
ePubWU Institutional Repository

Stefan Sobernig and Olaf Leßenich

V1E: A Kernel for Domain-specific Textual Variability Modelling Languages

Paper (Submitted)

Original Citation:

Sobernig, Stefan and Leßenich, Olaf

(2020)

V1E: A Kernel for Domain-specific Textual Variability Modelling Languages.

Technical Reports / Institute for Information Systems and New Media, 01/2020. WU Vienna
University of Economics and Business, Vienna.

This version is available at: https://epub.wu.ac.at/7959/
Available in ePubWU: January 2021

License: Creative Commons Attribution 3.0 Austria (CC BY 3.0 AT)

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is the version that has been submitted to a publisher. There are major differences
between this and the publisher version, so readers are advised the check the publisher version
before citing.

http://epub.wu.ac.at/

https://epub.wu.ac.at/7959/
http://creativecommons.org/licenses/by/3.0/at/deed.en
http://epub.wu.ac.at/

v1e: A Kernel for Domain-specific Textual Variability Modelling
Languages

Stefan Sobernig
stefan.sobernig@wu.ac.at

Institute for Information Systems and New Media,
WU Vienna

Vienna, Austria

Olaf Leßenich
olaf.lessenich@wu.ac.at

Institute for Information Systems and New Media,
WU Vienna

Vienna, Austria

ABSTRACT

v1e is a language kernel for textual variability modelling built on
top of the language-development system DjDSL. As a language
kernel, v1e provides a minimal but extensible set of abstractions to
implement families of domain-specific languages for textual vari-
ability modelling. v1e provides for a small and versatile abstract
syntax to encode feature models using multiplicity constraints and
canonical semantics. v1e offers built-in analysis support, such as
configuration validation, by maintaining internal BDD represen-
tations. A derived language becomes realised as a collection of
extensions dependent on the language kernel. v1e is designed to be
highly extensible and embeddable, e.g., as a dynamic library or as a
REPL shell. In this paper, we showcase a selected derived language
and the design decisions involved: a kernel implementation of TVL
on top of v1e. We conclude the paper by pointing out current limi-
tations (e.g., representing attributed variability models) and future
directions (e.g., analysis support beyond BDD).

KEYWORDS

variability modelling, language kernel, language family, language
product line, domain-specific modelling, modelling framework

1 INTRODUCTION

In domain engineering using product-line techniques, a domain
engineer analyses the application domains of a family of software
products. In a dedicated step of variability modelling, commonal-
ities and differences between the software products are recorded.
Differences are expressed as optional features. The results are doc-
umented in terms of a variability model. A variability model, there-
fore, depicts the number of derivable software products (variants)
and their properties using a well-defined and expressive variability
modelling language (e.g., a feature diagram). The variability model
is then put to use for different analysis tasks, at different stages
of product-line engineering, including but not limited to static
product-line analyses, validation of feature selections, test planning,
perfective maintenance of the variability model, variability-model
comparisons, and guidance for code inspections [3, 6, 7, 36].

The majority of early variability modelling languages offered (or
were even limited to) a graphical notation inspired or derived from
the original FODA [21] notation. Early textual notations have been
proposed for uses in software-language engineering and for applica-
tion generators; and gained momentum when it came to modelling
large domains [10, 35]. As for variability-modelling languages with
a primary textual concrete syntax, a number of suggestions have
been put forth. ter Beek et al. [35] provide a systematic overview

of approaches to textual variability modelling, ranging from early
exemplars (FDL [39], GUIDSL [5]) to more recent ones (Clafer [4],
familiar [1, 11], Velvet [30], and TVL [10, 35]). The approaches
are contrasted regarding different dimensions, e.g., support for
modelling in the large and the supported constraint types. Besides
general-purpose variability modelling, modelling variability is fre-
quently required by modelling languages targeting specific, but
different application domains. While such domain-specific mod-
elling languages operate on domain-specific data structures (e.g.,
to capture attributes or to define constraints), there is potential
for reuse of basic variability abstractions, similar to the idea of a
“calculation core” for domain-specific expressions [40].

In this paper, we report on our ongoing work towards v1e as a
language kernel providing a minimal but extensible set of abstrac-
tions to implement families of domain-specific languages for textual
variability modelling (see Section 2). From a bird’s eye perspective,
v1e is unique in adopting a canonical representation (multiplicity
encoding) throughout the syntax levels (concrete to abstract) down
to the backend encoding (Binary Decision Diagrams, BDD). For the
details on v1e’s abstract syntax, refer to Section 3.

The main contribution of v1e’s and its canonical abstract syntax
is avoiding typical pitfalls of existing variability-modelling lan-
guages, such as the trade-off between a language’s succinctness for
a modelling or analysis task at hand versus a lack of expressiveness
(e.g., caused by missing or misfitting modelling abstractions). This
is achieved by offering a language kernel that can be systematically
extended to include modelling features to support further, more
verbose types of variability models.

This convenient property of v1e is shared with so-called canon-
ical variability-modelling languages, namely Varied Feature Dia-
grams (VFD; [33]) and Neutral Feature Diagrams (NFT; [19]). How-
ever, in contrast to these approaches, v1e comes as part of an in-
tegrated development infrastructure to create derived languages:
the language-development system DjDSL [34]. v1e and derived lan-
guages can be reused for variability-aware software projects either
as a self-sufficient dynamic library or as a REPL shell. In Section 4,
the kernel-based re-implementation of the Textual Variability Lan-
guage (TVL; [10]) is presented as a showcase. In Section 5, available
design options and important limitations are discussed. Related
work is revisited in Section 6, and Section 7 contains concluding
remarks.

2 TOWARDS FAMILY-BASED APPROACHES

TO VARIABILITY MODELLING

Language Kernels. There can be a middle ground between com-
pact and verbose software languages, as the two extremes, specific

to application domains such as those involving variabilitymodelling
(see [41, Section 2.4] for an overview). A compact DSL provides
few but generic (lower-level) and extensible abstractions to serve
a domain of application (e.g., µTVL [9]). A verbose DSL has ide-
ally full coverage in terms of domain abstractions (e.g., TVL [10]
or IVML [15]). As an alternative, a kernel or language core with
dependent extensions can be developed. The kernel can be relevant
for different related application domains of variability modelling,
while the library extensions are specific to certain targeted domains
(e.g., an extension for test planning). An example of this is a kernel-
based strategy for language-oriented programming that aims at
developing programs specific to niche hardware platforms based
on a kernel and a kernel-driven IDE [18]. KernelF [40] provides a
language core plus extensions for expression languages to develop
new languages with embedded expressions.

Language Families. A kernel and a library of extensions can
be developed as a language family, e.g., a family of expression lan-
guages [40] or a family of state-machine modelling languages [13,
42]. Engineering variable languages as language families shifts
emphasis from developing and analysing a single language to de-
veloping and to analysing composable development artefacts for a
language family. This ambition gave rise to approaches to language-
product line engineering [20, 24–26] and their supporting multi-
language development systems. Their shared goals are to minimise
preplanning effort as well as, at the same time, to reuse development
artefacts and language tooling in an unmodified manner.

The emphasis in this paper is on developing families of textual
variability modelling languages as compositions of a language ker-
nel (v1e) plus a library of kernel extensions at the levels of abstract
syntax, context conditions, concrete syntax, and behaviour imple-
mentation. In Section 4, we illustrate an alternative implementation
of the Textual Variability Language (TVL) as an extension of the
v1e kernel.

