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Abstract
This paper provides an empirical investigation of the hypothesis that population shocks 
such as the repeated outbreaks of the plague affected the timing of the demographic transi-
tion. The empirical analysis uses disaggregate data from Germany and exploits geographic 
variation in the exposure to medieval plague shocks. The findings document that areas with 
greater exposure to plague outbreaks exhibited an earlier onset of the demographic transi-
tion. The results are consistent with the predictions of the unified growth literature and 
provide novel insights into the largely unexplored empirical determinants of the timing of 
the transition from stagnation to growth.
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1  Introduction

The reason for development differences across countries and regions remains one of the 
long-standing questions in economics. In view of the non-monotonic dynamics of long-
run development and the crucial role of the demographic transition for the take-off in 
economic development, the answer to this question is closely related to the timing of the 
demographic transition, as maintained by unified growth theories. In particular, it was the 
deliberate reduction in fertility that allowed for intensified child rearing, increased human 
capital investment, and ultimately a sustained increase in incomes per capita in the con-
text of continuing productivity improvements (Galor and Weil 2000; Galor 2011). Con-
sequently, the onset of the fertility transition represents the key turning point, not only for 
population dynamics and education, but also for the transition to sustained growth. While 
there is widespread agreement about the role of the fertility transition for the economic 
take-off as the central building block of the mechanisms underlying unified growth theory 
and ample evidence regarding the mechanics of these transitions, there is relatively little 
empirical work in economics that has investigated the determinants of the timing of the 
fertility transition.

This paper explores the empirical relevance of the hypothesis that the exposure to 
repeated population shocks related to epidemics influenced the population equilibrium 
and ultimately the timing of the fertility transition. This hypothesis is motivated by ear-
lier research that conjectured that population shocks related to the Black Death triggered 
adjustment mechanisms that led to shifts in the Malthusian equilibrium with the conse-
quence of higher population density (Voigtländer and Voth 2013a, b), which provided the 
ground for the transition from Malthusian stagnation to a modern growth regime (Galor 
and Weil 2000). Evidence on this conjecture is scant, however.

The empirical analysis investigates whether the timing of the onset of the fertility transi-
tion in cities or regions in Germany was influenced by the exposure to repeated outbreaks 
of the plague. The implementation of an empirical strategy to test the hypothesis requires 
a plausible measure of exposure to repeated plague outbreaks. Since the effect of interest 
is that of an accumulated exposure, and since conceptually this exposure can be measured 
in various ways, the empirical strategy is based on a proxy variable approach that makes 
use of various, mutually non-exclusive proxies for plague exposure. The first measure of 
plague exposure is the number of plague outbreaks. Empirical results based on this proxy 
indeed provide evidence that the experience of more frequent plague-related population 
shocks was also associated with an earlier fertility transition.

In addition to plague outbreaks, the empirical strategy also makes use of a second set of 
proxy variable that accounts for variation in the spread of repeated outbreaks of plagues in 
Europe during the Middle Ages by measuring the travel distance to the ports from which 
the plague spread after new outbreaks. The respective measures make use of the fact that 
cities that were closer to these harbors were affected more by outbreaks of the plague. Out-
breaks spread inland along medieval travel routes with an intensity that decreased in travel 
distance to these entry ports, regardless of whether outbreaks of the plague after the 1348 
outbreak of the Black Death occurred spontaneously from reservoirs in Europe or from 
reintroductions from Asia. A second set of empirical results reveals that greater exposure 
to plague outbreaks as proxied by greater proximity to the nearest entry port is associated 
with a significantly earlier onset of the demographic transition.

Both plague outbreaks and geographic proximity to entry ports of plague waves 
are imperfect proxies that contain distinct but mutually non-exclusive variation that is 
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relevant for the hypothesis to be tested. To rule out spurious results, the analysis con-
trols for an extensive set of additional variables that potentially affect the timing of the 
fertility transition. The extensive specification of the empirical model makes it unlikely 
that the finding is driven by third factors, but at the same time it is difficult if not impos-
sible to fully disentangle the role of medieval trade from exposure to plague outbreaks. 
To explore this issue, the empirical analysis applies various robustness checks that ver-
ify that plague-related population shocks affect the timing of the demographic transi-
tion. The results are robust to controlling for other characteristics, including access to 
medieval and 19th century trade routes that have been conjectured to be relevant predic-
tors of the demographic transition, as well as accounting for additional historical and 
geographic information. In particular, by accounting for access to maritime trade routes, 
access to the hanseatic trade network, and trade networks during the 19th century, the 
analysis disentangles the role of population shocks related to medieval plague expo-
sure from effects that are exclusively related to 19th century trade or other mechanisms, 
such as the demand for human capital, that affect the timing of the transition but are 
not related to population shocks. An instrumental variables approach that uses travel 
time to the nearest entry port as instrument for the number of plague outbreaks also 
confirms the finding that cities that were more exposed to plague outbreaks showed an 
earlier onset of the demographic transition. Additional analyses reveal that similar pat-
terns are also found for France, providing additional support for the external validity of 
the results. Taken together, the empirical results support the hypothesis that the fertil-
ity decline in the context of the demographic transition occurred earlier in cities and 
regions that were more exposed to the plague and correspondingly experienced more 
frequent plague-related population shocks.

The paper contributes to the literature in several ways. The results provide empirical 
support for some of the central predictions of unified growth theory, according to which the 
demographic transition, which was the prerequisite for long-run development, was fostered 
by reduced Malthusian population pressure and an increase in the demand for skills (Galor 
and Weil 2000; Galor 2011). Despite the important negative short-run consequences of 
disease shocks (see, e.g., Chakraborty et  al. 2010; Bhattacharya and Chakraborty 2016) 
and the set-backs in long-run development caused by repeated epidemic shocks (Lagerlöf 
2003), the evidence shown here suggests that frequent exposure to diseases might indeed 
have induced transitions to Malthusian steady states with higher population density as 
response to major population shocks and as consequence of behavioral responses that fos-
ter development in the long-run. The findings thereby provide empirical support for the 
implications of the mechanisms proposed by Voigtländer and Voth (2013a), who suggest 
that exogenous disease shocks like the outbreak of the Black Death might have triggered a 
transition to a new Malthusian equilibrium with higher wages and population density, with 
important consequences for long-run development. For instance, plague-related population 
shocks might have ultimately triggered fertility reduction by fostering female employment 
and delaying marriage and childbirth (Voigtländer and Voth 2013b, see also Clark 2008), 
although this pattern was more prevalent in Northern Europe than in Southern regions like 
Italy (de Moor and van Zanden 2010). The empirical validity of this channel is also a mat-
ter of ongoing debate in light of findings that delayed marriage did not affect total fer-
tility Ortmayr (1995) and that the plague exhibited a similar age pattern in mortality for 
men and women, while there are no significant gender-differences in mortality (De Witte 
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2010; Curtis and Roosen 2017; Alfani and Murphy 2017; Alfani and Bonetti 2019), imply-
ing that the potential comparative advantage underlying this mechanism might have been 
weaker than previously thought. Alternatively, plague shocks might have led to changes 
in household composition that favored investments in child quality. If smaller households 
were more affected by plague shocks than larger households, as suggested by recent evi-
dence by Alfani and Bonetti (2019), and had a greater propensity toward child quality and 
more resources to spend on each child, a quantity-quality argument would imply that this 
led to a shift in the Malthusian equilibrium and ultimately led to an earlier transition from a 
Malthusian or post-Malthusian equilibrium to a modern growth regime.1

While the findings presented in this paper are not suited for disentangling the empiri-
cal relevance of the different mechanisms that have been proposed in the literature, they 
suggest that greater plague exposure was associated with an earlier fertility decline. In this 
sense, the results also complement recent evidence for England by Crafts and Mills (2017) 
that is overall consistent with the view that the plague shifted the pre-industrial Malthusian 
equilibrium and eventually gave rise to a demographic transition that marked the onset of 
modern growth. Likewise, Dittmar and Meisenzahl (2020) find evidence that plague out-
breaks led to the adoption of policies and institutions that were favored by the protestant 
reformation and that fostered human capital acquisition and greater population growth 
until the 19th century. While their argument rests on the randomness of the timing out-
breaks during a short period, our analysis is based on the overall exposure to plague-related 
shocks. Our results add to their findings by providing new information about the heteroge-
neity of the timing of the fertility transition about one century later.

Using spatial variation in the plague-related mortality at the city level, Jebwab et  al. 
(2019) explore the impact of the outbreak of the Black Death 1347–1352 on city growth. 
They present new evidence for the duration until the populations recovered as well as its 
determinants and document heterogeneity regarding geographic endowments of cities in 
terms of land suitability and access to trade networks. On the other hand, recent work by 
Alfani and Percoco (2019) on Italian cities suggests that the plague epidemic of 1629-30 
represented a productivity shock that caused a long-run decline in city growth and urbani-
zation rates. The empirical analysis in this paper provides evidence that complements these 
findings by documenting that repeated plague outbreaks might in fact have led to an earlier 
fertility transition once controlling for heterogeneity in other factors.2 At the same time, 
the approach focuses on a confined area of comparable geography, demography, and insti-
tutional environment in Northern Europe, thereby to a certain extent implicitly account-
ing for the heterogeneity of the impact of the plague that has been documented by Pamuk 
(2007) and more recently by Alfani (2013) in the context of Europe. The findings thereby 
also contribute an explanation for the heterogeneity in fertility dynamics across regions 
that eventually converged in the context of changes in transportation and migration, as 
recently documented by Daudin et al. (2019).

