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Abstract

The Question Answering (QA) task aims at building systems that can automat-

ically answer a question or query about the given document(s). In this thesis,

we utilize the transformer, a state-of-the-art neural architecture to study two QA

problems: the answer sentence selection and the answer summary generation. For

answer sentence selection, we present two new approaches that rank a list of candi-

date answers for a given question by utilizing different contextualized embeddings

with the encoder of transformer. For answer summary generation, we study the

query focused abstractive text summarization task to generate a summary in natu-

ral language from the source document(s) for a given query. For this task, we utilize

transformer to address the lack of large training datasets issue in single-document

scenarios and no labeled training datasets issue in multi-document scenarios. Based

on extensive experiments, we observe that our proposed approaches obtain impres-

sive results across several benchmark QA datasets.
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1 Introduction

Question Answering is a research area of computer science which is concerned with

building systems that can automatically answer questions asked by humans in nat-

ural language [28]. It lies within the fields of Information Retrieval and Natural

Language Processing. With the rapid growth of textual documents on internet,

accessing information from web has become a challenging problem [168]. In a web

search, users may require the answer of a specific query or the summary about a

certain topic from various sources to fulfill their information needs [164]. Moreover,

the risen popularity of virtual assistants1 such as Google Assistant, Siri, Alexa,

Cortana, and etc., in recent years have gained significant interest to build conversa-

tional agents2 using state-of-the-art technologies [6]. Since the performance of such

web search engines or conversational agents largely depends on a system that pos-

sesses good question answering capabilities, the researchers are focusing to solve

1https://en.wikipedia.org/wiki/Virtual assistant

2Conversational agents are computer systems which utilize natural language processing to
converse with a human.
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Table 1.1: An example of the Answer Selection and Ranking Task. A question

along with list of candidate answers are given. The text in bold font is the correct

answer.

Question:

• Which country won the FIFA world cup 2018?

List of Candidate Answers:

• England have won the Cricket World Cup 2019.

• France have won the FIFA world cup 2018.

• France have won the FIFA world cup 2014.

Potential Ranking:

• France have won the FIFA world cup 2018.

• France have won the FIFA world cup 2014.

• England have won the Cricket World Cup 2019.

different question answering tasks [35], such as: (i) Answer Sentence Selection:

where the relevant text span containing the answer is selected from the source doc-

ument or from a set of candidate answer spans, (ii) Answer Summary Generation:

where the answer is generated in natural language via analyzing the given source

document(s). For answer sentence selection, one common problem is the Answer

2



Table 1.2: An example of the Query Focused Text Summarization Task to Generate

Abstractive Summary.

Query: What is the benefit of reality shows?

Document: Even if reality shows were not enlightening, they generate massive

revenues that can be used for funding more sophisticated programs. Take BBC for

example, it offers entertaining reality shows such as total wipeout as well as brilliant

documentaries.

Summary: Reality show generates revenues.

Selection and Ranking Task, where a question and a set of candidate answers are

given, and the task is to rank the candidate answers based on their relevance with

the question (see Table 1.1). For answer summary generation, one example could

be the Query Focused Text Summarization Task, where a set of document(s) along

with a query are given and the goal is to generate a summary from the source

document(s) based on the given query [168]. The generated summaries in this task

can be either extractive or abstractive [10, 113, 40, 168]. For the extractive case,

relevant text spans are directly extracted from the source document(s). But for

the abstractive case, the generated summaries can contain words which may not

appear in the source document(s) (see Table 1.2).

In this thesis, we focus to study two types of question answering problems:

3



(i) the answer sentence selection, and (ii) the answer summary generation. For

the answer sentence selection problem, we study the answer selection and ranking

task. For the answer summary generation problem, we study the query focused

text summarization task where our focus is to generate the summaries in natural

language (i.e., generating abstractive summaries). In the following sections, we

first discuss our motivation behind studying the above mentioned topics. Then we

present our contributions in this thesis. In the final section, we describe how we

organized the remaining chapters of this paper.

