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1 Introduction

Inflation expectations are used as crucial inputs for economic decision making in central banks

such as the European Central Bank (ECB) and the US Federal Reserve (Fed). Given current

and expected inflation, economic agents decide on how much to consume, save and invest.

In addition, measures of inflation expectations are often employed to estimate the slope of

the Phillips curve, infer the output gap or the natural rate of interest. Hence, being able to

accurately predict inflation is key for designing and implementing appropriate monetary policies

in a forward looking manner.

Although the literature on modeling inflation is voluminous and the efforts invested con-

siderable, predicting inflation remains a difficult task (Stock and Watson, 2007) and simple

univariate models are still difficult to beat. The recent literature, however, has shown that using

large datasets (Stock and Watson, 2002) and/or sophisticated models (see Koop and Potter,

2007; Koop and Korobilis, 2012; D’Agostino et al., 2013; Koop and Korobilis, 2013; Clark and

Ravazzolo, 2015; Chan et al., 2018; Jarocinski and Lenza, 2018) has the potential to improve

upon simpler benchmarks.

These studies often extract information from huge datasets. This is commonly achieved by

extracting a relatively small number of principal components (PCs) and including them in a

second stage regression model. While this approach performs well empirically, it fails to capture

non-linear relations in the dataset. In the presence of non-linearities, using simple PCs poten-

tially reduces predictive accuracy by ignoring important features of the data. Moreover, the

regression model that links the PCs with inflation is often assumed to feature constant param-

eters and homoscedastic errors. In the presence of structural breaks and/or heteroscedasticity,

this may adversely affect forecasting accuracy.

Investigating whether allowing for non-linearities in the compression stage pays off for in-

flation forecasting is the key objective of the present paper. Building on recent advances in

machine learning (see Gallant and White, 1992; McAdam and McNelis, 2005; Exterkate et al.,

2016; Chakraborty and Joseph, 2017; Heaton et al., 2017; Mullainathan and Spiess, 2017; Feng

et al., 2018; Coulombe et al., 2019; Kelly et al., 2019; Medeiros et al., 2019), we adopt sev-

eral non-linear dimension reduction techniques. The resulting latent factors are then linked to

inflation in a second stage regression. In this second stage regression we allow for substantial

flexibility. Specifically, we consider dynamic regression models that allow for time-varying pa-

rameters (TVPs) and stochastic volatility (SV). Since the inclusion of a relatively large number

of latent factors can still imply a considerable number of parameters (and this problem is even

more severe in the TVP regression case), we rely on state-of-the-art shrinkage techniques.

From an empirical standpoint it is necessary to investigate how these dimension reduction

techniques perform over time and during different business cycle phases. We show this using a

thorough real-time forecasting experiment for the US. Our forecasting application uses monthly

real-time datasets (i.e., the FRED-MD database proposed in McCracken and Ng (2016)) and

includes a battery of well established models commonly used in central banks and other policy

institutions to forecast inflation.

Our results show that dimension reduction techniques yield forecasts that are highly com-

petitive to the ones obtained from using linear methods based on PCs. At a first glance, this
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shows that existing models already perform well and using more sophisticated methods yields

only modest gains in predictive accuracy. However, zooming into model performance over time

reveals that controlling for non-linear relations in the data is of particular importance during

recessionary episodes of the business cycle.

This finding gives rise to the second contribution of our paper. Since we find that more

sophisticated non-linear dimension reduction methods outperform simpler techniques during

recessions, we combine the considered models using dynamic model averaging (see Raftery et al.,

2010; Koop and Korobilis, 2013). We show that combining our proposed set of models with a

variety of standard forecasting models yields predictive densities which are superior to the single

best performing model in overall terms. These effects are even more pronounced when interest

centers on multi-step ahead forecasting.

The remainder of this paper is structured as follows. Section 2 discusses a set of dimen-

sion reduction techniques. Section 3 introduces the econometric modeling environment that

we use to forecast inflation. Section 4 provides the results of the forecasting horse race and

introduces weighted combinations of the competing models including the results of the forecast

combinations. The last section summarizes and concludes the paper.

2 Linear and Non-linear Dimension Reduction Techniques

Suppose that we are interested in predicting inflation using a large number of K regressors that

we store in a T × K matrix X = (x1, . . . ,xT )′, where xt denotes a K-dimensional vector of

observations at time t. If K is large relative to T , estimation of an unrestricted model that

uses all columns in X quickly becomes cumbersome and overfitting issues arise. As a solution,

dimension reduction techniques are commonly employed (see, e.g., Stock and Watson, 2002;

Bernanke et al., 2005). These methods strike a balance between model fit and parsimony. At a

very general level, the key idea is to introduce a function f that takes the matrix X as input

and yields a lower dimensional representation Z = f(X) = (z1, . . . ,zT )′, which is of dimension

T × q, as output. The critical assumption to achieve parsimony is that K � q. The latent

factors in Z are then linked to inflation through a dynamic regression model (see Section 3).

The function f : RT×K → RT×q is typically assumed to be linear with the most prominent

example being PCs. In this paper, we will consider several choices of f that range from linear to

highly non-linear (such as manifold learning as well as deep learning algorithms) specifications.

We subsequently analyze how these different specifications impact inflation forecasting accuracy.

In the following subsections, we briefly discuss the different techniques and refer to the original

papers for additional information.

2.1 Principal Component Analysis (PCA)

Minor alterations of the main PCA algorithm allow for introducing non-linearities in two ways.

First, we can introduce a non-linear function g that maps the covariates onto a matrix W =

g(X). Second, we could alter the sample covariance matrix (the kernel) with a function h:

κ = h(W ′W ). Both W and κ form the two main ingredients of a general PCA reducing the

dimension to q, as outlined below (for details, see Schölkopf et al., 1998).
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Independent of the functional form of g and h, we obtain PCs by performing a truncated

singular value decomposition (SVD) of the transformed sample covariance matrix κ. Conditional

on the first q eigenvalues, the resulting factor matrix Z is of dimension T × q. These PCs, for

appropriate q, explain the vast majority of variation in X. In the following, the relationship

between the PCs and X is:

Z = f(X) = g(X)Λ(κ) = WΛ(κ), (1)

with Λ(κ) being the truncated K× q eigenvector matrix of κ (Stock and Watson, 2002). Notice

that this is always conditional on deciding on a suitable number q of PCs. The number of

factors is a crucial parameter that strongly influences predictive accuracy and inference (Bai

and Ng, 2002). In our empirical work, we consider a small (q = 5), moderate (q = 15), and

large (q = 30) number of PCs. In the case of a large number of PCs, we use shrinkage to solve

overparameterization concerns.

By varying the functional form of g and h we are now able to discuss the first set of linear-

and non-linear dimension reduction techniques belonging to the class of PCA:

1. Linear PCs

The simplest way is to define both g and h as the unity function, resulting in W = X

and κ = X ′X. Due to the linear link between the PCs and the data, PCA is very easy to

implement and yields consistent estimators for the latent factors if K and T go to infinity

(Stock and Watson, 2002; Bai and Ng, 2008). Even if there is some time-variation in

the factor loadings, Stock and Watson (1999) show that principal components remain a

consistent estimator for the factors if K is large.

2. Squared PCs

The literature suggests several ways to overcome the linearity restriction of PCs. Bai and

Ng (2008), for example, apply a quadratic link function between the latent factors and the

regressors, yielding a more flexible factor structure. This method considers squaring the

elements of X resulting in

W = X2 and κ = (X2)′(X2), (2)

with X2 = (X �X) and � denoting element-wise multiplication.

Squared PCs focus on the second moments of the covariate matrix and allow for a non-

linear relationship between the principal components and the predictors. Bai and Ng

(2008) show that quadratic variables can have substantial predictive power as they pro-

vide additional information on the underlying time series. Intuitively speaking, given

that we transform our data to stationarity in the empirical work, this transformation

strongly overweights situations characterized by sharp movements in the columns of X

(such as during a recession). By contrast, periods characterized by little variation in our

macroeconomic panel are transformed to mildly fluctuate around zero (and thus carry lit-

tle predictive content for inflation). In our empirical model, our regressions always feature

lagged inflation and this transformation thus effectively implies that in tranquil periods,
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the model is close to an autoregressive model whereas in crisis periods, more information

is introduced.

3. Kernel PCs

Another approach for non-linear PCs is the kernel principal component analysis (KPCA).