DjDSL. DjDSL [34] is a language-based and composition-based
DSL development system. As a DSL development system, DjDSL
allows a DSL developer to develop families of different DSL types
(internal, external, and hybrid).DjDSL provides for a variable design
and implementation of a DSL family across the different definition
artefacts in an integrated manner (collaboration-based designs): ab-
stract syntax, context conditions, and concrete syntaxes.

As for abstract-syntax definitions, DjDSL allows a DSL devel-
oper to structure an object-oriented abstract-syntax model (e.g.,
for representing feature models) into composable collaborations. A
collaboration can directly represent optional features of an abstract-
syntax family. At the level of variable textual syntaxes, DjDSL
employs composable object grammars [38] based on an extended
variant of parsing expression grammars (PEG). Section 4 demon-
strates how a single object parsing-expression grammar (OPEG)
definition suffices to implement a TVL core as an extension to v1e.

DjDSL plus v1e, the running examples as well as the code listings
in this paper are available from a supplemental Web site as an
executable tutorial.1

1https://github.com/mrcalvin/djdsl

Figure 1: Overview of the key concepts of the v1e representa-

tion of feature models, in particular Choice and Feature. The
example in the upper-left box depicts a model instantiation,

with feature B being an optional (0..1) sub-feature of feature A.
The decomposition andmultiplicity edges are implemented

by the same-named associations.

3 V1E: DESIGN AND IMPLEMENTATION

3.1 Abstract Syntax

In v1e, a featuremodel is represented by a structure of four concepts:
Model, Choice, Feature, and Constraint. The abstract syntax is
minimal, both in terms of element types and their relationships and
its core semantics (multiplicities).

Models. A Model is the central container, factory, and lifetime
context for model elements, in particular instantiations of Choice
and Feature. A Model maintains references to a minimum of one
Choice that represents the root element of the model. The root
Feature, a key tenet of description of a feature model, is derived
from this root Choice. Models are also the entry point to anal-
ysis operations based on the internal model representation (see
Section 3.4).

Choices. A Choice is the model element that represents a num-
ber of presence options in terms of sub-features for the valid con-
figurations of a feature model, along with a specific constraint
on the group cardinality (multiplicity) of its child elements or
candidates. The multiplicity is represented as a pair of an upper
and a lower bound for the number of candidates to be expected
to present in the valid configurations. The candidates are instanti-
ations of Feature, i.e., sub-features. Each choice has exactly one
context (or parent) Feature. The group cardinality described by a
Choice encodes the type of sub-feature relationship between the
parent and children features.

Tbl. 1 provides an overview of the multiplicity-based encoding
of the most common (hierarchical) feature-model dependencies,
as well as the corresponding Boolean encoding (further explained
in Section 3.4). Whereas most feature-modelling languages have
explicit abstract-syntax elements for the common mandatory, op-
tional, inclusive-or, and exclusive-or dependencies between (sub-)
features, Choice generalizes them as a unifiedmodelling element. In
addition, they are eligible for encoding cross-tree (non-hierarchical)
constraints, including the required absence or negation ([0..0]).

2

https://github.com/mrcalvin/djdsl
https://github.com/mrcalvin/djdsl/blob/tvl/tutorials/tvl.tcl
https://github.com/mrcalvin/djdsl

Table 1: Multiplicity-based encoding of v1e model (choices) and the operators used in the corresponding Boolean formula.

Different encodings of atmost-k constraints are possible (e.g., binomial, binary [16]; binomial is currently implemented.) CAND
is the set of candidate features for a given Choice, with |CAND| ∈ N>0

Optional sub-feature 0..1 |CAND| = 1 implication (⇐)
Mandatory sub-feature 1..1 |CAND| = 1 bi-implication (⇔)
Inclusive-or group of sub-features 1..𝑛 𝑛 = |CAND|, |CAND| > 1 disjunction (∨)
Exclusive-or group of sub-features 1..1 |CAND| > 1 at-most-one (e.g., binomial enc.)

And group of sub-features 𝑠 ..𝑠 𝑠 ∈ N>0, 𝑠 = |CAND| conjunction ∧
Absent (negated) sub-feature 0..0 (for constraints) negation ¬
Lower bound 𝑗 ..𝑛 𝑛 = |CAND|, 𝑗 ∈ N0, 𝑗 ≤ 𝑛 at-least-j (e.g., binomial enc.)
Upper bound 0..𝑘 𝑘 ∈ N, 1 ≤ 𝑘 ≤ |CAND| at-most-k (e.g., binomial enc.)
Lower and upper bound 𝑗 ..𝑘 𝑗, 𝑘 ∈ N0, 𝑗 ≤ 𝑘 ≤ |CAND| at-least-j ∧ at-most-k

Features. Feature are those model elements that represent the
(problem space) features. A Feature having owned instantiations
of Choice is also referred to as a decomposition feature. Otherwise,
a Feature is said to be a primary one. Primary features must be
named. Decomposition features can also be unnamed, which is the
case of auxiliary features as artefacts of certain model transfor-
mations.2 For named features, the Model is the naming scope and
authority. A name assigned to a feature must be unique within the
model.

Constraints. A (non-hierarchical) Constraint represents an
expression string defined in an expression language external to
v1e. Generally speaking, a constraint expression encodes pres-
ence or absence of certain Feature combinations in addition to
the Choice structure of the Model. Expression operands represent
(named) instantiations of Feature of the model, expression opera-
tors the presence (absence) conditions between Feature instantia-
tions. Examples include subsets of the Object Constraint Language
(OCL) expressions or standard formulas in a propositional-logic
(PL) language.

When constraints are omitted, a model forms a tree structure
(i.e., each element has only one parent and the structure is free
of cycles). In presence of constraints, the model is described by a
directed acyclic graph (DAG).

3.2 Semantics

The interpretation of the abstract-syntax elements in Fig. 1 and the
supporting notion of configuration is as follows:

Multiplicity Encoding of Variation Points. A Choice rep-
resents a collection of sub-features into which a parent feature is
decomposed. The cardinality of this collection (i.e., the candidates
Fig. 1) in is the number of Feature instantiations contained in that
collection. In Tbl. 1, the cardinality is denoted as |CAND|. A Choice
represents additionally a constraint on the cardinality of this collec-
tion. This constraint is referred to as the multiplicity, setting valid
cardinalities of the constrained collection. A cardinality is valid
provided that it is not less than the lower bound and not greater
than the upper bound maintained by a Choice. Typical bounds and
their interpretation in terms of feature modelling are documented

2For example, a typical transformation in the problem space is turning all primary
features into actual leaves of the tree structure. This requires intermediate, in v1e
unnamed, feature elements. See [19, Section 2.4].

A

B C

A

B D

Figure 2: Example of an and-decomposition, in Czarnecki-

Eisenecker notation; left: and-group of mandatory sub-

features; right: and-group including optional sub-feature.

in Tbl. 1. There are two important qualifications to multiplicities in
v1e.
(1) There are no unbounded multiplicities, that is, there is always

a constraint on the upper bound of a Choice.
(2) The upper bound of a Choice cannot be greater than the cardi-

nality of the represented collection.
Configuration Validation. Based on the abstract syntax and

the interpretation of multiplicities represented by a Choice, a con-
figuration is considered valid iff the following conditions hold:
(1) Every element of a Model is assigned a Boolean value, which is

computed according to the subsequent steps.
(2) All Model-level choices evaluate to true.
(3) A Choice evaluates to true if at least the lower bound and at

most the upper bound of its candidates features evaluate to
true.

