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xvi



Resumen xvii
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Jesús Ángel Patlán Castillo.

Candidate to the degree of Master of Science on Systems Engineering

Universidad Autónoma de Nuevo León.
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Chapter 1

Introduction

In recent years, the use of public transportation has increased, as the population

in cities and displacement from job centers to suburban areas has risen. The use

of public transport in the US increased by 21 % since 1997, which is more than

19% of the population growth rate [1]. More than 6800 enterprises provide public

transportation services in the US [1], which have invested in research for methods

to increase the e↵ectiveness of their resources to provide better performance and

quality of service for their users. Metrics of performance rely on maximizing the

number of passengers that can travel in a single transport unit and minimizing the

traveling time that passengers take. With the increase in gasoline prices and other

resources to maintain and operate transportation lines, it is critical to improve their

performance to reduce systems’ costs, which a↵ect the economy of the enterprises

that manage transportation systems and the end-user that pay for their services.

Cities work as a one, wellness of the city’s population depends on the perfor-

mance of the enterprises and people that live on it. Hospitals need their doctors and

resources to build reliable healthcare systems. Universities must have their teachers

well prepared to deal with the stress of classes and students. O�ce workers have to

maintain a good quality of service to increase the utility of the enterprises for whom

they work. We all depend on someone, and everybody must perform well so we can

all improve our quality of life.

Public transport is essential because it has a direct impact on the economy

of the city. In the US, 87% of trips are made by students and workers to reach

1
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their schools and enterprises [46]. It is a stunning quantity of people that rely on

public transportation to get to their homes and workplaces every day, proving that

not only the economy of the city depends on it, but also the lives of everyone living

on it. Without a reliable public transport system, doctors, teachers, o�ce workers,

and students may not reach their respective destinations on time. The average

time an American waits at a bus stop is 40 minutes. In a year, this waiting time

becomes 150 hours, more than six days waiting for the bus. This time could be

well used for passengers to increase their productivity at work or their times with

families, reducing their stress levels. These numbers significantly depend on the

public transportation system in the city [33].

In the US, there are estimates that every dollar spent in public transportation

returns a gain of four dollars and more than 50,000 new jobs per billion dollars in

investments [1]. Furthermore, it is ten times safer per mile to use public transporta-

tion rather than private automobiles. Public transportation is not only is safer but

also is cheaper. A family can save almost 10,000 dollars a year per car with the use

of public transport [1].

Even for people that uses their own automobile, it is much safer to use public

transport. It is estimated that public transportation is 10 times safer per mile than

traveling by automobile. Not only it is safer, but also cheaper. A family can save

almost $10,000 dollars if they decide to use public transportation and not buy a car

[1].

The use of public transportation also helps with current environmental prob-

lems. In the US, there is an estimated consumption of 4.2 billion of gasoline gallons

annually. Any reduction in gasoline consumption can also help to reduce carbon

emissions by 37 million metric tons per year [1].

Furthermore, tra�c is a severe problem that a↵ects everyone using private or

public transportation. Car drivers tend to spent 40 hours stuck in tra�c every year.

This quantity could be even higher without public transport.
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There are multiple public means of transport like the tram, suburban rail,

metro, and bus. In this work, we focus on bus lines and routes. This type of public

transport concentrates the 63% of the journeys in cities. Given that it is the most

popular public transportation service, further research could help to maximize its

e�ciency [1].

1.1 Problem description

Bus lines are one of the most used public means of transport in cities. One of the

most severe problems that occur in Bus lines is known as the Bus Bunching Problem

(BBP). BBP happens when several buses of the same route arrive at the same stop

around the same time, or when they are traveling side-by-side. BBP originates that

buses agglomerate in some parts of the journey, increasing the waiting times of pas-

sengers at bus stops. Distributing buses e�ciently along the route line is a complex

problem, mainly due to the dynamism of the environment and the partial observ-

ability of the transportation network. For example, a bus driver might accelerate to

maintain a reasonable distance from the rear bus; however, the rear bus might be as

well decelerating, creating a longer delay between both buses. Besides, the front bus

might get stuck in tra�c, provoking that the but that increased its speed to reach it,

originating the bus bunching phenomenon. This scenario is just an example of what

could happen in one part of the route, without even considering other properties of

the transportation network that a↵ect its e�ciency (e.g., passenger arrivals at bus

stops). The complexity of this problem resides in the unknown factors that might

arise during the daily work schedule of bus units and the way they interact to satisfy

the network’s demand.

There are methods to reduce bus bunching on a route. The most common

is Speed Regulation; this is, increase or decrease the speed of buses during travel.

Another strategy is Bus Holding, which introduces waiting times for buses at bus

stops [50, 21, 53]. Another alternative is skip-stop, which allows for a bus to skip
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given bus stops to maintain its speed and balance its distance from the rear bus

[24, 7, 37]. However, this strategy implies that passengers keep waiting at the skipped

stops. The last method is deadheading. Deadheading allows marking bus stops that

have a low passenger rate of arrival. A marked stop with deadheading will only be

serviced by buses with less frequency, allowing buses to arrive more frequently to

more demanding stops in the route [15, 8, 12].

By using mathematical models and, more recently, multiagent systems (MAS),

the bus bunching can be reduced, impacting directly to the user with a lower waiting

time (a better service), and indirectly to the tra�c by keeping buses spread through

the route.

1.2 Justification

As mentioned earlier, there are di↵erent methods to treat the bus bunching problem

and reduce the headway between buses in a route [3]. Most of the approaches involve

generating a solution from a linear programming problem in a specific time and use

the solution to hold (or not) the buses at a stop [23]. Some approaches are using

MAS, in which di↵erent kinds of agents interact with each other to share information

about the bus and its route, and with this, each agent can determine how much time

the bus should wait (if they should) at the next bus stop [56, 10]. Work by [9]

shows that using MAS, by distributing the bus holding decision between buses, is

more e↵ective than using linear programming. Other approaches require buses not

only to wait at bus stops but also to regulate their speed in real-time to balance the

headways [54, 41, 34, 13]. In recent years, documents related to the bus bunching

problem have increased, making this a hot topic for research, as shown in figure 1.1.
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Figure 1.1: Numbers of works related to BBP through the years

A multiagent system is a system that involves the interaction of multiple in-

telligent agents to solve a problem [52, 43]. The agents in a multiagent system work

together by communicating and performing actions based on their perspective of

the environment, making a MAS suitable for the bus bunching problem. Unknown

factors may still arise during journeys, but if an agent is controlling each bus of the

route, each one can select actions depending on the situation that the agent is. Even

if the agent cannot deal with the problem by himself, he can communicate with other

agents to decide for the best plan of action based on the information that all agents

have of the environment.

There are two main kinds of Multiagent Systems, those with a centralized ar-

chitecture and a distributed one [45]. In a centralized architecture, there is a specific

agent in charge of commanding the others based on their perspectives collected from

them. Meanwhile, a distributed architecture allows for agents to take individual

actions while communicating the results of them to other agents in the system to

enrich their views of the environment for future decisions.

For the Bus Bunching problem, we might have a centralized architecture in

which a central command receives information updates from the agents (bus units)
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in the route, generates a global model of the current situation, and orders to each

transportation unit the action to perform. A distributed architecture, on the other

hand, allows each bus unit to perform actions based on its view of the environment,

informing the front and rear closest buses about such decisions, to let them construct

their future action plans [22, 28, 47].

Given the external factors of the environment that a↵ect the bus routes, a

distributed multiagent system becomes the perfect platform to deal with the bus

bunching problem. External factors may impact di↵erently through the transporta-

tion network. Therefore, the decision-making process of the agents must consider

the closest state of the environment they perceive. Table 1.1 summarizes the most

recent works for solving the bus bunching problem and contrasts them with the

proposed research of this thesis.
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Paper Year Use

MAS

Use Bus Holding

Strategy

Use Speed-

Regulation Strat-

egy

Use Skip-Stop Use deadheading

Solving the Bus Bunching Problem with Multiagent System 2020 Yes Yes Yes Yes Yes

Real-time public-transport operational tactics using synchronized transfers to

eliminate vehicle bunching

2016 No Yes Yes Yes No

Real Time Bus Holding Control on a Transit Corridor Based on Multi-Agent

Reinforcement Learning

2016 Yes Yes Yes Yes No

Linear bus holding model for real-time tra�c network control 2015 No Yes No Yes No

A Multi-Agent Reinforcement Learning approach for bus holding control

strategies.

