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ABSTRACT Advances and commoditization of media generation devices enable capturing and shar-
ing of any special event by multiple attendees. We propose a novel system to collect individual video
streams (views) captured for the same event by multiple attendees, and combine them into multi-view
videos, where viewers can watch the event from various angles, taking crowdsourced media streaming to
a new immersive level. The proposed system is called Cloud-based Multi-View Crowdsourced Stream-
ing (CMVCS), and it delivers multiple views of an event to viewers at the best possible video representation
based on each viewer’s available bandwidth. The CMVCS is a complex system having many research
challenges. In this paper, we focus on resource allocation of the CMVCS system. The objective of the
study is to maximize the overall viewer satisfaction by allocating available resources to transcode views
in an optimal set of representations, subject to computational and bandwidth constraints. We choose the
video representation set to maximize QoE using Mixed Integer Programming. Moreover, we propose
a Fairness-Based Representation Selection (FBRS) heuristic algorithm to solve the resource allocation
problem efficiently. We compare our results with optimal and Top-N strategies. The simulation results
demonstrate that FBRS generates near optimal results and outperforms the state-of-the-art Top-N policy,
which is used by a large-scale system (Twitch).

INDEX TERMS Cloud, crowdsourcing, multi-view video, QoE, resource allocation.

I. INTRODUCTION
Advances in rich media generation devices and wireless
networks have led to the massive increase in crowdsourced
media generation [1]. Portable video capturing devices, such
as cellular phones are commonly used to capture and upload
various events for viewers across the globe in real-time. Live
video streaming supported by various popular media web-
sites, such as YouTube Live and Twitch offers a convenient
platform to broadcast live streams to a substantial number of
viewers around the world [2]. From 2015 onwards, mobile
crowdsourced live streaming received a massive increase
with the launch of various mobile applications, such as
Meerkat, Periscope, and YouNow [3]. Using such applica-
tions, an attendee can capture an event (e.g., game or concert),
and makes it available to remote viewers in real-time. For
example, when Meerkat was initially integrated by Twitter to
broadcast live videos to followers and friends, 28,000 users
used the service in the very first week [4]. Another example
is Periscope which is named by Apple as application of the

year 2015. Around 100 Million live broadcasts were hosted
by Periscope in threemonths from January toMarch 2016 [5].

In conventional single-view video, the viewer gets one
view of the video from just one angle without any possibility
to watch the scene from other angles. Multi-view videos
on the other hand, are composed of multiple video streams
captured simultaneously using multiple cameras from var-
ious angles (different viewpoints) of a scene [6]. Multi-
view videos offer more appealing and realistic view of the
scene leading to higher user satisfaction and enjoyment.
However, displaying realistic and live multiview scenes cap-
tured from a limited view-points faces multiple challenges,
including excessive number of precise synchronization of
many cameras, color differences among cameras, large band-
width, computation, and storage requirements, and complex
encoding [21]–[23]. Most current multi-view video setups
are very limited and based in studios. We propose to exploit
crowd-sourced videos to offer multi-view video stream. Mul-
tiple individual video streams captured by crowdsourcers
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watching an event can be aggregated to provide a multi-view
experience for remote viewers. Live crowdsourced multi-
view streaming enables viewers to watch the event from
multiple angles in real-time. This multi-view streaming will
bring greater immersion, more feeling of being physically
there, and will allow experiencing events as never before.

In the proposed system called Cloud based Multi-View
Crowdsourced Streaming (CMVCS), multiple contributors
watching an event (e.g., game, concert) capture the event
from different angles and broadcast their captured streams
to the system in cloud. The CMVCS then handles the
user interaction and delivers the required views to viewers
based on their view navigation and requested viewpoint.
Compared to traditional single view crowd-soured streaming
systems [2]–[5], CMVCS is more complex, as it is composed
of multiple streams coming from different contributors cap-
turing an event, which need to be processed, transcoded, and
delivered to viewers watching different views of the same
event. Each view stream needs to be transcoded to various
representations, so that viewers with different devices and
bandwidth capabilities can enjoy the views at higher user sat-
isfaction and Quality of Experience (QoE). CMVCS brings
multiple new challenges that need to be tackled in real-time
in an efficient manner, such as view acquisition, selection
of potential views for transmission, resource allocation, and
respective video quality representations to maximize QoE.

Various video content providers use a specific set of rep-
resentations to transcode the video stream in various qual-
ities. Viewers with higher network capacity can be served
with higher resolution and bitrate representations, and vice
versa. A study [7] on large scale crowdsourced live streaming
system (Twitch.tv) shows that Twitch receives crowdsourced
videos from more than 100 countries spanning over 150 dif-
ferent resolutions. Moreover, the number of live streams and
viewers watching the video streams fluctuate widely over
time [7], so elastic and pay per use characteristics of cloud
computing offer a viable solution for resource provisioning
with varying requirements. To achieve the highest level of
QoE, each view should be encoded to all representations.
However, in such a case, Twitch having on average around
10,000 channels online will require 50,000 cloud instances
(each transcoding a single video channel) to transcode
each video in all five representations, which is infeasible.
Therefore, the views and set of representations should be
selected based on the popularity of the view and the avail-
able resources. For instance, Twitch uses Top-N strategy to
transcode the premium users’ videos (around top 300) to all
possible representations [7], whereas the remaining streams
are transcoded to one representation (source) only.