Our findings also complement evidence that fertility reductions in Germany and France 
were linked to increased education (Becker et al. 2010, 2013, Murphy 2015, de la Croix 
and Perrin 2018) consistent with the unified growth perspective of a close link between 

1  This conjecture is in line with recent evidence reported by Galor and Klemp (2019).
2  Higher disease exposure also exerts greater evolutionary pressure, with important implications for long-
run development, see, e.g., Galor and Moav (2002). However, the lack of immune resistance to plague and 
the short period since the medieval outbreaks makes the evolutionary channel appear less relevant in the 
present context.
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the fertility transition, education and economic development. This paper adds the exposure 
to population shocks during the middle ages as a long-run determinant of the relative tim-
ing of the transition in different regions. The empirical findings also complement evidence 
of higher education attainment in predominantly Protestant areas (Becker and Woessmann 
2008, 2009, 2010), while Protestantism was mainly adopted in regions where the return to 
education was comparably high, related to, e.g., access to major trade routes of the time, 
which affected the demographic dynamics above and beyond the distance to entry ports of 
reintroduced plague outbreaks (Cervellati and Sunde 2016). The results are also consist-
ent with a role of greater life expectancy for long-run development (Cervellati and Sunde 
2013, 2015), because plague outbreaks represent infrequent epidemics that unfold their 
consequences through population dynamics at the macro level rather than through individ-
ual incentives for education attainment. Finally, the use of disaggregate data complements 
recent evidence for the role of policies, such as the introduction of public health systems, 
for longevity and development (Strittmatter and Sunde 2013).

The remainder of the paper is structured as follows. Section 2 describes the background 
of the resurgent outbreaks of the plague in Europe and the resulting hypothesis. Section 3 
describes the data and the empirical strategy. Section 4 presents the main results. Section 5 
provides a discussion of the findings.

2 � Background and main hypothesis

2.1 � The plague in medieval Europe: some background

The repeated outbreaks of the plague in medieval Europe after the Black Death of 1347, 
which marks one of the largest pandemics in human history, have influenced the social 
and cultural thinking in ways present even in today’s consciousness regarding public health 
(see, e.g., Cantor 2002; Slack 2012). In light of the contagiousness and fast spread of the 
epidemic, there has been a debate as to whether the plague had always been caused by the 
yersinia pestis bacterium or potentially by some other pathogen, possibly a virus.3 Recent 
DNA evidence from grave samples confirmed an infection by yersinia pestis throughout 
Europe (see, e.g., the discussion in  chapter  4.06 of Campbell 2016). Nevertheless, the 
transmission of plague is not well understood (see, e.g., Alfani and Murphy 2017 for a sur-
vey of the state of the literature). In terms of intensity, recent research points towards sub-
stantially higher plague-related mortality than earlier estimates, indicating that the impact 
of the plague might have even been underestimated previously (Benedictow 2004; Alfani 
2013; Alfani and Murphy 2017).

The prevalent view regarding repeated outbreaks is that the bacterium had stayed in 
Europe after the introduction of Yersinia pestis in 1347 and reproduced in rodent reservoirs 

3  Caused by the bacterium Yersinia pestis, the (bubonic and pneumonic) plague primarily affects mam-
mals. Without treatment, yersinia pestis leads to an infection in the entire body (sepsis) and subsequent 
death. Transmission of the disease can occur through direct contact or ingestion, but transmission is mostly 
through fleas (in particular the oriental rat flea Xenopsylla cheopis), which acquire the pathogen from mam-
mals through blood meals.
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in wildlife or urban environments. From these reservoirs, repeated spontaneous outbreaks 
were thought to have led to waves of plague in Europe, until the disappearance of the 
plague during the 19th Century (see, e.g., Davis 1986; Keeling and Gilligan 2000). The 
origins and dynamics of these outbreaks have been an issue of some debate in the literature 
(see, e.g, Cohn 2008 for a survey). Outbreaks have been related to the relative abundance 
of host populations and vector populations (Reijniers et  al. 2012).4 Schmid et  al. (2015) 
conjectured that instead of persisting in hidden reservoirs in Europe, Yersinia pestis was 
repeatedly reintroduced from Asia following particular climatic conditions that favored the 
outbreak and spread of the pathogen, with the respective entry ports all located at trade 
points connecting Europe with trading routes to Asia. In contrast, newer work based on 
ancient DNA (aDNA) analysis has been able to show that later European outbreaks of 
plague were caused by strains of Y.  pestis that are related to the strains found in burial 
cites of victims of the 14th century Black Death (e.g., Bos et al. 2016 report evidence for 
burial sites of victims of the outbreak of 1722 in Marseille, France, whereas Seifert et al. 
2016, report genetic similarities in aDNA of Y. pestis strains across different burial sites in 
Germany that span 300 years, and Spyrou et al. 2016, report similarity of Y. pestis strains 
among plague victims of the Black Death in Barcelona and two subsequent historical out-
breaks in Russia and Germany). This evidence supports the view of reoccurrence of the 
plague in Europe from local reservoirs, although the location of these reservoirs is still 
debated. While it seems accepted by now that the bacterium can survive and remain active 
in soil for prolonged periods (e.g., Ayyadurai et al. 2008), recent evidence points at plague 
foci close to the sea as consequence of the salt tolerance of Y. pestis (Malek et al. 2017). 
This is consistent with the finding that plague outbreaks in Europe can be traced back to 
outbreaks in the vicinity of ports or to maritime imports from other cities. In fact, out-
breaks at the beginning of the chain of maritime transmissions can be isolated as outbreaks 
for which there was no earlier plague outbreak (within a time span of two years) within a 
500km radius on land, or 1000km radius for harbors. Figure 1 provides a map of the loca-
tion of the main entry ports of outbreaks of new waves of the plague.

2.2 � Empirical hypothesis

Regardless of the underlying reasons for renewed outbreaks of the plague during the mid-
dle ages, new waves of the plague repeatedly spread across Europe, initiating from ports 
and spreading through overland trade routes and waterways. The spread of the plague was 
related to human interaction, and the speed of this spread has been estimated to have been 
several kilometers per day (e.g., Benedictow 2004). Hence, geographic location to a large 
extent determined the exposure to plague outbreaks, with cities and regions closer to the 
ports where the new waves originated facing a higher risk of being hit by a new outbreak. 
Due to this opaque and irregular pattern, outbreaks of the plague were taken as random 
events, possibly caused by metaphysical or other forces (Cantor 2002). As consequence, 
there was no systematic migration related to the infrequent outbreaks of the plague that 
would indicate that individuals avoided particular ports and the related trade routes. More-
over, recent work by Skog and Hauska (2013) suggests that the spread of the Black Death 
in Sweden in 1350 is well approximated by travel distances on the medieval road network, 

4  The outbreaks and transmission dynamics have also been shown to heavily depend on climatic condi-
tions, which might have favored a synchronization of host and vector populations, and thereby an increased 
risk of an outbreak, as documented by evidence from Asia (Stenseth et al. 2006; Kausrud et al. 2007; Cohn 
2008; Samia et al. 2011).
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and evidence by Dittmar and Meisenzahl (2020) and Yue et al. (2016) indicates that loca-
tions close to ports, rivers and trade routes were particularly affected by the diffusion of 
the plague.5 Taken together, this suggests that, ceteris paribus, the mortality shocks caused 
by outbreaks of the plague were more frequent and intense in locations closer to the ports 
where the new plague waves originated.

With medieval Europe being governed by a Malthusian population regime, repeated 
outbreaks of the plague were followed by higher birth rates that compensated the popula-
tion loss in the aftermath of the outbreak (see, e.g., Keyser 1941). The loss of lives caused 
by an epidemic outbreak also led to a temporary scarcity of labor and increased land-labor 
ratios, which favored more land-intensive production in terms of animal husbandry, and 
in the medium run led to increased urbanization, birth and death rates, and ultimately to a 
transition from one Malthusian regime to a another Malthusian regime with higher popula-
tion density (Voigtländer and Voth 2013a, b). In a longer perspective, greater population 
density fostered the demand for skills, while lower fertility, in turn, implied lower opportu-
nity costs for undergoing the demographic transition, from quantity to quality investments 
in children. This development was accompanied by institutional changes, for instance in 
inheritance rules, that were triggered by repeated plague outbreaks (see, e.g., Alfani and Di 
Tullio 2019) and ultimately constituted the basis for the economic take-off (Galor 2011). 
Hence, regardless of the (potentially multiple) mechanisms that were triggered by the 
population shocks due to epidemics, the consequences and the resulting change in fertility 
behavior were presumably more prevalent and powerful in the locations hit harder by the 
plague.