KPCA dates back to Schölkopf et al. (1998), who proposed using integral operator kernel

functions to compute PCs in a non-linear manner. In essence, this amounts to implicitly

applying a non-linear transformation of the data through a kernel function and then ap-

plying PCA on this transformed dataset. Such an approach has been used for forecasting

in Giovannelli (2012) and Exterkate et al. (2016).

We allow for non-linearities in the kernel function between the data and the factors by

defining h to be a Gaussian or a polynomial kernel κ (which is K ×K) with the (i, j)th

element given by

κij = exp

(
−||x•i − x•j ||

2c2
1

)
(3)

for a Gaussian kernel and

κij =

(
x′•ix•j
c2

0

+ 1

)2

(4)

for a polynomial kernel.

Here, W = X (i.e., g is the unity function), x•i and x•j (i, j = 1, . . . ,K) denote two

columns of X while c0 and c1 are scaling parameters. As suggested by Exterkate et al.

(2016) we set c0 =
√

(K + 2)/2 and c1 =
√
cK/π with cK being the 95th percentile of the

χ2 distribution with K degrees of freedom.

2.2 Diffusion Maps

Diffusion maps, originally proposed in Coifman et al. (2005) and Coifman and Lafon (2006), are

another set of non-linear dimension reduction techniques that retain local interactions between

data points in the presence of substantial non-linearities in the data.1 The local interactions are

preserved by introducing a random walk process.

The random walk captures the notion that moving between similar data points is more

likely than moving to points which are less similar. We assume that the weight function which

determines the strength of the relationship between x•i to x•j is given by

w(x•i,x•j) = exp

(
||x•i − x•j ||2

c2

)
, (5)

where ||x•i − x•j || denotes the Euclidean distance between x•i and x•j and c2 is a tuning

parameter set such that w(x•i,x•j) is close to zero except for x•i ≈ x•j . Here, c2 is determined

by the median distance of k-nearest neighbors of x•i as suggested by Zelnik-Manor and Perona

1For an application to astronomical spectra, see Richards et al. (2009).
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(2004). The number of k is chosen by taking a small percentage of K (i.e., 1 %) such that it

scales with the size of the dataset.

The probability of moving from x•i to x•j is then simply obtained by normalizing:

pi→j = Prob(x•i → x•j) =
w(x•i,x•j)∑
j w(x•i,x•j)

. (6)

This probability tends to be small except for the situation where x•i and x•j are similar to each

other. As a result, the probability that the random walk moves from x•i to x•j will be large

if they are equal but rather small if both covariates differ strongly. Let P denote a transition

matrix of dimension K×K with (i, j)th element given by pi→j . The probability of moving from

x•i to x•j in n = 1, 2, . . . steps is then simply the matrix power of P n, with typical element

denoted by pni→j . Using a biorthogonal spectral decomposition of P n yields:

pni→j =
∑
s≥0

λnsψs(x•i)φs(x•j), (7)

with ψs and φs denoting left and right eigenvectors of P , respectively. The corresponding

eigenvalues are given by λs.

We then proceed by computing the so-called diffusion distance as follows:

ξ2
n(x•i,x•j) =

∑
j

(pni→j − pns→j)2

p0(x•j)
, (8)

with p0 being a normalizing factor that measures the proportion the random walk spends at

x•j . This measure turns out to be robust with respect to noise and outliers. Coifman and Lafon

(2006) show that

ξ2
n(x•i,x•j) =

∞∑
s=1

λ2n
s (ψs(x•i)− ψs(x•j))2. (9)

This allows us to introduce the family of diffusion maps from RK → Rq given by:

Ξn(x•i) = [λn1ψ1(x•i), . . . , λ
n
qψq(x•i)]. (10)

The distance matrix can then be approximated as:

ξ2
n(x•i,x•j) ≈

q∑
s=1

λ2n
s (ψs(x•i)− ψs(x•j))2 = ||Ξn(x•i)−Ξn(x•j)||2. (11)

Intuitively, this equation states that we now approximate diffusion distances in RK through the

Euclidian distance between Ξn(x•i) and Ξn(x•j). This discussion implies that we have to choose

n and q and we do this by setting q = {5, 15, 30} according to our approach with either a small,

moderate or large number of factors and n = T , the number of time periods. The algorithm

in our application is implemented using the R-package diffusionMap (Richards and Cannoodt,

2019).
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2.3 Local Linear Embedding

Locally linear embeddings (LLE) have been introduced by Roweis and Saul (2000). Intuitively,

the LLE algorithm maps a high dimensional input dataset X into a lower dimensional space

while being neighborhood-preserving. This implies that points which are close to each other in

the original space are also close to each other in the transformed space.

The LLE algorithm is based on the assumption that each x•i is sampled from some underlying

manifold. If this manifold is well defined, each x•i and its neighbors x•j are located close to

a locally linear patch of this manifold. One consequence is that each x•i can, conditional

on suitably chosen linear coefficients, be reconstructed from its neighbors x•j j 6= i. This

reconstruction, however, will be corrupted by measurement errors. Roweis and Saul (2000)

introduce a cost function to quantify these errors:

C(Ω) =
∑
i

(x•i −
∑
j

ωijx•j)
2, (12)

with Ω denoting a weight matrix with the (i, j)th element given by ωij . This cost function is

then minimized subject to the constraint that each x•i is reconstructed only from its neighbors.

This implies that ωij = 0 if x•j is not a neighbor of x•i. The second constraint is that the

matrix Ω is row-stochastic, i.e., the rows sum to one. Conditional on these two restrictions, the

cost function can be minimized by solving a least squares problem.

To make this algorithm operational we need to define our notion of neighbors. In the fol-

lowing, we will use the k-nearest neighbors in terms of the Euclidean distance. We choose the

number of neighbors by applying the algorithm proposed by Kayo (2006), which automatically

determines the optimal number for k. The q latent factors in Z, with typical ith column z•i,

are then obtained by minimizing:

Φ(Z) =
∑
i

|z•i −
∑
j

Ωijz•j |2, (13)

which implies a quadratic form in zt. Subject to suitable constraints, this problem can be easily

solved by computing:

M = (IT −Ω)′(IT −Ω), (14)

and finding the q + 1 eigenvectors of M associated with the q + 1 smallest eigenvalues. The

bottom eigenvector is then discarded to arrive at q factors. For our application, we use the

R-package lle (Diedrich and Abel, 2012).

2.4 Isometric Feature Mapping

Isometric Feature Mapping (ISOMAP) is one of the earliest methods developed in the category of

manifold learning algorithms. Introduced by Tenenbaum et al. (2000), the ISOMAP algorithm

determines the geodesic distance on the manifold and uses multidimensional scaling to come

up with a low number of factors describing the underlying dataset. Originally, ISOMAP was

constructed for applications in visual perception and image recognition. In economics and
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finance, some recent papers highlight its usefulness (see, e.g., Ribeiro et al., 2008; Lin et al.,

2011; Orsenigo and Vercellis, 2013; Zime, 2014).

The algorithm consists of three steps. In the first step, a dissimilarity index that measures

the distance between data points is computed. These distances are then used to identify neigh-

boring points on the manifold. In the second step, the algorithm estimates the geodesic distance

between the data points as shortest path distances. In the third step, metric scaling is performed

by applying classical multidimensional scaling (MDS) to the matrix of distances. For the dissim-

ilarity transformation, we determine the distance between point i and j by the Manhattan index

dij =
∑

k |xki − xkj | and collect those points where i is one of the k-nearest neighbors of j in

a dissimilarity matrix. For our empirical application, we again choose the number of neighbors

by applying the algorithm proposed by Kayo (2006) and use the algorithm implemented in the

R-package vegan (Oksanen et al., 2019).

The described non-linear transformation of the dataset enables the identification of a non-

linear structure hidden in a high-dimensional dataset and maps it to a lower dimension. Instead

of pairwise Euclidean distances, ISOMAP uses the geodesic distances on the manifold and com-

presses information under consideration of the global structure.

2.5 Non-linear Compression with Deep Learning

Deep learning algorithms are characterized by not only non-linearly converting input to out-

put but also representing the input itself in a transformed way. This is called representation

learning in the sense that representations of the data are expressed in terms of other, simpler,

representations before mapping the data input to output values.

One tool which performs representation of itself as well as representation to output is the

Autoencoder (AE). The first step is accomplished by the encoder function, which maps an

input to an internal representation. The second part, which maps the representation to the

output, is called the decoder function. Their ability to extract factors, which largely explain

variability of the observed data, in a non-linear manner makes deep learners a powerful tool

complementing the range of commonly used dimension reduction techniques (Goodfellow et al.,

2016). In empirical finance, Heaton et al. (2017), Feng et al. (2018) and Kelly et al. (2019) show

that the application of these methods is beneficial to predict asset returns.