We define the resource allocation problem addressed in
this paper as: to choose a set of video streams with each
video transcoded to a set of representations to maximize the
user satisfaction considering the computational and com-
munication resource constraints. We formulate and solve
this resource allocation problem using Mixed Integer Pro-
gramming (MIP) based multi-constrained, multiple choice

Knapsack strategy to find the optimal resource allocation of
views to representations. However, considering the size of
the problem with tens of thousands of streams and millions
of users, the optimal solution is very expensive. Therefore,
we propose a heuristic algorithm called Fairness Based Rep-
resentation Selection (FBRS) to efficiently choose the set of
views and their representations based on the average popular-
ity of views. The available resources are divided fairly among
the streams based on the popularity share. We compare the
optimal, Top-N, and FBRS resource allocation algorithms
considering various computational and communication limits
to assess the performance of the FBRS solution in various
scenarios. We use real-world video traces collected from
Twitch.tv in 2015. The results are analyzed based on the
overall QoE score. Previous video QoE metrics for streaming
videos [7], [9] did not consider the viewer’s network capa-
bility. Therefore, we developed a QoE metric specifically
focusing on the video representation received by viewer and
bandwidth capacity of the viewer. To achieve the highest
QoE value, i.e., 1, the viewer should be provided with the
representation that best matches her bandwidth capability.
If the viewer receives a representation that is less than her
bandwidth, then the QoE is decreased. Our simulation illus-
trated that FBRS produces near optimal results in real-time
and outperforms Top-N strategy in various scenarios.

The main contributions in this paper are summarized as:
• We present the design and architecture of a Cloud based
Multi-ViewCrowdsourced Streaming (CMVCS) system
that allows viewers to experience the captured events
from various angles.

• We propose a QoE metric to determine the overall user
satisfaction based on the received view representation
and the viewers’ bandwidth capability.

• We formulate aMixed Integer Programming (MIP) opti-
mization problem for resource allocation to choose the
optimal set of views and representations to maximize
QoE in constrained settings.

• We propose a fairness based heuristic algorithm to find
near optimal resource allocation efficiently.

• We use multiple real-world traces to simulate vari-
ous scenarios and show the efficiency of the proposed
solution.

The rest of the paper is organized as follows. CMVCS
design and its major modules are discussed in Section II.
Our proposed QoE metric and resource allocation problem
formulation is detailed in Section III. Section IV presents the
proposed solutions usingMIP and FBRS heuristic. The trace-
based evaluation is presented in Section V, and Section VI
concludes the paper.

II. CMVCS DESIGN
Crowdsourced live streaming is gaining popularity and mil-
lions of viewers’ watch the live video streams generated by
novice users. Various crowdsourced platforms are already
being used heavily for live streaming, such as Twitch,
YouTube Live, Meerkat, Periscope, and YouNow. However,
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FIGURE 1. Crowdsourced multi-view live streaming syste.

none of these popular platforms offers crowdsourced multi-
view video streaming. Considering the proliferation of media
capturing devices, network advancements, and elastic cloud
capabilities, a crowdsourced multi-view live streaming plat-
form is feasible and practical. Existing crowdsourced stream-
ing systems and applications may also be enhanced by adding
the multi-view streaming features. In this section, we provide
generic architecture of CMVCS system.

The CMVCS system is comprised of three major mod-
ules (See Fig. 1): (a) views capturing module (crowd-
sourcers), (b) core module, and (c) scheduler. Multiple
crowdsourcers (also referred as users) capturing a com-
mon event constitute view capturing module. Existing live
streaming platforms, likeMeerkat and Periscope already have
their applications available for popular platforms, such as
Apple and Android. However, such applications are designed
for single user, for streaming personal videos, without any
interaction with other users. Therefore, multi-view CMVCS
needs an application to support multiple viewers and required
metadata to support multiple views. The application should

facilitate users to capture the video and upload the video
along with related metadata, such as location (Global Posi-
tioning System (GPS) coordinates), time, capturing angle,
name of the location and captured event along with any
other useful information set by the application to help orga-
nize the captured video in a multi-view event. Today smart
phones are equipped with various sensors, such as gyro-
scope, accelerometer, compass, and GPS. The application
uses information from these sensors to accurately estimate
the position and capturing angle of the device, along with any
movements or change in angle or position. The video stream
and captured data are uploaded to a server in the core module.

The core module is responsible for: (a) interacting with
crowdsourcers, (b) receiving captured video streams and
metadata from crowdsourcers, (c) organizing multiple views
into events, (d) viewer interaction and sending transcoded
views to viewers. Core module acts as a user facing module,
which interacts with crowdsourcers and receives user cap-
tured videos and metadata. When a user starts capturing an
event, the users’ GPS location is sent to the core module.
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The core module looks for the available events in the close
vicinity of new user based on users’ location and sends the
list of available events to user to choose an event. If the user is
capturing an available event, the user makes the selection and
starts capturing the event. If the user is capturing a new event,
the user provides the event title and a summary of the event
and then submits it to the core module. Upon receiving a new
video stream, the core module analyzes the accompanying
metadata of the stream, and extracts the crowdsourcer’s GPS
location and capturing angle. The core module matches the
received GPS location with the selected event location to
ensure the correct association of the received video stream
to an event. In case of the lack of appropriate labeling of the
event, the core module can also organize multiple views of
an event. For instance, received location of multiple videos
can be matched to check if the video lies within a limited
radius, (e.g., 100m) to assume the views belong to a single
event. A simple example can be a football match where
various attendees may be capturing the live game. All users
should lie within a limited radius, therefore, the core mod-
ule can identify the event and confirms that all users are
capturing the same event. Besides organizing multiple views
in a single event, the core module should also choose the
best quality video captured at the most appropriate angles
to ensure the highest quality and coverage by analyzing the
metadata periodically. The videos capturing same views can
be identified by the capturing angles. Moreover, the number
of views and the angle distance between two views can be
defined adaptively based on the number of available streams
for an event. After choosing all streams captured for a specific
event, the core module organizes the video streams based on
the captured angle of the video, where each distinct capturing
angle will serve a specific view for viewers (called views
onwards). The selected views are sent to the scheduler mod-
ule. The next step is to transcode the captured views in various
representations for Adaptive Bitrate Streaming (ABR), such
as DASH streaming server to serve the viewers at the best
matching representation and bitrate. For instance, Twitch
TV uses five representations [7]. However, considering the
limitations on transcoding servers and system bandwidth,
not all of the representations are possible. Moreover, not all
views are being watched by viewers. Potential views need
to be chosen carefully to find the representation settings to
maximize the viewer’s QoE and minimize the number of
required transcoding servers and bandwidth.

