler Sklerose, die entweder keine Behandlung oder verschiedene 

immunmodulatorische Medikamente erhielten, mit denen gesunder Spender verglichen. 

Obwohl cTfh-Zellen von MS Patienten phänotypisch nicht von denen gesunder Spender zu 

unterscheiden waren, hatte eine Behandlung mit dem Sphingosine-1-Phosphat-Rezeptor (S1PR) 1-

blockierenden Medikament Fingolimod zur Folge, dass die cTfh Frequenzen stark reduziert waren. 

Zusätzlich zeigte Fingolimod ähnliche Effekte auf andere T-Zellen, die ebenfalls den Tfh-Zell-

definierenden Chemokinrezeptor CXCR5 exprimieren, wie etwa follikuläre regulatorische T-Zellen und 

CXCR5+CD8+ T-Zellen. Diese Beobachtungen lassen sowohl Rückschlüsse auf das 

Migrationsverhalten von cTfh-Zellen zu, als auch auf die Effekte von Fingolimod auf Lymphozyten im 

Blut. 

Zusammenfassend tragen die Ergebnisse, die ich in dieser Arbeit präsentiere, zu einem besseren 

Verständnis von zirkulierenden Tfh-Zellen während einer antiviralen Immunantwort und während 

Immunmodulation bei. Dies könnte für die Entwicklung von Impfstoffen und für die Behandlung von 

Autoimmunerkrankungen von Bedeutung sein.  
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Abbreviations 

 

CNS    central nervous system 

cTfh    circulating T follicular helper 

cTfr    circulating T follicular regulatory 

EAE    experimental autoimmune encephalomyelitis 

ELS    ectopic lymphoid structures 

GC    germinal center 

HCV    hepatitis C virus 

HIV    human immunodeficiency virus 

HPV    human papilloma virus 

IL    interleukin 

LN    lymph node 

MHC    major histocompatibility complex 

MS    multiple sclerosis 

RA    rheumatoid arthritis 

S1PR    sphingosine-1-phosphate receptor 

SLE    systemic lupus erythematosus 

SS    Sjögren’s syndrome 

T-B    T cell – B cell 

TCR    T cell receptor 

Tfh    T follicular helper 

Tfr    T follicular regulatory 

Th    T helper 

Treg    regulatory T 

YFV    yellow fever virus 
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1 Introduction 

 

1.1 CD4+ T helper cells 

CD4+ T cells, so-called T helper (Th) cells, are a crucial component of the adaptive immune system. 

They shape the activity of other immune cells by releasing cytokines, promote or suppress immune 

responses, adapt the immune response to the invading pathogen, display cytotoxic effects either on their 

own or by supporting activation and proliferation of other cytotoxic cells, and help B cells during class 

switch and affinity maturation in the germinal center (GC) response. 

Th cells can be grouped into different lineages depending on a combination of transcription factors, 

chemokine receptors, and cytokines expressed, which also determines their function during an immune 

response (Fig. 1). Th1, Th2, and Th17 cells are specialized in providing help during infection with 

certain classes of pathogens and one subset usually becomes predominant during an immune response. 

Th1 cells provide help during infections with pathogens that reside or replicate within macrophages like 

viruses or intracellular bacteria. Th2 cells help during infections with extracellular parasites. Th17 cells 

are the predominant Th cell subset during infections with extracellular bacteria and fungi. In contrast, 

regulatory T (Treg) cells suppress immune reactions and thereby prevent dysregulated immune 

responses and autoimmunity (Fig. 1).  

Figure 1. Overview over the major CD4+ T helper cell subsets, their cytokines needed for differentiation from 

naïve CD4+ T cells, their defining transcription factors, cytokines, and chemokines receptors, and their function. 