Based on deep learning techniques, we propose obtaining hierarchical predictors Z by apply-

ing a number of l ∈ {1, . . . , L} non-linear transformations to X. The non-linear transformations

are also called hidden layers with L giving the depth of our architecture and f1, . . . , fL de-

noting univariate activation functions for each layer. More specifically, activation functions

(non-linearly) transform data in each layer, taking the output of the previous layer. A common

choice is the hyperbolic tangent (tanh) given by exp(X)−exp(−X)
exp(X)+exp(−X) , justified by several findings in

recent studies such as Saxe et al. (2019) or Andreini et al. (2020).

The structure of our deep learning algorithm can be represented in form of a composition of

univariate semi-affine functions given by

fW
(l),bl

l = fl

(
Nl∑
i=1

W
(l)
•i x̂

(l)
•i + bl

)
, 1 ≤ l ≤ L, (15)

8



with W (l) denoting a weighting matrix associated with layer l (with W
(l)
•i denoting the ith

column of W (l)), x̂
(l)
•i denotes the ith column of an input matrix X̂(l) to layer l, bl is the

corresponding bias term and Nl denotes the number of neurons that determine the width of the

network. Notice that if l = 1, X̂(1) = X and the input matrix is obtained recursively by using

the activation functions.

The lower dimensional representation of our covariate matrix is then obtained by computing

the composite map:

Z = f(X) = (fW
(1),b1

1 ◦ · · · ◦ fW
(L),bL

L )(X). (16)

The optimal sets of Ŵ = (Ŵ (0), . . . , Ŵ (L)) and b̂ = (b̂0, . . . , b̂L) are obtained by computing a

loss function, most commonly the mean squared error of the in-sample fit. The complexity of

the neural network is determined by choosing the number of hidden layers L and the number

of neurons in each layer Nl. We create five hidden layers with the number of neurons evenly

downsizing to the desired number of factors. Corresponding to the standard literature (see, e.g.,

Huang, 2003; Heaton, 2008), a huge number of covariates requires a more complex structure

(i.e., a higher number of hidden layers). Furthermore, it is recommended to set the number

of neurons between the size of the input and the output layer where Nl is high in the first

hidden layer and smaller in the following layers. We employ the R interface to keras (Allaire

and Chollet, 2019), a high-level neural networks API and widely used package for implementing

deep learning models.

3 A TVP Regression for Forecasting Inflation

In the following, we introduce the predictive regression that links our target variable (US infla-

tion) to Z and p lags of inflation. Following Stock and Watson (1999), inflation is specified such

that:

yt+h = ln

(
CPIt+h
CPIt

)
− ln

(
CPIt

CPIt−1

)
, (17)

with CPIt+h denoting the consumer price index in period t+ h.

In the empirical application we set h ∈ {1, 3, 12}. yt+h is then modeled using a dynamic

regression model:

yt+h = d′tβt+h + εt+h, εt+h ∼ N (0, σ2
t+h), (18)

where βt+h is a vector of TVPs associated with M(= q + p) covariates denoted by dt and

σ2
t+h is a time-varying error variance. dt might include the latent factors extracted from the

various methods discussed in the previous subsection, lags of inflation, an intercept term or

other covariates which are not compressed.

Following much of the literature (Taylor, 1982; Belmonte et al., 2014; Kalli and Griffin, 2014;

Kastner and Frühwirth-Schnatter, 2014; Stock and Watson, 2016; Chan, 2017; Huber et al., 2020)

we assume that the TVPs and the error variances evolve according to independent stochastic
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processes:(
βt+h

log σ2
t+h

)
∼ N

((
βt+h−1

µh + ρh log σ2
t+h−1

)
,

(
V 0

0 ϑ2
h

))
, (19)

with µh denoting the conditional mean of the log-volatility, ρh its persistence parameter and

ϑ2
h the error variance of log σ2

t+h. The matrix V is a M ×M -dimensional variance-covariance

matrix with V = diag(v2
1, . . . , v

2
M ) and v2

j being the process innovation variance that determines

the amount of time-variation in βt+h. This setup implies that the TVPs are assumed to follow

a random walk process while the log-volatilities evolve according to an AR(1) process.

The model described by Eq. 18 and Eq. 19 is a flexible state space model that encompasses

a wide range of models commonly used for forecasting inflation. For instance, if we set V = 0M

and ϑ2 = 0, we obtain a constant parameter model. If dt includes the lags of inflation and

(lagged) PCs, we obtain a model closely related to the one used in Stock and Watson (2002).

If we set dt = 1 and allow for TVPs, we obtain a model very closely related to the unobserved

components stochastic volatility (UC-SV) successfully adopted in Stock and Watson (1999).

A plethora of other models can be identified by appropriately choosing dt, V and ϑ2. This

flexibility, however, calls for model selection. We select appropriate submodels by using Bayesian

methods for estimation and forecasting. These techniques are further discussed in Appendix A

and allow for data-based shrinkage towards simpler nested alternatives.

4 Forecasting US Inflation

4.1 Data Overview, Design of the Forecasting Exercise and Competitors

For the empirical application, we consider the popular FRED-MD database. This dataset is

publicly accessible and available in real-time. The monthly data vintages ensure that we only

use information that would have been available at the time a given forecast is being produced.

A detailed description of the databases can be found in McCracken and Ng (2016). To achieve

approximate stationarity we transform the dataset as given in Appendix B. Furthermore, each

time series is standardized to have sample mean zero and unit sample variance prior to using

the non-linear dimension reduction techniques.

Our US dataset includes 105 monthly variables that span the period from 1963:01 to 2019:06.

The forecasting design relies on a rolling window, as justified by Clark (2011), that initially

ranges from 1980:01 to 1999:12. For each month of the hold-out sample, which starts in 2000:01

and ends in 2018:12, we compute the h-step ahead predictive distribution for each model (for

h ∈ {1, 3, 12}), keeping the length of the estimation sample fixed at 240 observations (i.e., a

rolling window of 20 years).

One key limitation is that all methods are specified conditionally on dt and thus implicitly

on the specific function f used to move from X to Z. Another key object of this paper is to

control for uncertainty with respect to f by using dynamic model averaging techniques. For

obtaining predictive combinations, we use the first 24 observations of our hold-out sample. The

remaining periods (i.e., ranging from 2002:01 to 2018:12) then constitute our evaluation sample.

For these periods we contrast each forecast (including the combined ones) with the realization
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of inflation in the final vintage of 2019:06. With such a strategy we aim at minimizing the risk

that realized inflation especially at the end of the evaluation sample is still subject to revisions

itself.2

In terms of competing models we can classify the specifications along two dimensions:

1. How dt is constructed. First and importantly, let st denote an K0-dimensional vector

of covariates except for yt. xt = (s′t, . . . , s
′
t−p+1)′ is then composed of p lags of st with

K = pK0. In our empirical work we set p = 12 and include all variables in the dataset

(except for the CPI series, i.e., K0 = 104). We then use the different dimension reduction

techniques outlined in Section 2 to estimate zt. Moreover, we add p lags of yt to zt. This

serves to investigate how different dimension reduction techniques perform when interest

centers on predicting inflation. Moreover, we also consider simple AR(12) models as well

as extended Phillips curve models (see, e.g., De Mol et al., 2008; Stock and Watson, 2008;

Koop and Korobilis, 2012; Hauzenberger et al., 2019) as additional competitors. For the

estimation of the extended Phillips curve model we select 20 covariates such that various

economic sectors are covered.3 Details can be found in Appendix B.

2. The relationship between dt and yt+h. The second dimension along which our models

differ is the specific relationship described by Eq. 18. To investigate whether non-linear di-

mension reduction techniques are sufficient to control for unknown forms of non-linearities,

we benchmark all our models that feature TVPs with their respective constant parameter

counterparts. To perform model selection we consider two priors. The first one is the

Horseshoe (HS) prior (Carvalho et al., 2010) and the second one is the stochastic search

variable selection (SSVS) prior outlined in George and McCulloch (1993).