The core hypothesis that follows from this discussion is that greater exposure to the 
plague might have accelerated the demographic development and ultimately led to an ear-
lier fertility transition. By spreading from city to city, the outbreak of the plague might 
have had a major impact on many cities. Importantly, however, this impact was likely to be 
heterogeneous, depending on the location of the city which determined the exposure to the 
occasional outbreaks of the plague. Hence, cities and regions that were more exposed to 
these outbreaks faced more frequent and pronounced population shocks and, ceteris pari-
bus, a faster demographic development along the lines outlined before. In particular, the 
greater exposure to plague outbreaks is expected to be reflected by an earlier onset of the 
fertility transition. This paper provides a reduced form analysis of the effect of variation 
in the exposure to repeated plague outbreaks on the timing of the fertility transition across 
regions in Germany and France.6

3 � Empirical methods

3.1 � Empirical approach

The empirical analysis tests the hypothesis that cities with greater exposure to plague epi-
demics experienced an earlier fertility transition during the 19th Century. The analysis is 
based on a simple linear regression model

5  Conversely, the spread of epidemics like the plague has been used as proxy for relative trade intensities, 
which is consistent with the approach taken here, see, e.g., Boerner and Severgnini (2014).
6  Since the focus of this paper is on the long-run development implications of population shocks, and for 
reasons of data availability, this study focuses on variation in the timing of the fertility transition across 
regions in Germany and France and does not investigate the short and medium-run implications of the 
plague for development in urban versus rural areas, as done, e.g., by Alfani (2013).
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where i indicates city, Transition Yeari is the year of the onset of the demographic transi-
tion, which is measured in terms of the onset of the fertility decline, and Plague Exposurei 
is the exposure of city i to the plague. X is a vector of control variables, which include 
other relevant determinants of the timing of the fertility transition. The empirical analysis 
accounts for cities located within the same administrative region by clustering the standard 
errors correspondingly.7

The identification of the coefficient of interest, �
1
 , requires a reliable measure of plague 

exposure that is exogenous, conditional on variation captured by the control variables 
included in the vector Xi . The focus on city-level data in Germany has the advantage of 
comparing variation across environments that are otherwise rather comparable, other than 
when comparing across countries or even world regions like Europe and Asia. The obvi-
ous limitation of this approach is that the analysis does not provide insights as to why the 
demographic transition happened earlier in Europe than in other parts of the world.

(1)Transition Yeari = �
0
+ �

1
Plague Exposurei + �Xi + �i

Fig. 1   Plague reintroductions in Europe. Triangles denote main plague entry ports in terms of maritime 
harbors exhibiting plague outbreaks that are not related to nearby land-based or maritime outbreaks. In par-
ticular, the entry ports represent the cities that exhibited plague outbreaks that had not been preceded by a 
plague outbreak on land within a 500 km radius and on harbors within a 1000 km radius for two years prior 
to the outbreak. Source: Biraben (1975, 1976) and Keyser (1974)

7  The data by Knodel (1974) is based on 56 regions.
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The main problem in this context is that existing measures of plague exposure, such as 
counts of outbreaks are fairly coarse measures while more detailed measures like plague-
related casualties are fraught with measurement error and potential problems of third fac-
tors. Moreover, by construction, the timing of the fertility transition, which took place 
in the late 19th and early 20th century, was related to the long-run exposure to plague 
epidemics centuries earlier through potentially various, mutually non-exclusive channels 
whose consequences unfolded over time.

To address these issues, the empirical strategy is based on the use of proxy measures for 
the exposure to repeated plague outbreaks in history. In particular, the main measure is the 
number of outbreaks affecting cities during different historical phases, which is coarse but 
measured fairly reliably. To account for geography as a potential driver of outbreaks, we 
also apply geographic proxies of the exposure to plague outbreaks. In particular, we use 
exposure in terms of the travel distance to the nearest entry port for new plague waves. The 
use of this geographic proxy enables various approaches to identify the effect of plague 
exposure on the timing of the fertility transition, either in a reduced form approach in 
addition to information about outbreaks, or in combination with outbreaks in terms of an 
instrumental variables approach.

According to the empirical hypothesis, �1 is expected to be negative, in the sense that 
greater exposure to the plague led to an earlier fertility transition. The identification of the 
effect rests on the assumption that exposure to repeated outbreaks of the plague (in terms 
of number of outbreaks and location relative to entry ports) is conditionally exogenous to 
the timing of the fertility transition of a city. The key issue for identification is therefore to 
account for confounding factors, such as access to trade that would affect the timing of the 
demographic transition during the 19th century, e.g., by affecting the demand for human 
capital, or other historical or geographical features that might be picked up by the measure 
of exposure to repeated outbreaks of the plague. We thus apply specifications with various 
sets of controls, including geographic controls such as population controls, religion con-
trols, institutional controls, controls for agricultural yields, and exposure to wars.

While these extensive controls help isolating the role of plague exposure, it is hard if not 
impossible to disentangle the role of different mechanisms through which plague exposure 
influenced the timing of the fertility transition as consequence of the singular nature of the 
fertility transition and the resulting restriction to the availability of cross-sectional variation 
in the timing of the fertility transition. For instance, an important determinant of plague 
exposure is related to closer access to the main trade network of medieval Europe, since 
plague contagion is related to human interaction. While it should be clear that the empiri-
cal analysis in this paper is confined to a reduced form approach, it is nevertheless possible 
to disentangle the role of contemporaneous trade access during the 19th century, which 
might have had a direct effect on the timing of the demographic transition, from the vari-
ation in long-run effects of plague exposure that is related to access to medieval trade by 
exploiting variation in the importance of trade ports over time. Below, we present results 
from an extensive number of robustness checks.

3.2 � Data

Fertility transition data The baseline analysis is conducted for Germany. The demo-
graphic information central to our analysis is the timing of the fertility transition. The main 
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data source is Knodel (1974), who provides detailed data on the on fertility and age dis-
tribution of the population in Germany on a regional level within the boundaries of 1900 
(district boundaries from 1901).

Marital fertility rates, which provide the most reliable source of fertility data, are used 
to calculate the onset of the fertility transition for 237 cities in 56 German regions based on 
data covering the time from 1871 to 1939. Among a variety of definitions of fertility rates, 
Knodel (1974) puts most emphasis on the marital fertility instead of total fertility, which 
also includes illegitimate births since these are more likely to be misreported as result of 
social pressure. The marital fertility rates take into account different age distributions in 
different German regions, and thus provide a comparable measure of fertility in terms of 
the actual number of births during a year relative to the potential fertility.8 The onset of 
the fertility transition is defined as the year in which marital fertility reached a threshold.9 
There is some arbitrariness associated with this definition, since it does not measure the 
onset of the decline in fertility, but the time of reaching a threshold. However, at the same 
time this definition is transparent and avoids confusion of the onset of the fertility tran-
sition with a temporary decline or fluctuations in fertility, e.g., due to a war or German 
unification. Figure 2 provides a map that illustrates the timing of the fertility transition. To 
demonstrate the robustness and external validity of the main finding, below we also con-
sider the timing of the fertility transition in France using data from the Princeton European 
Fertility Project (Coale and Coats-Watkins 1986).10

Plague outbreaks We constructed the total number of plague outbreaks in a given city, 
which serves as proxy for plague exposure, by using information for plague outbreaks in 
cities by Biraben (1975, 1976). In particular, for each outbreak in Biraben (1975, 1976), 
we construct a bandwidth in terms of time (1 year for exact match, 3-year window for out-
breaks ±1 year, 5-year window for outbreaks ±2 years).

We verified and complemented these data using information about plague outbreaks 
and their timing in records from city archives compiled by (Keyser 1974) and with other 
sources of information about plague outbreaks in cities taken from Büntgen et al. (2012). 
While the precise timing of outbreaks is likely fraught with measurement error, the cumu-
lative counts of outbreaks deliver relevant information of plague exposure for the purpose 
of this study.11

Travel distance from plague entry ports The second proxy for the exposure to plague 
outbreaks is the geographic travel distance from the initial entry ports depicted in Fig. 1. 
These ports are: Danzig (Gdansk), Hamburg and Lübeck, Venice, Genova, Marseille, 
Montpellier, Bordeaux, and Barcelona. The final dataset is constructed on the basis of 
about 5.7 million road/river segments with elevation data at both the start and end of each 

8  The marital fertility is defined as Ig = BL∕(
∑

i miFi) where BL is the number of legitimate births, mi is the 
number of women in the (five-year) age interval i, and Fi is the age-specific natural fertility, proxied by the 
fertility of a married Hutterite woman in 1921-1930, see also Table A.3 in the Supplementary Appendix 
and Henry (1961).
9  Consistent with the interpretation by Knodel (1974), this threshold is taken to be 0.5 in the baseline anal-
ysis. In robustness checks, we consider an alternative threshold of 0.6.
10  In fact, the data collected by Knodel (1974) constitute the basis for the data on Germany contained in the 
Princeton European Fertility Project.
11  Even greater concerns apply to data of plague casualties before the outbreak of the 30-year war, e.g., by 
Biraben (1975, 1976), or Büntgen et al. (2012), or mortality data (in terms of the percentage of the popula-
tion killed by the Black Death after 1348) that has been constructed for selected cities by Olea and Christa-
kos (2005), which is why we refrain from considering data on casualties.
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of these line segments. The data covers continental Europe West of, and including, Poland 
and the Czech Republic. In order to measure the travel times from the harbors to the dif-
ferent cities, we combine data from two sources. The data for the road and river network 
of Europe is taken from Openstreetmap.org via MapCruzin.com. These data comprise of 
about 8 million line segments, representing roads and about 2 million line segments repre-
senting waterways in all over Europe and parts of western Asia. The dataset includes coun-
tries ranging from Portugal to parts of western Russia and Turkey.