2015 Yes Yes No Yes No

Dynamic bus holding strategies for schedule reliability: Optimal linear control

and performance analysis

2011 No Yes Yes Yes No

A Self-coordinating bus route to resist bus bunching 2011 No Yes No Yes No

An approach to reducing bus bunching 2009 No Yes Yes Yes No

Reducing bunching with bus-to-bus cooperation
2009

No No Yes No No

Distributed architecture for real-time coordination of bus holding in transit

networks

2003 Yes

Yes

No Yes No

Table 1.1: Summary of Recents Works in BBP
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1.3 Objectives

This investigation have the following interrogatives to be answered:

1.3.1 How can multiple strategies improve the solution

of the bus bunching problem?

We expect that giving more strategies to the agents will have a positive impact on

reducing the bus bunching problem, since the agents can perform these di↵erent

strategies depending on the situation that are in the route. We expect that the

agents won’t have problems with the response time since the agents will only act

accordingly to the local state of the environment.

1.3.2 How does the communication between agents in the

multiagent system improve the solution of the bus

bunching problem?

We expect that communication between agents will improve the e↵ectiveness of the

route, since the agents will be able to communicate the external factors that arise

on the route to nearby agents, and then the agents will have a more accurately state

of the environment to take more precises decisions.

1.3.3 How does a centralized multiagent system perform

against the bus bunching problem, compared to a linear

programming model?

We expect that a centralized multiagent system will have a better performance

compared to a linear programming model. The use of a centralized multiagent

system will help in formulating the mathematical model of the current state of
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the environment, and the solution given by this model will be applied only if the

centralized agent considers that the solution obtained is acceptable for the time that

was formulated.

1.3.4 How does a distributed multiagent system performs

against the bus bunching problem, compared to a linear

programming model?

We expect that a distributed multiagent will have better performance compared to

a linear programming model. Similar to the centralized architecture, the distributed

model will also use an agent that will decide if the solution given by the model is

acceptable for the current time.

1.3.5 How can a multiagent system improve the solution

of the bus bunching problem compared to linear

programming?

We expect that the implementation of multiagent system gives a better performance

than using a linear programming model, since the multiagent system can take into

account the di↵erent external factors that may arise during the route. It is possible

to model external factors through a linear programming model, however, it is too

complex to model every external factor that can a↵ect the route, and when we

aggregate more variables to the problem we tend to have a model that can take

more time solve. Increasing the time that the solver takes to solve the problem might

impact on the performance if the solution given by the model becomes infeasible on

the new current state.
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1.3.6 Does the distributed multiagent system performs

better than the centralized multiagent system in

dealing with the bus bunching problem?

We expect that the distributed multiagent system will perform better than the cen-

tralized multiagent system. This is because the distributed architecture will take into

account the decisions taken by the centralized agent, and will give the bus agents the

will to decide if the commanded action is the adequate based on their local updated

perspective of the environment, which will be a better view of the state than the

one the centralized agent has.

1.3.7 Hypothesis

In general, we expect that the implementation of the multiagent system with multiple

strategies to deal with the bus bunching problem and the communication architecture

of the multiagent system will minimize the passengers waiting times compared with

linear programming using a single strategy. The multiagent system with multiple

strategies is expected to make the agents to work together to reduce the bus bunching

phenomenon, increasing the e↵ectiveness of the route during the dailybus schedules.

For this, we will perform multiple tests based on various configurations of what a

bus route might have: the numbers of buses on the route, the number of stops at

the route, the distances between bus stops, and the boarding and dwelling rate of

passengers at each stop.

1.3.8 Thesis Structure

Chapter 2 explains the basic definitions used in the thesis. Chapter 3 introduces

the literature review of the bus bunching problem. Then, Chapter 4 presents the

methodology used to design the proposed architecture for the Multiagent system.

Chapters 5, 6, and 7 introduce the di↵erent components of our solution: the sim-
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ulation platform, the centralized architecture, and the distributed MAS. Chapter 8

presents and analyses the results of the proposed work. Finally, Chapter 9 presents

conclusions and future research directions. Additionally, Appendix A presents the

system BusiMA, the multiagent system developed during this research, with instal-

lation instructions.



Chapter 2

Theoretical Framework

This chapter introduces all the definitions and terms used throughout the rest of

the thesis. For any in-depth explanations about the background work, we suggest

taking a look at the bibliography provided.

2.1 Conceptual Framework

A simulation is the imitation of the operation of a real-world process or system over

time [2]. With simulations, we can tests how mathematical models and algorithms

may respond to a real-world scenario, to evaluate if they may have a positive impact

before implementing them [42].

A probability distribution for a discrete random variable is defined as a math-

ematical formula that gives the probability of each value of the variable [17]. Par-

ticularly, a Poisson distribution is a probability distribution, given by:

p(r;µ) = µre�µ

r!

Where the variable r is an non-negative integer and the parameter µ is a real positive

quantity. It describes the probability to find exactly r events in a given length of

time if the events occur independently at a constant rate µ [49]. It is one of the most

important probabilistic distributions since it has multiple applications [29]. In this

work, we use a Poisson distribution to simulate the rate of passengers that arrive at

12
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each stop in a bus route, since Poisson distribution has been used to simulate these

arriving rates in previous works [38, 23].

Linear programming is concerned with the optimization of a linear function

while satisfying a set of linear equality and/or inequality constraints or restrictions

[4]. Linear programming has been used to deal with the bus bunching phenomenon

[23, 38].

One way to deal with bus bunching problem is using multiagent systems [57, 35,

27]. These systems contain multiples agents, each one being a reactive system that

exhibits some degree of autonomy, which means that the agents decide the actions

that will perform to solve a set of tasks in an environment [6]. The characteristics

of agents are:

• Autonomy: An agent is autonomous since they decide which actions take to

solve given tasks. One way to represent the “will” of an agent is by the belief-

desire-intention (BDI) model programmed to the agent, which we will talk

later.

• Proactiveness: An agent is proactive by being able to exhibit an intention to

reach given goals, which means that the agent will take the necessary actions to

execute a set of tasks to reach the goal. This is also decided by the programmed

BDI model of the agent.

• Reactivity: An agent is reactive if they can take actions when the environment

evolves. When an external factor of the environment modifies in any way the

action plan of the agent, the agent must be ready to respond by modifying

correctly the plan or by developing a completely new plan to solve the task.

• Social ability: An agent has social ability when he exchanges information with

other agents. Having a social ability is the core property of a multiagent

system, because by exchanging information with multiple agents, they can

cooperate to develop a richer plan by having a better idea of how the whole
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environment currently is.

The belief-desire-intention model is the “brain” of the agent. An agent takes

decisions based on the following three concepts [6]:

• Beliefs: The beliefs of the agent is the information that it has about the world.

This information may or may not be correct or accurate. Beliefs on the multi-

agent system allows the agents to take decisions based on what they think the

current environment is. This property allows the simulation to have a more

precise behaviour, as required to model public transportation networks.

• Desires: The desires of the agent are all the a↵airs that the agent might want to

accomplish, meaning that the agent will probably complete these a↵airs, but in

some cases the agent probably will not. In addition, one agent can have desires

that are mutually incompatible with one another. For example, in our work,

desires correspond to the distances between bus units encouraged to maintain

to reduce Bus Bunching. Such desires might trigger actions (intentions) in the

agents to overcome the problem.

• Intentions: The intentions of the agent are the actions selected for execution

among all the possible options. Based on the beliefs that the agent has on

the environment and the desires that it has, each agent will have an intention

to perform certain action to accomplished their desires. Nevertheless, even if

an agent has the intention to perform an action it may fail to execute it. For

example, an agent might want to increase the speed of the bus, but the tra�c on

the avenue may not allow it to increase any further. In these scenarios, agents

might take contingency actions to mitigate problems in the environment.
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Related Work

3.1 Background

The first strategy used to deal with bus bunching is control models. Newell and Potts

(1964) recognized the instability of bus systems, and years later Newell and Osuna

worked together to add slack time to maintain the buses on a schedule [36, 39]. Since

then, multiple works have used di↵erent control models to reduce the bus bunching

phenomenon. Li, Liu, Yang and Gao (2019) recent work used a robust dynamic

control model with the strategies of bus holding and speed control to deal with the

bus bunching phenomenon [30].

Multiple studies have concluded that people value more the time spent waiting

for a bus at a stop than the time spent on the bus [31, 5, 14]. This observation

highlights the users’ perspective on how buses must operate by giving more value to

taking stops rather than skipping them. However, several works have used skip-stop

strategies to reduce bus bunching. Cao, Zhichao, and Ceder (2019) recently proposed

a skip-stop strategy based on service timetables [7]. Another strategy similar to

skip-stop is called deadheading. Yu, Yang, and Li (2012) proposed deadheading

divided into two di↵erent phases: reliability assessment of further transit services

and optimization of pathway deadheading operation [55].