The core module sends the updated popularity of
views (number of viewers watching a specific view) to
the scheduler, which periodically selects the views to be
transcoded, and the representation set for the considered
views based on the popularity of different views. Popu-
lar views would be transcoded to multiple representations,
so that most viewers can get the matching representation
according to their bandwidth limits. Views with low popular-
ity are transcoded in the least quality representation to serve
all users and to adhere to the resource constraints and max-
imize overall QoE by allocating more resources to popular

views. Any view with no viewer will not be transcoded to
save resources.

Multi-view videos are generally transcoded using Multi
View Coding (MVC) [19] or simulcast [20]. In MVC, all
captured views are encoded as a single video, which offers
view switching. In simulcast, each view is encoded separately
and independently for transmission to viewers. MVC based
encoding is not feasible in CMVSC because of heterogeneity
in devices and captured view quality, lack of synchronization
and calibration, and lack of consistency in capturing time and
angle of the views.Moreover, MVC requires special encoders
and decoders, which encodes all of the views together, there-
fore, the overall size of the video is larger than a single simul-
casted view. Furthermore, MVC encoded video is vulnerable
to quality degradation in case of frame loss [21]. On the
contrary, simulcast uses standard encoders to encode single
view separately, and is smaller in size when considering a
single view transmission.Moreover, simulcast is more quality
resilient as compared to MVC. Therefore, simulcast based
transcoding is more feasible for CMVSC system.

We assume that at a time instance t the viewer may
switch to any of the two adjacent views of currently watched
view (reference view α), i.e., either to right (α + 1) or left
(α − 1). Therefore, all views adjacent to the views currently
being watched by viewers will be transcoded with at least
minimum bitrate representation even if no viewer is viewing
them to provide swift view delivery. View switching request
is received by view delivery and viewers’ interaction compo-
nent of core module. Adjacent views of all watched views
are also transcoded, therefore, view delivery module starts
sending the requested view and updates the statistics of view
popularity to the core module, which in turn updates the
information to scheduler for optimizing view transcoding.
As transcoding is a computational intensive problem [7],
therefore, we allocate a single cloud instance for transcoding
a view in one of the representations (cloud instance and
transcoding server are used interchangeably).

The CMVCS is a complex system, with each module hav-
ing its respective challenges. For instance, in view capturing
module, crowdsourcers depict massive heterogeneity in terms
of devices, capturing quality, and available bandwidth to
upload the video, etc. Moreover, the crowdsourcers may stop
capturing the view at any time, or change the capturing angle.
Multiple contributors may be capturing the event from similar
angle, uploading duplicate views to the system. The core
module has to identify and select best views considering var-
ious angles to deliver the highest possible coverage and video
quality. Moreover, duplicate streams need to be identified and
the best stream among them needs to be sent to scheduler.
Furthermore, core module has to constantly check the change
in capturing angle of the crowdsourcers, identify backup
streams for transmission in case the chosen crowdsourcers
changes the capturing angle or stops capturing or uploading
the video. The core module has to consider all these issues
to choose the best views for delivery. As the received views
from capturing module, popularity of views, and viewers’
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available bandwidth are expected to fluctuate, therefore, the
scheduler needs to periodically update the chosen views and
their respective representation set. Even if we assume that
the set of captured views are constant, popularity of views
is expected to change considerably by viewers switching
various views within an event, as discussed in [24].

In this section, we presented a generic CMVCS sys-
tem architecture highlighting its various modules and tasks.
In this study we focus on the scheduler module and resource
allocation problem. To achieve maximum user satisfaction,
we formulate the system as a multi-constrained optimization
problem.We solve the resource allocation to compute the best
representation set for each view by using multi-constrained
multiple choice knapsack algorithm. The problem is multi-
constrained as we consider both computational and band-
width limits while allocating resources for view transcoding.
The problem is multiple choice knapsack problem, because,
system needs to transcode each considered view to at least
one representation. However, popular views are transcoded to
multiple representations. The detailed problem formulation is
discussed in the following section.

III. PROBLEM FORMULATION
In a set of E = {e1, e2, e3, . . . , en events, multiple crowd-
sourcers capture and upload different views of the same
event. Set of views captured by various crowdsourcers for
an event ei are denoted by set V = {v1, v2, v3, . . . , vm. Each
stream vi is uploaded to a core module server fi within cloud.
A set of metadata variables M = {m1,m2, . . . ,mk repre-
senting information related to the uploaded view is also sent
periodically to the server. Metadata information may contain
physical location, event id, sourcer id, view id, capturing view
angle, video quality, data rate, etc. The core module sends this
metadata to scheduler to select the distinct potential views
and assign cloud instances to process/transcode the selected
views based on the popularity of view.

Let U =
{
u1, u2, u3, . . . , uj

}
represent the set of viewers

watching the events. R = {R1,R2, . . . ,Rn represents the
transcoding representation set in Kbps, e.g., R includes 360,
480, 720, 1080, and 4K, which are possible video represen-
tations (as in case of Twitch) [7]. In such as case, five repre-
sentations of view vi will deliver maximum satisfaction level.
However, based on the viewer’s distribution and resource
availability/cost constraints, the selected set of representa-
tions may be less than five. Let ri(ri ⊆ R) be the set of
representations for view vj in an eventek . The adjacent views,
vα+1 and vα−1(vα is the view being watched by a viewer)
are decided based on the viewers switching behavior and vα .
A change in vα may also mandate a change in ri, consider-
ing various viewers watching vα . Therefore, this interactive
multi-view live video streaming system is highly dynamic
and adaptive as compared to legacy live streaming systems,
and requires periodic updates in resource allocation.