4.2 Full-sample Results across Dimension Reduction Techniques

In this subsection we briefly discuss how the factors obtained from using different dimension

reduction techniques look like. For exposition, we choose q = 5 factors. Panels (a) to (h)

in Figure 1 show the different factors and reveal remarkable differences across methods used

to compress the data. Considering the different variants of the PCs suggests that the factors

behave quite similar and exhibit a rather persistent behavior. This, however, does not hold for

the case of squared PCA. In this case, the factors show sharp spikes during the global financial

crisis. This is not surprising since squaring the input dataset, which has been transformed for

2In general, the literature argues that most of the data revisions take place in the first quarter while afterwards
the vintages remain relatively unchanged (see Croushore, 2011; Pfarrhofer, 2020). Therefore a gap of six months
between the final observation of inflation in the evaluation sample (2018:12) and our final vintage (2019:06) is
considered as enough to render evaluation valid.

3We consider 20 covariates spanning different economic sectors, e.g.,

• real activity: industrial production (INDPRO), real personal income (W875RX1), housing (HOUST,
PERMIT), capacity utilization (CUMFNS), etc.

• labor market: unemployment rates (UNRATE, CLAIMSx), employment (PAYEMS), avg. weekly hours
of production (CES0600000007), etc.

• price indices: producer price index (PPICMM)

• others: Federal Funds Rate (FEDFUNDS), money supply (M2REAL), 3-M (TB3MS) and 10-y (GS10)
treasuries, etc.
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approximate stationarity, strongly overweights large absolute changes and squared PCA picks

this up.

The other non-linear techniques tend to conserve more high frequency movements and yield

factors that seem to be more noisy. This is especially pronounced in the case of the Autoencoder

(see panel (a)) which yields factors that are heavily characterized by noise without displaying

clear trends or persistent behavior. By contrast, when we consider diffusion maps (see panel (b))

the first impression is that the factors seem to be a mixture between squared PCA and one of

the remaining PCA-based approaches. The changes during the global financial crisis and in the

beginning of the 1980s are more pronounced and a slightly higher degree of noise is transferred

from xt to zt.

A similar pattern arises for LLE (see panel (d)). In this case, some of the factors behave

similar to a regime-switching process with a moderate number of regimes. For instance, the

dark gray line behaves similar to the PCs during the first few years of the sample. It then

strongly decreases in the midst of the 1980s before returning to values observed in the beginning

of the sample. Then, in the first half of the 1990s, we observe a strong increase (reaching a

peak of around 5) before the factor quickly reverts back to the previous regime. This regime

stays in place from 1996 to around 2003. Then we again find that dynamics change and the

corresponding factor increases in the run-up to the global financial crisis. Similar patterns can

be found for the other factors obtained from using LLE to compress the input data.

Considering ISOMAP shows that the first few factors appear to be highly persistent. These

factors look very smooth for some periods but seem to exhibit oscillating behavior during other

time periods. The intensity of these cycles, however, is small. The final few factors are fully

characterized by these oscillating dynamics.

This brief discussion shows that the non-linear dimension reduction techniques yield very

similar results with distinct dynamics. Some of them (especially the Autoencoder) pick up a

lot of high frequency movements. These movements might be irrelevant for modeling inflation

dynamics but could nevertheless carry relevant information during certain periods in time. A

similar argument applies to the other techniques which also yield factors that change their

behavior over time.

4.3 Density and Point Forecast Performance

We now consider point and density forecasting performance of the different models and dimen-

sion reduction techniques. The forecast performance is evaluated through averaged log predictive

likelihoods (LPLs) for density forecasts and root mean squared errors (RMSEs) for point fore-

casts. Superior models are those with high scores in terms of LPL and low values in terms of

RMSE. Formal descriptions of the evaluation metrics are provided in Appendix A. We bench-

mark all models relative to the autoregressive (AR) model with constant parameters and the HS

prior. The first entry in the tables gives the actual LPL score (in averages) with actual RMSEs

in parentheses for our benchmark model. The remaining entries are relative LPLs with relative

RMSEs in parentheses.

Starting with the one-step ahead horizon, Table 1 shows the relative LPLs and RMSEs (in

parentheses) for inflation forecasts. This table suggests that, in terms of density forecasts, using

12



dimension reduction techniques (both linear and non-linear) and allowing for non-linearities

between the factors and inflation improves density forecasts substantially. This does not carry

over to point forecasts. When we consider relative RMSEs, only small improvements are obtained

by using more sophisticated modeling techniques.

Comparing linear to non-linear dimension reduction methods suggests that forecasts can

be further improved. In particular, we observe that along the different reduction techniques,

squared PCA performs well. One explanation for this might relate to the fact that simple models

such as a random walk or other univariate benchmarks are hard to beat in a real-time forecasting

exercise (see Atkeson et al., 2001; Stock and Watson, 2008; Stella and Stock, 2013). When taking

a closer look on Figure 1 (h) we see that the factors are close to zero in tranquil periods, while at

the same time, show substantial movements in times of turmoil. Conditional on relatively small

regression coefficients in Eq. 18, this pattern suggests that the forecast densities are close to

the ones obtained from a random walk model. But in recessionary episodes, the factors convey

information on the level and volatility of inflation that might be useful for predicting during

crises periods (see, e.g., Chan, 2017; Huber and Pfarrhofer, 2020).

When we consider the different specifications for the observation equation we find that al-

lowing for time-variation in the parameters improves one-step ahead predictive densities. These

improvements appear to be substantial for all specifications except the model using squared

PCA. For squared PCA, we find only limited differences between constant and TVP regressions

(conditional on the specific prior). The single best performing model for the one-step ahead

inflation forecasts is the TVP model with a Horseshoe prior and five factors obtained by using

squared PCA.

Again, the strong differences in predictive accuracy between constant and TVP specifications

arise from the necessity to discriminate between different stages of the business cycle. The

somewhat smaller differences in the case of squared PCA are driven by the specific shape of the

latent factors and the reason outlined in the previous paragraph.

Next, we inspect the longer forecast horizons in greater detail. Table 2 depicts the forecast

performance of all competitors for one-quarter and one-year ahead. The table indicates that

non-linear dimension reduction techniques clearly outperform the autoregressive benchmark and

perform similarly to the linear PCAs. Results reveal that diffusion maps, isometric feature

mapping as well as squared PCA in combination with time variation in the coefficients yield

high LPLs. Here, again, the best performing model is squared PCA, which beats all other

dimension reduction techniques irrespective of the prior structure or whether constant or time-

varying parameters are considered. For point forecasts, we again find little differences relative

to the univariate benchmark model.
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Figure 1: Illustration of linear and non-linear dimension reduction techniques applied to our
US dataset with K = 104 based on the last vintage (end of year 2018). By focussing on q = 5
we depict normalized factors with mean zero and variance one ranging from January 1980 to
December 2018.
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Table 1: One-month ahead forecast performance.

Specification One-month ahead

const. (HS) const. (SSVS) TVP (HS) TVP (SSVS)

AR -336.98 0.40 15.57 19.69
(1.18) (1.01) (1.00) (1.01)

Autoencoder (q = 5) 1.67 4.64 13.71 22.51
(1.00) (1.00) (1.00) (1.00)

Autoencoder (q = 15) 1.00 2.88 10.79 14.00
(1.00) (1.01) (1.01) (1.05)

Autoencoder (q = 30) 2.32 0.31 12.93 12.97
(1.00) (1.01) (1.00) (1.06)

Diffusion Maps (q = 5) 2.57 1.14 13.81 15.59
(1.00) (1.01) (1.01) (1.12)

Diffusion Maps (q = 15) 0.71 2.92 13.54 17.26
(1.00) (1.01) (1.00) (1.06)

Diffusion Maps (q = 30) 2.28 3.14 14.44 -0.36
(1.00) (1.02) (1.00) (1.15)

Extended PC 11.25 15.73
(0.99) (1.07)

ISOMAP (q = 5) 0.99 -0.58 10.80 19.21
(1.00) (1.01) (1.00) (1.01)

ISOMAP (q = 15) 0.06 1.30 9.71 18.86
(1.00) (1.01) (1.01) (1.02)

ISOMAP (q = 30) -1.18 2.38 9.73 20.37
(1.00) (1.01) (1.02) (1.03)

LLE (q = 5) 0.18 -1.83 13.81 19.75
(1.00) (1.01) (1.00) (1.01)

LLE (q = 15) -2.02 0.05 11.64 19.06
(1.01) (1.01) (1.00) (1.01)

LLE (q = 30) -1.11 -3.63 6.71 19.68
(1.00) (1.01) (1.01) (1.01)

PCA gauss. kernel (q = 5) -0.74 0.67 13.69 15.85
(1.00) (1.01) (1.00) (1.05)