(4) A Feature evaluates to true
• if it is included by the configuration under evaluation and
• if its owned Choice instantiations evaluate to true, if any.

This generic and cascading evaluation procedure implies that all
Constraint instantiations evaluate to true, whether they are rep-
resented as Choices directly or otherwise. It also follows that, to
become valid, the configurationmust contain the root feature.While
this evaluation procedure can be implemented at a known complex-
ity [19], v1e reformulates the evaluation of configurations into a
satisfiability problem (see Section 3.4).

And-Groups vs. And-Choices. In an and-group of sub-features,
or and-decomposition, all grouped sub-features must be present
in a configuration, in which the parent feature is also present, to
render the configuration valid. In (graphical) notations of feature
models, they are typically identified by free-standing decomposi-
tion edges, not connected by an arc (as opposed to arcs for or- and

3

xor-groups). Such and-groups may contain both mandatory and op-
tional sub-features. The feature model on the left in Fig. 2 indicates
that B and Cmust be present in all configurations that A is (i.e., there
is just one valid configuration: 𝐴, 𝐵,𝐶). The feature model on the
right exemplifies an and-group including an optional sub-feature D.
It interprets as follows: B must be present in all configurations that
A is, B can be present or absent (i.e., there are two valid configura-
tions: 𝐴, 𝐵, 𝐷 and 𝐴, 𝐵). As straightforward as their interpretation
may seem, and-groups cause ambiguity in semantics (e.g., for their
multiplicity encoding in presence of optional sub-features) and also
notational ambiguity, e.g., when a (graphical) notation allows for
multiple groups per feature.

v1e avoids any ambiguities (semantic and notational) by a sepa-
ration of concerns: On the one hand, an explicit and-decomposition
can be modelled using a single choice (iff all sub-features are manda-
tory) or using different choices (if there are optional sub-features
involved). On the other hand, multiple groups (of whatever multi-
plicity class) are represented using distinct choices per group.
• Model and Feature can have multiple associated Choice instan-
tiations. All choices must evaluate to true, for the Model or Fea-
ture to evaluate to true, subsequently.
• And-groups in terms of feature modelling translate into v1e as
follows:
– Sub-features are all mandatory: A single Choice with a mul-
tiplicity constraint limiting the cardinality (lower and upper
bounds) to exactly the number of candidate features. In v1e,
this is referred to as an and-choice. Fig. 3a is a v1e abstract-
syntax representation of Fig. 2, LHS.

– At least one sub-feature is optional: Themandatory sub-features
are grouped by an and-choice. The optional ones by a separate
choice with a lower bound of 0 and the upper bound equal to
the cardinality of the subset of optional sub-features. Fig. 3c is
a v1e abstract-syntax representation of Fig. 2, RHS.

• When needed for expressing a domain, or transcribing models
from group-aware feature-modelling languages as frontend, v1e
can contain multiple choices, including choices encoding and-
groups as above, at a given decomposition level such as the root
feature.

Hence, and-groups and and-choices are distinct modelling elements,
with the latter capable of embedding the former, depending on the
kind of sub-features (mandatory, optional). It should be noted that a
single and-choice can be rewritten as a number of [1..1]-choices
(see Fig. 3d); so can choices of optional sub-features be defined as
separate [0..1]-choices.

3.3 Built-In Concrete Syntax

v1e provides multiple textual concrete syntaxes. First, direct instan-
tiation of the abstract-syntax model is supported. Second, indirect
instantiation via an internal DSL syntax is offered. Additional tex-
tual syntaxes can be added using internal or external DSL tech-
niques (see Section 4).

Lst. 4a exhibits the internal syntax for a GraphPL example. The
Root keyword identifies the root feature, e.g., Graph from Fig. 4b.
Internally, this is transformed into a combined structure of root
choice and feature. The root is decomposed into sub-features, e.g.,
two optional sub-features weighted and coloured from Fig. 4b.

decomposition
edge

multiplicity
edges

feature node

choice
node

feature
nodes

A

C

2..2

B

A

0..1

D

1..1

B

A

1..1

B

1..1

C

A

D

1..2

B

(a) (b) (c) (d)

Figure 3: Various examples on encoding and-decompositions

in v1e; (a) and-choice representing the left model in Fig. 2; (b)

an inclusive-or choice; (c) two-choice representation of the

right model in Fig. 2; (d) split but equivalent representation

of (a)

In v1e, an optional sub-feature corresponds to a Choice of mul-
tiplicity [0..1] with one Feature as its child element. See also
Tbl. 1 for a reference. Recall that a parent feature (Graph) can carry
multiple instantiations of Choices (two in Lst. 4a). Semantically,
this corresponds to an implicit and-decomposition.

Constraints. v1e allows for defining additional constraints on
the hierarchical structure of Choice and Feature instantiations,
which run across the hierarchy. Such constraints can be defined in
terms of an auxiliary, external textual constraint sub-language and/
or extra Choice instantiations owned by the Model (i.e., at the top
level, outside the root hierarchy).

Textual constraints provide a small subset of Boolean expres-
sions, including the binary operators and and or as well as the
unary operator not. These operators work on operands which rep-
resent (named) features. Compound expressions must be grouped
explicitly using pairs of parentheses. The core of the constraint
language is kept minimal, additional operators are modelling using
the primitives (implication etc.). Syntactic sugar is provided, though.
The corresponding (parsing expression) grammar is documented
in Lst. 9 using an EBNF-like notation.

Consider the exemplary textual constraint in Lst. 4c. It imposes
an additional validation condition on an extended GraphPL vari-
ability model (not shown). Any valid configuration including the
feature MST must also include weighted, but not necessarily vice
versa. This is an example of an implication, modelled as using not/or.
Textual constraints cannot define new features. Only references by
name to those defined as part of the hierarchy under the root are
permitted.

Constraints can also be represented directly as Choice instan-
tiations owned by a Model in addition to the root choice. Both
constraint types have the same expressiveness. See Tbl. 2 for an
overview of the correspondences between v1e textual constraints
and choices. For instance, the textual constraint in Lst. 4c corre-
sponds to the Choice structure in Lst. 4d, and vice versa.

Lst. 4d exhibits two noteworthy details. First, a Feature can be
used in an unnamed manner (see line 2). This allows for encoding
a unary operator such as not. This is one use of a Feature as an
auxiliary construct. The second detail is the use of a [0..0]-choice
as the multiplicity encoding of the not-operator itself (see line 3).

4

Graph

colored weighted

1 Root "Graph" {
2 Choice -lower 0 -upper 1 {
3 Feature -name "coloured"
4 }
5 Choice -lower 0 -upper 1 {
6 Feature -name "weighted"
7 }
8 } 1 Constraint {not MST or weighted}

1 Choice with -lower 1 -upper 2 {
2 Feature with {
3 Choice with -lower 0 -upper 0 {
4 Feature with -name "MST"
5 }
6 }
7 Feature with -name "weighted"
8 }

(a) (b)

(c)

(d)

Figure 4: (a): Implementation of the GraphPL model excerpt in (b) using v1e; (b): The GraphPL model excerpt in Czarnecki-

Eisenecker notation; (c): A textual constraint expressed over an extended GraphPL variability model; (d): Constraint implemen-

tation using an explicit choice, equivalent to the textual constraint.

Table 2: An overview of basic correspondences between the

two constraint notations: textual and choices.