Various QoE metrics have been proposed to quantify the
viewers’ QoE [7], [9], [18]. However, most of the proposed
QoE metrics do not consider the available bandwidth of

the viewer [18]. In case of live streaming, viewer’s avail-
able bandwidth is vital, as viewer can only receive a video
representation respective to available bandwidth. He et al.
presented a viewer satisfaction metric based on number of
representations. The authors considered maximum 5 repre-
sentations for a live streaming system and derived average
satisfaction value for viewers. The authors considered that
if the system offers all 5 representations (that is maximum
number of representations), then every viewer will receive a
representation matching one’s bandwidth. However, He et al.
did not consider the bandwidth or network characteristics of
the viewers watching a specific view, and calculated overall
satisfaction score for all of the viewers collectively based on
the number of representations. In a scenario, where most of
the viewers either have very high bandwidth availability, e.g.,
Korea, where approximately more than 78% of the viewer
have more than 10Mbps Internet connectivity and average
bandwidth of the users is 26Mbps [12]. In such areas, only a
single or two representations might be able to satisfy >80%
of the viewers gaining higher overall satisfaction (without
providing all 5 representations). Similarly, in areas like India,
where 70% of the users have 4Mbps or less Internet connec-
tivity, couple of low bitrate representations will be able to
satisfy >70% of the viewers. Therefore, calculating average
viewers’ satisfaction independent of their bandwidth may
lead to wrong QoE estimations. We extended the QoE met-
ric presented in [7] for individual viewer considering the
viewer’s bandwidth and the video representation she receives.
Logarithmic shaped function of our proposed metric closely
matches the ones presented in [7] and [9].

Let S(ri) be the satisfaction level of the view representa-
tion based on quality being received and maximum quality
receivable by a viewer. We calculate the user satisfaction
level based on the extent of viewer’s receivable quality and
received quality of video. For instance, if a viewer is receiving
a view vj in 720p representation from server, whereas the
viewer has enough bandwidth to receive 1080p or 4K stream,
then the satisfaction level is less when fewer or low quality
representations are produced. This would be the case when
the system transcodes the view vj in lower representation
formats because of low popularity of the view and does not
have higher quality representations. Let l = |R| represent the
total number of possible video representation set, (l≤ 5 in this
case), a = 1

l , represent extent of loss in video quality, lr is
the quality level (bitrate representation) received by viewer,
(i.e., 360, 480, . . . , 4K), and lu is viewers’ maximum receiv-
able representation level, based on viewers available band-
width. Then, the loss in video quality is:

du = |lu − lr | × a. (1)

The receivable video quality for the user can be then formu-
lated as:

qu = qmax − du, (2)

where qmax is the maximum receivable quality of video set
to 1. If there is no loss, i.e., when the user receives the same
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TABLE 1. QoE based on user satisfaction values.

TABLE 2. Notations used in formulation.

representation quality as her available bandwidth capabil-
ity (when du = 0), then qu will be 1.

The satisfaction level of user can then be formulated based
on satisfaction and received utility in [7] and [11] as:

S = Umax − |log(qu)| , (3)

where Umax represents the highest satisfaction level, set at 1.
The satisfaction function for the users with various network
bandwidth capabilities, and received video quality represen-
tations can be seen in Table 1. The notations used in the prob-
lem formulation are presented in Table 2. Based on the user
satisfaction level presented in Eq. (3), the view representation
set allocation problem can be formulated as:

Maximize
∑
u∈U

∑
e∈E

∑
v∈V

∑
r∈R

Suevr×I[uevr], (4)

Subject to :

br≤bu (4a)

bu≥b0;b0= 360p (4b)∑
u∈U

∑
e∈E

∑
v∈V

∑
r∈R

br×I[uevr]≤ B (4c)∑
e∈E

∑
v∈V

∑
r∈R

br×X[evr]≤ C (4d)∑
v∈V

∑
r∈R

X[evr]≥ 1 (4e)

I[uevr]∈ [0, 1] (4f)

X[evr]∈ [0, 1] (4g)

Indicator function I[uevr] serves as decision variable

I[uevr] =

{
1, if user u receives view v of event e at r
0, otherwise

X[evr] =

{
1, if view v of event e is transcoded with r
0, otherwise

The objective function is to maximize the overall QoE.
The QoE is defined as a function of viewer’s satisfaction.
br and bu represents the received representation’s bitrate and
viewer’s available bandwidth, respectively. Where, B and C
represent the total bandwidth capacity and total number of
cloud instances. The constraint (4a) puts a limit that the
received representation bitrate must be less than or equal to
the viewer’s bandwidth capacity. Eq. (4b) puts a constraint for
considering viewers capable of receiving a minimum consid-
ered representation bitrate, i.e., 360p. Constraint (4c) forces
a limit on the system bandwidth, i.e., the overall bandwidth
utilized for serving all viewers at various representationsmust
be less than or equal to the bandwidth capacity imposed by
the server. Each view transcoded in a specific representation
requires one cloud instance, constraint (4d) places a limit on
total number of transcoded representation in system. In this
way, the selected views will be transcoded in multiple bitrate
representations and some views in just one representation
based on the available cloud instances. Constraint (4e) con-
verts the optimization problem to a multiple choice problem,
where optimizer has to select at least one representations for
each view.

IV. PROPOSED SOLUTION
A. MULTI-CONSTRAINED MULTIPLE CHOICE KNAPSACK
We implemented the problem in ILOG CPLEX general
solver [10] to find the optimal resource allocation based on
the computational instance and bandwidth constraints. The
aggregate user satisfaction obtained by using a specific set
of representations are considered as profit or gain, and con-
sumed number of cloud instances and aggregate bandwidth
for all users serve as weights. For instance, if a view is
transcoded to all five representations, then the weight will
be 5, and viewers’ QoEwill bemaximum, as all of the viewers
will get the desired representation. However, if a view is
transcoded in just one representation, then the weight will
be 1, and aggregate user QoE will be ≤ 1, depending on the
bandwidth capabilities of the viewers watching that view.