PCA gauss. kernel (q = 15) -0.20 2.65 14.49 11.27
(1.00) (1.01) (1.01) (1.17)

PCA gauss. kernel (q = 30) 0.28 6.86 15.78 -5.34
(1.00) (1.01) (1.01) (1.30)

PCA linear (q = 5) -0.80 0.51 11.48 18.95
(1.00) (1.01) (1.01) (1.03)

PCA linear (q = 15) -0.51 2.32 12.56 18.95
(1.01) (1.01) (1.02) (1.04)

PCA linear (q = 30) 0.27 7.05 16.46 25.51
(1.01) (1.00) (1.02) (1.03)

PCA poly. kernel (q = 5) 1.86 -0.39 12.52 15.02
(1.00) (1.01) (1.00) (1.05)

PCA poly. kernel (q = 15) -0.11 2.78 15.56 11.82
(1.00) (1.01) (1.00) (1.18)

PCA poly. kernel (q = 30) 0.64 4.44 16.10 0.59
(1.00) (1.01) (1.01) (1.22)

PCA squared (q = 5) 16.79 26.48 30.15 17.53
(1.02) (1.01) (1.02) (1.19)

PCA squared (q = 15) 21.26 23.80 25.65 10.10
(1.02) (1.03) (1.02) (1.61)

PCA squared (q = 30) 19.01 21.96 23.46 2.94
(1.01) (1.04) (1.02) (1.86)

Note: The first (red shaded) entry gives the actual LPL score in averages with actual RMSEs in parentheses of our benchmark model,
which is the autoregressive (AR) model with constant parameters and the HS prior. All other entries are relative LPLs with relative
RMSEs in parentheses.
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Table 2: One-quarter and one-year ahead forecast performance.

Specification One-quarter ahead One-year ahead

const. (HS) const. (SSVS) TVP (HS) TVP (SSVS) const. (HS) const. (SSVS) TVP (HS) TVP (SSVS)

AR -383.12 13.10 23.66 31.64 -408.15 8.87 16.52 26.25
(1.31) (0.99) (1.00) (1.03) (1.41) (1.01) (1.00) (1.01)

Autoencoder (q = 5) 1.02 17.96 26.39 36.60 0.51 11.24 15.55 34.21
(1.00) (1.00) (0.99) (1.03) (1.01) (1.00) (1.00) (1.01)

Autoencoder (q = 15) 0.34 10.34 21.68 34.66 3.44 12.95 15.60 39.35
(1.00) (1.00) (1.00) (1.06) (1.00) (1.01) (1.00) (1.02)

Autoencoder (q = 30) 0.00 19.77 19.29 33.63 -1.54 12.97 12.55 37.53
(1.00) (1.00) (1.00) (1.09) (1.00) (1.00) (1.00) (1.04)

Diffusion Maps (q = 5) 1.09 17.18 25.75 40.24 -0.43 17.39 16.16 29.34
(1.00) (0.99) (0.99) (1.13) (1.00) (1.00) (1.00) (1.48)

Diffusion Maps (q = 15) -1.56 18.56 25.54 48.55 1.16 16.37 17.51 43.38
(1.00) (0.99) (0.99) (1.07) (1.00) (1.01) (1.00) (1.48)

Diffusion Maps (q = 30) 2.47 21.93 26.93 44.25 -1.32 16.78 17.72 36.94
(1.00) (0.99) (0.99) (1.07) (1.00) (1.02) (1.00) (1.52)

Extended PC 10.38 44.29 4.70 46.71
(1.00) (1.05) (1.01) (1.06)

ISOMAP (q = 5) 2.63 14.00 21.90 34.08 -1.28 9.26 13.52 26.90
(1.00) (0.99) (1.00) (1.03) (1.00) (1.01) (1.01) (1.03)

ISOMAP (q = 15) 1.32 13.67 19.14 33.98 1.95 12.66 11.08 34.82
(1.00) (1.00) (1.01) (1.04) (1.00) (1.00) (1.00) (1.02)

ISOMAP (q = 30) 6.39 20.23 16.20 40.61 -10.28 5.01 8.05 27.53
(0.99) (0.98) (1.00) (1.03) (1.01) (1.01) (1.01) (1.04)

LLE (q = 5) -2.94 8.09 24.14 33.60 -1.86 5.70 11.68 27.44
(1.00) (1.00) (1.00) (1.03) (1.00) (1.01) (1.00) (1.01)

LLE (q = 15) -7.05 10.62 16.88 33.67 1.02 4.45 9.70 26.66
(1.00) (1.00) (1.00) (1.03) (1.00) (1.01) (1.00) (1.01)

LLE (q = 30) -6.21 8.25 15.55 31.47 -4.56 4.14 8.30 29.24
(1.00) (1.00) (1.00) (1.04) (1.00) (1.00) (1.00) (1.01)

PCA gauss. kernel (q = 5) 2.83 14.65 24.91 32.19 1.53 10.61 14.64 31.25
(1.00) (0.99) (1.00) (1.08) (1.00) (1.00) (1.00) (1.11)

PCA gauss. kernel (q = 15) 0.85 18.40 21.89 27.12 -2.78 15.55 15.88 27.95
(1.00) (1.00) (1.00) (1.34) (1.01) (1.01) (1.05) (1.32)

PCA gauss. kernel (q = 30) 4.74 18.56 27.43 9.82 -2.27 19.62 11.78 16.79
(1.00) (1.00) (1.00) (1.55) (1.01) (1.02) (1.05) (1.51)

PCA linear (q = 5) 1.06 12.45 20.24 34.72 0.61 10.96 18.44 30.69
(1.00) (1.00) (1.00) (1.04) (1.01) (1.01) (1.00) (1.02)

PCA linear (q = 15) 4.74 16.12 22.90 37.77 -0.79 16.83 18.19 36.97
(1.00) (1.00) (1.01) (1.05) (1.01) (1.01) (1.03) (1.09)

PCA linear (q = 30) 7.76 21.16 22.94 45.40 2.52 22.03 16.49 42.25
(0.99) (0.99) (1.01) (1.04) (1.00) (1.00) (1.03) (1.10)

PCA poly. kernel (q = 5) 2.32 10.80 21.68 34.27 4.74 13.20 15.21 34.53
(1.00) (1.00) (1.00) (1.09) (1.00) (1.01) (1.00) (1.08)

PCA poly. kernel (q = 15) -1.33 14.52 23.42 31.02 2.37 11.31 16.09 32.05
(1.00) (1.00) (1.00) (1.24) (1.00) (1.01) (1.01) (1.25)

PCA poly. kernel (q = 30) 1.68 19.78 23.15 23.30 -0.07 15.35 15.37 8.87
(1.00) (0.99) (0.99) (1.36) (1.00) (1.00) (1.02) (1.48)

PCA squared (q = 5) 54.76 54.26 65.09 44.01 69.24 80.56 74.74 51.17
(1.03) (1.06) (1.01) (2.60) (0.95) (1.02) (1.03) (3.36)

PCA squared (q = 15) 51.10 54.01 57.09 32.56 55.54 68.09 67.21 28.52
(1.04) (1.03) (1.03) (3.18) (1.00) (1.25) (1.05) (4.32)

PCA squared (q = 30) 48.84 52.21 60.12 23.10 62.97 69.93 70.63 19.67
(1.04) (1.03) (1.04) (3.35) (0.99) (1.25) (1.05) (4.62)

Note: The first (red shaded) entry gives the actual LPL score in averages with actual RMSEs in parentheses of our benchmark model, which is the autoregressive (AR) model with constant parameters and the HS
prior. All other entries are relative LPLs with relative RMSEs in parentheses.
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So far, the LPLs are averaged over the full evaluation sample and thus only measure model

quality over the full hold-out period (Geweke and Amisano, 2010). However, this might mask

important differences in forecast performance of the different models and compression tech-

niques over time. Figure 2 depicts the average LPLs along the hold-out sample for the short

run forecasting exercise. The figure suggests a great deal of performance variation over time.

Regardless of the model specification and the number of factors included in the models, account-

ing for instabilities in the relationship between the factors and inflation through time-varying

parameters improves the forecasting performance. Especially during the global financial crisis

(the gray shaded area), more flexible model specifications yield greater improvements relative

to the univariate benchmark and compared to constant specifications.