Hernandez-Landa et al. (2015) proposed a linear model to establish the bus

holding times that buses must perform at stops to reduce bus bunching [23]. Olvera

15
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(2018) introduces another linear model that decreases bus bunching in time windows

[38]. Gkiotsalitis and Cats (2019) also introduced a mathematical model that im-

plements discrete nonlinear constrained optimization to control bus holdings in time

windows [19].

In recent years, there are proposals of multiagent based solutions. Wang and

Sun (2020) model agents in every bus unit in their network with communication

capabilities between them, and develop a multiagent deep reinforcement learning

framework as a control strategy for the buses [50]. Weiya Chen, Zhou, and Chunxiao

Chen (2016) presented a coordinated holding control framework based on multiagent

reinforcement learning to reduce bus bunching [10]. Zhou, Wang, and Cui (2017)

use a distributed scheduling strategy, using an agent on every bus, to recollect its

necessary information [57].

3.2 Patents

The flexible fare bus framework is a patent used to reduce bus bunching by dynam-

ically adjusting the headway-threshold between buses depending on the passengers’

demand. The proposed FlexiFare algorithm specifies the headway that each bus

must have on the route. In figure 3.1, we can see a diagram of its functionality

preprinted from its source [51].
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Figure 3.1: Flexible fare bus framework

The automated system for preventing bus bunching is another patent that

reduces the bunching between vehicles by sharing information between them and by

specifying the holding times and speeds they must have during travel. On the driver

interface, the bus driver can check how much time must hold at a stop. Figure 3.2

represents the driver interface preprinted from its source [44].
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Figure 3.2: Automated system for preventing vehicle bunching

The real-time vehicle spacing control detects when vehicle bunching occurs

and resolves it by regulating the arrival and departure times of vehicles at stops [32].

Figure 3.3 shows a summarized functionality of the patent retrieved from its source

[44].
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Figure 3.3: Real-time vehicle spacing control



Chapter 4

Methodology

In the previous chapter, we introduced some related works for solving the Bus Bunch-

ing problem using Multiagent systems (MAS). One distinctive di↵erence between

those works and the one proposed in this thesis is the number of strategies supported

to address the problem. The most popular technique supported in the literature is

Bus Holding. Even a MAS using a unique method shows positive results in solving

the problem. With this information in mind, we consider alternative algorithms

that could enrich the MAS paradigm. In particular, Table 4.1 shows recent strate-

gies identified in the literature. The original implementation of the methods falls

under di↵erent methodologies like linear programming, stochastic processes, Markov

chains, and mathematical modeling [30, 31, 5, 50]. We analyzed these methods in the

context of Multiagent systems. Table 4.1 shows a brief justification of why we believe

a MAS can use and improve over the problem-solving strategy from the literature.

20
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Strategy Description How can the MAS improve it

Bus holding Holds a

bus in a

stop for

some time

to adjust

the route

The B-Agent could com-

municate with nearby B-

Agents to determine if it

should hold for a particular

time in a stop

Speed regulation Regulates

the speed

of the bus

by increas-

ing it or

decreasing

it

The B-Agent could com-

municate with nearby B-

Agents to determine if it

should increase or decrease

its speed to adjust their

headway

Skip-stop Commands

a bus to

skip a

particular

stop

The CP-Agent could com-

mand a particular B-Agent

to skip a stop

Deadheading A stop is

marked in

such a way

that 1 out

of every n

(depend-

ing on

demand)

buses

make a

stop

The CP-Agent could com-

mand the buses of the

route to program which stop

should be implemented the

deadheading strategy

Table 4.1: Strategies to deal with BBP.
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4.1 Programming Architecture

We used the Java Programming language [11] and JASON libraries [26] to build a

MAS architecture and platform simulation for the proposed solution. Furthermore,

we also consider libraries from Gurobi to solve the mathematical models used by the

MAS. The design of the MAS system is scalable to update it to further strategies

or new environmental factors in the future. The system is also flexible since it

supports several configurations to evaluate it under di↵erent scenarios. The di↵erent

configurations of the MAS are:

• Initial Configuration: The initial configuration consists of a given number of

agents of each type, the number of bus stops to be considered in the route, the

distances between each pair of stops, and the strategies the agent can use to

execute a new simulation.

• Agents Configuration: The agent configuration builds upon a generic bus class,

which di↵erent types of agents inherit. Therefore, it is possible to create mul-

tiple kinds of bus agents with di↵erent strategies, BDI architecture, capacity,

and speed limits, among other factors. In the current version of the multiagent

system, every bus agent shares the same characteristics.

• Environmental Configuration: The environment configuration allows us to rep-

resent those factors from the environment that interact with the MAS. For

example, there could be some links between stops in which tra�c speeds vary

or become unavailable due to random events in the environment. Such envi-

ronmental settings have the purpose of modeling more realistic environments

in the simulation platform and verifying the e↵ectiveness of the implemented

strategies under di↵erent circumstances. The evaluated version of the multi-

agent system, for the thesis work, does not consider dynamic environmental

factors.
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• Configuration of Strategies: In this part, we can add new strategies for bus

agents to interact with the environment. This configuration defines the types

of agents that can perform a given method, the information that agents need to

use the strategy, and the requirements needed to apply the strategy procedure.

Notice that this configuration must be compatible with the environmental

setting to work since the agent must be capable of obtaining information from

the environment.

• Route Configuration: The route configuration involves the possible speed limits

between a pair of bus stops and the number of edges available between them.

• Daily configuration: This configuration involves global settings that could

change depending on the planning horizon. The global settings are the cur-

rent speed limits between stops, the rate of passengers arriving at stops, the

maximum number of agents that can be on the route. There could be multiple

configurations for any amount of days that the user might want to simulate.

For example, there could be a weekday configuration, weekend configuration,

or a holiday configuration to enact days in which holiday events could occur,

which can a↵ect parts of a route. In the current version of the multiagent

system, we run single day configurations.

4.2 Multiagent Model

4.2.1 Objective Function

Mathematical models given to solve the BBP focus on minimizing the passengers

waiting time [23, 56] or minimizing the deviation headways [9, 54, 34, 10, 3]. This

particular model focus on minimizing the passenger waiting time.
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4.2.2 Model Diagram

In the figure 4.1 and 4.2, we can observe how the actions of each agent interact with

each other along with the environment.

Figure 4.1: Buses communication model.



C
h
a
p
t
e
r
4
.
M
e
t
h
o
d
o
lo

g
y

2
5

Figure 4.2: Full model diagram.
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4.2.3 Multiagent Architecture

We propose two di↵erent architectures to deal with the bus bunching problem, a

centralized and a distributed architecture. Most of the operations, in both of the

architectures, will be trigger on a control point agent (CP-Agent) to coordinate the

B-agents on the field when external factors a↵ect them. The B-agents will control

their bus actions and their communications with the CP-Agent and other adjacent

B-Agents in the route (i.e., the next and previous buses).

4.2.4 Properties of the Multiagent Environmental Model

Partially Observable

The agents can only get information about their environment by using their sensors,

and such information might not be correct. In the case of a bus route, it is impossible

to know in advance every variable from the environment a↵ecting the transportation

network. Sensors on the bus can help to gather information about the number of

passengers currently on the bus, the current tra�c near the bus, and the number of

people left at the stops where the bus went through. However, it is impossible to

know in advance the people waiting at the next stop unless other buses communicate

that information.

Dynamic

The environment is dynamic since multiple factors or problems, outside the control

of the agent, can alter it. Some of these problems are tra�c on the route, flow

of passengers, and tra�c accidents. Many of these factors cannot explicitly be

enumerated, much less coded. Therefore, in our approach, we design agent plans

solely based on information agents obtain from the routes.
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Continuous

The environment is continuous since the environment is always changing, no matter

if the agents take an action or not. Even if a bus stops working, the other buses

must keep acting accordingly to the changes of the environment and must take into

account the bus that stopped working.

Stochastic

Although the environment is dynamic, it is not stochastic. Every action in the

model has deterministic outcomes, and at this version of the framework, we are not

modeling yet failure.

Sequential

The environment is sequential since an action taken by a B-agent will a↵ect its

position on the route and thus its future actions. Notice also that actions of agents

(i.e., buses) have implications on the environment and in other agents.

4.2.5 Types of Agents

There will be two kinds of agents:

• Control Point Agent : The control point agent (CP-agent) is a singleton

agent from the model, who is in charge of coordinating the bus agents in

case of exogenous events. A CP-agent receives information from bus agents

to sketch action plans for them. For example, if the CP-Agent knows that a

particular bus stop has a low flow of passengers, it could send a signal to bus

agents in the route to skip it (i.e., deadheading strategy).