The profit values serve as the major selection criteria.
Considering n number of representation in set R, a single
view can be transcoded into 2n−1 possible combinations
considering requirement to fulfill all of the viewer’s band-
width constraints. For instance, if a chunk of viewers can
only receive 360p video, then the selected representations set
must have 360p representation. If there is only one compu-
tational instance available, then the only possible representa-
tion is 360p, as only this representation fulfills constraint (4a)
for all of the viewers. Though, the overall QoE for this rep-
resentation will be less as viewers capable to receive higher
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bitrate representations are forced to watch 360p represen-
tation. If the view can be transcoded into two representa-
tions, then the possible set to choose a representation set is
{{360, 480}, {360, 720}, {360, 1080}, or {360, 4K}}. 360p
represents the least bitrate representation required to serve
the users having capability to receive 360p only. Otherwise,
the least representations may be composed of higher bitrates
based on viewers. In this way, for n = 5, there are maximum
16 possible representation combinations.

B. FAIRNESS BASED REPRESENTATION SELECTION (FBRS)
Considering the interactive nature, size, and real-time
requirements of the problem to identify the best set of repre-
sentations to maximize QoE, knapsack based optimal imple-
mentation is infeasible. Therefore, we propose a heuristic
algorithm FBRS to calculate near optimal results in real-
time.We use the optimal results obtained fromCPLEX solver
as a benchmark to gauge the FBRS efficiency. FBRS is a
fairness based policy, where the views are given priority
based on their popularity. In this way, popular views get more
resources in terms of computational instances and bandwidth
to be transcoded to multiple representations to increase the
overall QoE.

Algorithm 1 presents FBRS. The input to FBRS algorithm
is set of views along with viewers’ information. The algo-
rithm decides which views are transcoded in what set of
representations. l represents the total number of represen-
tations, n represents total number of views, and k is total
number of viewers watching a view vi. C represents the total
number of computation instances, whereas B represents total
available bandwidth capacity. The algorithm first ranks all
views based on view popularity in decreasing order in line 1.
Ranking of views will give higher priority for representation
assignment to popular views. As all of the considered views
should be transcoded to at least one representation, therefore,
algorithm assigns one computational instance and necessary
bandwidth to all of the considered views to transcode the
view in lowest requested bitrate representation rmin. The com-
putational instances and bandwidth used to transcode rmin
are subtracted from available resources. After allocating one
representation to all of the views, the algorithm estimates
the popularity share for each view. Popularity share is the
ratio of viewers watching view vi to total number of viewers.
Based on the calculated ratio, resources are assigned to each
view in line 6. In this way, popular views are eligible for
more resources than unpopular ones. In case of bandwidth
allocation, one may restrict sharing of resources to very small
chunks, e.g., less than 10Mbps, as these small chunksmay not
be useful for any representation. However, considering the
long tail data set, where thousands of views have very little
popularity and viewers, such small chunks may be assigned
to a popular view in aggregated form. Therefore, such band-
width is added to extra bandwidth resource pool Bx . The
threshold may be based on bandwidth or number of viewers
etc. If the allocated computational resources are in excess,
then the extra computational instances are added to extra

pools of computational resources Cx in line 8. These extra
resources are given to those views which have less resource
than required for all representation transcoding. Based on
available resources, the representation sets are selected pri-
oritizing the representations that are demanded by most of
the viewers in line 13-15. Bandwidth constraints are also
checked in line 13, and if allocated bandwidth is less than
required, then the bandwidth may be borrowed from Bx . The
excess bandwidth after transcoding is also added to Bx . FBRS
algorithm complexity is O(n × Ci), where n is total number
of views and Ci represents total number of chosen represen-
tations based on the popularity share of the view Ci ≤ 4.
As the least bitrate representation is already selected for every
view, therefore, at most 4 remaining representations may be
considered. Based on the resource availability, on average Ci,
is a small value because the view popularity follows a long
tail distribution. With a large number of views having very
low viewers count. The chosen set of representations are
used in Algorithm 2 to calculate the aggregate QoE. The
QoE is calculated for each representation in SelectedReps.
z =

∣∣kri ∣∣ represents the total number of viewers capable of
receiving representation ri. For instance, if r = {360, 1080},
then viewers with bitrate capacity of 360, 480, and 720 will
receive 360p representation meeting the constraint (4a), and
viewers with 1080 and 4K capable bitrates will receive 1080p
representation. Similarly, the aggregate QoE for all viewers
will be calculated based on Eq. (3).

V. TRACE BASED EVALUATION
A. DATA SETS
We used real-world trace workloads to compare the perfor-
mance of FBRS in various scenarios and viewer distributions.
We used trace data captured by the Twitch API captured on
Mar. 1, 2015 at 7:30am. The same set of data has been used
in [7] for simulation settings. Although, Twitch data does
not provide multi-view events. Nonetheless, we used Twitch
data traces for two reasons. First, due to unavailability of any
multi-view live event streaming data, Twitch data provides at
least a realistic count for the number of streamed videos and
active viewers. Second, Twitch data is studied and analyzed
in detail depicting that such data holds similarity to some of
the events where most of viewers watch a small set of videos,
such as a football game or a set of significant events held at
different places around globe. As the Twitch data is single
view, we have converted the single view data to multi-view
data by gathering the similarity (based on the played game,
e.g., Dota 2, League of Legends, and Dying Light etc.) in
videos wherever possible. Each event is assigned 12 views,
among which user can navigate.

Besides Twitch workload traces, we also simulated three
data sets used by Mukerjee et al. [8]. Trace is collected
from a service provider for one-hour video records. First
dataset depicts an average day video usage summary for
one-hour trace from a service provider. The trace consists
of 4,144 videos, requested by 18,837 users globally from
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TABLE 3. Viewer bandwidth probability distribution and bitrates.

