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Abstract 

Reticular science of metal-organic frameworks (MOFs) has turned into an advanced research 

field recognized as a driver for the development of key technologies incorporating novel 

functional materials. This field has proved to be potentially useful for various applications such 

as storage, separation, catalysis, sensing, and energy technologies. However, to translate their 

performance benefit measured in laboratories into real-world applications it is essential to 

have structural and functional control across molecular, nano, meso, and bulk regimes. 

Moreover, the exponential growth of MOF materials and their use for different purposes 

requires detailed characterization. To be able to correlate the physicochemical properties of 

MOF materials with their performance in a specific task, characterization needs to be both 

accurate and precise. 

Work described in this thesis intends (1) to optimize the synthesis of MOF nano and 

microparticles using solvothermal, microwave assisted, and microfluidic techniques, (2) to 

establish functionalization approaches that specifically alter the inner or external surface of 

particles, (3) to characterize the physicochemical properties of MOFs and develop new 

characterization methods, and (4) to systematically study the relationship between MOF 

particles and their performance in cell cultures. This work highlights the strong mutual 

connection between materials science, nanotechnology and biomedicine and suggests a 

systematic approach in the effort to synthesize, functionalize, characterize and ultimately 

apply MOF materials in biomedical applications.  

The first chapter of this thesis introduces different aspects of the MOF field and describes 

different concepts for their refinement into functional materials. In the second chapter, the 

principles of MOF characterization techniques used in this thesis are explained.  

In chapter three fundamental properties of MOF nanoparticles are discussed. The potential of 

the newly developed method “nanomechanical mass correlation spectroscopy” in the 

characterization of porous nanosystems was demonstrated. In this study the mass-density of 

MIL-101(Cr) particles was studied in solution, and it was found that the density of the particles 

changes depending on the particles’ environment. It was observed that the density of the 

particles not only differs when measured in solution and in air, but also that the density 
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changes when measured in different solvent systems. Additionally, the solvent uptake of these 

particles was quantified in several mixed solvent systems. Depending on the polarity of the 

pores of the structure, MOF nanoparticles exhibit a preferential uptake of polarity-matched 

solvents. The density and polarity of MIL-101(Cr) was then manipulated via coordinative 

functionalization, and the quantitative uptake of different solvents was used to measure the 

internal polarity of the framework.  

Chapter four describes how iron(III) fumarate was used to demonstrate the refinement of 

MOF materials into functional objects for biomedical applications. Iron-fumarate is composed 

of biocompatible building blocks, has high porosity, is easily functionalized, and is magnetic 

resonance imaging active, so it is intrinsically suited for biomedical applications. In the first 

part of this chapter, several surfactant-free methods to produce monodisperse iron(III) 

fumarate nano- and microparticles are described (specifically room temperature 

precipitation, and solvothermal, microwave, or microfluidic heating methods). Using these 

techniques, four variants of iron(III) fumarate particles with distinct morphologies and 

diameters ranging from tens of nanometers to several micrometers in size were isolated and 

characterized. Structural characterization via electron diffraction and pair distribution 

function analysis revealed that all of these iron(III) fumarate variants exhibit the characteristic 

MOF structure of MIL-88A, including the smallest X-ray amorphous particles. Despite their 

identical structure, these particles exhibit drastic differences in suitability as MRI contrast 

agents. When comparing the different iron(III) fumarate types to each other, their r1 

relaxivities are quadrupled and their r2 relaxivities are tripled in dependency of the particles’ 

size and crystallinity. This puts them in the same range as commercially available T1 contrast 

agents such as Dotarem. 

While chapter four explores the potential of iron(III) fumarate in biomedical applications, 

chapter five describes a specific study in which such nanoparticles (NP) were used as a drug 

delivery system. In this system, the MOF pores were loaded with either fluorescent or 

biologically active molecules, and then the particles were coated with exosomes to improve 

their interaction with targeted cells. The study shows the efficiency of this system provided by 

the high loading capacity of the MOF NPs and their biocompatible coating. This is 

demonstrated by the facile delivery and subsequent release of their cargo, which is not 

affected by endosomal entrapment. 
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In chapter six, a study addressing the distribution of functionalized linker molecules within 

MOF particles is presented. UiO-67 nanoparticles were fluorescently-functionalized either de-

novo during synthesis or post-synthetically via linker-exchange. While the distribution of the 

functionalized linker molecules appeared homogeneous on a bulk scale, fluorescence lifetime 

microscopy showed that individual particles within a single sample had vastly different 

degrees of functionalization, and that higher degrees of functionalization correlated strongly 

with a higher density of crystal defects among different particles in a single sample. 

Furthermore, the study relates the influence of the functionalization approach (de-novo and 

post-synthetic) to the density of crystal defects. 

In the appendix, an additional study performed mostly during the author’s masters’ thesis 

work is presented. It is included in this thesis as it complements the overall theme of MOF 

nanoparticle characterization. Chapter three addresses basic questions regarding the internal 

polarity and density of MOF nanoparticles. Appendix chapter eight focuses on methods for 

determining nanoparticle size. Although size measurements are often trivial on larger scales, 

measuring the diameter of nanoparticles is more difficult; not only are there several different 

definitions of size such as hydrodynamic size, crystallite size and size based on image contrast 

in microsocopy, but the data reported are dependent on the conditions of the measurement 

and the underlying physical principle of the analytical technique used. The size of MOF 

nanoparticles is a crucial parameter in defining these materials as they feature size-dependent 

properties such as an increased amount of surface defects, a higher reactivity, and improved 

sorption kinetics. To address this challenge, Zr-fum nanoparticles were prepared and 

characterized using common physical characterization tools. The results of several solid-state 

methods (including X-ray diffraction, atomic force microscopy, scanning electron microscopy 

and transmission electron microscopy) were compared to dispersion-based methods (such as 

fluorescence correlation spectroscopy and dynamic light scattering) and overall guidelines for 

the measurement of MOF nanoparticles are given. 
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1 Introduction 

This chapter is based on the following review: 

Hirschle P, Haase F, Freund R, Furukawa S, Ji Z, Wuttke S. Beyond Frameworks: Structuring 

Reticular Materials across Nano, Meso, and Bulk Regimes. Angew. Chem. Int Ed. 2019, 

submitted. 

1.1 Metal Organic Frameworks 

Metal-Organic frameworks (MOFs) are crystalline materials composed of organic molecules 

bridging inorganic ions or clusters through coordination bonds. This simple construction 

principle grants high structural and chemical diversity; currently, there are nearly 70.000 

structures published in the Cambridge database of crystallography.1 MOF structures are 

defined by two properties: their topology and the chemistry of their constituents. The 

topology of a MOF describes the abstract network in which the building units (organic 

molecules and metal-oxo clusters) are connected. It is mainly directed by the geometry and 

connectivity of the organic linkers, while the coordination chemistry of the metal clusters plays 

a much smaller role.2 The detailed knowledge of organic synthesis that has accumulated over 

the last 150 years allows for the creation of virtually any stable molecular building unit that 

can be imagined, only limited by the time and resources required for the synthesis. 

Consequently, there is essentially an endless number of possible MOF structures waiting to be 

generated, as demonstrated in the well-known isoreticular IRMOF series.3 

MOFs share a number of features that result from their periodic lattice structure and are 

considered “bulk properties,” as they describe the materials at a macroscale. Most MOFs are 

categorized as microporous materials. Depending on the design of their crystal structure, they 

can feature BET surface areas of up to 7000 m²/g and greater.4 Generally, MOFs have low 

mechanical stability, with shear moduli around 1-10 GPa and bulk moduli around 7 to 40 GPa.5 

The rigidity of MOFs is related to their crystal structure; increasing the number of connections 

between molecular building blocks and/or strengthening the bond energy of the linkages 

increases the stability of the material. The porous structure of MOFs is responsible for their 
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low thermal conductivity (around 0.1 W/m K).6 Heat in MOFs is transported primarily along 

their chemical bonds and is limited by the low atomic density of the crystal structure.7  

1.2 Controlling Properties beyond the Structure 

The properties of MOFs in conjunction with their large structural variability make MOFs 

attractive materials for numerous applications. However, the successful implementation of 

MOFs in fields such as catalysis, molecular storage, and biomedicine requires further 

refinement of the raw MOF into functional tools. Considerable efforts have been made to 

enhance the properties of MOFs beyond their crystal structure. These can be categorized into 

three approaches: bulk-processing, morphological optimization, and post-synthetic 

modification. 

The characteristics of macroscopic MOF materials are influenced by manufacturing processes. 

Typical MOF synthesis conditions produce loose powders that are difficult to process and have 

poorly defined external interfaces. These problems can be addressed by using bulk-processing 

techniques such as pressing, casting and 3D-printing. Processing MOFs can tailor the materials’ 

crystallinity, proton and thermal conductivity, elasticity, porosity, adsorption/desorption 

kinetics, and improve their interfaces with other components in macroscopic devices. 

The goal of morphological optimization is to yield a material with a defined shape and precise 

physical and chemical properties. The external surface area increases exponentially with the 

decrease of particle size, so the effects of this optimization technique are especially 

pronounced when the material is confined to the nanoregime. Anisotropic spatial 

confinement and the introduction of hierarchy lead to mesoparticles, materials that feature 

both large external surface areas and bulk characteristics.  

Post-synthetic modification introduces new functionalities to a completed MOF crystal to 

further refine it for a specific application. Two types of post-synthetic modification are 

discussed: Internal modifications, which affect the properties of MOFs throughout their entire 

structure, and external post-synthetic modifications, which only change the surface of MOF 

crystals (and therefore affect the interface of MOFs with their surrounding medium). 
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1.3 Control of Material Properties with Bulk-Processing 

For a chemist, the optimization of reaction parameters is the most intuitive method to 

fine-tune the characteristics of a MOF.8 The main challenge of refining MOF bulk materials for 

specific applications requires overcoming the instability and poor interface properties 

associated with loose MOF powders. Therefore, a variety of different processing techniques 

have been adapted for MOFs. Pelleting compresses material into small wafers, which can 

either be pure MOF9, of MOF crystals held together by a binding agent, usually a polymer10,11. 

This increases the materials’ volumetric density and makes them easier to handle (which is 

especially important when working with toxic substances). This strategy has also been used to 

improve the mechanical stability12 and thermal conductivity6 of MOFs. Monoliths are free 

Figure 1.1. Schematic illustration of building-up MOF materials on all length scales. 
Morphological control and bulk-processing methods result in the formation of nano, meso 
and bulk structures either by self-assembly or via external control. The strategies that result 
in these materials and the properties that dominate their behavior are discussed below. 
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standing structures with macroscopic pores that are used to support catalytically active 

species. Their pores facilitate heat and mass transfer with low flow resistance, and their 

structures exhibit high mechanical stability.13 Suitable approaches towards the production of 

monoliths are based on wetting solid precursor mixtures14, evaporation15, extrusion16 and via 

pressing the powder into monolith shape.17 Additionally, heterogeneous growth of MOFs on 

monolith surfaces18,19 and 3D-printing have been used to generate reticular monoliths.20,21 

Typically these monoliths are composed of a large proportion of MOFs mixed with a small 

proportion of binders.22 The resulting structures combine the advantages of monoliths with 

the high surface areas of MOFs, while providing improved adsorption/desorption kinetics due 

to their macroporous structuring.21  

Glasses are amorphous structures that exhibit a disordered arrangement of their chemical 

building blocks. Similarly, MOF glasses show a lack of long range periodic order, while still 

preserving the short-range order in the connection of their building units. They can be 

synthesized directly through the use of modulating and high-viscosity solvents,23 however the 

majority of MOF glasses have been manufactured by the amorphization of their parent 

framework structures via applying high-pressure24 or melting and quenching.25,26 Compared 

to their parent compounds, MOF glasses display transparency, improved mechanical stability, 

and an increased density,27 but can still remain microporous.28 

MOFs have also been used to create soft materials such as cloth, foam and sponges that exhibit 

both porosity and and flexibility. These materials have been synthesized by introducing MOF 

particles into foam-precursor mixtures,29 dip-coating preexisting structures with 

presynthesized MOF nanoparticles,30 synthesizing MOFs in the cavities of foams,31 or by 

nucleating MOF crystals on fabrics. 32-34  

1.4 Control of Material Properties with Particle Morphology 

Decreasing the size of particles leads to an exponential increase of their exterior surface area, 

a principle ardently exploited in the creation of nano-sized frameworks. The characteristics of 

MOF materials in the nano-regime are strongly influenced by particle size, but measuring 

particles at the scale is not trivial: different physical characterization techniques yield different 

measurements describing either the crystallite/domain size, particle size, or hydrodynamic 
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radius.35 MOF nanoparticles inherit properties that are typical for bulk MOFs, such as ultrahigh 

porosity and internal surface areas, but also display new properties that dominate the 

nanoscale, including short diffusion distances, abundant surface defects, facile chemical 

functionalization, and higher chemical reactivity and improved sorption dynamics. While the 

material’s overall adsorption capacities are almost unchanged, adsorption and desorption 

kinetics increase significantly.36 Similarly, catalytic conversion rates of MOF nanomaterials are 

increased multifold in comparison to their bulk counterparts, as higher pore accessibility leads 

to higher performance.37 Many MOFs feature flexible crystal structures that undergo 

reversible changes, such as conversion between “guest-stabilized open” and “non-porous 

closed” forms. Reducing the crystals to the nanoscale gives access to transient, otherwise 

inaccessible, metastable structures (such as stable open frameworks) even after removal of 

guest molecules.38  

The tailorable nature of the individual building blocks of MOF materials provides them with a 

high functional efficiency that can be increased even further in nano-species. Grafting 

different functional groups on the external surface of framework nanoparticles can introduce 

the multivariate functionalities of a single particle. These functionalities, such as fluorescence, 

magnetism, charge, and molecule recognition capabilities, can be exploited both alone and 

synergistically, widening the applications of MOF NPs to include sophisticated nanoparticles 

that perform multiple tasks required by demanding applications.39 

Meso-objects exhibit chemistry that bridges the material’s nano and bulk properties. Typically, 

meso objects are characterized by hierarchical structuring, where the morphology and spatial 

arrangement of subunits lead to enhanced and even new properties that are not present in 

the crystal structure alone. Depending on their synthesis, mesostructures can be single or 

polycrystalline.40-43 The spatial arrangement of mesostructures is used to classify these 

materials as zero-dimensional, one-dimensional, two-dimensional or three-dimensional 

systems.  

Zero-dimensional (0D) MOF mesostructures combine the properties of nanoparticles with 

higher level structural characteristics such as compartmentalization. Some of the most 

common examples of this class of mesostructures are hollow particles and core shell 

structures. These MOF materials can be synthesized by a number of methods.44-47 In template-
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free approaches, morphology can be controlled by surface-energy-driven mechanisms,47 

modulating surfactants,48 etching49,50 or self-templating.51 Templated approaches generally 

rely on heterogeneous nucleation or assembly on the surface of the template (thus replicating 

the template’s morphology).40-43,52-55 Depending on the synthetic route, these templates then 

need to be removed in a subsequent step.56  

One-dimensional (1D) mesostructures include helical and needle morphologies as their 

synthesis is mostly performed by electrospinning57,58 or alternatively template-directed 

crystallization. This process uses either a dissolvable template with hollow channels to grow 

the MOF, 59,60 or heterogeneous nucleation on 1D objects.61,62 Other approaches rely on 

sacrificial templates to grow 1D MOFs on surfaces.63 Similar to 0D mesostructures, the 

templated synthesis of 1D reticular materials allows for the transfer of template morphology 

onto the resulting meso-object, which can either be used to increase the external surface area 

of the materials63 or to introduce specific functionality (such as chirality).61  

Two-dimensional (2D) MOF mesostructures include free-standing membranes and 

surface-supported films. Free standing 2D mesostructures can be made by either exfoliating 

2D stacked frameworks into well-dispersed layers by mechanical techniques (sonication64) or 

by chemical methods (introduction of non-bridging ligands to remove single sheets of MOF 

films).65 Surface-supported films have a large interface with the substrate surface as well as 

the adjacent medium. 2D mesostructures are often used to functionalize a surface with a 

crystalline film.66 For example, self-assembled monolayers provide functional groups such as 

carboxylic moieties that enable crystal growth on many different surfaces and can even direct 

the crystallographic orientation of MOF-based films grown on the substrate.67 The spatial 

dimension perpendicular to the substrate surface of thin films can be confined to the 

nanoscale during synthesis. This produces thin films with short diffusion distances in this nano-

dimension. Compared to their bulk equivalents, MOF thin films have a much greater interface 

with their adjacent medium, and a high concentration of coordinatively unsaturated metal 

sites.68 Generally, the growth of thin films on substrate surfaces is accompanied by interfacial 

strain.69 In the case of MOF nano-films, this can be used to access otherwise only metastable 

structures. Lattice parameters of these MOF films can deviate from their bulk counterparts 

depending on the extent of this strain, leading to an increase in the structural symmetry of 

MOF films 70 and enabling the stabilization of non-interpenetrated structures.71 Confining 
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reticular materials to thin films can also alter their sorption properties. Reticular thin films 

show increased rigidity that can inhibit the expansion of the crystal structure upon guest 

uptake, so called “breathing”.72  

3D meso-structures, which are often called superstructures, exhibit a hierarchical 

arrangement of morphologically distinguishable components, which differentiates them from 

bulk materials.73 They have been realized in form of single objects or extended assemblies of 

MOF components. Synthesis of 3D meso-structures has been developed by self-assembling 

objects with lower dimensionality such as nanoparticles,74-76 1D helices,61 and those capable 

of self-templating77. External means to produce 3D meso-structures include templating,78-80 

using external electric fields to produce 1D particle strings,81 and manually stacking thin-film 

layers into 3D architectures82. The ordered arrangement of these constituents into 

superstructures can provide the resulting material with textural pores and other large 

cavities,83,84 leading to better accessibility for guest molecules. 3D meso-structuring of MOFs 

can additionally increase mechanical stability and provide improved flexilibity.85  

 

1.5 Special Focus: MOF Nanoparticle Synthesis  

The materials examined in this thesis are largely confined to the nano-scale. Over the years, 

many strategies have been developed for MOF nanoparticle synthesis. To achieve 

morphological control, it is important to understand the underlying principles on which these 

methods rely. The synthesis of MOF nanoparticles must ensure crystallinity, homogenous 

morphology, narrow particle size distributions, and (as most of their applications are 

solvent-based) colloidal stability. Most commonly, MOF nanoparticles are synthesized by wet 

methods. Under these conditions, the formation of MOF nanoparticles is approximated with 

a LaMer mechanism86 according to a three step process: First, the dissolution of precursors 

leads to supersaturation of the reaction solution. Second, precursor concentrations further 

increase until the solution reaches a critical point, where rapid nucleation of crystal seeds 

begins. Finally, after the dissolved reactants are consumed, nucleation slows to a halt and the 

reaction transitions into a growth phase. During this time the nuclei grow steadily larger until 

precursors and crystals are eventually in an equilibrium.87 The LaMer process is influenced by 
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changing solvents, precursors, temperatures, and/or concentrations, or by introducing 

modulating agents. Other factors that contribute to the final size and shape of MOF crystals 

include further equilibria such as linker deprotonation, solvent degradation, and Ostwald (or 

digestive) ripening.88  

 

Figure 1.2. Depiction of the most relevant strategies used in the synthesis of MOF 
nanoparticles. Generally, these strategies rely on reaction mixtures that are based on specific 
combinations of solvent, metal source to provide the inorganic building unit (IBU) and ligand 
to from the organic building unit (OBU). Often the syntheses are performed in conjunction 
with morphology- and crystallinity-modulating additives. The reaction mixtures are then 
subjected to different reaction methods, resulting in the formation of nanoparticles.89 
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In its most simple form, the wet chemistry approach requires two precursor solutions – a 

metal source and a ligand source- that are mixed and reacted at room temperature. For 

certain frameworks, most famously HKUST-1, ZIF-8, and MOF-5, this simple process creates 

highly crystalline particles. In this method, particle morphology is controlled by altering 

nucleation and crystal growth periods. Studies have shown that particle size and crystallinity 

of ZIF-8 frameworks are decreased when precursors have a large ligand surplus,90 and that 

longer reaction times favor larger particles.91 Adaptations of this spontaneous precipitation 

approach have also shown that it is possible to slow HKUST-1 growth by using pre-cooled 

reactants or to stop crystal growth completely by freeze-drying, both of which result in smaller 

particles.92 

Solvothermal MOF synthesis adds further parameters to spontaneous precipitation by 

introducing additional heating steps. This synthesis procedure can be performed via reflux 

condensing,93 but typically the reaction is performed under pressure in closed reactors.94 In 

solvothermal MOF nanoparticle synthesis, heating is either required for initiating the chemical 

reaction or to accelerate crystal growth.95 Applying heat to a MOF reaction mixture can also 

speed nucleation during LaMer growth, resulting in overall smaller particles due to the 

increased depletion of the precursors as shown for ZIF-8.96 In addition to heating temperature 

and reaction time, choosing optimized precursors facilitates the formation of MOF 

structures.97 Precursor selection is therefore crucial during the synthesis of MOF 

nanoparticles: Depending on the system, changing metal salts from a chloride to a bromide 

can result in different crystal structures with unique morphologies and particle sizes.98 

Similarly, choosing a suitable solvent is another important aspect in solvothermal MOF 

nanoparticle synthesis; in the solvothermal synthesis of NH2-MIL-53(Fe), particle morphology 

can be controlled by changing the ratio of water and DMF.99 

Microwave-assisted synthesis is a common technique for the generation of MOF 

nanoparticles. In solids, oscillating electromagnetic waves induce currents that cause resistive 

heating. Microwaves can interact with polar solvent molecules or ions causing the molecules 

to constantly realign. This leads to collision between the molecules and increases the system’s 

kinetic energy, ultimately heating the reaction mixture. MOF nanoparticle synthesis in a 

microwave reactor has several advantages. Unlike solvothermal heating, where heat is 

transported from the outside to the inside of a reaction vessel, microwave heating is more 
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uniform, and typically reaches the desired temperature within a shorter time interval.100 As 

shown in quantitative theoretical and experimental studies, for many MOFs microwave 

heating can accelerate nucleation and crystal growth up to 30 times compared to conventional 

heating, a phenomenon attributed to a reduced activation free energy caused by higher 

entropy intermediates formed during the reaction.101 This can be used to produce significantly 

smaller particles. Important studies include the MOFs MIL-88A102 and MIL-101(Cr) 

nanoparticles,103 where particle size and crystallinity were altered by varying microwave 

reaction temperatures, irradiation times, precursor concentrations, and reaction pressure.  

Ultrasound irradiation is another heating technique used to generate MOF nanoparticles. 

When subjecting a reaction mixture to ultrasonic waves, transient cavities are formed that 

quickly (after a few microseconds) collapse. These short lived “bubbles” are responsible for 

hot-spots of high temperature (5000 K) and pressure (1000 bar) in the mixture and thereby 

can enhance the rate of MOF formation.104,105 As shown in an extensive study on MIL-53, in 

comparison to conventional or microwave heating, ultrasound-synthesis is the fastest route 

to a crystalline product. In this study, ultrasound-based synthesis exhibited reaction rates that 

were up to a 100 times higher than for conventional heating at comparable temperatures. 

Additionally, the method yielded the smallest nanoparticles.106 Another study on MIL-88A 

showed that the resulting nanoparticles are dependent on the type of ultrasound delivery. In 

these experiments, an ultrasonic bath produced microparticles that became smaller as 

sonication time increased. In contrast, pulsed and continuous ultrasonic probes resulted in 

nanoparticles with unique size and width ratios, but which also grew smaller with longer 

exposure times.107 Sonication can also be used to break up larger MOF structures such as 

hollow spheres into smaller MOF nanoparticles, as shown for HKUST-1.46 

One of the most common approaches to controlling the size and morphology of MOF 

nanoparticles is adding modulating agents to the reaction mixture. A plethora of studies have 

been conducted with zirconium-based frameworks, especially for UiO-66. In this system, weak 

bases such as triethylamine can be used to precisely tune the nanoparticle size by 

deprotonating linker molecules resulting in higher nucleation rates, leading to more nuclei 

and smaller particles.108 DMF-based synthesis of UiO-66 and UiO-67 specifically opens up the 

possibility of modulation with hydrochloric acid. Microwave-synthesized UiO-66 nanoparticles 

modulated with this method increased in size as the amount of acid was increased.109 The role 
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of hydrochloric acid is not fully explained yet. It is speculated to either reduce the basic solvent 

impurities or to help in the formation of hexa-Zr clusters resulting in faster nucleation.110 Most 

commonly though, modulating agents are short-chain monocarboxylic acids that compete 

with organic ligands for coordination with the metal-centers. For UiO-66111 and many other 

MOFs,87 coordination-modulation can be done with acetic acid, benzoic acid, trifluoracetic 

acid, and dichloracetic acid, any of which can be used to increase particle size and crystallinity. 

Side effects of these modulating agents include their accumulation on the particle surface, 

changing its functionality112 and introducing defect sites to the framework.113 

Even surfactants can be considered a special class of modulating molecules added during MOF 

synthesis. Surfactants used here are often long, apolar alkyl chains terminated with a polar 

group. In solution, the surfactants form colloids called micelles that minimize the interactions 

of the apolar tails with the polar solvent (or vice versa). Surfactants can be used to stabilize 

nano-sized droplets by forming a layer at the interface of two immiscible phases. Depending 

on the ratio of the individual components and the nature of the surfactants, the shape of these 

droplets can be adjusted. In MOF nanoparticle synthesis, microemulsion droplets can be used 

as nano-reactors. Water/oil based microemulsion, for example, has been used to generate 

rare-earth MOF nanoparticles, where the shape and size of the resulting nanoparticles is 

controlled by the surfactant/solvent ratio.114,115 The synthesis of La-BTC MOF with various 

morphologies in an ionic liquid/water/surfactant system was explained by the interfacial 

reaction of La3+ ions dissolved in the aqueous layer with linker molecules dissolved in the ionic 

liquid droplets. The shapes of these droplets were dictating the shape of the nuclei that grew 

larger into different MOF nano- and micromorphologies.116 There are many variations of 

microemulsion-based MOF nanoparticle synthesis, such as the liquid-solid-solution (LSS) 

growth technique that was used in the size-controlled synthesis of HKUST-1 nanoparticles. In 

this technique, copper-ions and benzene-1,3,5-tricarboxylate (BTC) linkers were successively 

added to an oleic acid/oil-phase/aqueous-phase microemulsion. This first led to the formation 

of Cu-oleic acid clusters which then reacted at the water/oil interface with BTC ligands to form 

HKUST-1 nanoparticles with hydrophobic coatings.117 Surfactants additionally open up the 

possibility of templated structuring during MOF nanoparticle synthesis. For MIL-101(Cr), 

adding CTAB to the aqueous synthesis mixture resulted in mesoporous nanoparticles because 

the framework crystallized around the micelles.118  
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In addition to these ‘common’ synthesis methods for MOFs nanoparticles, several more 

specialized ‘boutique’ synthesis procedures have been developed in recent years. In some 

cases, special solvents such as ionic liquids are used as structural directing agents or to 

accelerate reaction times of MOF nanoparticle synthesis. The synthesis of Zn-BDC MOF 

nanoparticles in a supercritical CO2/ionic liquid/surfactant system resulted in hexagonally 

meso-porous Zn-BDC MOF nanoparticles.119 This synthesis was based on templating the MOF 

by cylindrically self-assembled micelles formed by the surfactant molecules in the system. 

Another example is the synthesis of UiO-66 nanoparticles during a study of ionic-liquid 

reaction conditions on the resulting particles’ properties. Compared to solvothermal methods, 

the particles grew much faster under these conditions. This phenomenon was explained by 

the strong hydrogen bonding interactions between the ionic liquids and the modulating agent 

acetic acid. The hydrogen bonds were proposed to enable rapid exchange of modulator for 

linker molecules in the initial metal clusters that were formed by the reaction and therefore 

increased nucleation rate.120  

Electrochemical synthesis of MOF nanoparticles was shown for IRMOF-3 in a 

DMF/ethanol/tetrabutylammonium bromide electrolyte. In this method, linker molecules are 

deprotonated at a copper cathode leading to the formation of molecular and move to the 

anode for MOF assembly. The zinc anode is oxidized, producing the Zn2+ ions required for MOF 

synthesis. The size of the resulting nanoparticles was modulated by either altering the voltage 

or changing the DMF/ethanol solvent ratio. 121  

A recent study demonstrated the synthesis of MIL-100(Fe) nanoparticles via heterogeneous 

nucleation on polystyrene nanospheres. In the first step of this synthesis, polystyrene 

nanocolloids were functionalized with linker molecules by simple immersion in an aqueous 

solution. Subsequent addition of iron(III) precursors and solvothermal treatment led to the 

growth of MIL-100(Fe) nanoparticles on the bead surface. Removal of the polystyrene beads 

via washing in DMF produced MOF nanoparticles that were smaller than conventionally 

synthesized particles and that could be size-tuned by varying the amount and size of polymer 

colloids in the reaction mixture.122  

Many MOF nanoparticles have also been synthesized by dry-chemical approaches. Especially 

noteworthy is the synthesis of MIL-101(Cr), which was performed by solvent-free grinding and 
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then dry heating.123 The resulting phase-pure nanoparticles were smaller than particles 

produced by solvothermal methods; however, the nanoparticles were also aggregated and 

lost their homogeneous morphology. Liquid assisted grinding, which uses catalytic amounts 

of solvents, has also successfully produced MOFs. For example, phase-pure NH2-UiO-66 

nanoparticles were synthesized by this method in less than 2 hours, of by exposing ground 

precursors of the MOF to methanol vapors for 3 days at elevated temperature. The colloidal 

stability of the resulting particles was proven in aqueous dynamic light scattering 

experiments124 Another more recent study has shown that Pd-loaded ZIF-8 nanoparticles can 

be synthesized at room temperature via ball-milling. The synthesis was based on sacrificial 

ZnO nanoparticle templates that were completely converted to ZIF-8 nanoparticles using 

catalytic amounts of solvent.125 

Recently, microfluidic flow-reactors have gained popularity in the synthesis of MOF 

nanoparticles and are of special interest in this work. In these setups, reaction solutions are 

pressed through narrow channels, either in tubing or on a chip, with diameters of a few 

hundreds of micrometers. While traversing the reactor-channel, a reaction mixture passes 

through heated segments; the narrow channels ensure fast heat transfer, resulting in good 

control over nucleation and crystal growth. For MOFs, this can result in smaller particle sizes 

and reaction rates up to 400 times faster than conventional solvothermal heating.126 Heating 

time is controlled by the speed at which the reaction solution passes through the heated 

section and can be precisely tuned to fractions of seconds. This allows for the fine-tuning of 

nanoparticle sizes (as shown for UiO-66127 and other MOFs).128 Microfluidic setups have many 

advantages: they are easily customized, and pressure regulators and heat resistant equipment 

allow for solvothermal MOF syntheses under pressurized conditions (as shown for cerium(III) 

terephthalate MOF nanoparticles).129 Surfactants and non-miscible solvents are required in 

droplet-microfluidic setups, simulating micro-emulsions that produce well-defined droplet 

sizes. These setups can be used to limit precursor supply or to perform interfacial chemical 

reactions.130 Using such a setup, nanoparticles of the MOFs Ru3BTC2 and UiO-66131 have been 

synthesized, and size modulation has been demonstrated for MIL-88B132  
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1.6 Control of Material Properties with Post-synthetic Modification 

1.6.1 Internal Modification 

Internal modification of MOFs is carried out by introducing to organic linkers and metal nodes 

desired functionalities through the formation of new covalent bonds or coordination 

bonds.133-137 Internal modification of MOFs takes place at the inner periodic scaffold of the 

material. It includes functionalization of their inner surface and results in changes to bulk 

properties. Other modification techniques such as linker-exchange and trans-metalation rely 

on the substitution of either the organic or inorganic building units. Internal post-synthetic 

modification is performed to influence bulk characteristics such as porosity, magnetic, optical 

and electronic properties,138 and can influence the flexibility139 of a structure, change its 

polarity140 and introduce functionalities such as biologically active groups. 141  

Modification of the inorganic building units requires accessible under-coordinated metal sites, 

142 where these Lewis-acidic metal-centers are used to pull small Lewis-basic molecules such 

as imines or pyridines94 into the framework structure. The opposite approach of this technique 

is post-metalation, where either defect sites in the framework143 or electron-rich linker-

molecules (like carboxylic groups or pyridine-rings) can be used for metal-capture.144  

Covalent internal functionalization requires linker molecules with reactive groups. While 

common groups such as azides or halides and multivalent bonds139,145 are open to many kinds 

of reactions, amines are especially popular for post-synthetic modifications in MOFs.146 Amine 

groups enable, amongst other things, chemistry that is easy on the material: It is compatible 

with the well-defined chemistry of peptide coupling reagents and can be performed at room 

temperature.147  

An alternative internal modification strategy is the substitution of inorganic and organic 

building units. Solvent-assisted linker exchange can be used to incorporate functional linker 

molecules into already crystallized MOFs. During this process, the modified linker molecules 

diffuse through the scaffold and bind to the metal centers, permanently recrystallizing the 

framework without destroying it. Solvent assisted linker exchange opens up the possibility of 

incorporating large molecules into a MOF structure that would otherwise not be able to enter 

the MOFs pore openings.148 Post-synthetic metal-exchange of the inorganic building units is 

called trans-metalation.149 Metal-exchange exploits the coordination chemistry of the metal, 
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which facilitates the substitution of metal-ions with species featuring a higher ligand-affinity 

with similar ionic radii and coordination chemistry. 

The methods of modifying the internal surfaces of MOFs that have been discussed so far are 

intended to introduce uniform functionalization to their crystal structure, but it is also possible 

to use diffusion and sterically controlled reactions or external triggers to produce localized 

modifications and create hierarchical MOF mesomaterials. An elegant variation of this 

approach are light-induced post-synthetic reactions such as the thiolene click reactions that 

have been used to crosslink organic linkers within a framework.150 Similar reactions have been 

controlled by layer-by-layer epitaxy that allows for 2-dimensional functionalization.151,152 This 

approach can also be used to selectively dissolve any remaining non-crosslinked MOF to 

obtain structured gels based on previous patterning. Another prominent means of introducing 

spatially controlled functionality in MOFs through PSM uses the inherent diffusion limitation 

of post-synthetic reactions, which typically start at the faces of a crystallite in contact with the 

solvent and then penetrate further into the crystallite. This effect has been demonstrated in 

post-synthetic topotactic linker exchange and has been visualized by fluorescence148 and 

Raman microscopy.153 This type of PSM can be used to generate well-defined core-shell type 

structures. Similarly, the metal of a MOF can be exchanged in anisotropic crystallites leading 

to sandwich154 or core-shell structures155. The spatially selective covalent post-synthetic 

modification of linkers can be achieved by the use of bulky molecules in post-synthetic 

functionalization, leading to preferred functionalization of the MOF crystallites close to the 

external surface.156 This method is in essence similar to modification schemes covered in the 

next section that intend to only functionalize the external surface area. Through this approach, 

initially uniform materials can be converted to functionally graded materials and composites 

with spatially abrupt changes in their properties. 
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1.6.2 External Modification 

External modification affects the chemistry at the interface between a structure and its 

surrounding medium. In the case of the porous structures of MOFs, this implies the area that 

is shared by the outer surface of the framework with its surroundings. The modification of the 

external surface presents an essentially two-dimensional modification and is mostly 

performed on nanoparticles and mesostructured materials because their properties are 

determined to a great extent by their high surface-to-volume ratio.  

Figure 1.3. Schematic representation of different post-synthetic modification strategies (PSM) 
used for the introduction of functionality. Two general concepts are shown: selective 
functionalization of the external surface and the internal modification of the periodic lattice. 
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External functionalization of MOFs is done for a variety of reasons: Binding long molecules to 

the outer surface of particles can improve their colloidal stability via steric stabilization. The 

polarity of nanoparticles can be changed by introducing hydrophobic coatings, leading to 

improved chemical stability in water and colloidal stability in non-polar solvents.157,158 

Molecules can be introduced to the particle surface that either exhibit functionality or carry 

active groups for further functionalization.  

To specifically functionalize the outer surface of MOFs, two complimentary methods have 

been developed: either reactive centers exclusive to the outer surface159 are targeted for 

functionalization or functionalization reagents need to be hindered from entering the 

framework.160 The former strategy relies on the accumulation of crystal defects, such as 

coordinatively unsaturated metal sites (CUS),161 and dangling uncoordinated carboxyl groups 

on the external surface of nano- and meso-structures. The second coating method generally 

relies on size exclusion, but can also exploit hydrophilic/hydrophobic interactions,162 

electrostatic adsorption,163 linker exchange,148 or covalent binding146 to limit alterations of the 

internal surface. 

The majority of external modification techniques rely on the accumulation of coordinatively 

unsaturated metal sites on the MOF surface. Due to their Lewis-acidity, they can act as anchor-

points for Lewis-basic molecules. The coordinative nature of this modification technique 

requires mild reaction conditions, so this method is widely used to modify biocompatible 

MOFs with biologically active molecules or molecules relevant for imaging. Popular Lewis-

basic anchor groups include carboxylic acids,144 histidines161, phosphates,164,165 and 

phenols166.  

Another surface-defect-driven modification technique targeting the external surface of MOFs 

is the covalent bonding of organic molecules to the particle surface. Inherent uncoordinated 

linker molecules that accumulate on the external surface of MOF nanoparticles provide active 

moieties such as carboxylic groups for further surface-selective modification.167 Additional 

anchor points for selective functionalization of MOFs can be introduced by using capping 

ligands during the synthesis; their low connectivity leads to accumulation of these molecules 

on the MOF surface, providing additional functionalities such as azide groups.168  
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Finally, outer surface nanostructures can be functionalized by encapsulation of particles in 

preformed compartments. An example for this principle can be seen in the confinement of 

MOF nanoparticles in liposomes169 and exosomes170 using lipid-fusion. This functionalization 

approach results in an additional interface in the form of a membrane wall that can block 

further molecular access to the inside of the particles.  

1.7 Metal-Organic Framework Applications 

The application of MOFs is highly dependent on their structuring across all length scales 

(Figure 1.4). The following section therefore describes the most important application fields 

for reticular nano- meso- and bulk-objects. 

1.7.1 Specific Applications at the Nanoscale 

Combining the versatile chemistry of MOFs with the properties of the nanoworld opens a door 

for a large variety of applications for MOF nanoparticles.171 These properties include short 

diffusion paths, fast sorption/desorption kinetics and sorption properties, as well as size-

dependent optical, electrical, and magnetic properties. 
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Figure 1.4. Schematic depiction of the concept of going beyond the crystal structure of 
MOFs. While many features of MOFs can be designed through crystal engineering, their 
successful use in specialized applications requires further optimization, namely 
functionalization, morphological optimization in form of nano- and meso-structuring, as 
well as bulk-processing. 
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Due to their enhanced conversion rates and sorption kinetics, MOF nanoparticles find 

applications in fields such as catalysis36,172 and adsorption,37 as well as in electrical 

applications, e.g. as composite materials in supercapacitors37.  

The main focus of MOF nanoparticle applications lies in the field of biomedicine.173 Nanosized 

particles are favorable in biomedical applications as they exhibit improved endocytosis and 

can be well dispersed in body fluids. MOF nanoparticles are being investigated in this field due 

to their porosity and functionalizability. Straightforward functionalization allows one to not 

only use MOF nanoparticles as transport vehicle, but can turn their scaffold into an active 

component for cancer treatment,174-180 different biomedical imaging techniques (e.g. positron 

emission tomography, magnetic resonance imaging),167,181-185 drug delivery,186-190 or a 

combination of these191-194. The size of MOF nanoparticles provides for easy cell uptake, which 

can be further enhanced by coating strategies, such as polymer or lipid coatings.167,170,195 

Finally, luminescent functionalization allows one to use the MOF as chemical sensors93,196-198 

and easy monitoring of their pathways and metabolism within living cells199. Further, the 

tailorable nature of MOFs allows the use of biocompatible building blocks, offering the 

prospect of efficient biodegradability and biocompatibility, as the toxicity of MOF 

nanoparticles can be independently influenced by choice of the metal- and the organic 

components, respectively.200 Importantly, the toxicity of nanoparticles also strongly depends 

on size, shape, surface area, surface charge and dose and cannot be associated with 

composition only.39,201 

1.7.2 Specific Applications of the Mesoscale 

Applications of MOF mesostructures rely on the nature of the hierarchy in their respective 

systems. 0D MOF mesostructures offer both compartmentalization and a large external 

surface area for functionalization, which is why they are mainly examined for catalysis,52,53 

and in drug delivery202. On the other hand, 3D reticular mesostructures can be used as 

precursor materials for the generation of sophisticated catalysts.9 Additional assemblies of 3-

D mesostructures have been used for filtering applications203 and in sensors, based on changes 

of the materials’ optical properties upon guest uptake.204  

The majority MOF mesostructure-applications, however, are film-based. Here, 1D spatial 

confinement results in reduced transport distances for electron and ion conduction. 
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Additionally, mesomaterials provide an increased interface between a surface and its 

surrounding medium, which is beneficial for catalytic applications. The growth of MOF films 

on supports is a straightforward method to augment a carrier material, for example a metal 

surface205, with features such as porosity, crystallinity, ion conductivity and new optical 

properties. These properties make thin film framework materials interesting for sensing 

applications.206-208 The porous nature allows for the inclusion of guest molecules within the 

frameworks, which then cause, for example, changed absorption spectra and altered 

refractive indices that can be read out optically, leading to potential uses in small molecule 

detection.  

Porosity, a large interface to the surrounding medium and a high concentration of reactive 

sites are reasons for the use of MOF films in catalysis.209 Similarly, a framework-based surface 

coating can enhance the performance of electrodes. For example a Fe2O3:Ti electrode with a 

thin film coating of the MOF NH2-MIL-101(Fe) MOF exhibits an improved performance in the 

photoelectrochemical oxidation of water. This is based on a shifted absorption spectrum due 

to the electrodes’ MOF coating as well as due to an improved incident-photon-to-electron 

conversion efficiency based on the facile charge-transfer between Fe2O3 and the MOF.210 

MOF thin films have also been examined for ion conduction such as for lithium ions and 

protons: Their porous structure can either be functionalized with proton-conducting surface 

dangling groups such as sulfonate-moieties or be loaded with proton-conducting guest 

molecules such as imidazole or histamine.211 212  

The combination of the porous structure and large interfacial area of 2D MOF meso-structures 

is strongly related to their applications in water purification213 and gas separation214. Films of 

MOF nanosheets can selectively separate mixtures of gas molecules such as H2 or CO2. 

Selection criteria include the size of the gas molecules or their chemical nature as they have 

to interact with the pores of the material. This advantage can be further enhanced via 

post-modification of pore size or via the introduction of functional groups such as amino 

groups into the pores leading to improved selectivity.215  

In the past, MOF have been viewed as not suitable as electron conductors due to their metal 

centers generally preventing electron resonance delocalization and due to the lack of redox-

active ligands. This is slowly changing with the development of new electron-rich linker 
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molecules, the inclusion of suitable guest molecules and the development of MOFs with 

“through-space” mechanisms such as pi-pi stacking, features that have opened up the use of 

MOF films for electronic applications.216-218 Frameworks with improved charge carrier mobility 

have also been realized by the synthesis of mixed-valence frameworks219 and by the 

introduction of charge-transport pathways along heteroatoms such as sulfur.220,221 

1.7.3 Specific Applications at the Bulkscale 

MOF materials that are used in bulk-scale applications rely mainly on properties that originate 

from their framework structure. The extension of the framework dimensions to the bulk 

regime converts the physical behavior of a unit cell to the collective performance of the whole 

material. Often the corresponding applications require a specific macroscopic shape, such as 

column and reaction bed, into which framework material can be packed. MOF bulk materials 

offer diverse applications in heterogeneous catalysis. On the one hand, their porous structure 

allows for the loading with catalytically active species such as metal- nanoparticles222 or 

single-site metal complexes223 into their pores, making them excellent carrier materials. On 

the other hand, the heterogeneous construction of the scaffold structure can provide 

catalytically active centers, both at the metal-based nodes and at the linker molecules.224 The 

precisely defined pores of a MOF structure reveal their catalytic potential by providing the 

material with a structural selectivity towards both educts and products, filtering molecules by 

size225 and even by chirality226. 

New gas storage technologies are urgently sought after, as they are especially relevant in fuel 

technology. Materials that are used in this field need to exhibit a combination of high storage 

capacity, high cycling stability, low adsorption/desorption enthalpies, a high thermal 

conductivity and a high safety standard. Fuel tanks based on MOFs can meet many of these 

criteria: the adsorption of gas molecules such as hydrogen227 and methane228 into the porous 

structures allows for high volumetric storage capacities at reduced pressures (relative to the 

gas), which can result in easier refueling and increased safety due to the lower pressurization 

of the fuel container.  

The porous architecture of MOFs has opened the field of heat transfer to MOFs. While heat in 

MOFs is transported primarily along the chemical bonds in the scaffold of their porous 

structure and the low atomic density of their crystal structure results in a low thermal 
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conductivity (around 0.1 W/m K),6 the structures can act as heat pumps distributing energy 

via the adsorption and desorption enthalpies of small molecules. In these studies MOFs are 

already surpassing benchmark materials 229 Research in this field is most advanced in the case 

of water harvesting from air where materials with a sufficiently small desorption enthalpy can 

even be used to extract water from air via solar-powering.230 Similarly, these sorption 

properties have resulted in MOFs being used in air dehumification.231  

1.8 Scope of this Thesis 

This thesis explores the refinement of MOFs from raw materials to specialized materials. The 

crystalline architecture of MOFs gives every MOF uniquely defined porosity. Additional 

versatility of this material is obtained by employing some of the countless optimization 

techniques that can be used to change its properties. Morphological control, post-synthetic 

functionalization, and specialized processing create an unmatched variety of functional 

materials.  