 

1.2 Tfh cells provide B cell help in the germinal center 

It was long believed that Th2 cells were the T helper cell subset responsible for providing help to B cells 

(1). In 1999 the first steps were made to challenge this view, when the expression of the chemokine 
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receptor CXCR5 on activated CD4+ T cells was described to be responsible for the migration towards 

the chemokine CXCL13 in B cell follicles (2). Shortly after that, CXCR5-expressing CD4+ T cells were 

described in B cell follicles of human tonsils, that promoted antibody-secretion and expressed 

costimulatory molecules like CD40L and ICOS (3-5). It wasn’t until 2009 that T follicular helper (Tfh) 

cells were fully accepted as a separate T helper cell lineage when three groups simultaneously described 

the Tfh hallmark transcription factor Bcl-6 (6-8). 

Tfh cells are now defined by the expression of CXCR5, which recruits them to the CXCL13 (ligand of 

CXCR5) rich follicles where they interact with B cells. Additionally, Tfh cells are characterized by the 

expression of their master transcription factor Bcl-6, which acts as a transcriptional repressor, as well as 

by the expression of high levels of PD-1 and ICOS, and by the secretion of interleukin (IL)-21 (9). 

Interestingly, Tfh cells also display a certain degree of plasticity and diversity as they express cytokines 

and transcription factors typical of other Th cell subsets. This influences the class switch towards certain 

isotypes in naïve B cells. Additionally, it has been shown that Th2 (10) and Treg cells (11) can contribute 

to the Tfh cell pool. Yet, the plasticity of Tfh cells remains elusive. 

Tfh cell differentiation requires multiple steps. First, a naïve T helper cell is primed towards the Tfh cell 

fate by antigen-presenting cells (mostly dendritic cells) in the T cell zone. These pre-Tfh cells upregulate 

Bcl-6 expression, and consequently CXCR5 expression, while downregulating CCR7 expression, and 

migrate to the T cell – B cell (T-B) border. Upon antigen recognition, naïve B cells increase the 

expression of major histocompatibility complex (MHC) II and also migrate to the T-B border to interact 

with pre-Tfh cells (9). 

B cells that have a high affinity to an antigen and therefore express more MHCII on their surface, are 

more likely to get T cell help (12-14). B cells and Tfh cells then form a GC where B cells cycle between 

a light zone, with now fully differentiated GC Tfh cells and follicular dendritic cells, and a dark zone 

where they undergo cell division and somatic hypermutation. GC Tfh cells and GC B cells are co-

dependent, where the GC Tfh cell provides proliferation and differentiation signals to the GC B cells 

via CD40L and cytokines such as IL-21, and at a later GC stage also IL-4 (6, 9). GC Tfh cells are 

indispensable for the GC reaction (8). Without Tfh cells, GCs neither form nor persist. GC B cells then 

differentiate into either memory B cells or antibody-producing plasma cells, which seems to depend on 

low/intermediate versus high antigen-affinity of the GC B cell, and consequently the resulting strength 

of GC Tfh cell signals (9) (Fig. 2). 
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Dysregulated germinal center reactions with excessive proliferation of GC Tfh and GC B cells can lead 

to several pathological conditions and therefore need to be controlled by regulatory T cells. The so-

called T follicular regulatory (Tfr) cells share features of Treg and Tfh cells and express regulatory 

markers such as FoxP3 and IL-10 as well as follicular markers like CXCR5, ICOS, PD-1, Bcl-6 (15-

18). They originate from thymic-derived FoxP3+ precursor cells and enter the GC in a similar way as 

Tfh cells by upregulating CXCR5 and downregulating CCR7 in the T cell zone upon activation (15). 

Tfr cells were shown to control the germinal center reaction by directly suppressing GC Tfh and B cells, 

limiting GC T and B cell numbers, and altering the antibody output (15-17, 19). 

 

1.3 Human Tfh cells in peripheral blood 

While it is easy to investigate follicular cells in mice, as lymphoid tissue is readily available, human 

lymphoid tissue is harder to obtain routinely, especially if multiple time points need to be compared. 