The additional data for the elevation is taken from DIVA-GIS. This data is available for 
each country and provides precise elevation data for a fine raster. The elevation data for 
the individual countries was merged to create an elevation profile for Western and central 
continental Europe.12

The travel distance is constructed from a road map that is based on contemporaneous road 
network, adjusted for historic travel times. In order to ensure the validity of this measure, 
the basic dataset is adjusted as follows. Historically, the existing roads in Europe were con-
tinuously developed up to the road network observed today. This has been done mainly by 
expanding existing roads. The most prominent examples for this are Roman roads like the 
“Via Appia” that are still used today. Obvious deviations are, e.g., the system of motor ways 
(Autobahn) which was built for a completely different purpose and without historic predeces-
sors. Hence, motor ways and other constructions that were obviously not in place in medi-
eval and early modern times, such as tunnels and canals, were excluded from the dataset. 
This implies a rather realistic dataset for measuring the distances, especially in areas with 

Fig. 2   The timing of the fertility transition in Germany. Districts colored by the year of the fertility transi-
tion (threshold 0.5) according to Knodel (1974). Map projection: Europe Equidistant Conic (Color figure 
online)

12  In order to check the accuracy of the elevation data, the DIVA-GIS elevation data was compared to the 
elevation data provided by Bosker et al. (2013). The reported elevation difference was in the range of up to 
four meters. The difference could be a result of a different raster size of the elevation data. Furthermore, the 
maximal elevation difference of four meters lies well in the range one can expect to be within a certain city.
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mountains such as the Alps.13 For some robustness checks, we also distinguish between roads 
within the borders of the Roman Empire at maximum extent, and roads in areas that were 
never under the control of the Roman empire, taking into account evidence that road density 
in Europe is still heavily affected by Roman influence (see, e.g., Dalgaard et al. 2018).

A comparison between maps of the historical road network in Germany during the 19th 
century and the network obtained by this methodology confirms its validity. To illustrate 
this, Fig. 3 provides a direct comparison for the region around Leipzig, Halberstadt and 
Wittenberg. Panel (a) shows the map of this region with medieval trade routes as depicted 
in the atlas of hanseatic routes by Bruns and Weczerka (1962). Panel (b) shows the dig-
itized data for roads. All streets that have been used for determining travel distance are 
shown in grey, the most important hanseatic routes are marked with red (including the 
modern street labels and numbers). These are the basis for the computation of travel dis-
tance in terms of time as discussed below.

Figure 4 shows the projected road and river map of Europe.14 In addition to the road 
and river network shown in Fig. 4, the data use about 5.7 million line segments including 
detailed elevation data. Using elevation data at both ends of these line segments, we com-
puted the absolute difference in elevation over the length of the line segment and calculated 
the corresponding slope of the line segments (in degrees) as the arctangens of the elevation 
difference relative to the length of the segment.

Based on the information from the road and river network map and the slopes of the 
street segments, we calculated the travel time from the individual ports to each city. The 
travel times depend crucially on the assumptions about travel speeds for the different 
means of transportation. Transport via ships on rivers used to be substantially faster than 
traveling by foot. Transport of people and goods over land was mostly performed by horse 
coaches, which were just little faster than walking. The average speed of travel was around 
five to seven kilometers per hour (Ritter 1966, p. 28). This corresponds to alternative 
sources according to which goods transport was possible at a speed of about 30 kilometers 
per day (in flat areas up to 40 kilometers), which corresponds to about six to eight hours at 
a speed of five kilometers per hour (Bruns and Weczerka 1962, 1967). Similarly, historical 
accounts of mail deliveries over long distances managed travel speeds of approximately 5.5 
to 6.5 kilometers per hour (Hitzer 1971). Since for horse coaches it was virtually impos-
sible to travel on very steep roads, the travel time decreases with the slope and roads with 
a slope of more than 45o constituted a natural barrier. Hence, following this literature, we 
assume specific travel speeds by surface type and slope of line segment.15

13  Furthermore, areas that are not relevant for the empirical analysis, such as Turkey and Russia, were 
excluded from the data.
14  The map projection is only relevant for illustrative purposes and does not affect the empirical results. 
Travel times are calculated using the segment lengths included in the road network data throughout the 
empirical analysis.
15  See Table A.4 in the Supplementary Appendix for details. For slopes steeper than 45o , the transport 
was mostly done by physical man labor for purposes other than travel. Even today the transport of food and 
other necessary equipment to remote cottages in the hills is done by carrying. Line segments with a slope 
larger than 45o are assigned a speed of zero and are thus assumed to be bypassed on other roads. Obviously, 
the measured time depends on the assumed travel speed. The precise assumptions about the travel speed 
itself are irrelevant for the empirical analysis (and only affect the size of the coefficient). The important 
feature is the relative decline in the travel speed for the different slope brackets. Since assigning the travel 
speed contains an arbitrary element, this constitutes the most serious threat to validity. The main problem 
is that there are not many sources that provide reliable travel speeds at the medieval times, other than that 
traveling was exhausting and took a long time. In order to check for robustness, the regression is performed 
with alternative speed schedules, with similar results as shown below.
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Fig. 3   Comparing historical and contemporaneous road networks. Panel (a) depicts a map of historical han-
seatic trade routes reproduced from Bruns and Weczerka (1962). Panel (b) depicts the digitized road map 
that is used to determine the distances and travel times for the empirical analysis. Map projection: Europe 
Equidistant Conic (Panel b)

Fig. 4   Travel distances from entry ports. Map of roads (brown) and waterways (blue) used to compute 
travel distances from entry ports (red triangles). Cities are depicted as black dots. Red line represents Ger-
man border as of 1900. Map projection: Europe Equidistant Conic (Color figure online)

The travel time is consequently defined as the minimum time necessary to travel the 
distance of the line segment given the speed restriction of the slope. The travel times to 
entry ports are then calculated in two steps. First the time to cover the particular line seg-
ment is assigned to the individual line segment given surface type and slope as described 
above. In the second step the path with the shortest sum of travel times is selected among 
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all paths, and the total travel time from each entry port to each city is computed using the 
Dijkstra-algorithm (Dijkstra 1959). The resulting variable Travel Time represents the travel 
time in hours from the closest port to the respective city. This variable serves as proxy for 
the relative risk of being exposed to outbreaks of the plague, which are expected to have 
occurred more often the closer the nearest entry port. The use of the travel times, rather 
than the simple distance, is essential to the analysis, since the spread of the plague requires 
human contact to infected hosts and vectors. The simple horizontal distance is therefore an 
inadequate proxy for the relative risk of being exposed to plague epidemics, since remote 
places were less likely to be affected by an outbreak.

Other variables To account for relevant heterogeneity across cities and regions, we use 
additional information from various sources. The analysis controls for access to the trade 
network of the Hanseatic League, as well as distance to trade ports that became important 
after the discovery of the Americas and to the main trade ports of the 19th century. City-
level controls for religion, the associated cultural differences, as well as for specific institu-
tions, are taken from data constructed by Cantoni (2012). This data set includes 237 cities 
in Germany and Austria, with information about population at various points in time and 
other background information. In particular, the data include binary indicators that denote 
whether a city was considered protestant after the 15th and 16th century, respectively, 
whether a city belonged to the Hanseatic League, whether a city was considered a free 
imperial city, whether a city had a printing press by the year 1517 or whether a city had a 
university or was located on a navigable river.16

To account for agricultural potential, we use information about the soil suitability for 
agriculture (in terms of caloric yield of the most important crop) based on data constructed 
by Galor and Özak (2016).17 Together with the measure for ruggedness, these variables 
provide valuable insight in the agricultural potential of a region. Additional indicator vari-
ables include information whether a city was affected by the 30-year war 1618-1648 or the 
7-year war 1756-1763, in terms of plundering or other warfare events.18

Descriptive statistics Table 1 provides descriptive statistics for the core variables of the 
analysis, the onset of the demographic transition, plague exposure in terms of the number 
of plague outbreaks in different time periods and in terms of travel distance (in hours) to 
the closest entry port for new plague outbreaks, and other control variables.