The projects presented in thesis show how different optimization techniques influence the 

properties of different MOF nano- and microparticles. By post-synthetic functionalization and 

exerting morphological control the particles’ internal polarity, their behavior in MRI 

applications, as well as Raman and fluorescence imaging can be changed. The resulting 

functional materials were analyzed with state-of the art analytical spectroscopy and 

microfluidic methods in collaboration with various groups. These novel and specialized 

techniques include mass correlation spectroscopy, Raman microscopy and magnetic 

resonance imaging. We additionally address fundamental features of MOF nanoparticles, 

including their crystallinity, porosity and density. The applicability of these particles, especially 

in biomedicine, was further demonstrated in in-vitro experiments that were performed in 

cooperation with research groups in pharmacy and medicine.  
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2 Characterization Methods 

2.1 X-Ray Diffraction 

X-ray diffraction is a destruction-free analytical method that is mainly used for the 

identification and characterization of crystalline materials.  

In laboratory setups, X-rays are typically generated in a X-ray tube.1 By applying a high voltage, 

electrons are generated at a cathode and directed towards a metallic anode where the 

electron-anode interaction leads to the emission of emission of electromagnetic waves with 

wavelengths of X-rays. This spectrum is comprised of mainly two components: 

Bremsstrahlung and characteristic X-rays.2 The former is generated by the slowing-down of 

the electrons due to their interaction with the positively charged metal centers of the anode 

and leading to a continuous spectrum of X-rays with a minimum wavelength. For the latter 

the impinging electrons push out anode inner electrons from their shells. The resulting 

vacancies are filled by outer-shell electrons and the energy difference is emitted in form of 

characteristic X-rays. After passing a monochromator or filter to select radiation with a desired 

wavelength, these X-rays are directed on the sample. 

In case of a crystalline sample, the interaction of the X-ray electromagnetic waves with the 

materials’ electrons leads to a special form of elastic scattering called diffraction.3 It is the 

result of positive and negative interference effects of the outgoing electromagnetic waves and 

can be interpreted with the Bragg-equation (Equation 1) as illustrated in Figure 2.1. Here, d 

corresponds to the interplane distance of the lattice, ϴ to the diffraction angle, λ the 

wavelength and n the diffraction order. Each crystalline substance exhibits a characteristic 

diffraction pattern with signals centered around the reflection angles that correspond to a 

path difference that is a multiple integer of the wavelength of the X-ray waves. 

Equation 1 2𝑑 sin𝛳 = 𝑛𝜆 
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Figure 2.1. Depiction of the geometry of the Bragg conditions 

A different way of describing this diffraction condition is given by the Laue equation (Equation 

2).4 Here it is necessary to use a reciprocal lattice, in which each point corresponds to a lattice 

plane in the real space. The diffraction conditions are met when the difference of the incoming 

wavevector �⃗� in and outgoing wavevector �⃗� out are equal to a reciprocal lattice vector 𝐺  of a 

crystal.  

Equation 2 𝛥𝑘⃗⃗⃗⃗  ⃗ =  �⃗� in − �⃗� out = 𝐺  

It is possible to visualize this relationship by using the so-called Ewald construction (Figure 

2.2). It utilizes the Ewald sphere, a sphere centered on the origin of real space O[000] (the 

sample) that intersects the origin of reciprocal space O(000) at the radius 1/λ, which is equal to 

the magnitude of the wavevector of the incident wave �⃗� in and the outgoing wave �⃗� out. 

Diffraction conditions are met for a lattice plane when its corresponding point in reciprocal 

space intersects the Ewald sphere. 

Powder and dispersion-based X-ray diffraction patterns in this work were measured in Debye-

Scherrer Geometry. The crystallites of these materials are randomly aligned, which is why the 

outgoing diffracted radiation of a single type of lattice plane propagates on the surface of a 
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cone with an aperture of 2ϴ instead of a single point. In Debye-Scherrer geometry, the angle 

at which the incident X-rays are directed onto the sample is fixed. A detector is moving in a 

circular motion behind the sample, recording the angles at which it intersects the cones. From 

this resulting diffraction angle it is possible to determine the lattice plane distances d in a 

crystalline sample. 

If the extent of the crystalline areas in a material is limited to the nanosize this causes a line 

broadening in the corresponding diffraction pattern in addition to reflection broadening 

caused by the instrument and strain. This effect is important for nanoparticle characterization 

as the crystalline areas in such materials are restricted by the particles’ size. A simplified 

relationship between the peak-broadening and the extent of the crystalline areas is given by 

the Scherrer equation (Equation 3).5 

Equation 3 𝐿 =
𝐾 ∙  𝜆

Δ(2𝛳) ∙ cos 𝛳0
 

In this equation, the diameter of a crystalline area L is given by the reflection integral breadth 

Δ(2𝛳), the X-ray wavelength 𝜆, the angle of the reflection 𝛳 and a shape factor K that is 

depending on the grain size, fit of the reflection and symmetry of the crystal structure.6  

Figure 2.2. Ewald construction to illustrate the Laue conditions. The wave vectors of incident 
and outgoing X-rays construct a sphere in the reciprocal space. For positive interference the 
difference of these wave vectors needs to coincide with a wavevector of the reciprocal lattice, 
therefore the sphere needs to intersect two points of the reciprocal lattice. 
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In case of an even lower crystallinity, such as in glasses, it is still possible to extract structural 

information via X-ray diffraction with pair distribution function analysis.7 In this method high-

energy X-rays that are typically generated at a synchrotron can be used to scan a large range 

of the reciprocal space. In addition to Bragg reflections, the data from diffuse scattering, which 

is usually treated as background noise, are taken into consideration. These data are then 

converted to a pair distribution function that gives a measure of the probability of atoms being 

separated by a given interatomic distance and, thus, enables the analysis of short range 

ordering. In amorphous solids, it can be used to determine the distribution of atomic distances 

in a solid. If certain atom distances are more abundant this indicates a local ordering of the 

structure. Similar to the Scherrer equation, this can give insight to the extent of crystalline 

areas in a sample. 

Experiments in this thesis where performed on machines that are working in a variation of the 

Debye-Scherrer geometry. X-ray diffraction experiments were performed on a STOE 

Transmissions-Diffraktometer System STADI P with Ge(111) primary monochromator and Cu-

Kα1-radiation in transmission geometry. In case of powder measurements, dried samples were 

fixated between two polymer foils. In case of dispersions measurements, the particle 

dispersions were sealed in glass capillary tubes. For Pair Distribution Function Analysis, 

experiments were performed at the synchrotron I15-1 beamline at the Diamond Light Source 

in the UK that was operating with a wavelength of λ = 0.161669 Å at 72 keV. For 

measurements, the samples were vacuum-dried for 2 h at room temperature and finely 

ground before packing into sealed 1.17 mm (inner) diameter borosilicate capillaries. 

2.2 Nitrogen sorption 

One of the defining features of MOFs is given by their porosity.8 The standard procedure for 

characterizing this property is based on nitrogen sorption.9 From the amount of gas adsorbed 

to a materials surface, conclusions on its surface area and pore size distribution can be drawn. 

In this section, the fundamentals of this approach as recently defined by IUPAC10 are 

elaborated and the terms that are used for MOF sorption experiments explained. 

Generally, MOF sorption experiments are based on the adsorptive gas nitrogen that is 

interacting with the surface of the adsorbent sample. This process is based on physisorption 
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and relies on weak interactions that are mainly caused by van der Waals forces. In case of MOF 

nanoparticle samples, two factors that contribute to their surface area have to be 

differentiated: On the one hand there is the surface at the interface of a MOF nanoparticle 

and its surrounding medium which is called external surface. On the other hand MOFs possess 

an internal surface caused by their porous coordination network. Decreasing the particle size 

leads to an exponential increase of the external surface in relation to its volume, and therefore 

particle-mass11. Depending on their pore size distribution, porous materials are assigned 

according to the IUPAC definitions presented in Table 2.1. 

Table 2.1. Categorization of porous materials depending on their pore sizes. 

Classification Pore Size 

Microporous <2 nm 

Mesoporous >2 – 50 nm 

Macroporous >50 nm 

In typical MOF sorption experiments a defined sample mass is stored in an evacuated chamber 

and subjected to small doses of nitrogen gas at low temperatures (77 K). The amount of gas 

adsorbed to the surface is most often determined in volumetric measurements. The 

adsorption of nitrogen to the MOF surface causes deviations in the pressure of the calibrated 

chamber which can be used to calculate the amount of gas adsorbed to the material’s surface.  

The data from these experiments are usually depicted in sorption isotherms, where the 

amount of adsorbate bound to the material surface is related to the ratio of the chamber’s 

equilibrium pressure and the respective saturation vapor pressure of the nitrogen gas. 

Depending on their shape, sorption isotherms are classified in 8 different categories according 

to IUPAC.10 

Type I isotherms result from microporous materials with almost no external surface area. 

Therefore the sorption isotherm becomes quickly nearly saturated after its micropore volume 

is filled at low pressures. Depending on the pore diameter, strong adsorbent/adsorptive 

interactions in small micropores with a diameter of <1 nm lead to Type I(a) isotherms while 

larger micropores lead to Type I(b) isotherms.  
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Type II isotherms result from non-porous and macroporous samples. As these materials lack 

noticeable surface from pores, their sorption behavior is dominated by monolayer/multilayer 

adsorption on their external surface. In Figure 2.3 the completion of monolayer formation 

followed by multilayer adsorption is marked at point B, at which the curvature of the graph 

transitions into a linear slope.  

Type III isotherms originate from non-porous materials that feature weak 

adsorbent/adsorbate interactions. Due to this unsubstantial interaction, adsorbed molecules 

do not exhibit monolayer formation. Instead, they are adsorbed in form of clusters to 

preferential sites on the material surface.  

Type IV isotherms result from mesoporous materials. Similar to Type II isotherms, at low 

pressures, gas molecules are first adsorbed in form of a monolayer. After this monolayer 

formation is complete, increasing the pressure further leads to the condensation of adsorptive 

in the pores of the sample resulting in a steep increase of uptake by the sample. Depending 

on the desorption of the adsorbate inside the pores, two isotherm types are referred to: If the 

pores are wider than a critical diameter (about 4 nm), this results in a hysteresis loop and the 

material is to be classified as Type IVa. In case of smaller mesopores and certain pore 

geometries no hysteresis loop can be monitored, resulting in Type IVb isotherms.  

Type V isotherms result from mesoporous materials that feature weak adsorbent/adsorbate 

interactions. Similar to a type III isotherm, at lower pressures, gas molecules adsorbed to the 

materials surface are clustered without monolayer formation. Increasing pressure leads to the 

condensation of adsorptive in the pores, similar to the behavior of Type IVa isotherms. 

Type VI isotherms depict layer-by-layer adsorption. In this case, the material features a 

uniform nonporous surface. Molecules that are adsorbed to this surface form one completed 

layer after another, represented by each step in the graph. 
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Figure 2.3. Sorption isotherm classification according to IUPAC.10 

 

The total surface area of a MOF sample is usually determined with the Brunauer-Emmett-

Teller (BET) method.12 The theory of this method is based on an expansion of the Langmuir 

adsorption theory. In the Langmuir theory13, physisorption on an adsorbent is described with 

the formation of a monolayer that is resulting from an equilibrium of adsorbed and desorbed 

gas molecules on a surface. The BET theory expands on this model by assuming additional 

multilayer adsorption where each consecutive layer follows a Langmuir type adsorption. For 

each adsorbate layer on top of the initial monolayer the theory assumes an adsorption energy 

equal to the liquefaction energy. 
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Using the BET method, sorption data are plotted according to Equation 4, where nm is the 

material’s monolayer capacity, n is the amount of gas adsorbed at the relative pressure p/p° 

and C is an experimentally determined parameter that is dependent on the monolayer 

adsorption energy. In this equation experimentally determined data usually exhibit a linear 

dependency for low relative pressures at 0.05 < p/p° < 0.30.  

Equation 4 

𝑝
𝑝°

𝑛(1 −
𝑝
𝑝°)

=  
1

𝑛𝑚𝐶
+ 

𝐶 − 1

𝑛𝑚𝐶
(
𝑝

𝑝°
) 

The linear form of the BET equation can be used to determine the monolayer capacity nm in a 

sorption experiment. It is then possible to calculate a BET area as by approximating the 

molecular cross sectional area σm and mass m and the Avogadro Constant L. 

Equation 5 𝑎𝑠(𝐵𝐸𝑇) =  𝑛𝑚  ∙ 𝐿 ∙  𝜎𝑚/𝑚 

Although the BET method is established as a standard procedure for comparing the surface 

areas of MOFs, the results for these mostly microporous materials have to be treated 

carefully.14 The BET method was initially developed for monolayer/multilayer adsorption on 

open surfaces and does not consider micropore filling. BET surface areas additionally depend 

on the type of gas-molecules used experimentally and the pressure ranges that are used for 

evaluation. Quality criteria such as a positive C constant and selecting appropriate p/p° ranges 

can improve the validity of these results. Nevertheless, the BET area of a MOF has to be rather 

seen as a characteristic number than an actual accessible surface area.15 

To evaluate pore size distributions in MOFs, computational methods such as Density 

Functional Theory (DFT) and Monte Carlo simulations have been established as standard 

methods in commercially available software. These methods are based on statistical 

mechanics and can describe the adsorbate distribution in pores. Non-local density functional 

theory (NLDFT) methods include standardized models that consider the shape and size of 

pores and different adsorbents. Quenched solid density functional theory (QSDFT) methods 

further allow the consideration of a heterogeneous surface as it is present in MOFs.16 
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Nitrogen sorption experiments in this thesis have been performed on an Autosorb-1 

instrument (Quantachrome). Prior to the experiments, all samples were degassed for 24 h at 

120 C and 1.3 ∙ 10-2 mbar.  

2.3 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) is a destruction based method that can be used to assess a 

material’s thermal stability and composition.17 In an experiment, a small amount of sample 

(~5 mg) is put in a thermobalance and heated in a flow of gas. Depending on the temperature, 

a sample can exhibit desorption of solvent molecules or undergo phase transitions and 

chemical reactions. These processes can be examined either by monitoring changes in the 

sample mass alone or in combination with the energy transfer during heating. For the latter, 

TGA is combined with differential scanning calorimetry (DSC). In this method, the heat 

required to increase the sample temperature is compared to an inert reference material, 

which reveals if a process is endothermic or exothermic. 

All thermogravimetric experiments in this work were done on a STA 449 C Jupiter (Netzsch) 

instrument under synthetic air with a flow rate of 25 mL/min. employing a heating rate of 

10 °C/min up to 900 °C. 

2.4 Electron Microscopy 

Electron microscopy is an indispensable tool in MOF nanoparticle characterization that 

enables morphological analysis of dried samples at the nanoscale.18,19 In classical light 

microscopy this is not possible as the limit of spatial resolution d is at around 200 nm as given 

by the Abbe limit (Equation 6) with the wavelength λ, the refractive index n of the medium 

between lens and sample and the half aperture angle 𝛼.20 

Equation 6 𝑑 = 0.5 
𝜆

𝑛 sin 𝛼
 

In electron microscopy, 𝜆 of the electrons is defined by the de Broglie wavelength (Equation 

7) of the incident electrons with Planck’s constant h, the electron mass me, and electron 

velocity v.  
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Equation 7 λ =
ℎ

me ∙ 𝑣
 

This makes the obtainable resolution dependent on the speed of the electrons (Equation 8) 

that are used during the experiment, which is linked to their acceleration voltage U with q 

being the electron charge. 

Equation 8 𝑣 =  √2𝑈
𝑞

𝑚
 

Depending on the mode of operation and on the instrument, electron microscopy allows for 

resolution that can be even better than the single-nanometer range. One of the typical 

prerequisites for electron microscopy is operation at high or ultrahigh vacuum, although 

recent developments in operando microscopy have broken this barrier. Electron microscopy 

can additionally be coupled with different analysis methods such as energy-dispersive X-ray 

spectroscopy (EDX) and electron diffraction. In this thesis, both scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM) were used for nanoparticle 

characterization. 

2.4.1 Scanning Electron Microscopy 

SEM relies on electrons that are returning from the sample surface and are recorded by a 

rastering (scanning) detector. In SEM, electrons that are directed towards a sample feature 

energies of 0.1 keV to 30 keV.21 

If electrons are impinging on the surface of a sample they cause various processes to happen. 

Backscattered electrons are the product of (multiple) elastic scattering events on the sample 

and feature an energy distribution up to the energy of the impinging electrons. Inelastic 

scattering leads to the transfer of energy from the electron beam to the sample. If the 

impinging electron beam pushes out an electron from the inner shell of sample, the leaving 

electrons are called secondary electrons. They feature energies below 50 eV. When the 

resulting vacancy is then filled by a higher energy sample electron, the energy surplus is 

ejected from the sample. This can either be in form of characteristic X-rays that can be 

analyzed in EDX to determine the elemental composition of a sample. Alternatively, the 

energy surplus excites another electron that then leaves the sample and is called Auger 
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electron. Auger electrons feature energies of up to about 2 keV and are used in Auger electron 

spectroscopy. Secondary electrons can be detected up to about 10 nm into the sample surface 

and can be used for image generation. SEM images in this thesis are generated from 

backscattered electrons that can penetrate a sample more deeply depending on the energy 

of the impinging electrons and the atomic number of the elements in the sample.22 

 

Figure 2.4. Schematic depiction of the different processes that electrons undergo during their 

interaction with a sample surface.23 

In this thesis electron microscopy was performed on a Helios G3 UC (FEI). All samples were 

prepared by drying particle dispersions on carbon pads that are situated on aluminum sample 

holders. If not stated otherwise the microscope was operated at 3 kV using a through-lens 

detector.  

2.4.2 Transmission Electron Microscopy 

In TEM, electrons that are passing through a sample are evaluated. The measurement relies 

on high energy electrons between 60 keV and 300 keV that are directed onto a thin sample 

with a thickness of less than a few hundred nanometers.24 Electrons that pass the sample 

undergo different processes: If they do not interact with the sample they exit the material in 

extension of the primary beam. Otherwise they participate in elastic and inelastic scattering 

processes. In case of inelastic scattering, the energy transfer from beam to sample electrons 

can be evaluated spectroscopically in electron energy loss spectroscopy (EELS). In case of 

elastic scattering, a diffraction pattern is resulting that can either be evaluated directly for 

structural information similar to X-ray diffraction, or be used for further image generation. 

The contrast in these images depends amongst other things on sample thickness, atomic 
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number, the density of the elements in the sample, and the angle of the diffracted electrons 

that are used with respect to the optical axis (bright field vs. dark field).  

TEM samples were prepared by drying nanoparticle dispersions of on a carbon-coated copper 

grid. Measurements were performed on a Titan Themis (FEI) operated at 300 kV. 

2.5 Dynamic Light Scattering 

Dynamic light scatttering (DLS) is a non-destructive method for size and colloidal-stability 

determination of nanoparticles. Measurements with this method are performed in 

dispersions making them closely related to actual, mostly solvent-based, nanoparticle 

applications. The particle size resulting from DLS measurements is called hydrodynamic 

diameter. This hydrodynamic diameter is based on the particle size of a hard theoretical 

sphere that would exhibit the same diffusion properties as the nanoparticle sample in the 

respective medium. DLS measurements therefore cannot be used to derive exact particle 

morphologies.  

Experimentally, the size of nanoparticles is determined by subjecting a dispersion of particles 

to a laser beam. The incident beam is scattered by the nanoparticle dispersion and the 

outgoing light is recorded at a certain angle using a detector. Due to the Brownian motion of 

the particles, the corresponding pattern is constantly changing.25 The angular scattering data 

are evaluated using a time-based autocorrelation fit (Equation 9) that compares the signal at 

a point t to the signal at the points (t + τ) with τ being in the range of nanoseconds.26 With the 

drop-off of this function a diffusion-coefficient for all particles can be calculated. 

Equation 9 𝑔(2)(𝜏) =  
〈𝐼(𝑡)𝐼(𝑡 +  𝜏〉

〈𝐼(𝑡)²〉
 

In more detail, first the intensity-intensity time autocorrelation function is transformed into a 

field-field time autocorrelation function that decays exponentially. In case of a monodisperse 

particle dispersion, this drop-off can be described with a single exponential decay function 

(Equation 10) with the delay time 𝜏 and the decay rate 𝛤 that is described by the scattering 

wave vector q and the diffusion coefficient D (Equation 11). 
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Equation 10 𝑔(1)(𝜏) =  𝑒−𝛤𝜏 

Equation 11 𝛤 =  𝐷𝑞² 

In polydisperse samples, the exponential decay of the field-field autocorrelation function can 

be interpreted with the cumulant method. In this method the mean exponential decay of the 

field-field autocorrelation function is fitted in a Tailor Expansion (Equation 12). It also gives 

the possibility to quantify the polydispersity of the sample in form of the polydispersity index 

PDI (Equation 13) that is defined by the second term of this Tailor Expansion.26 

Equation 12 𝑔(1)(𝜏) =  𝑒−�̅�𝜏(1 +
µ2

2!
𝜏2 − 

µ3

3!
𝜏² + ⋯ ) 

Equation 13 𝑃𝐷𝐼 =  
µ2

𝛤2
 

 

The resulting diffusion coefficient can then be assigned to a hydrodynamic particle size using 

the Stokes-Einstein equation (Equation 14) with η being the viscosity of the medium, D being 

the diffusion coefficient of the particles, the Boltzmann constant kB and the absolute 

Temperature T.25  

Equation 14 𝐷 =
𝑘𝐵  ∙ 𝑇

6𝜋 ∙  휂 ∙ 𝑟
 

In this thesis, DLS measurements were performed on sample dispersions in cuvettes using a 

Zetasizer Nano Series (Nano-ZS, Malvern) that includes a 4 mW He-Ne laser operating at 

633 nm and an avalanche photodetector. 

2.6 Zeta Potential Measurements 

In solutions/dispersions, the behavior of particles is dominated greatly by their surface charge. 

It influences properties such as particle-protein interactions, colloidal stability and cellular 

uptake. According to the Debye-Hückel27 and Stern models28 a colloid particle in solution that 

exhibits a negative surface charge is surrounded by a tight layer of oppositely charged ions 

called Stern layer. Moving further away from the particle surface, a diffuse layer of counter-
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ions surrounds the particle. The ζ-Potential is the electric potential in the interfacial double 

layer (DL) at the location of the slipping plane relative to a point in the bulk fluid away from 

the interface (Figure 2.5), and indirectly a measure of the strength at which the counter-ions 

are bound to the particle.29 

Experimentally, the ζ-Potential of particles in a sample is determined from their 

electrophoretic mobility. In these measurements an electric field that is applied to the particle 

dispersion causes the particles to move towards the electrodes. As the particles move, the 

tightly bound counter-ion layer in the Stern layer move with the particles as well. At a certain 

distance in the diffuse counter-ion layer this tied movement breaks off and ions will move to 

the opposite electrode. This generates a slipping plane at the place of the charge-separation. 

The particle potential at this slipping plane is called ζ-Potential 29  

 

Figure 2.5. Schematic depiction of a positively charged nanoparticle with the ion-arrangement 
in the surrounding medium 

In an experimental setup, the particle velocity, also called electrophoretic mobility can be 

determined in a variant of Laser Doppler Velocimetry. In this measurement method a laser is 

directed towards the moving particles. The scattered light of this laser exhibits a phase shift 

that is proportional to the speed of the nanoparticles. Zeta-potential is determined via the 

Henry equation (Equation 15) from the electrophoretic mobility Ue of the particles, using the 
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dielectric constant ε and dynamic viscosity η of the surrounding medium, and depending on 

particle size and electrolyte concentrations either the Hückel (f(ka) = 1) or Smoluchowksi 

(f(ka) = 1.5) approximations are used.25 

Equation 15 𝑈𝑒 =
2휁 ∙  휀 ∙  𝑓(𝑘𝑎)

3휂 
 

Zeta-Potential measurements are usually performed in conjunction with a pH-Titration, as 

protons and hydroxide ions will attach to the surface of particles and their zeta-potential is 

therefore strongly pH dependent. Generally, particles need to exhibit a zeta-potential of |30| 

mV or higher to form colloidally stable suspensions based on electrostatic repulsion. 

During this thesis, zeta-potential measurements were performed on diluted samples in 

cuvettes using a Zetasizer Nano Series (Nano-ZS, Malvern) that includes a 4 mW He-Ne laser 

operating at 633 nm and an avalanche photodetector. In case of pH titration, an MPT-2 

Multipurpose Titrator (Malvern) was additionally connected to the device. 

2.7 Vibrational Spectroscopy 

Infrared and Raman spectroscopy are label- and destruction-free methods that can be used 

for the identification of molecules.30 IR measurements are based on the absorption of mid-

infrared light in the range of 4000-400 cm-1 (2.5-25 µm wavelength), which causes molecules 

to be excited into specific vibrational and rotational modes. From 4000 to 1800 cm-1, 

functional groups such as the CH- or OH-groups can be identified by distinctive absorption 

bands of their stretching modes. The range of 1800-400 cm-1 is called fingerprint region, as it 

is often characteristic for each molecule and can serve as a molecular fingerprint.  

Every IR absorption signal corresponds to either a specific, quantized vibrational or a 

combined vibrational-rotational transition of the sample. The energy necessary for exciting a 

vibrational mode depends on the bond strength and the mass of the moving atoms, whereas 

for the rotation it is depending on the molecule’s moment of inertia and is strongly influenced 

by its state of matter. These principles allow for the identification of a sample by collecting a 

spectrum. 
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The vibrational modes can be subdivided into valence vibrations, where bonds are periodically 

elongating and contracting and deformation vibrations, where a change in the bond angle 

occurs. For vibrational modes to be IR active they need to cause a changing dipole moment, 

which means a vibration cannot be symmetrical to the symmetry center of the molecule 

(vibrational IR selection rule). Vibrations that are not visible in the IR can often times be seen 

in Raman spectra. 

 

Figure 2.6. In a non-linear molecule consisting of three atoms, such as water, three vibrational 
modes are possible: vibrational mode v1 shows symmetrical valence vibrations (IR-active), v2 
depicts the only vibrational deformation mode of the molecule (IR-active), and v3 depicts 
valence vibrations that are anti-symmetric (IR-active). In case of a ‘deformation vibration’ 
perpendicular to the plane of the molecule, this results in a rotation.31 

 

2.7.1 Raman Spectroscopy 

Raman spectroscopy is complementary to IR spectroscopy, and relies on monochromatic light 

that is focused on a sample.32 While the majority of this light is either passing through the 

sample or is elastically scattered (Rayleigh scattering), a small fraction of the incident light is 

inelastically scattered. During this scattering process, energy is transferred between the 

incident photon and the interacting molecule. This scattered light after the interaction is then 

examined for its shift in frequency.  

Similar to IR absorption, Raman scattering excites (or depletes) vibrational and 

vibrational/rotational modes of a molecule. During the scattering process, a molecule is put 

into an excited virtual energy state, from which it instantly transits to a vibrational state. In 

case the molecule was in the vibrational ground state before the inelastic scattering, the 

emitted photon is shifted to lower energy (red-shift). In analogy to fluorescence, this process 

(leading to red-shifted inelastically scattered photons) is also called a Stokes process. In case 
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the molecule was in a vibrationally excited state before the inelastic scattering, the process 

forces the molecule back to the vibrational ground state and photons with higher energy 

(blue-shift) are emitted. This process is termed an anti-Stokes process.  

Analogous to IR spectroscopy, Raman spectroscopy can be employed to characterize and 

identify unknown substances. Both spectral regions (Stokes and anti-Stokes region) can be 

used for spectroscopy, although the anti-Stokes scattering shows lower intensity due to a less 

frequent occupancy of vibrationally excitated states in the beginning, which follow a 

Boltzmann distribution. 

 

Figure 2.7. Comparison of the energetic transitions during Rayleigh and Raman (Stokes and 
anti-Stokes) scattering33 

For a vibration to be visible in a Raman spectrum the vibration needs to induce a change in 

the molecular polarizability. As this can also happen for vibrations that are symmetrical to the 

symmetry center of the molecules, Raman spectroscopy is often used complementary to IR 

spectroscopy. In Raman spectra the wavenumber (1/λ) difference of the emitted light 

compared to the incident light is plotted versus its intensity. 

2.8 Fluorescence Spectroscopy 

Fluorescence spectroscopy is a non-destructive analytical method in which the optical 

emission spectrum from fluorophores is monitored. The fluorescent samples can be molecules 

such as aromatic hydrocarbons, proteins but also atoms such as the lanthanides.34  

In a fluorescence experiment, light generated by a broad band source such as a Xenon arc 

lamp is typically spectrally selected by a monochromator and focused onto a sample. This 
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process causes the sample molecules to transition from their electronic ground state S0 to an 

electronic excited state S1. The relaxation of the electronically excited molecules back to their 

ground state can lead to the emission of light. The wavelength of this emitted light experiences 

a red-shift (also called Stokes-shift) due to vibrational relaxation. These processes can 

schematically be visualized in a Jablonski diagram35 (Figure 2.8).  

In a typical fluoro-spectrometer setup light that is emitted from a sample is recorded 

perpendicular to the incident light. A monochromator between the sample and a detecting 

photomultiplier tube allows the recording of specific emission wavelengths.1
  

In this work fluorescence experiments were conducted on a PTI spectrometer that is equipped 

with a xenon short arc lamp (UXL-75XE USHIO) and a photomultiplier detection system (model 

810/814).  

Figure 2.8. Jablonski diagram depicting the processes most important for fluorescence.  
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2.9 Confocal Microscopy 

Confocal microscopy is a non-destructive technique that can be used for imaging and 

reconstruction of three-dimensional micrometer-sized objects such as microparticles and 

cells. A detailed description of the microscopy techniques that were performed together with 

fluorescence and Raman spectroscopy is presented in the respective result chapters. This 

section is used to describe the basic principles of confocal microscopy. 

In a confocal microscope, radiation that is emitted from a light source is passing a pinhole and 

is then focused via an objective to a small volume in a sample.36 Light exiting the sample via 

fluorescence or reflection passes the objective again and, after passing a beamsplitter, is 

focused on a pinhole aperture that is situated in the intermediate image plane. Only light that 

is in focus in the sample is also in focus in the intermediate image plane and can therefore 

pass this aperture. As only light that is in focus on the sample and  

Figure 2.9. Optical pathway of a confocal microscope with incoming light (green), emitted light 
in focus (red) and emitted light out of focus (black).37 
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that is in focus in the intermediate plane is used for image generation, this allows for 

selectively imaging small volumes in a sample at high resolution (Figure 2.9). Light from other 

planes that would compromise the resolution of the image is cut off by the pinhole. In a 

confocal microscope the whole sample is therefore not depicted at once. For image 

generation, the illumination spot is rastered over the sample and the image is reconstructed 

via a computer. In a modern version of confocal microscopes, the pinholes selecting the light 

to and from the sample are replaced with a variant of a Nipkow disc. This spinning disc features 

multiple concentrically arranged pinholes, allowing to rapidly scan multiple spots on a sample 

simultaneously and enabling image generation fast enough to view images in real time. Using 

confocal microscopy, lateral resolution dR is roughly limited by the Rayleigh criterion (Equation 

16) with the wavelength 𝜆 and the numerical aperture of the objective 𝑁𝐴. This corresponds 

to the product of the refractive index n of the medium in which the lense is working and the 

sinus of the half-angle of thef of its opening angle ϴ (Equation 17 

Equation 16 𝑑R =
𝜆

1.64 ∙  𝑁𝐴
 

Equation 17 𝑁𝐴 = 𝑛 ∙ sin𝛳 

2.10 Magnetic Resonance Imaging 

MOF nano and microparticles in this thesis were analyzed for their visibility in Magnetic 

Resonance Imaging (MRI). MRI is a standard imaging method (free of ionizing radiation) used 

in medicine for non-destructive analysis of tissue in a patient. In this thesis, the influence of 

MOF particles on the image contrast was examined. 

The contrast in an MRI image strongly depends on the distribution of water in tissue as the 

water protons are the main source of signal in clinical MRI. The hydrogen nuclei of these water 

molecules exhibit a nuclear spin 𝐼  of 1/2 and thus concomitantly feature a magnetic dipole 

moment µ⃗  that is proportional to their gyromagnetic ratio 𝛾 (Equation 18).1 
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Equation 18 µ⃗ =  𝛾𝐼  

The magnetic dipole moment µ⃗  is quantized along with its orthogonal components. The 

component of µ⃗  along the z-axis is defined by the magnetic quantum number m and the 

reduced Planck constant ħ (Equation 19). 

Equation 19 µ𝑧 =  𝛾𝐼𝑧 =  𝛾ħ𝑚 

The magnetic quantum number can assume two (2I + 1 = 2) values for hydrogen nuclei (I = ½) 

resulting in two possible orientations that are energetically degenerate. If a magnetic field 𝐵0 

is applied along z, these states are split and feature an energy difference Δ𝐸 (Equation 20). 

This can be pictured as the magnetic moments aligning with or against the external magnetic 

field.  

Equation 20 Δ𝐸 =  𝛾ħ𝐵0 

In a sample, this results in an overall net magnetization of the nuclei corresponding to the 

lower energy state, in which the magnetic moments precess around the external magnetic 

field in phase. The frequency L of this precession is called Larmor frequency (Equation 21). 

Equation 21 𝜔𝐿 = 2 𝜋 𝑣𝐿 =  𝛾𝐵0 

In an MRI system a sample is subjected to a magnetic field leading to the aforementioned 

energy states and alignment of magnetic moments of the water hydrogen nuclei. Using a short 

radiofrequency pulse, this equilibrium is then disturbed. The following realignment of the 

sample magnetization along the external field is called longitudinal relaxation. This 

exponential process is described by the longitudinal relaxation time T1). The exponential decay 

of the phase of the precessing spins is called transverse relaxation (described by relaxation 

time T2).38 Both of these relaxation times of the water molecules’ protons are influenced by 

the chemical environment in particular tissues. Due to this and the varying water content in 

different types of tissue, different signal intensities are generated depending on tissue type. 

Transforming these different signal intensities to correspondingly different gray values in an 

image results in contrast between tissues. It is common practice to use paramagnetic 
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additives, called contrast agents, to further influence the contrast of the generated images. 

For a clinically used contrast agent in a solution, the inverse of these relaxation times, also 

called relaxation rates Ri = 1/Ti, i = 1,2, typically increases linearly with increasing contrast 

agent concentration. The slope of this linear increase between contrast agent concentration 

and relaxation rate is called relaxivity ri (i = 1,2) . Relaxivity is commonly used as a measure of 

the contrast agent effectiveness in MRI. As a rule of thumb MRI contrast agents should exhibit 

high relaxivities such that small additions of contrast agents or particles can cause large 

contrast enhancing effects. 39 

MRI experiments in this thesis were performed using a clinical 1.5T MRI system (Siemens 

MAGNETOM Aera, Siemens Healthineers, Erlangen, Germany). For imaging, samples in 2 mL 

Eppendorf tubes were submerged in a water bath and positioned in a standard head coil for 

imaging. During the experiments, saturation-recovery and echo times were varied to 

determine T1 and T2 relaxation times of the samples, respectively. In this process cross-

sectional images of the sample that correspond to the respective saturation and echo times 

were evaluated for their intensity. The squared intensity data were fitted using a squared 

exponential function to yield T1 and T2 relaxation times along with relaxation rates.40 

2.11 Nanomechanical Mass Correlation Spectroscopy 

The density of a macroscopic material is defined as the ratio of its mass and volume. For 

porous nanoparticles such as MOFs this definition is not as straightforward: The size of a 

nanoparticle may vary depending on whether the measurement was performed on dried 

particles or in liquid medium and may be influenced by surface attachment of molecules and 

ions such as in the stern layer. The porous nature of MOFs additionally poses the question of 

whether solvent molecules within the pores of the structure should be considered towards 

particle mass and therefore influence particle density. In the experiments of this thesis, 

density determination of MOF nanoparticles was solely based on particle mass via 

nanomechanichal mass correlation spectroscopy.41 
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Figure 2.10. Schematic of the measurement principle: A nanoparticle dispersion is flowing 
through a channel in a hollow vibrating tip. Using a detector, the resonance frequency of this 
tip is monitored. The buoyant mass of the particles changes this frequency, which is used for 
further data evaluation. 

In such a microfluidic setup (Figure 2.10), a nanoparticle suspension moves through the 

channels of a vibrating hollow tip. The particles traversing this tip cause fluctuations in its 

resonance frequency that are proportional to the buoyant mass of the particles. For 

nanoparticle analysis these resonance frequency fluctuations are then evaluated using a 

time-based autocorrelation function 𝐶(𝜏) (Equation 22), where 𝛿𝑓 corresponds to a high-pass 

filtered signal of the frequency change. 

Equation 22 𝐶(𝜏) =  〈δ𝑓(𝑡)δ𝑓(𝑡 +  𝜏〉 

These measurements are then repeated under variation of the solvent-system used for 

dispersing the particles. Particle density is then determined by plotting the respective 

autocorrelation amplitudes that are dependent on the mass and concentration of the particles 

versus the density of the solvents. Subsequent fitting of these data with a parabola results in 

a zero minimum, where the resonance frequency of the tip does not change. At this point, the 

particle density is equal to the solvent density. 

The setup used in the experiments of this work consisted of two syringe pumps that were 

varying the composition of solvents flowing through the channel of a microfluidic chip 

containing a micro-resonator tip containing an embedded channel with a cross-section of 3 x 

8 µm². Frequency changes were detected with an optical lever consisting of a laser and a split 

photodiode. 
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3 Mass Measurements reveal Preferential Sorption of 

Mixed Solvent Components in Porous Nanoparticles 

This chapter is based on the following publication: 

Modena MM, Hirschle P, Wuttke S, Burg TP. Small. 2018;14(27):e1800826. (DOI: 
10.1002/smll.201800826) 

3.1 Introduction 

Porous nanoparticles are a unique class of materials that open many new opportunities in 

fields ranging from drug delivery and sensing to catalysis, green chemistry, and energy 

conversion. 1-8 Their physicochemical properties, in particular their morphology, surface 

charge, composition, porosity, and extremely high surface‐to‐volume ratio, are of paramount 

importance in defining their potential applications. Therefore, it is necessary to precisely 

control and measure these parameters. 4,9-17 Several characterization methods can be used to 

probe nanoparticles:18,19 Nanometer‐scale resolution on particle morphology and crystallinity 

can be obtained using solid‐state approaches (e.g., electron microscopy and X‐ray 

diffraction).20 However, these methods can only be used on dry samples, and thus they cannot 

account for interactions between the nanoparticles and the suspending solution. Mobility‐

based methods (e.g., dynamic light scattering) are commonly used to measure the 

hydrodynamic radius and zeta‐potential of nanoparticles in liquids. 19 Mobility, however, does 

not vary significantly with the internal state of nanoparticles, such as the filling of the pores. 

Therefore, pore volume, pore accessibility, and the internal affinity to specific gases are 

currently only probed in the dry state (e.g., nitrogen adsorption and helium pycnometry), or 

by the indirect measurement of the adsorption of probe molecules dissolved in solvents of 

different polarity. 21 



Mass Measurements reveal Preferential Sorption of Mixed Solvent Components in Porous Nanoparticles 

66 

 

To circumvent this limitation, we used nanomechanical mass correlation spectroscopy (MCS)22 

to measure the effective mass density of metal–organic framework (MOF) nanoparticles in 

different solvent systems. In this approach, the MOF nanoparticles are dispersed in a range of 

binary solvent systems and the mass fluctuations resulting from the flow of this suspension 

Figure 3.1. Density characterization of MIL‐101(Cr) nanoparticles. A) Direct mass 
measurements with suspended microchannel resonators reveal the mass density of porous 
nanoparticles in different mixed solvents. Particles flowing through a microfluidic channel 
embedded into a nanomechanical resonator cause resonance‐frequency variations 
proportional to the induced mass fluctuations. These mass fluctuations are measured with 
high precision by correlation analysis. B) Variation of the magnitude C(0) of the 
autocorrelation for the MIL‐101(Cr) nanoparticle signal in mixtures of HFE‐7100/EtOH with a 
solution density ranging from 0.84 g mL−1 (≈8% HFE‐7100) to 0.98 g mL−1 (≈30% HFE‐7100). 
The measured density of the particles is 1.25 ± 0.02 g mL−1; C) The density of MIL‐101(Cr) 
nanoparticles in polar solvents was measured by using a mixture of 50 × 10−3 M Glycine‐HCl 
(pH 2.5)/EtOH, with density ranging from 0.85 g mL−1 (≈76% EtOH) to 0.96 g mL−1 (≈2% EtOH). 
A buffer solution with low pH was selected as the MIL‐101(Cr) nanoparticles present higher 
stability and low aggregation when suspended in acid conditions (Figure S3.20). 
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through a suspended microchannel resonator (SMR) mass sensor of 10 pL volume are 

measured (1 pL = 10-12 L; Figure 3.1). We used materials institute lavoisier (MIL)‐101(Cr) MOF 

nanoparticles23 with different inner pore functionalizations and suspended them in binary 

mixtures of ethanol and water, and methoxyperfluorobutane (HFE‐7100) and ethanol (EtOH). 

Based on geometry alone, these modifications of the solvent systems and of the 

functionalization of the pores are not expected to change the mass of the nanoparticles. The 

observed differences therefore provide new information about the specific interaction 

between the different solvent components and the internal surface. 

3.2 Results 

MIL‐101(Cr) nanoparticles are mesoporous MOF nanoparticles featuring two types of cages 

with respective diameters of 2.9 and 3.4 nm, and an accessible window of 1.2 and 1.4 nm. 23 

Here, we have examined the effective density of three different MIL‐101(Cr) species: MIL‐

101(Cr) nanoparticles and MIL‐101(Cr) derivatives functionalized at the coordinatively 

unsaturated metal sites with pyridine or pyrazine using post-synthetic modification. 24 The 

crystallinity, porosity, and morphology of the MIL‐101(Cr) nanoparticle species were 

investigated with powder X‐ray diffraction (PXRD) (Figure S3.6), nitrogen 

adsorption/desorption isotherms (Table S3.7), transmission and scanning electron 

microscopy, (TEM, Figure S3.7-Figure S3.9; SEM, Figure S3.11-Figure S3.16), respectively. We 

characterized the nanoparticles using both SEM of dried ethanolic suspensions, resulting in a 

size distribution of dSEM = 41 ± 10 nm (Figure S3.17-Figure S3.19), and dynamic light scattering 

(DLS) in ethanol yielding in a hydrodynamic diameter of dDLS = 105 ± 31 nm (Figure S3.21). 

The density of MIL‐101(Cr) nanoparticles was measured using both apolar and polar solvents 

to probe the behavior of particles when exposed to different solvent mixtures (Figure 3.1). 

Surprisingly, the effective mass density of the particles depends significantly on the solvent 

system. In the relatively apolar mixture of HFE‐7100 with EtOH, MIL‐101(Cr) nanoparticles 

present a density ρeff
HFE/EtOH

= 1.25 ± 0.02 g cm−3 (Figure 3.1b), while their density increases 

to ρeff
EtOH/Water

= 1.77 ± 0.12 g cm−3 (Figure 3.1c) in the more polar mixture of ethanol with 

an aqueous buffer (50 × 10−3 M Glycine‐HCl, pH 2.5). Both values are much larger than the 
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mass density of the empty framework, which can be calculated from the crystal structure as 

ρeff
HFE/EtOH

= 0.66 g cm−3 (Figure S3.24). 

Next, we modified MIL‐101(Cr) nanoparticles using a post-synthetic grafting approach. The 

coordinatively unsaturated chromium sites (Lewis acid sites) are used to coordinate Lewis 

bases,24 pyrazine or pyridine, to render the particles more hydrophilic or hydrophobic, 

respectively (Figure 3.2). As for the unfunctionalized MIL‐101(Cr) nanoparticles, the 

measurements were carried out in mixtures of HFE‐7100/EtOH and of 50 × 10−3 M Glycine–

HCl (pH 2.5)/EtOH to detect both the particle densities and their permeability to the solvents 

in solution. Measurements in the HFE‐7100/EtOH mixtures return an effective density of 

ρeff
HFE/EtOH

= 1.31 ± 0.03 g cm−3 for the pyrazine‐functionalized particles and ρeff
HFE/EtOH

=

1.30 ± 0.05 g cm−3 for the pyridine‐functionalized particles. 

These results are in line with the values found for the unfunctionalized MOF nanoparticles. 

More pronounced differences are detected when measuring the density of the functionalized 

nanoparticles in the polar mixture. For the pyrazine‐functionalized nanoparticles, we find a 

surprisingly high effective density of ρeff
EtOH/Water

= 1.42 ± 0.06 g cm−3 in the mixture of 

ethanol and water (Figure 3.2b). As for the measurements of the unfunctionalized MIL‐101(Cr) 

nanoparticles, the uncertainty on the effective density increases with the value of the 

estimated density. In contrast, the pyridine‐functionalized nanoparticles show a drastic 

decrease in effective density to ρeff
EtOH/Water

= 1.12 ± 0.02 g cm−3 when suspended in the 

same mixture (Figure 3.2d). The lower effective density may be due to an increased ethanol 

content within the particles. This could occur due to particle aggregation with concomitant 

inclusion of ethanol in the interstitial volume and/or due to the formation of an ethanol 

solvation layer surrounding the nanoparticles. In both cases, the ethanol fraction may be 

locally increased in the aqueous mixture because of the hydrophobic functional groups 

presented both on the inner and outer surface of the nanoparticles. This hypothesis is 

supported by DLS measurements of the nanoparticles suspended in the two mixtures: the 

nanoparticles in ethanol have a hydrodynamic diameter of 96 nm (polydispersivity 18%), while 

their size increases to 149 nm (polydispersivity 40%) in a 95% 50 × 10−3 m Glycine‐HCl/5% 

ethanol mixture. 