Textual Choice

A and B

Choice -lower 2 -upper 2 {
Feature -name "A"
Feature -name "B"

}

A or B

Choice with -lower 1 -upper 2 {
Feature with -name "A"
Feature with -name "B"

}

not A
Choice with -lower 0 -upper 0 {
Feature with -name "A"

}

3.4 Internal BDD Representation

A variability model defined using v1e can be subjected to different
predefined or developer-provided automated analysis operations.

v1e offers built-in support for recoding a Model into correspond-
ing formulas of Boolean algebra.

A Boolean formula is recognised or generated by the following
grammar:

F ← X | '0' | '1' | '¬' F | F '∧' F | F '
∨' F | F '⇒' F | F '⇔' F

Operators include negation, conjunction, disjunction, implication,
and bi-implication (in order of appearance above). Operands are
the literals 0 and 1 as well as a range of Boolean variables denoted
by x. A Boolean variable takes a value out of the set {0, 1}. The
interpretation of operators follows the standard truth tables. Note,
however, that in this setting, their interpretation will be normalised,
beyond a succinct rewrite in terms of conjunction, disjunction, and
negation only, in terms of an if-then-else normalisation (INF).

Starting from a v1e model, the following steps are performed to
obtain a corresponding (non-normal) Boolean formula [6]:

(1) Each primary feature maps to a same named Boolean variable.
(2) Each choice maps to an operator, depending on the multiplicity

set and its number of candidate sub-features (see Tbl. 1 for
an overview). The current implementation uses the binomial

encoding: ∧
𝑋 ⊆{1,...,𝑛},
|𝑋 |=𝑘+1

∨
𝑥 ∈𝑋
¬𝑥

To reduce the number of clauses, which is
(|CAND |

𝑘+1
)
using the bi-

nomial encoding, different encodings could be implemented [16].
(3) Each textual constraint is processed as-is (given that they build

on a subset of Boolean algebra and the syntactic structure allows
for direct processing).

(4) The overall formula is the conjunction of all sub-formulas, es-
tablished by iterating the choices and any constraints.

From such a corresponding formula, v1e internally computes a
Binary Decision Diagram (BDD) [8, 23]. A BDD takes the structure
of a rooted, directed acyclic graph or a binary tree with shared
sub-trees. This property results from the node and edge sets: There
is a maximum of two sink nodes labelled ⊥ (for false or 0) and
⊤ (for true or 1), respectively, with an out-degree of zero. Each
non-sink or branch node is labelled by a Boolean variable and main-
tains exactly two outgoing edges, connecting two successors. The
edges or successors are called the low and high edge and successor,
respectively. The low edge models the consequence of assigning the
variable represented by the source branch node to 0, the high edge
models the variable assignment of 1. This way, a BDD represents a
model of a function that maps a Boolean formula to a resulting truth
value, 0 or 1, based on a given variable assignment. An assignment
is one allocation of 0 and 1 to the Boolean variables of a formula
(represented by branch nodes in the corresponding BDD).

The construction of a BDD from a Boolean formula can be mod-
elled as two subsequent steps, one of normalisation, one of reduc-
tion: First, all Boolean operator occurrences are rewritten as their
if-else-then equivalents using recursive application of the Shannon
expansion (assuming a previously decided fixed order of variables
under expansion). This results in the if-then-else normal form (INF)
of the formula. Second, the set of if-then-else sub-formula is then
reduced based on identical test conditions (RHS) to obtain a close
progenitor of the final BDD. Intuitively, each sub-formula of an
INF formula maps to a branch or sink node of the BDD, with the
low edge representing the else-branch and the high edge the then-
branch of the if-construct. In this reading, a BDD models a Boolean
function effectively as a decision graph [8].

The resulting BDD has convenient properties: It can be stored
effectively (using beads [23, Section 7.1.4]) and allows for directly

5

Choice

+optionals:Feature [0..*]

+mandatories:Feature [0..*]

+/card:int

Choice

FeatureModel

Model Feature

T
V
L

V
1
E

‹‹refines›› ‹‹refines›› ‹‹refines››

Figure 5: The collaboration-based design of the TVL core

implementation using DjDSL. The collaboration implement-

ing TVL adds three refinements to each v1e concept: Model,
Choice, and Feature (see also Fig. 1).

answering satisfiability or enumeration questions. v1e uses the Tcl
extension tclbdd [22] as BDD encoder and BDD engine.

4 APPLICATIONS: AN EXTENSIBLE TVL

IMPLEMENTATION

The Textual Variability Language (TVL) [10] is a variability mod-
elling language with a textual concrete syntax backed by an abstract
syntax and semantics derived from VFD. As a language definition
itself, TVL has been repeatedly implemented using different infras-
tructures, e.g., as a Java library or as an external DSL implemented
via ASF+SDF. As a language, TVL has also been adopted by others:
µTVL is a derived language subset of TVL embedded as a language
component into the Abstract Behavioural Specification (ABS) lan-
guage for representing feature models [9].

TVL makes a representative application case because TVL aims
at covering for a broad scope of variability modelling (feature
models, constraints, attributes). At the same time, derived and
embedded uses of TVL such as µTVL invite to turn TVL into a
language-product line for variability modelling. Beyond concepts,
implementation-wise, an implementation of TVL also exhibits im-
portant challenges (i.a., handling decompositions in the presence
of optional sub-features).

In the following, we highlight the selected and critical steps
of implementing a TVL core in line with [9, 10] using v1e as a
language kernel and DjDSL as the infrastructure to implement a
TVL family. Lst. 6, LHS, visualises a small TVL model using TVL
concrete syntax as a running example.

4.1 Abstract-Syntax Extension

An implementation of TVL requires a minimal extension to the
canonical abstract syntax of v1e. Using DjDSL, this extension can
be implemented as a collaboration as shown in Fig. 5 to become com-
posed with the v1e base collaboration. A collaboration is a unit of
composition which contains classifier and roles, respectively. When
composed, along refinements chains («refines»), role classes re-
fine the classifiers to yield a final abstract-syntax model.

A Choice maps to TVL’s decomposition groups (e.g., allOf,
someOf, oneOf). For this purpose, first, Choice is refined to record
three properties of TVL’s decomposition groups: The derived prop-
erty card captures the cardinality of sub-features owned by a TVL
group. This property is then used to expand the asterisk (*) in TVL’s

groupmultiplicities, denoting lower and upper bounds limited to the
given number of sub-features, during parsing or post-processing.

Second, Choice is extended to record the different nature of fea-
tures contained by a decomposition group, optional or mandatory,
using the corresponding two properties optionals and manda-
tories (see Fig. 5). They subset candidates. TVL is maximally
permissive allowing for optional sub-features in any decomposition
type. In v1e, in contrast, encoding of optionality is restricted to the
level of choices; hence, there is no and-decomposition of optional
sub-features per se (see Section 3.2). To bridge between the abstrac-
tions, these two additional properties are used to transform TVL
groups containing optional sub-features into corresponding choice
structures in v1e.