Blood-resident CXCR5-expressing cells were first reported in 1994 (20) and then also mentioned in the 

2000/2001 papers that first described CXCR5-expressing cells in human tonsils (3-5). In 2011, two 

papers compared this CXCR5+ T helper cell subset to blood Th cells that did not express CXCR5 (21, 

22). The so-called circulating Tfh (cTfh) cells showed classical Tfh cell abilities as they were superior 

to their CXCR5– counterparts in providing help to B cells as well as secreting IL-21 and IL-10 in vitro 

(21, 22). In contrast to GC Tfh cells, cTfh cells did not express Bcl-6 and only few cTfh cells expressed 

GC Tfh activation markers such as ICOS, which indicates that they are in a resting memory state (21-

Figure 2. Schematic overview of the GC reaction. First, a naïve CD4+ T cell is primed by a dendritic cell to 

upregulate Bcl-6 and CXCR5 and downregulate CCR7. Consequently, this pre-Tfh cell migrates due to its CXCR5 

expression to the CXCL13-rich T-B border and interacts with activated B cells. Tfh cells and B cells then form a 

GC, where the B cell undergoes affinity maturation and becomes either a memory B cell or a plasma cell. 
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26). But when co-cultured with naïve B cells, cTfh cells induced class-switch and immunoglobulin 

secretion which was dependent on cognate interaction of cTfh and B cells (21, 22). 

Moreover, Morita et al. defined different subsets of cTfh cells according to their expression of the 

chemokine receptors CXCR3, which is typical for Th1 cells (27-29), and CCR6, which is mostly 

expressed on Th17 cells (30-32). CXCR3+CCR6– cTfh cells, called cTfh1 cells, expressed the classical 

Th1-defining markers T-bet and IFNγ, while CXCR3–CCR6– cTfh cells, called cTfh2 cells, expressed 

the Th2-defining markers GATA3, IL-4, IL-5, and IL-13, and CXCR3–CCR6+ cTfh17 cells expressed 

the classical Th17 markers Rorγt and IL-17 (21). Furthermore, the subsets differed in their IL-21 

secretion as well as their ability to induce class-switch and immunoglobulin secretion of naïve B cells 

in vitro, with cTfh1 cells expressing low amounts of IL-21 and displaying insufficient B helper cell 

abilities, in contrast to cTfh2 and cTfh17 cells (21, 24).  

Besides Tfh cells, other follicular cells can be found in the blood as well. Circulating Tfr (cTfr) cells 

can be identified according to their expression of regulatory markers as well as by CXCR5. They also 

suppress B and Tfh cells in vitro, although at a lower capacity than their lymphoid-resident counterparts 

(33). Even though the exact relationship between lymphoid tissue-resident Tfr cells and blood cTfr cells 

is still unclear, altered ratios of cTfh to cTfr cells have been reported for multiple pathological conditions 

(34-36). 

Figure 3. Comparison of lymphoid tissue- and blood-resident Tfh and Tfr cells. 

 

There are several indications that support the potential role of cTfh cells as the circulating memory 

compartment of Tfh cells: cTfh cells contribute to the pool of antigen-specific memory cells, which are 

detectable even more than a decade after vaccination; certain subsets of Tfh cells expand upon antigen 

stimulation; and cTfh cells are able to recall their Tfh-specific effector functions after secondary antigen 

exposure (21-26, 37, 38). Additionally, it was shown that annual influenza vaccinations generated a 
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recurrent oligoclonal repertoire of vaccine-responsive, activated cTfh cells (37). This repertoire 

persisted in the non-activated cTfh compartment in the subsequent year (37). 

 

1.4 The relationship of lymphoid tissue-resident and blood-resident Tfh cells  

Although functional similarities are evident, the exact relationship between cTfh cells and GC Tfh cells 

is still unclear. From mouse studies it is known that GC Tfh cells can exit the GC (39, 40) and contribute 

to the pool of circulating CXCR5+ T helper cells (23, 41, 42). Efforts have been made recently to 

investigate the origin, trafficking, and function of human cTfh cells as well. Patients with CD40L or 

ICOS deficiencies that lead to impaired GC generation, displayed decreased numbers of cTfh cells in 

their blood (43), which was a first indication that cTfh cells depend on GCs. Furthermore, activated cTfh 

cells correlated with the magnitude of newly generated Tfh cells in lymphoid tissue (26). 