Mass Measurements reveal Preferential Sorption of Mixed Solvent Components in Porous Nanoparticles 

69 

 

The density estimations obtained for the different cases of MIL‐101(Cr) nanoparticles when 

suspended in the different solvent mixtures are summarized in Table 3.1. The observed 

dependence of mass density on the chemical identity of the solvent in MOF nanoparticles can 

be understood by considering the possible interactions of the solvent components with the 

pore volume. Our measured correlation signal C(0) represents the variance of the resonance 

frequency fluctuations of the SMR. This is directly proportional to the variance of mass 

fluctuations arising from Poisson statistics, i.e., 𝐶(0) ~ 𝑐0𝑉 ∙  
∂𝜌

∂𝑐
|
µ

2

 , where c0 denotes the solid 

concentration, V = 10 pL is the volume, and 
∂𝜌

∂𝑐
|
µ
 is the density increment of the solution at 

constant chemical potential. In the simplest case, when particles are described as hard 

spheres, the density increment follows Archimedes' law  

Equation 23 
∂𝜌

∂𝑐
|
µ
= 1 − 

𝜌𝑠

𝜌eff
 

where 𝜌𝑠 is the mass density of the solvent and 𝜌eff denotes the mass density of the solid, 

which is equal to the inverse partial specific volume of the particles. In this case, the 

Figure 3.2. Density measurements of functionalized MIL‐101(Cr) nanoparticles. A) MIL‐
101(Cr) nanoparticles were functionalized with pyrazine at the coordinatively unsaturated 
metal sites. B) Density measurements of pyrazine‐functionalized MIL‐101(Cr) particles 
suspended in mixtures of HFE‐7100/EtOH (left) and 50 × 10−3 M Glycine‐HCl/EtOH (right). The 
particles present an unexpected higher effective density in the polar mixture; C) The 
hydrophobicity of MIL‐101(Cr) nanoparticles was increased by functionalization of the inner 
and outer‐surface area with pyridine. D) Density characterization of the pyridine‐
functionalized MIL‐101(Cr) particles in mixtures of HFE‐7100/EtOH (left) and 50 × 10−3 M 
Glycine‐HCl/EtOH (right). 
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autocorrelation curve presents zero amplitude when the density of the suspending solution 

matches the density of the particles. 

Table 3.1. Summary of density estimations for the functionalized and unfunctionalized 
MIL-101(Cr) MOF nanoparticles in the different solvent mixtures 

MIL-101(Cr) 

functionalization 

Solvent mixture 

EtOH/HFE [g cm-3] EtOH/50 x 10-3 M Glycine-HCl [g cm-3] 

Unfunctionalized 1.25 ± 0.02 1.77 ± 0.12 

Pyrazine-functionalized 1.31 ± 0.03 1.42 ± 0.06 

Pyridine-functionalized 1.30 ± 0.02 1.12 ± 0.02 

Porous nanoparticles present a fundamentally different behavior. In solution, their effective 

density depends not only on their dry mass and volume but also on the ability of the solvent 

to access the pore volume. There can be significant differences in pore accessibility for 

different solvent components due to size exclusion and more complex interactions, such as 

solvation effects and gating. All of these phenomena may alter the effective mass density of 

the particles and necessitate an extension of the pure physical/geometric description, which 

is inherent to Archimedes' principle. 

3.3 Discussion 

To explain the range of the observed differences, we represent the pore volume by two 

compartments, as shown in Figure 3.3. Note that this is done only for modeling purposes; in 

reality, there need not be a defined physical boundary. In the first compartment (light blue) 

the solvent composition tracks the composition outside the pore exactly. In contrast, the 

composition in the second compartment (blue/yellow in Figure 3.3) is fixed and given by 

specific adsorption or exclusion of individual solvent components. The dry mass of the particle 

is increased by the fixed mass of adsorbed solvent molecules. This leads to the following 

expression for the density increment  
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Equation 24 
∂𝜌

∂𝑐
|
µ
= (1 + 𝐵A + 𝐵B) (1 − 

𝜌s

𝜌´𝑒ff
) 

where the adsorption coefficients BA and BB denote the mass fractions of the solvent 

components A and B, respectively, that are bound to the particles. 25,26 The total adsorbed 

mass fraction is (BA + BB) and the effective mass density of the particles is given by  

Equation 25 𝜌´𝑒ff = 
1 + 𝐵A + 𝐵B

𝜌f
−1 + 𝐵A𝜌A

−1 + 𝐵B𝜌B
−1 

Note that 𝜌f represents the density of the nanoparticle framework and depends on the 

accessibility of the pores to the solvent. To illustrate different scenarios, we consider three 

special cases. First, if the particles are fully permeable (case I), BA,B = 0 and 𝜌´𝑒ff is given by 

Equation 25 and 𝜌f =  
𝑀f

𝑉f
 (Figure 3.3,I), where Mf is the dry mass of one particle and Vf is the 

volume occupied by the framework. In our experiments with MIL‐101(Cr) nanoparticles, this 

yields a value of 𝜌´𝑒ff =  3.1 g cm−3 based on a pore volume fraction of 79% calculated from 

the crystal structure (Figure S3.24). Second, if the particles are impermeable (case II), the solid 

particle model applies with 𝜌efff = 
𝑀f

𝑉𝑝
 (Figure 3.3,II), where Vp is the hard‐sphere volume of 

one particle. In this case, the crystal structure reveals a value 𝜌𝑒ff =  0.66  g cm−3. Finally, if 
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one solvent component, e.g., component A, permeates selectively (case III), then BB = 0 and 

BA > 0 (Figure 3.3,III).  

The wide range of effective density values corresponding to these cases explains the 

differences we observe in the different experiments. Although the measurements do not 

provide sufficient information to extract each of the parameters (ρf, BA, and BB) individually 

Figure 3.3. Schematic representation of the selective sorption of mixed solvents into porous 
MOF nanoparticles. The dashed line symbolizes the outer perimeter of the nanoparticle with 
dry mass Mf and total volume Vp. In the most general case, different solvent components can 
freely access only a fraction of the pore volume (shown in light blue). Here the mass ratio x of 
solvent components matches that of the surrounding fluid. In another part of the internal 
volume, the composition is altered by specific interactions between the different solvent 
components and the solid framework (yellow/blue hatched region). The mass ratio y of 
solvent components in this region can differ significantly from the surrounding fluid. Three 
special cases of this model are of particular interest: I) All solvent components can freely 
access the entire pore volume. II) Nonsolvent molecules can access the internal volume. III) 
One of the solvent components (light yellow) can access a larger portion of the internal 
volume than the other. 

https://onlinelibrary.wiley.com/cms/attachment/ea9c6edd-ffd1-41d8-95c9-e0053ad254a5/smll201800826-fig-0003-m.jpg
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for the different solvent systems and particle functionalizations, the observed variation in 

density establishes that their combination differs significantly in each of the measured cases, 

with case I and II not being supported by our experimental findings.  

Our results show that tuning the inner functionalization of porous MOF nanoparticles can 

produce considerably different local compositions of the solvent mixtures within and/or 

around the nanoparticles. This capability opens interesting new opportunities for the use of 

MOF nanoparticles, such as separation of solvent mixture based on selective enhancement of 

a solvent component in the pores. 

Finally, the novel density method presented here can be applied to any other porous 

nanoparticle system, which will greatly advance our understanding of one key 

physicochemical parameter of porous nanoparticles and open up a broad spectrum of 

applications of this class of materials, from separation to biomedical science. 

3.4 Experimental Methods 

Density Measurements 

Density of particles in solution is measured by detecting the variation of buoyant mass when 

the particles are suspended in mixtures of different concentrations of ethanol and 50 × 10−3 

M Glycine‐HCl (pH = 2.5) or ethanol and HFE‐7100. The test solutions are injected into a 

suspended microchannel resonator featuring an embedded channel with a cross‐section of 

3 × 8 µm2. The resonance frequency of the resonator is measured by using an optical‐lever 

detection scheme (see Figure S3.4 and section 3.5 for more information on the experimental 

setup). During the measurement, particle concentration is kept constant to simplify the 

subsequent data analysis process. As the buoyant mass of the particles is proportional to the 

induced frequency fluctuations, the time‐domain mass signal is first high‐pass filtered (cutoff 

frequency = 1 Hz) to remove slow‐term‐noise fluctuations, caused by temperature and/or 

mechanical variations. Frequency fluctuations are then analyzed by use of an autocorrelation 

analysis of the high frequency domain to minimize the effect of the uncorrelated readout 

noise background. The effective density of the particles is calculated after fitting the 

autocorrelation amplitude as a function of solution density, with the estimated particle 

density corresponding to the minimum of the fitting parabola. Therefore, the uncertainty on 
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density estimation depends on the range of solution densities accessed during the 

measurement. More information on and validation measurements of the density 

characterization method are reported in the Supporting Information.  
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3.5 Supplementary Information 

3.5.1 Density Measurements 

Detection method 

Figure S3.4 shows a schematic of the experimental setup and of the subsequent data analysis. 

The buoyant mass of the particles is measured in mixtures of two solvents with different 

densities and mixed at different concentrations, therefore obtaining solutions of different 

densities. The test solutions are prepared with equal particle concentration to avoid variations 

during the measurement and simplify the data analysis. The sample is then drawn into the 

SMR device by means of syringe pumps, while the flow velocity in the detection channel is 

controlled by pressurizing the chip inlets. The combination of pressure control and syringe 

pumps enables smooth pulse-free flow during measurement and precise estimation of the 

mixture composition throughout the measurement. The density of the solution at any time is 

estimated by measuring the frequency shifts induced by added reference particles of known 

volume and density, and by pre-calibration of the mass/frequency responsivity of the SMR. 

After high-pass filtering of the time-domain mass trace and the removal of the reference 

particle signatures, the frequency fluctuations can be analyzed by means of the 

autocorrelation function. As white noise is largely confined to in the autocorrelation function, 

where is the sampling frequency, the estimation of is obtained by fitting of the autocorrelation 

curve using an approximated fit function of the curve.1 Finally, the magnitudes of the 

autocorrelation curves are plotted against as functions of the density of the solutions and 

fitted with a parabola with zero minimum to estimate the intercept of the curve with the x-

axis, which corresponds to the effective density of the particles in solution. Although only two 

measurements at different densities would be needed to fit the parabola, the resulting fit 

curve would present an ambiguity on the position of the curve minimum. The measurement 

scheme presented here enables the rapid acquisition of measurements at several solution 

densities, increasing the accuracy and reliability of the density estimation, and returning a 

unique solution of the fit parabola. 
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 Experimental Procedure 

The SMR presents two large bypass channels for the rapid exchange of the solutions, and a 

torsional resonating structure with embedded microfluidic channels of 3x8 μm² cross-section 

(HeightxWidth). First, the sample and wash solutions are drawn into the SMR. Then, the 

direction and velocity of the flow inside the embedded microfluidic channel are controlled by 

pressurizing the vials containing the solutions. The density of the solutions is varied during the 

measurement by mixing them with known volumes of solutions with different density at 

specific times. Preparing the sample and the diluting solution with the same concentration of 

particles ensures constant sample concentration throughout the measurement. The 

resonance frequency of the resonator is detected by using an optical lever readout scheme. 

The average resonance frequency varies with the density of the solution flowing in the 

embedded microfluidic channels. Particles of known size and density are added to the solution 

to estimate the density of the fluid at any moment from their induced transient shifts in 

resonance frequency. 

 

 

Figure S3.4. Measurement of particle density with SMRs. a) Schematic of the experimental 
setup, which includes (from the left): two syringe pumps for varying the solution density, 
pressurized inlets (P1 and P2) to control the flow in the microfluidic chip, an optical lever 
composed of a laser beam focused on the resonator and a split photodiode, two syringe 
pumps for drawing out the solution and precisely controlling the volume of solution flown in 
the chip; b) time-domain mass signal. The insets show the autocorrelation of small fluctuations 
of resonance frequency caused by the random number fluctuations of the nanoparticles in the 
channel (top) and the frequency shifts of the large calibration particles used for the detection 
of the solution density (bottom); c) the amplitude of the autocorrelation of the time-domain 
mass signal depends on the difference in density between the nanoparticles and the 
suspending solution; d) the amplitude of the autocorrelation as a function of solution density. 
The minimum of the fit parabola corresponds to the effective density of the particles in 
solution. 
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Method validation 

Characterization of polystyrene nanoparticles. As validation of the density characterization 

method, we measured the density of 210 nm (nominal size) polystyrene nanoparticles 

suspended in mixtures of pure water and ethanol by gradually increasing the ethanol fraction 

to 50% v/v. The variation of the autocorrelation amplitude with solution density is shown in 

Figure S3.5. The autocorrelation amplitude strongly increases with the ethanol concentration, 

clearly indicating that the particles have a density higher than that of pure water. Fitting of 

the experimental points with a parabola finds an effective mass density for the polystyrene 

nanoparticles of ρeff
EtOH/Water

= 1.056 ± 0.001 g ∙ cm−3, which agrees with the manufacturer 

specifications2. As expected, the polystyrene particles behave as hard spheres, which are 

impermeable to the solvent. From the known total solid content and the measurement of 

ρeff
EtOH/Water

 we can calculate the mean mass 𝑀𝑓 = 4.03 ± 0.36 fg and the mean diameter 

𝑑p = 194 ± 6 𝑛𝑚 of the nanoparticles 

  

Figure S3.5. Density characterization of 210 nm (nominal size) polystyrene beads in mixtures 
of ethanol and water. 



Mass Measurements reveal Preferential Sorption of Mixed Solvent Components in Porous Nanoparticles 

79 

 

3.5.2 Methods and Characterization of MIL-101(Cr) Nanoparticles 

Dynamic Light Scattering and Zeta-Potential: 

Dynamic light scattering experiments and measurements of Zeta-Potential were conducted 

with a Zetasizer Nano Series (Nano-ZS, Malvern) featuring a laser with the wavelength 

λ = 633 nm. All DLS measurements were performed on the freshly synthesized samples in 

ethanol. Zeta-Potential measurements were performed in aqueous solution of the 

nanoparticles (c = 0.1 mg ml-1). During the measurement, the pH was adjusted from pH = 2 to 

pH = 9 with a MPT-2 Multi Purpose Titrator (Malvern) using aqueous hydrochloric acid and 

sodium hydroxide solutions. 

Scanning Electron Microscopy 

The three MOF samples were examined on a Helios NanoLab G3UC (FEI) operating with 3 eV. 

The three samples were dried from ethanolic dispersions of the respective MOF species. Prior 

to the SEM measurements they were additionally sputtered with carbon. The resulting 

micrographs from the SEM measurements were evaluated manually using the software 

ImageJ v1.49. 

Transmission Electron Microscopy 

All three MOF samples were examined using a Titan Themis (Fei) operated with an 

acceleration voltage of 300 kV. Sample preparation was performed via drying an ethanolic NP 

dispersion on a carbon-coated copper grid.  

Thermogravimetry 

Dried samples of MIL-101(Cr) (5.90 mg), pyridine functionalized MIL-101(Cr) (6.20mg) and 

pyrazine functionalized MIL-101(Cr) (2.68mg) were examined on a TASC 414/4 (Netzsch) under 

synthetic air. The results of the experiments, which were performed employing a heating rate 

of 10 °C/min up to 900 °C, were evaluated with the included software Proteus v4.3. 

X-Ray Diffraction 

In order to confirm a successful synthesis of MIL-101(Cr) MOF and to check the intactness of 

the crystal structure after functionalization, X-ray diffraction was performed. The instrument 

used was a STOE Transmissions-Diffraktometer System STADI P. The experiments were 

performed in transmission setup derived from Debye-Scherrer geometry. All experiments 

were performed with CuKα1-radiation. For data analysis the included software package 
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WinXPOW RawDat v3.0.2.5 and WinXPOW PowDat_n v3.0.2.7 was used. The simulation of 

unfunctionalized MIL-101(Cr) bulk material was based on the structural data from the group 

of Férey3 using the software Materials Studio v7.0 (BIOVIA). 

Nitrogen sorption 

Ethanolic dispersions of the respective samples were dried in an oven at 70 °C for 3 days. The 

dried powders of each of the samples were outgassed in high vacuum (see Table S3.2). 

Nitrogen sorption experiments were performed with a Autosorb-1 (Quantachrome). The 

results were evaluated using the software ASiQwin v3.0. The linearized form of the BET 

equation was used to calculate BET surface areas. For the calculation of the pore size 

distribution a QSDFT adsorption based model was used assuming slit, cylindrical, and spherical 

pores. 

Table S3.2. Conditions employed during the outgassing of the samples. 

MIL-101(Cr) Pyridine-Functionalization Pyrazine-Functionalization 

38 h, 120 °C 72 h, 120 °C 38h, 70°C 

3.5.3 Synthesis of the Nanoparticle Samples 

Synthesis of MIL-101(Cr) NP 

The synthesis of MIL-101(Cr) was conducted using microwave (MW) assisted synthesis. A 

mixture of Cr(NO3)3 · 9 H2O (1.48 g, 3.70 mmol) and terephthalic acid (0.615 g, 3.70 mmol) was 

given to water (20 ml, Milli-Q) and stirred until all Cu(NO3)3 · 9 H2O was dissolved. 

Subsequently, the reaction mixture was placed in a Teflon tube (80 ml) and sealed. The tube 

was placed in a microwave oven (Synthos 3000, Anton-Paar) along with 3 other vessels, two 

of them being filled with water (20ml) and one of them being a control vessel filled with an 

aqueous Cu(NO3)3 · 9 H2O (1.48 g, 3.70 mmol) solution. The heating sequence shown in Table 

S3.3 was applied: 
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Table S3.3: MW Heating program for the MIL-101(Cr) synthesis 

Heating Dwelling Cooling 

4 min 2 min 1.5 h 

To 210 °C 210 °C To RT 

The resulting nanoparticles were washed via centrifuging (20500 rpm, 45 min), removal of 

supernatant, and redispersing them under sonication in ethanol (30 ml). Subsequently the 

MOF NP dispersion was filtered in order to remove excess terephthalic acid. Afterwards, the 

nanoparticles were centrifuged (20500 rpm, 45 min), followed by removal of the supernatant 

and redispersing of the pellet under sonication for 3 additional times. 

Post-synthetic functionalization with pyridine and pyrazine 

For the pyrazine functionalization an ethanolic MIL-101(Cr) NP dispersion (7.2 ml, c = 12.4 mg 

ml-1) was given to an ethanolic pyrazine solution (7.2 ml, c = 320 mg/ml, 4 mM). The reaction 

mixture was kept stirring for 24h. The resulting modified nanoparticles were washed in 4 

cycles consisting of centrifuging (14000 rpm, 30 min), removal of supernatant and redispersing 

in ethanol under sonication. 

For the pyridine functionalization, pyridine (12.2 ml, 154 mmol) was given to an ethanolic 

MIL-101(Cr) NP dispersion (7.2 ml, c = 12.4 mg ml-1) in addition to ethanol (2.2 ml). The 

reaction mixture was kept stirring for 24 h. The resulting modified nanoparticles were washed 

in 4 cycles consisting of centrifuging (14000 rpm, 30 min), removal of supernatant and 

redispersing in ethanol under sonication. 

3.5.4 Characterization of the MOF species 

X-ray Diffraction 

The results of the X-ray diffraction experiments are shown in Figure S3.6. The PXRD data of all 

three MIL-101(Cr) species is in agreement with literature results.3 The reflex broadening in the 

MIL-101(Cr) NPs samples is not caused by lack of crystallinity as can be seen in the TEM results, 

but are caused by the nanosized crystalline domains. 
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Figure S3.6. Powder X-ray diffraction patterns of the initial MIL-101(Cr) sample as well as the 
functionalized species. 
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3.5.5 Transmission Electron Microscopy 

Overview pictures gained from TEM measurements are shown in Figure S3.7, Figure S3.8, 

Figure S3.9 and for the respective samples. Generally, the micrographs prove the crystallinity 

of the MOF samples prior and after functionalization with pyridine/pyrazine. For better 

comparison small agglomerates for each of the respective species are shown in Figure S3.10. 

Figure S3.7. TEM micrograph of MIL-101(Cr). 
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Figure S3.8. TEM micrograph of pyridine-functionalized MIL-101(Cr). 
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Figure S3.9. TEM micrograph of pyrazine-functionalized MIL-101(Cr). 
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Figure S3.10. Zoomed-in micrographs of MIL-101(Cr) (left) and its pyridine-functionalized 

(middle) and pyrazine-functionalized (right) derivatives. 

 

 

 

3.5.6 Scanning Electron Microscopy 

Figure S3.11, Figure S3.13 and Figure S3.15 give an overview of the initial MIL-101(Cr) sample 

and the pyridine and pyrazine functionalized derivatives. Additionally in the top right corner 

of each of the micrographs, the nanoparticles, which have been used for particle size 

determination, are marked with yellow lines. All three samples look homogeneous. A more 

detailed view on the particles is shown in Figure S3.12, Figure S3.14 and Figure S3.16. Again, 

the samples look very similarly. The resulting particle size distributions for the dried species 

have been determined manually by measuring the diameter of ~100 particles of the respective 

species and are shown in Figure S3.17, Figure S3.19 and Figure S3.18 and are additionally 

summarized in Table S3.4. 
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Figure S3.11. SEM micrograph of MIL-101(Cr). In the top right corner: Particles which have 

been measured for the size determination. 

Figure S3.12. SEM micrograph of MIL-101(Cr). 
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Figure S3.13. SEM micrograph of pyridine-functionalized MIL-101(Cr). In the top right corner: 
Particles which have been measured for the size determination. 

Figure S3.14. SEM micrograph of pyridine-functionalized MIL-101(Cr)   
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Figure S3.15. SEM Micrograph of pyrazine-functionalized MIL-101(Cr). In the top right corner: 
Particles which have been measured for the size determination. 

Figure S3.16. SEM micrograph of pyrazine-functionalized MIL-101(Cr).  
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Figure S3.17. Particle size distribution of MIL-101(Cr) determined from the SEM micrograph in 
Figure S3.11. 

 

 

Figure S3.18. Particle size distribution of pyridine-functionalized MIL-101(Cr) determined from 
the SEM micrograph in Figure S3.13. 
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Figure S3.19. Particle size distribution of pyrazine-functionalized MIL-101(Cr) determined 
from the SEM micrograph in Figure S3.15. 

 

Table S3.4. Results of particle size distribution analysis from the SEM images 

Sample MIL-101(Cr) 
Pyridine-

Functionalization 

Pyrazine-

Functionalization 

Particle 

Diameter [nm] 
41 43 41 

Standard 

Deviation [nm] 
10 9 10 
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3.5.7 Dynamic Light Scattering and Zeta-Potential measurements 

Figure S3.20 depicts the pH dependent Zeta-Potential of MIL-101(Cr) NPs in aqueous solution. 

At pH = 2 starting from around 30 mV, the potential drops for increasing pH. In the initial acidic 

conditions, the particles are stable and not agglomerated. When reaching pH = 7 upwards, the 

Zeta-Potential passes through 0 mV, which causes the particles to agglomerate. 

 

Figure S3.20. Zeta-Potential of an aqueous solution of MIL-101(Cr) NPs, when titrating from 
pH = 2 to pH = 7. 

 

The results of the DLS-measurements for the functionalized and unfunctionalized MIL-101(Cr) 

NPs in ethanol are given in Figure S3.21. Table S3.5 gives the average intensity-based diameter 

of the nanoparticles along with their polydispersity index. Overall, the DLS based 

hydrodynamic diameter of the particles was nearly not influenced during their 

functionalization. In all three cases, the particles show similar a similar size around 105 nm 

and a very monodisperse particle size distribution. 
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Figure S3.21. Intensity based particle size distribution of functionalized and 
non-functionalized MIL-101 (Cr) NPs in ethanol. 

 

Table S3.5. Summarized results of the DLS measurements 

Sample Diameter [nm] Polydispersity Index 

MIL-101(Cr) 105 0.088 

Pyridine-Functionalized 105 0.174 

Pyrazine-Functionalized 106 0.066 

3.5.8 Thermogravimetric Analysis 

The thermogravimetric analysis for the MIL-101(Cr) NPs sample and its functionalized 

derivatives is shown in Figure S3.22. All three samples show similar stability. The samples 

feature a degradation range between 327 – 374 °C. The values of the residual masses of the 

nanoparticle species are slightly shifted. This may be caused for several reasons: Due to the 
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pyridine/pyrazine functionalization the overall ratio of the solvent/framework masses is 

altered due to the additional mass of the introduced molecules and the varying capability of 

the nanoparticle species to incorporate solvent molecules. The functionalization approach 

overall however has not influenced the framework stability. 

 

Figure S3.22. Thermogravimetric analysis of MIL-101(Cr) NPs, pyridine-functionalized 
MIL-101(Cr) NPs and pyrazine-functionalized MIL-101(Cr) NPs. 

3.5.9  Elemental Analysis 

In order to estimate the degree of functionalization of the MIL-101(Cr) species elementary 

analysis (CHNS) was performed. Weight-in masses of the respective samples and their results 

are summarized in Table S3.6. 

Table S3.6. Elementary analysis results 

Sample Mass [mg] wt% N wt% C wt% H 

MIL-101(Cr) 4.882 0.87 18.50 6.85 

Pyridine-Functionalization 4.905 2.11 23.69 6.56 

Pyrazine Functionalization 4.595 1.37 20.20 6.67 
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This data has been interpreted the following way: In the pure MIl-101(Cr) MOF sample, there 

is still a small amount of residual nitrogen trapped within the framework, which is caused due 

to the synthesis route having Cu(NO3)3 · 9 H2O as a substrate. The difference in wt% for 

nitrogen after subtracting the amount of initial nitrogen was assumed to be caused by pyridine 

and pyrazine respectively the functionalized samples. Based on the crystallographic data from 

the group of Férey3 the theoretical wt% of nitrogen in pyridine and pyrazine-functionalized 

MIL-101(Cr) was calculated and compared with the experimental results. This resulted in a 

functionalization of (26.8 ± 9.2)% for the pyridine functionalized sample and (5.4 ± 4.6)% for 

the pyrazine-functionalized sample. 

3.5.10 Nitrogen Sorption 

The results of the BET calculation of the nitrogen sorption experiments are summarized in 

Table S3.7. The corresponding Isotherms are shown in Figure S3.23. The BET-surface was 

reduced both for the pyridine and the pyrazine-functionalization. This is expected, since 

aromatic use up space within the framework. The greater reduction in case of pyrazine is 

expected as well, since the functionalization degree for pyridine was higher than for the 

pyrazine-functionalized sample. The pyrazine-functionalization had no notable effect on the 

pore size distribution on the sample. The pyridine-functionalization did reduce the amount of 

pores in the 3 nm range, however they are still present. This might be attributed to the greater 

functionalization degree of the pyridine-functionalized sample. As shown in the XRD 

experiments, this had no influence on the structure of the MOF. 
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Table S3.7. Results of the BET analysis 

Sample MIL-101(Cr) Pyridine-Functiona

lization 

Pyrazine-

Functionalization 

BET-surface area 

[m²/g] 

4789  3194 3506 

Relative pressure 

range used for 

calculation 

0.11-0.23 

 

0.07 - 0.18 

 

0.07-0.21 

 

Correlation coefficient 0.999 0.999 0.999 

C-constant positive positive positive 

 

Figure S3.23. Results Nitrogen Sorption Experiments of MIL-101(Cr) (Top) and the pyridine 
(middle) and pyrazine-functionalized (bottom) species 
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3.5.11 Porosity Estimation and Calculation 

The density of dry MIL-101(Cr) at 0.66 g/cm³was calculated using literature crystallographic 

data4 from which all free solvent molecules were removed, and by dividing the mass of the 

remaining atoms in the elementary cell of the structure by the cell volume. This modified 

crystal structure was then used for an estimation of the porosity of MIL-101(Cr). The data were 

evaluated using the “Atom Volumes & Surfaces” tool of the software package Materials Studio 

v7.0 (Accelrys Software Inc.). The program was used to calculate a probe-molecule dependent 

Connolly surface with a grid interval of 0.75 Å. The program also provides an occupied and 

free volume within the elementary cell. This free volume and the total volume of the 

elementary cell were then used to calculate the porosity of the crystal structure. With the 

probe radius set to 0 Å the porosity equals 84.5%. The corresponding Connolly surface is 

shown in Figure S3.24. Using a probe radius of 1.4 Å to simulate water, the porosity of the 

framework equaled 82.1%. In case of ethanol, a probe radius of 2.2 Å was assumed resulting 

in a porosity of 79.1%. 

 

 

 

Figure S3.24. Connolly surface of MIL-101(Cr). 
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4 The Need for Material Optimization of Nanoparticles 

in Biomedicine: The Example of Iron(III) fumarate 

This chapter is based on the following article: 

Hirschle P, Hirschle C, Böll K, Döblinger M, Höhn M, Tuffnell JM, Ashling CW, Keen DA, Bennett 

TD, Rädler JO, Wagner E, Peller M, Lächelt U, Wuttke S. The need for material optimization of 

nanoparticles in biomedicine: the example of iron(III) fumarate. Chem Mater. Currently in 

Revision  

4.1 Introduction 

There is a perpetual need for new colloidal nano and microparticles in biomedical applications 

such as drug delivery, imaging, cell labeling and cancer therapy.1-10 The last two decades have 

witnessed the development of many new material classes that can be used in these 

applications, but these advances have also identified a new range of problems to tackle.11-13 

One such problem is the feasibility of synthesis; biomedical applications desire particles that 

are simple to synthesize, ideally under aqueous conditions. Any synthesis must also reliably 

produce particles with specific characteristics. Products should be of high purity, and 

monodisperse size and shape to ensure reproducible in vitro and in vivo results.9 These 

particles should be functionalizable in order to equip them with imaging capabilities and/or to 

improve their colloidal stability and/or control their biodistribution with cell-targeting 

receptors. In general, particles destined for drug delivery should be highly porous and have a 

functionalizable inner surface to control loading and release of drugs. And as always, 

biomedical applications require intense study and control over the potential toxicity of new 

materials – a problem that can be mitigated by using biocompatible building blocks and 

ensuring biodegradability.8,9 



The Need for Material Optimization of Nanoparticles in Biomedicine: The Example of Iron(III) fumarate 

100 

 

Iron(III) fumarate excels in all of these categories and is therefore a promising candidate for 

biomedical use. This material features a mixed organic and inorganic architecture and has 

been used to produce crystalline solids of various particle sizes (Table 4.1). In its crystalline 

form, iron(III) fumarate exhibits the metal-organic framework (MOF) structure of MIL-88A.14 

The hexagonal crystal structure of this coordination framework consists of Fe3+ ions arranged 

into Fe3O16 iron-oxo trimers that are in turn connected by the bridging ligand fumaric acid 

(Figure S4.8). The resulting material is a microporous and flexible hybrid structure. Solvent 

and other guest molecules can penetrate into the pores resulting in a shifting of the lattice 

parameters that allows for pore volume increase, so-called “breathing”.15-18 Iron(III) fumarate 

is highly biocompatible since its components are ubiquitous in the human body; fumaric acid 

is a critical component of the citric acid cycle, and iron is a trace element in our body and part 

of many enzymes and proteins such as hemoglobin. Iron(III) fumarate particles offer 

remarkable functionality due to their hybrid nature. Coordinatively unsaturated metal-centers 

on the particle surface are available for Lewis bases to bond, enabling post-synthetic 

modification.19 These molecules can be used to either modify the finished material by 

selectively changing its outer surface to feature hydrophilic properties20 or adding 

functionalities such as fluorescent centers21. Other functionalization approaches can be 

applied during particle synthesis to introduce monovalent capping agents that carry functional 

groups at the particle surface.22 

In addition to this functionalizability, iron(III) fumarate offers important intrinsic functionality 

that makes it well-suited for clinical imaging: crystalline iron(III) fumarate is built to a large 

Figure 4.1. Schematic idea of this work, from left to right: The synthesis of iron(III) fumarate 
particles was optimized using four different synthesis approaches. By controlling reaction 
parameters four different iron(III) fumarate variants depicted here in scanning electron 
micrographs have been isolated. These particles were then further characterized with 
biological and physicochemical techniques to understand the connection between 
morphology, size, porosity, functionality and biocompatibility. 
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part from paramagnetic Fe3+ ions, which qualifies the framework material for potential use as 

a contrast agent in magnetic resonance imaging (MRI).23,24 Furthermore, gold functionalized 

iron(III) fumarate particles have done well as contrast agents in other clinical imaging methods 

such as computer tomography and photoacoustic imaging.24 Iron(III) fumarate nanoparticles 

have shown great compatibility with biological coatings such as exosomes25,26 and 

liposomes26. Being both a biocompatible and functionalizable material, numerous reports 

concerning iron(III) fumarate nano and microparticles as potential drug carriers have been 

published. 19,21,23,25-28 Functionalized iron(III) fumarate has also been discussed as a platform 

for sensing large bio-molecules such as DNA22 and for small molecule detection29. The large 

internal surface area of the material and its heterogeneous organic and inorganic architecture 

make it also an ideal candidate for non-biomedical applications such as storage of small 

molecules, catalysis and electrochemistry. Catalytic and electrochemical studies may make 

use of the active iron(III) centers of the framework itself 30-33 , use the material in combination 

with other active components34,35, or use it as a precursor for porous carbon-based catalysts 

with methods such as calcination.36-43 The storage and capturing of small molecules relies on 

host-guest interactions such as physisorption or chemisorption with the iron(III) centers and 

linker molecules of the framework. Iron(III) fumarate has been examined for the uptake of 

nitrogen(II) monoxide19, fluoride,44 alkanes45, ethylene46 and hydrogen47. A summary of all 

applications along with their respective iron(III) fumarate variants is shown in Table 4.1. All of 

these applications are based on iron(III) fumarate, however their material properties such as 

particle size and shape do not appear to be standardized.  

To date the monodisperse synthesis of particles in this system is contradictory and not well 

established.48 Advances that were made to characterize the crystallization of this structure 

either rely on the usage of modulating additives or fail to characterize the particles' 

functionality and biocompatibility.27,39,49-51 Mastering the synthesis of iron(III) fumarate 

particles and understanding the connection of their morphology and structure with their 

material and biological properties is imperative for unlocking their potential for biomedical 

purposes. The study presented here therefore serves multiple purposes: (i) to systematically 

study the relationship between synthesis conditions (e.g. heating method, reaction 

parameters, solvent, reactant concentration), morphology and crystallinity of iron(III) 

fumarate; (ii) to investigate the impact of morphology upon the particles' intrinsic material 
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properties (e.g. MRT activity and porosity); and (iii) to explore their biocompatibility to finally 

connect those data with their physicochemical parameters (e.g. morphology and size). 

Table 4.1. Applications of iron(III) fumarate in the literature 

Iron(III) fumarate type Application Publication 

Nanoparticles 

Drug delivery 21,23,25-28 

Imaging 23,24 

Sensing 22,29,39 

Catalysis 38,42 

Microparticles 

Water purification 44 

Catalysis 31-37 

Electrochemistry 38, 41, 43 

Gas storage 46 

Not specified 

Gas storage 45,52 

Catalysis 30 

Drug Delivery 19 

 

Having all these points in mind, we investigated the influence of different synthesis 

approaches including solvothermal, microwave assisted and microfluidic heating as well as 

room temperature precipitation on the iron(III) fumarate system. By optimizing the reaction 

conditions such as time, temperature, reactant concentration, and solvents we were able to 

control the morphology of the emerging particles, resulting in four isolated distinct iron(III) 

fumarate variants. These particles were then further characterized to address the three 

aforementioned targets. To reach our first goal, the iron(III) fumarate types generated under 

different synthesis conditions were characterized with a combination of electron microscopy, 

electron diffraction and X-ray diffraction. To address our second point we were examining the 

iron(III) fumarate types with nitrogen sorption, in-situ X-ray diffraction and by determining 

magnetic resonance relaxivities. Lastly, we were testing the particles for cytotoxicity and 

interactions with cells.  
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4.2 Results: Morphological Control of Iron(III) Fumarate 

Biomedical applications rely on high-quality nano and microparticles generated with 

reproducible synthesis protocols that are up-scalable and yield a product with monodisperse 

morphology and size. The growth of nanocrystalline MOFs is typically controlled by using 

modulating capping agents such as surfactants and short monocarboxylic acids.53 In our study 

we avoid this chemical approach as it comes with adverse side effects. The modulating agents 

complicate an otherwise simple reaction by introducing another component to the reaction 

mixture that accumulates on the outer particle surface.54 Additionally, these modulating 

agents are typically toxic. Therefore, in this section we study the formation of iron(III) 

fumarate particles using a variety of heating methods and devices including conventional and 

microwave ovens in addition to a microfluidic reactor, a synthesis technique that has recently 

captured the attention of the MOF community.28,55-58 We compare the particle formation in 

the most commonly used solvent for iron(III) fumarate synthesis, namely 

N,N-dimethylformamide (DMF), and water which is the solvent of choice for any kind of 

biomedical applications. 

Iron(III) fumarate synthesis in DMF was performed by first dissolving iron(III) chloride 

hexahydrate in fresh DMF under sonication and subsequently adding a corresponding amount 

of fumaric acid to the reaction mixture. The resulting solution (0.2 M iron(III) chloride 

hexahydrate, 0.2 M fumaric acid) was used as a basis for the different synthesis approaches. 

This reaction solution was incubated for several weeks at room temperature (RT) to check for 

any crystallites forming. No particle formation was observed, which suggests that the 

synthesis of iron(III) fumarate under these conditions requires heating. For solvothermal 

experiments, this stock solution was used in its concentrated (0.2 M) form and additionally in 

a tenfold diluted concentration (0.02 M). The morphology and homogeneity of the resulting 

iron(III) fumarate particles shown in this section depends, amongst other factors, on heating 

time. In order to provide the steep heating ramps and fast heat transfer throughout the 

reaction vessel that is necessary for a well-defined nucleation and growth period of the 

iron(III) fumarate crystallites, solvothermal experiments with reaction times of less than 2 h 

were performed in reaction volumes limited to 1 mL (for more reaction details see section 

4.7). For high reactant concentrations, solvothermal heating triggered the first formation of 

iron(III) fumarate over the course of 6 h at 60 °C. Increasing the temperature to 120 °C 
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shortened the reaction time to 30 min. These particles are micrometer-sized and exhibit 

homogeneous pyramidal shape when first formed, however with further increase of reaction 

time this homogeneity is lost (Figure S4.9). We attribute this to the formation of new 

nucleation centers during the longer heating period. To study the influence of reactant 

concentration on iron(III) fumarate particles in DMF the reactant concentration was lowered 

by a factor of 10. This led to improved homogeneity as well as to an elongated morphology of 

the particles (Figure S4.10). A tenfold reduction of the reaction time improved particle 

homogeneity under these low concentration conditions even further (Figure S4.11). 

Additional decrease of temperature did not influence the resulting particle morphology but 

slowed down the time for particle formation (Figure S4.11). Microfluidic particle growth in 

DMF was conducted using a single syringe setup that was fed with a premixed high 

concentration solution of all precursors into PTFE tubing. Upon traversing this tubing, the 

reaction mixture was subjected to a heating zone with a defined length. Therefore, reaction 

times in these experiments were determined by the speed of the reaction solution within the 

tubing (Figure S4.12). Due to the improved heat transfer and reaction times in this setup the 

particles crystallization time was shortened by a factor of two to 15 min, as well as a decrease 

in the particle size to below 1 µm. Using lower flow rates and therefore longer reaction times 

led to an increase in particle size (Figure S4.13). Prolonged use (2 h) of this setup lead to a 

clogging of the microfluidic tubing due to particle growth on the tubing walls. The challenge 

of implementing fast heating and cooling rates in DMF could be overcome by microwave-

assisted heating. In these experiments reaction temperatures were adjusted in less than a 

minute while providing 20 times the reaction volume of the solvothermal approaches and 

were stopped by fast quenching in cold DMF. Compared to microfluidic synthesis, microwave 

assisted heating at 120 °C in a 5 minute synthesis protocol decreased particle size by 50% 

(Figure S4.14). Further decrease of reaction time resulted in polydisperse particles and very 

low yields.  

Iron(III) fumarate synthesis in water was conducted by preparing an aqueous solution of 

iron(III) chloride hexahydrate and adding a stoichiometric amount of fumaric acid (0.2 M 

iron(III) chloride hexahydrate, 0.2 M fumaric acid). The resulting suspension was used as a 

basis for further experiments. Within the first two minutes after preparing this reaction 

mixture, precipitation of spherical iron(III) fumarate nanoparticles can be observed (Figure 
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S4.15). Over time, there was additional formation of crystalline iron(III) fumarate needles 

embedded in a matrix of interconnected spherical nanoparticles. With longer reaction time 

these needles grew larger until after 4 days the matrix had completely vanished leading to 

micrometer sized particles (Figure S4.16). During this time, the crystallinity of the overall 

sample increased drastically (Figure S4.17). Elevated temperatures such as in solvothermal 

and microwave assisted growth (Figure S4.18 and Figure S4.19) enhanced the rate at which 

this crystallization transformation was completed. Further reaction time did not change the 

resulting crystal product noticeably (Figure S4.19). Similar to the solvothermal growth 

experiments in DMF, these experiments were limited to reaction volumes of 1 mL for reaction 

times below 1 h to ensure a sufficiently fast heating rate. For faster heat transfer and better 

control over reaction time the microfluidic setup shown schematically in Figure S5 was used. 

The setup consisted of syringe pumps that feed both aqueous iron(III) chloride and fumaric 

acid precursor solutions via a T-junction into heated PTFE tubing at a 1 : 1 ratio. These 

experiments require fully soluble precursors, and thus reactant concentrations were lowered 

twentyfold. The onset time of the needle formation in this microfluidic reactor was in the same 

range as for solvothermal growth despite the low reactant concentrations (Figure S4.20). 

During this growth, iron(III) fumarate however precipitates on the walls of the microfluidic 

tubing, rendering the approach unfeasible for reaction times longer than 10 min. Similar to 

the other aqueous approaches, under these conditions of fully dissolved precursors the 

growth of the needle morphology was still preceded by the precipitation of spherical 

nanoparticles. In order to relate these microfluidic experiments to solvothermal and room 

temperature experiments, additional experiments were performed. For this, a tenfold diluted 

iron(III) fumarate solution was mixed with a stoichiometric amount of fumaric acid in a 1:1 

ratio. These experiments also initially resulted in the precipitation of spherical nanoparticles 

of iron(III) fumarate that transformed over time into crystalline micro-needles (Figure S4.21). 

At room temperature, needle crystallization growth was considerably slowed while the 

microparticles grew in a more bulky shape (Figure S4.22).  
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4.3 Results: Material Characterization 

Through optimization of the aforementioned synthesis conditions we isolated 4 variants of 

iron(III) fumarate particles based on their distinct monodispersity, upscalability and 

morphology to further compare to each other (Figure 4.2). The smallest of these particles 

referred to as “spherical nanoparticles” were synthesized via RT precipitation from water and 

feature a diameter of (49 ± 12) nm. The iron(III) fumarate “dipyramidal nanoparticles” feature 

a length of (400 ± 95) nm and a width of (184 ± 30) nm and were synthesized in a microwave 

reactor in DMF. “Dipyramidal microparticles” with a diameter of (1.2 ± 0.2) µm were 

synthesized solvothermally from DMF and needle-shaped microparticles featuring a length of 

(10 ± 2) µm and a width of (975 ± 420) nm were synthesized solvothermally in water (Figure 

S4.23). The detailed synthesis conditions of these particles are described in the Supporting 

Information. Chemical stability measurements showed that all iron(III) fumarate particles 

show resistance towards aqueous cell medium (Figure S4.24) and feature excellent long-term 

Figure 4.2. SEM micrographs depicting the morphology of the four variants of iron(III) 
fumarate that were used for further characterization. Top left: spherical nanoparticles, top 
right: needle-shaped microparticles, bottom left: dipyramidal microparticles, bottom right: 
dipyramidal nanoparticles. 
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storage capabilities as all particles can be stored at RT for many months in ethanol (Figure 

S4.25- Figure S4.28).  

4.3.1 X-Ray Diffraction 

X-ray diffraction experiments of all 4 morphologies were performed on powdered samples 

generated via RT vacuum drying of ethanolic particle dispersions (Figure 4.3). Three of the 

four iron(III) fumarate variants depict crystallinity with X-ray diffraction patterns 

corresponding to MIL-88A16 (Figure S4.8). The corresponding nano and microparticles exhibit 

dipyramidal or needle-shaped morphologies (Figure 4.2).  

Lattice parameter refinements of these 3 samples showing sharp reflections resulted in very 

similar values (Table 4.2). The small deviations can be attributed to the drying process of the 

flexible MIL-88A structure and distortion of the lattice due to the nanosize of the particles. 

The spherical nanoparticles on the other hand appear amorphous in these X-ray diffraction 

experiments. However, we stress that this, as demonstrated later in this work, is only an effect 

of the small particle domain size. This highlights a key misconception in current MOF literature 

– i.e. confusion between nanocrystalline and amorphous samples.  

Figure 4.3. X-ray diffraction patterns of the morphologically distinct iron(III) fumarate 
samples. 
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Table 4.2. Lattice parameters of the three crystalline iron(III) fumarate samples. 

Iron fumarate variant a (Å) c (Å) 

Needle-Shaped Microparticles 12.8678(09) 13.5139(14) 

Dipyramidal Nanoparticles 12.9307(15) 13.4325(27) 

Dipyramidal Microparticles 12.8701(12) 13.4870(17) 

4.3.2 Thermogravimetric Analysis 

To more closely identify the chemical relationship between the crystalline and the spherical 

iron(III) fumarate nanoparticle samples, we performed thermogravimetric measurements. 

The thermogravimetric data for all 4 samples are shown in Figure S4.29 and Table S4.8. The 

degradation behavior of the samples matches literature data for the MOF MIL-88A.59 All four 

samples show a similar two-step degradation upon heating and indicate a similar chemical 

composition. Due to initial drying of the samples only a low amount (around 5-8 wt%) of 

residual solvent is physisorbed to the surface. The onset of the degradation at 259 °C- 285 °C 

agrees well with literature data for the MOF and is caused by the degradation of fumaric 

acid.39 After decomposition of the organic component in a two-step process that constitutes 

52-57% of the total sample mass, the residual mass of the samples lies at 37-41%, pointing 

towards a final composition of an iron(III) oxide than can be identified as hematite by XRD 

(Figure S4.29).  