More precisely, with 𝑛 ∈ N>0 denoting the total number of
sub-features entailed by a given decomposition group:
• A TVL and-decomposition, that is, allOf, [*..*], or [n..n]
with at least one optional sub-feature is transformed into a col-
lection of choices of multiplicity [1..1], one for each manda-
tory sub-feature, plus choices of multiplicity [0..1], again, for
each optional one. An and-decomposition without optionals is
turned into a single choice of multiplicity [i..i] holding all
sub-features. Lst. 6 exemplifies such an allOf (or, [3..3]) group
(left) and its v1e representation (centre).
• Decomposition groups (oneOf, someOf, [i..j]) with 𝑖, 𝑗 ∈ N>=0
and 𝑗 = 𝑛 are translated into a single choice having a correspond-
ing upper bound. The lower bound becomes corrected for the
number of optional sub-features as specified by the TVL language
definition [10, Section 5, Def. 4]. In the example from Lst. 6, the
optional sub-feature b reduces the lower bound of the group to 2.
• Decomposition groups [i..j] involving an atmost-j multiplic-
ity, i.e., an upper bound 𝑗 < 𝑛, and having optional sub-features
are transformed as follows:
– The mandatory sub-features are captured by a single choice
of a lower bound corresponding to the original lower bound
𝑖 corrected for the count of optional sub-features. The upper
bound is set to the number of features held by the choice
(i.e., card). This reflects TVL’s (valid) requirement that the
mandatory sub-features alone count for satisfying the original,
but corrected lower bound [10, Section 5, Def. 4].

– Each sub-feature is turned into one choice of [0..1] multi-
plicity.

– The atmost-j boundary is enforced by an additional constraint
to exclude all [j+1..j+1] configurations.

In front of such an extended abstract-syntax model, DjDSL offers
an object-oriented API for direct instantiation, i.e., to request in-
stantiations of the TVL abstract syntax (see Fig. 5).

4.2 Concrete Syntax

DjDSL allows for defining a TVL or µTVL concrete syntax in front
of the extended v1e abstract syntax. An object parsing-expression
grammar (OPEG) can contain extended parsing expressions in an
EBNF-inspired notation to process the consumed syntactic structure
(parse) into an object graph [34, Chapter 5]. This way, an OPEG def-
inition lays out two-in-one: (a) input recognition and (b) mapping
the recognised input onto objects, their fields, and non-hierarchical
relationships between the mapped objects.

6

1 root f {
2 group [3..3] {
3 a, opt b, c
4 }
5 }

f

1..1

a

0..1

b

1..1

c

f

a

c

0 1

Lst. 6: Left: A TVL model showing an and-decomposition (allOf, [3..3]) plus optional sub-feature b; Centre: A visualisation of

the resulting v1e abstract-syntax representation using three separate choice nodes; Right: A visualisation of the corresponding

BDD assembled by v1e.

In this application case, the resulting object graphs consist of
instantiations of the extended Model, Choice, and Feature classes
(see Fig. 5). A comprehensive excerpt from this grammar definition
is shown in the Appendix (see Lst. 8). The basic parsing expressions
were derived from the EBNF grammar of µTVL [9, Fig. 3]. Below, we
elaborate on selected grammar details which explain the realisation
of the mapping definitions in Section 4.1.

Instantiation Generators. The parsing rules in Fig. 7 specify
how the extended v1e classifiers Model and Feature are instanti-
ated through application of the corresponding rules (S, Feature-
DeclInner). For this, OPEG offers generator expressions enclosed
by single grave accents (`...`). Each rule, once applied, can yield
one or several instantiations of a given classifier (for example, one
per alternate).

Assignment generators. To become useful, a parsing rule can
be extended to include assignment generators. These generators
mark recognised and consumed values from the processed input
as values to become assigned to the properties of objects created
by an instantiation generator. Lst. 7 (left) shows the example of an
assignment generator for a property name of the Feature classifier.
Any input recognised by applying rule FID will be assigned to the
name property of the subsequently created Feature instance. The
object outcome of applying the rule FDeclBody, typically one or
several choices, becomes assigned to a Feature’s owned property.
Refer to Fig. 1 for a complete overview of relevant relationships.

Assignment generators do not necessarily apply to objects gener-
ated by the same rule, but can propagate up along the rule hierarchy
of a parsing grammar, as exemplified in Lst. 7 (right). The assign-
ment generators corresponding to lower and upper as Choice
properties are defined in a subordinate parsing rule (Multipl) of
the Choice instantiation generator (MPGroup). This keeps generator
expressions reusable. The assignment generators for the extended
optionals and mandatories properties of Choice are shared be-
tween all parsing rules on decomposition groups (e.g., MPGroup,
AndGroup).

Query Generators & Multi-Valued Properties. A query ex-
pression allows for navigating and accessing the object graph un-
der construction. Lst. 7 (right, rule Multipl), the query generator
$current card is shown, with $current referring to the object
computed by the closest instantiation generator (Choice). When
an asterisk is matched as part of a multiplicity, the query will be
executed to obtain the cardinality of sub-features of a given Choice.
$root refers to the top-level object of a given parse, i.e., an instance
of Model. In addition, a query generator can refer to the parse

matches of the surrounding parsing expression in a positional man-
ner. In Lst. 7 (left), the start-symbol rule uses the so-matched feature
id (FID) to set the name of the root feature explicitly.

Object parsing expressions with repetition operators allow for
definingmulti-valued assignments to bind value collections tomulti-
valued properties of objects. In Lst. 7 (right), the zero-or-more occur-
rences of rule GDecl translates into collecting all matches of feature
declarations qualified by TVL’s opt into a multi-valued assignment
of the optionals property of Choice. Feature declarations without
opt enter the mandatories collection.

4.3 Integration (Analysis)

The TVL reference implementation [10] integrates with a SAT
(Sat4J) as well as a CSP solver (CHOCO), the latter for numerically
attributed variability models. v1e uses an internal BDD encoding of
its variability model, realised with the BDD engine tclbdd. For the
example in Lst. 6, v1e represents a variability model in v1e using
three separate Choice nodes, as depicted in the centre of Lst. 6. The
corresponding internal BDD is assembled by v1e via the operations
f∧ (f⇔ a) ∧ (b⇒ f) ∧ (f⇔ c). This results in a variability model
with two valid configurations: {f, a, c} and {f, a, b, c}. The validity
of any configuration is independent of the presence of feature b.
Based on this internal BDD representation, v1e offers additional
services to the domain engineer using this TVL implementation,
e.g., exporting a model to a SAT solver in CNF.

5 DISCUSSION

Design Decisions. v1e opens up a rich space of design options
when deriving variability-modelling languages. As for the abstract-
syntax design, v1e allows for implementing a direct extension to
the v1e abstract syntax (see Fig. 1) or a separate abstract-syntax
model for a derived language which then becomes transformed
to a v1e instantiation. This can help to avoid complexity due to
abstraction mismatches. As for representation options, Section 3.1
highlights the different options regarding and-decompositions vs.
and-choices vs. separate choices.