• Bus Agent : The bus agent (B-agent) controls the bus actions; that is, increasing

or decreasing the speed of the bus unit, stopping at or skipping bus stops.
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Besides, they also communicate valuable information for coordination from

the route to the CP-Agent, like passenger flow and tra�c situation. They

can also exchange messages with other nearby B-Agents to inform about their

location and current speed.

4.2.6 Agent’s Actions

• Control Point Agent : The CP-agent actions can be seen by figure 4.3

[Remove bus]: The CP-agent removes an agent from the route.

[Add bus]: The CP-agent adds a bus to the route,

Figure 4.3: CP-agent actions.

• Bus Agent : The B-agent actions can be seen by figure 4.4
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[Bus hold]: This action holds a bus at a stop for a period of time.

[Regulate Speed]: Increases or decreases the speed of a bus

[Skip-stop]: Skips the next stop in the route

Figure 4.4: B-agent actions.

4.2.7 Agent’s Communication

• Control Point Agent :

[Deadhead Signal]: The CP-agent communicates to the B-agents about a

specific deadhead stop.

[Skip-stop Signal]: The CP-agent communicates to a B-agent to skip a

particular stop.
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[Regulate Speed Signal]: The CP-agent communicates to the B-agents to

regulate their speed by increasing or decreasing it.

• Bus Agent :

[Status Signal]: The B-agent sends its current status to the CP-agent:

”OK” status, ”Remove” status. The ”OK” status indicates when the bus

is currently available to perform any action, meanwhile the ”Remove” status

determines when the bus ends their activities on the route.

[Tra�c Status]: The B-agent communicates to the CP-agent about the

tra�c in the current position: ”Heavy”, ”Medium”, ”Light”.

4.3 Software Architecture

The system is developed in Java [11] with the libraries of Jason and Gurobi. Jason

[26] integrates the multiagent system and Belief-Desire-Intentions model aspects to

the program, and the Gurobi [20] library is used to solve the mathematical models

that are used in the system. Java is used as the bridge between these two libraries and

to support the simulation environment of the transportation network. Additionally,

code developed in Python[48], and the Matplotlib library[25], were used to graph the

result data given the multiagent system. Figure 4.5 shows the connections between

the libraries.
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Figure 4.5: Software Architecture.

The system was developed in 3 phases, in each phase we integrate a new

paradigm to the simulation until we have the full multiagent system. We con-

struct the simulation platform and the MAS system incrementally to evaluate the

characteristics of the environment and the strategies of the agents.

4.3.1 Phase 1: Bus System Simulation

Figure 4.6 shows a diagram of the architecture of the MAS system and simula-

tion environment build in the first phase of development. In this phase, agents are

”dummy” in the sense that they cannot decide on their actions. The job of the agents

in this phase is to carry out the assigned tasks, from the mathematical model, in the

simulation environment. The objective of this phase is to construct the baseline for

our experimentation; that is, the mathematical model without any agent decision.
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Figure 4.6: Phase 1: Bus System Simulation

4.3.2 Linear Model for Bus holding

The system has two di↵erent mathematical models for the bus holding: the first one

modeled by Citlali Olvera [38] for a bus rapid transit system, and the second one is

a modified version of the same model. This second version lacks of the restriction

of overtake between buses, making it a case scenario of a single bus route system.

In table 4.2 we can see the variables of this model and table 4.3 summarizes the

mathematical model.
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Linear Model Variables Description

K Number of buses

S Number of stops

xkj Number of passengers that aboard the bus k at stop j

ykj Number of passengers that descends from the bus k at

stop j

zkj Number of passengers that desire to aboard bus k at

stop j

mj Time that bus j takes to reach next stop

d0k Distance between bus k and its last visited stop at time

t0

s(k) Last stop that bus k has visited at t0

c0s Number of passengers waiting at stop s at time t0

tdks Departure times of bus k at stop s

↵ Proportionality constant that descends from the buses

� Proportionality constant that enters to the buses

�j Ratio of passengers that descends from the bus j

� Maximum holding time

�S Passengers arrival time (Deterministic)

M Big value auxiliary variable

Rkj, Qkj Auxiliary variables

Ikj Gap between two consecutive buses k and k+1 at stop j

rkj1, rkj2 Auxiliary binary variables

Tol Allowed time that buses have to reach or get behind a

bus

Decision Variable Description

hks Holding times for each bus k at stop s

Table 4.2: Mathematical Model Variables.
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Linear Model Restrictions Description

dkj = dkj�1 +mj + �xkj + ↵ykj + hkj Departure time from the buses

dks(k)+1 = dks(k) +ms(k) �m0
k + �xks(k)+1 + ↵yks(k)+1 + hks(k)+1 Buses departure schedule

hkj < � Maximum holding time

zkj = w0
j + �j(dkj � t0)�

Pk�1
k0wheres(k0)�s(k) xk0j Number of passengers that desire to aboard each bus

xkj  zkj �
P

xk0j Departure before bus k and have not reach yet stop j

xkj  c� c0k +
Pj

j0=s(k)+1(ykj0 � xkj0) Departure before bus k and have not reach yet stop j

xkj � (zkj �
P

xk0j)� c(1� rkj1 Departure before bus k and have not reach yet stop j

xkj � (c� c0k +
Pj

j0=s(k)+1(ykj0 � xkj0))�M(1� rkj2) Departure before bus k and have not reach yet stop j

rkj1 + rkj2 = 1 Departure before bus k and have not reach yet stop j

ykj = �j(c0k +
Pj

j0=s(k)+1(ykj0 � xkj0) Number of passengers that descends from stop j

dkj � d(k�1)j Restriction of overtake between buses

Rkj � 0 Allowed time that buses have to reach or get behind a bus

Rkj � �Ikj � Tol Allowed time that buses have to reach or get behind a bus

Qkj � 0 Allowed time that buses have to reach or get behind a bus

Qkj � �Ikj � Tol Allowed time that buses have to reach or get behind a bus

Objective Function Description

min
P|K|�1

k=1

P|J |�1
j=1 Rkj +Qkj Aims to keep the same distances between buses

Table 4.3: Summary Mathematical Model



Chapter 4. Methodology 35

4.3.3 Phase 2: Centralized Multiagent System

Figure 4.7 shows the architecture of the system built during the second phase of

the project. The architecture integrates one of the essential characteristics of a

MAS, the communication. For the first time, we have the two types of agents

represented in the architecture, the CP-Agent, and the B-Agent. In this phase,

the CP-Agent is in charge of communicating actions to the B-Agents to reduce the

Bus Bunching phenomenon. As mentioned earlier, the CP-Agent can command bus

holding, skipping-stops, or deadheading actions to the B-Agents. B-Agents are not

”dummy” anymore, because they can decide if they follow the requests of the CP-

Agent. B-Agents are aware of the environment in this phase, so they have more

accurate local information on the bus network to react accordingly. Contradicting a

request from the CP-Agent could improve the performance of the system, given the

dynamic factors of the environment. The objective of this phase is to analyze how

communications and awareness impact the performance of the MAS.
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Figure 4.7: Phase 2: Centralized Multiagent System

4.3.4 Phase 3: Distributed Multiagent System

The last phase, seen in Figure 4.8, enables full functionality on B-Agents. In this

phase, B-agents can make intelligent decisions based on what they perceive from their

environment. In other words, they enact their plans to reduce the Bus Bunching

present in the system. B-Agents can communicate information to the CP-Agent,

which makes the communication bidirectional. Information from B-Agents helps to

deliver a more accurate view of the system at any given point in time, which allows

the mathematical models to generate better action plans.
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Figure 4.8: Phase 3: Distributed Multiagent System
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Phase 1: Bus System simulation

5.1 Introduction

The first phase of the system implements the bus system simulation platform and

environment. It lacks any agent functionality. However, the objective of this phase

is to evaluate di↵erent mathematical models to reduce bus bunching on the same

simulation platform that our MAS will use. Therefore, this phase constructs the

baseline system for comparing the performance of the MAS approach. In this chap-

ter, we explain the algorithm for the simulation of the bus system and analyze the

results of using two di↵erent mathematical models. The first model represents a bus

rapid transit network, while the second one models a regular public bus transport

system.

5.2 Initial Instance Configuration

The input to the simulation is a set of parameters. The parameters and their values

are provided to the system in an initial configuration file. Table 5.1 shows the

parameters and their descriptions. Notice that the set of parameters increase the

flexibility of the simulation environment and overall system, since di↵erent scenarios

could be analyzed and empirically evaluated.