Several other papers provided evidence that activated cTfh cells are related to GC Tfh cells (25, 44-46). 

Comparisons of tonsillar GC Tfh cells and PD-1+ cTfh cells not only showed that the two Tfh cell 

populations were similar in phenotype, function, and gene expression (21, 25, 26), but that they also 

were clonally related as they shared a common T cell receptor (TCR) repertoire, while non-Tfh cells 

were clearly clonally distinguishable (44, 45). Further evidence about the origin of cTfh cells was 

provided by a study that compared Tfh cells from lymph nodes (LN), blood, and the thoracic duct, the 

largest lymphatic vessel in the human body, which transports lymphocytes from multiple lymph nodes 

and releases them directly into the bloodstream (46). Tfh cells from the thoracic duct showed an 

intermediate phenotype between LN and blood Tfh cells with higher expression of migration-associated 

molecules like CXCR3 and CD69 and retention of GC marker expression. Furthermore, they showed 

that while Tfh cells from the thoracic duct and LN were transcriptionally and epigenetically similar, 

only the fraction of activated ICOS+CD38+ cTfh cells showed a similar transcriptional profile, whereas 

total blood Tfh cells differed from that signature. Additionally, Tfh cells from the thoracic duct and the 

blood shared common TCR sequences. 

These findings were able to establish a direct connection between activated cTfh cells and GC Tfh cells 

with cTfh cells as the circulating memory compartment of lymphoid Tfh cells (23). This correlation 

between GC Tfh cells and circulating Tfh cells enabled further studies based on the investigation of 

cTfh cells during, for example, vaccinations, chronic infections, and autoimmune diseases. 

Nevertheless, not all cTfh cells might directly be derived from the GC reaction and are rather in a 

quiescent, recirculating cell state. Whether those quiescent cTfh cells are derived from extrafollicular 

germinal centers, obtain a quiescent phenotype after circulating in peripheral blood for a long time, are 

derived from CXCR5– memory T helper cells, or represent a separate lineage still remains an active field 

of investigation (26, 47). 
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1.5 Human cTfh cells during viral challenge 

Due to their involvement in antibody generation, Tfh cells are critical players in the immune response 

and promising targets for therapeutic approaches and vaccine design  (48). To gain insight into Tfh cell 

kinetics during primary and recall immune responses, vaccinations are an ideal model. Knowledge about 

cTfh cells during immune responses is mostly derived from influenza vaccinations that have been 

investigated for the contribution of Tfh cells to the immune response and memory formation (48, 49). 

Interestingly, cTfh1-polarized cells play a central role in the immune response after annual influenza 

vaccination. Activated cTfh1 cells transiently increased one week after vaccination, were highly 

enriched in influenza-specific cells, and correlated with antibody titers one week after vaccination (24, 

26, 37, 50, 51). Impaired cTfh1 activation in elderly or human immunodeficiency virus (HIV)-infected 

people, however, lead to suboptimal antibody generation (52, 53). Similar observations were made after 

vaccination against human papilloma virus (HPV) where an increase in activated cTfh1 cells was 

observed one week after vaccination and this correlated with memory B cell frequencies one month later 

(54).  

In the paper titled “Dynamic changes in circulating T follicular helper cell composition predict 

neutralizing antibody responses after yellow fever vaccination” we made use of the immune response 

to the yellow fever vaccine to investigate a primary viral immune response. As one of the most efficient 

vaccinations with 94% of vaccinees developing neutralizing antibodies it creates an ideal model to 

investigate an efficient immune response to a live virus in humans (55). Furthermore, vaccinees 

normally have not been in contact with the virus prior to immunization as the yellow fever virus (YFV) 

is endemic to tropical regions of South America and Africa. Therefore, in Germany, the vaccination 

usually induces a primary immune response. This is an advantage compared to studies with influenza 

vaccination as immune responses to influenza strains are usually mixed recall and primary immune 

responses. 