Constraints can be implemented either using a Boolean expres-
sion language (with direct mapping onto a BDD) or using an extra
structure of choice nodes using decomposition features. The latter
avoids the complexity of enumerating presence or absence condi-
tions. At the level of concrete-syntax design, a derived language
may adopt a lightweight internal syntax first (e.g., using Tcl lists
of lists). Using a parsing grammar, incremental syntax extensions
(e.g., to add constraint or attribute syntax) may be added in support

7

S ← `Model` ROOT root:(`$root setRoot $0` FID)
(owned:FDeclBody)? !. ;

FID ← <alnum>+ ;
FDeclInner ← `Feature` name:FID (owned:FDeclBody)? ;

FDeclBody ← OBRACKET Group? Constraint* CBRACKET;
Group ← MPGroup / AndGroup / XorGroup / OrGroup;

MPGroup ← `Choice` GROUP Multipl OBRACKET GDecls CBRACKET;
Multipl ← OMP lower:(`$current card` '*' / <digit>+) SEPMP

upper:(`$current card` '*' / <digit>+) CMP;

GDecls ← GDecl (COMMA GDecl)*;
GDecl ← OPT optionals:FDeclInner / mandatories:FDeclInner;

Lst. 7: Left: The top-level parsing rules containing generator expressions for Model and Feature instantiations. Assignment

generators like name: and owned: assign parse output to properties of the surrounding instantiations; Right: The next-level

parsing rules responsible for processing TVL’s decomposition groups (allOf, oneOf, etc.) into corresponding v1e structures

according to Section 4.1. The emphasis is on groups of arbitrary multiplicities (MPGroup), the rules for AndGroup, OrGroup, and
XorGroup are omitted for brevity.

of abstract-syntax extensions without any preplanning effort using
advanced grammar compositions [34, Chapter 5].

Limitations. One important limitation of v1e at the time of writ-
ing is the missing support for internally encoding attributed vari-
ability models for analysis. While different attribute types (Boolean,
numeric), for different scopes (model, feature), can be represented
by providing extensions to v1e’s concrete and abstract syntaxes,
there is no integration with appropriate analysis engines yet. An-
other limitation is that the construction of internal BDD represen-
tations is currently not optimised for size. However, with regards to
scalability, the same limitations as for other BDD backends apply.
While our design does not intend to replace the BDD backend by,
e.g., an SMT solver, it is possible to export the Boolean formula for
use in external analysis tools.

Next Steps. v1e will be extended to provide additional analysis
and transformation operations (e.g., refactoring, specialization, gen-
eralization [37]). We will also include alternative Boolean encoding
styles of multiplicity constraints [16] and adaptive BDD building
to exploit the hierarchical nature of v1e models (variable ordering
heuristics [27]).

6 RELATEDWORK

A general introduction to variability and feature modelling is pro-
vided in [3, 12, 31]. A comparative overview of different variants of
feature-modelling languages, including syntaxes and semantics, is
provided by [32, 33].

Riebisch et al. [28, 29] reviewed graphical feature-modelling lan-
guages at the time (e.g., FODA [21], Czarnecki/ Eisenecker [12],
FeatuRSEB [17]) and suggested to add syntax and semantics of
group cardinalities (multiplicities) as known from UML. The result-
ing feature-modelling language was rebased to build on (groups of)
optional sub-features that carry multiplicities. Additionally, non-
hierarchical relationship types between features were considered
(e.g., requires, refines). v1e builds on these conceptual foundations.

Schobbens et al. [32, 33] defined, as a result of the critical-ana-
lytical review of feature-modelling languages, Varied Feature Dia-
grams (VFD). The abstract syntax of VFD itself was defined on the
basis of a canonical, abstracted representation of feature models
(Free Feature Diagram, FFD) providing a design space for graph
types (DAG, tree), operators, (non-hierarchical) constraint types,
and presence/absence of textual constraints. Using FFD, VFD are

defined as trees with a single operator card (“group cardinality” or
multiplicity). VFD was reported to be more succinct than alterna-
tives, by requiring fewer syntax elements when transforming from
VFD to an alternative model, at the same level of expressiveness.
The key to these benefits, shared by v1e, is adopting a single opera-
tor (node type) representing feature groups and group cardinalities
akin to Choice (see Section 3.1).

Neutral Feature Diagrams (NFT; [19]) are a derivative of VFD
that restricts variability models to a tree shape. NFT assumes con-
crete or primary features, which have a correspondence in terms of
feature implementations, to be modelled as terminal nodes of vari-
ability trees. NFT demonstrates the benefits of a canonical abstract
syntax and applying useful transformations (e.g., from a DAG to
a tree, non-terminals to terminals using auxiliary nodes). These
transformations are also supported by v1e.

While Clafer [4] as well as v1e are designed as minimalistic lan-
guages, Clafer is not tailored towards feature modelling per se. For
validation, Clafer provides built-in transformations to Alloy, SMT,
and CSP. In contrast to v1e, IVML [15] aims at defining a maximally
verbose variability-modelling language including a comprehensive
set of modelling abstractions to cover for complex applications,
such as modelling of service-platform ecosystems. These require
non-Boolean attributes, QoS constraints, and versioning, which
IVML delivers as built-ins, rather than as composable extensions
on top of an IVML kernel.

familiar [1, 11] has been realised both as an external (Xtext) and
as internal (Java/ Scala) DSL to implement the domain of feature-
modelling. In addition, it supports analysis operations and import-
ing from and exporting into different representations. A key objec-
tive is the support of managing composite feature models using
aggregate, merge (in different modes), slice, and diff operations.
The operations are based on traversing the familiar representa-
tion of models and their internal encoding. Key differences to v1e
are that familiar is not rooted in a canonical representation of
variability models, whereas v1e does not yet support composition
and reconstruction of variability models based on a backend or
internal model representation.

TVL [10] is prominently covered in Section 4. We showed that
v1e allows for defining a TVL-like frontend as an extension to v1e’s
abstract syntax plus extensible concrete syntax. A key difference
between TVL and v1e remains that v1e exposes the canonical
representation (including multiplicity encoding) directly via its

8

syntactic frontend while TVL applies them purely in its semantics
definitions.

PyFML [2] is a recent addition to the examples of textual vari-
ability modelling notations based on textX [14]. PyFML supports
arbitrary multiplicities and feature-level attribute annotations. The
abstract syntax is based on a canonical representation and can
therefore not accommodate different feature-model flavours. The
underlying tool chain integrates with CSP for analysis operations.

7 CONCLUDING REMARKS

We presented v1e, a language kernel for textual variability mod-
elling, which aims at offering domain engineers a sweet spot in the
trade-off between succinctness and lack of expressiveness. This bal-
ance is reached by offering a highly extensible language kernel that
provides a minimalistic abstract syntax to encode variability models
using multiplicity constraints and canonical semantics. Deriving
variability modelling languages from the v1e kernel is facilitated
by the DSL development system DjDSL. To demonstrate the expres-
siveness and extensibility of v1e, we re-implemented the core of
the Textual Variability Language (TVL) using v1e. We discussed
current limitations (no analysis support for attributed variability
models) and looked at future work (optimisation of internal BDD
representation).

REFERENCES

[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2013.
FAMILIAR: A domain-specific language for large scale management of feature
models. Science of Computer Programming 78, 6 (2013), 657–681. https://doi.org/
10.1016/j.scico.2012.12.004

[2] Ali Al-Azzawi Fouad. 2018. PyFml: A Textual Language For Feature Modeling.
International Journal of Software Engineering & Applications 9, 1 (2018). https:
//doi.org/abs/1802.05022

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines (1st ed.). Springer. https://doi.org/10.1007/978-
3-642-37521-7

[4] Kacper Bak, Krzysztof Czarnecki, and Andrzej Wasowski. 2010. Feature and
Meta-Models in Clafer: Mixed, Specialized, and Coupled. In Proc. 3rd International
Conference on Software Language Engineering (SLE’ 10) (LNCS, Vol. 6563). Springer,
102–122. https://doi.org/10.1007/978-3-642-19440-5_7

[5] Don S. Batory. 2005. Feature Models, Grammars, and Propositional Formulas.
In Proc. 9th International Conference on Software Product Lines (SPLC’05) (LNCS,
Vol. 3714). Springer, 7–20. https://doi.org/10.1007/11554844_3

[6] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615–636. https://doi.org/10.1016/j.is.2010.01.001

[7] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A survey of variabil-
ity modeling in industrial practice. In Proc. Seventh International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS’13). ACM, 1–8.
https://doi.org/10.1145/2430502.2430513

[8] Randal E. Bryant. 1995. Binary decision diagrams and beyond: Enabling technolo-
gies for formal verification. In Proc. IEEE International Conference on Computer
Aided Design (ICCAD’95). IEEE, 236–243. https://doi.org/10.1109/ICCAD.1995.
480018

[9] Dave Clarke, Radu Muschevici, José Proença, Ina Schaefer, and Rudolf Schlatte.
2012. Variability Modelling in the ABS Language. In Proc. 9th International
Symposium on Formal Methods for Components and Objects (FMCO’12) (LNCS,
Vol. 6957). Springer, 204–224.