38
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Table 5.1: System Configuration.

Parameter Description Input

Snapshot time Initial time Integer

Number of Stops Number of stops in the route Integer

Bus Capacity Capacity of each bus Integer

Max Holding Time Maximum holding time at the stops Integer

Aboarding Time Time that takes 1 passenger to aboard Decimal

Descending Time Time that takes 1 passenger to descend Decimal

Release Time Ticks needed to release the next bus to the route Integer

Simulation End Time Simulation end time Integer

Bus Holding Period Ticks to call the bus hold solver Integer

Buses Overtake If the overtake is allowed Boolean

Circular Route If a circular route is allowed Boolean

Bus Holding Method Name of the method defined in the code String

Arriving Rates Arriving rates at each stop Array[Decimal]

Descending Rate Descending rates at each stop Array[Decimal]

Distance Between Stops Distance between each stop Array[Integer]

Buses Position Initial position of each bus Array[Integer]

5.3 Bus System Simulation

The simulation algorithm, shown in algorithm 1, consists in 7 main steps which are

repeated until the simulation reaches its endTime.
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Algorithm 1: Bus System Simulation

1 currentTime=0;

2 while currentTime  EndT ime do

3 if currentTime % releaseTime == 0 then

4 activeNextBus();

5 end

6 if currentTime % busHoldingPeriod == 0 then

7 solveBusHolding();

8 end

9 simulateStopArives();

10 simulateBusHolding();

11 simulateBusPosition();

12 simulateBusDescend();

13 simulateBusAboard();

14 currentTime=currentTime+1;

15 end

16

The activeNextBus() function, shown in algorithm 2 releases a new bus in the

system until the system reaches its maximum capacity of buses. The release of

every bus depends on the releaseTime parameter which is specified in the initial

configuration.

Algorithm 2: activeNextBus()

1 for bus in listBuses do

2 if !bus.isActive then

3 b.isActive=true;

4 break;

5 end

6 end

The solveBusHolding() function solves the bus bunching of the current envi-
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ronment snapshot. The model to solve the bus bunching and the busHoldingPeriod

are parameters specified in the initial configuration.

The simulateStopArrives() function, shown in algorithm 3 simulates the arrival

of people at every stop using a Poisson distribution function. The parameters of the

Poisson distribution are specified for every stop in the initial configuration.

Algorithm 3: simulateStopArrives()

1 for stop in listStops do

2 stop.simulateArrive();

3 end

The simulateBusHolding() function, shown in algorithm 4 simulates the bus

holding of every bus in the system that is currently at a stop. The bus holding time

is generated by the solver. The maximum bus holding time is a parameter specified

in the initial configuration.

Algorithm 4: simulateBusHolding()

1 for bus in listBuses do

2 if bus.isOnStop() and bus.mustHold then

3 b.isBusHolding=true;

4 else

5 b.isBusHolding=false;

6 end

7 end

The simulateBusPosition() function, shown in algorithm 5 simulates the bus
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position every time. If the bus is performing a bus hold, then is doesn’t move.

Algorithm 5: simulateBusPosition()

1 for bus in listBuses do

2 if !bus.isBusHolding() then

3 b.position=b.position+1;

4 end

5 end

The simulateBusDescend() function, shown in algorithm 6, simulates the de-

scend of passengers from the bus. The initial configuration indicates the number of

passengers that get o↵ at each stop.

Algorithm 6: simulateBusDescend()

1 for bus in listBuses do

2 if bus.isOnStop() then

3 b.passengers*=b.descend;

4 end

5 end

The simulateBusAboard() function, shown in algorithm 7 simulates the aboard

of passengers from the bus. The number of passengers that aboard in each stop is

specified in the initial configuration.

Algorithm 7: simulateBusAboard()

1 for bus in listBuses do

2 if bus.isOnStop() then

3 b.passengers*=b.aboard;

4 end

5 end
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5.4 Results

We designed three di↵erent scenarios for evaluation. The first two scenarios use

artificial data. The third scenario uses real routing data from the Ecovia network

from the city of Monterrey, Mexico [38, 16]. The objective of these tests is to analyze

the impact that the mathematical model solution has on the simulation, based on

average headway. To do so, we generate multiple evaluation instances, modifying

the number of bus-holding solver calls.

Stops 10 10 10 10 10

Buses 7 7 7 7 7

Bus holding solver calls 0 2 4 6 15

Bus Alight 0.15 0.15 0.15 0.15 0.15

Bus Dwell 0.25 0.25 0.25 0.25 0.25

Overtake FALSE FALSE FALSE FALSE FALSE

Circular FALSE FALSE FALSE FALSE FALSE

Average Headway 1.379 1.379 1.386 1.379 1.379

Average Passengers Waiting Time 72.38 72.38 71.24 72.38 72.38

Table 5.2: Experiment 1: Bus Rapid Transit Instance 1
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Stops 10 10 10 10 10

Buses 7 7 7 7 7

Bus holding solver calls 0 2 4 6 15

Bus Alight 0.25 0.25 0.25 0.25 0.25

Bus Dwell 0.35 0.35 0.35 0.35 0.35

Overtake FALSE FALSE FALSE FALSE FALSE

Circular FALSE FALSE FALSE FALSE FALSE

Average Headway 1.572 1.593 1.572 1.572 1.572

Average Passengers Waiting Time 70.14 69.78 70.14 70.14 70.14

Table 5.3: Experiment 2: Bus Rapid Transit Instance 2

We can see in Tables 5.2 and 5.3 the input parameters and aggregated results

for a rapid bus transit network. Notice that increasing the times taken at bus stops

(by alighting and dwelling) tends to increase the average headway between buses.

Furthermore, it appears that the calls to the mathematical model do not have a

significant impact either on the headway factor or the average passenger waiting

times.

Stops 10 10 10 10 10

Buses 7 7 7 7 7

Bus holding solver calls 0 2 4 6 15

Bus Alight 0.15 0.15 0.15 0.15 0.15

Bus Dwell 0.25 0.25 0.25 0.25 0.25

Overtake TRUE TRUE TRUE TRUE TRUE

Circular TRUE TRUE TRUE TRUE TRUE

Average Headway 0.641 0.641 0.779 0.938 0.641

Average Passengers Waiting Time 84.38 84.38 83.79 83.08 84.38

Table 5.4: Experiment 3: Public Bus Transport Instance 1
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Stops 10 10 10 10 10

Buses 7 7 7 7 7

Bus holding solver calls 0 2 4 6 15

Bus Alight 0.25 0.25 0.25 0.25 0.25

Bus Dwell 0.35 0.35 0.35 0.35 0.35

Overtake TRUE TRUE TRUE TRUE TRUE

Circular TRUE TRUE TRUE TRUE TRUE

Average Headway 1.007 1.007 1.007 0.945 0.945

Average Passengers Waiting Time 84.38 84.38 83.79 83.08 84.38

Table 5.5: Experiment 4: Public Bus Transport Instance 2

Tables 5.4 and 5.5 show the results of a bus route transit system where buses

can overtake other units in the route. Notice this time that, when overtaking is

allowed, the number of times we invoke the mathematical model does not have any

e↵ect in reducing the average passenger waiting time. However, increasing the time

buses spend at bus stops tends to increase the headway. It makes sense since the

longer buses stay idle higher the distance they get separated from other units.

Stops 40 40 40 40 40

Buses 10 10 10 10 10

Bus holding solver calls 0 2 4 6 15

Bus Alight 0.07 0.07 0.07 0.07 0.07

Bus Dwell 0.07 0.07 0.07 0.07 0.07

Overtake FALSE FALSE FALSE FALSE FALSE

Circular FALSE FALSE FALSE FALSE FALSE

Average Headway 1.629 1.624 1.629 1.731 1.629

Average Passengers Waiting Time 111.28 112.43 111.28 109.76 111.28

Table 5.6: Experiment 5: Bus Rapid Transit Ecovia Instance 1
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Stops 40 40 40 40 40

Buses 10 10 10 10 10

Bus holding solver calls 0 2 4 6 15

Bus Alight 0.14 0.14 0.14 0.14 0.14

Bus Dwell 0.14 0.14 0.14 0.14 0.14

Overtake FALSE FALSE FALSE FALSE FALSE

Circular FALSE FALSE FALSE FALSE FALSE

Average Headway 1.838 1.848 1.843 1.838 1.838

Average Passengers Waiting Time 115.46 112.42 113.03 115.46 115.46

Table 5.7: Experiment 6: Bus Rapid Transit Ecovia Instance 2

Table 5.6 and 5.7 display the results of the rapid transit network Ecovia Mon-

terrey [16] using real system data [38]. Given that this is a rapid transit via, the

alighting and dwelling times are short. This time the average headway is higher, as

well as the average passenger waiting times.
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(a) Experiment 1: 0 Calls

(b) Experiment 2: 2 Calls

Figure 5.1: Public Bus Transport Experiments

Figures 5.1a, 5.1b, 5.2a, 5.2b, 5.3a and 5.3b show the average headway between

bus units across the simulation horizon time. 5.1a and 5.1b correspond to the first set

of experiments (i.e., the rapid bus transit network with artificial data). Notice that,

at some point in the simulation, the bus bunching phenomenon becomes critical. Just
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calling the mathematical model at least two times helps in increasing the headway

between buses at the end of the planning horizon.