4 � Results

4.1 � Plague outbreaks and the timing of the demographic transition

As a first step, we regress the timing of the demographic transition in Germany, meas-
ured as the year in which a city experienced the fertility decline in terms of a marital 

16  Additional variables indicate the number of monasteries within a 10 km radius of the respective city for 
all monasteries and monasteries of the Order of Saint Augustine.
17  This variable measures the average potential crop yield in terms of calories (millions of kilo calories per 
hectare and year) for the most productive crop available for cultivation before 1500CE. In robustness tests, 
we also consider an index of land suitability for agriculture designed by Ramankutty et al. (2002) that uses 
the daily sum of temperature over a base temperature of 5 degree Celsius, the pH-level of the soil, the soil 
carbon density and a moisture index, calculated by the actual evapotranspiration over the potential evapo-
transpiration, in order to calculate a single number that indicate the suitability for agriculture.
18  The information for these variables is taken from records of city archives (Keyser 1974).
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fertility below 0.5 as dependent variable, on exposure to plague shocks as measured by 
the total recorded number of plague outbreaks before 1900 in a city. The results, which 
are presented in Table 2, document a consistently negative effect of the number of plague 
outbreaks on the year of the fertility transition. This is an indication that cities that expe-
rienced more frequent plagues also experienced an earlier fertility transition. In order to 
account for systematic heterogeneity that might affect this finding, we replicate the analysis 
by including various sets of control variables. In particular, we add controls for geography 
(location on a navigable river, maritime port, latitude and longitude), demographic con-
trols (for population density in 1400, as well as for population growth between 1400 and 
1600), religion controls (whether a city had adopted Protestantism by 1600, the number of 
monasteries per capita, and the number of Augustinian monasteries), controls for institu-
tions (the existence of a university, membership in the Hanseatic league, the status of a free 
imperial city, or the presence of a printing press by the time of the protestant reformation), 
suitability for agriculture (in terms of caloric yield of the most important crop), and expo-
sure of the city to wars (30-year war and 7-year war). Regardless of the specification, the 
coefficient estimates for plague outbreaks are significantly negative, indicating an earlier 
transition in line with the hypothesis. The similarity of the coefficients of interest across 
the different specifications suggests that the omission of relevant variables or problems due 
to the inclusion of endogenous (“bad”) controls are unlikely to drive the result.

The coefficient estimates for these control variables also reveal a coherent pattern.19 
Consistent with historical accounts that the demographic transition occurred first in France 
and North-West Europe, but also with the hypothesis that greater exposure to plague out-
breaks implied an earlier onset of the fertility transition, we find evidence for an earlier 
onset being associated with greater latitude and longitude. The results for the religion con-
trols confirm the intuition of an earlier onset of the fertility transition in cities that adopted 
Protestantism. Adding controls for institutions reveals that the existence of a university or 
a printing press implied an earlier fertility transition, although the coefficient estimates 
are not significant. Greater agricultural potential, as proxied by caloric yield of the most 
important crop, is also associated with a significantly earlier fertility transition, support-
ing arguments that are based on the interplay between environmental and cultural factors 
(see, e.g., Galor and Özak 2016). Finally, in line with previous arguments on the role of 
wars, we find that a greater exposure to the 30-year war was associated with an earlier 
onset of the demographic transition. Together, these findings are consistent with the joint 
role of population shocks, access to trade, and war for the demographic development as 
suggested by Voigtländer and Voth (2013b). Importantly, however, accounting for these 
control variables leaves the main results regarding the role of the exposure to the plague for 
the timing of the fertility transition essentially unaffected.20 Moreover, as suggested by the 
relatively low variance inflation factors, the estimation results also seem not to be affected 
by multicollinearity.

This finding provides a first piece of evidence that population shocks, proxied by the 
exposure to plague outbreaks, indeed had an effect on the timing of the demographic tran-
sition. However, while the stability of the coefficient estimates with respect to the addi-
tion of different sets of control variables indicates that plague outbreaks exert a largely 

20  Estimates following the approach of Oster (2019) suggest that the degree of selection on unobservables 
relative to observables that would be necessary to explain away the result exceeds the selection on observa-
bles ( � = 3.9 for Rmax = 0.6 which corresponds to the suggested benchmark, and 1.4 for for Rmax = 1).

19  See Table A.5 in the Appendix for the respective results.
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independent effect that is unlikely driven by third factors, the use of historical data on 
plague outbreaks might be problematic as these data are based on various sources of dif-
ferent quality and reliability. In particular, the data on outbreaks exhibit little variation and 
are measured very coarsely. This circumvents several shortcomings of historical data about 
plague-related casualties, including the lack of heterogeneity and reliability, emphasized by 
recent contributions (see, e.g., Alfani 2013), or comparability as consequence of different 
data sources and coverage (see, e.g., Roosen and Curtis 2018). Nevertheless, the results 
of a significant and robust relation between plague outbreaks and the timing of the fertil-
ity transition can only be seen as preliminary evidence in support of the hypothesis of the 
influence of plague exposure. In particular, in light of the lack of variation at the intensive 
margin and of the likely presence of measurement error, the size of the estimates is not 
very informative.

4.2 � Plague exposure and the timing of the demographic transition

In order to explore the robustness of the results, and to obtain more reliable estimates, we 
next replicate the analysis using information from a second, geography-based measure of 

Table 1   Descriptive statistics

The statistics refer to 237 cities in Germany

Mean SD Min Max

Onset of the demographic transition 
(Year)

1912.4 7.6 1889 1931

Number of outbreaks (0–1900) 2.1 4.8 0 25
Number of outbreaks (0–1555) 1.0 2.8 0 16
Number of outbreaks (0–1618) 1.6 3.9 0 20
Number of outbreaks (1360–1618) 1.4 3.6 0 19
Travel time 46.7 18.5 0.19 79
Travel time (Hanseatic city) 20.6 17.7 0 66
Travel time (Cologne) 47.8 25.8 0 118
Travel time (19th century ports) 61.8 21.1 26 121
Population in 1400(log) 0.5 0.9 0 3.7
Population growth 1400–1600(log) 0.5 0.9 −2.2 3
Protestant 0.8 0.4 0 1
Monasteries (p.c.) 1.3 1.8 0 15
Augustian Monasteries (p.c.) 0.1 0.3 0 1
University 0.1 0.2 0 1
Hanseatic city 0.1 0.3 0 1
City with maritime port 0.0 0.2 0 1
Reichsstadt 0.2 0.4 0 1
Printing press 0.1 0.3 0 1
Navigable river 0.4 0.5 0 1
Caloric yield 9105.3 455.6 7614 10,109
30y war 0.5 0.5 0 1
7y war 0.2 0.4 0 1
Latitude 51.0 1.5 48 54
Longitude 10.5 2.7 6.1 18
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plague exposure. In particular, in a reduced form exercise we use the distance to the closest 
entry port for plague outbreaks in terms of travel time, in addition to the measured number 
of plague outbreaks, as proxy for plague exposure. Otherwise, we apply the same extensive 
specification of the empirical model in terms of controls as before.

The results are shown in Table  3 and document that greater exposure to plague out-
breaks, proxied by greater proximity to the nearest entry port in terms of travel time is 
associated with a significantly earlier onset of the fertility transition in German regions. 
This finding is robust to the inclusion of the full set of geographic, population, religion, 
institution, agriculture and war controls. The effect of geographic exposure to plague out-
breaks is also robust to the inclusion of the total number of plague outbreaks as alterna-
tive proxy for plague exposure. The effect of plague outbreaks remains significant but is 
about 25% smaller than in the estimates with a comparable specification in the last column 
of Table 2. This suggests that part of the effect of plague outbreaks is accounted for by 
geographic exposure. The results document that the demographic transition is associated 
with a significantly earlier onset both in cities with more frequent outbreaks and closer 
travel distance to entry ports of new outbreaks.21 In addition, focusing on the number of 
outbreaks during different phases reveals that the association is particularly strong for the 

Table 2   Plague outbreaks and the timing of the demographic transition

Results of OLS regressions. Geography controls include latitude, longitude, and location on a navigable 
river; Population controls include log city population in 1400 and population growth 1400-1600; Religion 
controls include protestant denomination of city in 1600, the number of monasteries per capita, and the 
number of Augustinian monasteries; Institutions controls include dummies for university, Hanseatic city, 
imperial city, and printing press present in 1517; Agriculture controls include average caloric yield; Wars 
controls include dummies for battle events during 30-year war and 7-year war. Robust standard errors clus-
tered on region level in parentheses, */**/*** correspond to significance levels at the 10%/5%/1%-level, 
respectively

Dependent variable Onset of the demographic transition

Number of outbreaks 
(0–1900)

−0.230∗∗∗ −0.216∗∗∗ −0.297∗∗∗ −0.322∗∗∗ −0.332∗∗∗ −0.326∗∗∗ −0.355∗∗∗

(0.081) (0.067) (0.087) (0.085) (0.092) (0.094) (0.093)
Controls
Geography ✓ ✓ ✓ ✓ ✓ ✓

Population ✓ ✓ ✓ ✓ ✓

Religion ✓ ✓ ✓ ✓

Institutions ✓ ✓ ✓

Agriculture ✓ ✓

Wars ✓

Observations 237 237 237 237 237 237 237
R
2 0.021 0.306 0.309 0.366 0.376 0.389 0.396

Adjusted R2 0.017 0.291 0.288 0.338 0.337 0.347 0.349
Number of cluster 56 56 56 56 56 56 56
Highest VIF 1.00 1.27 2.11 2.18 2.63 2.64 2.65

21  Sensitivity checks following the approach of Oster (2019) suggest that the degree of selection on unob-
servables relative to observables needed to erode the effect of outbreaks is � = 2.6 for Rmax = 0.6 (the sug-
gested benchmark), and 0.8 for for Rmax = 1 . The corresponding estimates for travel time are 0.5 and 0.2, 
respectively.
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number of outbreaks during later periods. Robustness checks with respect to the coding of 
the number of plague outbreaks confirm these findings.22

Overall, the findings are consistent with the main mechanism underlying the onset of 
the demographic transition in the canonical unified growth model, which relates to popula-
tion dynamics and greater demand for human capital, as the main factors behind the onset. 
While the greater proximity to entry ports might also proxy for greater demand for human 
capital as these ports were also major medieval trade hubs, it should be kept in mind, how-
ever, that trade patterns and industry structure changed substantially from the middle ages 
to the 19th century, when the demographic transition took place. The coefficients suggest 
that geographic proximity to plague ports takes up part of the effect of plague outbreaks, 
which nevertheless remain a significant factor for the timing of the demographic transition. 