4.3.3 Electron Diffraction 

For further structural and morphological characterization of the less crystalline spherical 

nanoparticles, transmission electron microscopy (TEM) was performed. TEM images depict 

particles featuring a uniform size distribution between 20-30 nm (Figure 4.4). Several particles 

exhibited lattice fringes that quickly vanish during illumination. More gentle electron 

diffraction (ED) of larger areas resulted in broadened Bragg-rings confirming that a substantial 

percentage of the particles exhibit crystalline domains (Figure 4.4). ED patterns match the 

lattice distances as well as the expected intensity distribution for MIL-88A.16 Figure 4.4 shows 

a comparison of an experimental ED pattern after azimuthal integration and background 

subtraction and an ED simulation of iron(III) fumarate with MIL-88A structure. The best fit with 
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respect to reflection broadening was obtained by the Scherrer equation for 3.5 nm along the 

a- and b-axes and around 1 nm along the c-axis of the hexagonal unit cell.  

4.3.4 Pair Distribution Function Analysis 

To complement the data acquired from electron diffraction, X-ray total scattering experiments 

were performed at the I15-1 beamline at the Diamond Light Source, UK (λ = 0.161669 Å-1), on 

all four samples. The total scattering structure factors S(Q)s (Figure S4.31) were extracted 

after appropriate data corrections.60 The sharp Bragg features still visible in the S(Q) for the 

spherical nanoparticles clearly identify the sample as crystalline, and therefore different from 

amorphous solid or metal-organic framework glasses, where only smooth features in the 

Figure 4.4. a) Electron diffraction pattern and b) TEM micrograph of spherical iron(III) fumarate 
nanoparticles. c) Shows the azimuthally integrated electron diffraction pattern after 
subtraction of the mean scattering intensity (black) compared to the theoretical diffraction 
pattern of MIL-88A nanoparticles (red). 
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structure factors are observed.61,62 The pair distribution functions, D(r) for all four samples 

were obtained upon Fourier Transform (Figure 4.5). Identical atom-atom correlations are 

evident up to ca. 12 Å. The PDFgui software63 was used to identify the atom-atom correlations 

responsible for peaks in the 0 – 12 Å region (Figure S4.32). These assignments are labelled in 

the PDFs (Figure 4.5), and show that the correlations appear due to near identical links 

between Fe3O clusters. Above 12 Å, i.e. the medium range order, correlations within the 

spherical nanoparticles reduce drastically, which is broadly consistent with the electron 

microscopy data and the nanoparticulate nature of the sample. It is also interesting to note 

that the sample of dipyramidal microparticle morphology is dissimilar at this lengthscale to 

either the needle or dipyramidal nanoparticle sample, though continues to display crystallinity 

to ca. 40 Å (Figure S4.33).  

4.3.5 Nitrogen Sorption 

Porous materials are favorable for drug delivery systems as they allow for higher drug loading 

capacities due to their internal surface area that is accessible via pores. To determine the 

surface area of the iron(III) fumarate samples nitrogen sorption experiments were performed 

and analyzed with the BET method. All samples show BET surface areas of 120 to 450 m²/g 

(Table S4.10) which is in agreement with literature where surface areas for iron(III) fumarate 

are reported ranging from 15 to 580 m²/g depending on reaction conditions and sample 

perparation.21,34,46 With decreasing particle size, the experimentally determined BET surface 

areas of the particles increase. This effect can partially (30 %) be explained by the increased 

surface to volume ratio due to the nano dimensions of the particles (see supporting 

Figure 4.5. Pair distribution functions D(r) (left) and corresponding labelled partial structure 
of MIL-88A showing two iron oxide metal clusters linked by a fumarate ligand (right) (red – 
oxygen, orange – iron, dark grey – carbon, white – hydrogen).  
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Information “Calculation of the theoretical surface depending on particle size”). Additionally 

we attribute the increased surface area to a texturing during the drying of the particles that 

results in an increasing slope in the sorption isotherms for the smaller particle types after their 

micropores are filled (Figure 4.6). The pore size distributions of all iron(III) fumarate variants 

(Figure S4.34) show a similar pore size at a diameter of 11-13 Å for all iron fumarate variants. 

The aforementioned texturing effect can also be monitored in the pore size distributions with 

decreasing particle size where it leads to mesopores for the smaller spherical nanoparticles 

and dipyramidal nanoparticles. 

  

4.3.6 Breathing Behavior 

While nitrogen sorption experiments can give hints about the surface area and porosity of a 

material, the actual loading and release of potential drugs is conducted in solvent systems. As 

the MIL-88A structure of crystalline iron(III) fumarate is known for its flexible pores that 

expand upon solvent incorporation16 we analyzed the influence of the solvents on the lattice 

parameters. The data shown in Figure S4.35-Figure S4.37 were generated from in-situ X-ray 

diffraction on each of the higher crystallinity iron(III) fumarate variants using various solvents 

that would typically be encountered in biological applications. During these experiments the 

Figure 4.6. Nitrogen sorption isotherms of the four iron(III) fumarate types. 
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particles retained their crystallinity in all of the tested solvents for multiple hours showing the 

stability of the particles. Powder XRD patterns were used for refinement of the lattice 

parameters of the different iron(III) fumarate variants with their respective solvent 

combinations. As shown in Table 4.3, the lattice dimensions for the respective iron(III) 

fumarate/solvent systems varied with a volume change of up to 12% upon depending on the 

solvent chosen, regardless of morphology. 

Table 4.3. Lattice parameter evolution upon exposure of the higher crystalline iron(III) 
fumarate variants to various solvents. 

Solvent a [Å] c [Å] Volume [Å³] 

Needle-shaped Microparticles 

DMSO 14.506(21) 11.828(15) 2155.4(38) 

H2O 13.830(8) 12.702(6) 2103.9(14) 

EtOH 13.636(5) 12.812(4) 2063.2(9) 

MeOH 12.863(6) 13.584(6) 1946.4(11) 

DMF 12.92(3) 13.385(19) 1933.7(37) 

Dipyramidal Nanoparticles 

DMSO 14.620(4) 11.722(4) 2169.9(8) 

H2O 13.880(21) 12.711(4) 2120.7(39) 

EtOH 13.616(8) 12.844(7) 2062.1(15) 

MeOH 12.90(6) 13.60(3) 1961.3(113) 

DMF 12.820(7) 13.638(12) 1941.0(19) 

Dipyramidal Microparticles 

DMSO 14.647(13) 11.728(9) 2178.9(27) 

H2O 13.873(14) 12.659(10) 2109.9(25) 

EtOH 13.629(10) 12.835(8) 2064.8(17) 

MeOH 12.86(10) 13.585(11) 1945.8(20) 

DMF 12.829(9) 13.625(8) 1942.1(16) 
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4.4 MRI measurements 

MIL-88A NPs may be used as future MRI contrast agent as demonstrated impressively in 

recent in vivo experiments.64 In this clinical method, contrast generation is based on different 

longitudinal and transverse relaxation times that the protons of water molecules in portrayed 

tissues exhibit in a magnetic field. MRI contrast agents enhance these differences further by 

decreasing the longitudinal (T1) or transverse (T2) relaxation times of the tissue they are 

situated in. The MOF MIL-88A is believed to influence this behavior as a result of its 

paramagnetic iron(III) centers that can be easily accessed by water molecules due to its porous 

MOF structure.64,65 The inverse of these relaxation times, i.e. Ri = 1/Ti (i = 1,2), are determined 

to measure the strength of a potential contrast agent at a certain concentration. Typically, the 

Ri values display a linear dependency on the concentration of the contrast agent. In such cases, 

the slope is called the relaxivity and indicates the effectiveness of the contrast agent to 

shorten relaxation times of water protons. In the experiments presented here we determined 

the relaxivity of the four iron(III) fumarate variants in a clinical MRI setting at 1.5 T. These 

measurements were performed either in Xanthan gel in the case of the microparticle variants 

or in water for the spherical nanoparticles.  

The mass-based relaxivities of the dipyramidal and needle-shaped iron(III) fumarate variants 

increase inversely to the particle size (Table 4.4). The spherical nanoparticle sample on the 

other hand breaks with this trend and features comparably low r2 values. In literature, other 

factors such as agglomeration behavior, crystallinity and particle shape have shown to 

influence the relaxivities of nanoparticles66-69. The experimentally determined mass-based 

relaxivities are additionally depicted as particle-based relaxivities (Figure S4.40). Here, both 

the r1 and r2 relaxivities of a single particle are shown to increase with its size. This may be 

explained by an accordingly increasing number of paramagnetic iron centers in a particle. For 

comparison with commercially used contrast agents, the experimentally determined 

mass-based relaxivities were converted to molar relaxivities (Figure S4.40). In this depiction 

the amount of iron(III) ions in the sample is considered. Overall the iron(III) fumarate particles 

in this study achieve 3-8% of the molar relaxivities of iron-based R2 contrast agents such as 

Feridex (41 L mmol-1 s-1)70. However, the dipyramidal nanoparticles are in the same magnitude 

as commercially used R1 contrast agents featuring ~40% of the strength of gadoteric acid 
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(2.9 L mmol-1 s-1).70 These results confirm the overall potential of iron(III) fumarate as MRI 

agents, especially since the particles can simultaneously be used in drug delivery. 

Table 4.4. Mass-based relaxivities of iron(III) fumarate particles as determined in xanthan and 
in water (spherical nanoparticles). 

Morphology r1 [s-1 (mg/mL)-1] r2 [s-1 (mg/mL)-1] 

Needle-shaped Microparticles 1.46 ± 0.03 8.6 ± 0.5 

Dipyramidal Microparticles 2.16 ± 0.02 15.7 ± 0.2 

Dipyramidal Nanoparticles 6.094 ± 0.004 18.8 ± 0.4 

Spherical Nanoparticles 4.23 ± 0.02 5.93 ± 0.03 

4.5 Results: Biological Characterization 

After establishing the synthesis of monodisperse iron(III) fumarate nano and microparticles 

and their physicial and functional characterization, we wanted to understand the impact of 

the different morphologies on cellular interactions and biological criteria that are important 

for biomedical applications. For this purpose, we conducted toxicity assessments and cell 

association experiments. 

4.5.1 Cellular interaction 

Since iron(III) fumarate particles are hard to label and detect by fluorescence based techniques 

due to fluorescence quenching effects,71 the cellular interaction and association was 

investigated by inductively coupled plasma optical emission spectroscopy (ICP-OES). In these 

experiments, the iron content in HeLa cells before and after incubation with the respective 

particles was monitored. For that purpose, aqueous dispersions of the different iron(III) 

fumarate variants were incubated with HeLa cells for 24 h at a final concentration of 

100 µg/mL. Afterwards the medium was separated from the cells, both fractions were dried 

and the individual iron-content was determined via ICP-OES. The detected iron content in the 

separate fractions depends on the amount of iron(III) fumarate particles associated with HeLa 

cells (membrane bound and internalized) and the remaining dispersed fraction in the 

supernatant respectively. The relative amount of nanoparticles associated with the cells in 

percent was then determined by relating the mass of iron(III) ions detected in the cell to the 
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overall mass of iron(III) ions in the experiment (cells and supernatant). As a control experiment 

for nanoparticle-independent iron(III) uptake, an iron(III) chloride-solution containing the 

same iron(III) amount was used in the same experimental setup. 

Table 4.5. Fraction of iron(III) fumarate associated with HeLa cells after 24 h incubation as 

determined by ICP. 

Sample Uptake 

Spherical Nanoparticles (14 ± 0.3)% 

Dipyramidal Microparticles (56 ± 2)% 

Dipyramidal Nanoparticles (29 ± 1)% 

Needle-shaped Microparticles (66 ± 3)% 

Free Fe3+ (3 ± 0.5)% 

 

The data from these experiments suggest association of all four iron(III) fumarate variants with 

HeLa cells to different extents from 14 to 66% (Table 4.5). Unspecific uptake of free Fe3+ 

caused by particle degradation can be excluded due to the negligible increase of Fe3+ ions in 

the cells in the control experiment (3 %), as well as stability measurements of the particles in 

cell culture medium that showed all particle types to retain their morphology. The micro-

meter sized particles mediated the highest cellular iron increase and a general correlation of 

particle size with cellular association could be observed. A possible explanation are the higher 

sedimentation rate and cellular uptake of bigger particles in static cell culture conditions, 

which has also been described in the context of other nanomaterials.72 

4.5.2 Cytotoxicity 

Despite the chemical composition of all 4 iron(III) fumarate variants being equal, the effect of 

their varying synthesis routes and morphology on cellular tolerance and potential cytotoxicity 

was investigated. In these experiments human cervix carcinoma HeLa cells were incubated 

with aqueous dispersions of each of the particle variants at different doses. After 24 h the 

metabolic activity was determined by MTT assay in comparison to buffer treated control cells. 

As shown in Figure 4.7 all iron(III) fumarate variants exhibited similar behavior and did not 

mediate distinct effects on cell viability (metabolic activity >80%) over a concentration range 
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from 10 to 100 µg/mL. Notably, the iron(III) fumarate variants synthesized in DMF did exhibit 

similar toxicity compared to the variants synthesized in water. 

4.6 Conclusion 

At first glance, iron(III) fumarate particles seem to fulfill the strict requirements towards nano- 

and microparticles that can be used in biomedicine. However, this system features a great 

morphological and structural variety (Table 4.1) whose effect on biomedical functionality and 

biocompatibility is insufficiently explored. In this work, the influence of different reaction 

methods and parameters on the surfactant-free generation of iron(III) fumarate has therefore 

been examined and the resulting particles have been characterized with a combination of X-

ray diffraction, nitrogen sorption, thermogravimetry, spectroscopy, electron microscopy, MRI 

and biological assays.  

Figure 4.7. MTT assay of iron(III) fumarate particles on HeLa cells 
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Synthesis-optimization in water and DMF was performed with 4 different approaches that are 

based on RT precipitation and solvothermal, microwave and microfluidic heating while 

considering reaction times, temperatures, and reactant concentrations. While the microfluidic 

approach has addressed the fundamental challenges of controlled heat distribution and 

precise reaction times, solvothermal and microwave-based techniques were overall more 

feasible for upscaling. In the synthesis approaches using water as solvent, the synthesis of 

iron(III) fumarate turned out to be a two-step process consisting initially of the formation of 

spherical iron(III) fumarate nanoparticles followed by the crystallization of needles. For 

iron(III) fumarate growth in DMF, conventional heating in an oven and in a microfluidic reactor 

yielded micrometer sized particles. For the synthesis of dipyramidal nanoparticles, microwave 

synthesis turned out to be the most efficient technique as we were able to produce 

homogeneous particles in large quantities in a fast and experimentally easy way. Overall this 

optimization resulted in 4 variants of iron(III) fumarate that were chosen for further 

characterization due to their distinct morphology, monodispersity and upscalability while 

spanning a particle size range from nano- to microparticles.  

Although all four materials are iron(III) fumarate based on their chemical composition, they 

differ in their porosity and functionality. All particle types crystallize in the MOF structure MIL-

88A. The extension of the crystalline domains in the smallest nanoparticles is however limited 

to a few nanometers. In-situ X-ray diffraction confirmed the typical breathing behavior of MIL-

88A for all higher crystalline iron(III) fumarate variants. Lattice parameters and cell volume of 

the crystal structure were changed up to 12% via solvent exchange. This behavior is favorable 

for drug delivery as in the future it may enable gated trapping of biologically active molecules. 

Regardless of the synthesis method, all iron(III) fumarate variants were shown to be non-toxic 

even at high concentrations and to exhibit cell association. Iron(III) fumarate additionally 

features intrinsic functionality in form of paramagnetic iron(III) centers, rendering it suitable 

for MRI experiments. In these experiments the importance of optimization of particle size 

becomes apparent: by reducing the particle size of the more highly crystalline iron(III) 

fumarate variants r2 relaxivities have been doubled or in case of r1 relaxivities even have been 

quadrupled.  

Overall, we have demonstrated the influence of morphological and structural optimization of 

nano and microparticles with the example of iron(III) fumarate. Synthesis and characterization 
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of the resulting four particle variants were conducted with special emphasis regarding the 

field of biomedicine where high standards on monodispersity and biocompatibiltiy are 

required. Our study demonstrates the importance of precise synthesis control for improving 

the performance of such materials and ultimately enabling their clinical use. 

References 

1 Giner-Casares, J. J., Henriksen-Lacey, M., Coronado-Puchau, M. & Liz-Marzán, L. M. Inorganic 
nanoparticles for biomedicine: where materials scientists meet medical research. Mater. 
Today 19, 19-28, doi:10.1016/j.mattod.2015.07.004 (2016). 

2 Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering 
biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13, 655-672, 
doi:10.1038/nrd4363 (2014). 

3 Dawidczyk, C. M. et al. State-of-the-art in design rules for drug delivery platforms: lessons 
learned from FDA-approved nanomedicines. J Control Release 187, 133-144, 
doi:10.1016/j.jconrel.2014.05.036 (2014). 

4 Yun, Y. H., Lee, B. K. & Park, K. Controlled Drug Delivery: Historical perspective for the next 
generation. J Control Release 219, 2-7, doi:10.1016/j.jconrel.2015.10.005 (2015). 

5 Lammers, T., Kiessling, F., Hennink, W. E. & Storm, G. Drug targeting to tumors: principles, 
pitfalls and (pre-) clinical progress. J Control Release 161, 175-187, 
doi:10.1016/j.jconrel.2011.09.063 (2012). 

6 Faria, M. et al. Minimum information reporting in bio-nano experimental literature. Nat 
Nanotechnol 13, 777-785, doi:10.1038/s41565-018-0246-4 (2018). 

7 Hare, J. I. et al. Challenges and strategies in anti-cancer nanomedicine development: An 
industry perspective. Adv Drug Deliv Rev 108, 25-38, doi:10.1016/j.addr.2016.04.025 (2017). 

8 Krug, H. F. Nanosafety research--are we on the right track? Angew. Chem. Int. Ed. Engl. 53, 
12304-12319, doi:10.1002/anie.201403367 (2014). 

9 Freund, R., Lachelt, U., Gruber, T., Ruhle, B. & Wuttke, S. Multifunctional Efficiency: Extending 
the Concept of Atom Economy to Functional Nanomaterials. ACS Nano 12, 2094-2105, 
doi:10.1021/acsnano.8b00932 (2018). 

10 Modena, M. M., Ruhle, B., Burg, T. P. & Wuttke, S. Nanoparticle Characterization: What to 
Measure? Adv. Mater., e1901556, doi:10.1002/adma.201901556 (2019). 

11 Raliya, R., Singh Chadha, T., Haddad, K. & Biswas, P. Perspective on Nanoparticle Technology 
for Biomedical Use. Current Pharmaceutical Design 22, 2481-2490, 
doi:10.2174/1381612822666160307151409 (2016). 

12 Pelaz, B. et al. Diverse Applications of Nanomedicine. ACS Nano 11, 2313-2381, 
doi:10.1021/acsnano.6b06040 (2017). 

13 Tibbitt, M. W., Dahlman, J. E. & Langer, R. Emerging Frontiers in Drug Delivery. J. Am. Chem. 
Soc. 138, 704-717, doi:10.1021/jacs.5b09974 (2016). 

14 Surble, S., Serre, C., Mellot-Draznieks, C., Millange, F. & Ferey, G. A new isoreticular class of 
metal-organic-frameworks with the MIL-88 topology. Chem Commun (Camb), 284-286, 
doi:10.1039/b512169h (2006). 



The Need for Material Optimization of Nanoparticles in Biomedicine: The Example of Iron(III) fumarate 

119 

 

15 Mellot-Draznieks, C. Role of computer simulations in structure prediction and structure 
determination: from molecular compounds to hybrid frameworks. J. Mater. Chem. 17, 4348, 
doi:10.1039/b702516p (2007). 

16 Serre, C. et al. Role of solvent-host interactions that lead to very large swelling of hybrid 
frameworks. Science 315, 1828-1831, doi:10.1126/science.1137975 (2007). 

17 Mellot-Draznieks, C., Serre, C., Surble, S., Audebrand, N. & Ferey, G. Very large swelling in 
hybrid frameworks: a combined computational and powder diffraction study. J. Am. Chem. 
Soc. 127, 16273-16278, doi:10.1021/ja054900x (2005). 

18 Serre, C., Surble, S., Mellot-Draznieks, C., Filinchuk, Y. & Ferey, G. Evidence of flexibility in the 
nanoporous iron(iii) carboxylate MIL-89. Dalton Trans, 5462-5464, doi:10.1039/b805408h 
(2008). 

19 McKinlay, A. C. et al. Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal–Organic 
Frameworks. Chem. Mater. 25, 1592-1599, doi:10.1021/cm304037x (2013). 

20 Zhu, W. et al. Versatile Surface Functionalization of Metal-Organic Frameworks through Direct 
Metal Coordination with a Phenolic Lipid Enables Diverse Applications. Adv. Funct. Mater. 28, 
1705274, doi:10.1002/adfm.201705274 (2018). 

21 Roder, R. et al. Multifunctional Nanoparticles by Coordinative Self-Assembly of His-Tagged 
Units with Metal-Organic Frameworks. J. Am. Chem. Soc. 139, 2359-2368, 
doi:10.1021/jacs.6b11934 (2017). 

22 Mejia-Ariza, R. et al. DNA Detection by Flow Cytometry using PNA-Modified Metal-Organic 
Framework Particles. Chemistry 23, 4180-4186, doi:10.1002/chem.201605803 (2017). 

23 Horcajada, P. et al. Porous metal-organic-framework nanoscale carriers as a potential platform 
for drug delivery and imaging. Nat Mater 9, 172-178, doi:10.1038/nmat2608 (2010). 

24 Shang, W. et al. Core-Shell Gold Nanorod@Metal-Organic Framework Nanoprobes for 
Multimodality Diagnosis of Glioma. Adv. Mater. 29, doi:10.1002/adma.201604381 (2017). 

25 Illes, B. et al. Exosome-Coated Metal–Organic Framework Nanoparticles: An Efficient Drug 
Delivery Platform. Chem. Mater. 29, 8042-8046, doi:10.1021/acs.chemmater.7b02358 (2017). 

26 Illes, B., Wuttke, S. & Engelke, H. Liposome-Coated Iron Fumarate Metal-Organic Framework 
Nanoparticles for Combination Therapy. Nanomaterials (Basel) 7, doi:10.3390/nano7110351 
(2017). 

27 Mejia-Ariza, R. & Huskens, J. The effect of PEG length on the size and guest uptake of PEG-
capped MIL-88A particles. Journal of Materials Chemistry B 4, 1108-1115, 
doi:10.1039/c5tb01949d (2016). 

28 Jeong, G.-Y. et al. Bioactive MIL-88A Framework Hollow Spheres via Interfacial Reaction In-
Droplet Microfluidics for Enzyme and Nanoparticle Encapsulation. Chem. Mater. 27, 7903-
7909, doi:10.1021/acs.chemmater.5b02847 (2015). 

29 Gao, C., Zhu, H., Chen, J. & Qiu, H. Facile synthesis of enzyme functional metal-organic 
framework for colorimetric detecting H 2 O 2 and ascorbic acid. Chin. Chem. Lett. 28, 1006-
1012, doi:10.1016/j.cclet.2017.02.011 (2017). 

30 Guan, Z.-Y., Wang, Y., Ma, Y.-W., Wan, J.-Q. & Wang, J.-M. Influence of Preparation Conditions 
of MIL-88A on Catalytic Degradation of Orange G and Dibutyl Phthalate. doi:10.2991/icsd-
17.2017.3 (2017). 



The Need for Material Optimization of Nanoparticles in Biomedicine: The Example of Iron(III) fumarate 

120 

 

31 Xu, W. T. et al. Metal-organic frameworks MIL-88A hexagonal microrods as a new 
photocatalyst for efficient decolorization of methylene blue dye. Dalton Trans 43, 3792-3798, 
doi:10.1039/c3dt52574k (2014). 

32 Wang, J. et al. Metal–organic frameworks MIL-88A with suitable synthesis conditions and 
optimal dosage for effective catalytic degradation of Orange G through persulfate activation. 
RSC Advances 6, 112502-112511, doi:10.1039/c6ra24429g (2016). 

33 Zhang, Y., Zhou, J., Chen, X., Wang, L. & Cai, W. Coupling of heterogeneous advanced oxidation 
processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-
based MOFs: Synergistic effect and degradation pathway. Chem. Eng. J. 369, 745-757, 
doi:10.1016/j.cej.2019.03.108 (2019). 

34 Liu, N. et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced 
visible light-driven photodegradation of RhB. Applied Catalysis B: Environmental 221, 119-128, 
doi:10.1016/j.apcatb.2017.09.020 (2018). 

35 Shao, Z. et al. Fabrication of MIL-88A/g-C3N4 direct Z-scheme heterojunction with enhanced 
visible-light photocatalytic activity. Sep. Purif. Technol. 220, 16-24, 
doi:10.1016/j.seppur.2019.03.040 (2019). 

36 Park, S.-K., Kim, J. K. & Kang, Y. C. Electrochemical properties of uniquely structured Fe2O3 and 
FeSe2/graphitic-carbon microrods synthesized by applying a metal-organic framework. Chem. 
Eng. J. 334, 2440-2449, doi:10.1016/j.cej.2017.12.014 (2018). 

37 Li, Y., Zhou, Y. X., Ma, X. & Jiang, H. L. A metal-organic framework-templated synthesis of 
gamma-Fe2O3 nanoparticles encapsulated in porous carbon for efficient and chemoselective 
hydrogenation of nitro compounds. Chem Commun (Camb) 52, 4199-4202, 
doi:10.1039/c6cc00011h (2016). 

38 Dong, Z., Le, X., Liu, Y., Dong, C. & Ma, J. Metal organic framework derived magnetic porous 
carbon composite supported gold and palladium nanoparticles as highly efficient and 
recyclable catalysts for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. 
J. Mater. Chem. A 2, 18775-18785, doi:10.1039/c4ta04010d (2014). 

39 Wang, L. et al. The MIL-88A-Derived Fe3O4-Carbon Hierarchical Nanocomposites for 
Electrochemical Sensing. Sci Rep 5, 14341, doi:10.1038/srep14341 (2015). 

40 Wang, Y. et al. Controlled pyrolysis of MIL-88A to Fe2O3@C nanocomposites with varied 
morphologies and phases for advanced lithium storage. Journal of Materials Chemistry A 5, 
25562-25573, doi:10.1039/c7ta08314a (2017). 

41 Wang, Z. et al. Fe2O3@C core@shell nanotubes: Porous Fe2O3 nanotubes derived from MIL-
88A as cores and carbon as shells for high power lithium ion batteries. J. Alloys Compd. 769, 
969-976, doi:10.1016/j.jallcom.2018.08.081 (2018). 

42 Andrew Lin, K.-Y. & Hsu, F.-K. Magnetic iron/carbon nanorods derived from a metal organic 
framework as an efficient heterogeneous catalyst for the chemical oxidation process in water. 
RSC Advances 5, 50790-50800, doi:10.1039/c5ra06043e (2015). 

43 Hu, X. et al. Low-temperature pseudomorphic transformation of polyhedral MIL-88A to lithium 
ferrite (LiFe3O5) in aqueous LiOH medium toward high Li storage. Nanoscale 11, 11892-11901, 
doi:10.1039/c9nr03006a (2019). 

44 Ke, F. et al. Porous metal–organic frameworks adsorbents as a potential platform for 
defluoridation of water. J. Porous Mater. 23, 1065-1073, doi:10.1007/s10934-016-0164-5 
(2016). 



The Need for Material Optimization of Nanoparticles in Biomedicine: The Example of Iron(III) fumarate 

121 

 

45 Ramsahye, N. A. et al. Impact of the Flexible Character of MIL-88 Iron(III) Dicarboxylates on the 
Adsorption of n-Alkanes. Chem. Mater. 25, 479-488, doi:10.1021/cm303830b (2013). 

46 Amaro-Gahete, J. et al. Fast ultrasound-assisted synthesis of highly crystalline MIL-88A 
particles and their application as ethylene adsorbents. Ultrason. Sonochem. 50, 59-66, 
doi:10.1016/j.ultsonch.2018.08.027 (2019). 

47 Gomez, D. A. & Sastre, G. From microscopic insights of H2 adsorption to uptake estimations in 
MOFs. Phys Chem Chem Phys 13, 16558-16568, doi:10.1039/c1cp21865d (2011). 

48 Chalati, T., Horcajada, P., Gref, R., Couvreur, P. & Serre, C. Optimisation of the synthesis of 
MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem. 21, 2220-
2227, doi:10.1039/c0jm03563g (2011). 

49 Bagherzadeh, E., Zebarjad, S. M., Madaah Hosseini, H. R. & Chagnon, P. Preparation, 
optimization and evolution of the kinetic mechanism of an Fe-MIL-88A metal–organic 
framework. CrystEngComm 21, 544-553, doi:10.1039/c8ce01876f (2019). 

50 Bagherzadeh, E., Zebarjad, S. M. & Hosseini, H. R. M. Morphology Modification of the Iron 
Fumarate MIL-88A Metal-Organic Framework Using Formic Acid and Acetic Acid as 
Modulators. Eur. J. Inorg. Chem. 2018, 1909-1915, doi:10.1002/ejic.201800056 (2018). 

51 Medvedev, P. V. et al. Analysis of the Local Atomic Structure of the MIL-88а Metal–Organic 
Framework by Computer Simulation Using XANES Data. JETP Letters 108, 318-325, 
doi:10.1134/s0021364018170083 (2018). 

52 Diego, A. G. & Sastre, G. From microscopic insights of H2 adsorption to uptake estimations in 
MOFs. Phys. Chem. Cheml. Phys. 13, 16558-16568, doi:10.1039/c1p21865d (2011). 

53 Tsuruoka, T. et al. Nanoporous nanorods fabricated by coordination modulation and oriented 
attachment growth. Angew. Chem. Int. Ed. Engl. 48, 4739-4743, doi:10.1002/anie.200901177 
(2009). 

54 McGuire, C. V. & Forgan, R. S. The surface chemistry of metal-organic frameworks. Chem 
Commun (Camb) 51, 5199-5217, doi:10.1039/c4cc04458d (2015). 

55 Paseta, L. et al. Accelerating the controlled synthesis of metal-organic frameworks by a 
microfluidic approach: a nanoliter continuous reactor. ACS Appl Mater Interfaces 5, 9405-
9410, doi:10.1021/am4029872 (2013). 

56 Jambovane, S. R. et al. Continuous, One-pot Synthesis and Post-Synthetic Modification of 
NanoMOFs Using Droplet Nanoreactors. Sci Rep 6, 36657, doi:10.1038/srep36657 (2016). 

57 Rubio-Martinez, M. et al. Versatile, high quality and scalable continuous flow production of 
metal-organic frameworks. Sci Rep 4, 5443, doi:10.1038/srep05443 (2014). 

58 Faustini, M. et al. Microfluidic approach toward continuous and ultrafast synthesis of metal-
organic framework crystals and hetero structures in confined microdroplets. J. Am. Chem. Soc. 
135, 14619-14626, doi:10.1021/ja4039642 (2013). 

59 Pinna, A. et al. A MOF-based carrier for in situ dopamine delivery. RSC Advances 8, 25664-
25672, doi:10.1039/c8ra04969f (2018). 

60 Soper, A. K. GudrunN and GudrunX: Programs for Correcting Raw Neutron and X-ray Diffraction 
Data to Differential Scattering Cross Section. Report No. RAL-TR-2011-013, (Rutherford 
Appleton Laboratory Technical Report, Oxfordshire, 2011). 

61 Bennett, T. D. et al. Connecting defects and amorphization in UiO-66 and MIL-140 metal–
organic frameworks: a combined experimental and computational study. PCCP 18, 2192-2201, 
doi:10.1039/c5cp06798g (2016). 



The Need for Material Optimization of Nanoparticles in Biomedicine: The Example of Iron(III) fumarate 

122 

 

62 Zhou, C. et al. Metal-organic framework glasses with permanent accessible porosity. Nat 
Commun 9, 5042, doi:10.1038/s41467-018-07532-z (2018). 

63 Farrow, C. L. et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in 
crystals. J Phys Condens Matter 19, 335219, doi:10.1088/0953-8984/19/33/335219 (2007). 

64 Horcajada, P. et al. Metal-organic frameworks in biomedicine. Chem. Rev. 112, 1232-1268, 
doi:10.1021/cr200256v (2012). 

65 Peller, M., Böll, K., Zimpel, A. & Wuttke, S. Metal–organic framework nanoparticles for 
magnetic resonance imaging. Inorganic Chemistry Frontiers 5, 1760-1779, 
doi:10.1039/c8qi00149a (2018). 

66 Vuong, Q. L., Gillis, P. & Gossuin, Y. Monte Carlo simulation and theory of proton NMR 
transverse relaxation induced by aggregation of magnetic particles used as MRI contrast 
agents. J Magn Reson 212, 139-148, doi:10.1016/j.jmr.2011.06.024 (2011). 

67 Vuong, Q. L., Berret, J. F., Fresnais, J., Gossuin, Y. & Sandre, O. A universal scaling law to predict 
the efficiency of magnetic nanoparticles as MRI T(2)-contrast agents. Adv Healthc Mater 1, 
502-512, doi:10.1002/adhm.201200078 (2012). 

68 Merbach, A., Helm, L. & Tóth, É. The Chemistry of Contrast Agents in Medical Magnetic 
Resonance Imaging.  (John Wiley & Sons, Ltd, 2013). 

69 Zhou, Z., Yang, L., Gao, J. & Chen, X. Structure-Relaxivity Relationships of Magnetic 
Nanoparticles for Magnetic Resonance Imaging. Adv. Mater. 31, 1804567, 
doi:10.1002/adma.201804567 (2019). 

70 Rohrer, M., Bauer, H., Mintorovitch, J., Requard, M. & Weinmann, H.-J. Comparison of 
magnetic properties of MRI contrast media solutions at different magnetic field strengths. 
Investigative Radiology 40, 715-724 (2005). 

71 Wuttke, S. et al. MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. 
Chem Commun (Camb) 51, 15752-15755, doi:10.1039/c5cc06767g (2015). 

72 Cui, J. et al. A Framework to Account for Sedimentation and Diffusion in Particle-Cell 
Interactions. Langmuir 32, 12394-12402, doi:10.1021/acs.langmuir.6b01634 (2016). 

 



The Need for Material Optimization of Nanoparticles in Biomedicine: The Example of Iron(III) fumarate 

123 

 

4.7 Supplementary Information 

4.7.1 Methods and Characterization 

Powder X-ray diffraction 

X-ray diffraction experiments were performed on a STOE Transmissions-Diffraktometer 

System STADI P with Ge(111) primary monochromator using CuKα1-radiation. The device 

operates in a transmission setup derived from Debye-Scherrer geometry were dried sample is 

fixated between two polymer foils. Analysis was conducted with the included software 

package WinXPOW RawDat v3.0.2.5 and WinXPOW PowDat_n v3.0.2.7. Lattice parameter 

refinement was done in UnitCell using 11-19 reflections per sample. Peak positions were 

corrected based on an internal silicon standard. All diffraction patterns depict an additional 

low intensity reflection at 24.12 – 24.14 ° that cannot be explained completely by the 

published structure of MIL-88A. This reflection could be indexed (113), which should not be 

present in the space group P-62c. It might be caused by an impurity, which formed during the 

synthesis as the dried samples have proven stable in air over the course of the measurement. 

Transmission electron microscopy 

TEM samples were prepared by drying an ethanolic dispersion of the X-ray amorphous 

spherical nanoparticles on a carbon-coated copper grid. Electron microscopy and electron 

diffraction was performed with a Titan Themis (FEI) operated at 300 kV. 

Scanning electron microscopy 

Sample preparation was performed by drying ethanolic dispersions of the respective samples 

on a carbon film fixed on an aluminum sample holder under air. After subsequent carbon 

sputtering the samples were measured using a Helios G3 UC (FEI) scanning electron 

microscope. If not stated otherwise the microscope was operated at 3 kV using a trough-lens 

detector. To visualize particles below the sample surface the setup was operated at 15 kV 

using a mirror detector which is also mentioned in the respective pictures. 

Pair distribution function analysis 

Data were obtained at the I15-1 beamline, Diamond Light Source, UK (λ = 0.161669 Å, 72 keV). 

All samples were vacuum dried for 2 h at room temperature and finely ground before packing 

into sealed 1.17 mm (inner) diameter borosilicate capillaries. Data were taken of the 

background, empty capillary, and of all four samples to a Qmax of 24 Å-1. A 50% beam absorber 
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was required for the acquisition of the data for the dipyramidal nanoparticles and dipyramidal 

microparticles samples to prevent oversaturation of the detector. Normalised total scattering 

data were corrected individually using the GudrunX program1,2 to obtain PDFs of each sample 

(Figure S24). Predicted G(r) patterns of the samples were generated using crystallographic 

information files available online3 and the PDFGUI software4. 

Nitrogen sorption 

Nitrogen sorption experiments were performed on dried powders (9-56 mg) of the respective 

samples. Prior to the measurements the samples were outgassed at 120 °C in vacuum for 24 h. 

All nitrogen sorption experiments were conducted on an Autosorb-1 (Quantachrome) using 

the software ASiQwin v3.0 for data evaluation. The linearized form of the BET equation was 

used to calculate BET surface areas. For the calculation of the pore size distribution of the 

microparticles a QSDFT adsorption based model was used assuming cylindrical pores. Due to 

the mesotexturing of the spherical nanoparticle sample the pore size distribution of these 

particles was calculated with a QSDFT adsorption based model assuming cylindrical and slit 

pores.  

Magnet resonance imaging 

MRI experiments were performed either on dispersions of larger iron(III) fumarate variants 

while they were embedded in 0.2 wt% Xanthan Gel (2 mL) or of the spherical nanoparticles 

when suspended in water (2 mL). The Xanthan gels were prepared by generating aqueous 

dispersion of the respective particle concentrations and subsequent addition of dry Xanthan. 

After vortexing the particle dispersion were sonicated for 20 min followed by additional 

pipetting and repeated sonication for 30 min.  

In-situ X-ray diffraction 

In-situ X-ray diffraction experiments were performed on dispersions the samples with sharp 

reflections in Figure 4.3. The experiments were performed on a STOE Transmissions-

Diffraktometer System STADI P with Ge(111) primary monochromator using CuKα1-radiation 

operating in transmission geometry. The particle dispersions were placed in sealed glass 

capillary tubes. Analysis was conducted with the included software package 

WinXPOW RawDat v3.0.2.5, WinXPOW PowDat_n v3.0.2.7 and WinXPOW Index v3.0.2.1. For 

refinement of the lattice parameters 5-11 reflections were considered. Additionally the X-ray 
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diffraction pattern of an empty glass capillary was recorded (Figure S4.38). The capillary 

corresponds to a reflection at the angle of 8.495 ° which can be visible in a few of the in-situ 

diffraction patterns. 

Inductively coupled optical emission spectroscopy 

ICP-OES measurements were performed in on dried samples that were digested using 10% 

HNO3 (Aristar VWR). The setup consisted of an ICP AES Vista RL with a CCD simultaneous ICP 

AES detector (Agilent). Measurements were performed with Argon plasma at 1.2 kW in 3 x 8 s 

periods with 45 s stabilization time. Wavelengths used were at 238 nm and 259 nm. 

Thermogravimetric Analysis 

For gravimetric measurements all dried samples of the respective iron(III) fumarate variants 

(Figure S4.29) were measured on a TASC 414/4 (Netzsch) under synthetic air at a flow rate of 

25 mL/min. The experiments were performed with a heating rate of 10 °C/min up to 900 °C. 

The resulting data was evaluated using the software Proteus v4.3. 

Cell culture 

HeLa cells (ATCC CCL-2) were grown in RPMI-1640 medium (L-alanyl-glutamine and sodium 

bicarbonate) supplemented with 10 % FBS, 100 U/mL penicillin, 100 μg/mL streptomycin. The 

cells were cultured in ventilated flasks in the cell incubator at 37 °C and 5 % CO2 in a humidified 

atmosphere. Cells were passaged at approx. 80 % confluency.  
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4.7.2  Chemicals 

Ethanol (VWR, 99.9%), Iron(III) chloride hexahydrate (Grüssing, 99%), Fumaric acid (Sigma, 

≥99.0%), N,N Dimethylformamide (DMF, VWR, 99.9%), Xanthan gum from Xanthoma 

campestris (Sigma). 

4.7.3 Synthesis of the 4 different iron(III) fumarate variants 

In this section the synthesis protocols used to generate the four iron(III) fumarate variants 

that were later characterized for functionality and biocompatibility are shown. 

Spherical Nanoparticles 

A solution of FeCl3 · 6 H2O (2168 mg, 8.02 mmol) in water (40 mL, Merck, Milli-Q) was 

prepared. Fumaric acid (970 mg, 8.36 mmol) was added under stirring. After incubation at 

room temperature (2 min) the reaction was stopped and washed three times by centrifuging 

(7197 rcf, 20 min) and redispersing in ethanol. 

Needle-shaped Microparticles 

A reaction mixture of fumaric acid (485 mg, 4.18 mmol) and FeCl3 · 6 H2O (1084 mg, 4.01 mmol) 

in water (20 mL, Merck, Milli-Q) was prepared. The reaction mixture was placed in a 50 mL 

Schott glass vial and put into an oven for 24 h at 80 °C. The resulting particles were washed 

three times by centrifuging (7197 rcf, 20 min) and redispersing in ethanol. 

Dipyramidal Nanoparticles 

Fumaric acid (485 mg, 4.18 mmol) and FeCl3 · 6 H2O (1084 mg, 4.01 mmol) were dissolved in 

DMF (20 mL). This reaction mixture was placed in a 80 mL Teflon tubes and put in a microwave 

reactor (Synthos 3000, Anton Paar) along with a reference solution containing 

FeCl3 · 6 H2O (1084 mg, 4.01 mmol) in DMF (20 mL) and two additional vessels containing tap 

water (20 mL). A reaction program consisting of first heating the sample for 30 s up to 120 °C 

and subsequent holding of this temperature for 5 min was used. At the end of this program 

the reaction was quenched by pouring the hot reaction mixture in DMF (room temperature, 

50 mL). The resulting product was washed with DMF (40 mL) washed three times by 

centrifuging (7197 rcf, 20 min) and redispersing in DMF. 

Dipyramidal Microparticles 

A stock solution of fumaric acid (194 mg, 1.67 mmol) and FeCl3 · 6 H2O (433 mg, 1.604 mmol) 

in DMF (8 mL) was prepared and divided equally into 8 1.5 mL Eppendorf tubes. The reaction 
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mixtures were placed in an oven for 30 min at 120 °C. The resulting particles were washed 

three times by centrifuging (16873 rcf, 10 min) and redispersing in DMF. 

4.7.4 Optimization of the aqueous and DMF based iron(III) fumarate synthesis 

In this section reaction parameters for the morphological optimization of iron(III) fumarate in 

water and DMF are shown.  

Microfluidic synthesis of iron(III) fumarate in DMF 

This microfluidic approach was based on a continuous flow reactor (Figure S4.12) heating a 

premixed a solution of fumaric acid (485 mg, 4.18 mmol) and FeCl3 · 6 H2O (1084 mg, 

4.01 mmol) in DMF (20 mL). Using a syringe pump, the solution was then pressed through a 

microfluidic channel consisting of a Teflon tube (120 cm, 1/16” outer diameter). The larger 

segment of this tubing (1 m) tubing was immersed in an oil bath (120 °C) in order to heat the 

traversing reaction solution. By varying the speed of the syringe pumps, different incubation 

times (1 min, 2min, 4 min, 5 min, 8 min, 16 min, and 30 min) for the particle synthesis were 

preset. The respective fractions (Figure S4.13) were collected in an Eppendorf Tube and 

washed three times by centrifuging (16873 rcf, 10 min) and redispersing in DMF. 

Microfluidic synthesis of iron(III) fumarate in water 

This microfluidic setup was based on the continuous flow reactor shown in Figure S4.12 (left). 

A solution of fumaric acid (485 mg, 4.18 mmol) and FeCl3 · 6 H2O (1084 mg, 4.01 mmol) in 

DMF (20 mL) was incubated at room temperature for three weeks. No particle formation could 

be monitored. Using two syringe pumps precursor aqueous (Merck, Milli-Q) solutions of 

fumaric acid (40 mg, 0.34 mmol, 20 mL) and FeCl3 · 6 H2O (90 mg, 0.33 mmol, 20 mL) were 

then pressed through a microfluidic channel consisting of a Teflon tube (15 cm, 1/16” Outer 

diameter) into a T-junction (Elveflow) serving as a mixing zone. Following this junction the 

reaction mixture traversed a heating zone (1 m) in which the Teflon tube was immersed in a 

water bath (80 °C). By varying the speed of the syringe pumps, different incubation times 

(1 min, 2 min, 3 min, and 10 min) for the particles were preset. The respective fractions (Figure 

S4.20) were collected in an Eppendorf Tube and washed three times by centrifuging 

(16873 rcf, 10 min) and redispersing in ethanol.  
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Solvothermal synthesis of iron(III) fumarate in DMF 

A stock solution of fumaric acid (485 mg, 4.18 mmol) and FeCl3 · 6 H2O (1084 mg, 4.01 mmol) 

in DMF (20 mL) was prepared. For low concentration experiments this sock solution was 

further diluted with DMF in a 1:10 ratio. To test the temperature necessary for iron(III) 

fumarate formation under these conditions small fractions of the concentrated stock solution 

(1.0 mL) were put into 1.5 mL Eppendorf tubes and incubated in an Thermoshaker (TS-100, 

PeqLab) at RT, 30 °C, 40 °C 50 °C and 60 °C and heated for 18 h under monitoring. Due to 

slower particle formation in case of the lower concentrated solution this process was repeated 

at 70 °C, 80 °C, 100 °C and 120 °C in an oven. In these experiments precipitation of iron(III) 

fumarate could only be observed for heating at temperatures above 100 °C (Figure S4.11). 