1.1 Motivation

In recent years, the outstanding success of Deep Neural Network [46] models in dif-

ferent natural language processing problems has drawn significant attention among

researchers to also utilize the neural network architecture to build question answer-

ing systems [10, 22, 43, 114]. For instance, in the answer selection and ranking

task, various neural network models are extensively utilized in recent times to mea-

sure the relevance between the candidate answer sentence and the given question

[22, 23]. In these neural network-based models, the representations of the given

question and the candidate answer sentences play a significant role to measure the

relevance between them [22, 23, 36, 127]. To represent the input sentences, tradi-
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tionally these neural network-based models use word embeddings3 like GloVe [118]

or Word2Vec [103] for their initial representations. Then the initial representations

of the input sentences are given as input to the encoder of the neural models. The

encoded representations of the input sentences produced by the encoder of the neu-

ral models are then utilized to measure the similarity between the question and the

candidate answer [22, 23]. Finally, all the candidate answers for a given question

are ranked based on their similarity score with the question.

However, the prior body of work for the answer selection and ranking task has

some major limitations. For instance, most prior work for this task usually utilized

the Recurrent Neural Network [55] architecture, while more recent neural models

are rarely adopted for such tasks [172]. Recently, Vaswani et al. [150] proposed

the Transformer architecture which significantly outperformed the widely used re-

current neural network models in various of natural language processing problems

[150, 122]. Despite the superiority of the transformer architecture over the recurrent

neural network models, it has been rarely evaluated on the answer selection and

ranking task [122]. Furthermore, previous work for such tasks mostly concentrated

on using word embeddings like GloVe or Word2Vec [118, 103, 22, 23, 113, 10, 161].

A critical limitation of GloVe or Word2Vec is that such embeddings can only provide

fixed representation of a word and fail to capture the context when the word is used

3Word Embedding is the learned representation that maps words from a vocabulary to vectors
of real numbers.
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in different sentences [119]. Recently, the Deep Contextualized Word Representa-

tions (ELMo) [119] and the Bidirectional Encoder Representation from Transform-

ers (BERT) [36] models have received lots of attention as these models can provide

contextualized representations of each word in a sentence instead of the traditional

fixed word embeddings produced by GloVe or Word2Vec. Thus, due to the advan-

tages of the transformer model as well as the contextualized embeddings mentioned

above, we are motivated to use them for the answer selection and ranking task.

For the query focused text summarization task, most of the recent state-of-

the-art models also leveraged various deep neural models [113]. Note that for

extractive summary generation, only the encoder of the neural models are required

to extract the most relevant text spans from the source document(s) as the summary

[168, 172, 114, 10, 113]. In contrast, for the abstractive summary generation, a

decoder is also needed along with the encoder. Because in such scenarios, the

encoder is used for the input document representation which is later utilized by the

decoder to generate the answer or summary in natural language [114, 62]. Thus, the

existing state-of-the-art models in different query focused summarization datasets

where the requirement is to generate abstractive summaries utilize various encoder-

decoder based neural network models [114, 113, 10]. Though the transformer model

has been effectively utilized in various natural language generation problems in

recent years [122], to the best of our knowledge, it has not been utilized for the

6



query focused abstractive text summarization task yet. Thus, our motivations to

use the transformer architecture for the query focused summarization task are the

following: (i) the transformer model is not utilized for such tasks yet [122], and (ii)

due to the superiority of this model over the other neural models [150, 122].

Moreover, there are some important challenges that we aim to address for the

query focused summarization task. Note that the query focused summarization

task can be done in two scenarios: (i) Single-Document Scenario: where the goal

is to generate a summary from a single source document. (ii) Multi-Document

Scenario: where the goal is to generate a summary from a set of documents [10].

One major challenge in the single-document query focused summarization task is

that the available datasets for such tasks are very small in size compared to the

generic abstractive summarization datasets [113, 10, 138]. To address this issue, we

utilize transfer learning via leveraging the transformer architecture. For the query

focused summarization task in multi-document scenarios, one major challenge is

that the currently available datasets for such tasks do not contain any training

data [10]. To tackle this issue, we propose a weakly supervised learning model

via utilizing various pre-trained transformer models. In the following section, we

present our contributions in this thesis.
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1.2 Contributions

As we mentioned earlier, in this thesis we study two types of question answering

problems: answer sentence selection and answer summary generation. For answer

sentence selection, we propose several new transformer-based methods for the an-

swer selection and ranking task and conduct extensive experiments to set new state-

of-the-art results in six answer sentence selection datasets. For answer summary

generation, we propose several novel methods via utilizing the transformer architec-

ture for the query focused text summarization task and observe new state-of-the-art

results in benchmark datasets for such tasks. In the following, our contributions

in this thesis in the answer selection and ranking task and the query focused text

summarization task are stated.