Table 3   Overall exposure to plague outbreaks and the timing of the demographic transition

Results of OLS regressions. Travel time measures time to nearest plague port (in hours). Geography con-
trols include latitude, longitude, and location on a navigable river; Population controls include log city pop-
ulation in 1400 and population growth 1400–1600; Religion controls include protestant denomination of 
city in 1600, the number of monasteries per capita, and the number of Augustinian monasteries; Institutions 
controls include dummies for university, Hanseatic city, imperial city, and printing press present in 1517; 
Agriculture controls include average caloric yield; Wars controls include dummies for battle events during 
30-year war and 7-year war. Robust standard errors clustered on region level in parentheses, */**/*** cor-
respond to significance levels at the 10%/5%/1%-level, respectively

Dependent variable Onset of the demographic transition

Travel time 0.214
∗∗∗

0.197
∗∗∗

0.196
∗∗∗

0.196
∗∗∗

0.196
∗∗∗

(0.070) (0.070) (0.070) (0.069) (0.069)
Number of outbreaks (0–1900) −0.261∗∗∗

(0.088)
Number of outbreaks (0–1555) −0.457∗∗∗

(0.149)
Number of outbreaks (0-1618) −0.360∗∗∗

(0.109)
Number of outbreaks (1360–1618) −0.415∗∗∗

(0.117)
Controls
Geography ✓ ✓ ✓ ✓ ✓

Population ✓ ✓ ✓ ✓ ✓

Religion ✓ ✓ ✓ ✓ ✓

Institutions ✓ ✓ ✓ ✓ ✓

Agriculture ✓ ✓ ✓ ✓ ✓

Wars ✓ ✓ ✓ ✓ ✓

Observations 237 237 237 237 237
R
2 0.436 0.448 0.448 0.450 0.453

Adjusted R2 0.392 0.402 0.402 0.405 0.408
Number of cluster 56 56 56 56 56
Highest VIF 5.03 5.14 5.11 5.11 5.10

22  See Table A.6 in the Supplementary Appendix for details.
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At the same time, the coefficient estimates individually imply that a reduction in the travel 
distance to the nearest plague port by  ten hours, is roughly equivalent to an onset of the 
fertility transition that occurs two years earlier.

4.3 � Robustness: disentangling plague exposure and trade

The results so far suggest that the exposure to population shocks as reflected by the expo-
sure to plague outbreaks was potentially a key factor for the shifts in the Malthusian equi-
librium that eventually gave way to the demographic transition, above and beyond a rich set 
of control variables. The finding that the travel distance to entry ports captures part of the 
effect of outbreaks is consistent with the observation that new waves of the plague repeat-
edly spread across Europe, initiating from ports and spreading through overland trade 
routes and waterways. However, this finding also raises the potential concern that the tim-
ing of the fertility transition might have been determined entirely by trade. Of course, it is 
very hard if not impossible to disentangle the role of plague-related population shocks from 
the effect of trade on the timing of the demographic transition, since trade might affect the 
timing directly and indirectly. Besides the direct effects related to the demand for human 
capital (see, e.g., Galor and Mountford 2008) there are indirect effects related to greater 
measurement error as consequence of lower quality of historical records in more remote 
towns. In the following, we present several additional analyses that address this issue.

Accounting for 19th Century Trade When considering the role of trade for the tim-
ing of the fertility transition, it is important to recognize that the plague outbreaks mainly 
occurred during the (late) middle ages while the fertility transition happened during the 
late 19th century. To disentangle the direct role of trade and plague exposure that is related 
to medieval trade we replicated the analysis while accounting for the differences in trade 
access during the middle ages and the 19th century. The analysis makes use of the fact 
that not all maritime harbors were recognized as entry points of new epidemic outbreaks, 
but all were access hubs to trade. In addition, trade networks during the 19th century had 
changed in comparison to the time of the plague outbreaks. This allows us to disentan-
gle the role of the exposure to plague-related population shocks (which spread along trade 
routes, but much earlier in time) from access to trade during the 19th century as a direct 
driver of the timing of the fertility transition.

In order to explore the relevance whether a greater proximity to a port or generally a 
good connection to trade networks are a driver for the fertility transition, we use informa-
tion about maritime ports that were not related to plague outbreaks as depicted in Fig. 1. 
To investigate the robustness of the main results with respect to trade access, we estimated 
more extensive specifications that account for access to trade in the middle ages and dur-
ing the 19th century. In particular, we control (separately and jointly) for the distance to 
Cologne as an important trade center in medieval Germany, access to the Hanseatic trade 
network, accounting for the shortest way along which goods could be shipped or trans-
ported over land to the closest member of the Hanse, and controlling for the closest port 
that had no relevance during medieval times but during the 19th century. In particular, we 
use additional information about the proximity to ports that were only founded (or gained 
importance) after the middle ages and that were important trade hubs in the 19th century 
(such as Rotterdam). Notice that these estimations can also be seen as a falsification test in 
the sense that if access to trade was the main trigger for the fertility transition, it should be 
the distance to the 19th century trade ports that affects the timing of the transition, and not 
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the distance to medieval entry ports, which already had lost importance. The results leave 
the main findings unaffected, as shown by Table 4. More extensive specifications with all 
controls added at once show indications of multicollinearity, with the result that travel time 
to the nearest entry port loses significance, while the number of plague outbreaks retains a 
significantly negative effect throughout.23 

Additional unreported falsification tests based on variables for access to placebo ports 
including or excluding Hamburg using similar variables (regarding the number of maritime 
ports in a perimeter of 100 hours travel time and the distance to the closest maritime port 
for maritime ports that were not entry ports for the plague) confirm the main results and 
document that the findings are not merely driven the distance to maritime harbors. In par-
ticular, while the main results for plague exposure are unchanged, these estimates deliver 
no evidence for an influence of the placebo ports on the timing of the fertility transition.

2SLS Results: Plague Exposure and Plague Outbreaks As a second robustness check 
regarding the distinct role of plague exposure and medieval trade and to explore whether 
and how the main results are affected by measurement error, we report the results of an 
instrumental variables estimation. This analysis is based on the idea that if travel distance 
to the entry ports represents a proxy for plague exposure that exhibits sufficient (con-
tinuous) variation, this variable can be used as an instrument for the number of plague 
outbreaks in the most extensive specification of control variables. Notice that the valid-
ity of an instrumental variables approach requires relevance of the instrument in terms of 
a first stage relationship between travel distance to entry ports and outbreaks, and valid-
ity in terms of an exclusion restriction. The latter appears implausible as far as a direct 
effect of medieval trade on the timing of the demographic transition is concerned, even 
when accounting for trade, since this effect might be accumulative. However, in the con-
text of accounting for measurement error in plague outbreaks, the IV approach promises 
new insights regarding the effect sizes and channels. Since the geographic distance from 
entry ports is unlikely to be relevant for the reliability of the count of plague outbreaks 
that is based on archival information, the IV estimates deliver insights regarding the role of 
plague exposure in terms of outbreaks when restricting to geographic variation only.

Table 5 presents the corresponding estimation results. The first column replicates the 
OLS results of the last column of Table 2 for all plague outbreaks before 1900. The remain-
ing columns of Table 5 report the 2SLS results for different specifications of the variable of 
plague outbreaks for the most extensive specification of controls. Throughout all specifica-
tions, the first stage results suggest that the instrument is relevant with the proxies of plague 
exposure being correlated (positively) with the frequency of plague outbreaks in different 
epochs, although the first stage is not very strong. The center panel reports the respective 
coefficient estimates of the first stage regressions. Consistent with the hypothesis, a greater 
travel distance to entry ports of new plague outbreaks is associated with fewer outbreaks.24 
The coefficient estimates for the instrumented number of plague outbreaks is negative 
and significant throughout all specifications, indicating an anticipation of the onset of the 

23  In particular, even though empirical specification does not include controls for latitude and longitude, the 
variance inflation factors are higher than in the baseline specification. Results with latitude and longitude 
controls and all trade controls added jointly are qualitatively similar and reported in Table A.7 in the Sup-
plementary Appendix.
24  Estimation results suggest that the number of outbreaks is only related to the distance to entry ports for 
plague outbreak, but is not just a reflection of access to maritime harbors, see Table A.8 in the Supplemen-
tary Appendix.
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Table 4   Robustness: access to trade