Additional optimization was done at 120 °C using the concentrated iron(III) fumarate stock 

solution in DMF in volumes of 1 mL. At specific times (1 min, 2 min, 5 min, 10 min, 20 min, 

30 min, 60 min, 6 h and 24 h) aliquots were removed. Formation of iron(III) fumarate could be 

observed from 30 min onwards. In case of product formation (Figure S4.9) the solution 

washed three times by centrifuging and redispersing in DMF. 

Solvothermal synthesis of iron(III) fumarate in water 

A reaction mixture of fumaric acid (485 mg, 4.18 mmol) and FeCl3 · 6 H2O (1084 mg, 4.01 mmol) 

in water (20 mL, Merck, Milli-Q) was produced. Aliquots of the dispersion (1.0 mL) were put 

into 1.5 mL Eppendorf tubes and incubated at 80 °C in a thermoshaker (TS-100, PeqLab). At 

specific times (1 min, 5 min, 20 min, 24 h and 7 d) these samples were removed from the 

thermoshaker. The samples (Figure S4.19) were washed three times by centrifuging and 

redispersing in ethanol.  

Lower concentration experiments were performed by dissolving fumaric acid (16 mg, 

138 µmol) and FeCl3 · 6 H2O (36.6 mg, 136 µmol) each in water (10 mL, Merck, Milli-Q). These 

solutions were mixed and the resulting reaction mixture heated in 1.5 mL Eppendorf tubes 

(80 °C, 1.0 mL reaction volume) using a thermoshaker (TS-100, PeqLab). At specific times 

(5 min and 20 min) heating was stopped and the samples (Figure S4.21) were washed three 

times by centrifuging (16873 rcf, 10 min) and redispersing in ethanol. 
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Microwave synthesis of iron(III) fumarate in DMF 

Fumaric acid (485 mg, 4.18 mmol) and FeCl3 · 6 H2O (1084 mg, 4.01 mmol) were dissolved in 

DMF (20 mL) under stirring. The clear yellow solution was placed in 80 mL Teflon tubes and 

put in a microwave reactor (Synthos 3000, Anton Paar) along with a reference solution 

containing FeCl3 · 6 H2O (1084 mg, 4.01 mmol) in DMF (20 mL) and two additional vessels 

containing tap water (20 mL). The microwave programs shown in Table S4.6 were applied. 

After finishing the program, the crystal growth was stopped by pouring the hot reaction 

solution into DMF (RT, 50 mL). The product (Figure S4.14) was washed three times by 

centrifuging (7197 rcf, 20 min) and redispersing in DMF.  

Table S4.6. Microwave parameters of the synthesis of iron(III) fumarate in DMF. 

Heating to 120 °C Incubation at 120 °C 

30 s 2 min 

30 s 3 min 

30 s 5 min 

 

Microwave synthesis of iron(III) fumarate in water 

Fumaric acid (485 mg, 4.18 mmol) and FeCl3 · 6 H2O (1084 mg, 4.01 mmol) were dissolved in 

Millipore water (20 mL, Merck, Milli-Q). The orange dispersion was placed in a Teflon tube 

(80 mL) and put in a microwave reactor (Synthos 3000, Anton Paar) along with a reference 

solution containing FeCl3 · 6 H2O (1084 mg, 4.01 mmol) in water (20 mL, Merck, Milli-Q) and 

two additional vessels containing tap water (20 mL). The microwave programs shown in Table 

S4.7 were applied. After finishing the program, reaction was quenched by pouring the hot 

reaction solution into water (RT, 50 mL). The product (Figure S4.18) was washed three times 

by centrifuging (7197 rcf, 20 min) and redispersing in ethanol.  
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Table S4.7. Microwave parameters of the synthesis of iron(III) fumarate in water. 

Heating to 80 °C Incubation at 80 °C 

30 s 1 min 

30 s 2 min 

30 s 5 min 

 

Room temperature precipitation of iron(III) fumarate in DMF 

A solution of fumaric acid (485 mg, 4.18 mmol) and FeCl3 · 6 H2O (1084 mg, 4.01 mmol) in DMF 

(20 mL) was incubated at room temperature for three weeks. No particle formation could be 

monitored. 

Room temperature precipitation of iron(III) fumarate in water 

A reaction mixture of fumaric acid (485 mg, 4.18 mmol) and FeCl3 · 6 H2O (1084 mg, 4.01 mmol) 

in water (20 mL, Merck, Milli-Q) was incubated at room temperature. Aliquots were taken 

after a certain reaction time (2 min, 2 h, 8 h, 24 h, 4 d and 7 d). The samples (Figure S4.16) 

were washed three times by centrifuging (16873 rcf, 10 min) and redispersing in ethanol.  

A lower concentration experiment was performed by dissolving fumaric acid (16 mg, 

138 µmol) and FeCl3 · 6 H2O (36.66 mg, 136 µmol) each in 10 mL water (Merck, Milli-Q). The 

solutions were unified and the resulting reaction mixture incubated for 7 d at room 

temperature. The final product (Figure S4.22) was washed three times by centrifuging 

(7197 rcf, 20 min) and redispersing in ethanol 

4.7.5 MTT Assay 

One day prior to the experiment HeLa cells were seeded at a density of 5.000 cells per well in 

96-well plates (Corning ® Costar, Sigma-Aldrich, Germany). 24 h after cell seeding, the medium 

was replaced by 80 μL fresh medium. The different iron(III) fumarate particle suspensions 

were diluted in HBG (20 mM HEPES, 5 % glucose w/v, pH 7.4) to 50, 100, 250 and 500 µg/mL 

and 20 µL of the dilutions was added per well. The cells were incubated for 24 hours at 37 °C 

and 5% CO2. 10 μL MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

(5 mg/mL) resulting in a final concentration of 0.5 mg/mL was added to each well. The plates 

were incubated for 1 h at 37 °C. Unreacted dye and medium were removed and the 96-well 
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plates frozen at −80 °C for 60 min. After thawing, 100 μL DMSO was added to each well and 

the plates were incubated for 30 minutes at 37 °C under shaking to dissolve the purple 

formazan product. Absorbance was quantified at 590 nm with a background correction at 

630 nm using a microplate reader (TecanSpectrafluor Plus, Tecan, Switzerland). All treatments 

were performed in quintuplicates. The relative cell viability (%) normalized to HBG treated 

control cells was calculated as ([A] test/[A] control) × 100%. Mean values +/- standard 

deviation are reported. 

4.7.6 Supplementary Figures and Tables 

Figure S4.8. Depiction of the crystal structure of open-pore MIL-88A simulated (Software: 
Diamond v3.0, Crystal Impact) according to data published by Serre.5 Top left: Depiction of the 
crystal structure along the a-axis. Top right: Depiction of the crystal structure along the c-axis. 
Bottom: Simulated diffraction pattern of open-pore MIL-88(A) along with lattice parameters. 

  

a = 13.8711 

Å 
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Figure S4.10. SEM micrographs of iron(III) fumarate microparticles grown solvothermally 
120 °C in DMF with 24 h incubation time. Right: Growth from high-concentration stock 
solution, Left: Growth from low-concentration stock solution. 

  

Figure S4.9. SEM micrographs of iron(III) fumarate microparticles grown in a solvothermally 
at 120 °C in DMF for reaction times of 30 min, 60 min, 6 h and 24 h. 
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Figure S4.11. SEM micrographs of iron(III) fumarate microparticles grown solvothermally from 
a low concentration stock solution at 100 °C and 120 °C in DMF in dependency of reaction 
time. 

 

 

  

Figure S4.12. Left: Schematic of the microfluidic setup used for optimization of iron(III) 
fumarate particles in water: Aqueous precursor solutions of iron(III) chloride (Precursor 1) and 
fumaric acid (Precursor 2) were pressed into a microfluidic tubing (PTFE, Elveflow, OD 1/16”, 
ID 1/32”, length 1.2 m) and mixed in a T-junction. Part of the tubing then traversed a heating 
zone (water bath, 1 m, 80 °C) before being collected in an Eppendorf tube. Right: Schematic 
illustration of the microfluidic setup used for iron(III) fumarate synthesis in DMF. A premixed 
reaction mixture containing fumaric acid and iron(III) chloride was pressed into a microfluidic 
tubing (PTFE, Elveflow, OD 1/16”, ID 1/32”, length 1.2 m) via a syringe pump. Part of this tubing 
(1 m) was traversing a heating zone (oil bath, 120 °C) before being collected in an Eppendorf 
tube. 
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Figure S4.14. SEM micrographs of iron(III) fumarate nanoparticles grown in a microwave 
reactor at 120 °C in DMF in dependency of reaction time. 

Figure S4.13. SEM micrographs of iron(III) fumarate microparticles grown in a microfluidic 
reactor at 120 °C in DMF for reaction times of 30 min and 60 min. 
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Figure S4.15. SEM micrograph of spherical iron(III) fumarate particles precipitated 
immediately after mixing iron(III) chloride and fumaric acid. 
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Figure S4.16. SEM micrographs of iron(III) fumarate nano and microparticles grown at RT in 
water for reaction times of 2 h, 8 h, 24 h and 4 d. On the left and right side the same spot in 
each sample is depicted. The micrographs on the right side were recorded at 15 kV using a 
mirror detector, the micrographs on the left side were recorded at 3 kV using a secondary 
electron detector. 
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Figure S4.17. X-ray diffraction patterns of dried aqueous iron(III) fumarate reaction mixtures 
that were incubated at RT with different reaction times. The reaction was stopped by 
centrifuging and redispersion in ethanol. With time, the samples become increasingly 
crystalline. As reported in literature, these reflections during the aqueous synthesis of the 
MOF do not fully correspond to the final crystal structure of MIL-88A but have similarly been 
reported elsewhere.6,7, 
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Figure S4.18. SEM micrographs of iron(III) fumarate nano and microparticles grown in a 
microwave reactor at 80 °C in water for reaction times of 1 min, 2 min, and 5 min. On the left 
and right side the same spot in each sample is depicted. The micrographs on the right side 
were recorded at 15 kV using a mirror detector, the micrographs on the left side were 
recorded at 3 kV using a secondary electron detector.  
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Figure S4.19. SEM micrographs of iron(III) fumarate nano and microparticles grown 
solvothermally at 80 °C in water for reaction times of 1 min, 5 min, 20 min, 24 h and 7 d. On 
the left and right side the same spot in each sample is depicted. The micrographs on the right 
side were recorded at 15 kV using a mirror detector, the micrographs on the left side were 
recorded at 3 kV using a secondary electron detector. 
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Figure S4.20. SEM micrographs of iron(III) fumarate nano and microparticles grown in a 
microfluidic reactor at 80 °C in water for low reaction times (1-3 min). On the left and right 
side the same spot in each sample is depicted. The micrographs on the right side were 
recorded at 15 kV using a mirror detector, the micrographs on the left side were recorded at 
3 kV using a secondary electron detector. 
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Figure S4.21. SEM micrographs of iron(III) fumarate nano and microparticles grown  
solvothermally at 80 °C in water at low concentration for reaction times of 5 min and 20 min. 
On the left and right side the same spot in each sample is depicted. The micrographs on the 
right side were recorded at 15 kV using a mirror detector, the micrographs on the left side 
were recorded at 3 kV using a secondary electron detector. 

Figure S4.22. SEM micrographs of iron(III) fumarate nano and microparticles grown at RT in 
water for seven days at low concentration. The micrographs on the right side were recorded 
at 15 kV using a mirror detector, the micrographs on the left side were recorded at 3 kV using 
a secondary electron detector. 
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Figure S4.23. Particle size distributions of the four iron(III) fumarate variants determined from 
SEM micrographs in Figure 2. Depending on the iron(III) fumarate variant 60-120 particles 
were measured by hand with the software Imagej v1.52e. Using the software Origin Pro 
v9.1.0., these data were then plotted in histograms and fitted with a Gaussian fit. 
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Figure S4.24. SEM micrographs of iron (III) fumarate particles after 24 h in 20% cell medium. 
Top left (spherical nanoparticles), top right (top right dipyramidal nanoparticles), bottom left 
(dipyramidal microparticles), bottom right (needle-shaped microparticles). 
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Figure S4.25. SEM micrographs of iron(III) fumarate microparticles solvothermally synthesized 
in DMF (top), stored for 6 months in ethanol (middle) and stored for 2 weeks in water 
(bottom). 
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Figure S4.27. Dipyramidal iron(III) fumarate nanoparticles microwave-synthesized in DMF 
(top), stored for 3 months in ethanol (middle) and stored for 1 day in water (bottom). 

Figure S4.26. SEM micrographs of needle-shaped iron(III) fumarate microparticles freshly 
prepared from water (left) and stored for 2 months in ethanol (right). 
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Table S4.8. Analysis data on the thermogravimetric degradation of the iron(III) fumarate 
variants. 

 Spherical 

Nanoparticles 

Needle-shaped 

Microparticles 

Dipyramidal 

Microparticles 

Dipyramidal 

Nanoparticles 

Residual mass 

dried framework 

93.7% 97.2% 92.0% 94.8%  

Onset of 

framework 

degradation 

267.4 °C 273.5 °C 259.2 °C 285.0 °C 

Residual mass 38.5% 40.2% 40.7% 37.2% 

Figure S4.28. SEM micrographs of spherical iron(III) fumarate nanoparticles that were stored 
for 6 months in ethanol. On the left and right side the same spot in each sample is depicted. 
The micrographs on the left side were recorded at 3 kV using a secondary electron detector, 
the micrographs on the right side were recorded at 15 kV using a mirror detector. No 
formation of needle morphology can be seen in this picture showing the stability of the 
spherical phase. 
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Figure S4.29. Left: Degradation curves of the different iron(III) fumarate variants. Right: X-ray 

diffraction pattern of the resulting degradation product. 

 

Table S4.9. The lattice parameters of the X-ray amorphous spherical iron(III) fumarate 
nanoparticles were determined with electron diffraction on the basis on the theoretical fully 
dry-pore (a = 9.78, c = 14.83) and fully open-pore (a = 13.87 , c = 12.66) MIL-88A crystal 
structures published by Serre.5 For the spherical nanoparticle sample, our experimentally 
observed d-values are between these two extreme cases but closer to the open pore 
structure. 

Laue indices 011 020 132 135 257 

Theoretical lattice distances of 

closed-pore MIL-88A[Å] 5 

7.35 4.2 2.93 2.17 1.43 

Theoretical lattice distances of 

open-pore MIL-88A[Å] 5 

8.72 6.01 3.69 2.21 1.51 

Experimental lattice distances 

[Å] 

7.8 4.1 2.92 2.17 1.47 
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Figure S4.30. Simulated electron diffraction patterns of closed pore and open pore MIL-88A 
compared experimental azimuthally integrated and background subtracted Electron 
diffraction pattern of X-ray amorphous iron(III) fumarate nanoparticles. 

 

Figure S4.31. X-ray structure factors S(Q)s of the four samples. 
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Figure S4.32. D(r) of MIL-88A Dipyramidal nanoparticles (upper) and simulated partial PDFs 

of Fe-O (purple), Fe-Fe (red), and Fe-C (blue) atom-atom correlations using PDFGUI and the 

corresponding MIL-88A Open CIF file5 (lower). 

 

 

 

 

 

 

 

 

 

 Figure S4.33. Pair distribution functions D(r) of the four samples. 
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Table S4.10. BET-analysis data of iron(III)-fumarate. 

Sample 
BET surface 

area 

Relative pressure 

range 
c 

Correlation 

coefficient 

Spherical Nanoparticles 446 m² g-1 0.05-0.17 154 0.999 

Dipyramidal Nanoparticles 264 m² g-1 0.15-0.27 43 0.999 

Dipyramidal Microparticles 212 m² g-1 0.04-0.15 428 0.999 

Needle-shaped 

Microparticles 

119 m² g-1 0.002-0.02 1131 0.999 

 

 

  

Figure S4.34. Pore size distribution of the 4 iron(III) fumarate variants as determined with 
nitrogen sorption. 
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Figure S4.35. In-situ X-ray diffraction patterns of dipyramidal iron(III) fumarate microparticles. 

Figure S4.36. In-situ X-ray diffraction patterns of dipyramidal iron(III) fumarate nanoparticles. 
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Figure S4.37. In-situ X-ray diffraction patterns of needle-shaped iron(III) fumarate 
microparticles. 

Figure S4.38. X-ray diffraction data of an empty glass used during in-situ X-ray diffraction 
experiments. 
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Figure S4.39. Determination of the mass-based relaxivities in accordance to Table 4 for the 
respective iron(III) fumarate variants. Experimentally determined inverse relaxation times are 
plotted vs iron(III) fumarate concentration. Relaxivity values can be determined from the slope 
of the linear plot. 
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Figure S4.40. MRI relaxivities of the four iron(III) fumarate particles with different focus. The 
data that are presented as mass-based relaxivities in Table 4 and Figure S4.39 can be 
converted to other relaxivity values for better comparison. For evaluating the relaxivities per 
single particle we were approximating the particle size of the respective iron(III) fumarate 
variants from SEM measurements. In our estimate, we treated the dipyramidal microparticles 
(diameter 1200 ± 200 nm) and the spherical nanoparticles (diameter 50 ± 12 nm) as spheres 
calculating their volume from their particle size distribution (Figure S4.23). The morphology 
of the needle-shaped microparticles was approximated as a cylindrical shape and their particle 
volume calculated from their mean diameter (975 ± 420 nm) and length (10 ± 2 µm). The 
volume of the dipyramidal nanoparticles (length 400 ± 95 nm, diameter 185 ± 30 nm) was 
approximated as a cylinder with 2 cone shaped tips, featuring a ratio of 1/3 : 1/3 : 1/3. With 
these approximations and assuming an open porous MIL-88A structure with a crystallographic 
density of 0.902 g/cm³5,8 the mass based relaxivities were transformed to single particle-based 
relaxivities. Similarly, these values can be transformed into relaxivities that are normalized 
towards single iron(III)-ions in the structure assuming a 29.2 wt% iron in the crystal structure5. 
For better comparison with commercially available MRI contrast coordination complexes 
these values were additionally normalized towards the molar quantity of iron(III) ions. 
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Figure S4.41. To measure the cell association of the respective iron(III) fumarate variants ICP-
OES measurements were performed. For sample preparation HeLa-Cells (500 µL) were 
incubated for 24 h at 37 °C with aqueous solutions of iron(III) fumarate particles (100 µg/mL) 
in a 24 well plate. After this incubation period cells and supernatant were separated. The cells 
were washed twice with phosphate buffered saline (500 µL), these washing solutions were 
then unified with the incubation-supernatant (Samples A). The cells were recovered 
separately by adding 500 mL of aqueous triton solution (1%) with an additional washing step 
afterwards (500 µL H2O) Samples B). To quantify the iron content in the extracellular medium 
and associated with cells (100 %), control samples in which incubation solution and cells were 
not separated were additionally prepared (Samples C). As a background control of 
physiological iron content, cells were treated in the same fashion without addition of iron(III) 
fumarate particles (Cells A-C). This incubation was additionally repeated with using an iron(III) 
chloride solution (29.2 µg/mL) (FeCl3 A-C). All samples labelled with A and B were prepared in 
triplicate. Prior to the measurements the samples were dried in an oven (100 °C, 48 h). The 
residuals were dissolved in HNO3 (10%) and the respective iron content of the solutions 
analyzed with ICP-OES. The measured iron contents can be found in Table S4.11. 
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Table S4.11. Iron Content in cell association experiments determined from ICP-OES 
measurements. 

Sample Iron content (µg/mL) 

Spherical Nanoparticles A 22.63 ± 0.25 

Dipyramidal Microparticles A 10.49 ± 0.24 

Needle-shaped Microparticles A 8.61 ± 0.33 

Dipyramidal Nanoparticles A 20.44 ± 0.49 

FeCl3 A 31.66 ± 0.08 

Spherical Nanoparticles B 4.28 ± 0.18 

Dipyramidal Microparticles B 18.00 ± 0.55 

Needle-shaped Microparticles B 20.12 ± 0.41 

Dipyramidal Nanoparticles B 8.71 ± 0.20 

FeCl3 B 0.82 ± 0.14 

Cells A Below threshold 

Cells B Below threshold 

Spherical Nanoparticles C 28.60 

Dipyramidal Microparticles C 30.42 

Needle-shaped Microparticles C 30.54 

Dipyramidal Nanoparticles C 30.30 

FeCl3 C 31.69 

Cells C 1.06 
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4.7.7 Calculations on the Theoretical Particle Surface Area 

Equation 26 𝑆 = 4 𝜋 𝑟2  

Equation 27 𝑉 =
4

3
 𝜋 𝑟³ 

The change in BET surface area of the iron(III) fumarate microparticles variants (Table S4.10) 

cannot only be explained with just the varying particle sizes. Using the equations above and 

approximating a spherical morphology for the dipyramidal microparticle iron(III) fumarate 

variant, the outer surface area of a single such particle with a diameter of 1600 nm can be 

calculated at 8.4 𝑥 10−8 cm². The corresponding particle volume is at 2.4 𝑥 10−12 cm³. 

Assuming a density of 1.55138 g/cm³ (crystallographic density of dry MIL-88A5) this results in 

an outer surface area of 2.4 m²/g for the entire sample. The same calculations result in outer 

surface area of 13 m²/g for when approximating the dipyramidal nanoparticle iron(III) 

fumarate variant. The respective increase of surface area in these samples however exceeds 

this approximation. As all samples exhibit the same crystal structure this effect either stems 

from pore clogging and/or from texturing. We assume that both of these effects are present. 

On the one hand the pore size distributions of the dipyramidal microparticles and dipyramidal 

nanoparticles exhibit mesopores. On the other hand thermogravimetric analysis shows a ~ 3 

fold increase of residual solvent molecules in the pores that was not removable even under 

heating in high-vacuum.  

When comparing spherical iron(III) fumarate to the other iron(III) fumarate microparticles 

crystallinity might play an effect as well: Using the equations above, a single spherical particle 

with a diameter of 60 nm exhibits a volume of 1.13 𝑥 10−16 cm³ and an outer surface area of 

1.13 𝑥 10−10 cm². Assuming crystallinity and a density of 1.55138 g/cm³ (crystallographic 

density of dry MIL-88A5) this results in a theoretical surface area of 64 m²/g. If the same 

calculations are done for a spherical particle (as this is roughly the shape of the dipyramidal 

microparticles) with a diameter of 1600 nm the theoretical surface area stemming from the 

outer surface of the particles can be calculated at 2.4 m²/g. The actual increase of the surface 

area of the spherical nanoparticles to the dipyramidal microparticles is at 244 m²/g and must 

originate from a different reason. In case of the spherical nanoparticles this can be explained 

due to texturing during drying or due to effects from their decreased crystallinity. 
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5 Exosome-coated Metal-Organic Framework 

Nanoparticles: An Efficient Drug Delivery Platform 

This chapter is based on the following publication: 

Illes B, Hirschle P, Barnert S, Cauda V, Wuttke S, Engelke H. Chem Mater. 2017;29(19):8042-6. 

(DOI: 10.1021/acs.chemmater.7b02358) 

5.1 Introduction 

Drug delivery systems aim at a reduction of side effects in chemotherapy. This is achieved by 

encapsulation of drugs in nanocarriers followed by controlled release of these drugs at the 

site of the diseased tissue. While inorganic or polymeric nanoparticles (NPs) are often used as 

nanocarriers1,2, hybrid nanomaterials such as metal-organic framework (MOF) NPs have 

recently emerged as a valuable alternative.3-6 They are synthesized from inorganic and organic 

building block units to create porous three-dimensional frameworks. Due to this building 

principle, the composition and structure of these materials are highly tunable.7-10 

Furthermore, both external and internal surfaces can be functionalized independently. With 

these properties, MOF NPs can be designed to fit the specific requirements of the desired 

application.6,11 For drug delivery purposes these so called “design materials” have been 

synthesized with high porosity allowing for high drug loading capacities. They also have been 

designed to be biodegradable. Specifically, iron-based MOF NPs have attracted great 

attention. In addition to the above-mentioned properties, they can be detected via magnetic 

resonance imaging (MRI), rendering them an ideal platform for theranostics.12-14 In our study 

we focus on one of these iron-based MOFs, namely MIL-88A NPs, which are composed of 

iron(III) and fumaric acid.15,16 Both compounds can be found in the body and the NPs are 

reported to be non-toxic.14 Additionally, MIL-88A NPs have been shown to efficiently host 

chemotherapeutic drugs.14 Thus, they represent a promising nanocarrier. 

To complete the drug delivery system, nanocarriers need a capping system that prevents 

leakage of the drug, protects both drug and NP from degrading enzymes, and hides them from 

the immune system to avoid premature clearance from the circulatory and 

rethiculoendothelial systems. Out of many potential capping systems, such as proteins or 
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polymers, lipid bilayers are especially advantageous: they prevent enhanced NP aggregation 

in biological environments (e.g. human blood), they provide an efficient sealing, and they can 

be easily equipped with targeting ligands.17-22 Up to now, release from lipid coated NPs after 

endosomal uptake has been achieved using toxic photosensitizers that need to be protected 

from sunlight23-26, membrane-permeable drugs18, or cationic lipids27,28, all of which need to be 

optimized regarding their interaction with NPs to avoid premature leakage of the drug. 

Recently, a lipid coating has been applied to MOF NPs as a capping system, yielding a 

nanocarrier that efficiently encapsulates dye molecules and is taken up by cells.21 However, 

no intracellular release was shown – possibly due to lack of an opening mechanism. 

 

Figure 5.1. Schematic illustration of the synthesis of the exosome coated MOF and the 
subsequent cell uptake and proposed release mechanism of the cargo. 

Exosomes might provide additional important advantages as compared to artificial lipid layers 

as a capping system. They are endogenous liposomes present in many body liquids. They 

supposedly are non-immunogenic and are used by cells for communication purposes.29,30 

Hence, they combine the advantages of a lipid bilayer with a potential shielding from the 

immune system and – unlike artificial lipid bilayers – they have a not yet understood 

endogenous mechanism that supports release from the endosomal entrapment.31 With these 

properties they overcome the main challenges of drug delivery: leakage-free delivery, release 
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as well as endosomal escape of the drug, shielding from the immune system for long 

circulation times, and full biocompatibility.32 However, loading exosomes with biologically 

active molecules (e.g. drugs) is a major challenge. No technique has been reported yet that 

achieves efficient loading of exosomes. Here, we overcome this challenge and facilitate simple 

drug loading, leakage-free delivery and efficient release by a synergistic combination of the 

advantages of MOF NPs, specifically MIL-88A, as chemically tunable nanocarriers with those 

of exosomes as a capping system.  

5.2 Results 

MIL-88A NPs were synthesized via microwave synthesis,15 loaded with cargo, and 

subsequently coated with exosomes derived from HeLa cell culture (characterization in 

section 5.4, Figure S5.8-Figure S5.19). The coating was achieved using the fusion method, 

which we employ here for the first time for MOF NPs (Figure 5.1).33 Up to now MOF NPs have 

been coated with lipids using a solvent exchange method that would involve total disassembly 

of the exosomal bilayer.21,34 The fusion method allows for leaving the bilayer of the exosomes 

mainly intact during the coating process and thus does not obstruct the advantageous 

properties of the exosome as much.  

To investigate the uptake and possible release behavior of the newly synthesized NPs, we used 

membrane-impermeable calcein as a model cargo and incubated the exosome coated MOF 

NPs on HeLa-cells. After two days of incubation the cells showed uptake of particles, but no 

release of calcein into the cell was visible yet (Figure.5.2a and Figure S5.22). Strikingly, after 

three days of incubation the exosome coated particles showed release in several cells resulting 

in a spread of calcein over the entire cell (Figure S5.17 and Figure S5.19). The number of cells 

exhibiting release increased slightly after 4 days of incubation (Figure.5.2b). This release of a 

membrane-impermeable dye without the use of toxic photosensitizers, renders the exosome-

coated MIL-88A NPs a promising drug delivery system.  

 

 

 



Exosome-coated Metal-Organic Framework Nanoparticles: An Efficient Drug Delivery Platform 

162 

 

 

Figure.5.2. a) HeLa-Cells (red) with exosome coated calcein loaded particles (green) after 2 
days of incubation. The particles have arrived inside the cell, but there is no sign of release. b) 
HeLa-Cells (red) with exosome coated calcein loaded particles (green) after 4 days of 
incubation. The particles have arrived inside the cell, and release of calcein from the particles 
is clearly visible. The side view on top and on the right side of the images shows that the 
particles reside inside of the cell and the release of the calcein is also confined to the cell. The 
white scale bar represents 20 µm.  

To further understand and validate the promise of this system, fluorescence release 

experiments in a custom-built setup were conducted with the coated NPs (Figure 5.3).18 To 

confirm the successful coating and to investigate the sealing properties of the exosomal 

bilayer, calcein-loaded MIL-88A NPs were coated with exosomes and fluorescence release was 

measured in water. Even over long times (Figure 5.3 and Figure S5.25), no release was 

detected indicating a very tight coating without premature leakage, while uncoated particles 

leaked steadily. Next, we disassembled the exosome coating by addition of the nonionic 

surfactant Triton X-100. As expected, this lead to an instant release of calcein resulting in an 

increase of fluorescence intensity that reaches saturation over time. The release is even 
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stronger than from uncoated particles, possibly due to the sudden release upon addition of 

Triton and/or release-promoting interaction of Triton and particle or due to premature 

leakage of the uncoated particles during the preparation process. To simulate the 

environment that particles encounter inside cells during endocytosis, the experiment was 

repeated in artificial lysosomal fluid (ALF) instead of water. Even in the absence of Triton, this 

lead to a strong intensity increase over the course of a few hours. The observed release is even 

stronger than that in water with Triton X-100. Stability measurements of the coated MOF NPs 

reveal their rapid decomposition in ALF (Figure S5.18-Figure S5.19) and might deliver a 

possible explanation for this efficient release: the particles completely decompose in ALF 

leading to an enhanced osmotic pressure in the exosome coating, which might lead to a burst 

of the exosome followed by a complete release of all loaded calcein molecules (Figure 5.1). 

Such a release following complete disintegration is more efficient than that triggered by Triton 

Figure 5.3. Fluorescence release experiments of encapsulated calcein in exosome coated 
MIL-88A(Fe) nanoparticles (the data points correspond to the intensities at the peak maxima 
at 512 nm of the spectrum for calcein). A solution of the coated particles in water was used 
as a negative control, while a Triton-X100 solution was used as a positive control. Uncoated 
MIL-88A NPs were used to test the effectiveness of the exosome coating in preventing 
leakage. The higher release in the ALF solution is caused by the decomposition of the MIL-88A 
NPs in this media and as a consequence a strong calcein release is observed. At the bottom a 
schematic of the measurement can be seen. 1) The cap is filled with loaded NPs. 2) The cap is 
sealed with a dialysis membrane. 3) The released calcein permeates through the membrane, 
while the particles stay in the cap. 
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X-100. The latter only destroys the coating, which does not necessarily lead to the release of 

all cargo molecules due to interactions with the MOF-lattice.35 Since ALF simulates the 

lysosomal environment in the cell at advanced stages of endocytosis, the release observed in 

cells might be mediated by the decomposition of the MOF similarly to the release experiments 

here, in addition to possible endogenous release mechanisms of exosomes. The molecules of 

the dissolved NPs (i.e. fumaric acid and iron(III) ions) in combination with the protons pumped 

into the lysosome by the cell might enhance the osmotic pressure in the exosome coating and 

the lysosome and thus create cracks in both membranes that enable the release. All in all, the 

release experiments confirm the successful coating of MIL-88A NPs as well as the efficient 

storage and release (quantification see section 5.4) of dye molecules inside the MOF core 

without premature leakage. They also deliver a possible explanation for the observed efficient 

Figure 5.4. a) Release measured in cells after 3 (blue) and 4 (red) days of incubation with 
exosome coated, calcein loaded MIL-88A NPs. Each data point and its error bar have been 
compiled from 12 measurements and are based on a total number of at least 1000 
investigated cells. The error bars mark the SD. b) Fluorescence microscopy images of cells 
incubated with calcein loaded exosome coated MIL-88A nanoparticles. (Left: three days, right: 
four days; 12 µg/ml). The scale bars represent 500 µm. 
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release inside cells with the decomposition of the MOF in the lysosome acting as an “onboard-

trigger”. 

Next, we assessed the efficiency of our novel drug delivery system further and quantified 

intracellular release in high-content experiments. HeLa cells were incubated with different 

concentrations (10-140 µg/ml) of exosome-coated MIL-88A NPs loaded with calcein (Figure 

5.4). Release of calcein was evaluated in at least 1000 cells per concentration after three and 

four days of incubation using a high-content fluorescence microscope. The percentage of cells 

with clear calcein release was measured relative to the total number of cells. With increasing 

NP concentration we found an increasing percentage of cells that showed release, culminating 

in about 70 % at the highest concentration used. The percentage of cells with calcein release 

is not much higher after 4 days of incubation as compared to 3 days. The widely spread release 

measured here further establishes the promise of the exosome coated NPs as an efficient drug 

delivery system. 

To test the therapeutic potential of our drug delivery system, we finally replaced the cargo 

calcein with a chemotherapeutic drug and studied its effect on cell viability. We chose SBHA, 

a histone inhibitor and anti-cancer drug,36 as active cargo and measured the cell viability at 

different concentrations of NPs with MTT-tests. While the exosome coated particles without 

cargo showed no significant impact on cell viability, they efficiently caused cell death even at 

very low concentrations when loaded with SBHA as shown in Figure 5.5. The IC50 value after 

Figure 5.5. MTT-Assay results of HeLa-cells that were exposed to different concentrations of 
SBHA loaded MIL-88A NPs coated with exosomes. a) Cell viability after incubation for 3 and 4 
days. b) Cell viability for the supernatant and unloaded coated particles. The error bars in both 
images signify the SD 
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3 days of incubation was calculated to be 4.78 µg/mL. This is 3 times higher than the IC50 of 

free SBHA (see SI). The supernatant of the NP solution did not affect cell viability – a proof of 

the encapsulation efficiency of the exosome coating. These results demonstrate that exosome 

coated MIL-88A NPs can store, deliver and release therapeutic molecules efficiently to cancer 

cells with minimal premature leakage. Hence, they show great potential to serve as smart drug 

delivery system.  

5.3 Conclusion 

In conclusion, we report for the first time on exosome coated MOF NPs as a smart and efficient 

drug delivery system with “onboard-trigger”. It synergistically combines the features of MOF 

NPs and exosomes yielding a promising system that facilitates easy and efficient loading and 

sealing. Furthermore, it shows high therapeutic efficiency, yet no premature leakage. 

Intracellular cargo release is possibly mediated by a combination of the endogenous exosomal 

release mechanism and degradation of the nanocarrier, which decomposes into substances 

that are naturally present in the body. In the future, further advantages of the system will be 

exploited and analyzed: the MOF NP core will facilitate loading of several different drugs at 

the same time and monitoring of the NPs via MRI, targeting can be readily achieved by 

insertion of targeting ligands into the exosomal bilayer, and the use of autologous exosomes 

will ensure that they are not susceptible to responses from the immune system, allowing for 

longer circulation times.  
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5.4 Supporting Information 

5.4.1 Experimental Methods 

Dynamic Light Scattering (DLS): DLS was performed on a Zetasizer Nano Series (Nano-ZS, 

Malvern) equipped with a laser with the wavelength λ = 633 nm. For sample preparation the 

freshly prepared nanoparticles (NPs) were dispersed in ethanol or phosphate-buffered saline 

(PBS) in the case of the capped NPs. 

Scanning Electron Microscopy (SEM): All SEM micrographs were recorded with a Helios 

NanoLab G3UC (FEI) operating at 5 kV. During sample preparation an ethanolic NP dispersion 

was dried on a carbon film placed on an aluminum sample holder. The sample was stored 

overnight to evaporate the solvent followed by carbon sputtering prior to the measurement. 

For evaluation of the SEM micrographs the software ImageJ v1.49. was used.  

Transmission Electron Microscopy (TEM): The TEM micrographs of the sample particles were 

taken on a Titan Themis (Fei) that was operated at an acceleration voltage of 300 kV. For 

sample preparation, an ethanolic NP solution was dried overnight on a carbon-coated copper 

grid.  

Cryogenic Transmission Electron Microscopy (CryoTEM): The CryoTEM images were 

measured on a Leo 912 Ω-mega that was operated at 120 keV. The sample was applied to a 

carbon-coated copper grid and flash frozen with Kryogen (90 k) for the measurements. 

Thermogravimetric Analysis (TGA): A dried sample of MIL-88A NPs (3.125 mg) was heated 

using a TASC 414/4 (Netzsch). The sample was heated under synthetic air at 10 °C/min up to 

900 °C. The resulting data was evaluated using the software Proteus v4.3. 

Nitrogen sorption: Nitrogen sorption experiments were conducted with an Autosorb-1 

(Quantachrome). Prior to the measurement the sample (27.9 mg) was outgassed under high 

vacuum at 120 °C for 38 h. The resulting data was evaluated with the software ASiQwin v3.0. 

The linearized form of the BET equation was used to calculate BET surface areas. For the 

calculation of the pore size distribution a QSDFT equilibrium based model was used assuming 

slit and cylindrical pores. 

X-Ray Diffraction: X-ray diffraction experiments were performed on the initial MIL-88A NPs. 

The samples were measured on a STOE Transmissions-Diffraktometer System STADI P 
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operating in transmission mode. The setup is using CuKα1-radiation with a wavelength 

λ = 015418 nm. The resulting diffraction pattern was evaluated using the software package 

WinXPOW RawDat v3.0.2.5 and WinXPOW PowDat_n v3.0.2.7.  

Fluorescence Microscopy: The fluorescence microscope images were recorded with a Zeiss 

Observer SD spinning disk confocal microscope using a Yokogawa CSU-X1 spinning disc unit 

and an oil objective with 63x magnification and BP 525/50 and LP 690/50 filters. The setup 

was heated to 37 °C and a CO2 source was provided to keep the atmosphere at 5% CO2. For 

both excitation of the calcein and the cell marker a laser with a wavelength λ = 488 nm was 

used. The images were processed with the Zen software by Zeiss to optimize contrast and 

provide the orthogonal views. 

Fluorescence Spectroscopy: The fluorescence spectroscopy experiments were recorded with 

a MD-5020 setup from PTI Photon Technology International. The software Felix32 was used 

for recording and evaluating the measured data. 

UV/Vis Measurements: The UV/Vis measurements were performed on a Lambda 1050 

UV/Vis/NIR spectrometer form Perkin Elmer. The software used to record the measured 

spectra was Perkin Elmer UVWinLab. 

High-Content Quantification: The release quantification measurements were performed with 

a ImageXpress Micro XLS from Molecular Devices using an objective with 10x magnification 

with a GFP filter and the resulting images were evaluated with the MetaXpress software. 

Cell culture: All cell experiments were prepared in a Hera-Safe cell culture unit from Heraus. 

The cells were incubated in Hera Cell incubators also from Heraus. 

MTT Assays: The MTT-Assays were performed with a Spectra Fluor Plus from Tecan and were 

then evaluated with Excel 2010 
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5.4.2 Synthesis of the Uncoated and Coated MIL-88A Nanoparticles 

Synthesis of MIL-88A NPs 

MIL-88A NPs were synthesized in a microwave assisted approach based on the results of 

Chalati et al.1 In this synthesis route an aqueous solution of FeCl3 · 6 H2O (1.084 g, 4.01 mmol) 

and fumaric acid (485 mg, 4.18 mmol) are given to water (20 ml, Milli-Q). The reaction mixture 

was stirred until the metal salt was completely dissolved. The reaction mixture was then given 

into a Teflon tube (80 ml) and placed into a microwave oven (Synthos 3000, Anton-Paar) along 

with 3 additional vessels. Two of these vessels are filled with water (20 ml), the third vessel is 

filled with an aqueous FeCl3 (20 ml, 1.084 g, 4.01 mmol) and is used to monitor the reaction 

progress. The vessels were heated under stirring with the sequence shown in Table S5.1: 

 

Table S5.1: MW Heating program for the MIL-88(A) NPs synthesis 

Heating Dwelling Cooling 

30 s 5 min 45 min 

To 80 °C 80 °C To RT 

To remove residual reactants the sample was subsequently washed via centrifugation 

(7840 rpm, 20 min) and redispersion of the pellet in ethanol (20 ml). This washing cycle was 

repeated 3 additional times. To remove also bulk material formed during the reaction, the 

dispersion was then centrifuged 3 times (3 min, 3000 rpm) and the pellet fraction of the 

product discarded.  

 

Preparation of the exosome coating solution 

Approximately 100000 HeLa cells were transferred to a 75 cm culture flask and incubated in 

10 mL fetal bovine serum (FBS)-free Dulbecco’s modified Eagle Medium (DMEM) for three 

days. The exosomes were then extracted from the medium using the Exospin kit from Cell 

Guidance Systems following the protocol from the kit. 
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Preparation of the loaded and coated particles 

1 mg of MIL-88A NPs were solved in 1 mL of a 1 mM solution of calcein or suberohydroxamic 

acid (SBHA) and incubated overnight for loading. Next they were centrifuged for 5 min at 

14000 rpm, to discard the supernatant and the pellet was dissolved in 0.2 mL of the exosome 

coating solution and 0.2 mL water and incubated for 2 h. The particles were then centrifuged 

(5 min at 14000 rpm) and redispersed in 1 mL PBS after washing several times. 

5.4.3 Characterization of MIL-88A NPs 

 Scanning Electron Microscopy 

An overview picture of the MIL-88A NPs used in this work is presented in Figure S5.6.  

The particles look uniform and feature a roundish morphology. For further characterization, 

the particles marked in the yellow box were used to determine a particle size distribution of 

the sample.2 

Figure S5.6. Scanning Electron micrograph of MIL-88A nanoparticles. 
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The particle size distribution was determined by manually measuring the diameter of ~ 150 

particles (Figure S1 yellow box) and fitting the data with a Gaussian function using the 

software Origin v9.0.0.2 This results in an average particle diameter of 52 nm with a standard 

deviation of 11 nm.  

  

Figure S5.7. Particle size distribution determined from the SEM micrograph shown in Figure 
S5.6(yellow box). 
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Transmission Electron microscopy 

Figure S5.8 and Figure S5.9 depict TEM micrographs of the MIL-88A NP sample. The particles 

feature a round morphology and are connected via thin necks. The MIL-88A sample is fairly 

homogenous, which is also shown in a particle size distribution given in Figure S5.10. 

Figure S5.8. Transmission electron micrograph of MIL-88A NPs – detailed image. 
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Figure S5.9. Transmission electron micrograph of MIL-88A NPs. 

The particle size distribution was determined by manually measuring the diameter of ~ 200 

particles and fitting the data with a Gaussian function using the software Origin v9.0.0.2 The 

average diameter was determined at 36 nm with a standard deviation of 9 nm. 

 

 

Figure S5.10. Particle Size distribution determined from the TEM micrograph shown in Figure 
S5.9(yellow box). 

This diameter differs from the results shown in the SEM measurements. This behavior 

however is not unusual in size determination of MOFs with SEM and TEM. Beam damage of a 

sample is a known problem in TEM mostly with high-energy electron beams (E > 100 keV).2 
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Dynamic Light Scattering 

The results of the DLS measurements of the unfunctionalized MIL-88A NPs are shown Figure 

S5.7. In water, the particles have an intensity based hydrodynamic average diameter of 99 nm 

with a polydispersity index (PDI) of 0.131, which translates to a good monodisperse particle 

size distribution. 

 

Figure S5.11. DLS size distribution of MIL-88A NPs showing the percentage of particles for each 
size. 

DLS measurements of the exosome coated MIL-88A NPs can be seen in. In PBS the exosome 

coated particles possess an average diameter of 101 nm (Figure S5.12). The measured PDI is 

0.143 meaning that sample possesses a good monodispersity. 
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Figure S5.12. DLS size distribution of exosome coated MIL-88A NPs showing the percentage 
of particles for each size. 

DLS measurements of the exosomes can be seen in Figure S5.13Error! Reference source not 

found.. In PBS the exosomes possess an average diameter of 100 nm. The measured PDI is 

0.157 meaning that sample possesses a good monodispersity. 

 

Figure S5.13. DLS size distribution of exosomes recovered with the Exospin kit showing the 
percentage of exosomes and extracellular vesicles for each size.  
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X-Ray Diffraction 

Figure S5.14 shows the X-ray diffraction pattern of the initial MIL-88A NPs. The peak at 

2θ = 10° is fairly weak suggesting an overall rather amorphous nature of the particles and less 

pronounced crystallinity than in other MOF structures. The diffractogram however is in good 

agreement with the data reported in literature for MIL-88A NPs.1,3 

 

 

 

 

 

 

 

 

 

 

Figure S5.14. X-ray diffraction patter of dried MIL-88A NPs. 



Exosome-coated Metal-Organic Framework Nanoparticles: An Efficient Drug Delivery Platform 

179 

 

Thermogravimetric Analysis 

The results of the thermogravimetric analysis of the initial MIL-88A NPs are shown in Figure 

S5.15. Up to 204 °C the residual solvent in the sample is desorbed resulting in a mass loss of 

6 %. Subsequently, in a range between 204 – 433 °C the framework decomposes. The residual 

mass left of the sample remains at 42%. This data is in agreement with literature data for MIL-

88A NPs and shows the successful synthesis of the MOF.3 

 

 

 

 

 

 

 

 

 

 

Figure S5.15. Thermogravimetric analysis of MIL-88A NPs. 
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Nitrogen Sorption 

The results of the nitrogen sorption experiments are shown in Figure S5.16 which depicts the 

sorption isotherm and the corresponding pore size distribution. The results are summarized 

in Table S5.2 as well. The nitrogen uptake is in good agreement with reported data of MIL-

88A NPs.4  

 

Figure S5.16. Nitrogen sorption isotherm and pore size distribution. 
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Table S5.2. Results of the BET analysis 

Sample MIL-88A 

BET-surface area [m²/g] 218 m²/g 

Relative pressure range used for 

calculation 

0.11-0.23 

 

Correlation coefficient 0.999 

C-constant Positive 

Pore Size 11.44 Å 

 

 

5.4.4 Stability Measurements 

To investigate the stability of the particles in body relevant media, 500 µg of the coated and 

uncoated nanoparticles were dispersed in 1 mL ALF5. After a day of incubation the solutions 

were measured again. The solutions were clear and no particles could be recovered via 

centrifugation (Figure S5.18). The original particles seem to have been completely 

disassembled in the ALF media as it can be observed in the XRD and the SEM image (Figure 

S5.17 and Figure S5.19). 
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Figure S5.18. MIL-88A NPs before (right) and after (left) treatment with ALF. The particles in 

the untreated sample were recovered via centrifugation (14000 rpm, 5 min), while no particles 

could be recovered in the treated sample. 