4.4 Dynamic Model Learning Based on Density Forecast Performance

The final paragraph in the previous subsection showed that model performance varies consider-

ably over time. The key implication is that non-linear compression techniques are useful during

turbulent times whereas forecast evidence is less pronounced in normal times. In this subsection,

we ask whether combining models in a dynamic manner further improves predictive accuracy.

After having obtained the predictive densities of yt+h for the different dimensionality reduc-

tion techniques and model specifications, the goal is to exploit the advantages of both linear

and non-linear approaches. This is achieved by combining models in a model pool such that

better performing models over certain periods receive larger weights while inferior models are

subsequently down-weighted. The literature on forecast combinations suggests several differ-

ent weighting schemes, ranging from simply averaging over all models (see, e.g., Hendry and

Clements, 2004; Hall and Mitchell, 2007; Clark and McCracken, 2010; Berg and Henzel, 2015)

to estimating weights based on the models’ performances according to the minimization of an

objective or loss function (see, e.g., Timmermann, 2006; Hall and Mitchell, 2007; Geweke and

Amisano, 2011; Conflitti et al., 2015; Pettenuzzo and Ravazzolo, 2016) or according to the pos-

terior probabilities of the predictive densities (see, e.g., Raftery et al., 2010; Koop and Korobilis,

2012; Beckmann et al., 2020). Since the weights might change over time, we aim to compute

them in a dynamic manner.

Combining the different predictive densities according to their posterior probabilities is re-

ferred to as Bayesian model averaging (BMA). The resulting weights are capable of reflecting the

predictive power of each model for the respective periods. Dynamic model averaging (DMA),

as specified by Raftery et al. (2010), extends the approach by adding a discount (or forgetting)

factor to control for a model’s forecasting performance in the recent past. The ‘recent past’

is determined by the discount factor, with higher values attaching greater importance to past

forecasting performances of the model and lower values gradually ignoring results of past pre-

dictive densities. Similar to Beckmann et al. (2020), Koop and Korobilis (2012) and Raftery

et al. (2010), we apply DMA to combine the predictive densities of our various models.
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Figure 2: Evolution of one-month ahead cumulative LPBFs relative to the benchmark. The
red dashed lines refer to the maximum/minimum Bayes factor over the full hold-out sample.
The light gray shaded areas indicate the NBER recessions in the US.
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DMA works as follows. Let %t+h|t+h = (%t+h|t+h,1, . . . , %t+h|t+h,J)′ denote a set of weights for

J competing models. These (horizon-specific) weights vary over time and depend on the recent

predictive performance of the model according to:

%t+h|t,j =
%δt|t,j∑J
l=1 %

δ
t|t,l

, (20)

%t+h|t+h,j =
%t+h|t,j pj(yt+h|y1:t)∑J
l=1 %t+h|t,l pl(yt+h|y1:t)

(21)

where pj(yt+h|y1:t) denotes the h-step ahead predictive distribution of model j and δ ∈ (0, 1]

denotes a forgetting factor close to one. In our empirical work we set δ = 0.9. Notice that

if δ = 1, we obtain standard BMA weights while δ = 0 would imply that the weights depend

exclusively on the forecasting performance in the last period.

4.5 Forecasting Performance of Predictive Combinations from Dynamic Model

Learning

Weights obtained by combining models according to their predictive power convey useful infor-

mation about the adequacy of each model over time. In order to get a comprehensive picture of

the effects of different model modifications, we combine our models and model specifications in

various ways.

Table 3 presents the forecasting results when we use DMA to combine models. Again, all

models are benchmarked to the AR model with constant parameters and the HS prior. The first

row depicts the relative performance of the best performing single model for the chosen time

horizon.

The table can be understood as follows. Each entry includes all dimension reduction tech-

niques. The rows define whether the model space includes all factors q ∈ {5, 15, 30} or whether

we combine models with a fixed number of factors exclusively. The columns refer to model

spaces which include only constant parameter, time-varying parameter or both specifications in

the respective model pool. Since we also discriminate between two competing priors we also

consider model weights if we condition on either the HS or the SSVS prior or average across

both prior specifications (the first upper part of the table with {HS, SSVS}).
Across all three forecast horizons considered, we again find only limited accuracy improve-

ments for point forecasts relative to the AR model. This, however, does not carry over to LPLs.

For density forecasts, we find that DMA-based combinations improve upon the single best per-

forming model for all forecast horizons. Hence, allowing models to change over the hold-out

period leads to superior predictive accuracy.
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Table 3: Forecast performance of predictive combinations.

Specification One-month ahead One-quarter ahead One-year ahead

Single best performing model 30.15 65.09 80.56
(0.99) (0.98) (0.95)

Prior Combination Const. TVP {const., TVP} Const. TVP {const., TVP} Const. TVP {const., TVP}

{HS, SSVS} q = {5, 15, 30} 23.73 32.14 29.79 53.32 66.46 65.11 85.74 83.03 83.82
(1.01) (1.04) (1.04) (1.02) (0.98) (0.99) (1.03) (1.01) (1.02)

q = 5 24.13 27.57 26.67 52.68 65.02 62.83 83.21 82.55 83.29
(1.01) (1.03) (1.02) (1.02) (1.02) (1.03) (0.99) (1.01) (0.99)

q = 15 21.37 31.07 28.94 52.28 62.00 60.89 79.67 80.24 79.62
(1.02) (1.02) (1.02) (1.02) (1.02) (1.02) (1.20) (1.04) (1.05)

q = 30 22.70 34.14 32.30 54.29 67.58 66.96 83.94 80.91 81.22
(1.01) (1.04) (1.04) (1.02) (0.97) (0.97) (1.17) (1.04) (1.09)

HS q = {5, 15, 30} 18.83 29.73 26.87 50.86 62.41 59.96 74.17 85.39 83.87
(1.00) (1.00) (1.01) (1.03) (1.01) (1.02) (0.92) (1.00) (0.99)

q = 5 17.97 29.95 26.85 52.31 63.74 61.57 72.00 82.70 81.20
(1.00) (1.01) (1.01) (1.03) (1.01) (1.01) (0.93) (1.01) (1.00)

q = 15 18.82 29.44 26.37 50.34 59.23 56.77 66.54 82.79 81.50
(1.01) (1.00) (1.00) (1.03) (1.02) (1.02) (0.96) (1.01) (1.01)

q = 30 18.32 26.66 23.81 48.94 61.53 58.95 70.54 83.68 82.02
(0.99) (1.00) (1.00) (1.03) (1.03) (1.02) (0.96) (1.01) (1.00)

SSVS q = {5, 15, 30} 25.99 30.36 31.01 55.21 60.56 64.46 86.68 67.03 84.16
(1.00) (1.04) (1.04) (1.02) (1.00) (0.98) (1.03) (1.22) (1.06)

q = 5 26.47 19.21 26.40 53.96 48.94 60.31 83.82 66.32 83.95
(1.00) (1.16) (1.02) (1.04) (2.35) (1.06) (0.99) (2.56) (0.99)

q = 15 22.65 28.16 29.18 53.63 54.81 60.25 80.07 63.57 76.81
(1.02) (1.02) (1.02) (1.02) (1.04) (1.02) (1.20) (3.17) (1.23)

q = 30 24.93 30.24 33.09 55.77 60.75 65.60 85.66 64.72 81.69
(1.02) (1.05) (1.04) (1.01) (1.00) (0.98) (1.16) (1.24) (1.18)

Note: The first (grey shaded) row states the results of the single best performing model as presented in the previous chapter for each forecast horizon benchmarked to the AR model with constant parameters and the
HS prior. All other rows show the relative results for the combinations of the different dimension reduction techniques according to the specification stated in the rows and columns headers. For example, the entry in
row {HS, SSV S}, q = {5, 15, 30} and column Const. combines all models estimated with constant parameters, the HS prior, the SSVS prior, 5, 15 and 30 factors. Entries denote the relative LPL with relative RMSE
in parantheses benchmarked against the AR model with constant parameters and the HS prior.
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Comparing whether restricting the model a priori improves predictions yields mixed insights.

For the one-month and one-quarter ahead predictions we find that a combination scheme that

uses only TVP models but both priors and q = 30 factors yields the most precise forecasts. In

the case of one-year ahead forecasts, we find that pooling across different q’s and exclusively

including constant parameter models translates into highest LPLs. In general, the differences

in predictive performance across the DMA-based averaging schemes are small. Hence, as a

general suggestion we can recommend applying DMA and using the most exhaustive model

space available (i.e., including both priors, the different number of factors and TVP and constant

parameter regressions).