Answer Selection and Ranking Task

• In the answer selection and ranking task, we investigate how to utilize the

contextualized word embeddings by integrating them with the transformer

encoder. For that purpose, we present two new approaches (fine-tuning-based

and feature-based) via utilizing various contextualized embeddings, such as

ELMo, BERT, and RoBERTA [75, 77, 79].

• We observe that combining contextual embeddings with the transformer en-

coder is very effective for answer selection. However, while comparing our

8



fine-tuning-based approach with the feature-based approach, we find that the

fine-tuning-based approach significantly outperforms the feature-based ap-

proach in all datasets used for comparisons. Moreover, we observe a new

state-of-the-art result in six benchmark question-answering datasets in terms

of various evaluation metrics using our fine-tuning-based models [79].

Query Focused Text Summarization Task

• For the query focused text summarization task, we focus to generate abstrac-

tive summaries based on both single-document and multi-document scenarios.

• In the query focused single-document abstractive summarization task, we

address the lack of availability of large training datasets by introducing a

transfer learning approach via utilizing transformer-based models. In our

proposed approach, we first pre-train our transformer-based model on a large

generic abstractive summarization dataset. Then for the target dataset, we

incorporate query relevance in the pre-trained model and fine-tune it for the

query focused abstractive summarization task [76].

• In the query focused multi-document abstractive summarization task, one

major challenge is that the currently available datasets for such tasks do not

contain any training data. To tackle this issue, we utilize datasets similar to

the target dataset as the training data. However, these training datasets only

9



contain multi-document gold reference summaries and do not contain the gold

reference summary for each single-document in a document set. Thus, the ef-

fectiveness of utilizing supervised learning with neural summarization models

cannot be utilized here due to the computational complexity of training such

models in long text documents [92, 12, 26, 69, 174]. To address this issue, we

propose a novel weakly supervised learning model [78].

• In our proposed weakly supervised learning model for query focused abstrac-

tive summarization in multi-document scenarios, at first we generate the weak

reference summary of each single-document in a document set using various

pre-trained transformer models. Then, we leverage the effectiveness of fine-

tuning pre-trained generic summarization models for the query focused ab-

stractive summarization task [76] via introducing an iterative approach. In

our proposed iterative approach, we adopt a pre-trained transformer-based

single-document summarization model and iteratively generate the summary

of each single-document in a multi-document set. Finally, for each document

set we utilize an answer selection model to select the most relevant sentences

from the generated summary as the final summary.

• Experimental results in different datasets for the query focused text summa-

rization task for both single-document and multi-document scenarios show

10



that our proposed approaches set new state-of-the-art results in terms of var-

ious evaluation metrics.

• In addition, to investigate the effectiveness of incorporating query relevance

in transformer models for such tasks, we also propose a new attention mech-

anism. However, while investigating the effectiveness of utilizing query rel-

evance using our proposed attention mechanism in transformer models, we

surprisingly find that the Debatepedia dataset which is used for the query

focused summarization task is more of a generic summarization dataset and

the queries in this dataset have little to no effect in summary generation.

As a secondary contribution, our source codes used in this thesis have been made

publicly available here: https://github.com/tahmedge/Tahmid-MSc-Thesis-YorkU.

1.3 Organization of the Thesis

Before moving to the next chapter, we give a brief description below regarding how

the following chapters of this thesis are organised.

• We start the Chapter 2 with a brief introduction to machine learning and

deep learning, followed by their applications in natural language processing

and information retrieval. We then discuss various deep learning architectures

followed by different word embedding techniques which are extensively used

11



in deep neural models in a wide range of natural language understanding

and generation problems in recent years. Then we review the transformer

architecture and various language models based on it. Finally, we review

different question answering tasks (the answer sentence selection task and

the answer summary generation task) that we have studied in this thesis.

• Then in Chapter 3, we first briefly discuss the background of the answer

selection and ranking task that we study for the answer sentence selection

problem in this thesis. In the same chapter, we describe our proposed ap-

proaches for this task along with the datasets that we used to evaluate the

proposed models. Moreover, our experimental details as well as the results

are also discussed in this chapter.

• In Chapter 4, we discuss the answer summary generation problem that we

study in this thesis: the query focused text summarization task. As men-

tioned earlier, we study this task to generate abstractive summaries based

on two scenarios: (i) Single-Document, and (ii) Multi-document. For both

scenarios, we discuss the background, our proposed approaches, the datasets,

the experimental settings, and the results in this chapter.

• Finally, the concluding remarks of this thesis as well as our plans for future

work are discussed in Chapter 5.