(a) Experiment 3: 0 Calls

(b) Experiment 4: 6 Calls

Figure 5.2: Rapid Bus Transit Experiments

Figures 5.1b and 5.2a, from the bus routing system, show similar behavior, in-

dependently of the number of calls to the mathematical model. Notice that, because
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overtaking is allowed, buses start sooner a second journey.

(a) Experiment 5: 2 Calls

(b) Experiment 6: 6 Calls

Figure 5.3: ECOVIA Experiments



Chapter 6

Phase 2: Centralized

Multiagent System

The second architecture involves the implementation of the centralized architecture

of the multiagent system. In this model, the CP-agent can take decisions based on

the environment information that B-agents sends. With the information received

from the agents, the CP-agent commands each B-agent to perform a specific action

to reduce the bunching that the buses create during the route. The decision of what

actions will the agents perform depends on the headway tolerance range, which

is the relative distance that each bus has with respect to its front and rear bus.

Another important aspect that this architecture adds is that every B-agent keeps its

state as dummy, this is, any action that the CP-agent commands to perform will be

performed by the B-agent blindly (except if by any reason is incapable of doing it).

This chapter will resume important theoretical aspects of the architecture and new

experimental results using the same experimental design than the previous chapter.

6.1 Communication between agents

The communication between agents in the architecture is bidirectional. B-Agents

send information to the CP-Agent regarding their current speed, position, and the

number of passengers aboard. Meanwhile, the CP-Agent commands actions to B-

Agents that could perform in their current state. It is important to note that the

50
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CP-Agent will only send this information when every single one of the B-Agents of

the route has transmitted their information since partial facts might lead to wrong

decisions. In this architecture, the B-Agents are dummies in the sense that they do

not reason or object to the decisions that the CP-Agent sends to them.

6.2 Headway Tolerance Range Metric

In the Centralized MAS architecture, the CP-Agent can carry decisions based on

the information received from B-Agents. To do so, the CP-Agent needs to estimate

how close are B-Agents to incur in bus bunching situations. We introduce, in this

chapter, the Headway Tolerance Range (HTR) metric to prevent Bus Bunching. The

HTR metric computes, for a given bus, a relative distance to the front and the rear

bus adjacent to it. Then, we use this estimate to catalog the buses in the route with

a risk of incurring in bus bunching. The metric first calculates the distance from the

rear bus to the front. Then, we take the midpoint of this distance, which we believe

is the ideal distance that needs to be maintained along the route to reduce the bus

bunching phenomenon. The HTR metric uses this midpoint estimate to compute

a tolerance range to the adjacent buses in the line. For the case when the HTR

metric is 0% to the front bus in the line, then that implies that there is almost no

distance between the current bus to the front bus, which is likely to induce the bus

bunching phenomenon. On the other hand, if the HTR is 50%, then the current

bus is actually at the midpoint, maintaining a stable headway balance between the

neighboring buses. The CP-Agent uses the HTR metric to trigger actions to B-

Agents. If a given B-Agent maintains a good HTR to the adjacent buses, then the

CP-Agent might issue the order to maintain its speed. Figure 6.1 shows graphically

the di↵erent scenarios that could occur between B-Agents and the potential actions

to maintain a reasonable HTR estimate. Notice that if B-Agents have a small HTR

percentage estimate to the front bus, then the CP-Agent may request it to slow

down or to bus-hold at the next stop. On the other hand, a small HTR to the rear

bus might trigger the action to speed up or skip-stop if the bus stop is ahead of it.
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Figure 6.1: Control Point Agent planning.

6.3 Results

The results shown below in tables 6.1,6.2,6.3 are based on the same instances data

that we used in the previous phase, with the addition of the HTR variable for the

centralized model:
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Stops 10 10 10

Buses 7 7 7

Bus holding solver calls 15 15 15

Bus Alight 0.15 0.15 0.15

Bus dwell 0.25 0.25 0.25

Overtake TRUE TRUE TRUE

Circular TRUE TRUE TRUE

HTR 10% 20% 30%

Average Headway 4.103 2.613 1.724

Average Passengers waiting time 47.84 57.52 64.33

Table 6.1: Experiment 1: Public Bus Transport

Stops 10 10 10

Buses 7 7 7

Bus holding solver calls 15 15 15

Bus Alight 0.15 0.15 0.15

Bus dwell 0.25 0.25 0.25

Overtake FALSE FALSE FALSE

Circular TRUE TRUE TRUE

HTR 10% 20% 30%

Average Headway 3.882 3.517 2.213

Average Passengers Waiting Time 50.24 53.67 60.13

Table 6.2: Experiment 2: Bus Rapid Transit
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Stops 40 40 40

Buses 10 10 10

Bus holding solver calls 15 15 15

Bus Alight 0.14 0.14 0.14

Bus dwell 0.14 0.14 0.14

Overtake FALSE FALSE FALSE

Circular FALSE FALSE FALSE

HTR 10% 20% 30%

Average Headway 9.35 9.314 8.157

Average Passengers Waiting Time 97.14 97.74 106.82

Table 6.3: Experiment 3: Bus Rapid Transit Ecovia

Analyzing the results from the tables, we can notice that in the three di↵er-

ent instances of bus routes, the lower the headway tolerance range is, the average

headway increases while the average passenger waiting time decreases. Notice that

the introduction of the HTR metric has a positive impact on reducing the waiting

times of users with respect to the baseline (i.e., the mathematical solver). Figures

6.2a, 6.2b, 6.3a, 6.3b, 6.4a and 6.4b show the relationship of space (location) and

time of buses during the simulation for the di↵erent transport networks of our em-

pirical evaluation. For example, Figures 6.2a and 6.2b, correspond to rapid transit

networks with artificial data and with 10% y 30% of HTR respectively. Notice that

the introduction of the HTR metric helps us to maintain a more stable headway

across the simulation. Smaller HTRs narrow the behavior of the buses, in other

words, they have less flexibility of movement, which allows maintaining the order of

operations during the route with a few exceptions (i.e., buses that start first tend to

end first).
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(a) PBT: 10% HTR

(b) PBT: 30% HTR

Figure 6.2: Public Bus Transport Experiments
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(a) BRT: 10% HTR

(b) BRT: 30% HTR

Figure 6.3: Rapid Bus Transit Experiments
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(a) ECOVIA: 10% HTR

(b) ECOVIA: 30% HTR

Figure 6.4: ECOVIA Experiments



Chapter 7

Phase 3: Distributed Multiagent

System

7.1 Introduction

The distributed model on the multiagent system will bring intelligent capabilities

to the B-Agents to choose what actions to do on the route. In the previous phase,

we added the headway tolerance range (HTR) algorithm for the CP Agent to select

the actions B-Agents must perform to reduce bus bunching. In this phase, the B-

Agent will be directly responsible for deciding the task it must execute based on the

headway tolerance range. The deadheading strategy is added now in this phase, in

which the CP-Agent can mark stops with a deadheading level, to decide how often

buses should pass through them. However, B-Agents determine if they should follow

the advice from the CP-Agent in terms of skipping or holding a particular stop.

Experiments are made with similar instances from the previous two phases, with the

additional configuration that the distributed model involves.

7.2 Headway Tolerance Range - B-Agents

One of the main problems, in the central model for the HTR metric, is that it takes

time to develop a plan for all buses in the route because the CP-Agent needs to

gather information from all of them to command actions. In the distributed model,
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each B-Agent computes its HTR with respect to the front and rear buses taking into

account the current state of the environment.