2,587 cities. Top 7% of the videos in the data set were
watched by 50% of the viewers. Second data set is a long
tailed workload comprised of 10,000 videos requested by
82,000 clients. The workload depicts that 99% of the long
tailed workload videos are requested by 60% of viewers.
Whereas 1% of videos are requested by 40% of the viewers.
Third data set is a heavy head distribution workload exem-
plifying some significant events, such as sports events that
are watched by massive number of viewers. The heavy head
workload holds same count of 10,000 videos, but watched by
a very huge viewers base of 4 Million viewers worldwide.
Considering a very small chuck of views, i.e., 1% is watched
by 99% of the viewers, the workload illustrates a heavy head
distribution [8]. A similar 12 views per event ratio is used in
these data sets as well.

We simulated these workload traces with their respective
video and viewers’ settings. As the user’s bandwidth capacity
is a pivotal part in our system, we assign each viewer a
network capacity based on the latest 2016’s first quarter state
of the Internet report [12]. The reports reveals that 73% of the
users across the globe have 4Mbps or higher Internet connec-
tivity. Similarly, 38% of users have 4Mbps - 9Mbps connec-
tivity, 35% holds a connection of 10Mbps or higher with 21%
having 15Mbps or higher, and 8.5% having 25Mbps or higher
Internet connectivity. Based on the figures available in report,
we assign the probability for bandwidth capability of a viewer
to watch a specific representation as shown in Table 3.

Bitrates for the representations are taken from YouTube
Live encoder settings [13]. As the Internet connection are
generally available in packages of 1Mbps, 2Mbps, 4Mbps,
8Mbps, 10Mbps etc. Therefore, for 27% of users having con-
nection below 4Mbps, we divide the viewers in two groups
having 0.1 and 0.17 probability for 1Mbps and 2Mbps Inter-
net connectivity, respectively. Similarly, all of the remaining
probabilities are assigned based on the state of the Internet
report and YouTube Live encoder settings.

B. RESULTS
We performed detailed simulations to compute the represen-
tation set selection and overall QoE based on FBRS allocation
scheme. The obtained results are compared with the optimal
representation selection (QoE generated by CPLEX opti-
mizer) and Top-N policy. Top-N is the strategy used by Twitch
to transcode top ‘n’ videos (from premium) users to transcode
video in all available representations [7]. As Twitch premium
members have a requirement to have 500 regular viewers.

Algorithm 1 Fairness Based Representation Selection
Input: Views of all events and viewer information
Output: Representation allocation for each view
l = |R|
n = |V |
k =

∣∣uvi ∣∣
1. Rank all views in decreasing order based on popularity
2. Allocate one computational instance to transcode rmin

for all views
3. C

′

= C − |C0|

B
′

= B− |B0|
4. for i from 1 to n
5. Calculate popularity share pi for view vi

pi =
∣∣uvi ∣∣ /∑

j∈V

∣∣uvj ∣∣
6. Calculate resources share for view vi

Ci = pi × C
′

Bi = pi × B
′

7. If (Bi < I )
Bx = Bx + Bi
Bi = 0

End If
8. If (Ci ≥ l)

Add extra instances to pool Cx
z = Ci − l
Cx = Cx + z

9. Else if ( Ci < l)
Allocate resources from extra resources
pool

10. End if
11. Initialize empty SelectedReps queue
12. For j=1 to Ci
13. Get representation set rj matching

highest number of viewers’ network
capacity and Bi

14. Add rj to SelectedReps queue
15. End for
17. End for

Most of the popular videos belong to premium members.
We present the result for two cases: (a) limited computational
instances, where we limit the number of total representation
transcoding based on available computational units, without
limiting bandwidth, and (b) limited computational instances
and limited bandwidth, which is a more realistic scenario as
bandwidth is a costly and limited resource.

We start our results analysis with heavy head workload
scenario, where viewers around the globe are watching some
sports event, such as a football or any other popular event
like music concert etc. Heavy head trace contains a video
count of 10,000 stream, but with a very large viewer base
of 4 Million viewers globally. Only 1% of the views are
watched by 99% viewers. We only show the results for heavy
head scenario for bandwidth limits, because for unlimited
bandwidth, each of the strategy gain QoE value of 0.99 for
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Algorithm 2 CalculateQoE
Input: Selected Representation set for view vi
Output: Aggregate QoE score for vi
s = |SelectedReps|
z =

∣∣kri ∣∣
1. AggQoE i =0
2. For x = 1 to s
3. For y = 1 to z
4. d = |y− x | ×a
5. q = qmax − d
6. t = Umax − |log(q)|
7. Add t to AggQoE i
8. End For
9. End For

FIGURE 2. QoE based on 10000 computational instances and varying
bandwidth for heavy head dataQoE based on 10000 computational
instances and varying bandwidth for heavy head data.

even 10,500 computational instances, as 99% of the view-
ers are watching top 1% views. However, for bandwidth
limits of 3,000, 4,000, 5,000, and 10,000Gbps, respectively,
the FBRS demonstrate prominent lead over Top-N strat-
egy. In such a heavy head scenario with a limited band-
width (3Tbps – 10Tbps), FBRS gains almost same QoE
values as MIP based optimal solution illustrating the effec-
tiveness of FBRS. Both optimal and FBRS gains QoE 0.92
with 10100 computational instances and 10Tbps bandwidth,
whereas Top-N is able to achieve QoE value 0.73.

Fig. 3 presents the results for an average day video
trace scenario with 18,800 viewers and 4,144 videos from
2,587 cities around the globe. We chose this trace to show a
normal day video traffic behavior, where viewers are spread
around globe and watching various events. Fig. 3 illustrates
the scenario with computational instance limit only, without
any restriction of bandwidth. At least 4,144 computational
instances are required to transcode the views in a single
representation. As the number of computational instances
are increased, chosen views are transcoded to multiple rep-
resentations, increasing the QoE. It can be seen that FBRS

FIGURE 3. QoE based on varying computational instances for Regular
data.