Yellow fever still poses a threat today, as shown by the strong outbreak in Brazil in August 2018, which 

was one of the largest in decades (56). Infection with YFV causes flu-like symptoms, which can progress 

to hemorrhagic fever and organ failure. Vaccination with the attenuated YFV strain 17D has been used 

since the 1930s and can efficiently prevent infection (57). 

A single vaccine shot provides life-long immunity and protective antibody titers can still be detected 

decades after immunization (58). Production of long-lasting titers of highly specific antibodies suggests 

the involvement of the GC. For that reason, I set out to analyze the cTfh cell response at various time 

points after vaccination by flow cytometry and correlated the results with the development of 

neutralizing antibodies. As for influenza vaccinations, the cTfh1 cell subset as well as activated cTfh1 

cells expanded in frequency, although, this occurred two weeks after vaccination compared to one week 

after influenza vaccinations. YFV-specific CD4-positive T cells, as tested by tetramer staining, were 

detectable at the peak of the immune response in the blood and were predominantly Tfh1-polarized as 
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well. Furthermore, we observed an increase in the frequency of antibody-producing cells, which also 

peaked at day 14 post vaccination. Interestingly, the frequency of cTfh1 cells and activated cTfh1 cells 

correlated positively with the amount of neutralizing antibody on day 28 post vaccination while the 

frequency of cTfh17 and activated cTfh17 cells correlated negatively. This study provides valuable 

insight into the role of cTfh cells after yellow fever vaccination and sheds a new light on the role of 

cTfh1 cells, which were mostly described as cTfh cells with insufficient B helper cell qualities. This 

might contribute to the development of improved vaccination strategies. 

As a shared first author of the paper “Dynamic changes in circulating T follicular helper cell composition 

predict neutralizing antibody responses after yellow fever vaccination” I designed, performed and 

analyzed all flow cytometry experiments while my co-first author conducted the study. I additionally 

wrote most of the initial manuscript draft. The exact contributions to the paper are stated under 2.1. 

Further reports about cTfh cells in patients chronically infected with HIV or hepatitis C virus (HCV) 

suggest that targeting cTfh cells might be a promising therapeutical approach. In HIV+ patients, it was 

shown that PD1-expressing CXCR3– cTfh cell frequencies correlated with the development of broadly 

neutralizing antibodies (25). In contrast, in chronically HCV-infected patients it was shown that 

CXCR3+ cTfh cells correlated with the magnitude of the neutralizing antibody response (59). Taken 

together, those results indicate that the polarization of cTfh cells has a great impact on the development 

of a long-lasting and highly specific antibody response and that the ideal polarization may be dependent 

on the pathogen. 

 

1.6 Human cTfh cells in autoimmune diseases 

Increased frequencies of cTfh cells or an altered polarization have been described in various disease 

settings (60, 61). An imbalance of cTfh cell subsets (increased frequencies of cTfh2 and/or cTfh17 cells) 

observed in juvenile dermatomyositis, adult systemic lupus erythematosus (SLE), and Sjögren’s 

syndrome (SS) patients was associated with disease activity, auto-antibody serum levels, and the 

frequency of pathogenic B cells (21, 62, 63). 

Furthermore, the involvement of auto-antibodies and ectopic lymphoid structures (ELS) in the 

pathogenesis of multiple autoimmune diseases suggests a role of the GC and Tfh cells. SLE, SS, and 

rheumatoid arthritis (RA) are examples of autoimmune diseases in which ELS are formed in affected 

tissue (64-66) and the abundance of auto-antibodies is connected to disease activity (67-69). 