[10] Andreas Classen, Quentin Boucher, and Patrick Heymans. 2011. A text-based
approach to feature modelling: Syntax and semantics of TVL. Science of Computer
Programming 76, 12 (2011), 1130–1143. https://doi.org/10.1016/j.scico.2010.10.005

[11] Philippe Collet. 2014. Domain Specific Languages for Managing Feature Mod-
els: Advances and Challenges. In Proc. 6th International Symposium on Lever-
aging Applications of Formal Methods, Verification and Validation. Technolo-
gies for Mastering Change (ISoLA 2014) (LNCS, Vol. 8802). Springer, 273–288.
https://doi.org/10.1007/978-3-662-45234-9_20

[12] Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative Programming —
Methods, Tools, and Applications (6th ed.). Addison-Wesley.

[13] Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais, and Jean-
Marc Jézéquel. 2015. Melange: A Meta-language for Modular and Reusable
Development of DSLsAMeta-language forModular and Reusable Development of
DSLs. In Proc. 2015 ACM SIGPLAN International Conference on Software Language
Engineering (SLE’15). ACM, 25–36. https://doi.org/10.1145/2814251.2814252

[14] Igor Dejanović, Renata Vaderna, GordanaMilosavljević, and Željko Vuković. 2017.
TextX: A Python tool for Domain-Specific Languages implementation. Knowledge-
Based Systems 115 (2017), 1–4. https://doi.org/10.1016/j.knosys.2016.10.023

[15] Holger Eichelberger and Klaus Schmid. 2015. IVML: a DSL for configuration in
variability-rich software ecosystems. In Proc. 19th International Conference on
Software Product Line (SPLC’15). ACM, 365–369. https://doi.org/10.1145/2791060.
2791116

[16] AlanM. Frisch and Paul A. Giannaros. 2010. SAT Encodings of the At-Most-k Con-
straint: Some Old, Some New, Some Fase, Some Slow. In Proc. 10th International
Workshop on Constraint Modelling and Reformulation.

[17] Martin L Griss, John Favaro, and Massimo d’Alessandro. 1998. Integrating feature
modeling with the RSEB. In Proc. Fifth International Conference on Software Reuse
(ICSR’98). IEEE, 76–85. https://doi.org/10.5555/551789.853486

[18] Tero Hasu. 2017. Programming Language Techniques for Niche Platforms. Ph.D.
Dissertation. University of Bergen.

[19] R. Heradio-Gil, D. Fernandez-Amoros, J. A. Cerrada, and C. Cerrada. 2011. Sup-
porting commonality-based analysis of software product lines. IET Software 5, 6
(2011), 496–509. https://doi.org/10.1049/iet-sen.2010.0022

[20] Jean-Marc Jézéquel, DavidMéndez-Acuña, Thomas Degueule, Benoit Combemale,
and Olivier Barais. 2015. When Systems Engineering Meets Software Language
Engineering. In Proc. Fifth International Conference on Complex Systems Design
& Management (CSD&M’14). Springer, 1–13. https://doi.org/10.1007/978-3-319-
11617-4_1

[21] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-
terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[22] Kevin Kenny. 2014. Binary decision diagrams, relational algebra, and Data-
log: deductive reasoning for about Tcl. (November 2014). https://www.tcl.tk/
community/tcl2014/abstract.html#kk-bdd Talk at the 21st Annual Tcl/Tk Con-
ference (Tcl, New and Proven: 2014).

[23] Donald E. Knuth. 2009. The Art of Computer Programming (1st ed.). Vol. 4.
Addison-Wesley.

[24] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. 2015. Choosy
and Picky: Configuration of Language Product Lines. In Proc. 19th Interna-
tional Conference on Software Product Line (SPLC’15). ACM, 71–80. https:
//doi.org/10.1145/2791060.2791092

[25] Jörg Liebig, Rolf Daniel, and Sven Apel. 2013. Feature-oriented Language Families:
A Case Study. In Proc. 7th International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS’13). ACM, 11:1–11:8. https://doi.org/10.1145/
2430502.2430518

[26] David Méndez-Acuña, José A. Galindo, Thomas Degueule, Benoît Combemale,
and Benoît Baudry. 2016. Leveraging Software Product Lines Engineering in
the Development of external DSLs: A systematic literature review. Computer
Languages, Systems & Structures 46 (2016), 206–235. https://doi.org/10.1016/j.cl.
2016.09.004

[27] Marcílio Mendonça, Andrzej Wasowski, Krzysztof Czarnecki, and Donald D.
Cowan. 2008. Efficient compilation techniques for large scale feature models. In
Proc. 7th International Conference on Generative Programming and Component
Engineering (GPCE’08). ACM, 13–22. https://doi.org/10.1145/1449913.1449918

[28] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow. 2002. Ex-
tending Feature Diagrams with UML Multiplicities. In Proc. 6th International
Conference on Integrated Design and Process Technology (IPDT’02). Society for
Design and Process Science, 1–7. https://doi.org/10.1007/978-3-540-25934-3_16

[29] Matthias Riebisch, Detlef Streitferdt, and Ilian Pashov. 2004. Modeling Variability
for Object-Oriented Product Lines. InWorkshop Proc. 17th European Conference
on Object-Oriented Technology (ECOOP’03), Frank Buschmann, Alejandro P. Buch-
mann, andMariano A. Cilia (Eds.). Springer, 165–178. https://doi.org/10.1007/978-
3-540-25934-3_16

[30] Marko Rosenmüller, Norbert Siegmund, Thomas Thüm, and Gunter Saake. 2011.
Multi-dimensional variability modeling. In Proc. 5th International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS’11). ACM, 11–20.
https://doi.org/10.1145/1944892.1944894

[31] Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Benavides, Goetz
Botterweck, Animesh Pathak, Salvador Trujillo, and Karina Villela. 2012. Software
diversity: state of the art and perspectives. International Journal on Software Tools
for Technology Transfer 14, 5 (2012), 477–495. https://doi.org/10.1007/s10009-
012-0253-y

[32] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. 2006.
Feature Diagrams: A Survey and a Formal Semantics. In Proc. 14th IEEE In-
ternational Requirements Engineering Conference (RE’06). IEEE CS, 136–145.
https://doi.org/10.1109/RE.2006.23