12



2 Literature Review

This chapter begins with a brief introduction to Machine Learning [106], which is

the foundation of the Deep Learning [46] architecture that we utilize in this thesis

for various question answering systems. Then we conduct a literature review on

deep learning that has been extensively used in recent years in a wide range of tasks

in information retrieval and natural language processing. Then we discuss various

Word Embedding [118, 103] techniques that are utilized with such deep neural

networks. Afterwards, we discuss the Transformer [150] model which is based on

the deep neural network architecture that we use in this thesis. Next, we discuss

some recent language models4 based on the transformer architecture. Finally, we

review different question answering tasks that we study in this thesis: i) the Answer

Sentence Selection task, and ii) the Answer Summary Generation task.

4A Language Model is a probability distribution over a sequence of words that aims at pre-
dicting the probability of a word appearing next in a text sequence.
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2.1 Machine Learning

We have now entered the era of Big Data, where the amount of information on

the internet is ever increasing [106]. Thus, it is required to have systems that

can analyze this myriad of data automatically without any human intervention.

This is where machine learning comes into play since it can automatically detect

patterns in data to predict the future events as well as perform different kinds

of decision making [106]. In particular, machine learning is a branch of artificial

intelligence [133] that analyzes data to provide computer systems the ability to

learn automatically from experience without any human intervention [106, 140].

All machine learning algorithms are required to be trained on a given dataset,

which we call as the training data. Then the trained machine learning algorithms

perform inference in new data that were not used during the training procedure. To

perform machine learning, the following two approaches are mostly utilized [106].

These are:

• Supervised Learning: In supervised learning, each example in the training

data contains the label of the correct answer. In such datasets, the machine

learning algorithms learn a mapping from the inputs to the outputs to predict

the labels in the unseen test data.

• Unsupervised Learning: In unsupervised learning, the examples in the train-

14



ing data don’t contain any labels. In such datasets, the machine learning

algorithms need to find interesting patterns in order to make predictions in

the test data.

Apart from the above two main approaches, there are some other machine learn-

ing approaches that have been used [106], such as:

• Reinforcement Learning: In this approach, algorithms are trained to make

sequence of decisions based on reward and punishment. Such algorithms are

rewarded when their action is the desired one and punished when their action

is the undesired one. In particular, reinforcement learning algorithms learn

through trial and error to maximize the cumulative reward in order to attain

their desired goals.

• Semi-Supervised Learning: It combines supervised learning with unsupervised

learning via utilizing a small amount labeled training data with a large amount

of unlabeled training data to train the machine learning algorithms.

• Weakly Supervised Learning: When the given datasets are unlabeled, weak

supervision utilizes various noisy or imprecise sources to generate the labels

for the unlabeled datasets to train the machine learning models.
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2.2 Deep Learning

Deep learning is a sub-field of machine learning which is based on the Artificial

Neural Network architecture. The artificial neural network is a machine learning

model that mimics human brain to solve computational problems [106, 140]. It

can be described as a directed graph where the nodes denote neurons5 and the

edges denote the connections between different neurons. The architecture of an

artificial neural network usually consists of an input layer and a output layer along

with some hidden layers in between them. Each connection in an artificial neural

network has been assigned an weight and each neuron in different layers receives

the weighted sum of the outputs of the neurons connected to its incoming edges

as input. Note that the outputs of the neurons in different layers are usually

calculated using a function called activation function. While training a neural

network, the weights of the connections are updated which is done most commonly

using a method called back-propagation [17] to minimize the errors made by the

network. To calculate the errors, neural networks utilize a function called loss

function (also known as cost function) that compares the output predicted by the

neural network with the desired output [46, 140]. Afterwards, the back-propagation

method tries to minimize the loss by calculating the gradient to update the weights

[131, 46, 140]. Moreover, there are some parameters called hyperparameters that

5In a human brain, a neuron is the basic working unit.
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Figure 2.1: A feedforward neural network with one hidden layer. Both the input

and output layer contain two neurons and the hidden layer contains four neurons.

have to be set before starting to train an artificial neural network. Some examples of

hyperparameters are, learning rate: which determines the step size for the gradient

to reach the minimum of a loss function, batch size: which denotes the number of

examples used in each training iteration of the neural network, and etc.