Additionally, disease activity or severity in SLE, SS, and RA were linked to increased numbers of one 

or both PD-1- and ICOS-expressing cTfh cells (70-73). Increased cTfh frequencies and/or their 

correlation with higher disease activity have also been described in patients with autoimmune thyroid 

disease (74), myasthenia gravis (75), systemic sclerosis (76), and Graves’ disease (77), amongst other 

autoimmune diseases (61). Even though the precise contribution of Tfh cells to the pathogenesis of most 
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autoimmune diseases is still an active field of research, the generation of auto-antibody-secreting or pro-

inflammatory, pathogenic B cells during an aberrant GC reaction implies defective Tfh cell help. It was 

shown that autoreactive B cells are derived from a GC reaction in SLE (78), that activated cTfh cell 

frequencies correlate with pathogenic B cell frequencies (79), and that auto-antibodies display a high 

degree of affinity and are class-switched (61). 

Multiple sclerosis (MS) is an autoimmune disease characterized by damage to the central nervous system 

(CNS) caused by both cellular (T cell-mediated) and humoral (antibody-mediated) immune responses 

against various components of the CNS (80). This results in neurological damage and disability affecting 

2.5 million people worldwide (81). The main autoreactive T helper cell subset involved in the 

pathogenesis of MS and its animal model experimental autoimmune encephalomyelitis (EAE) is Th17 

cells. CCR6-expressing Th17 cells enter the CNS via a CCL20 (ligand of CCR6) gradient in the choroid 

plexus (82). Furthermore, Th17 cells express an array of proinflammatory cytokines such as IL-17, IL-

23, GM-CSF, and IFNγ, and thereby act as encephalitogenic cells that disrupt the blood brain barrier or 

instruct phagocytes to damage CNS tissue (83, 84). 

Although MS is generally not considered an autoantibody-mediated autoimmune disease, the presence 

of oligoclonal bands in the cerebrospinal fluid and of ELS in the meninges of MS patients, which 

correlate with disease progression in secondary progressive MS patients (85), suggest an involvement 

of Tfh cells. 

Moreover, B cells are believed to contribute to MS pathology and an overrepresentation of 

proinflammatory B cell subsets in the peripheral blood of MS patients, an infiltration of proinflammatory 

cytokine-secreting B cells into the CNS, and the success of B cell depleting MS therapies by anti-CD20 

administration are strong indications for the involvement of B cells in MS (86-90). 

In the paper titled “Fingolimod profoundly reduces frequencies and alters subset composition of 

circulating T follicular helper cells in multiple sclerosis patients” we showed that the frequencies of 

cTfh and other CXCR5-expressing T cells in the blood of MS patients treated with the sphingosine-1-

phosphate receptor (S1PR) 1 modulator fingolimod, were preferentially reduced compared to other T 

cell subsets. This effect was not observed with other immunomodulatory drugs that targeted lymphocyte 

migration via integrin α4 or depleted CD20-expressing B cells. Fingolimod treatment further changed 

the composition of cTfh cells and lead to increased frequencies of activated and cTfh1-polarized cells. 

Furthermore, B cell subsets considered as pathogenic, were reduced in frequency in the blood after 

fingolimod treatment, whereas regulatory B cells were increased in frequency. We were not able to 

confirm differences in circulating Tfh cells of MS patients and healthy controls as suggested by another 

study (85). Nevertheless, with our study we were able to provide insights into the mechanism of an 

established immunomodulatory drug. Additionally, the study provides insights into the migration 

behavior of cTfh cells and other CD4+ T cell subsets residing in peripheral blood. 
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I designed, performed and analyzed all experiments shown in the paper “Fingolimod profoundly reduces 

frequencies and alters subset composition of circulating T follicular helper cells in multiple sclerosis 

patients” and wrote the initial manuscript draft. The exact contributions are stated under 3.1. 