 

Figure S5.17. XRD of the residue after treatment of the MIL-88A nanoparticles with ALF, 
showing that the characteristic reflexes of MIL-88A at about 10° are no longer visible. 
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Figure S5.19. SEM images of the residue left after treating uncoated MIL-88A NPs with ALF, 

showing no discernible crystallites. 

In addition to the ALF measurements the same procedures were carried out with an aqueous 

10% FBS solution, showing no particle degradation after incubation overnight (Figure S5.20). 

 

Figure S5.20. DLS size distribution of exosome coated MIL-88A NPs showing the percentage 
of particles for each size after overnight treatment with FBS. 

5.4.5 Visualizing the Exosome coating 

As proof of a successful exosome coating of the MOF nanoparticles we performed 

fluorescence colocalization experiments. We labeled the MOF nanoparticles (Figure S5.21, a) 
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with Fluo-3, which stains the iron contained in the particles, and the exosomes with 

CellMaskOrange (Figure S5.21, b). Successful coating should result in a colocalization of both 

dyes, while they should be independently distributed in the case of failed coating. The merged 

image (Figure S5.21, c) of both channels shows that we indeed obtain colocalization of both 

dyes suggesting a successful coating. The slight offset of both channels can be explained by 

the time it took to switch between the different excitation wavelengths needed for the two 

different dyes: the particles slightly moved due to the Brownian motion preventing a complete 

overlap of both images in the merged channel. Careful control experiments excluded spectral 

overlap of the dyes and confirm that the colocalization of the signals is indeed due to 

successful coating.  

 

 

Figure S5.21. Fluorescence Cross Correlation Images of the exosome coated MIL-88A 
nanoparticles. The particles were marked with Fluo-3 (green, a) and iron marker, while the 
exosomes were marked with CellMask Orange (red, b). c shows the merged image of both 
channels. 

 

 

 

 

5.4.6 Cell Release Experiments 

For the cell release experiments 5000 HeLa cells were seeded in each well of ibidi 8-well plates 

and after one day 5, 10, 15 or 20 µg of the MIL-88A particles were added to each well. 

Incubation times of two, three and four days were investigated and can be seen in Figure 
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S5.22, Figure S5.23, and Figure S5.24, respectively. The cells were marked with CellMask 

Orange, by adding 1 µL masking agent, incubating for 5 minutes at 37 °C/5 % CO2 and washing 

three times with DMEM to remove the remaining masking agent. The microscope images were 

taken with a Zeiss spinning disk microscope with an oil objective with 63x magnification. In 

addition to normal images Z-Stacks were also recorded, allowing for an orthogonal view of the 

cells, proving that the particles have entered the cell after 2 days of incubation. 

 

 

 

Figure S5.22. a, b) HeLa cells with exosome coated MIL-88A particles after two days of 
incubation. The scalebars (white) represent 20 µm. 
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Figure S5.23. HeLa cells with exosome coated MIL-88A particles after three days of incubation. 
The scalebars (white) represent 20 µm. 

 

Figure S5.24. a, b) HeLa cells with exosome coated MIL-88A particles after four days of 
incubation. The scalebar (white) represents 20 µm. 

5.4.7 Release Experiments 

The release experiments were performed on a PTI fluorescence spectrometer. Hollow caps 

were filled with 50 µL of a 1 mg/mL particle stock solution for exosome coated and calcein 

loaded particles. Depending on the experiment either 150 µL water, 150 µL ALF or 90 µL water 

and 10 µL Triton 100-X were added. The caps were then sealed with a dialysis membrane and 

placed into cuvettes filled with either water or ALF and a stirring rod. The cuvettes were 

heated to 37 °C to simulate the cell environment. Each experiment lasted 14 h with one 
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measurement per second. The excitation wavelength was 495 nm and the measured emission 

wavelength was 512 nm.  

 

Figure S5.25. Fluorescence experiment of the exosome coated MIL-88A NPs showing that they 
are stable and do not release in water (black). When dissolved in ALF (blue) or Triton X-100 
(red) containing media release from the particles can be observed that reaches saturation 
after about 10 hours. 

To account for quenching 10 mL of a 1 mM solution of calcein were diluted with 990 mL PBS. 

Next 10 mL of this new solution were added to 4 mL water or ALF in cuvettes. In addition 

10 mL triton X-100 was added to one sample. Then the fluorescence spectra of these solutions 

were measured to find a normalization factor between them (Figure S5.26). This factor was 

then used to calculate the offset for the individual fluorescence measurements. The 

normalization factor determined by comparing the measurements for water and triton X-100 

to those for ALF is 2.17 and was implemented in the fluorescence experiments. 
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Figure S5.26. Fluorescence measurement to determine the quenching of the different media 
used in the fluorescence measurements. 

5.4.8 UV/Vis measurements 

To evaluate the loading capacity of the coated MIL-88A NPs, UV/Vis spectra of a 1 mM calcein 

solution, the remaining supernatant of the calcein solution after the particles were loaded, a 

1 mg/mL solution of loaded particles dissolved by ALF, and a 1 mg/mL solution of coated, 

loaded particles were measured (Figure S5.27). In addition a solution containing the calculated 

amount of calcein loaded in the MOF was also measured. For each measurement 100 mL of 

the sample were diluted with 3 mL water.  

The calcein loading capacity was calculated from the difference in absorbance of the 

measured solutions. The calcein stock solution used for loading the particles had a 

concentration of 1mM, i.e. 0.622 mg/mL. As 1 mL of the stock solution was used for loading, 

1 mg of the particles have taken up 0.158 mg calcein or 15.8 wt%, using the ALF measurement 

as a basis. A quarter of the calcein was taken up by the MIL-88A particles and released. As the 

particles dissolve in ALF all of the loaded particles should be released. The difference in 

absorbance between the loaded particles and the particles dissolved in ALF can be attributed 

to quenching of the fluorescence as long as the calcein still resides in the MOF. 
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The spectrum of calcein in ALF and the sample containing the calculated amount of calcein 

match very well. This shows that the remains of the disintegrated MOF do not affect the 

UV/Vis measurements and this measurement can thus be used for determining the amount 

of encapsulated and released calcein. 

In previous works, in which drugs like Doxorubicin and Paclitaxel were loaded into exosomes, 

loading efficiencies of 7.2 to 11.7% were reached.6-8 These values are comparable but lower 

than those of the exosome coated MIL-88A NPs presented in this work which could reach 

loading capacities of up to 15.8 wt%. 

 

 

Figure S5.27. UV/Vis measurements of several different calcein and particle solutions 
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HDAC1 Assay to determine the SBHA loading 

Due to SBHA being hardly detectable with standard analytical techniques, an HDAC1 activity 

assay was performed. SBHA is an inhibitor of HDAC1. The assay kit used was the HDAC1 

Inhibitor Screening Assay Kit from Cayman Chemical. For the quantification different dilutions 

of SBHA were prepared and tested on their inhibition of HDAC1 and then compared to the 

inhibition of dissolved SBHA loaded particles to determine how much SBHA was loaded into 

the particles ( 

Figure S5.28).  

From that we calculated the theoretical dilution at 50% inhibition for SBHA (1:42.2) and the 

SBHA loaded MIL-88A NPs (1:5.40). From these dilutions and the concentrations of the stock 

solutions we could calculate the how much SBHA (4.835 µg) and SBHA loaded particles 

(185 µg) were needed to inhibit 50% of the available HDAC1. By comparing these numbers we 

can then calculate the loading capacity: 13.1 % of the initially available 1 mM SBHA or 2.61 

wt% in relation to the weight of the MOF NPs were loaded into the particles.  

 

Figure S5.28. Graphical representation of the results of the HDAC1 Inhibition Assay. 
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5.4.9 High-Content Quantification Experiments 

96-well plates from Costar were seeded with 5000 HeLa cells per well and a volume of 100 µL 

DMEM medium. After incubating for 1 day at 37 °C/5 % CO2 the particles were added. Each 

concentration (0, 10, 20, …, 140, 150 µg/mL) was tested in three different wells. Before the 

measurement the plate was washed twice with 100 µL per well PBS to remove dead cells and 

excess calcein. Both transmission and GFP channel images were recorded. Four images were 

recorded per well. The images were evaluated with the MetaXpress software, by counting the 

number of cells showing release and the total number of cells and calculating the release 

percentage from these numbers. 

 

Figure S5.29. Sample images as used for the quantification measurements: a) Transmission 
image used to count the total number of cells; b) Fluorescence image used to count the 
number of cells showing release. 

5.4.10 MTT-assays 

5000 cells were seeded in each well of a 96-well plate and covered with 100 µL DMEM. After 

1 day of incubation at 37 °C/5 % CO2, the particles were added (0, 2, 4, 8, 20, 60, 100, 140 

µg/mL). Each concentration was tested in triplicate. The supernatant was recovered via 

centrifugation (14000 rpm, 5 min) from a 1mg/mL loaded exosome coated MIL-88A NP stock 

solution after one day of incubation in PBS. The MTT-assays were performed after 3 and 4 

days of incubation. 

The MTT reagent concentration used was 0.5 mg reagent per 1 mL medium. The sample was 

washed three times with 100 µL HBSS buffer per well before 100 µL of the reagent solution 

was added in each well. After two hours of incubation at 37 °C/5 % CO2 the wells were emptied 

and the whole plate was frozen at -80 °C for an hour. After defrosting 100 µL DMSO was added 
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to each well and after dissolving any remaining crystals the MTT-assays were performed. MTT-

assays were performed in triplicate and repeated on at least three different days. 

In addition to the coated variants uncoated Mil-88A NPs were also investigated (Figure S5.30). 

They showed low toxicity with cell viabilities of over 70%.  

 

Figure S5.30. MTT Assay of HeLa cells after 3 days of incubation with uncoated MIL-88A NPs. 
The error bars signify the SD. 

To investigate the efficacy of pure SBHA, a 1 mM solution of SBHA in PBS was added to HeLa 

cells in increasing amounts (Figure S5.31). Lower concentrations, below 20 µL/mL, proved to 

be nontoxic, while higher concentrations lead to very low cell viability of about 5%. Comparing 

the effect of free SBHA with that of transported SBHA shows that the transported SBHA 

possesses a higher efficacy and leads to more cell deaths. 1 µL of SBHA in PBS corresponds to 

0.204 mg of pure SBHA. 
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Figure S5.31. MTT Assay of HeLa cells after three days of incubation with a 1 mM solution of 
SBHA in PBS. The error bars signify the SD. 

5.4.11 Cell targeting 

Beyond potential inherent targeting through proteins naturally inserted into the exosomes, 

our exosome coated MOF NPs offer the option to additionally functionalize the exosome shell 

as has been shown earlier with liposomal coatings around NPs.9,10 This can be done via 

spontaneous insertion of lipids functionalized with a targeting moiety such as folate. Folate 

receptors are known to be overexpressed on cancer cells and thus are a common receptor 

used for targeting. To show this optional targeting via inserted ligands, we added such folate 

functionalized lipids into the exosomal coating of the MOF NPs and performed targeting 

experiments  

The MIL-88A NPs were loaded and coated as described previously, and then incubated 

overnight with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(6-

((folate)amino)hexanoyl) to replace some of the lipds in the exosome coating.9 The modified 

particles are not taken up in media saturated with folate, but are efficiently taken up in HeLa 

cells incubated with folate-free DMEM (Figure S5.32).  
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Figure S5.32. No uptake of folate modified LipMIL particles in HeLa cells incubated in a folate 
rich media (left). Uptake of folate modified LipMIL particles in HeLa cells in normal folate free 
DMEM. The scale bars in both images represent 15 µm 
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6 Chemical Diversity in a Metal-Organic Framework 

revealed by Fluorescence Lifetime Imaging 

This chapter is based on the following publication: 

Schrimpf W, Jiang J, Ji Z, Hirschle P, Lamb DC, Yaghi OM, Wuttke S. Nat Commun. 2018;9(1):1647. (DOI: 
10.1038/s41467-018-04050-w) 

6.1 Introduction 

The central goal of materials science has always been the synthesis and characterization of 

materials with novel properties. Key aspects that have an impact on the properties of the 

material are the presence and distribution of functional groups and defects within the 

substance1-6. This chemical diversity is an unpredictable outcome of chemical synthesis 

conditions and arises prominently in the chemistry of metal–organic frameworks (MOFs), 

where the use of multiple functionalized organic linkers results in a multivariable system in 

which the spatial arrangement of both functionalities and defects are unknown7-9 

Deciphering the chemical diversity in MOF crystals is an experimental challenge, because most 

characterization techniques rely on measuring the averaged properties of a bulk sample, such 

as elemental analysis, powder X-ray diffraction (PXRD), and gas adsorption isotherms. 

Recently, solid-state nuclear magnetic resonance (NMR) coupled with computational 

modeling has been shown to be extremely powerful in elucidating the distribution of different 

linkers and functional groups10-13. However, even these measurements are based on statistical 

of resonances emanating from many different crystals within the sample. Single-crystal X-ray 

diffraction, on the other hand, examines the chemical nature of defects in only one single 

crystal at a time.14 Therefore, neither one of these methods provides information about the 

diversity of the sample as a whole. Electron microscopy, although extensively used to map 

defects in inorganic solids, is problematic for MOF imaging as the electron doses required to 

image the material with good resolution quickly damage the sample. Still, low-dose 

transmission electron microscopy has been very recently used to study surfaces and interfaces 

of the MOF ZIF-815 averaging. In contrast, fluorescence imaging has the advantages of spatial 

resolution, high throughput, and sensitivity. It was previously employed to visualize plane 

defects and surface functionalization in MOFs16, and to compare the linker distribution 
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between different methods of synthesis13. Extending the measured fluorescence parameters 

beyond the intensity, e.g., to the spectrum13 or the lifetime17,18 greatly increases the 

information gathered about the material. Most fluorophores are highly sensitive to their 

immediate surroundings, so that changes in the nanoscopic environment affect their photo-

physical properties, including the fluorescence lifetime. By careful analysis of the lifetime, it is 

therefore possible to detect and interpret spatial heterogeneities or differences between 

samples on length scales far below the resolution limit of a light microscope, thereby 

complementing the insights gained using other imaging techniques, such as electron 

microscopy or Raman imaging19. 

In this study, we apply fluorescence imaging combined with fluorescence lifetime analysis to 

examine the diversity and distribution of defects and functional groups in a MOF. Fluorescent 

dye modified linkers were incorporated into the UiO-67 framework, serving as both model 

functional group and reporter. Förster resonance energy transfer (FRET) analysis indicates a 

random distribution of the incorporated dyes, whereas fluorescence lifetime imaging (FLIM) 

revealed a correlation between fluorescence quenching and nanoscopic defects, aspects not 

detectable with standard bulk characterization techniques. The measurements uncovered 

chemical diversity in a multivariable MOF originating from different synthesis conditions, 

within a sample, and even within a single crystal, highlighting the potential of fluorescence 

based methods in decoding the state of complex porous materials. 

6.2 Results 

Bulk characterization. UiO-67 was chosen as a MOF prototype for this study, because it 

exhibits exceptional chemical and thermal stability, and has pores large enough to incorporate 

the dyes used for functionalization20. In this MOF, Zr6(μ3-O)4(μ3OH)4 clusters are connected to 

12 linear ditopic organic linkers (biphenyl-4,4′-dicarboxylic acid, BPDC), forming a network of 

face-centered cubic topology. A portion of the original linkers can be substituted with dye-

modified versions, creating isoreticular structures without altering the topology. For this 

purpose, the organic linker 2-amino-BPDC was coupled to either fluorescein isothiocyanate 

(FITC) or rhodamine B isothiocyanate (RITC). These dye-functionalized linkers were then 

incorporated into the framework either de novo (i.e., added to the synthesis solution) or by 

post-synthetic linker exchange21,22. Using the lowest MMFF94 energy conformations, the 
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maximal projection radii of the dyes attached to the linker were estimated to be 18.1 Å for 

FITC and 20.5 Å for RITC. This makes the dyes small enough to fit into the 23 Å wide octahedral 

pores of UiO-67, but not into the 11.5 Å large tetrahedral pores23. If the linkers are 

incorporated into the framework itself, the sizes of the fluorophores protruding into the pores 

are 14.3 Å and 17.9 Å, respectively, allowing for a better fit. 

The total amount of dye-functionalized linker incorporated into the scaffold was determined 

by comparing the measured fluorescence signal of the digested MOFs in an aqueous solution 

in relation to the total amount of linker in the sample. The resulting de novo incorporation 

efficiencies (i.e., the ratio of the incorporated and the input fractions) were 17–27% for FITC 

and 2–7% for RITC (Table S6.1). It is likely to be that this difference is caused by the larger side 

groups of RITC and its positive charge. The crystallinity, porosity, and morphology of the dye-

modified MOFs were investigated with PXRD (Figure S6.5), nitrogen adsorption/desorption 

isotherms (Table S6.3), and scanning electron microscopy (SEM, Figure S6.9), respectively. 

These bulk measurements detected no changes caused by the functionalization, independent 

of the incorporation method, or the type and the amount of incorporated dye.  

6.2.1 Distribution of Functional Groups. 

In order to determine the distribution of functional groups in the UiO-67 framework, two-color 

experiments were performed by incorporating both dyes into the MOF using de novo 

functionalization. The microscopic distribution of fluorophores is given from the fluorescence 

intensities within the MOFs. The nanoscale distribution of the dyes can be investigated using 

FRET as the fluorophores constitute a FRET pair with FITC serving as the donor and RITC as the 

acceptor dye. During FRET, energy is transferred nonradiatively from the excited donor 

fluorophore to the acceptor. This process results in quenching of the donor fluorescence, 

indicated by a decrease in the fluorescence lifetime, and a corresponding increase of the signal 

in the acceptor channel. The FRET efficiency is highly distance dependent (R6 dependence) and 

can be exploited to measure the separation between fluorophores on the nanometre scale. 

Previous studies have already used this property in combination with FLIM to investigate the 

spatial distribution of fluorophores in MOFs and other porous materials18,24,25. The Förster 

radius, representing the dye separation resulting in 50% transfer efficiency, is in the range of 

40–80 Å for common fluorescence dyes. It depends on the particular dye pair and the 

measurement conditions, most notably the spectral overlap integral between the donor 
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emission and the acceptor absorbance, the donor fluorescence quantum yield, and the 

relative orientation between the dyes. Based on these properties, the Förster radius of the 

dye pair of FITC and RITC in water can be calculated as 55 Å. However, inside the MOF pores, 

these parameters can be affected in an unpredictable way, changing the Förster radius. A key 

factor hereby is the relative orientation between the FRET pair. Inside of the pores, it is very 

likely to be that the rotation of the fluorophores is restricted, resulting in a preferred 

orientation for each individual pair of dyes. On the other hand, the structure of UiO-67 shows 

high symmetry, so that the individual molecules will assume several orientations. Averaging 

over multiple fluorophores should give a similar result as for freely rotating dyes. Although the 

uncertainty regarding the Förster radius inside of the MOF makes a quantitative analysis of 

the inter-dye distances difficult, the presence or absence of FRET can still be used to judge the 

general distribution of the fluorophores. 

For these investigations, the fraction of FITC was kept constant at 0.1% of the linkers during 

synthesis, whereas the amount of RITC was varied between 0.01% and 1%. Based on the 

incorporation efficiency of RITC, this concentration range should result in long average 

distances between the dyes and therefore produce no significant FRET signal, assuming a 

purely random and homogeneous nanoscale distribution of the dyes in the scaffold (Figure 

6.1a). However, clustering, either at the surface or inside of the crystal, would create regions 

with higher fluorophore densities (Figure 6.1b), thus lowering the nearest-neighbor distances, 

and result in measurable FRET. From this, the presence and degree of clustering can be 

determined. 
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Figure 6.1. Schematic representation of the possible spatial distributions of two different 
functionalities within the MOF structure. a A random distribution with a long average 
separation between functional groups, green and red. b A clustered distribution with short 
average distances between functional groups. A subform of clustering is a distribution at or 
close to the surface. c A phase-separated distribution with very long distances between 
different functional groups. In the different phases, the individual groups themselves can be 
both clustered or random. 

The particle shapes observed with fluorescence imaging (Figure 6.2) correspond well to the 

morphology revealed by SEM (Figure S6.9) for all measured samples. Furthermore, a 

significant, homogeneous fluorescence signal was observed for both dyes in all MOF 

crystallites (Figure S6.7), indicating that FITC and RITC are well mixed within the resolution 

limit of the microscope (~ 200 nm). Besides the intensity, the fluorescence lifetime of the 

MOFs was analysed using the phasor approach. Unlike standard fit-based lifetime analysis 

approaches, phasor FLIM is calculated by simple mathematical equations and is therefore not 

biased by the selected fit models. Instead, it uses the Fourier space to visualize the measured 

fluorescence lifetime in a graphical way26,27. This makes it very useful for a qualitative analysis 

of complex data with many unknown processes and contributions, as is the case for the 

presented data17. Detailed descriptions of the phasor calculations and rules are given in the 
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supporting information and previous publications17,26. In short, the first cosine (g) and sine (s) 

Fourier coefficients of the fluorescence decay (Figure 6.2a) are calculated for each pixel of the 

corresponding FLIM image and plotted as a twodimensional histogram (Figure 6.2b). Hereby, 

all purely monoexponential decays lie on a semi-circle of radius 0.5 around the point (0.5, 0), 

with lifetimes decreasing in the clockwise direction. Multi-exponential decays can be treated 

as a vector addition of the base components and will fall inside of that circle. However, due to 

shot noise and the corresponding inaccuracy, the phasor of individual pixels can fall outside 

of the circle In this study, we plot the right-hand side of the phasor plots (i.e., the semi-circle 

with 0.5 < g < 1). This means that a decrease in lifetime corresponds to a shift from the top 

left of the plot to the bottom right (Figure 6.2b). 

The phasor analysis shows a clear decrease of the FITC lifetime with increasing RITC 

concentration, from 2.07 ± 0.18 ns at 0.01 % input RITC fraction, down to 0.83 ± 0.26 ns at 1% 

RITC input fraction. FRET has been previously reported as one possible quenching source for 

dyes incorporated into the UiO-67 scaffold28,29. However, a detailed analysis of the data 

suggests a different explanation. The RITC signal after 475 nm laser excitation (used for FITC 

excitation) shows the identical decay as the RITC signal after 565 nm excitation (used for direct 

RITC excitation), even at the highest RITC concentration (Figure 6.2h-j). In the case of FRET, 

the donor is excited first and then transfers the energy to the acceptor, leading to a delay in 

the fluorescence lifetime of RITC. As this is not observed, the RITC signal after 475 nm 

excitation is mainly caused by direct RITC fluorescence. If FRET occurs, it is, at most, a minor 

contribution to the fluorescence quenching of FITC and some other mechanism must be 

present. A similar decrease in lifetime with increasing dye concentration was also observed 

for samples containing only a single fluorophore type (Figure S6.8) that is also associated with 

a small spectral shift Figure S6.6). Although FRET between identical fluorophores is also 

possible, it does not directly result in a shorter lifetime and requires significantly higher dye 

densities to cause quenching. This further supports the argument against FRET between 

fluorophores as the main source of quenching. 
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Figure 6.2. A phasor analysis of UiO-67 samples with both FITC- and RITC-labeled linkers. The 
fraction of labeled linkers during sample preparation was held constant at 0.1% for FITC, 
whereas for RITC it was varied from 0.01% to 1%. a Photon arrival time histogram of the FITC 
fluorescence for the full images shown in c–g. b The phasor histogram calculated from the 
pixel wise photon arrival time histograms of FITC of the images shown in c–g. The blue arrows 
point at the average phasor positions of the different samples. The green dotted line is the 
universal circle, indicating the possible positions of single exponential decays. c–g Lifetime 
images of FITC fluorescence of UiO-67 samples with 0.1% input FITC linker fraction and 0.01% 
(c), 0.03% (d), 0.1% (e) , 0.3% (f), or 1% (g) input RITC linker fraction. The color code 
represents the pixel phasor positions along the blue dotted line in b. h–j FLIM images for 
different excitation and detection schemes of the UiO-67 sample with 0.1% FITC and 1% RITC 
input fraction. The corresponding phasor plot is shown in Figure S6.6. h FLIM image of the 
green detection channel (500–540 nm) after 475 nm excitation, corresponding to the direct 
FITC fluorescence. i FLIM image of the red detection channel (570–620 nm) after 565 nm 
excitation corresponding to the direct RITC fluorescence. j FLIM image of the red detection 
channel after 475 nm laser excitation representing the possible FRET signal. The scale bar in 
all images is 10 µm. 
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Based on the total amount of incorporated dye in the sample with 0.1% FITC and 1% RITC, the 

average distance to the nearest RITC dye, assuming a purely random distribution (Figure 6.1a), 

was calculated to be 63.6 Å, a value close to the FRET range. Clustering would result in a 

significant decrease of the nearestneighbor distance (Figure 6.1b), thus causing energy 

transfer to occur, even when accounting for possibly shorter Förster radii inside the MOF. 

Thus, the absence of FRET also means the absence of clustering. At the same time, the 

decrease in FITC lifetime due to the incorporation of RITC indicates some interaction between 

the two fluorophores. As no large-scale changes were observed in the bulk characterization 

methods or in the fluorescence intensity, this affect must be localized within a few tens of 

nanometers. Thus, we can preclude phase separation (Figure 6.1c), suggesting that the dyes 

are distributed purely randomly in the framework. 

6.2.2 Defects in the Scaffold Quench Fluorescence.  

As FRET is the dye–dye interaction with the longest range, the absence of energy transfer 

suggests that a direct interaction between the fluorophores is not the source of the 

fluorescence quenching. At the same time, all conditions, with the exception of the fraction 

of dye-modified linkers, were kept constant during synthesis, meaning that the observed 

changes must be caused by the fluorophores themselves. The only possible explanation 

consistent with both observations—quenching of FITC by RITC incorporation, but no FRET—is 

that dye incorporation results in changes in the scaffold itself. The most likely explanation is 

that incorporation of dye-functionalized linkers during the formation of the MOF interferes 

with the crystal growth, resulting in defects. It is easy to imagine that the big and bulky dyes 

can sterically hinder proper scaffold formation. In addition to this steric effect, both 

fluorophores also have an additional carboxyl group that can interact with the zirconium 

clusters, further obstructing correct growth of the framework, an interference resulting in 

vacancies or mismatches in the crystal structure30-33. Considering the existing literature on 

zirconium-based MOFs14,34-37, almost all types of crystal defects—missing linkers, missing 

clusters, or lattice mismatches—can result in coordinatively unsaturated metal sites (CUSs), 

and thus lead to fluorescence quenching, as has been shown earlier38,39. Higher dye 

concentrations create more defects and thus lead to more quenching. The fact that the 

morphology, the crystallinity, and the pore volume are unaffected indicates that these defects 

are very localized, extending only on the nanometer scale. 
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6.2.3 Measuring the Chemical Diversity between Particles.  

Using both the spectral and the lifetime information, it is possible to determine the 

functionalization and defect level not only for the whole sample, but also for individual 

particles. Both the amount of dyes (Figure 6.3a), as well as the level of defects (Figure 6.3b), 

vary significantly between individual MOF aggregates, whereas the diversity within a single 

particle is much smaller. For example, the SD of the pixel lifetimes for the full image shown in 

Figure 6.3b is 0.21 ns. However, for individual particles, the SD ranges between 0.07 and 0.10 

ns, more than a factor of 2 smaller. 

Figure 6.3. Fluorescence data for individual UiO-67 particles. a An image (left) and histogram 
(right) showing the ratio of FITC to RITC fluorescence of a UiO-67 sample with 0.1% FITC and 
0.1% RITC linker input fraction. The three curves represent the regions selected with the 
coloured rectangles in the image. b A phasor FLIM image (left) and histogram (right) of the 
UiO67 sample with 0.3% FITC linker input fraction. The 2D colored histograms correspond to 
the regions highlighted with the colored rectangles in the image. The color coding of the 
images is based on the pixel phasor position along the gray line in the phasor histogram. The 
scale bar in the images is 10 µm. 
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One possible cause for the heterogeneity in the sample is fluctuations in the synthesis 

conditions, as changing the temperature or the acidity during synthesis results in small, but 

noticeable changes in the lifetime (Figure S6.11a). These parameters critically affect the rate 

of crystallite formation and their grow, which in turn can lead to differences in particle size, 

morphology, and lattice regularity, properties that all affect the inherent defect level. If 

aggregates already form during synthesis, their constituent crystallites are all created under 

similar conditions and therefore there is little variation between them. Particles that formed 

in different regions of the synthesis vessel at different times, on the other hand, experience 

stronger variations in synthesis conditions, resulting in a broader distribution in 

functionalization and defect level. However, analysing the phasor plots of the individual 

samples more closely suggests the presence of two distinct species, where the majority of 

particles show a shorter lifetime, whereas a small fraction exhibits longer decays (Figure 

S6.11b). This distinction is preserved for the different synthesis conditions. We further 

investigated whether these two species are inherent to the MOF or are induced by the dye. 

For this, the emission of the unfunctionalized UiO-67 was measured. Even without external 

fluorophores, the MOF shows luminescence, but requires much higher excitation power 

(~ 100–1000 ×) at a lower excitation wavelength (405 nm). Again, two populations can be 

distinguished, mostly via a difference in emission intensity (Figure S6.11c). This suggests that 

two species of MOF crystals are present that differ slightly in their properties. Although FLIM 

alone cannot determine the exact source of the observed differences, these results highlight 

the power of FLIM to detect small variations between different synthesis conditions and even 

within the sample, generally not possible with bulk measurements 

6.2.4 Comparison of De novo and Post-synthetic Modification. 

As the fluorescence lifetime can be used to measure the defect levels in MOFs, we can use 

this technique to compare de novo and linker exchange functionalization methods for 

incorporating modified linkers into the framework. Linker exchange is a form of post-synthetic 

modification, meaning that the functional groups are incorporated after the scaffold has been 

formed40,41. Therefore, it should show a different propensity for defect formation. Three 

different samples were functionalized via linker exchange by heating pre-formed UiO-67 

crystals to 65 °C for 1 h, 6 h or 24 h in the presence of excess dye-modified linkers (Figure 6.4). 

The total number of incorporated FITC linker is nearly 1% of all linkers for all three exchange 
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times, much higher than with de novo synthesis (Table S6.1). An analysis of the intensity 

images revealed that individual MOF particles often appear as ring-like structures with a 

darker core at the centre (Figure 6.4b-d). This heterogeneity can be attributed to the 

functionalization mechanism. During linker exchange, linkers labeled with dyes are added to 

the pre-formed MOFs and have to diffuse to the location in the framework where they 

exchange. The external surface of the crystals provides many CUS that are readily available for 

binding where the dye modified linkers do not even have to enter the pores42. Similar outside-

in mechanisms have been previously observed for linker exchange and diffusion into 

MOFs13,43,44. Internal labelling is more difficult as the large size of the dye functionalized linkers 

relative to the pore and window diameters of UiO-67 make the diffusion process slow. Hence, 

a strong concentration gradient is created from the particles’ exterior to their centre, 

especially for short linker exchange times. Together, these factors result in a distribution of 

the dyes close to the surface, reflected by the ring-like structures in the fluorescence images. 

For de novo functionalization, these rings are not observed, indicating that there the 

distribution is homogeneous throughout the crystal (Figure 6.2 and Figure S6.8). 

The fluorescence lifetime of the post-synthetically modified samples, on the other hand, is 

barely affected by the high dye concentration (Figure 6.4 and Table S6.1). The 1 h linker 

exchange MOF has an apparent lifetime of 2.11 ± 0.23 ns, very similar to the 2.28 ± 0.15 ns 

observed for the de novo sample with the lowest FITC concentration. The fact that the FITC 

concentration is more than 30 times higher but results in a similar lifetime strongly supports 

the hypothesis that energy transfer to defects, rather than between different fluorophores, is 

the main quenching mechanism for FITC. This difference in defect level is due to the fact that 

the MOF was first synthesized without any modification. As no dyes were present to interfere 

with the scaffold formation, the MOF exhibits fewer defects. Furthermore, once the 

framework is already fully formed, it is much harder to introduce defects that extend over 

nanometers. This makes the samples more resilient and the post-synthetic incorporation of 

the FITC modified linkers is less disruptive to the MOF backbone and less quenching is 

observed. Although short exchange times result in long fluorescence lifetimes, longer 

incubation times result in a shortening of the lifetime down to 1.40 ± 0.15 ns for an exchange 

time of 24 h (Figure 6.4 and Table S6.1). This suggests that more defects are present after 

linker exchange at 65 °C for 24 h, created by prolonged incubation at higher temperature in 
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the presence of the dye. Other possible explanations for the shorter lifetime are an increase 

indirect dye–dye interactions or the redistribution of the fluorophores in the crystals. Both 

explanations are unlikely, as the amount of fluorophores does not change (Table S6.1), 

whereas a redistribution means the dyes move toward the center of the crystals, where the 

fluorescence lifetime is expected to increase rather than decrease (Figure 6.4b).  

6.2.5 Measuring Internal Heterogeneities.  

With the de novo experiments, we observed that incorporation of the dye linkers into the 

scaffold results in the formation of defects, which, in turn, quench the fluorophores. The 

problem hereby is that the probe (i.e., dye) causes the defect itself rather than measuring the 

inherent level of defects. To perform experiments where the formation and the sensing of 

defect were decoupled, we used MOFs that were de novo functionalized with 0.1% or 2% FITC, 

Figure 6.4. Phasor FLIM data of UiO-67 samples functionalized with FITC using linker 
exchange. a Phasor plot of the images shown in b-f. The blue arrows point at the average 
phasor positions of the different samples. b-d FLIM images of small crystal UiO-67 samples 
subjected to linker exchange with FITC-modified linkers at 65°C for 1 h (b), 6 h (b), and 24 h 
(c). The inserts below are magnifications of the coulored squares. e, f FLIM (in color) and 
fluorescence intensity (in gray scale) images of large crystal UiO-67 samples subjected to 
linker exchange with FITC-modified linkers for 24 h. e An image recorded at the bottom 
surface of a crystal. f an image recorded inside the crystal, 3 µmm up the bottom surface. 
The color coding of the images is based on the blue dotted line in panel a using the color 
table shown in b. The scale bar of all images in 10 µm. 
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and added RITC via post-synthetic treatment. Here, FITC was used to modulate the amount of 

defects and RITC was used to measure the defects in the crystal. RITC, this time without the 

linker, was added after the synthesis and diffused into the pores at 100 °C over 24 h. As both 

samples were treated identically, any differences in the measured RITC lifetime will be due to 

the different defect level introduced by the FITC. 

The lifetime of the FITC signal is not affected by the incorporation of RITC (Figure S6.12a), 

showing that the post-synthetic treatment did not create additional defects. The signal for 

RITC, on the other hand, shows a clear correlation between the FITC concentration and the 

RITC lifetime (Figure S6.12b). The lifetime decreases from 3.26 ± 0.14 ns for the 0.1% sample 

to 2.71 ± 0.15 ns for the 2% sample due to the higher defect concentration. The intensity 

distribution again shows the ring-like structures for the dye added post-synthetically, whereas 

the de novo functionalization results in a more even distribution, indicating a homogeneous 

incorporation throughout the crystals. 

6.2.6 Mapping Chemical Diversity within Single Crystals.  

As the size of the individual crystallites is not much bigger that the resolution limit of the 

microscope, the borders between crystal surface and interior become blurred, decreasing the 

contrast in both fluorescence intensity and lifetime. To better distinguish these two areas, a 

UiO-67 sample was synthesized using an alternative protocol that yields significantly larger 

crystals that are ~ 30 µm in diameter (Figure 6.4e,f and Figure S6.13)45. The MOF was then 

functionalized with FITC-modified linkers using linker exchange at 100 °C for 24 h. 

Fluorescence intensity images were taken at different heights, with 500 nm separation 

between the different planes, showing the three-dimensional intensity distribution of the 

crystals (Figure S6.13). The lifetime was measured at the bottom surface of the crystals (Figure 

6.4e). In addition, FLIM images were recorded 3 µm above the surface plane (Figure 6.4f) to 

limit the influence of surface bound fluorescence (axial focus size ≈ 1 µm). 

Just as with the small crystallites, this functionalization method resulted in high fluorescence 

intensity on the outer surface and a gradual decrease of the signal toward the crystal interior 

(Figure S6.13). The edges, vertices, and cracks in the surface show even higher fluorescence 

intensity, indicating that these regions likely have a very high number of undercoordinated 

sites where the dye-modified linkers can easily bind. The fluorescence lifetime inside the 
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crystals was found to be 2.73 ± 0.19 ns, significantly longer than for any of the other FITC 

functionalized samples. The value for the surface plane (2.19 ± 0.17 ns), on the other hand, 

corresponds well to the lifetime of the small crystal MOF modified with linker exchange for 

1 h (2.11 ± 0.23 ns), as both have a similar contribution from the surface. This difference in 

fluorescence lifetime can either be caused by an enhancement and stabilization of the 

fluorophores inside of the pores, or by quenching of the fluorescence at the external surface. 

As the fluorescence quantum yield of FITC is already close to unity, a further enhancement is 

unlikely. Surface induced quenching, on the other hand, is consistent with our observation of 

defects as quenchers, especially when considering that the edges and cracks show a faster 

decay compared with the more homogeneous surface areas (Figure 6.4e,f). 

We further investigated whether a difference between the surface and the interior of the 

crystal can be observed without adding fluorophores. For this, the pure UiO-67 crystals were 

imaged directly at the surface and 4 µm into the crystal (Figure S6.14). Again, the images show 

a clear difference between the external surface and bulk of the crystal, in both the 

fluorescence intensity as well as the lifetime, which is 5.08 ± 0.59 ns at the center and 

3.49 ± 0.41 ns on the surface.  

6.3 Discussion 

In this report, we have demonstrated how to use fluorescence imaging microscopy combined 

with lifetime analysis to resolve the chemical diversity of a MOF in three dimensions. 

Specifically, we investigated the functionalization chemistry of UiO-67 and its effect on the 

structural features of the scaffold. The submicrometer resolution of the microscope allowed 

us to identify heterogeneity between individual particles in a sample and even within single 

crystal, e.g., between the surface and the bulk. This difference between the outside and the 

inside was also observed for the auto-luminescence lifetime of UiO-67 in the absence of 

additional fluorophores, making the methods also applicable to the study of non-fluorescent 

functional groups. 

Based on the results we can draw several conclusions about UiO-67 and its functionalization 

chemistry. The FRET experiments showed no direct dye–dye interactions, indicating that de 

novo functionalization of the framework results in a homogeneous random distribution of the 
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functional groups. Even though no FRET signal was detected, higher dye concentrations still 

led to a decrease in fluorescence lifetime. This we attribute to the creation of nanoscale 

defects in the scaffold caused by the incorporation of the dyes. In addition, imaging revealed 

a high degree of diversity in each sample for both the concentration of the dyes and the level 

of defects. Individual crystallites in an aggregate, on the other hand, showed a much narrower 

distribution of these properties. Furthermore, we compared linker exchange incorporation of 

the fluorophores to de novo functionalization. These experiments showed that the 

post-synthetic modification results in fewer defects than an incorporation during the initial 

synthesis. This is even more pronounced for larger crystals that tend to be more resilient to 

defect formation then small crystallites. 

These insights highlight the power and versatility of lifetime imaging in measuring and spatially 

resolving the chemical diversity in porous materials. The high sensitivity of the fluorescence 

lifetime to the local environment of the fluorophore makes it an ideal parameter to study a 

variety of properties, including defects, the presence of different functional groups, or the 

solvent present in the pores. In addition, one can exploit the auto-luminescence of the 

framework without the need to modify the material in any way. Thus, we believe that 

advanced fluorescence microscopy has great potential in the field of material science and that 

a wider application of the technique will lead to a wealth of new information. 

6.4 Experimental Methods 

6.4.1 Chemicals and Supplies.  

Anhydrous N,N-dimethylformamide (DMF), anhydrous methanol, and glacial acetic acid were 

obtained from EMD Millipore Chemicals. Ethyl acetate (99.9%, HPLC Plus), ethanol (≥ 99.5%, 

ACS Reagent), isopropyl alcohol (≥ 99.5%, BioReagent), tetrahydrofuran (THF, ≥ 99.9%, for high 

performance liquid chromatography (HPLC)), nitric acid (70%, ACS Reagent), sulfuric acid 

(95.0–98.0%, ACS Reagent), hydrochloric acid (37%, ACS Reagent), sodium bicarbonate 

(BioReagent), sodium sulfate ( ≥ 99.0, ACS Reagent), palladium on carbon (Pd/C, 10 wt.% 

loading), potassium hydroxide (90%), zirconium chloride (≥ 99.5%, trace metal basis), BPDC 

(97%), dimethyl biphenyl-4,4’dicarboxylate (99%), fluorescein-5(6)-isothiocyanate (≥ 90%), 

and RITC ( mixed isomers) were obtained from Sigma-Aldrich. Ultra-high-purity grade H2 gas 
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(Praxair, 99.999% purity) was used for the hydrogenation reaction. All starting materials, 

reagents, and solvents were used without further purification. 

6.4.2 Synthesis of Dye-functionalized Linkers.  

The dye-modified linkers were synthesized in a multi-step procedure. The synthetic approach 

is illustrated in Figure S6.15. 

Dimethyl 2-nitrobiphenyl-4,4’-dicarboxylate (II) 

A solution of 10 g (37 mmol) of dimethyl biphenyl-4,4’-dicarboxylate (I) in 100 ml of 

concentrated sulfuric acid was cooled to 0 °C and a mixture of 5 mL of 58% nitric acid and 7.5 

mL of concentrated sulfuric acid was added dropwise over a period of 30 min under stirring, 

maintaining the temperature at 0–5 °C. The mixture was then stirred for   h at 0–5 °C, diluted 

with 100 mL of water, and extracted with ethyl acetate. The extract was washed with water 

and a solution of sodium bicarbonate (7.5%), dried over anhydrous sodium sulfate, and 

evaporated. The residue was recrystallized from isopropyl alcohol. Yield: 9.9 g (31 mmol, 85%). 

1H NMR (400 MHz, CDCl3) , parts per million [p.p.m.]: 3.69 (s, 3 H), 3.94 (s, 3 H), 7.55 (d, 2 H), 

7.73 (d, 1 H), 8.03 (d, 2 H), 8.27 (dd, 1 H), 9.97 (d, 1 H). 

Dimethyl 2-aminobiphenyl-4,4’-dicarboxylate (III) 

 A mixture of 9.9 g (31 mmol) of compound II, 100 mL of acetic acid, and 5 g of 10% Pd/C in a 

high pressure reactor was hydrogenated at room temperature and a hydrogen pressure of 

10–50 atm until hydrogen was no longer consumed. The mixture was filtered and acetic acid 

in the filtrate was removed under vacuum. The crude product was recrystallized from ethanol. 

Yield: 8.8 g (29 mmol, 94%). 1H NMR (400 MHz, CDCl3), [p.p.m.]: 3.39 (s, 2 H), 3.83 (s, 3 H), 

3.88 (s, 3 H), 7.17–8.09 (m, 7 H). 

2-Aminobiphenyl-4,4’-dicarboxylic acid (NH2-H2BPDC, IV) 

A solution of 4.95 g (20 mmol), compound III, in THF (180 mL) and methanol (130 mL) was 

mixed with a solution of potassium hydroxide (10 g, 178 mmol) in water (200 mL). The reaction 

mixture was heated to reflux overnight. After all the volatiles were removed under vacuum, it 

was diluted with 200 mL of water, and acidified with 6 M hydrochloric acid until pH 2. The 

precipitates were collected, washed with water, and dried in air. The yield was 4.3 g (17 mmol, 

85%). 1H NMR (400 MHz, dimethyl sulfoxide (DMSO)), [p.p.m.]: 5.15 (s, 2 H), 7.11 (d, 1 H), 7.21 

(dd, 2 H), 7.41 (d, 1 H), 7.57 (m, 2 H), 8.01 (m, 2 H), 12.92 (s, 2 H). 
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2-Fluorescein-5(6)-isothiocyanate-biphenyl-4,4’-dicarboxylic acid (FITC-H2BPDC, VI) 

A solution of 0.50 g (1.9 mmol) of compound IV in DMF (5 mL) was added to 0.75 g (1.9 mmol) 

of fluorescein-5(6)-isothiocyanate (FITC, V). The reaction solution was stirred for 24 h at room 

temperature. The mixture was then diluted with 100 mL of 1 M hydrochloric acid. The 

precipitates were collected by filtration, washed with water, and dried in air. The crude 

product was subject to purification by preparation HPLC (stationary phase: C18; mobile phase: 

methanol/ water/0.1% trifluoroacetic acid (TFA). The eluent was freeze-dried and the orange 

solid was collected. The yield was 0.71 g (1.1 mmol, 58%). mass spectrometry ( MS ) 

(electrospray ionization (ESI-), m/z): [M-H]– calculated for C35H21O9N2S–, 645.0973; found, 

645.0956. 