While there are several types of artificial neural network, one of the simplest

forms is the Feedforward network, where the underlying graph like structure doesn’t

contain any cycles [140, 46]. The feedforward networks usually contain an input

layer, followed by some hidden layers and finally an output layer (an example
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of a Fully Connected6 feedforward network is illustrated in Figure 2.1). When

the artificial neural network contains multiple hidden layers, it is called as Deep

Neural Network. In recent years, deep neural network (i.e., deep learning) has

gained significant popularity in various research areas of computer science, such

as: Computer Vision [151], Natural Language Processing [172, 84], Information

Retrieval [84], Bioinformatics [104] and etc. In areas such as Natural Language

Processing (NLP) and Information Retrieval (IR), two of the most extensively used

deep neural network architectures are the Convolutional Neural Network [70, 80, 57]

and the Recurrent Neural Network [172, 84]. Since in this thesis, we are studying

various question answering problems where the recurrent neural network models

were mostly utilized in recent years [172, 22, 23, 113], we give a brief introduction

to the readers about this architecture below.

Recurrent Neural Network (RNN): RNN is a special type of artificial neural

network to process sequential information. It can be considered as multiple copies

of the same network where each network passes information to the successor. For

example, to process a sequence of text using RNN, at each time step, each word

in the text sequence is sequentially given as input to the RNN network where

the information of the previous word is also utilized for processing. Note that for

6In a full connected layer, each neuron in a layer has a connection to every neuron in another
layer.
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tasks such as text understanding, the layers that learn the encoded representation

of the text sequence in RNN models are called encoders; while for tasks such as

text generation, RNN models use additional decoder layers along with the encoder

layers [172]. One major drawback of the standard RNN models is that in some text

processing tasks, the future information of the input sentence may need to be known

while processing the current state (e.g: for tasks such as text summarization, the

overall context of the source sentence may be required to generate a summary). For

such scenarios, the Bidirectional RNN was proposed which includes an additional

recurrent layer in the network via duplicating the original recurrent layer [137]. In

the first recurrent layer, the original input sequence is given as input. Whereas for

the second recurrent layer, a reversed copy of the input sequence is given. In this

way, the future information of the input is known via allowing the network to be

trained simultaneously in both positive and negative time direction. However, when

the text sequence is very long, there is a major issue called the long-term dependency

problem occurs in RNN models due to the vanishing or exploding gradient problems

that leads the RNN to lose relevant information at a given time step [54, 55, 56]. To

address these issues, a special type of RNN called the Long Short-Term Memory

(LSTM) was proposed [55]. The advantage of LSTM over the traditional RNN

is that it has a special state call the cell state that consists of an input gate,

an output gate and a forget gate. This cell helps LSTM to remember the relevant
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information as well as forget the irrelevant ones allowing it to mitigate the vanishing

or exploding gradient issues to tackle the long-term dependency problem in long

text sequences. Moreover, various variants of LSTM were also proposed, of which

some of the strongest variants are the Bidirectional LSTM (BLSTM) [148], and

the Gated Recurrent Unit (GRU) [25]. Similar to the Bidirectional RNN, the

BLSTM model was also proposed to take into account both the future and current

information. However, there are some key architectural differences between the

other LSTM variant the GRU architecture and the traditional LSTM architecture.

For instance, in contrary to the traditional LSTM model, the GRU architecture

doesn’t have the output gate in its cell [25]. Instead, it has an update gate along

with a reset gate which is a combination of the input gate and the forget gate used

in LSTM [55, 25]. It should be noted that with lesser complexity than the LSTM,

the GRU still provides almost similar performance compared to the LSTM in most

tasks [27, 25]. Nonetheless, the performance of LSTM is still strictly stronger than

GRU in many scenarios [14, 162].

2.3 Word Embeddings

Neural network architecture has been widely used in recent years to solve various

NLP problems [172]. However, since neural networks are unable to process non-

numerical values and can only process numerical representations, one crucial step
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to process natural language text using neural models is to learn the numerical

representation of each word in a text. This is where word embedding comes into

play. It contains a set of vectors where each vector represents the distributed

numerical representation of a word in a vector space [118, 103]. In the vector space,

words having similar meaning are usually located closer since the similar words tend

to have similar representations in the word embedding vectors. Below, we discuss

different word embedding techniques that are used with deep learning-based models

to solve various NLP tasks.