FIGURE 4. QoE based on varying computational instances and
bandwidths for regular data.

outperforms Top-N strategy for both small and large number
of computational instances, and attains QoE values close to
optimal solution. We also perform simulations with various
configurations of computational instances and bandwidth
limits. Fig. 4 presents a consolidated result for QoE values
for different configurations by imposing varying computa-
tional instances and bandwidth limits. We vary computation
instances from 4,500—10,000 and bandwidth capacity from
20Gbps—100Gbps. The average bitrate per second estimated
in the original trace was 2,725 Kbps. In our simulations,
for a bandwidth limit of 50Gbps with 8,000 computational
instances, FBRS gains a QoE value of around 0.90 for an
average bitrate of 2,783 Kbps. Whereas for the same con-
figuration, optimal and Top-N strategies gain QoE values
of 0.93 and 0.81, respectively.

Fig. 5 presents the results for a long or heavy tail video
trace generated by Mukerjee et al. with 10,000 videos and
82,000 viewers. The popular 1% videos account for 40% of
overall requests, whereas rest of the 99% of videos account
for 60% of views. Fig. 6 illustrates the results with vary-
ing bandwidth and computational instances limits. As can
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FIGURE 5. QoE based on computational instances for Long Tail data.

FIGURE 6. QoE based on varying computational instances and bandwidth
limits for Long Tail data.

be observed from Fig. 5 and Fig. 6 that FBRS adheres
to gain better QoE and user satisfaction. Fig. 7 shows the
results of the overall viewers QoE for Twitch peak time
trace data, i.e., Mar. 1, 2015 at 7:30am. There are total
2,124 views in all events watched by 517,100 viewers. For
sake of simplicity, we consider only channels having at
least 10 viewers. Fig. 7 illustrates the overall QoE computed
using three schemes. It can be observed that FBRS produces
near optimal results and outperforms Top-N policy. The rea-
son for a marginal difference between FBRS and Top-N in
Twitch workload scenario is the fact that in Twitch data,
most of the viewers are watching a small set of videos. For
instance, in the considered data set of around 0.5 million
users, 0.35million user watch 3.5% top streams (i.e., 74 chan-
nels), rest of 0.15 million viewers watch remaining 96.5%
(2050 videos). Therefore, optimizing only 3.5% of streams
makes huge difference in the overall QoE.

Fig. 8 presents the results for varying computations
instances and bandwidth limits from 500Gbps to 900Gbps to
serve 517,100 viewers. It can be seen that when bandwidth

FIGURE 7. QoE based on computational instances for Twitch data.

FIGURE 8. QoE based on varying computational instances and bandwidth
limits for Twitch data.

limits are imposed, FBRS clearly outperforms Top-N. More-
over, QoE gains for FBRS are very close to optimal results.
It can be observed from the results in different scenarios that
FBRS efficiently chooses near optimal representation set to
serve the viewers and outperforms Top-N resource allocation
algorithm used by large scale video content providers.

VI. RELATED WORK
Live video streaming is one of the major Internet bandwidth
consumer, anticipated to consume more than 50Tbps [8].
Many live video content providers, such as YouTube Live,
Twitch, Periscope, and YouNow serves millions of viewers
with live video content. YouTube is serving around more
than 1 billion users with around 300 hours’ length videos
uploaded every minutes [7]. User base at Twitch is around
50 million users watching 150 billion minutes of live stream
every month [8]. Cloud infrastructure is now used as the
prevailing platform for live streaming systems. The increas-
ing viewer base, watched content, and gigantic bandwidth
usage clearly calls for an efficient and intelligent resource
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allocation and representations selection schemes. Previous
works have addressed the cloud resource optimization for live
streaming to minimize the overall cost [1], [7], [14], [15].
Chen et al. [1] proposed a strategy to rent cloud resources
by optimizing cloud sites in various areas for video transcod-
ing. Wang et al. [14] optimized cloud cost by choosing the
cloud location for transcoding based on the viewers’ locality.
Huang et al. [15] scheduled the video transcoding tasks inside
a cluster based on the video properties. He et al. [7] addressed
the geo-distributed crowdsourced video contents and video
delivery by considering various cloud site across the globe.
The authors proposed a QoE metric considering the total
number of transcoded representations. However, the authors
coarsely calculated the aggregate QoE based on the number
of representation produced without considering the viewer’s
bandwidth capability and viewers’ distribution. Similarly,
Toni et al. addressed the problem of choosing optimal set
of video representations to maximize the user satisfaction
from video content provider’s perspective based on Video
Quality Metric score [9], [25]. Toni et al. focused on the
optimization of the set of representation that should be gen-
erated by an ingest server. The authors proposed a theoretical
framework to derive optimal set of representations. However,
the framework is designed specifically for non-live video
on demand (VoD) systems to maximize the user satisfaction
under network and system constraints. The authors formu-
lated a Mixed Integer Programming based optimal solution.
The authors estimated the user satisfaction as Video Quality
Metric (VQM). The authors compared their optimal represen-
tation set with the existing recommendation of video repre-
sentation of Apple, Microsoft, and Netflix, and highlighted
shortcomings in the existing video representations recom-
mendation set [25]. Crowdsourced live streaming or choice
of multiple representation based on overall viewers are not
addressed by them as well. In general, resource cost remained
the main optimization parameter in most of the works.
Kodera et al. proposed a multi-view video streaming using
multiple mobile cameras [35]. The study aimed to reduce
video traffic between mobiles and access point receiving all
streams by using packet over hearing and transmission order
control. Each camera receives other camera’s video frames
and encodes its frame with the overheard frames. The order
of camera transmission is controlled by an access point. The
evaluation results demonstrated significant decrease in traffic
volume with little quality degradation.