In general, with the results shown in this thesis, I contributed to a better understanding of cTfh cells in 

response to viral challenge and immunomodulation, the potential role of their polarization for the 

humoral immune response, and their migration potential to secondary lymphoid tissue. This will 

hopefully add to new therapeutic approaches for vaccine design and treatment of autoimmune diseases.  
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2 Publication I 

 

Dynamic changes in circulating T follicular helper cell 

composition predict neutralising antibody responses after yellow 

fever vaccination 

Johanna E. Huber, Julia Ahlfeld, Magdalena K. Scheck, Magdalena Zaucha, Klaus Witter, Lisa 

Lehmann, Hadi Karimzadeh, Michael Pritsch, Michael Hoelscher, Frank von Sonnenburg, Andrea Dick, 

Giovanna Barba-Spaeth, Anne B. Krug, Simon Rothenfußer, Dirk Baumjohann 

Clinical & Translational Immunology; 2020; 9: e1129 

DOI: https://doi.org/10.1002/cti2.1129 

 

2.1  Contributions to publication I 

As a shared co-first author, I performed and designed all flow cytometry experiments and analyzed the 

data derived from these experiments, while my co-first author Julia Ahlfeld coordinated the previously 

established yellow fever vaccine study cohort. Simon Rothenfußer and Anne Krug initiated and 

established the yellow fever vaccine study cohort. Dirk Baumjohann formulated the research question 

on studying Tfh cells in the context of the yellow fever vaccine, guided the study design, provided 

funding, and initiated contact with the collaborators in the clinical department. Dirk Baumjohann and I 

contributed to the interpretation of data and conception of the study with contributions from Julia 

Ahlfeld and Simon Rothenfußer. Dirk Baumjohann and I had the idea to use tetramers for the detection 

of yellow fever-specific CD4+ T cells and through literature research and investigation of the prevalent 

HLA types of previous study participants, I found suitable tetramers and established the staining with 

them. Furthermore, I wrote most of the initial manuscript draft with contributions to the introduction 

and methods section by Julia Ahlfeld. I also created all figures used in the paper. The draft was adapted, 

corrected, and finalized together with Dirk Baumjohann, Julia Ahlfeld, and Simon Rothenfußer with 

minor contributions from Anne Krug. Magdalena Scheck performed preliminary measurements of the 

antibody titers and contributed to the methods section of the manuscript. The measurement of 

neutralizing antibodies was performed by Magdalena Zaucha and Lisa Lehmann. Giovanna Barba-

Spaeth established the method for the measurement of the neutralizing antibodies. Klaus Witter and 

Andrea Dick performed the HLA sequencing. Vaccinations and collection of the blood samples were 

performed by Michael Pritsch under supervision of Michael Hoelscher and Frank von Sonnenburg. Hadi 

Karimzadeh helped with the interpretation of the antibody data.  
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3 Publication II 

 

Fingolimod Profoundly Reduces Frequencies and Alters Subset 

Composition of Circulating T Follicular Helper Cells in Multiple 

Sclerosis Patients 

Johanna E. Huber, Yinshui Chang, Ingrid Meinl, Tania Kümpfel, Edgar Meinl and Dirk Baumjohann 

The Journal of Immunology; March 1, 2020; 204 (5) 1101-1110 

DOI: https://doi.org/10.4049/jimmunol.1900955  

 

3.1  Contributions to publication II 

For this study, I performed all experiments and data analysis of those experiments. I also designed the 

flow cytometry panel used in this study. Additionally, I found the connection between fingolimod 

treatment and loss of CCR7-expressing cells through literature research and had the idea to analyze 

different CD4+ T cell subsets from an already published RNA-sequencing dataset according to their 

expression of various migration markers. This dataset was then re-analyzed by Yinshui Chang. 

Furthermore, I wrote most of the initial manuscript draft with contributions to the introduction by Dirk 

Baumjohann. I also created all figures used in the paper. The manuscript draft was adapted, corrected, 

and finalized together with Dirk Baumjohann and Edgar Meinl. Ingrid Meinl and Tania Kümpfel 

provided the clinical samples. Dirk Baumjohann and I contributed to the interpretation of data and 

conception of the study with contributions from Tania Kümpfel and Edgar Meinl. Dirk Baumjohann 

formulated the research question, guided the study design, provided funding, and initiated contact with 

the collaborators in the clinical department. 
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