7.3 Deadheading Strategy

As described in chapter 1, the deadheading strategy involves marking some of the

stops to reduce the number of buses that pass through them. The intuition behind

this strategy is to provide more attention to highly demanded bus stops while de-

creasing the service times to those with lesser demand. We expect this strategy

to attend more e�ciently the passengers waiting at the bus stops. The distributed

model supports the deadheading strategy by allowing B-Agents to broadcast infor-

mation from the network to its peers and CP-Agent. For example, when B-Agents

pass-through bus stops, they inform about the number of waiting passengers and

those that board and descend. Besides, each B-Agent broadcasts its speed and loca-

tion in the route. The CP-Agent keeps collecting this information, and every given

deadheading time, it calculates the average number of passengers passing through a

bus stop. Then, the CP-Agent uses this information to assign a deadheading level

to each bus stop. For example, the bus stop with the lowest average of passengers

will increase its deadheading level by one, while that one with the highest number

will decrease its level by one. The deadheading level determines the number of buses

that must skip a given stop before gets service. We intend to balance the passenger

demand at bus stops to decrease the global waiting time of passengers.

7.4 Belief-Desire-Intention Model

The following codes corresponds to the B-Agent and CP-Agent belief-desire-intention

model. These represents the behavior that the agents will have depending on the

information that it has about the environment on the corresponding time.
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1 /*

2 Bus agent

3

4 * bcBusPosition: broadcast the current bus position

5 * bcBusPassengers: broadcast the current passengers on the bus

6 * bcBusSpeed(bus,speed): broadcast the current bus speed

7 * bcBusNextStop(bus,stop): broadcast the next stop of the bus

8 * bcPeopleOnStop(stop,people): broadcast the number of people waiting

at a given stop,!

9 * busHold(stop,time): holds the bus on a stop for a given time

10 * regulateSpeed: reegulates the speed of the bus

11 */

12

13 +bcBusPosition(bus,position): bcBusPosition <-

.broadcast(tell,busPosition(bus,position)).,!

14 +bcBusPassengers(bus,passengers): bcBusPassengers <-

.broadcast(tell,passengersOnBus(bus,passengers)).,!

15 +bcBusSpeed(bus,speed): bcBusSpeed <-

.broadcast(tell,busSpeed(bus,speed)).,!

16 +bcBusNextStop(bus,stop): bcBusNextStop <-

.broadcast(tell,busNextStop(bus,stop)).,!

17 +bcPeopleOnStop(stop,people): bcPeopleOnStop <-

.broadcast(tell,peopleOnStop(stop,people)).,!

18

19

20 +busHold(stop,time): true <- doBushold(stop,time).

21 +regulateSpeed(bus,speed): true <- doSpeedRegulation(bus,speed).

22 \label{fig:busBDI}

1 /*
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2 Control agent

3

4 . tellBH: tells a bus to do bus holding

5 . tellDH: tells a bus to mark the given stop with deadheading mark

6 . validateSkipStop: checks if the bus must skip the next stop

7 * start: keeps the simulation going

8 * finish: ends the simulation

9 */

10 !start.

11

12 +!tellBH(BUS,STOP,TIME): tellBH <-

.send(BUS,tell,busHold(STOP,TIME)).,!

13 +!tellDH(BUS,STOP,TIME): tellDH <-

.send(BUS,tell,deadhead(STOP,TIME)).,!

14

15 +!validateSkipStop(BUS): validateSkipStop(BUS) <-

skipStop(BUS).abolish(validateSkipStop(BUS))!start.,!

16

17 +!start: start & tellBH(BUS,STOP,TIME) & not validateSkipStop(BUS) &

not finish <- !tellBH(BUS,STOP,TIME).,!

18 +!start: start & validateSkipStop(BUS) & not tellBH(BUS,STOP,TIME) &

not finish <- !validateSkipStop(BUS).,!

19 +!start: start & not validateSkipStop(BUS) & not

tellBH(BUS,STOP,TIME) & not finish<- start;!start.,!

20 +!start:finish<- .print("Simulation end").

21 \label{fig:CPBDI}
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7.5 Results

Stops 10 10 10 10

Buses 7 7 7 7

Bus holding solver calls 15 15 15 0

Bus Alight 0.15 0.15 0.15 0.15

Bus dwell 0.25 0.25 0.25 0.25

Overtake TRUE TRUE TRUE TRUE

Circular TRUE TRUE TRUE TRUE

HTR 10% 10% 10% 10%

Deadheading Time Tick 5 10 15 5

Average Headway 6.415 6.142 5.78 6.348

Average Passengers Waiting Time 40.77 34.88 31.47 42.4

Table 7.1: Experiment 1: Public Bus Transport

Stops 10 10 10 10

Buses 7 7 7 7

Bus holding solver calls 15 15 15 0

Bus Alight 0.15 0.15 0.15 0.15

Bus dwell 0.25 0.25 0.25 0.25

Overtake FALSE FALSE FALSE FALSE

Circular TRUE TRUE TRUE TRUE

HTR 10% 10% 10% 10%

Deadheading Time Tick 5 10 15 5

Average Headway 6.089 5.86 5.54 5.96

Average Passengers Waiting Time 36.45 32.47 29.75 36.79

Table 7.2: Experiment 2: Bus Rapid Transit
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Stops 40 40 40 40

Buses 10 10 10 10

Bus holding solver calls 15 15 15 15

Bus Alight 0.14 0.14 0.14 0.14

Bus dwell 0.14 0.14 0.14 0.14

Overtake FALSE FALSE FALSE FALSE

Circular FALSE FALSE FALSE FALSE

HTR 10% 10% 10% 10%

Deadheading Time Tick 5 10 15 5

Average Headway 13.14 12.75 12.04 13.08

Average Passengers Waiting Time 89.24 84.2 81.91 90.12

Table 7.3: Experiment 3: Bus Rapid Transit Ecovia

With the previous results, we can observe that the average headway reduces when

we have a lower deadheading time tick, implying that the strategy of deadheading

is having a positive e↵ect on decreasing the bus bunching. However, we can also

notice that the lower the deadheading is, the higher is the average passenger waiting

times. This phenomenon occurs since buses tend to skip more stops, letting users

wait longer for the service. Figures 7.1a, 7.1b, 7.2a, 7.2b, 7.3a and 7.3b show the

results from the instances with the higher average headway and the lowest average

passenger waiting times.
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(a) PBT: 10% HTR

(b) PBT: 30% HTR

Figure 7.1: Public Bus Transport Experiments
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(a) BRT: 10% HTR

(b) BRT: 30% HTR

Figure 7.2: Rapid Bus Transit Experiments
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(a) ECOVIA: 10% HTR

(b) ECOVIA: 30% HTR

Figure 7.3: ECOVIA Experiments



Chapter 8

Result analysis

Table 8.1 summarizes the results from the three architectures. The table presents the

instance with the highest average headway. Notice that shorter headways between

buses increase the probability of the Bus Bunching phenomenon, and in consequence,

the average passenger waiting time. We can also observe that the introduction of

a MAS improves the baseline results of simulation and the mathematical model.

Furthermore, communications in distributed settings seem to play a prominent role

in stabilizing the transport network while reducing even further the passenger waiting

times.
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Average Headway Average Passengers Waiting Time

Phase 1: Bus Simulation

Public Bus Transport 1.593 69.78

Bus Rapid Transit 1.007 84.38

Ecovia 1.848 112.42

Phase 2: Centralized Model

Public Bus Transport 4.103 47.84

Bus Rapid Transit 3.882 50.24

Ecovia 9.35 97.14

Phase 3: Distributed Model

Public Bus Transport 6.415 40.77

Bus Rapid Transit 6.089 36.45

Ecovia 13.14 89.24

Table 8.1: Summary of Results
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With this data, let us retake and answer the objectives and hypothesis stated

in chapter 1:

8.1 How can multiple strategies improve the

solution of bus bunching problem?

The implementation of the strategies of bus holding, speed regulation, skip-stop

and deadheading on phases 2 and 3 show a positive impact on reducing the bus

bunching. Based on the results of phase 2, we noticed that using the strategies of

bus holding, speed regulation and skip-stop gave us a better result than only using

the bus holding strategy. In phase 3 we can see a better performance when we

add the deadheading strategy to the system compared to only using bus holding,

speed regulation and skip-stop. Since most of the strategies are controlled by the

CP-Agent, the strategies do not conflict with each other by giving commands that

might contradict the desires of the buses to separate. We conclude that the addition

of multiple strategies to the multiagent system helps to reduce the bus bunching on

the route.

8.2 How does the communication between

agents in the multiagent system improve the

solution of bus bunching problem?

Comparing the results of the same instances between phases 2 and 3, we can notice

that the bunching between buses was reduced on the phase 3, the distributed model,

compared to the phase 2, the centralized model. Since some of the strategies on

the distributed model were now planned by each one of the buses’ agents, the time

for each bus to decide what is the best strategy to perform was drastically reduced

since they only need the information of the frontal and rear bus; compared to the
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centralized model in which the CP-Agent needs the information of every bus on

the route to plan the action that every bus must perform. The di↵erence of the

planning time between both models impacts the performance of the bus route, since

the bus route is constantly changing and the decisions that the CP-Agent commands

to the buses’ agents to perform might not be the best for the time it is commanded.