Multi-view video is an emerging area where multiple cali-
brated cameras are used to capture a scene to provide multi-
view video. Various authors presented server and client based
multi-view streaming systems. Server based approaches are
adopted by [15] and [16], where the virtual view encoding
and synthesis is performed by server, which mandate more
storage and bandwidth usage. Client side approaches assign
these tasks to client instead of server. Hamza and Hefeeda [6]
presented multi-view plus depth based video streaming
system based on DASH adaptive streaming. Chakareski
designed a constrained optimization framework to maximize

the average video quality considering the view popularity by
sharing the bandwidth between multiple cameras capturing a
multiview scene and a central station (access point) receiving
all view streams [26]. The bandwidth allocation follows a
receiver driven design, where the central station allocates
bandwidth for each camera. The authors considered two
scenarios where either a set of chosen cameras transmit the
video signal in entirety or partially. In both cases the central
station aims to maximize the overall quality. The authors
designed a view popularity driven bandwidth allocation
scheduling considering the spatiotemporal dependency of the
captured views and a data recovery mechanism. The authors
emphasized on the video plus depth encoding and error con-
cealment strategy. The authors examined the rate distortion
efficiency of the transmission policies. Chakareski et al.
focused on edge-adaptive wavelet multi-view video coding
to target 3D videos with texture plus depth maps [30]. Each
user based on one’s demand may be serviced by encoding
the multi-video based on the users’ current status and next
view prediction. Whereas, in our case of live video, multiple
viewers having different bandwidth capacities needs to be
served simultaneously, which require to select a finite num-
ber of most feasible bitrate representation to maximize the
satisfiability.

Liu et al. presented multiple-description coding scheme
for transmission of 3D free-view video, with error recovery
capabilities [27]. In case of loss-prone wireless links used
for video delivery, the authors used a joint temporal and
inter-view description recovery mechanism. The description
is comprised of four separately encoded sub-streams of data.
In [28], the authors presented a network compression based
framework for interactive multiview video. The video con-
tent is delivered via two disjoint networks paths, which are
adapted by a proxy server placed at the junction of both paths
to minimize the video distortion at client. An optimization
framework to schedule the transmission of multiview video
to maximize the reconstruction quality of the video, consid-
ering the available bandwidth is presented in [29]. A space-
time error concealment strategy was developed to reconstruct
the missing content for multiple views. The performance
of the system was studied using simulation experiments and
the results demonstrated considerable gains over referenced
methods in terms of rate-distortion efficiency. Cheung et al.
addressed the bit allocation problem among texture and depth
maps in a depth-image based rendering (DIBR) for multi-
view images [31]. The objective of the study was to minimize
the visual distortion of reconstructed views by distributing
texture and depth map bits of the selected views. The authors
derived a DIBR based cubic distortion model to estimate
visual quality of synthesized views. The experimental results
demonstrated that the proposed solution outperforms the
referenced schemes with at least 80% reduced complexity.
Dorea et al. presented an optimized bit-rate allocation scheme
for each camera used to capture a multiview video for the
free-viewpoint television network [32]. The authors proposed
an attention-weighted bit-allocation scheme to allocate more
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bits to the cameras have higher popularity and viewer base.
Simulation results demonstrated the correctness and efficacy
of the attention-weighted rate-allocation scheme over the
uniform rate-allocation schemes.

Hamza et al. discussed multicasting of 3D free-view video
over the wireless networks in [33]. The authors considered
a 4G network to multicast two scalable view coded view-
plus-depth 3D videos with an objective to maximize the
quality of rendered virtual views on viewers’ device. More-
over, the authors aim to minimize the energy consumption on
mobile receivers by efficiently scheduling the transmission
of chosen sub streams. Multicast based multi-view videos
delivery is also discussed in [34]. The videos considered in
this work are also 3D videos recorded in professional and
controlled environment with video along with depth format.
The author considered a multicast scenario for the dissem-
ination of source stream and the reconstruct the stream at
the client using optimal quality. The authors also handled the
packet loss by using optimal channel coding protection levels
integrated into source encoding.

Most of these multi-view related works mentioned above
are based on calibrated camera settings and professional
equipment. The multi-views are generated using profes-
sionally synchronized and calibrated array of cameras.
In contrast, we aim on non-professional, unsynchronized,
non-calibrated, and heterogeneous crowdsourced captured
views. Moreover, SVC or multi-view encoding requires syn-
chronization and calibration of captured views which is not
possible or very difficult in crowd-sourced multi-views cur-
rently. Therefore, MVC based encoding is not feasible in our
scenario currently, as discussed in Section II. Furthermore,
most of the papers consider VoD, and not the live video.
In contrast, we present the idea of crowdsourced multi-view
live streaming. Despite being a futuristic idea, the multi-
view live streaming is very feasible and practical considering
today’s smart devices and pervasive connectivity.

VII. CONCLUSIONS AND FUTURE WORK
We proposed a multi-view crowdsourced live streaming sys-
tem to enable viewers to watch an event from multiple
angles. The proposed system significantly differs from legacy
multi-view video systems in the fact that multiple views are
generated from non-professional crowdsourcers instead of
professionally calibrated settings and expensive equipment.
We presented cloud based architecture of the system for a
scalable and cost effective solution. Moreover, we proposed
a QoE metric based on the received video quality and the
viewer’s bandwidth capabilities. We computed optimal video
representation set using our QoE metric by employing MIP
based Knapsack optimization algorithm. We proposed FBRS
strategy to efficiently compute the representation set for live
streams, and compared our results with optimal solution and
Top-N strategy used by Twitch. We used real-world video
traces to perform experiments. Our results illustrated that
considering the potential users to decide the video repre-
sentations greatly enhances the QoE, and FBRS efficiently

produces near optimal results. We compared our results in
various scenarios including Twitch peak time trace, an aver-
age day video trace, long tail workload, and heavy headwork-
load depicting sports events watched by more than 4 million
users. In all of the aforementioned scenarios, FBRS outper-
formed Top-N strategy and produced near or in some cases
equal to optimal results, clearly depicting the superiority
of FBRS.

CMVCS is a feasible and practical idea presented in
this paper. As mentioned in section II, different modules
of CMVCS system has multiple challenges. In this work,
we presented a basic architecture of the system along with
challenges, and focused on scheduling and resource alloca-
tion. In our future work, we aim to focus on viewer’s view
switching dynamics and minimize the view switching delay
by using prediction based view delivery.
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