9

https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/abs/1802.05022
https://doi.org/abs/1802.05022
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-19440-5_7
https://doi.org/10.1007/11554844_3
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1145/2430502.2430513
https://doi.org/10.1109/ICCAD.1995.480018
https://doi.org/10.1109/ICCAD.1995.480018
https://doi.org/10.1016/j.scico.2010.10.005
https://doi.org/10.1007/978-3-662-45234-9_20
https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1016/j.knosys.2016.10.023
https://doi.org/10.1145/2791060.2791116
https://doi.org/10.1145/2791060.2791116
https://doi.org/10.5555/551789.853486
https://doi.org/10.1049/iet-sen.2010.0022
https://doi.org/10.1007/978-3-319-11617-4_1
https://doi.org/10.1007/978-3-319-11617-4_1
https://www.tcl.tk/community/tcl2014/abstract.html#kk-bdd
https://www.tcl.tk/community/tcl2014/abstract.html#kk-bdd
https://doi.org/10.1145/2791060.2791092
https://doi.org/10.1145/2791060.2791092
https://doi.org/10.1145/2430502.2430518
https://doi.org/10.1145/2430502.2430518
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1145/1449913.1449918
https://doi.org/10.1007/978-3-540-25934-3_16
https://doi.org/10.1007/978-3-540-25934-3_16
https://doi.org/10.1007/978-3-540-25934-3_16
https://doi.org/10.1145/1944892.1944894
https://doi.org/10.1007/s10009-012-0253-y
https://doi.org/10.1007/s10009-012-0253-y
https://doi.org/10.1109/RE.2006.23

[33] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves
Bontemps. 2007. Generic semantics of feature diagrams. Computer Networks 51,
2 (2007), 456–479.

[34] Stefan Sobernig. 2020. Variable Domain-specific Software Languages with DjDSL.
Springer. https://doi.org/10.1007/978-3-030-42152-6

[35] Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger. 2019. Textual
variability modeling languages: an overview and considerations. In Proc. 23rd
International Systems and Software Product Line Conference (SPLC’19). ACM, 82:1–
82:7. https://doi.org/10.1145/3307630.3342398

[36] Thomas Thüm, Sven Apel, Christian Kässtner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. ACM Comput. Surv. 47, 1 (June 2014), 6:1–6:45. https://doi.org/10.1145/
2580950

[37] Thomas Thüm, Don Batory, and Christian Kastner. 2009. Reasoning About Edits
to Feature Models. In Proc. 31st International Conference on Software Engineering
(ICSE’09). IEEE CS, 254–264. https://doi.org/10.1109/ICSE.2009.5070526

[38] Tijs van der Storm, William R. Cook, and Alex Loh. 2014. The design and
implementation of Object Grammars. Science of Computer Programming 96
(2014), 460–487. https://doi.org/10.1016/j.scico.2014.02.023

[39] Arie Van Deursen and Paul Klint. 2002. Domain-specific language design requires
feature descriptions. Journal of computing and information technology 10, 1 (2002),
1–17.

[40] Markus Völter. 2018. The Design, Evolution, and Use of KernelF. In Proc. 11th
International Conference on Theory and Practice of Model Transformation (ICMT’18)
(LNCS, Vol. 10888). Springer, 3–55. https://doi.org/10.1007/978-3-319-93317-7_1

[41] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats He-
lander, Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. 2013. DSL
Engineering: Designing, Implementing and Using Domain-Specific Languages. dsl-
book.org. http://www.dslbook.org

[42] David Wille, Sandro Schulze, and Ina Schaefer. 2016. Variability Mining of
State Charts. In Proc. 7th International Workshop on Feature-Oriented Software
Development (FOSD’16). ACM, 63–73. https://doi.org/10.1145/3001867.3001875

10

https://doi.org/10.1007/978-3-030-42152-6
https://doi.org/10.1145/3307630.3342398
https://doi.org/10.1145/2580950
https://doi.org/10.1145/2580950
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1016/j.scico.2014.02.023
https://doi.org/10.1007/978-3-319-93317-7_1
http://www.dslbook.org
https://doi.org/10.1145/3001867.3001875

S ← `Model` ROOT root:(`$root setRoot $0` FID)
(owned:FDeclBody)? !. ;

FID ← <alnum>+ ;
FDeclInner ← `Feature` name:FID (owned:FDeclBody)? ;
FDeclBody ← OBRACKET Group? Constraint* CBRACKET;
Group ← MPGroup / AndGroup / XorGroup / OrGroup;

MPGroup ← `Choice` GROUP Multipl OBRACKET GDecls CBRACKET;
Multipl ← OMP lower:(`$current card` '*' / <digit>+) SEPMP

upper:(`$current card` '*' / <digit>+) CMP;

GDecls ← GDecl (COMMA GDecl)*;
GDecl ← OPT optionals:FDeclInner / mandatories:FDeclInner;
AndGroup ← GROUP ALLOF OBRACKET FDeclOuter (COMMA FDeclOuter)* CBRACKET ;
FDeclOuter ← `Choice` (lower:(`0` OPT))? candidates:FDeclInner ;

XorGroup ← `Choice` GROUP ONEOF OBRACKET GDecls CBRACKET ;
OrGroup ← `Choice` GROUP upper:(`$current card` SOMEOF) OBRACKET GDecls CBRACKET ;
Constraint ← Expr SCOLON / REQUIRE COLON FID SCOLON /

EXCLUDE COLON FID ;
Expr ← 'True' / 'False' / FID;
UnOp ← WS '!' WS;
BinOp ← WS ('||' / '&&' / '→' / '↔ ' / '==' / '!=') WS;

void: COMMA ← WS ',' WS;
void: COLON ← WS ':' WS;
void: SCOLON ← WS ';' WS;
void: OPARENS ← WS '(' WS ;
void: CPARENS ← WS ')' WS ;
void: OMP ← WS '\[' WS ;
void: CMP ← WS '\]' WS ;
void: SEPMP ← WS '..' WS ;
void: OBRACKET ← WS '{' WS ;
void: CBRACKET ← WS '}' WS;
void: ROOT ← WS 'root' WS ;
void: GROUP ← WS 'group' WS ;
void: OPT ← WS 'opt' WS ;
void: ALLOF ← WS 'allOf' WS ;
void: ONEOF ← WS 'oneOf' WS ;
void: SOMEOF ← WS 'someOf' WS ;
void: REQUIRE ← WS 'require' WS ;
void: EXCLUDE ← WS 'exclude' WS ;
void: WS ← (COMMENT / <space>)*;
void: COMMENT ← '//' (!EOL .)* EOL ;
void: EOL ← '\n' / '\r' ;

Lst. 8: The excerpt from the OPEG defining a concrete syntax of a TVL kernel; see for the

complete implementation.

2 Expression ← _ Term (_ BinaryOp _ Term)?;
3 Term ← NotOp? _ (Variable / '(' Expression ')');
4 leaf: BinaryOp ← AndOp / OrOp;
5 AndOp ← 'and' / '&&';
6 OrOp ← 'or' / '||';
7 NotOp ← 'not' / '-';
8 Variable ← <alnum>+;
9 void: _ ← <space>*;

Lst. 9: A parsing expression grammar (PEG) for textual constraints on v1e models

11

	Abstract
	1 Introduction
	2 Towards Family-based Approaches to Variability Modelling
	3 v1e: Design and Implementation
	3.1 Abstract Syntax
	3.2 Semantics
	3.3 Built-In Concrete Syntax
	3.4 Internal BDD Representation

	4 Applications: An extensible TVL Implementation
	4.1 Abstract-Syntax Extension
	4.2 Concrete Syntax
	4.3 Integration (Analysis)

	5 Discussion
	6 Related Work
	7 Concluding Remarks
	References