To investigate which model receives substantial posterior weight over time, Figure 3 depicts

the weights associated with the one-step ahead LPLs over the hold-out period. Panel (a) displays

the weight placed on models that allow for TVP, panel (b) shows the weight attached to the

different number of factors and panel (c) shows the weight attached to each model. These weights

are obtained by using the full model space (i.e., that includes both priors, TVP and constant

parameter regressions and all number of factors). The weight placed on TVP specifications,

for instance, is then simply obtained by summing up the weights associated with the different

models that feature TVPs.

Starting with the top panel of the figure, we observe that during the beginning of the sample,

appreciable model weight is placed on constant parameter models. In the mid of 2006, this

changes and DMA places increasing posterior mass on models that allow for time-variation in

the parameters. In the period from the beginning of 2007 to the onset of the financial crisis, we

see that the weight on TVP models somewhat decreases. During the financial crisis, we again

experience a pronounced increase in posterior weight towards TVP regression. In that period,

constant parameter models only play a limited role in forming inflation forecasts. With some few

exceptions, the remainder of the hold-out period is characterized by evenly distributed posterior

mass across constant and TVP regressions.

The middle panel of Figure 3 shows that DMA places increasing posterior mass on models

with a large number of factors during recessions (and, similar to panel (a), in 2006). This

indicates that in turbulent times it seems to pay off to include many factors. Since our previous

analysis reveals that point forecasts are very similar to the ones obtained from simpler univariate

models, this finding is most likely driven by a superior density forecasting performance. Hence,

we conjecture that the main driving force behind the strong performance of a model with many

factors is that this increases posterior uncertainty (through the inclusion of a large number of

covariates), which ultimately leads to slightly wider credible sets, implying a higher probability

of observing outlying observations.

The bottom panel (panel (c)) of Figure 3 provides information on how much weight is

allocated to models that exploit non-linear dimension reduction techniques. Again, we observe

that non-linear dimension reduction techniques obtain considerable posterior mass during 2006

and the financial crisis of 2007/2008. In 2006, the Autoencoder with q = 15 receives substantial

posterior weight. During the financial crisis, we find that diffusion maps and squared PCA

feature large weights. Apart from these two periods, weights allocated to non-linear dimension

reduction techniques are generally close to zero.
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Figure 3: Evolution of the weights determined by DMA for one-month ahead cumulative
LPBFs.
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This discussion highlights that the strong performance of DMA relative to the single best

performing model can be, at least partly, attributed to changes in model weights across business

cycles. In expansionary periods with stable inflation rates and macroeconomic fundamentals,

linear and simple models dominate the model pool. By contrast, adding more sophisticated

models and dimension reduction techniques pays off during recessions. A dynamic combination

of different approaches thus improves real-time inflation forecasts.

5 Closing Remarks

In macroeconomics, the vast majority of researchers compresses information using linear methods

such as principal components to efficiently summarize huge datasets in forecasting applications.

Machine learning techniques describing large datasets with relatively few latent factors have

gained relevance in the last years in various areas. In this paper, we have shown that using such

approaches potentially improves real-time inflation forecasts for a wide range of competing model

specifications. Our findings indicate that point forecasts of simpler models are hard to beat.

But when interest centers on predictive distributions, we find that more sophisticated modeling

techniques that rely on non-linear dimension reduction yield favorable inflation predictions.

These predictions can be further improved by using DMA to dynamically weight different models,

dimension reduction methods and priors. Doing so further improves density forecasts. Weights

obtained from dynamic model averaging reveal that using TVP models in combination with

non-linear approaches to dimension reduction is preferred in turbulent times.
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Appendices

A Technical Appendix

A.1 Non-centered Parameterization

To implement the Bayesian priors to achieve shrinkage in the TVP regression defined by Eq. 18 and

Eq. 19, we use the non-centered parameterization proposed in Frühwirth-Schnatter and Wagner (2010).

Intuitively speaking, this allows us to move the process innovation variances into the observation equation

and discriminate between a time-invariant and a time-varying part of the model. The non-centered

parameterization of the model is given by:

yt+h = d′t+hβ0 + d′t+h
√
V β̃t+h + εt+h, εt+h ∼ N (0, σ2

t+h) (B.1)

β̃t+h = β̃t+h−1 + εt+h, εt+h ∼ N (0, IM ), β̃0 = 0M , (B.2)

where the jth element in β̃t+h is given by β̃jt+h =
βjt+h−βj0√

vj
for j = 1, . . . ,M .

Conditional on the normalized states β̃, Eq. B.1 can be written as a linear regression model as

follows:

yt+h = D′t+hα+ εt+h, (B.3)

withDt+h = [d′t+h, (β̃t+h�dt+h)′]′ denoting a 2M -dimensional vector of regressors andα = (β′0, v1, . . . , v
′
M )

is a 2M -dimensional coefficient vector. This parameterization implies that the state innovation variances

(or more precisely the square roots) are moved into the observation equation and we can estimate them

alongside β0 (conditional on the states β̃t+h).

A.2 Prior Setup

A.2.1 Priors on the Regression Coefficients

We use a zero-mean multivariate Gaussian prior on α:

α|V ∼ N (0,V ), (B.4)

with V denoting a 2M -dimensional prior variance-covariance matrix V = diag
(
τ21 , . . . , τ

2
2M

)
. This matrix

collects the prior shrinkage parameters τj associated with the time-invariant regression coefficients and

the process innovation standard deviations.

In the empirical work, the priors we consider differ in the specification of V . The first is the stochastic

search variable selection (SSVS) prior of George and McCulloch (1993) and the second the Horseshoe

(HS) prior of Carvalho et al. (2010).

1. SSVS Prior:

The SSVS prior pushes coefficients associated with irrelevant variables towards zero by using a

mixture of Gaussians. A specific mixture component is selected by introducing an auxiliary binary

indicator variable γj . More formally, the SSVS prior specifies τ2j (j = 1, . . . , 2M) such that

τ2j = (1− γj)τ20j + γjτ
2
1j , (B.5)

with τ0j � τ1j being fixed prior variances. If γj = 1, the prior variance is τ1j which is set to a

large value. Hence, little shrinkage is introduced. By contrast, if γj = 0, the prior variance τ0j is

27



close to zero and the corresponding prior weight will be large, leading to a posterior distribution

that is tightly centered on zero.

The prior probability that γj = 1 is set equal to:

Prob(γj = 1) = 1− Prob(γj = 0) = pm, pm =
1

2
. (B.6)

This choice of the prior inclusion probability implies that every quantity is equally likely to enter

the model.

To control for scaling differences, we adopt the semi-automatic approach proposed in George et al.

(2008) and choose τ20j = 0.01 σ̂j and τ20j = 100 σ̂j for j = 1, . . . ,M . Here, σ̂2
j denotes the OLS

variance of a standard regression model with constant parameters.

2. Horseshoe Prior:

The horseshoe prior of Carvalho et al. (2010) achieves shrinkage by introducing local and global

shrinkage parameters (see Polson and Scott, 2010). These follow a standard half-Cauchy distribu-

tion restricted to the positive real numbers. That is:

τ2j = ζ2j ς
2, ζm ∼ C+(1, 0), ς ∼ C+(1, 0) (B.7)

While the global component ς strongly pushes all coefficients in α towards the prior mean (i.e.,

zero), the local scalings {ζj}2Mj=1 allow for variable-specific departures from zero in light of a global

scaling parameter close to zero. This flexibility leads to heavy tails in the marginal prior (obtained

after integrating out ζj) which turns out to be useful for forecasting.

A.3 Full Conditional Posterior Simulation

We carry out posterior inference by using a Markov chain Monte Carlo (MCMC) algorithm to simulate

from the joint posterior of the parameters, the log-volatilities and the TVPs. This MCMC algorithm

consists of the following steps:

1. Conditional on the time-varying part of the coefficients and the stochastic volatilities, we draw

(β0, v1, . . . , vM )′ from N (β,V ) with V = (D̃′D̃+V −1)−1 and β = V (D̃ỹ). ỹ is a T−dimensional

vector with typical element yt/σt and D̃ is a T × (2M) matrix with typical row Dt/σt.

2. Controlling for all other model parameters, the full history of β̃t+h is sampled using the forward-

filtering backward-sampling (FFBS) algorithm proposed by Carter and Kohn (1994); Frühwirth-

Schnatter (1994). For constant parameter models this step is skipped.

3. The stochastic volatilities log σ2
t+h are drawn by employing the algorithm of Kastner and Frühwirth-

Schnatter (2014) implemented in the stochvol R-package of Kastner (2016).