Results of OLS regressions. Travel time measures time to nearest plague port (in hours). Geography con-
trols include location on a navigable river; Population controls include log city population in 1400 and pop-
ulation growth 1400–1600; Religion controls include protestant denomination of city in 1600, the number 
of monasteries per capita, and the number of Augustinian monasteries; Institutions controls include dum-
mies for university, Hanseatic city, imperial city, and printing press present in 1517; Agriculture controls 
include average caloric yield; Wars controls include dummies for battle events during 30-year war and 
7-year war. Additional Trade Controls include travel distance to Cologne, travel distance to the closest Han-
seatic city, and travel distance to the closest 19th century trade port. Robust standard errors clustered on 
region level in parentheses, */**/*** correspond to significance levels at the 10%/5%/1%-level, respectively

Dependent variable Onset of the demographic transition

Panel A: Outbreaks 0–1900
Travel time 0.178

∗∗∗
0.163

∗∗∗
0.200

∗∗∗
0.119

∗∗

(0.044) (0.057) (0.045) (0.059)
Number of outbreaks (0–1900) −0.276∗∗∗ −0.284∗∗∗ −0.274∗∗∗ −0.327∗∗∗

(0.092) (0.089) (0.092) (0.093)
Additional trade controls
Cologne ✓

Hanse ✓ ✓

19th century ports ✓ ✓

Observations 237 237 237 237
R
2 0.427 0.414 0.427 0.458

Adjusted R2 0.382 0.369 0.383 0.414
Number of cluster 56 56 56 56
Highest VIF 2.68 2.87 2.68 5.93
Panel B: By timing of outbreaks
Travel time 0.119

∗∗
0.117

∗
0.118

∗∗
0.119

∗∗

(0.059) (0.059) (0.058) (0.058)
Number of outbreaks (0–1900) −0.327∗∗∗

(0.093)
Number of outbreaks (0–1555) −0.566∗∗∗

(0.161)
Number of outbreaks (0–1618) −0.438∗∗∗

(0.116)
Number of outbreaks (1360–1618) −0.490∗∗∗

(0.121)
Additional trade controls
Cologne
Hanse ✓ ✓ ✓ ✓

19th century ports ✓ ✓ ✓ ✓

Observations 237 237 237 237
R
2 0.458 0.458 0.461 0.464

Adjusted R2 0.414 0.413 0.417 0.420
Number of cluster 56 56 56 56
Highest VIF 5.93 5.90 5.91 5.90
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fertility transition that is quantitatively substantially larger than the effect obtained with 
OLS. The estimates are even larger when restricting attention to plague outbreaks before 
the peace of Augsburg 1555, or before the onset of the 30-year war 1618, as indicated by 
the results in Columns (3) and (4). Column (5) presents results for the number of outbreaks 
between 1360 and 1618, i.e., excluding the first wave of the Black Death that began in 
1347. The significant negative coefficient estimate of number of outbreaks, which suggests 
an earlier onset of the fertility transition in cities that experienced more plague shocks, sug-
gests potentially substantial attenuation of the OLS results due to measurement error, or 
captures an independent effect of port proximity, e.g., through medieval trade.

Table 5   Plague exposure and the timing of the demographic transition: IV Results

Results of OLS and 2SLS regressions. In 2SLS, the instrument is travel time measures time to nearest 
plague port (in hours). Geography controls include latitude, longitude, and location on a navigable river; 
Population controls include log city population in 1400 and population growth 1400–1600; Religion con-
trols include protestant denomination of city in 1600, the number of monasteries per capita, and the number 
of Augustinian monasteries; Institutions controls include dummies for university, Hanseatic city, imperial 
city, and printing press present in 1517; Agriculture controls include average caloric yield; Wars controls 
include dummies for battle events during 30-year war and 7-year war. Robust standard errors clustered on 
region level in parentheses, */**/*** correspond to significance levels at the 10%/5%/1%-level, respectively

Dependent variable Onset of the demographic transition

OLS 2SLS

(1) (2) (3) (4) (5)

Number of outbreaks (0–1900) −0.355∗∗∗ −3.333∗∗

(0.093) (1.317)
Number of outbreaks (0–1555) −5.490∗∗

(2.154)
Number of outbreaks (0–1618) −4.443∗∗

(1.785)
Number of outbreaks (1360–1618) −4.960∗∗

(2.046)
First stage
Travel time −0.064∗∗∗ −0.039∗∗∗ −0.048∗∗ −0.043∗∗

(0.024) (0.014) (0.019) (0.018)
Controls
Geography ✓ ✓ ✓ ✓ ✓

Population ✓ ✓ ✓ ✓ ✓

Religion ✓ ✓ ✓ ✓ ✓

Institutions ✓ ✓ ✓ ✓ ✓

Agriculture ✓ ✓ ✓ ✓ ✓

Wars ✓ ✓ ✓ ✓ ✓

Observations 237 237 237 237 237
Number of cluster 56 56 56 56 56
F-Stat in FS 6.90 7.56 6.25 5.71
Kleinbergen-Paap rk LM (p-value) 0.02 0.01 0.02 0.02



23Journal of Economic Growth (2021) 26:1–30	

1 3

4.4 � Robustness: additional results

Taken together, the results presented so far suggest that trade per se is unlikely to be the 
sole determinant of the timing of the fertility transition. Instead, plague outbreaks in the 
centuries before appear to be systematically related to the onset of the fertility transition.

To investigate the robustness of these results, we conducted different robustness checks. 
We computed the Moran statistic for spatial autocorrelation in the residual in order to rule 
out that the results are driven by spatial dependence (Kelly 2019). The results reveal no 
evidence for systematic spatial dependence in the residuals for large perimeters. Not sur-
prisingly, however, the results are sensitive to the choice of perimeter and reveal spatial 
dependence for small distances, which is natural in light of the fact that the timing of the 
demographic transition is measured at the region level and that the distance variables to 
ports exhibit strong spatial patterns. In fact, the inclusion of travel distance substantially 
reduces the spatial dependence in the residuals.

As further robustness check, we replicated the analysis while restricting attention to 
outbreaks during various subperiods. This allows exploring the sensitivity of the findings 
with respect to particular outbreaks or eras. For instance, after the fall of Constantinople 
in 1453, trading routes changed as consequence of the loss of control over the Bosporus. 
Similarly, the end of the first wave of the protestant reformation ended with the Peace of 
Augsburg in 1555, which marked a change in the influence of the Catholic church in Ger-
many. The analysis thus explores whether the main findings are affected when splitting 
the sample in terms of plague outbreaks before/after these dates. The results document 
the robustness of the estimates for the coefficient on travel time throughout the different 
specifications, while the coefficient on the number of outbreaks exhibits some variation. 
Overall, however, the results indicate a systematic relationship between a larger number of 
outbreaks and an earlier onset of the demographic transition.25 Another robustness check 
refers to measuring travel time distance along roads within the Roman empire separately 
from roads outside in order to rule out that the results are driven by systematic heterogene-
ity related to historical patterns and institutional factors that correlate with road quality or 
travel time, such as Roman influence. Roman influence on roads predates the plague out-
breaks but might nevertheless influence the spread of the plague by affecting road density 
(Dalgaard et al. 2018). The results are unaffected when measuring travel time distance dis-
tinguishing between roads in the Roman empire and roads outside to account for the per-
sistent role of Roman institutions and the Roman road network for long-run development 
(see, e.g., Wahl 2017; Dalgaard et al. 2018).26 Overall, the results are qualitatively similar 
and quantitatively even slightly larger when considering Roman roads, but the coefficients 
are not significantly different from each other and from those in Panel A. The plague expo-
sure proxy alone explains around 25 percent of the variation in the timing of the fertility 
transition, whereas adding the extensive set of additional control variables does not deliver 
a drastic increase in explanatory power of the empirical model. The estimation results seem 
not to be affected greatly by multicollinearity.

To explore the robustness with respect to the particular measure of the timing of the fer-
tility transition, we replicated the analysis using an alternative measure based on a thresh-
old of marital fertility of 0.6 instead of 0.5 relative to maximum (Hutterite) fertility applied 

25  The respective estimation results are reported in Panel A of Table A.9 in the Supplementary Appendix.
26  The respective estimation results are reported in Panel B of Table A.9 in the Supplementary Appendix.
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to same data source (Knodel 1974). The results obtained for the alternative measure of the 
timing of the fertility transition are qualitatively very similar to the baseline results.27 The 
results of unreported estimates also reveal similar results when weighting the distance to 
the nearest port by the number of plague outbreaks.

Instead of exploring the role of the exposure to repeated population shocks as consequence 
of plague outbreaks using city-level data, we also analyzed the data on the level of regions. 
Given that the main information source on the timing of the fertility transition is on the 
regional level (Knodel 1974), this could be viewed as a more natural level of the analysis. On 
the other hand, however, this means using variation in the data at a higher level of aggregation. 
Checking the sensitivity of the empirical results with respect to the level of aggregation also 
provides a sensible robustness check in general. The results confirm the findings on the city 
level, namely that regions with more entry ports in a reasonably close distance are associated 
with a significantly earlier fertility transition. Likewise, regions that are less exposed to plague 
outbreaks as measured by a greater distance in terms of travel time to the nearest plague entry 
port experience a significantly later onset of the fertility transition.28 The coefficient esti-
mates are quantitatively very comparable to those obtained for data on the city level. At the 
same time, the findings regarding an earlier transition for more densely populated regions, for 
regions that are predominantly of Protestant denomination, and for regions that have better 
access (in terms of lower distance) to major trade routes are confirmed using regional data.