We conclude that the communication between the agents have a positive impact on

reducing the bus bunching between buses.

8.3 How does a centralized multiagent system

performs against the bus bunching problem,

compared to a linear programming model?

The linear programming model, as stated in chapter 3, is used to determine the

bus holding waiting times on each of the stops for each bus. Comparing the results

of the same instances between phases 1 and 2, we can notice a better performance

using the centralized model with no calls to the bus holding solver compared to the

phase 1 model in which only the bus holding solver calls were used to reduce the

bus bunching. This is related to how the multiple strategies that were added to

the centralized multiagent system gave a better performance on reducing the bus

bunching: the CP-Agent has the capability, based on the headway tolerance range,

to plan which action has a better impact on the route based on the information that

is received by every agent. We conclude that the centralized multiagent system has

a better performance on dealing with the bus bunching problem compared to the

linear programming model.
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8.4 How does a distributed multiagent system

performs against the bus bunching problem,

compared to a linear programming model?

Similarly to the case of the centralized model, the distributed model has multiple

strategies to deal with the bus bunching problem, and since the headway toler-

ance range is now planned by each one of the buses’ agents, it has an even greater

performance than the linear programming model solution. We conclude that the

distributed multiagent system do have a better performance on dealing with the bus

bunching problem compared to the linear programming model.

8.5 How can a multiagent system improve the

solution of bus bunching problem compared to

linear programming?

All the characteristics of a multiagent system can be analyzed in performance based

on the results of the phase 3 model. In phase 3, we specified the BDI model in

which the buses’ agents must decide if the action commanded by the CP-Agent

does have a positive impact based on their local environment. The decisions made

by the buses’ agents and the headway tolerance range that each buses determine

based on the frontal and rear buses both work together in the agents algorithm

to reduce the bunching between the buses with more e�ciency compared to using

only the linear programming model to calculate the bus holding times. We conclude

that the multiagent system does improves the solution of reducing the bus bunching

compared to the linear programming model.
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8.6 Does the distributed multiagent system

performs better than the centralized

multiagent system in dealing with the bus

bunching problem?

Similarly to the question of the communication between agents, we can see that the

instances of phase 3 had a better performance than the same instances of phase

2. The communication characteristic of the distributed model and the autonomy

of the buses’ agents to plan their actions did have an impact on reducing the bus

bunching in the route. We conclude that the distributed multiagent system has a

better performance than the centralized multiagent system, based on the models

that were presented on this dissertation.



Chapter 9

Conclusions, Contributions &

Future Work

Bus bunching is a critical problem in public transportation networks because it re-

duces the e↵ectiveness of the route, increasing passenger waiting times. Previous

work considers several strategies to reduce Bus Bunching, like control, optimiza-

tion models, and multiagent systems. In this work, we presented three di↵erent

architectures for dealing with Bus Bunching. The first one uses simulation and a

mathematical model to control the tra�c of buses in the route. The last two ar-

chitectures use Multi-agent Systems. While the first MAS is a centralized model,

the second one is a Distributed Model that leverages agent communications and

problem-solving to reduce Bus Bunching. We showed that the Distributed MAS

presented the best results in our empirical evaluation. We believe the communica-

tion exchange between the di↵erent types of agents in the system allows the MAS

to respond more e�ciently to the changes in the network environment.

9.1 Future Work

In this investigation, we conclude that the distributed model of the multiagent system

has a better performance compared to the centralized model. With this in mind, we

can start looking for distributed planning algorithms to determine which strategy

and when the strategy must be applied to reduce the bus bunching on the system.
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Another implementation that could be done is a prediction algorithm for the number

of passengers that any stop may have in a specific time, and use this prediction to

make a decision. We can also analyze how the strategies interact with each other,

and develop a new algorithm based on the headway tolerance range to decide the

actions that the buses can perform. As stated on chapter 2, the passengers waiting

time has bigger value in the perspective of the users, when they are waiting for

the bus at each stop compared to the time in which they are already in the bus.

Thus, the waiting time should be analized with respect to each strategy in isolation.

Some more configuration might be added in the future to test the e↵ectiveness of the

multiagent system in di↵erent scenarios. For example, adding random events that

may disable a bus in the route, changing the rate that passengers arrive to the stops

dynamically through time, changing the speed limit between stops through time, etc.

With the possibility to add any linear model to calculate the holding times of the

buses on the multiagent system, we can analyze how other models interact with the

multiagent system algorithms to identify those models that have better performance

with the agents. Since the results from the simulation are shown until the end of the

simulation, we are planning to add a graphic interface that can represent the bus

position, the actions performed, the stops positions and more characteristics that

the agents perform so we can analyze graphically the results during the simulation.

With the idea of the graphic interface of the simulation, we are also planning on

having a log of the actions that every agent performs during the simulation, and

add the function to reverse back actions during the simulation, so we can study the

agents’ behavior when adding new beliefs, desires or intentions.

9.2 Contributions

The main contribution in this research is the multiagent system architecture, which

gave a better performance compared to the mathematical model tested in the simula-

tions. This multiagent system has the option to enter some of the data as parameter

to easily test various scenarios with the centralized and the distributed architecture.
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Moreover, this system is freely available to use to anyone on a GitHub repository.



Appendix A

Appendix: BusiMA

BusiMA, he software used to simulate the bus system in this work was developed

in java. Anyone can integrate their own models supported by Gurobi to formulate

the data that the buses may use to perform their strategies, for example, the model

used in this work returns the holding times that the buses must perform in each

stop to reduce the bus bunching. This appendix shows is the requirements needed

to run the Java project on a local computer and an example of an instance that can

be used to run on the system.

A.1 Installation

The following software is required to run the BusiMA project locally:

• Java JDK version 8 (minimum) [26]

• Eclipse Framework (This investigation experiments were tested in the 2018

distribution) [18]

• Jason Library [26]

• Gurobi Library (A student license was used during the investigation experi-

ments) [20]

Follow the installation instructions for each respective software, and then down-

load the project from the GitHub repository [40]. Import this project into the Eclipse
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environment and once imported, it will be ready to execute through the Jason envi-

ronment.

A.2 Configuration instance example

The following code is an example of an instance of a bus route with its respective

properties. This file is loaded through the main class BusiMA.java, in the variable

folderName it must be specified the folder in which this .txt file is located. It must

be the only file on that folder for it to load correctly.

1 @INSTANCE PROPERTIES@

2 #Snapshot Time= 0

3 #Number of Stops= 10

4 #Number of Buses= 7

5 #Bus capacity= 70

6 #Max Holding Time= 50

7 #Aboarding Time (per passenger)= 0.15

8 #Descending Time (per passenger)= 0.25

9 #Release Time of each bus= 5

10 #Simulation end time= 150

11 #Number of calls to the Bus Holding Solver= 15

12 #Buses overtake = false

13 #Circular route = true

14 #Bus Holding Method (based on the modelSolver.java options) = CMOT

15 #Headway Tolerance Range (Percentage from 0 to 1) = 0.3

16 #CP-Agent Planning tick = 5

17 #MA Architecture (CENTRALIZED/DISTRIBUTED) = CENTRALIZED

18 #Deadheading tick = 10

19

20 @STOPS PROPERTIES@
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21 #Arriving Rate Values

22 0.4081|0.8871|0.9197|0.08417|0.998|0.02413|0.9262|0.953|0.186|0.0001

23 #Descending Ratio Values

24 0|0.1126|0.2291|0.838|0.97|0.918|0.934|0.0225|0.3925|1

25 #Distance between stops

26 9|10|3|8|6|5|9|10|6|6

27 #Number of passengers waiting in each stop at Snapshot Time

28 20|3|12|0|7|0|2|25|0|0

29 #Speed limit between stops

30 0.9|0.8|0.7|0.8|0.9|0.9|1|1|0.8|1

31

32 @BUSES PROPERTIES@

33 #Buses Index

34 1|2|3|4|5|6|7

35 #Buses current position

36 0|0|0|0|0|0|0

37 #Buses current passengers

38 0|0|0|0|0|0|0

39 #Last stop visited of each bus

40 1|1|1|1|1|1|1

A.3 Final notes

This software project is available in the following GitHub repository [40].
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y Y. Á. Ŕıos-Soĺıs, ⌧Linear bus holding model for real-time tra�c network

control�, en Applied Simulation and Optimization, Springer, págs. 303–319,
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en la Facultad de Ciencias F́ısico Matemáticas. Mis intereses principales van por la
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