4. Sampling the diagonal elements of V depends on the specific prior setup chosen.

• If the SSVS prior is used, we simulate the indicators γj from a Bernoulli distribution with

the probability that γj = 1 given by

Prob(γj = 1|βj) =
u1j

u0j + u1j

u1j = τ−11m exp

{
−
β2
j

2τ21j

}
× pm

u0j = τ−10m exp

{
−
β2
j

2τ20j

}
× (1− pm).
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• In case we adopt the HS prior, we rely on the hierarchical representation of Makalic and

Schmidt (2015). Introducing auxiliary random quantities which follow an inverse Gamma

distribution we can draw ζj and ς as follows:

ζj |βj , ς, η ∼ G−1
(

1, η−1j +
β2
j

2ς

)

ς|βj , ζj , ϕ ∼ G−1
2M + 1

2
, ϕ−1 +

1

2

2M∑
j=1

β2
j ζ
−1
j


ηj |ζj ∼ G−1

(
1, 1 + ζ−1j

)
,

ϕ|ς ∼ G−1
(
1, 1 + ϕ−1

)
We sample from the relevant full conditional posterior distributions iteratively. This is repeated 10, 000

times and the first 2, 000 draws are discarded as burn-in.
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B Data Appendix

The Federal Reserve Economic Data (FRED) contains monthly observations of macroeconomic variables

for the US and is available for download at https://research.stlouisfed.org. Details on the dataset

can be found in McCracken and Ng (2016) . For each data vintage (available from 1999:08), the time

series start from January 1959. Due to missing values in some of the series, we preselect 105 variables and

transform them according to Table C.1. We select all variables for our models except for the extended

Phillips curve, where we choose the variables indicated by column PART.

Table C.1: Data description

FRED.Mnemonic Description Trans I(0) PART FULL

RPI Real personal income 5 x
W875RX1 Real personal income ex transfer receipts 5 x x
INDPRO IP Index 5 x x
IPFPNSS IP: Final Products 5 x
IPFINAL IP: Final Products (Market Group) 5 x
IPCONGD IP: Consumer Goods 5 x
IPMAT IP: Materials 5 x
IPMANSICS IP: Manufacturing (SIC) 5 x
CUMFNS Capacity Utilization: Manufacturing 2 x x
CLF16OV Civilian Labor Force 5 x
CE16OV Civilian Employment 5 x
UNRATE Civilian Unemployment Rate 2 x x
UEMPMEAN Average Duration of Unemployment (Weeks) 2 x
UEMPLT5 Civilians Unemployed : Less Than 5 Weeks 5 x
UEMP5TO14 Civilians Unemployed for 5-14 Weeks 5 x
UEMP15OV Civilians Unemployed : 15 Weeks & Over 5 x
UEMP15T26 Civilians Unemployed for 15-26 Weeks 5 x
UEMP27OV Civilians Unemployed for 27 Weeks and Over 5 x
CLAIMSx Initial Claims 5 x x
PAYEMS All Employees: Total nonfarm 5 x x
USGOOD All Employees: Goods-Producing Industries 5 x
CES1021000001 All Employees: Mining and Logging: Mining 5 x
USCONS All Employees: Construction 5 x
MANEMP All Employees: Manufacturing 5 x
DMANEMP All Employees: Durable goods 5 x
NDMANEMP All Employees: Nondurable goods 5 x
SRVPRD All Employees: Service-Providing Industries 5 x
USWTRADE All Employees: Wholesale Trade 5 x
USTRADE All Employees: Retail Trade 5 x
USFIRE All Employees: Financial Activities 5 x
USGOVT All Employees: Government 5 x
CES0600000007 Avg Weekly Hours: Goods-Producing 1 x x
AWOTMAN Avg Weekly Overtime Hourse: Manufacturing 2 x
AWHMAN Avg Weekly Hours: Manufacturing 1 x
CES0600000008 Avg Hourly Earnings: Goods-Producing 6 x x
CES2000000008 Avg Hourly Earnings: Construction 6 x
CES3000000008 Avg Hourly Earnings: Manufacturing 6 x
HOUST Housing Starts: Total New Privately Owned 4 x x
HOUSTNE Housing Starts, Northeast 4 x
HOUSTMW Housing Starts, Midwest 4 x
HOUSTS Housing Starts, South 4 x
HOUSTW Housing Starts, West 4 x
PERMIT New Private Housing Permits (SAAR) 4 x
PERMITNE New Private Housing Permits, Northeast (SAAR) 4 x
PERMITMW New Private Housing Permits, Midwest (SAAR) 4 x
PERMITS New Private Housing Permits, South (SAAR) 4 x
PERMITW New Private Housing Permits, West (SAAR 4 x
CMRMTSPLx Real Manu. and TradeIndustries Sales 5 x x
RETAILx Retail and Food Services Sales 5 x
AMDMNOx New Orders for Durable goods 5 x
ANDENOx New Orders for Nondefense Capital goods 5 x
AMDMUOx Unfilled Orders for Durable goods 5 x
BUSINVx Total Business Inventories 5 x x
ISRATIOx Total Business: Inventories to Sales Ratio 2 x
UMCSENTx Consumer Sentiment Index 2 x
OILPRICEx Crude Oil, , spliced WTI and Cushing 6 x
PPICMM PPI: Metals and metal products 6 x x
CPIAUCSL CPI : All Items 6 x
CPIAPPSL CPI : Apparel 6 x
CPITRNSL CPI : Transportation 6 x
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Data description (cont.)

FRED.Mnemonic Description Trans I(0) PART FULL

CPIMEDSL CPI : Medical Care 6 x
CUSR0000SAC CPI : Commodities 6 x
CUSR0000SAS CPI : Services 6 x
CPIULFSL CPI : All Items Less Food 6 x
CUSR0000SA0L5 CPI : All Items Less Medical Care 6 x
FEDFUNDS Effective Federal Funds Rate 2 x x
M1SL M1 Money Stock 6 x
M2SL M2 Money Stock 6 x
M2REAL Real M2 Money Stock 5 x x
AMBSL St. Louis Adjusted Monetary Base 6 x
TOTRESNS Total Reserves of Depository Institutions 6 x
NONBORRES Reserves of Depository Institutions 7 x
BUSLOANS Commercial and Industrial Loans 6 x x
REALLN Real Estate Loans at All Commerical Banks 6 x x
NONREVSL Total Nonrevolving Credit 6 x
CONSPI Nonrevolving consumer credit to Personal Income 2 x
MZMSL MZM Money Stock 6 x
DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 6 x
DTCTHFNM Total Consumer Total Consumer Loans and Leases Outstanding 6 x
INVEST Securities in Bank Credit at All Commercial Banks 6 x
CP3Mx 3-Month AA Financial Commercial Paper Rate 2 x
TB3MS 3-Month Treasury Bill 2 x x
TB6MS 6-Month Treasury Bill 2 x
GS1 1-Year Treasury Rate 2 x
GS5 5-Year Treasury Rate 2 x
GS10 10-Year Treasury Rate 2 x x
AAA Moody’s Seasoned Aaa Corporate Bond Yield 2 x
BAA Moody’s Seasoned Baa Corporate Bond Yield 2 x
COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS 1 x
TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 1 x
TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 1 x
T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 x
T5YFFM 5-Year Treasury C Minus FEDFUNDS 1 x
T10YFFM 10-Year Treasury C Minus FEDFUNDS 1 x
AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 1 x
BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 1 x
TWEXMMTH Trade Weighted Trade Weighted U.S. Dollar Index: Major Currencies 5 x
EXSZUSx Switzerland / U.S. Foreign Exchange Rate 5 x x
EXJPUSx Japan / U.S. Foreign Exchange Rate 5 x
EXUSUKx U.S. / UK Foreign Exchange Rate 5 x
EXCAUSx Canada / U.S. Foreign Exchange Rate 5 x
S.P.500 S&Ps Common Stock Price Index: Composite 5 x x
S.P..indust S&Ps Common Stock Price Index: Industrials 5 x
S.P.div.yield S&Ps Composite Common Stock: Dividend Yield 2 x
S.P.PE.ratio S&Ps Composite Common Stock: Price-Earnings Ratio 5 x

Note: Column Trans I(0) denotes the transformation of each time series to achieve approximate stationarity: (1) no transformation, (2)

∆xt, (4) log(xt), (5) ∆log(xt), (6) ∆2log(xt), (7) ∆(xt/xt−1 − 1.0)
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