2-RhodamineB-isothiocyanate-biphenyl-4,4’-dicarboxylic acid (RITC-H2BPDC, VIII) 

 A solution of 0.25 g (0.95 mmol, VII), compound IV, in DMF (5 ml) was added to 0.51 g (0.95 

mmol) of RITC (mixed isomers). The reaction solution was stirred for 24 h at room 

temperature. The mixture was then diluted with 100 mL of 1 M hydrochloric acid. The 

precipitates were collected by filtration, washed with water, and dried in air. The crude 

product was subject to purification by preparation HPLC (stationary phase: C18; mobile phase: 

methanol/water/0.1% TFA). The eluent was frozen-dried and the orange solid was collected. 

The yield was 0.30 g (0.36 mmol, 38%). MS (ESI-, m/z): [M-H]– calculated for C45H45O7N4 S+, 

785.3003; found, 785.3005. 

6.4.3 Synthesis UiO-67 

Synthesis of small crystal UiO-67 and de novo functionalization.  

The synthesis of pure and functionalized UiO-67 followed a modified synthesis protocol by 

Katz et al.23. BPDC (H2BPDC) and zirconium(IV) chloride (18.2 mg, 78.1 µmol) were mixed in a 

4 mL scintillation vial. In case of de novo functionalized UiO-67, some of the linker was 

replaced with 2-amino-BPDC modified with either FITC (FITCH2BPDC) or rhodamineB 

isothiocyanate (RITC-H2BPDC) (see Table S6.3 and Figure S6.15). Dimethylformamide (DMF, 2 

mL) and hydrochloric acid (0.  mL, 37%) were added to this mixture. Next, the mixture was 

sonicated for 20 min. The vial was then heated at 90 °C for 24 h, yielding functionalized, small 

crystal UiO-67. The sample was then washed by immersing it in 4 mL of anhydrous DMF for 

3 days. During this time, the DMF was replaced five times per day. The washing procedure was 
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subsequently repeated with anhydrous methanol. The methanol exchanged sample was then 

evacuated at room temperature under vacuum for 24 h. 

Synthesis of large crystal UiO-67.  

Large UiO-67 single crystals are synthesized following the procedure of Ko et al45. A mixture 

of H2BPDC (85 mg, 0.35 mmol), zirconium(IV) chloride (82 mg, 0.35 mmol), and benzoic acid 

(1.28 g, 10.5 mmol) was dissolved in DMF (20 mL) in a 20 mL vial. The vial was capped and 

heated in an isothermal oven at 120 °C for 2 days to yield octahedral-shaped crystals of ~ 

30 µm diameter. The reaction mixture was allowed to cool down to room temperature and 

then washed with DMF (three times per day for 3 days) and acetone (three times per day for 

3 days). The solvent exchanged samples were then evacuated at 120 °C to 30 mTorr. 

Linker exchange functionalization. Unfunctionalized UiO-67 (12.5 mg) was placed in a 20 mL 

scintillation vial and a solution of FITC-H2BPDC (2.0 mg, 3.1 µmol) in DMF (20 mL) was added. 

The mixture was heated to 65 °C or 100 °C, and at certain time points (1 h, 6 h, 24 h) a fraction 

of the suspension was removed. The extracted samples were centrifuged and the solid was 

subsequently washed with anhydrous DMF (10 times, 4 mL each) and anhydrous methanol 

(10 times, 2 mL each). The washed samples were then dried under vacuum for 24 h. 

6.4.4 Dye Diffusion Incorporation. 

 The de novo functionalized samples with 0.1 and 2% FITC or RITC were further functionalized 

by letting free dye (RITC for FITClinker functionalized samples and FITC for RITC-linker 

functionalized samples) diffuse into the pores. For this, a suspension of the MOFs 

(0.625 mg mL–1) in DMF with the free dye (0.58 mM) were heated to 100 °C for 24 h. 

Subsequently, the samples were washed three times each with DMF (1 mL) and methanol 

(1 mL) and dried at 70 °C in an oven. 

6.4.5 Dye Concentration Measurements.  

The fraction of dyes in the MOF samples was determined via fluorometry. Hereby, aliquots of 

the respective samples (0.3–0.6 mg) were digested in a solution of cesium fluoride (137.2 mg, 

0.90 mmol) in a mixture of water (1.43 mL) and DMSO (2.57 mL). The samples were sonicated 

for 10 min and subsequently incubated at room temperature for 2 h, to ensure a full digestion 

of the framework. The stock solutions (3 mL) were then measured in a polymethylmethacrylat 

cuvette on a fluorescence system consisting of an 814 Photomultiplier Detector, a LPS220B 
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Lamp Power Supply, a Pti-MD3020 Motor Drive (all Photon Technology International) and a 

TC125 Temperature control (Quantum Northwest). For calibrating the conversion factors from 

the fluorescence signal to the concentration, different concentrations of the raw modified 

linker molecules were measured under identical conditions and fit with a linear function. 

Based on the measured dye concentration and the amount of dissolved MOF, the fraction of 

linkers modified with a dye were calculated in p.p.m. 

6.4.6 Nearest-neighbor Calculation.  

To estimate how far apart the fluorophores should be from each other, on average, assuming 

a perfectly random distribution in the MOFs, the nearest-neighbor distance was calculated 

according to: 

Equation 28 𝑃(𝑟) =  
3
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Here, P(r) is the probability of finding the nearest fluorophore at distance r. The average dye 

density n corresponds to the number of dye molecules, N, per volume, V, and is calculated as: 

Equation 29 𝑛 =  
𝑁

𝑉
= 

24 ∙ 𝑐

(26.783Å)
3 

where c is the fraction of linkers modified with a dye. The number 24 represents the number 

of linkers per unit cell with a size of 26.783 Å. Based on this, we obtain a mean nearest 

neighbour distance 〈𝑟〉 of: 

Equation 30 〈𝑟〉 = 𝑎 ∙  𝛤 (
4

3
) 

with 𝛤 representing the gamma function. 

6.4.7 FLIM Microscopy. 

All fluorescence lifetime and intensity images were recorded on a home-built laser scanning 

confocal microscope equipped with pulsed interleaved excitation and time-correlated single 

photon counting detection, as described previously46. For the measurements, 20–30 µL of a 

suspension of the MOFs in water (1–10 mg mL–1) were placed in an 8-Well LabTek I slide 

(VWR). Once the particles sedimented, the surface was imaged using a × 60, 1.27 numerical 
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aperture water-immersion objective (Plan Apo IR × 60 WI, Nikon). The resolution was set to 

300 by 300 pixels, resulting in a pixel size of 100 nm (30 µm total image size) or 333 nm (100 µm 

total image size). To ensure a good signal to noise ratio while, at the same time, minimize the 

influence of photon pile-up and other high signal artifacts, the count rate was kept between 

50 and 500 kHz. To achieve this, the laser power (475 nm and 565 nm for FITC and RITC, 

respectively) was adjusted in a range of 1–20 nW for dye-functionalized samples, as measured 

before the objective. For autoluminescence measurements in the absence of fluorophores, a 

405 nm laser was used at a power of 10 µW. Under these conditions with a total measurement 

time of 250–500 s, this resulted in 200–5000 photons per pixel. All analysis was performed 

using the software framework PAM47. 

Phasor approach to fluorescence lifetime analysis.  

As there are many possible contributions to fluorescence quenching in MOFs, a fit-based 

quantitative analysis is difficult to perform and can even be biased when an inappropriate fit 

model is used. The phasor approach to FLIM26,27, on the other hand, uses the Fourier space to 

visualize the measured fluorescence lifetime in a graphical way. The phasor is calculated via 

simple equations and is therefore not based by any fit models. This makes it very useful for a 

qualitative analysis of complex data with many unknown processes and contributions, as is 

the case for the presented data. 

For each pixel, the Fourier coordinates, g and s, are calculated using Equation 31 and Equation 

32: 

Equation 31 𝑔𝑖,𝑗(𝜔) =  ∫ 𝐼𝑖,𝑗(𝑡)  ∙ cos(𝜔𝑡 − 𝜑Inst)d𝑡/(𝑀Inst  ∙  ∫ 𝐼𝑖,𝑗(𝑡)d𝑡

2𝜋

0

)

2𝜋

0

 

Equation 32 𝑠𝑖,𝑗(𝜔) =  ∫ 𝐼𝑖,𝑗(𝑡)  ∙ sin(𝜔𝑡 − 𝜑Inst)d𝑡/(𝑀Inst  ∙  ∫ 𝐼𝑖,𝑗(𝑡)d𝑡

2𝜋

0

)

2𝜋

0

 

Here, the indices i and j define the pixel coordinates in the image and I(t) gives the photon 

counts of the time bin t. The frequency ω corresponds to 2π/T, with T being the full range of 

the photon arrival time histogram (here 40 ns). The correction terms, 𝜑Instt and 𝑀Inst, account 
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for the instrument response function (IRF) and can be calculated by measuring a reference 

sample with known lifetime (here Atto488 4.1 ns, Atto-Tec). 

There are three main rules of the phasor space that simplify interpretation of lifetime data: 

1. A convolution of a decay with a different signal (e.g., the IRF) results in a change of the 

coordinate system. This makes it possible to use φ Inst and MInst to correct for the IRF without 

complicated convolutions. 

2. All purely mono-exponential decays lie on the semi-circle of radius 0.5 cantered at 

(0.5,0). The lifetimes decrease clockwise from infinity at the origin to zero at the point (1,0). 

3. A mixture of different lifetimes (i.e., bi- or multi-exponential decays) results in a phasor 

that is the weighted vector addition of the phasors of the base components. This results in 

the fact that any mixture of two phasors lie on a straight line connecting the original 

phasors. For more components, the possible space of the mixture is a polygon with the 

phasors of the original components at the vertices. As a consequence, all multi-exponential 

decays must fall inside the semi-circle. 

From rules 2 and 3, it follows that curved trajectories are caused by a gradual change in the 

components’ lifetimes, rather than a change in the relative contribution of species with 

constant lifetimes. 

Quantitative lifetime analysis.  

For each phasor position, two lifetime values can be calculated based on the phase (𝜏𝜑) and 

the modulation (𝜏𝑀): 

Equation 33 𝜏𝜑(𝜔) =  
1

𝜔
∙  

𝑠

𝑔
 

Equation 34 𝜏𝑀(𝜔) =  
1

𝜔
 √

1

𝑔2 + 𝑠2
− 1 

For purely mono-exponential decays, these two lifetimes are identical and correspond to the 

real lifetime. In the case of multi-exponential behavior, the phase and modulation lifetimes 

are different and do not correspond directly and unambiguously to the pure components. 
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To get a single apparent lifetime for each sample, first the mean 𝜏𝜑  and 𝜏𝑀  are calculated from 

all pixels above a threshold of 300 photons. The arithmetic average of the mean phase and 

modulation lifetimes is then used to calculate an apparent lifetime. The uncertainty 

corresponds to the SD of the pixel distribution. 

6.4.8 Additional Characterization  

Powder X-ray diffraction. 

PXRD measurements were conducted on a Bruker D8Venture diffractometer with a Mo-target 

(0.71073 Å) and Cu-target (1.54184 Å) microfocus X-ray generators. The θ–θ geometry device 

was equipped with a PHOTON-100 CMOS detector, measuring the samples between 2° and 

50° 2θ, with a step size of 0.02° of 2θ. 

Nitrogen adsorption/desorption isotherms 

Gas adsorption analysis was performed on a Quantachrome Quadrasorb-SI automatic 

volumetric gas adsorption analyser. A liquid nitrogen bath (77 K) and ultrahigh purity grade N2 

(99.999%, Praxair) were used for the measurements. Samples were prepared and measured 

after being evacuated at 100 °C for 12 h. In order to calculate pore size and volume, 

calculations were performed using a slit-pore based N2 on carbon QSDFT equilibrium model. 

To calculate the Brunauer–Emmett–Teller surface area a partial pressure range between 0.05 

and 0.15 p/p0 was used. 

Scanning electron microscopy 

A Zeiss NVision40 microscope was used to record SEM images. Secondary electron images 

were acquired using the In Lense detector at a low acceleration voltage of 5 kV. To avoid 

charging effects, a thin carbon film coating was applied on the samples before the 

measurements. The carbon deposition was performed using a BAL-TEC coating system. 
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Figure S6.5. XRD patterns of small crystal UiO-67 samples with varying amounts of dye-
modified linkers. a) De novo functionalization with FITC modified linker. b) De novo 
functionalization with RITC modified linker. c) De novo functionalization with both FITC and 
RITC modified linkers. d) Samples functionalized with FITC modified linker using linker 
exchange. 
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Figure S6.7. UiO-67 samples with both FITC and RITC labelled linkers. The input FITC 
fraction for all samples is 0.1% while the RITC content increases from left to right starting 
at 0.01% (a),0.03% (b), 0.1% (c), 0.3% (d), and 1% (e). The upper images are identical to the 
ones shown in Figure 6.2. The lower images display the intensity ratio between the green 
(FTIC) and the red (RITC) channels after excitation with a 475 nm laser. To optimize the 
contrast, the green signal was increased by a factor of 5 compared to the red channel. 

Figure S6.6 A phasor histogram of the FITC and RITC (both after 475 nm and 564 nm 
excitation) lifetimes of the 0.1% FITC and 1% RITC de novo modified UiO-67 sample shown in 
Figure 6.1 h-k 
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Figure S6.8. Phasor analysis of de novo UiO-67 samples with either FITC or RITC labelled 
linkers. a-b) Phasor plots of the FITC (a) and RITC (b) fluorescence of the full images shown in 
c-k. The blue arrows indicate the average phasor positions of the different samples. c-f) 
Lifetime images of FITC fluorescence of UiO-67 samples with 0.1% (c), 0.3% (d), 0.7% (e), 2% 
(f) input FITC linker fraction. c-f) Lifetime images of RITC fluorescence of UiO-67 samples with 
0.1% (c), 0.3% (d), 0.7% (e), and 2% (f) input RITC linker fraction. The scale bar for all images 
is 10 μm. 
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Figure S6.9. SEM images of small crystal UiO-67 samples with 0% (a and b), 0.1% (c and d) and 
2% FTIC modified linker (e and f) used during synthesis.  
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Figure S6.10. Spectral shift of UiO-67 samples de novo functionalized with FITC modified 
linkers. a) An intensity ratio image showing the spectral shift of FITC fluorescence for individual 
pixels with 2% input FITC fraction. The spectrum is indicated by the ratio between the red 
(570-620 nm) and the green (500-540 nm) detection channels. b) Fluorescence lifetime image 
of the same region as shown in a. c) Pixelwise 2D histogram of the red/green intensity ratio 
vs. the lifetime of de novo functionalized sample with 2% input FITC fraction, showing a 
correlation between the spectral shift and the fluorescence lifetime. d) Distribution of 
red/green intensity ratio of individual pixels for different amounts of input FITC fraction. Based 
on the free FITC spectrum, the difference between the 0.1% and the 2% FITC samples 
correspond to a red-shift of 3-6 nm. The scale bar in the images is 10 µm. 
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Figure S6.11. De novo samples at different conditions. a) The phasor plot and images of FITC 
fluorescence of 0.7% FITC de novo samples synthesized with standard conditions (left), at 
elevated temperature (middle), and higher HCl concentration (right). The blue dotted line is 
used to colour-code the fluorescence lifetime in the images. b) Separate phasor plots and 
FLIM images of the samples shown in a. The green and magenta ellipses indicate the two 
distinct particle populations and are used to colour-code the corresponding particles in the 
images. c) The phasor plot (left), FLIM image (center) and intensity image (right) of UiO-67 
auto-luminescence of a sample without added fluorophores. The blue dotted line is used to 
colour-code the fluorescence lifetime in the FLIM image. 
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Figure S6.12. Phasor analysis of UiO-67 samples functionalized de novo with FITC labelled 
linkers and post-synthetically with RITC. a) Phasor histogram (left), FLIM images (centre) and 
phasor distribution (right) of the FITC fluorescence of the 0.1% (left images and solid lines) and 
2% (right images, dotted lines) FITC de novo samples before (upper images, bred lines) and 
after (lower images, blue lines) treatment with RITC. The colour-code of the images and the 
phasor distribution in the line plot represent the position along the blue dotted line in the 
phasor histogram. b) Phasor plot and FLIM images of the RITC fluorescence of the 0.1% (left 
image) and 2% (right image) FITC de novo samples after treatment with RITC. c) Intensity 
images of the FITC (left, green) and RITC (right, red) fluorescence for the same region. All scale 
bars are 20 μm. 
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Figure S6.13. Fluorescence intensity distribution in a large UiO-67 crystal functionalized with 
linker exchange. a) Z-Scan fluorescence intensity images showing a xy slice at the bottom of 
the crystal (left), 3 μm up from the bottom (centre) and a xy maximum projection image for 
visualizing the octahedral 3D structure. The side views show the horizontal (xz) and vertical 
(yz) slices through the centre of the xy images highlighted by the white dotted lines. The scale 
bar is 10 μm. b) Intensity profile perpendicular to the three surfaces of the xy plane 3 μm 
from the bottom surface, indicated by the three dotted magenta lines in panel a. The black 
line shows the average and the grey error bars indicate the standard deviation of the three 
sides. The red dotted line indicates the intensity expected from the auto-luminescence and 
the background (measured outside of the crystals) and corresponds to approximately 1% of 
the peak intensity. 
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Figure S6.14. Auto-luminescence of large UiO-67 crystal. a) The phasor plot of the auto-
luminescence of a large UiO-67 crystal at the bottom plane (surface) and 4 μm from the 
bottom (inside). b) Intensity (upper images) and FLIM (lower images) images of the auto-
luminescence at the bottom surface (left images) and 4 μm from the bottom (right images). 
The FLIM images were color-coded according to the phasor position along the blue dotted 
line in a) using the plotted color-table. The scale bar is 10 μm. 

Figure S6.15. A schematic of the synthetic approach used to generate dye-functionalized 
linkers. For details, see the section 6.4.2. 
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Table S6.1. Dye incorporation and fluorescence lifetimes in FITC and RITC functionalized 
UiO-67 samples. 
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Table S6.3. BET surface areas and pore sizes of pure and dye de novo functionalized UiO-67 
samples. 

Table S6.3. Amount of linkers used for de novo functionalization 



 

 

7 Conclusion and Outlook 

During the course of this thesis project central aspects of the well-known MOFs MIL-101(Cr), 

UiO-67 and MIL-88A were investigated in detail. The physicochemical properties of these 

MOFs were alterated by adapting their synthesis conditions and via chemical 

functionalization. The resulting MOFs were characterized by many state-of-the art analytical 

techniques revealing new information on the frameworks’ crystallinity, internal polarity, MRI 

activity, and their interactions at the bio-interface.  

Using nanomechanical mass correlation spectroscopy, fundamental properties of MIL-101(Cr) 

nanoparticles were explored in the third chapter of this thesis. This newly developed 

microfluidic method can be used to detect mass fluctuations in nanoparticle dispersions. Using 

this method, it was discovered that the density of these porous particles changes drastically 

in solution compared to the crystallographic density of the dry MOF. In this study, we 

demonstrated the effect of solvents of different polarities on the MOFs’ mass-density and 

quantified solvent uptake from mixed solvent systems. Furthermore, we influenced the 

polarity of the nanoparticles’ inner pores by functionalizing the coordinatively unsaturated 

metal-sites in the frameworks with pyridine and pyrazine and quantified this polarity change 

by measuring the preferential solvent uptake in the MOFs’ pores. 

In the fourth chapter of this thesis, morphological optimization was demonstrated with 

iron(III) fumarate. Using different reaction conditions, (solvothermal synthesis, room 

temperature precipitation, microwave assisted synthesis, or microfluidics) four different 

particle types, each with distinct morphology and a diameter between 50 nm and 10 µm, were 

produced. The crystal structure of these particles was characterized extensively with different 

structural methods, including X-ray diffraction on the particles when suspended in dispersion, 

electron diffraction, and pair distribution function analysis. Using these analytical techniques, 

all four particle types (even including the smallest X-ray amorphous spherical nanoparticles) 

were found to have the MOF structure of MIL-88A. The structural and morphological variety 

of the particles strongly affected their biomedical potential. All iron(III) fumarate particles 

exhibited excellent biocompatibility, but drastic differences in their suitability for magnetic 

resonance imaging were noted. Morphological optimization resulted in a 3-fold increase of r2 
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relaxivities and 4-fold increase of r1 relaxivities when comparing the particles to each other 

rendering them in the same range as other commercially available contrast agents. 

The knowledge gained regarding iron(III) fumarate synthesis was further used in chapter five 

for the development of a drug delivery system. Amorphous iron(III) fumarate nanoparticles 

were loaded with fluorescent and biologically active molecules and subsequently coated with 

exosomes. The combination of this hybrid nanoparticle with extracellular vesicles created 

carriers with high loading capacity and excellent biocompatibility. Furthermore, the uptake of 

these particles into cells along with facile intra-cellular release of cargo was demonstrated, a 

process that was not hindered by endosomal entrapment.  

While chapter 3 has shown the influence of post-synthetic coordination functionalization, 

chapter 6 further explores the details of in-situ functionalization and post-synthetic linker 

exchange. Both of these functionalization approaches were used to create fluorescent-dye 

functionalized UiO-67 nanoparticles that were characterized with analytical fluorescence 

microscopy. This series of experiments showed that samples that appear homogenous on a 

bulk scale are often composed of individual particles with different degrees of 

functionalization. Furthermore, it correlates the addition of functional linker groups to 

increasing structural defects, and suggests that linker exchange is a more gentle 

functionalization approach compared to de-novo synthesis. 

Additional work that was to a large extent presented in the authors masters’s thesis is shown 

in the appendix chapter 8. It focuses on the defining physicochemical property of 

nanoparticles: their size. As for other nanoparticles, MOF nanoparticle size determination is 

not trivial as it may depend on definition and measurement technique; there can be different 

“sizes” that need to be distinguished. For this purpose, Zr-fum MOF was examined with 

analytical techniques including electron microscopy, X-ray diffraction, dynamic light 

scattering, fluorescence correlation spectroscopy and atomic force microscopy. These 

techniques are all based on different physical principles and are used under different 

measurement conditions. Overall, this study shows that “size” determination will be 

influenced by the field of application, measurement conditions and sample preparation, and 

that it is often necessary to apply multiple complementary characterization techniques for 

particle size evaluation. 
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In summary, this thesis has demonstrated the significant impact of synthesis protocols and 

chemical modification on the functionality of MOF materials. With these approaches, well-

known MOF systems were manipulated to yield great morphological and chemical variety, 

being easily synthesized with high reproducibility. These features were important for the 

application of several specialized analytical techniques and applications in the field of 

biomedicine. Relying on these characterization techniques, the fundamental properties of 

MOF nanoparticle systems were investigated from a different perspective. While being 

primarily focused on the nano- and meso size regime of MOF materials, the results presented 

in this thesis also point to the necessity of materials optimization in general as it can lead to 

greatly improved performance in applications. 

  



Conclusion and Outlook  

236 

 

 

 



 

 

8 Appendix: Exploration of MOF Nanoparticle Sizes 

using Various Physical Characterization Methods – Is 

what you measure what you get? 

This chapter is based on the following publication: 

Hirschle P, Preiß T, Auras F, Pick A, Völkner J, Valdepérez D, Witte G, Parak WJ, Rädler JO, 

Wuttke S. CrystEngComm. 2016;18(23):4359-68 (DOI: 10.1039/c6ce00198j) 

8.1 Introduction 

Metal-organic frameworks (MOFs) are organic-inorganic hybrid crystalline compounds 

consisting of inorganic metallic clusters, also referred to as the nodes that are connected by 

organic linker molecules, i.e. spacers.1-3 Owing to the many possible combinations of organic 

linkers and metal ions, a vast number of MOF structures, up to now more than 20,000, have 

been reported so far.3 Over the last years, MOFs have attracted considerable scientific interest 

due to wide structural and chemical tailorability,4-6 their high surface area,7-10 as well as the 

many possible different ways to functionalize their surface11-17. These characteristics have 

allowed for a broad applications in various fields such as separation18, storage19-22 catalysis23-

28, sensing29-31, drug delivery32,33, diagnosis32,33, and ion conduction34. Furthermore, it has 

been shown that MOF crystal size can be controlled at the nanometer level to build MOF 

nanoparticles (MOF NPs)35-45. Owing to the modular synthesis approach, together with the 

spatial control of chemical moieties within the crystalline framework MOF chemistry offers, 

MOF NPs appear as a promising new class of multifunctional NPs amongst the already existing 

NP material classes. 

The control of MOF crystal size at the nanometer level results in MOF NPs whose properties 

are no longer determined by their inner surface only, but also by their outer surface 

properties, due to their high external surface-area-to-volume ratio.46-50 When bulk materials 

are reduced to the nm size, often properties and their behavior are often size and shape 

dependent. Examples for MOF NPs and the resulting effects on their crystal structure and 
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sorption behavior are reported elsewhere51-53). Hence, the determination and knowledge of 

both size and shape of the NPs are of paramount importance.54 However, the trivial but 

important question - What is the “size” of a NP? is not straightforward to answer as the size 

of a NP differs depending on what characterization technique is used and in which state the 

NP is measured55 Various techniques, relying on different physical principles and data 

processing methods, are available to determine particle size and each one has its own 

advantages and drawbacks. In particular, once dissolved in solution, NPs interact with the 

solvent, e.g. by hydration, ion-adsorption56, or agglomeration57, and thus the effective size 

may significantly change58. 

Figure 8.1. Overview of the methods used to determine the size of Zr-fum MOF nanoparticles 
(atomic-force microscopy (AFM), X-Ray diffraction (XRD), transmission electron microscopy 
(TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS) and fluorescence 
correlation spectroscopy (FCS)). 
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8.2 Results 

The Zr-fum NPs used in this study were synthesized using the same approach used by Behrens 

and co-workers.59 The synthesis is carried out solvothermally in water using ZrCl4 substrates 

and fumaric acid (see section 8.5 for more details). In the subsequent section, we first display 

the results of solid state based methods as SEM, TEM, AFM and XRD. Even for those methods 

conditions for measurements may be very different. While TEM requires operation in vacuum, 

AFM could be carried out in a fluid cell on NPs adsorbed to a surface. In addition to 

determination of particle size, all techniques offer some different advantages of identifying 

Zr-fum NPs, such as confirming their crystallinity and determining their 2- or 3-dimensional 

morphology. Thereafter, the outcomes of dispersion based methods as DLS and FCS, which 

need to be carried out in solvent, are showcased. Those techniques are suitable for studying 

NPs properties such as their aggregation behavior and their hydrodynamic diameters, which 

are specific to dispersions. 

8.2.1 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy is one of the most widely used techniques to characterize 

nanomaterials. This method relies on the use of an electron beam, whose energy is around 

5 keV, that scans the surface of a solid sample. The electrons of the incident beam impinge on 

the sample surface and generate secondary electrons, which are collected by a detector and 

used to create the sample image. SEM analyses were performed on a sample that was 

prepared by drying an ethanol-based dispersion of Zr-fum NPs followed by carbon-sputtering. 

They reveal the spherical morphology of those NPs as shown in Figure 8.2a. The size 

distribution of the Zr-fum MOF NPs was determined measuring the diameter of approximately 

1000 NPs (Figure S8.7). The resulting values were plotted in a histogram and fitted with a 

Gaussian function (Figure 8.2b) centered on an average NPs diameter of 

𝑑𝑍𝑟−𝑓𝑢𝑚𝑁𝑃𝑠
𝑆𝐸𝑀  = 62.0 ± 18.9 nm. Note that SEM requires conductive substrates in order to avoid 

charging effects, and thus a non-conductive Zr-fum NP sample should be sputtered with a 

conductive film before being analyzed.  
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8.2.2 Transmission Electron Microscopy (TEM) 

In the transmission electron microscopy experiment, a high-energy electron beam (E 

~200 keV) is focused on a thin sample (typically less than 200 nm) made of a carbon grid on 

which a droplet of the NP suspension has been evaporated. The electrons passing through the 

sample, in other words being transmitted, are scattered at different angles and then are 

Figure 8.2. Characterization of Zr-fum NPs with different methods: (a) SEM micrograph; (b) 
particle size distributions of Zr-fum NPs from SEM images (Figure S8.6); (c) TEM micrograph; 
(d) electron diffraction pattern of Zr-fum NPs; (e) particle size distribution of Zr-fum NPs from 
TEM images (Figure S8.12-Figure S8.16); (f) AFM micrograph; (g) particle size distribution of 
Zr-fum NPs from AFM images; (h) Experimental PXRD pattern of the Zrfum-3 MOF 
nanoparticles (black symbols), Pawley fit (red), Bragg positions (green symbols) and the 
difference between the Pawley fit and experimental data (dark green). The observed reflection 
intensities are in very good agreement with the simulated PXRD pattern (blue) based on the 
Pn-3 symmetric Zr-fum MOF structure model.53 For the simulation, a domain size of 50 nm was 
assumed. 
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focused with a lens system on the detector to achieve micrographs with a high lateral spatial 

resolution. TEM offers the important advantages of high magnification, ranging from 50 to 106 

and the ability to provide both image and diffraction pattern information. The latter one is 

especially crucial for MOF NPs, as it proves the crystallinity of the structure. A typical TEM 

micrograph of Zr-fum NPs is shown in Figure 8.2c. and proves the spherical shape of the NPs. 

The histogram of Figure 8.2e reports the distribution of NP diameter, which was measured on 

approximately 1000 individual specimens (Figure S8.12-Figure S8.16). The adjustment of this 

distribution with a normal law gives rise to an average NPs diameter with a standard deviation 

of 𝑑𝑍𝑟−𝑓𝑢𝑚𝑁𝑃𝑠
𝑇𝐸𝑀 = 62 ± 18.9 nm.  

Figure 8.2d shows an electron diffraction pattern of the Zr-fum NP sample. The radial distance 

of the apparent spots indicates the lattice distance in reciprocal space. A comparison with 

tabulated values for the Zr-fum crystal structure shows very good agreement (see Table S8.3). 

Although no crystal fringes are displayed in Figure 8.2c, the Debye-Scherrer rings of Figure 

8.2d prove the crystallinity of the sample. Upon prolonged exposure to the high energy 

electron beam (200 keV), the Debye-Scherrer rings gradually disappear over an exposure time 

of around 30 s (Figure S8.9-Figure S8.11). This indicates that the sample is damaged for the 

Zr-fum NPs, resulting in the loss of their crystallinity (Figure 8.2c). However, the electron 

diffraction pattern shown in Figure 8.2d is generated from a larger sample area, causing the 

rate of impinging electrons to be lower and the sample to be destroyed much slower.  

8.2.3 Atomic Force Microscopy (AFM).  

In atomic force microscopy, a sample is analyzed by rasterizing its surface with a sharp tip 

attached to a cantilever. In our case the measurements were performed in closed loop tapping 

mode in air, in which the cantilever is excited to vibrate close to its resonance frequency using 

a piezoelectric device. The interactions between the cantilever-tip and the sample surface i.e. 

repulsive coulomb forces and attractive van der Waals forces change the amplitude of the 

cantilever oscillation. A feedback loop constantly adjusts the height of the cantilever to 

maintain a constant oscillation amplitude, whose variations are used to generate a 

topographic image of the sample. Figure 8.2f displays an AFM micrograph of a sample of Zr-

fum MOF NP sample, prepared by drying an ethanolic NP-dispersion on a SiO2 slide. Apart 

from individual NPs, we also observe agglomerated NPs which can come from the sample 

preparation. In order to obtain the size of individual particles the measurements were realized 



Appendix: Exploration of MOF Nanoparticle Sizes using Various Physical Characterization Methods – Is what you 
measure what you get?  

242 

 

in the outermost periphery of the dried droplet where the density of the particles is 

minimized. From the AFM images particle sizes have been determined statistically using the 

particle and pore analysis tool integrated in the Scanning Probe Image Processing (SPIP) (see 

section 0). The NPs height distribution is plotted in Figure 8.2g. The Gaussian curve fit is 

centered on an average NPs diameter of 𝑑𝑍𝑟−𝑓𝑢𝑚𝑁𝑃𝑠
𝐴𝐹𝑀  = 68 nm with a standard deviation equal 

to 15 nm.  

8.2.4 X-ray Diffraction (XRD) 

In X-ray diffraction experiments, the elastic diffraction of X-rays on the atoms of a solid sample 

is used to identify its atomic and molecular structure. The Scherrer equation relates the 

broadening of a peak in the powder diffraction pattern to the NPs size and is therefore applied 

to calculate NP diameter (see section 8.5) As MOFs are crystalline materials, the 

determination of the crystallite size and its comparison to the particle size is of interest, since 

it can be used to estimate if single crystals or polycrystals are dominant in the sample.  

The powder X-ray diffraction (PXRD) patterns of Zr-fum MOF NP samples feature well-defined 

reflections across the entire measurement range, indicating the formation of well-ordered 

frameworks (Figure 8.2h and Figure S8.17). Moreover, the experimental reflection intensities 

match the simulated pattern based on the reported Zr-fum structure59 (blue line in Figure 

8.2h) very well, thus confirming the formation of a cubic Zr-fum MOF.  

Analysis of PXRD data is commonly performed via Pawley fitting.60 This method compares a 

theoretical diffraction pattern derived from a structure model to the corresponding 

experimental data, and varies unit cell parameters and peak profiles until the convergence 

criteria are reached. Unlike the Rietveld method, Pawley fitting treats peak areas as variables, 

thus rendering this method also applicable to patterns recorded in reflection geometry, at the 

cost of not being able to refine atomic positions. We used the Pawley method to extract the 

lattice parameter a from the reflection positions and the average crystal domain size d from 

the peak broadening (see section 0 for details).  

Pawley fitting using the above mentioned structure model led to a lattice parameter a ranging 

from 17.88 ± 0.03 Å to 17.91 ± 0.03 Å for the Zr-fum NP samples (Figure S8.17), which are very 

similar to the lattice parameter of 17.91 Å that has been reported for the bulk material.59 We 

then extracted the average crystal domain size d from the peak broadening taking into account 
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the instrument broadening and the line shapes (see Section 2 “X-ray Diffraction” in the ESI† 

for details). This domain size ranges from 𝑑𝑍𝑟−𝑓𝑢𝑚𝑁𝑃𝑠
𝑋𝑅𝐷  = 42 ± 5 nm to 60 ± 5 nm. 

In contrast to the other methods discussed above, XRD analysis provides the size of crystalline 

domains rather than the geometrical NP size. In the case of defect-free single-crystalline 

nanoparticles, these two quantities would be identical. In reality, a fraction of the NPs will 

feature grain boundaries or other defects that disrupt the periodicity of the crystal. The 

average domain size of the NP powder sample will thus be smaller than the average particle 

size as determined by TEM, for example. 

With the presentation of the results stemming from the solid state based methods results 

being finished the outcomes of the dispersion based methods are broached in the following 

paragraphs. It is worth noting that the results of these methods may strongly depend on the 

solvent in which the NPs are dispersed. 

8.2.5 Dynamic Light Scattering (DLS) 

Dynamic light scattering is probably the most frequently used technique for determining the 

hydrodynamic diameter of particles, which is defined as the “size” of a hypothetical 

homogeneous hard sphere that diffuses in the same fashion as that of the particle being 

measured. The working principle of DLS relies on measuring the intensity fluctuations caused 

by interference of laser light that is scattered by diffusing particles. Temporal evolution of the 

fluctuations depends on the particle movement caused by Brownian motion. It is therefore 

correlated to the diffusion coefficient of the NPs, which depends on their size.  

When tracing this intensity over time, it is possible to plot a second order autocorrelation 

function. From this autocorrelation function, the diffusion coefficient of a particle can be 

retrieved using a fitting model. However, caution should be taken as the resultant computed 

hydrodynamic diameter is dependent on the chosen fit model, which typically is hidden as a 

black box in the machine.61 

In our study the average hydrodynamic diameter of Zr-fum NPs was first determined in water 

(see Figure 8.3b (black)) to have a good comparability with the similar FCS measurements (see 

next section). Subsequently the particles were examined in ethanol (see Figure 8.3b (red)) to 

show the reproducibility of the measurements and to show the behavior of the NPs in such a 

typical solvent (see section 8.5). Diluted dispersions of the NPs were analyzed, and the 
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resulting autocorrelation function was fitted using the “method of cumulants” (for more 

details, see the ESI†). In water, this resulted in NPs featuring a hydrodynamic diameter of 

𝑑𝑍𝑟−𝑓𝑢𝑚𝑁𝑃𝑠
𝐷𝐿𝑆  = 42 nm with a standard deviation of σ = 46 nm. In ethanol, their hydrodynamic 

diameter was equal to 𝑑𝑍𝑟−𝑓𝑢𝑚𝑁𝑃𝑠
𝐷𝐿𝑆  = 130 nm and a standard deviation of σ = 48 nm.  

Figure 8.3. DLS correlation data (a) and size distribution (b) of Zr-fum NPs in ethanol (red) and 
water (black) as well as averaged and normalized FCS autocorrelation curves (c) of Alexa Fluor 
488 (green) and labelled Zr-fum MOF NPs in water (black), greyed out curves are underlying 

single measurements. GDM fit (dashed blue curve) results in a size distribution (d) at a peak 
diameter of 135 nm, considering finite size correction56 

8.2.6 Fluorescence Correlation Spectroscopy (FCS) 

Fluorescence correlation spectroscopy is a fluorescence based method, which can be used to 

determine hydrodynamic diameter of labelled NPs62,63. In this method, a laser is confocally 

focused into the liquid sample containing fluorescently labelled NPs. The fluorescence 

intensity fluctuations resulting from NPs traversing the excitation volume are recorded using 

an avalanche photodiode and used to calculate the time autocorrelation function. FCS data 

analysis yields the diffusion coefficient as well as the concentration of fluorescent particles 

(see section 8.5). Using the Stokes Einstein relation the NP hydrodynamic is calculated from 
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the measured diffusion coefficient. Three samples of Zr-fum NPs were labelled with the dye 

Alexa Fluor 488 (absorption at 488 nm and emission at 519 nm) and were examined with FCS. 

The normalized autocorrelation functions, shown in Figure 8.3c, correspond to one of the 

labelled Zr-fum NP samples (black). For comparison the autocorrelation of free Alexa Fluor 

488 is shown in green. Normalization helps to clearly visualize that the autocorrelation 

function of dye-labelled NPs is shifted towards higher correlation times with respect to free 

Alexa Fluor 488 molecules. This indicates slower diffusion of the particles due to the larger 

hydrodynamic diameter of the NPs. Using single component fit model (see section 0) results 

in an apparent diffusion time of 3.68 ms which corresponds to a hydrodynamic diameter of 

𝑑𝑍𝑟−𝑓𝑢𝑚𝑁𝑃𝑠
𝐹𝐶𝑆  = 135 nm after using the finite particle size correction for hollow spheres presented 

by Wu et al64. The fit (not shown) is reasonable at lag times τ ˂ 10 ms but deviations from the 

data show that the model of monodisperse particles is not satisfactory indicating that there is 

a broad distribution of the particle sizes. Thus Gaussian Distribution Model (GDM) 65,66was 

used to fit the data. GDM fit (dashed blue line in Figure 8.3c) results (again, after finite size 

correction) in a peak diameter of 𝑑𝑍𝑟−𝑓𝑢𝑚𝑁𝑃𝑠
𝐺𝐷𝑀𝐹𝐶𝑆  = 135 nm and FWHM of 17 nm (see Figure 8.3d). 

In this article, the most widespread physical methods in the field of nanomaterials 

characterization, i.e. solid state methods, including X-ray diffraction (XRD), atomic-force 

microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM), as well as dispersion-based methods, such as dynamic light scattering (DLS) and 

fluorescence correlation spectroscopy (FCS), were applied to characterize and determine the 

size of Zr-fum MOF NPs.67,68 Figure 8.1 summarizes the characterization techniques that 

contribute to determine the size of Zr-fum MOF NPs. The Zr-fum NPs were synthesized based 

on a synthesis route reported by Behrens and co-workers (structural details of the Zr-fum MOF 

structure can be found in section 0).59 In that report the authors showed that the particles size 

can be controlled with the modulator formic acid. The spherical morphology of the Zr-fum 

particles presented in this work and the associated facile definition of the particle size (i.e. 

diameter) makes the compound a prime example to showcase the various size determination 

methods. 

In this work, we briefly discuss the physical principle of each size characterization method and 

show each method’s practical advantages and disadvantages in NPs assessment. Then, we 
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compare the various “sizes” obtained for Zr-fum NPs using the different techniques and finally, 

we discuss meaning and appropriateness for MOF NP characterization in general. 

8.3 Discussion 

As stated in the introduction, the concept of the “size” of a NP is intangible since each 

characterization technique provides its own NP size, which differs from one method to 

another. This concept becomes clearer when considering on the one hand the different 

physical principles governing the methods and on the other hand the state of the analyzed 

sample.  

Herein, the employed characterization techniques were divided into two categories, 

depending on whether the samples were analyzed in dried state or in dispersion (Figure 8.1). 

Measuring NPs in the dry state, i.e. as a powder, has the crucial disadvantage that it is hard to 

distinguish between aggregated NPs resulting from the sample preparation itself or 

agglomerates that were already present before. The agglomeration of NPs is energetically 

favored as it minimizes surface area and can saturate the bonds and coordination sites.69 

Therefore, one should exercise caution when determining the NP size distribution from 

powder based-techniques and assuming the existence of individual NPs. In particular, in the 

case of the promising biomedical applications of MOF NPs as nanocarrier or diagnostic agents 

or even both, non-agglomerated and colloidally stable MOF NPs are required and thus, their 

characterization in the liquid state is mandatory to clarify their aggregation state.  

SEM, TEM and AFM microscopy techniques can provide an image of NPs from which the 

diameter as well as the shape of the NPs are easily extracted. All microscopy techniques 

revealed the spherical shape of Zr-fum MOF NPs (Figure 8.2). To give a representative insight 

into the NPs’ diameter, a statistical study must be performed on a sufficient number of NPs, 

independent of the used technique. In this work, the diameter of 1000 NPs for TEM and SEM 

and of 500 NPs for AFM has been measured on the recorded images (Figure S8.7, Figure S8.12-

Figure S8.16). A difficulty encountered in SEM images is the identification of individual 

particles (see Figure S8.7). Small particles are easily overlooked, which might shift the 

resulting NP diameter distribution to higher values. TEM allows to detect smaller NPs, and 

thus to measure their diameter due to its larger spatial enhancement compared to the SEM. 
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On TEM pictures of Zr-fum MOF NPs (Figure S8.12), it is clearly visible that NPs are connected 

together via thin necks, which were not taken into account to evaluate the NP diameter. 

However, one may argue that neck-connected NPs actually originate from agglomeration. 

Moreover, NPs featuring diameters smaller than the diameter of the thin necks, which 

connect larger NPs, may be overlooked when two-dimensional TEM images are analyzed.  

In high quality TEM micrographs of MOF NPs, it should be possible to detect the crystal fringes 

showcasing the crystallinity of the respective MOF structures.70 In the case of Zr-fum MOF 

NPs, this was not feasible due to beam damage. However, the crystallinity of MOF NPs was 

unambiguously proven with HRTEM by examining the electron diffraction patterns (Figure 

S8.9-Figure S8.11 and Table S8.3). Beam damage of the sample is a known problem in TEM 

mostly with high energy electron beams (E > 100 keV). Further, it can be stated that the Zr-

fum MOF NPs are highly beam sensitive, since the MOF NPs lose their crystallinity over a time 

frame of 30s (Figure S8.9-Figure S8.11). The loss of the crystallinity of the MOF NPs goes 

together with shrinking, which also explains the shift of the particle size distribution to lower 

values, when comparing the TEM and SEM results (Table 8.1). Therefore, for the Zr-fum MOF 

NPs TEM analysis is not suitable for measuring the size distribution, but suitable to confirm 

the crystallinity of the sample (Table S8.3). 

The NP diameter distribution gained from AFM is in good agreement with the one obtained 

from SEM measurements (Table 8.1). Contrary to SEM and TEM techniques, the contrast 

between the Zr-fum MOF NPs and the object slide (SiO2) was sufficient to analyze the size of 

individual particles via an image software. Another advantage of AFM over SEM and TEM is 

the gentle nature of this method, which relies on the interaction of a cantilever tip with the 

particle surface instead of using a high electron energy beam.  

Comparing the results of X-ray diffraction experiments to AFM and SEM results, similar 

diameters are measured. In contrast to SEM, TEM and AFM, which all result in NP diameter 

distributions, X-ray diffraction gives the average size of the sample crystalline domains, which 

are not necessarily equal to the NP size. Since the resulting value is an average only, no particle 

size distribution is obtained. The various possible NP species, which may lead to this average 

value, are not taken into account. In theory, the average crystalline domain size could result 

from two sample species, each featuring a uniform size. Alternatively, the average crystalline 
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domain size may result from a broad particle size distribution. If all sample particles are not 

expected to be single crystals due to the presence of an amorphous material, one would 

expect the crystalline domain size to be shifted towards smaller values in comparison to NP 

diameter. 

Additionally, defects in the crystal structure result in peak broadening. Since the crystalline 

domain size is calculated from the width of these peaks, this causes the former to shift towards 

smaller values. The good agreement among AFM, SEM and X-ray diffraction results suggests 

the presence of highly crystalline Zr-fum MOF NPs, whose crystal domain size is similar to the 

NP diameter. Finally, the sharp reflections and very small background observed in the X-ray 

diffraction experiments also prove the high crystallinity of the sample, complementing the 

results of TEM measurements. 

The outcome of DLS and FCS is a distribution of diffusion coefficients D, which is then 

transformed into a distribution of hydrodynamic diameters, i.e. diameters of those spheres 

that yield the same D-values. Therefore, the hydrodynamic diameter does not describe the 

morphology of a particle but the chosen fitting model assuming a solid sphere or another ideal 

geometric shape, which has the same diffusion properties as the measured particle. As the Zr-

fum MOF NPs feature a rather good spherical morphology, and as no additional organic 

surface capping is used, the values obtained from the dispersion-based methods should to 

some extent be comparable to those obtained from the powder methods. However, the 

hydrodynamic diameter of the Zr-fum MOF NPs determined using DLS and FCS is significantly 

larger than the NP diameters determined with powder based methods (Table 8.1). 