Traditional Word Embeddings: Over the years, word embedding vectors were

created using various shallow neural networks which were later used by the deep

learning models to represent the words in a given text sequence [172]. Utilizing such

word embeddings has been responsible for achieving state-of-the-art performance

in many NLP tasks [172]. However, there are some limitations while training a

word embedding model in a given dataset. For example, if the size of the training

data for the given task is small, the word embedding vectors may not contain

the representations of many words that could appear in the test data. Moreover,

learning the word embeddings for a given task may also take considerable amount

of time when the size of the training dataset is large. To address these issues,

instead of training the word embedding vectors from scratch for the target dataset,
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utilizing Transfer Learning7 via leveraging pre-trained word embeddings [118, 103]

are mostly utilized by various deep learning models in recent years [172]. One major

advantage of using pre-traiend word embeddings is that they are trained in a large

dataset and thus it allows these embeddings to contain the vector representations

of words which appear rarely or did not appear at all in the training dataset of the

target domain [172, 103, 118]. Two of the most popular such word embeddings that

have been used extensively in recent years are the Word2Vec [103] embedding and

the GloVe [118] embedding [172]. Word2Vec embeddings are learnt using neural

networks via utilizing two methods: i) Common Bag Of Words (CBOW) and ii)

Skip-gram [103]. The CBOW method uses the context words of the target word

as input to the neural network and tries to predict the target word based on these

context words. For the Skip-gram method, the target word is given as input to

the neural network which then learns to predict its surrounding context words.

However, one major issue with Word2Vec is that it can only take the local context

while being trained [172, 103, 118]. To address this issue, the GloVe model was

proposed [118]. In contrary to the neural network-based architecture of Word2Vec,

the GloVe model doesn’t leverage any neural networks while being trained. The

GloVe model addresses the local context issue in Word2vec via proposing a new

global log bilinear regression model [118]. In this model, a global word-word co-

7It is a technique where the knowledge gained while solving one problem is applied to a different
but related problem.
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occurrence matrix was constructed by combining the global matrix factorization

method and the local context window method. This global co-occurrence count

allows the embedding of each word in GloVe to obtain the global information [118].

However, one common limitation with both Word2Vec and Glove is that they can

only provide the fixed representation of a word and fail to capture its context

when the word is used in different sentences [172]. To overcome this issue, the

contextualized word embeddings have been proposed [172]. In the following, we

review the contextualized word embeddings.

Contextualized Word Embeddings: Instead of the fixed word embeddings

provided by the traditional word embeddings like GloVe or Word2Vec, the contex-

tualized word embeddings provide the embedding of a word based on its overall

context in a sentence. Thus, such word embeddings can capture multiple meanings

of a word based on where it has been used in different sentences. One such con-

textualized embeddings is the Embeddings from Language Models (ELMo) [119],

which is pre-trained on a vast amount of text data [18] for the language modeling

task using a BLSTM [55] network. This bidirectional language modeling objective

allows the ELMo model to have a sense of both the next and the previous words

while predicting the target word. The ELMo model provides three layers of repre-

sentations for each word: one layer provides a character based word representation
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whereas the other two layers are the LSTM hidden states. The weighted sum of

these three layers is the ELMo layer and the output of this layer is used as the con-

textualized word embeddings [119]. More recently, a new language model called the

Bidirectional Encoder Representations from Transformers (BERT) [36] model was

proposed which could also provide contextualized embeddings like ELMo. However,

in contrary to the BLSTM network used in ELMo, the BERT model utilized the

encoder of the transformer architecture [150] (we will discuss the transformer archi-

tecture in details later). Besides, the BERT model used a different language model-

ing objective called masked language modeling [147], along with utilizing the model

for the next sentence prediction task during the pre-training stage [36]. Though

there are several differences between BERT and ELMo, the BERT model was also

pre-trained in large datasets similar to the ELMo model [119, 36].

2.4 Deep Learning Applications in NLP and IR

In this section, we give a brief review of different deep learning models applied

in various areas of NLP and IR for tasks such as text understanding and text

generation. For that purpose, we divide this section into two parts. First, we discuss

the applications of deep learning models in various natural language understanding

tasks. Then, we discuss their applications in various natural language generation

tasks.
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Natural Language Understanding: Sentiment analysis [94, 173], paraphrase

identification [22, 23], named entity recognition [7], and answer sentence selection