We also verified the robustness of the results with respect to additional controls, such as 
population dynamics during the 19th century or a distinct effect of outbreaks of the Black 
Death of 1347-1352 and later plague outbreaks, which might indicate the prevalence of a 
permanent reservoir, or controls. The results confirm the main findings.29

A further set of robustness checks concerns the relevance of the assumptions about 
travel speeds and road structures. In general, historical sources on travel speeds both over 
land and on waterways are both rather scarce and vague. There are several ways of address-
ing this issue. When performing robustness checks based on a different travel time sched-
ule or when calibrating the Dijkstra-algorithm in order to minimize the travel time avoiding 
roads whenever possible, and restricting to only roads, the results are qualitatively similar 
to the baseline results, which suggests that these results are not due to assumptions about 
travel speeds or transportation mode.30

Unreported results using the number of plague entry ports within a travel distance of 
100 hours instead of the travel distance to the nearest entry port also delivered similar 
findings.31

4.5 � External validity: the demographic transition in France

The hypothesis that greater exposure to population shocks such as repeated plague out-
breaks ultimately contributes to an earlier fertility transition is generic and not restricted to 
the context of Germany. In an attempt to investigate the external validity of the empirical 

27  The respective estimation results are reported in Panel A of Table A.10 in the Supplementary Appendix.
28  The respective estimation results are reported in Panel B of Table A.10 in the Supplementary Appendix. 
The travel times are computed as average of the cities located in the region.
29  The respective estimation results are reported in Panels A and B of Table A.11 in the Supplementary 
Appendix.
30  Completely deleting roads would reduce the number of observations dramatically as many cities cannot 
be reached solely by waterways due to their location away from rivers or within river deltas.
31  Details are available upon request.
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results, we replicated the same empirical approach for France. The case of France is par-
ticularly interesting for several reasons. France was the first country to experience the 
demographic transition. In addition, it has been argued that the fertility transition in Europe 
was influenced by social and behavioral changes that originated in France (Spolaore and 
Wacziarg 2019). Moreover, outbreaks of the plague to Europe occurred first in France, and 
much research on the Black Death has focused on France as consequence of an arguably 
higher data quality for plague outbreaks in France than in other parts of Europe.32

The extension of the main analysis to France requires the use of different data and 
data sources, which constrains the comparability with the earlier estimation results for 
Germany, particularly concerning the control variables. At the same time, this is a useful 
complement to the analysis for data from Germany as it provides insights into the external 
validity and affords greater statistical power. The timing of the fertility transition is con-
structed based on data from the Princeton European Fertility Project (Coale and Coats-
Watkins 1986) using the same definition as for Germany.33 Other variables are constructed 
from different sources. The onset of the fertility transition in France, although occurring 
earlier than in Germany, also exhibits considerable variation (see Figure A.3 in the Sup-
plementary Appendix).

In terms of the specification of the estimation model, the analysis of France involves 
several modifications of the baseline model. First, in light of the geography, the empiri-
cal specification accounts for additional trade controls. In particular, the empirical model 
accounts for the distance to Cologne and Paris as the main medieval trade hubs. This also 
accounts for arguments that social and behavioral changes that affected the timing of the 
fertility transition spread concentrically from Paris (Spolaore and Wacziarg 2019). In addi-
tion, the controls also include the distance to the nearest Hanseatic city or maritime port, 
and to the nearest 19th century trade port that was not an entry ports for the plague. Pre-
liminary analysis of the data for France reveals that greater exposure to plague outbreaks 
in terms of travel time is associated with more frequent outbreaks. However, to avoid prob-
lems of multicollinearity, the empirical specification does not include controls for latitude 
and longitude.

Table 6 presents the reduced form results for the proxy measures of plague exposure 
when including France in the estimation. The findings confirm the earlier result that a 
greater plague exposure, as proxied by the number of outbreaks and proximity to plague 
entry ports, is associated with an earlier onset of the fertility transition. The coefficient for 
plague outbreaks appears more robust and quantitatively larger in comparison to the base-
line results, whereas the travel time to the nearest plague port has a positive but insignifi-
cant coefficient. The size of the coefficient estimates as well as the findings for outbreaks 
during different periods are also comparable.34

32  For instance, the coverage of the data by Biraben (1975, 1976) is comparably high for France, while 
even here full availability and comparability of sources is not ensured, see, e.g., Roosen and Curtis (2018).
33  As baseline, we code the first year in which marital fertility reached a threshold of 0.5 as the onset, for 
robustness we also conducted robustness checks for an alternative threshold of 0.6, with similar results.
34  Additional results also confirm the main findings for an extended specification that includes controls for 
latitude and longitude, although considerably higher variance inflation factors advise caution when inter-
preting the results due to potential multicollinearity, see Appendix Table A.12. The qualitative patterns 
are similar when restricting attention to France only, although for the sample of France the coefficients for 
travel time appear statistically more robust, or when applying the 2SLS approach, see Tables A.13 and A.14 
in the Supplementary Appendix.
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Table 6   Plague exposure and the timing of the demographic transition: external validity

Results of OLS regressions. Travel time measures time to nearest plague port (in hours). Geography con-
trols include location on a navigable river; Population controls include log city population in 1400 and pop-
ulation growth 1400-1600; Religion controls include protestant denomination of city in 1600, the number of 
monasteries per capita, and the number of Augustinian monasteries; Institutions controls include dummies 
for university, Hanseatic city, imperial city, and printing press present in 1517; Agriculture controls include 
average caloric yield; Wars controls include dummies for battle events during 30-year war and 7-year war. 
Additional Trade Controls include travel distance to Cologne, travel distance to the closest Hanseatic city, 
and travel distance to the closest 19th century trade port. Robust standard errors clustered on region level in 
parentheses, */**/*** correspond to significance levels at the 10%/5%/1%-level, respectively

Dependent variable Onset of the demographic transition

Panel A: outbreaks 0–1900
Travel time 0.059 0.123 0.017 0.040

(0.146) (0.167) (0.126) (0.148)
Number of outbreaks (0–1900) −1.427∗∗∗ −1.396∗∗∗ −1.000∗∗ −0.994∗∗

(0.417) (0.419) (0.397) (0.399)
Additional trade controls
Cologne/Paris ✓ ✓ ✓ ✓

Hanse/Maritime ports ✓ ✓

19th century ports ✓ ✓

Observations 518 518 518 518
R
2 0.446 0.451 0.548 0.548

Adjusted R2 0.434 0.438 0.537 0.537
Number of cluster 136 136 136 136
Highest VIF 1.96 2.11 6.39 6.53
Panel B: By timing of outbreaks
Travel time 0.040 0.032 0.039 0.039

(0.148) (0.149) (0.148) (0.148)
Number of outbreaks (0–1900) −0.994∗∗

(0.399)
Number of outbreaks (0–1555) −1.202∗

(0.636)
Number of outbreaks (0–1618) −0.988∗∗

(0.490)
Number of outbreaks (1360–1618) −1.049∗∗

(0.518)
Additional trade controls
Cologne/Paris ✓ ✓ ✓ ✓

Hanse ✓ ✓ ✓ ✓

19th century ports ✓ ✓ ✓ ✓

Observations 518 518 518 518
R
2 0.548 0.545 0.546 0.546

Adjusted R2 0.537 0.533 0.534 0.534
Number of cluster 136 136 136 136
Highest VIF 6.53 6.52 6.55 6.57
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5 � Conclusion

This paper presented an empirical investigation of the hypothesis that cities or regions that 
were more (and more often) exposed to major population shocks related to the medieval 
plague experienced an earlier fertility transition. This hypothesis follows from recent work 
on the long-run implications of plague outbreaks and complements existing evidence that 
has not considered the timing of the fertility transition. The findings provide novel evi-
dence in line with the implications of earlier contributions predicting that the population 
shock associated with the plague led to shifts in the Malthusian equilibrium and ultimately 
accelerated the mechanisms behind the demographic transition as predicted by the canoni-
cal unified growth framework.

Given the importance of the demographic transition for long-run development, the evi-
dence shown here provides new insights into the reasons for regional development differ-
ences that might be related to historical coincidences and points to various directions for 
future research regarding the underlying mechanisms. The literature has described several 
candidate mechanisms working through fertility which are related to age of first marriage 
or knowledge and attitudes regarding birth control. However, direct evidence on these 
mechanisms is scarce and empirical findings indicate no clear correlation between age of 
first marriage and total fertility. Others have pointed to changes in the population com-
position as result of plague shocks, which are related to gender ratio, age composition, 
and household size. Finally, repeated plague outbreaks might have led to the adoption of 
institutions, e.g., regarding inheritance rules, that might have ultimately led to a reduced 
demand for children and an earlier demographic transition. More evidence is needed to 
shed light on the empirical relevance and relative importance of these mechanisms. In 
addition, the analysis here has focused on the timing of the demographic transition across 
regions in Europe. More work is needed for a better understanding why the demographic 
transition occurred earlier in Europe than in other parts of the world such as China that 
experienced similar plague-related population shocks.
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