*This method does not give a particle size distribution but result in a mean size assuming a single species 

Table 8.1. Summary of the average diameter of spherical Zr-fum NPs as obtained using 
three different microscopy tools and three different spectroscopic methods. The standard 
deviation is also reported. 

 Method Type of sample What you measure Average diameter (nm) σ(nm) 

Microscopy 

SEM 
Dried on carbon 

support 
Diameter 62 18.9 

TEM Dried on carbon grid Diameter 29 12.9 

AFM Dried on silica slide Height 68 15.0 

Spectroscopy 

XRD Powder Domain Diameter 42-60 -* 

DLS Dispersion 
Hydrodynamic 

Diameter 
142 (H2O) 46 

FCS Dispersion, labelled 
Hydrodynamic 

Diameter 
135 (H2O) 17 (FWHM) 
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In the case of DLS measurements, substantial absorption of laser light (λ = 633 nm) by the 

sample itself, which causes a systematic measuring error, can be ruled out by our white Zr-fum 

MOF NPs. Hence, the differences in the measured NP size values can be explained by the 

presence of small aggregates. FCS measurements reveal hydrodynamic diameters close to 

those obtained using DLS but with a narrower distribution. This can be explained by different 

fitting models. However, both methods disclose the presence of agglomerates of the Zr-fum 

MOF NPs in solution as the NP diameter determined by the solid techniques is significantly 

smaller. Functionalization of MOF NPs with appropriate organic surface cappings, providing 

either electrostatic or steric repulsion, could help reduce the amount of aggregates. 

8.4 Conclusion 

One of the key issues in NP research is that the product of a chemical synthesis of NPs is a 

colloidal dispersion, which exhibits a polydisperse distribution of sizes and shapes, rather than 

a collection of identical NPs. This is the main reason why the reproducibility of NP synthesis 

results is so difficult to ensure, even if the same person carries out the synthesis under the 

same experimental conditions. For this reason, a careful and extensive NP characterization is 

required. Moreover, future NP database will collect physical dispersion data together with the 

chemical composition of NPs. Such kind of database is important as it allows researchers to 

compare different NP data sets and also to put their own results in place. For this reason, 

recommendations for MOF NP characterization using standard physical characterization tools 

have been introduced. Zr-fum MOF NPs appeared as ideal candidates to reach this fixed target 

owing to their perfect spherical shape. In our work, we applied six characterization methods 

on Zr-fum MOF NPs and the obtained results were discussed and compared based on the 

underlying physical process of the characterization device. 

When choosing techniques to characterize a nanomaterial, it is important to bear in mind the 

later usage of the respective compound. Powder characterizations with SEM, TEM or AFM are 

essentially sufficient when considering solid-based applications of MOF NPs. However, in 

solution-based applications such as drug delivery, colloidally stable NP solutions are required, 

which must thus be characterized in solution with DLS and/or FCS, for instance. Since these 

methods do not give insight into the morphology of NPs, it is therefore advantageous to 

complement these techniques by an image-providing technique such as TEM, SEM or AFM. 
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In case of MOF NPs determination of crystallinity and in particular quantification of the 

crystalline domains size is an important parameter. However, the XRD pattern of MOF NPs 

need to be carefully analyzed as high-crystallinity or even the existence of MOF structure 

cannot be always stated be due to the potential broadening of the peak in the XRD pattern. 

For example, the crystallinity of MIL-101(Cr) and MIL-100(Fe) NPs is unequivocally proven by 

TEM analysis only48. In comparison to the tested Zr-fum MOF NPs the respective MOF NPs in 

those cases were more beam stable. The difficult characterization of MOF NPs that are 

sensitive to the electronic beam of TEM could be overcome with the new versions of TEM 

instruments operating at lower voltage (e.g. 60 keV).  

TEM analysis usually appears as the most suitable method to determine the size of isolated 

MOF NPs in dried state due to its high spatial resolution. However, as shown in the case of 

Zr-fum MOF NPs, beam damage can spoil the outcome, making TEM no longer appropriate. A 

good alternative is represented by SEM, because it operates at much lower voltage even if 

small NPs (< 20 nm) of a sample can be hardly detected since hidden by bigger ones. TEM and 

SEM pictures were used to manually determine Zr-fum MOF NPs size distribution. Although 

this is time consuming, this approach is sufficient when having spherical NPs but cannot be 

applied on non-spherical NPs. 

Many MOF NP applications need dispersions of colloidally stable MOF NPs. Even though most 

researchers target solution-based NP applications (e.g. drug delivery), they often do not 

furnish evidence on the colloidal properties of MOF NPs. This enigma comes from 

agglomeration issues often met with nanomaterials. The chemistry of every NP material class, 

including MOF NP, faces the challenge of synthesizing colloidally stable NPs. The saturation of 

a MOF NP surface immediately after MOF NP nucleation, either by electrostatic repulsion or 

steric stabilization, can avoid this agglomeration issue. A stable MOF NP suspension can be 

easily characterized by DLS analysis, whereby caution should be paid to the automatic 

evaluation of the size distribution of the instrument. An alternative solution to DLS is FCS, as 

demonstrated in this article. FCS is based on evaluation of a autocorrelation function to obtain 

the diffusion coefficient of fluorescence-labelled NPs. Although FCS has the disadvantage of 

requiring dye labelled NPs, meaning that they are chemically modified, in many applications, 

such as drug delivery or diagnosis, NPs need to be labelled for the application itself, e.g. to 

carry out cell uptake studies. In these cases, FCS is an excellent characterization technique due 
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to its high spatial and temporal resolutions and its ability to analyses extremely low NP 

concentrations (nM to pM concentrations) in a very small volume (∼ 0.1 fL). Consequently, a 

low amount of sample is needed to precisely determine the hydrodynamic diameter of 

labelled NPs. Moreover, FCS measurement simultaneously provides information about the 

concentration (inverse correlation height) of the investigated sample. 

In summary, we presented comprehensive physical characterization of the size, shape and 

bulk properties of Zr-fum MOF NPs. Evidently, the structural properties of MOF NPs provide a 

large set of parameters allowing for a thorough assessment of MOF NP quality. Future 

applications that will exploit MOF NPs as hosts, delivery vehicles or catalytic agents rely on the 

full knowledge of their physical NP properties. The caveats and peculiarities in NP size 

characterization discussed here might help for standardization and better comparability of 

MOF NP properties.  

References 

1 Kitagawa, S., Kitaura, R. & Noro, S.-i. Functional Porous Coordination Polymers. Angew. Chem. 
Int. Ed. 43, 2334-2375, doi:10.1002/anie.200300610 (2004). 

2 Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191-214, 
doi:10.1039/b618320b (2008). 

3 Furukuwa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. in Science Vol. 341   974-987 (2013). 

4 Lu, W. et al. Tuning the structure and function of metal–organic frameworks via linker design. 
Chem. Soc. Rev. 43, 5561-5593, doi:10.1039/c4cs00003j (2014). 

5 Cook, T. R., Zheng, Y.-R. & Stang, P. J. Metal–Organic Frameworks and Self-Assembled 
Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, 
and Functionality of Metal–Organic Materials. Chem. Rev. 113, 734-777, 
doi:10.1021/cr3002824 (2013). 

6 Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. Secondary building 
units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev. 38, 
1257-1283, doi:10.1039/b817735j (2009). 

7 Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705-714, 
doi:10.1038/nature01650 (2003). 

8 Senkovska, I. & Kaskel, S. Ultrahigh porosity in mesoporous MOFs: promises and limitations. 
Chem Commun (Camb) 50, 7089-7098, doi:10.1039/c4cc00524d (2014). 

9 Grünker, R. et al. A new metal–organic framework with ultra-high surface area. Chem. 
Commun. 50, 3450, doi:10.1039/c4cc00113c (2014). 

10 Farha, O. K. et al. Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky 
the Limit? J. Am. Chem. Soc. 134, 15016-15021, doi:10.1021/ja3055639 (2012). 

11 Deria, P. et al. Beyond post-synthesis modification: evolution of metal–organic frameworks via 
building block replacement. Chem. Soc. Rev. 43, 5896-5912, doi:10.1039/c4cs00067f (2014). 



Appendix: Exploration of MOF Nanoparticle Sizes using Various Physical Characterization Methods – Is what you 
measure what you get?  

252 

 

12 Evans, J. D., Sumby, C. J. & Doonan, C. J. Post-synthetic metalation of metal–organic 
frameworks. Chem. Soc. Rev. 43, 5933-5951, doi:10.1039/c4cs00076e (2014). 

13 Cohen, S. M. Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. 
Chem. Rev. 112, 970-1000, doi:10.1021/cr200179u (2012). 

14 Furukawa, H., Müller, U. & Yaghi, O. M. “Heterogeneity within Order” in Metal-Organic 
Frameworks. Angew. Chem. Int. Ed. 54, 3417-3430, doi:10.1002/anie.201410252 (2015). 

15 Hintz, H. & Wuttke, S. Solvent-Free and Time Efficient Postsynthetic Modification of Amino-
Tagged Metal–Organic Frameworks with Carboxylic Acid Derivatives. Chem. Mater. 26, 6722-
6728, doi:10.1021/cm502920f (2014). 

16 Hintz, H. & Wuttke, S. Postsynthetic modification of an amino-tagged MOF using peptide 
coupling reagents: a comparative study. Chem. Commun. 50, 11472-11475, 
doi:10.1039/c4cc02650k (2014). 

17 Wuttke, S. et al. Turn-on fluorescence triggered by selective internal dye replacement in MOFs. 
Chem. Commun. 50, 3599, doi:10.1039/c3cc46591h (2014). 

18 Van de Voorde, B., Bueken, B., Denayer, J. & De Vos, D. Adsorptive separation on metal-organic 
frameworks in the liquid phase. Chem. Soc. Rev. 43, 5766-5788, doi:10.1039/c4cs00006d 
(2014). 

19 Van der Perre, S. et al. Experimental Study of Adsorptive Interactions of Polar and Nonpolar 
Adsorbates in the Zeolitic Imidazolate Framework ZIF-68 via Pulse Gas Chromatography. J. 
Phys. Chem. C 119, 1832-1839, doi:10.1021/jp509840u (2015). 

20 Van der Perre, S. et al. Adsorptive Characterization of the ZIF-68 Metal-Organic Framework: A 
Complex Structure with Amphiphilic Properties. Langmuir 30, 8416-8424, 
doi:10.1021/la501594t (2014). 

21 He, Y., Zhou, W., Qian, G. & Chen, B. Methane storage in metal–organic frameworks. Chem. 
Soc. Rev. 43, 5657-5678, doi:10.1039/c4cs00032c (2014). 

22 Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. Water adsorption in MOFs: 
fundamentals and applications. Chem. Soc. Rev. 43, 5594-5617, doi:10.1039/c4cs00078a 
(2014). 

23 Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450, 
doi:10.1039/b807080f (2009). 

24 Na, K., Choi, K. M., Yaghi, O. M. & Somorjai, G. A. Metal Nanocrystals Embedded in Single 
Nanocrystals of MOFs Give Unusual Selectivity as Heterogeneous Catalysts. Nano Lett. 14, 
5979-5983, doi:10.1021/nl503007h (2014). 

25 Kuo, C.-H. et al. Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous 
Catalysis with Selectivity Control. J. Am. Chem. Soc. 134, 14345-14348, doi:10.1021/ja306869j 
(2012). 

26 Saha, S., Das, G., Thote, J. & Banerjee, R. Photocatalytic Metal-Organic Framework from CsS 
Quantum Dot Incubated Luminescent Metallohydrogel. J. Am. Chem. Soc. 136, 14845-14851 
(2014). 

27 Xu, H.-Q. H., Jiahua; Wang, Dengke; Li, Zhaohui; Zhang, Qun; Luo, Yi; Yu, Shu-Hong; Jiang, Hail-
Long. Visible-Light Photoreduction of CO2 in a Metal-Organic Framework Boosting Electron-
Hole Separation via Electron Trap States. J. Am. Chem. Soc. 137, 13440-13443 (2015). 

28 Li, Y., Xu, H., Ouyang, S. & Ye, J. Metal-organic frameworks for photocatalysis. Phys. Chem. 
Chem. Phys. 18, 7563-7572, doi:10.1039/c5cp05885f (2016). 



Appendix: Exploration of MOF Nanoparticle Sizes using Various Physical Characterization Methods – Is what you 
measure what you get? 

253 

 

29 Kreno, L. E. et al. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 112, 
1105-1125, doi:10.1021/cr200324t (2012). 

30 Hinterholzinger, F. M., Rühle, B., Wuttke, S., Karaghiosoff, K. & Bein, T. Highly sensitive and 
selective fluoride detection in water through fluorophore release from a metal-organic 
framework. Sci. Rep. 3, doi:10.1038/srep02562 (2013). 

31 Nickerl, G., Senkovska, I. & Kaskel, S. Tetrazine functionalized zirconium MOF as an optical 
sensor for oxidizing gases. Chem Commun (Camb) 51, 2280-2282, doi:10.1039/c4cc08136f 
(2015). 

32 Horcajada, P. et al. Metal–Organic Frameworks in Biomedicine. Chem. Rev. 112, 1232-1268, 
doi:10.1021/cr200256v (2012). 

33 He, C., Liu, D. & Lin, W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–
Ligand Coordination Bonds: Nanoscale Metal–Organic Frameworks and Nanoscale 
Coordination Polymers. Chem. Rev. 115, 11079-11108, doi:10.1021/acs.chemrev.5b00125 
(2015). 

34 Horike, S., Umeyama, D. & Kitagawa, S. Ion Conductivity and Transport by Porous Coordination 
Polymers and Metal–Organic Frameworks. Acc. Chem. Res. 46, 2376-2384, 
doi:10.1021/ar300291s (2013). 

35 Chevreau, H. et al. Synthesis of the biocompatible and highly stable MIL-127(Fe): from large 
scale synthesis to particle size control. CrystEngComm, doi:10.1039/c5ce01864a (2016). 

36 Carné-Sánchez, A., Imaz, I., Cano-Sarabia, M. & Maspoch, D. A spray-drying strategy for 
synthesis of nanoscale metal–organic frameworks and their assembly into hollow 
superstructures. Nature Chemistry 5, 203-211, doi:10.1038/nchem.1569 (2013). 

37 Schaate, A. et al. Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to 
Single Crystals. Chemistry - A European Journal 17, 6643-6651, doi:10.1002/chem.201003211 
(2011). 

38 Tsuruoka, T. et al. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented 
Attachment Growth. Angew. Chem. Int. Ed. 48, 4739-4743, doi:10.1002/anie.200901177 
(2009). 

39 Liang, K. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings 
for biomacromolecules. Nature Communications 6, 7240, doi:10.1038/ncomms8240 (2015). 

40 Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. Structuring of metal–organic 
frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 43, 5700-5734, 
doi:10.1039/c4cs00106k (2014). 

41 Falcaro, P. et al. MOF positioning technology and device fabrication. Chem. Soc. Rev. 43, 5513-
5560, doi:10.1039/c4cs00089g (2014). 

42 Ameloot, R. et al. Direct Patterning of Oriented Metal-Organic Framework Crystals via Control 
over Crystallization Kinetics in Clear Precursor Solutions. Adv. Mater. 22, 2685-2688, 
doi:10.1002/adma.200903867 (2010). 

43 Lu, G. et al. Imparting functionality to a metal–organic framework material by controlled 
nanoparticle encapsulation. Nature Chemistry 4, 310-316, doi:10.1038/nchem.1272 (2012). 

44 Falcaro, P. et al. A new method to position and functionalize metal-organic framework crystals. 
Nature Communications 2, 237, doi:10.1038/ncomms1234 (2011). 



Appendix: Exploration of MOF Nanoparticle Sizes using Various Physical Characterization Methods – Is what you 
measure what you get?  

254 

 

45 Ameloot, R. et al. Interfacial synthesis of hollow metal–organic framework capsules 
demonstrating selective permeability. Nature Chemistry 3, 382-387, doi:10.1038/nchem.1026 
(2011). 

46 Carné, A., Carbonell, C., Imaz, I. & Maspoch, D. Nanoscale metal–organic materials. Chem. Soc. 
Rev. 40, 291-305, doi:10.1039/c0cs00042f (2011). 

47 Li, P. et al. Synthesis of nanocrystals of Zr-based metal-organic frameworks with csq-net: 
significant enhancement in the degradation of a nerve agent simulant. Chem Commun (Camb) 
51, 10925-10928, doi:10.1039/c5cc03398e (2015). 

48 Wuttke, S. et al. MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. 
Chem. Commun. 51, 15752-15755, doi:10.1039/c5cc06767g (2015). 

49 Xu, G., Otsubo, K., Yamada, T., Sakaida, S. & Kitagawa, H. Superprotonic Conductivity in a Highly 
Oriented Crystalline Metal–Organic Framework Nanofilm. J. Am. Chem. Soc. 135, 7438-7441, 
doi:10.1021/ja402727d (2013). 

50 McGuire, C. V. & Forgan, R. S. The surface chemistry of metal-organic frameworks. Chem 
Commun (Camb) 51, 5199-5217, doi:10.1039/c4cc04458d (2015). 

51 Sakata, Y. et al. Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal 
Downsizing. Science 339, 193-196, doi:10.1126/science.1231451 (2013). 

52 Hijikata, Y. et al. Differences of crystal structure and dynamics between a soft porous 
nanocrystal and a bulk crystal. Chem. Commun. 47, 7632, doi:10.1039/c1cc10983a (2011). 

53 Tanaka, D. et al. Rapid preparation of flexible porous coordination polymer nanocrystals with 
accelerated guest adsorption kinetics. Nature Chemistry 2, 410-416, doi:10.1038/nchem.627 
(2010). 

54 Jiang, J. O., G.; Biswas, P. Characterisation of size, surface charge and agglomeration state of 
nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 11, 77-89 (2009). 

55 Sperling, R. A. L. T. D., S.; Kudera, S.; Zanella, M.; Lin, C.-A. J.; Chang, W.; Braun, D.; Parak, W. 
J. Size determination of (bio-)conjugated water-soluble colloidal nanoparticles - a comparison 
of different techniques. J. Phys. Chem. C 111, 11552-11559 (2007). 

56 Zhang, F. et al. Ion and pH sensing with colloidal nanoparticles: influence of surface charge on 
sensing and colloidal properties. Chemphyschem 11, 730-735, doi:10.1002/cphc.200900849 
(2010). 

57 Caballero-Díaz, E. P., C.; Kastl, L.; Rivera-Gil, P.; Simonet, B.; Valcárel, M.; Jiménez-Lamana, J.; 
Laborda F.; Parak, W. J. The Toxicity of Silver Nanoparticles Depends on Their Uptake by Cells 
and Thus on Their Surface Chemistry. Particle & Particle Systems Characterization 30, 1079-
1085 (2013). 

58 Rivera-Gil, P. J. d. A., D.; Wulf, V.; Pelaz, B.; del Pino, P.; Zhao, Y.; de la Fuente, I.; Ruiz de 
Larramendi, I.; Rojo, T.; Liang, X.-J.; Parak, W. J. The Challenge To Relate the Physicochemical 
Properties of Colloidal Nanoparticles to Their Cytotoxicity. Account of Chemical Research 46, 
743-749 (2013). 

59 Wißmann, G. et al. Modulated synthesis of Zr-fumarate MOF. Microporous Mesoporous Mater. 
152, 64-70, doi:10.1016/j.micromeso.2011.12.010 (2012). 

60 Pawley, G. S. Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 14, 357-
361, doi:10.1107/s0021889881009618 (1981). 



Appendix: Exploration of MOF Nanoparticle Sizes using Various Physical Characterization Methods – Is what you 
measure what you get? 

255 

 

61 Tay, C. Y., Setyawati, M. I., Xie, J., Parak, W. J. & Leong, D. T. Back to Basics: Exploiting the 
Innate Physico-chemical Characteristics of Nanomaterials for Biomedical Applications. Adv. 
Funct. Mater. 24, 5936-5955, doi:10.1002/adfm.201401664 (2014). 

62 Pellegrino, T. M., L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A. L.; Keller, S.; Rädler, J.; Natile, 
G.; Parak, W. J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general 
route to water soluble nanocrystals. Nanoletters 4, 703-707 (2004). 

63 Liedl, T. K., S.; Simmel, F. C.; Rädler, J. O.; Parak, W. J. Fluorescent Nanocrystals as Colloidal 
Probes in Complex Fluids measured by Fluorescence Correlation Spectroscopy. Small 1, 997-
1003 (2005). 

64 Wu, B. C., Yan, Müller, Joachim D. Fluorescence correlation spectroscopy for finite-sized 
particles. Biophys. J. 7, 2800-2808 (2008). 

65 Mittag, J. J., Milani, S., Walsh, D. M., Radler, J. O. & McManus, J. J. Simultaneous measurement 
of a range of particle sizes during Abeta1-42 fibrillogenesis quantified using fluorescence 
correlation spectroscopy. Biochem. Biophys. Res. Commun. 448, 195-199, 
doi:10.1016/j.bbrc.2014.04.088 (2014). 

66 Pal, N., Dev Verma, S., Singh, M. K. & Sen, S. Fluorescence correlation spectroscopy: an efficient 
tool for measuring size, size-distribution and polydispersity of microemulsion droplets in 
solution. Anal. Chem. 83, 7736-7744, doi:10.1021/ac2012637 (2011). 

67 Zahn, G. et al. A water-born Zr-based porous coordination polymer: Modulated synthesis of 
Zr-fumarate MOF. Microporous Mesoporous Mater. 203, 186-194, 
doi:10.1016/j.micromeso.2014.10.034 (2015). 

68 Zahn, G. et al. Insight into the mechanism of modulated syntheses: in situ synchrotron 
diffraction studies on the formation of Zr-fumarate MOF. CrystEngComm 16, 9198-9207, 
doi:10.1039/c4ce01095g (2014). 

69 Goesmann, H. & Feldmann, C. Nanoparticulate Functional Materials. Angew. Chem. Int. Ed. 49, 
1362-1395, doi:10.1002/anie.200903053 (2010). 

70 Ameloot, R. et al. Interfacial synthesis of hollow metal-organic framework capsules 
demonstrating selective permeability. Nat Chem 3, 382-387, doi:10.1038/nchem.1026 (2011). 

 



Appendix: Exploration of MOF Nanoparticle Sizes using Various Physical Characterization Methods – Is what you 
measure what you get?  

256 

 

8.5 Supplementary Information 

8.5.1 Experimental Methods 

Thermogravimetry (TG): A dried sample of Zr-fum (6.3 mg) was examined on a TASC 414/4 

(Netzsch). The thermogravimetric experiment was performed with a heating rate of 10 °C/min 

up to 900 °C. The results were evaluated using the included software Proteus v4.3.  

Nitrogen Sorption: Dried powder of Zr-fum (6.3 mg) was degassed for 12 h at 120 °C in high 

vacuum. Subsequently, nitrogen sorption was performed on the sample using an Autosorb-1 

(Quantachrome). The results were evaluated using the software ASiQwin v3.0. 

Brunauer-Emmett-Teller (BET) surface areas1 were calculated by using the linearized form of 

the BET equation. A correlation coefficient of r = 0.999755 was achieved. The pore size 

distribution of the sample was determined by using the software`s non-local density 

functional theory (NLDFT) equilibrium model based on slit and cylindrical pores. 

Scanning Electron Microscopy (SEM): The experiments, which are presented here, were 

performed on a Jeol JSM-6500F with EDX-Detektor and Inca-software (Oxford Instruments). 

For sample preparation, an ethanolic dispersion of the Zr-fum nanoparticles was dried and 

subsequently sputtered with carbon. The resulting micrographs were evaluated manually 

using the software ImageJ v1.49. 

Transmission Electron Microscopy (TEM): All of the experiments were performed on a Tecnai 

G2 (Fei) with an acceleration voltage of 200 kV. For sample preparation, a dispersion of the 

Zr-fum nanoparticles in ethanol was dried on a carbon-coated copper grid. The resulting 

micrographs were evaluated manually by using the software ImageJ v1.49. The micrographs 

shown in Figure S8.8 and Figure S8.12-Figure S8.16 have been measured in imaging mode. 

The electron diffraction patterns shown in Figure S8.9-Figure S8.11 have separately been 

recorded in separately diffraction mode. 

Atomic Force Microscopy (AFM): Epi-ready silicon wafers coated with a native oxide (Siegert 

Wafer GmbH) were used as ultraflat supporting substrates. Initially, all supports were cleaned 

in an ultrasonic bath in ethanol and subsequently blown dry in a nitrogen stream. 2 µL of the 

nanoparticle solution were pipetted onto a substrate. Slow evaporation of the solvent at room 

temperature led to a concentric density gradient of the nanoparticles deposited on the 
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surface. The morphology of nanoparticles was characterized by means of atomic force 

microscopy using a SPM5500-AFM instrument (Agilent) operated in closed loop tapping mode 

at ambient conditions, and using HQ:NSC15/AlBS cantilevers (MikroMasch; resonance 

frequency, 325 kHz). The z-range of the scanner had been carefully calibrated using a standard 

silicon grating with a step height of 84.3 nm and an accuracy of 1.5 nm. 

X-Ray Diffraction (XRD): Powder X-ray diffraction (PXRD) measurements were performed 

using a Bruker D8 Discover with Ni-filtered Cu Kα radiation and a LynxEye position-sensitive 

detector. In order to reduce the peak broadening caused by the instrument to a minimum, 

0.05 mm and 3 mm slits were installed at the X-ray tube assembly and the detector, 

respectively. In conjunction with a detector opening of 0.8 °, the instrument broadening was 

thus reduced to 0.05 ° 2θ (calibrated against LaB6). The Pawley fitting2,3 of the resulting data 

treats peak areas as variables. Hence, they were not being used for atom-position refinement. 

Only the unit cell size a and the crystallite size d were refined. The reflections were assumed 

to feature a Pseudo-Voigt profile and peak asymmetry was corrected using the 

Berar-Baldinozzi function. 

Dynamic Light Scattering (DLS): During the experiments, all DLS measurements were 

performed on a Zetasizer Nano Series (Nano-ZS, Malvern). The employed laser operated at a 

wavelength λ = 633 nm. The measurement of Zr-fum was conducted directly after washing the 

freshly synthesized nanoparticles. For the respective measurement, the sample dispersion in 

ethanol was diluted in ethanol (1:200) or water (1:200).  

Fluorescence Correlation Spectroscopy (FCS): All experiments were conducted on an Axiovert 

200M equipped with a ConfoCor2 unit (Carl Zeiss), using a 40x NA1.2 water immersion 

objective and an argon ion laser at 488 nm wavelength. Emitted light was separated from 

excitation light with a dichroic mirror and a bandpass emission filter (505 – 550 nm). Samples 

were prepared and measured in Nunc 8 well plates (Thermo Scientific). The focal width 

w = 0.2 µm was determined by a calibration measurement using Alexa Fluor 488 with a known 

diffusion coefficient of D = 435 µm²/s. 4 Samples of three individually produced batches of Zr-

fum were investigated with FCS. For this purpose Zr-fum nanoparticles were fluorescently 

labeled by adding 20 µL of Zr-fum dispersed in ethanol suspension to 200 µL of an Alexa Fluor 

488 solution. After 10 minutes of incubation FCS measurements were performed. To avoid 
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singe particle aggregates, which would distort the correlation curves, the so called dust filter 

of the instrument’s software (70%) was used. By this the fluorescence fluctuations are 

analysed prior to correlation and spikes caused by agglomerated particles having a deviation 

of more than 70% from the average count rate within a binned count rate time are cut out 

and not used for the correlation analysis similar to the method described by Persson et al. 

(2009).5 

8.5.2 Chemicals  

The chemicals Zr(IV) chloride (≥ 95 %, Aldrich), formic acid (> 85 %, Aldrich), fumaric acid 

(≥ 99.5 %, Fluka) and ethanol (99.9 %, VWR) were all used without further purification. 

8.5.3 Synthesis of Zr-fum Samples 

ZrCl4 and Fumaric acid (Table S8.2) were put into a glass reactor (25 mL). A mixture of water 

(10 mL) and formic acid (975 µL) was added to the educts. The reactor was then sealed and 

placed in an oven at 120 °C for 24 h.  

After cooling down, the resulting white precipitate was washed. The dispersion was divided 

into 8 vials (1.5 mL), and then centrifuged (14000 rpm, 5 min). After discarding the 

supernatants, the precipitates were redispersed in water (1.25 mL per precipitate) via 

sonication. The dispersions were centrifuged (14000 rpm, 5 min) and the supernatants 

removed. The precipitates were redispersed in ethanol (1.25 mL per precipitate). After 

repeating this last washing cycle for an additional washing cycle the ethanol-based dispersions 

were unified. 

Table S8.2. Weight-ins of the respective Zr-fum batches. 

Sample m(ZrCl4) [mg] m(fumaric acid) [mg] 

Zrfum-1 120.9 180.4 

Zrfum-2 120.4 180.2 

Zrfum-3 120.6 180.4 

Zrfum-4 120.5 180.3 
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8.5.4 Structure of Zr-fum 

As reported by Wißman et al.6 the microporous, cubic structure of Zr-fum featuring the 

formula Zr6O4(OH)4(O2C-(CH)2-CO2)6 displays the space group 𝑃𝑛3̅. The X-ray diffraction 

experiments conducted in this work (see Figure S8.17) have resulted in a lattice parameter of 

a = (17.91 ± 0.03) nm to (17.88 ± 0.03) nm. 

 

Figure S8.4. Secondary building unit (left) and architecture (right) of Zr-fum; Zr (blue), O (red), 
C (grey). 

Figure S8.4 shows the composition of the structure and the position of the secondary building 

units (SBUs) on the vertices and faces of a cubic cell. Each SBU comprises of 6 Zr-atoms (blue) 

that are octahedrally aligned and coordinated by 8 oxygen-atoms (red). The carbon atoms 

(grey) are the first segment of the emerging fumaric acid linker chains, which are arranged 

cuboctahedrally and thereby connecting each SBU to 12 neighboring clusters. 
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8.5.5 Nitrogen Sorption 

The Zr-fum nanoparticles displayed a specific BET surface area of 408 m² · g-1. The pore size 

distribution (see Figure S8.5) was determined to feature a maximum at the pore with 

d = 0.57 nm. The corresponding nitrogen sorption graph (see Figure S8.5) can be identified as 

an IUPAC Type I microporous adsorption isotherm.7 

8.5.6 Thermogravimetry 

From 48 °C to 250 °C a mass loss occurred which was probably caused by desorption of water 

from the framework. At 260 °C the decomposition of the organic linker began, similar to the 

decomposition of pure fumaric acid at 200 °C as reported by Wißman et al.6 This 

decomposition-step was finished at 480 °C. Subsequently at around 600 °C a final mass loss 

occurred, which was finished at around 750 °C. Comparing the TG measurement with the data 

published by Wißman et al., similarities can be seen: they report a similar decomposition 

range for the linker starting at 250 °C and ending at 400 °C. Wißman et al. also provide an 

explanation for the final mass loss: CO2 is released from the decomposition of carboxylate 

groups. Overall, this mass loss caused by the sample during the decomposition of the linker 

and release of CO2 is at 47.5 %, which is in a good agreement with the calculated results at 

45.8 %.6 The corresponding graph is shown in Figure S8.6. 

Figure S8.5. Nitrogen sorption isotherm showing the adsorption of nitrogen in dependency of 
its relative pressure (left) and the differential pore size distribution in dependency of the 
pore-diameter (right). 
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Figure S8.6. Thermogravimetric evaluation of Zr-fum. 
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8.5.7 Scanning Electron Microscopy 

The image, which is used to obtain the SEM size distribution, is shown in Figure S8.7. 

 

Figure S8.7. Zr-fum particles measured for SEM size determination 

8.5.8 Transmission Electron Microscopy 

An overview picture of dried Zr-fum nanoparticles is shown in Figure S8.8. 

 

Figure S8.8. Overview picture of Zr-fum. 

Figure S8.9, Figure S8.10, and Figure S8.11 show Zr-fumarate when exposed to an electron 

beam (200 keV) for a prolonged period of time. The Debye-Scherrer rings, which are initially 
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still recognizable after an exposure time of 6.5 s, gradually disappear indicating the damage 

the sample is taking from the electron beam. 

 

Figure S8.9. Electron diffraction pattern of sample Zr-fum after 6.5 seconds in a 200 kV 
electron beam. 

 

Figure S8.10. Electron diffraction pattern of sample Zr-fum after 13 seconds in a 200 kV 
electron beam. 
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Figure S8.11. Electron diffraction pattern of sample Zr-fum after 26 seconds in a 200 kV 
electron beam. 

 

In Table S8.3 the Debye-Scherrer rings of Zr-fum shown in Figure S8.9 are shown along with 

their corresponding HKL indices and interplanar spacings d. They are in good agreement with 

the crystallographic data published by Wißmann et al.6, which verifies the successful synthesis 

of Zr-fumarate MOF nanoparticles. 

Table S8.3. Diffraction rings of Zr-fum with their indices and interplanar spacing. 

Diffraction 

Ring 

d (experiment) 

[Å]  

HKL d (literature)4 [Å] deviation [%] 

1 10.1365 (111) 10.3591 2.1 

2 8.7538  (200) 8.9545 2.2 

3 4.3961  (400) 4.4776 1.8 

4 4.0201 (331) 4.1084 2.1 
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5 3.5727  (422) 3.6554 2.3 

6 3.3966  (333) 3.4466 1.5 

7 2.9373 (600) 2.9847 1.6 

8 2.6755 (533) 2.7312 2.0 

9 2.5374 (444) 2.5850 1.8 

10 2.4732 (551) 2.5081 1.4 

11 2.2804 (553) 2.3315 2.2 

 

The particles that were measured to determine the TEM size distribution are shown in Figure 

S8.12, Figure S8.13, Figure S8.14, Figure S8.15, and Figure S8.16. 

 

Figure S8.12. Zr-fum particles measured for TEM size determination. 
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Figure S8.13. Zr-fum particles measured for TEM size determination. 

 

 

Figure S8.14. Zr-fum particles measured for TEM size determination. 
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Figure S8.15. Zr-fum particles measured for TEM size determination. 

 

Figure S8.16. Zr-fum particles measured for TEM size determination. 
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8.5.9 X-ray Diffraction 

The theoretical PXRD pattern of the Zr-fum MOF was simulated using the structure model and 

atomic coordinates reported by Wißmann et al.6 and assuming a domain size of 50 nm. 

The results of the X-ray diffraction experiments for samples Zrfum-1, Zrfum-2, Zrfum-3 and 

Zrfum-4 are shown in Figure S8.17. The corresponding average size of the crystalline domains 

is shown in Table S8.4. Besides slightly smaller crystalline domains for sample Zrfum-3, the 

crystalline domains of the sample generally feature a similar size, which confirms the good 

reproducibility of the aqueous synthesis.  

Pawley fitting of the experimental PXRD data was carried out using in the Reflex module of 

the Accelrys Materials Studio software and refining the unit cell parameter a and the domain 

size d. We used Pseudo-Voigt peak shape functions with fixed profile parameters (determined 

from measurements of a LaB6 micropowder sample). Peak asymmetry was corrected using the 

Berar-Baldinozzi function. Overlay of the observed and refined profiles shows very good 

correlation with small deviations at low angles, where the peak asymmetry is more 

pronounced. 

Table S8.4. Lattice parameters and average domain sizes of the Zrfum-1-4 samples. 

Sample Lattice parameter a [Å] Average domain size d 

[nm] 

Zrfum-1 17.91 ± 0.03 60 ± 5 

Zrfum-2 17.89 ± 0.03 55 ± 5 

Zrfum-3 17.89 ± 0.03 42 ± 5 

Zrfum-4 17.88 ± 0.03 54 ± 5 
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Figure S8.17. PXRD patterns of the Zrfum-1 (a), Zrfum-2 (b), Zrfum-3 (c), and Zrfum-4 (d). The 
experimental data are shown in black, corresponding Pawley fits in red, Bragg positions as 
green symbols, and the difference between the experimental pattern and the fits as dark 
green lines. All four experimental patterns were found to feature an additional peak at 31.5 ° 
of variable intensity, which could not be attributed to any of the starting materials or the MOF. 
This reflection was masked during the Pawley fitting. 
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8.5.10 Atomic Force Microscopy 

 

 

Figure S8.18. AFM image of MOFs after performing particle and pore analysis in Scanning 
Probe Image Processing (SPIP). The maximum height of green coloured areas was determined 
with respect to the surrounding substrate (black). Among chosen particles agglomeration in 
image plane is clearly observable. However, data indicated no stacking in evaluated z-
direction. 

 

In Figure S8.19 a zoom-in is shown (a), together with an exemplary topographical cross-

section of a single particle (b). For a quantitative particle size analysis, only the height was 

used, since the lateral extension is mainly given by the apex of the AFM tip and thus appears 

larger than the height (cf. Figure S8.19 b). 
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Figure S8.19. Zoomed-in AFM micrograph (a) with corresponding cross section of one single particle 
(b). 

8.5.11 Ensuring Reproducibility 

To ensure reproducibility in the synthesis of the Zr-fum nanoparticles, multiple batches 

(Zrfum-1 to Zrfum-4) were synthesized and examined for their size attributes. This was done 

with X-ray diffraction, additionally with dynamic light scattering in ethanol. 

8.5.12 Dynamic Light Scattering 

The particle size distribution of samples Zrfum-1, Zrfum-2, Zrfum-3, and Zrfum-4 were 

determined via dynamic light scattering in ethanol. The results are shown in Table S8.5. Each 

sample was measured two consecutive times after finishing the washing steps of the 

synthesis. The similarities in the resulting diameters ranging from 129 nm to 136 nm show the 

good reproducibility of the synthesis of the particles. However, there are fluctuations 

regarding the polydispersity index (PDI), even for two consecutive measurements of the same 
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sample, which shows, that the PDI can only be used as a rough estimation for the 

polydispersity of the sample. 

Table S8.5. Results (intensity distribution) of the DLS measurements of samples Zrfum-1 to 
Zrfum-4 in ethanol. 

Sample Measurement Diameter(Cumulants) [nm] PDI 

Zrfum-1 1 130 0.135 

2 129 0.168 

Zrfum-2 1 135 0.094 

2 132 0.136 

Zrfum-3 1 135 0.098 

2 135 0.111 

Zrfum-4 1 136 0.117 

2 134 0.086 
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8.5.13 Fluorescence Correlation Spectroscopy  

The particle size and size distribution of samples Zrfum-1, Zrfum-2, Zrfum-3 were determined 

with FCS. The results are shown in Table S8.6. The similarities in the resulting diameters show 

the good reproducibility of the synthesis of the particles. 

Table S8.6. Results of the FCS measurements of samples Zrfum-1 to Zrfum-3 labeled with 
Alexa Fluor 488 in water. FWHM = full width at half maximum 

Sample Diameter (single component Fit) [nm] Diameter & FWHM (GDM Fit, see 

calculations) [nm] 

Zrfum-1 127 133, 12 

Zrfum-2 136 133, 18 

Zrfum-3 136 135, 17  

 

Figure S8.20. left: FCS Autocorrelation functions of labelled Zr-fum particles sample 1(blue), 
2(red) and 3(green). Original correlation curves (left) show slightly different correlation 
heights implying slightly different concentrations of the three nanoparticle samples. The same 
data after normalization (right) shows small variation in the diffusion times of the Zr-fum 
samples denoting small batch to batch variations in the hydrodynamic diameter which was 
also confirmed by single component and GDM fit. 



Appendix: Exploration of MOF Nanoparticle Sizes using Various Physical Characterization Methods – Is what you 
measure what you get?  

274 

 

 

Figure S8.21. FCS size distribution of three measured nanoparticle batches 1(blue), 2(red) and 
3(green) obtained from GDM Fit. The similarities in the resulting diameters show the great 
reproducibility of the synthesis of the particles. 

8.5.14 Calculations 

Dynamic Light Scattering 

The data received during the DLS measurements was evaluated using the “method of 

cumulants”8, which is shortly described in the following section. It introduces a polydispersity 

index (PDI, see Equation 40) as an indicator of the size distribution of the particles. Generally, 

DLS uses the time-dependent intensity fluctuations of a sample-scattered laser. These 

intensity fluctuations can be described with a second order intensity-autocorrelation function 

as shown in Equation 35: 

Equation 35 𝐺(2)(𝜏) =  
⟨𝐼(𝑡)𝐼(𝑡 +  𝜏) ⟩

⟨𝐼(𝑡)⟩²
 

The intensity-autocorrelation function is linked by the Siegert relation9 to a field-correlation 

function as presented in Equation 36 using the baseline B and a geometry factor 𝛽. 
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Equation 36 𝐺(2)(𝜏) = 𝐵 + 𝛽[𝑔(1)(𝜏)]² 

This field-correlation function of monodisperse particles can be described with Equation 37 

featuring the decay rate 𝛤 and the passed time τ: 

Equation 37 𝐺(1)(𝜏) = exp(−𝛤𝜏) 

The decay rate 𝛤 =  𝐷𝑞2 includes the diffusion coefficient D and the magnitude of the 

scattering vector q, which is given by Equation 38: 

Equation 38 𝑞 =  
4𝜋𝑛

𝜆0
sin (

휃

2
)   

Here, n is the refractive index of the solvents, θ is the angle at which the scattered intensity 

was measured (θ = 173 °), and 𝜆0 is the wavelength of the laser in vacuum (λ0 = 633 nm). 

For polydisperse samples, the “method of cumulants” can be used. Here, the intensity-

autocorrelation function is described by Equation 39: 

Equation 39 𝐺(2) = 𝐵 +  𝛽 exp (−2𝛤𝜏) (1 + 
µ2

2!
𝜏 − 

µ3

3!
𝜏2 …)

2

 

With this method, the correlation function was fitted up to the point, where the amplitudes 

are 10% of the initial amplitude. The term (1 + 
µ2

2!
𝜏 − 

µ3

3!
𝜏2 …) was cut off at its second 

segment. Using this method of cumulants, it is possible to take into account multiple species 

in dispersion. It introduces a polydispersity index (PDI, see Equation 40) as an indicator of the 

size distribution of the particles. 

Equation 40 𝑃𝐷𝐼 =  
µ2

𝛤2
 

This polydispersity index was used to determine the standard deviation σ of the particle size 

distribution using Equation 41 with the average hydrodynamic particle diameter d. 
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Equation 41 𝑃𝐷𝐼 = (
𝜎

𝑑
)
2

 

Fluorescence Correlation Spectroscopy 

Fluorescence correlation spectroscopy (FCS) is a versatile technique that makes use of 

fluorescence intensity fluctuations to characterize the dynamics of a low number of particles 

(e.g. single molecules or nanoparticles) diffusing through a very small confocal detection 

volume. It has been used in plentiful biophysical studies and many applications in analytical 

chemistry and Biochemistry were found.10-13 FCS is ideal for measuring molecular diffusion 

and, thus, the molecular size in highly dilute solutions without any need to perturb the 

system.14,15 

Since Magde et al. demonstrated the principles of FCS in 1972 and improvements of Rigler et 

al. using confocal microscopy, FCS evolved immensely in terms of its applicability, sensitivity 

and versatility.16,17  

In FCS, information is extracted by determination of the autocorrelation function (Equation 

42) 

Equation 42 (𝜏) =
〈𝐹(𝑡)𝐹(𝑡 + 𝜏)〉

〈𝐹〉2
 

of the fluctuating fluorescence signal F(t) and fitting an physical model to the resulting 

correlation curve. In the case of free diffusion the correlation is given by Equation 43, 

Equation 43 
𝐺(𝜏) = 1 + 𝐺(0)

1

1 +
𝜏
𝜏𝐷

1

√1 +
𝜏

 𝑆2𝜏𝐷

 

where 𝐺(0) is the correlation’s amplitude, 𝑆 is the ratio between the lateral and the axial 

confocal volume radius, while 𝜏𝐷 is the mean time a particle needs to diffuse across the focal 

volume18. Knowing the width 𝜔 of the confocal volume, the hydrodynamic radius is given by 

Equation 44 
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Equation 44 𝑅𝐻 =
2𝑘𝐵𝑇𝜏𝐷

3𝜋휂𝜔2
 

using the Boltzmann constant 𝑘𝐵 as well as the temperature 𝑇 = 295 K and viscosity 휂 =

0.958 mPas of the measured aqueous suspension. 

In order to obtain a size distribution from FCS fits a Gaussian Distribution Model (GDM) fit12 

was also applied. The underlying concept of GDM is that the sample is not monodisperse with 

a single value for the diffusion time, 𝜏𝐷, but a Gaussian distribution on a fixed logarithmic 

diffusion time-scale with a peak diffusion time 𝜏𝑃. The fit to the autocorrelation function is 

described by Equation 45 

Equation 45 𝐺(𝜏) = 1 + ∑𝑎𝑖(𝜏𝐷𝑖)

𝑛

𝑖=1

1

1 +
𝜏

𝜏𝐷𝑖

1

√1 +
𝜏

 𝑆2𝜏𝐷𝑖

 

where 𝑎𝑖(𝜏𝐷𝑖) = A exp [−(
ln(

𝜏𝐷𝑖
𝜏𝑃

)

𝑏
)

2

] with relative amplitude A and a distribution width of b. 

Taking into account that Zr‐fum nanoparticles have radii comparable to the beam waist 𝜔, the 

measured diffusion time has a larger value than it would have if point particles with the same 

diffusive behavior were observed. Due to the fact that Alexa Fluor 488 labeling was applied at 

the outer surface of the nanoparticles they are fluorescing hollow spheres from the FCS view. 

The equation 𝜏𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝜏𝐷𝑝𝑜𝑖𝑛𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
⋅ (1 +

8𝑅2

3𝜔2
), taken from Wu et al. 19 was used to 

correct this finite particle size effect of hollow spheres.  
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