[43] are some examples of the natural language understanding task. The objective

of such tasks is to predict the correct label of the given input. Thus, in scenar-

ios when deep learning models are applied to these tasks, only the encoder part

of the neural network is required to classify the encoded representation of the in-

put text to the correct label. In recent years, various deep learning models were

proposed for such tasks which significantly outperformed the previously used non-

neural network based approaches [172]. More recently, state-of-the-models for the

natural language understanding task leveraged the advantage of pre-trained lan-

guage models [123, 124, 15, 119, 36, 96, 74, 30]. It was found that via fine-tuning8

the transformer-based pre-trained language models, significant improvement in per-

formance could be achieved in a wide range of natural language understanding prob-

lems [15, 36, 96, 74]. Note that the new state-of-the-art results using the pre-trained

language models in several natural language understanding datasets also led to the

release of various sophisticated benchmarks to evaluate the generalized effectiveness

of these models [155, 156, 87, 117, 47]. One of the most notable such benchmarks is

the General Language Understanding Evaluation benchmark (GLUE)9. The moti-

8Fine Tuning is a process where a neural model already trained for a given task is trained
again for a similar task in a new dataset via updating the weights of the original trained model.

9https://gluebenchmark.com/
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vation behind the GLUE benchmark is that, NLP models should be able to process

language in such a way that they are not only used exclusively for a specific task or

dataset. Rather, these models should be robust enough to a diverse range of lan-

guage understanding tasks [155]. However, with fine-tuning various sophisticated

pre-trained language models, the human baseline in the GLUE benchmark has al-

ready been outperformed [96, 74, 156]. Very recently, a new benchmark similar to

GLUE named SuperGLUE10 was introduced [156]. The SuperGLUE benchmark

contains a new set of datasets for various natural language understanding tasks

which are more complex than the tasks and the datasets used in the GLUE bench-

mark [156]. Though the overall human baseline in SuperGLUE is not yet surpassed,

yet some models [96, 125] have already outperformed the human baseline in Super-

Glue for several tasks along with providing the overall performance almost similar

to the human level [125].

Natural Language Generation: For natural language generation, some of the

examples are neural machine translation [5, 25, 24], abstractive text summarization

[132, 110], and dialogue generation [85]. In such tasks, the outputs are required to

be generated in natural language. Similar to the impressive performance of deep

neural network models in various natural language understanding problems, models

10https://super.gluebenchmark.com/
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based on this architecture also provide superior performance in a wide range of nat-

ural language generation tasks [172, 5, 25, 24, 132, 110]. However, contrary to the

traditional architecture of neural models for the natural language understanding

task where the requirement is only the encoder of a neural net, for the natural lan-

guage generation task a decoder is also needed along with the encoder [25, 24, 143].

In recent years, RNN-based neural models that utilized the encoder-decoder frame-

work11 [25, 24, 143] obtained excellent results for natural language generation in

numerous datasets. Despite being effective to generate text in natural language, the

RNN architecture has a common limitation called the long-term dependency prob-

lem which occurs in long text sequences [172]. To tackle the long-term dependency

issue, various variants of RNN such as LSTM [55], as well as the attention mecha-

nism [5, 97] (see Footnote 11) have been used in recent years. Though these variants

of RNN have provided improvement over the standard RNN architecture in several

tasks [55, 5, 97], the long-term dependency issue was still present in these variants

[150]. Very recently, a novel neural network architecture called the transformer was

proposed for the language generation problem [150]. Note that the transformer

model is also based on the encoder-decoder framework that utilizes the attention

mechanism. However, for the transformer architecture, a new attention mechanism

called self-attention was proposed [150]. Experimental results show that the trans-

11A detailed description of the encoder-decoder framework as well as the attention mechanism
is given on Section 2.5.1
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former model could address the long-term dependency issue more effectively than

other neural models which allows it to set a new state-of-the-art result in the neural

machine translation task [150]. Moreover, models based on the transformer archi-

tecture also provide state-of-the-art performance in many other natural language

generation problems, such as: abstractive summarization [92], question generation

[38], abstractive answer generation [114], and conversational response generation

[178]. In the following section, we give a detailed description of the transformer

architecture.

2.5 The Transformer Model

In this section, we review the transformer model [150], which is the deep learning

architecture that we utilize in this thesis for various question answering tasks. To

review the transformer model, we divide this section into three parts. First, we

discuss the background of the transformer model by reviewing the encoder-decoder

based deep learning architecture [25, 24, 143] as well as the attention mechanism

[5, 97] since the transformer model is based on the encoder-decoder framework that

utilizes self-attention [150]. Then we describe the architecture of the transformer

model followed by discussing various transformer-based pre-trained language mod-

els [123, 124, 15, 119, 36] that provide impressive success in a wide range of NLP

tasks in recent years.
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2.5.1 Background

Since the transformer model is an encoder-decoder model [25, 24, 143] that utilizes

the attention mechanism [5, 97], we give readers a brief introduction to the encoder-

decoder models and the attention mechanism here.

The Encoder-Decoder Model: The encoder-decoder models [24, 25] are used

for the sequence to sequence modeling tasks [143] such as neural machine translation

[25, 24, 97] or abstractive text summarization [138, 110, 132]. Such models usually

consist of two RNNs [172, 143]. One of these two RNNs is called the encoder, which

encodes a sequence of symbols into a fixed-length vector representation. The other

is called the decoder, which decodes the representation into another sequence of

symbols. One major limitation with such encoder–decoder based RNN models is

that, the encoder needs to compress all the information of the source sentence into

a single fixed-length vector which is the encoded representation obtained from the

final hidden state of the encoder [24, 25]. However, this approach leads to rapid

performance deterioration when the length of the input sentence increases [25, 5].

This is because in a long text sequence, the long-range dependency problem occurs

as the compressed encoded representation tends to forget the earlier parts of the

sequence and leads to the loss of the context [25, 5].
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Attention Mechanism: In order to address the long-range dependency issue in

the encoder-decoder based neural models [25, 24], the attention mechanism was

proposed [5, 97]. The attention-based neural encoder-decoder models utilize a se-

quence of vectors called context vectors to contain the information of the source

sentence [5, 97]. This sequence of vectors is constructed by generating a context

vector in each time step via utilizing the previous hidden state of the decoder as

well as all the encoder hidden states. This allows the decoder to attend to all the

encoder hidden states along with utilizing its own previous hidden state to generate

the appropriate target word for the current hidden state. In this way, the decoder

is able to obtain the most relevant information from the context vector while gen-

erating the target word. In particular, the decoder utilizes the context vector to

access the information from the source sequence which is relevant to generate the

target word during the current time step. Thus, the utilization of the attention

mechanism alleviates the need for the encoder layer to compress the whole source

sentence into a single fixed-length vector [5, 97]. Experimental results show that

utilizing the attention mechanism is very effective to process not only long text

sequences, but also text sequences of any length [5, 97].
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2.5.2 Transformer Architecture

The transformer model contains an encoder and a decoder [150]. It was proposed by

Vaswani et al. [150] for the sequence to sequence modeling tasks. The transformer

model obtained impressive results on tasks such as neural machine translation along

with handling the long-term dependency problem more effectively than RNN and

its variants such as LSTM, BLSTM, or GRU [150]. In Figure 2.2, the transformer

architecture is shown12. In the following, we first give a brief description of the

encoder and decoder of transformer.

Transformer Encoder: The encoder of transformer contains a stack of six iden-

tical layers. Each encoder layer is divided into two sub-layers: (i) The Multi-Head

Self-Attention Layer, and (ii) The Position-wise Fully Connected Feed-Forward

Network. Both sub-layers contain a residual connection [51] and utilize layer nor-

malization [4].

In the multi-head self-attention layer, each token in the input text can give

attention to all other tokens in the same text. The authors of transformer named

this attention mechanism as Scaled Dot-Product Attention (see Figure 2.2c) [150].

For the attention calculation, the authors first created three matrices named query

vector Q, key vector K, and value vector V. In the first encoder layer, for each token

12The figure is taken from the paper: Attention Is All You Need [150].
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Figure 2.2: The Transformer Architecture12: (a) The Encoder and Decoder of

Transformer. (b) The Multi-Head Attention Mechanism: head (h) = 8. (c) The

Scaled Dot-Product Attention Mechanism. This picture is taken from the paper

“Attention is All You Need” by Vaswani et al. [150]

in the input sequence, three matrices (Q, K, and V) are created based on the dot-

product between the embedding vector X with the three weight matrices WQ, WK,

and WV respectively. Note that these weight matrices are also updated during the

training process. Afterwards, the output Z for each token in the self-attention layer

is calculated based on the following formula:
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softmax

Q×KT
√

dk

V = Z (2.1)

In equation (2.1),
√

dk is the square root of the dimension of the key matrix

K. The transformer encoder also uses the multi-head attention mechanism [150]

by calculating the self-attention eight times with eight different Query/Key/Value

weight matrices to obtain eight Z matrices (see Figure 2.2b). It then concatenates

the eight Z matrices into a single matrix and multiplies that matrix with an ad-

ditional weight matrix. Finally, the resulting matrix is sent to the fully connected

feedforward layer [140]. This layer consists of two linear transformations [33] with

RELU activation [45] which is stated in the following equation.

FFN(x) = max(0, xW 1 + b1)W 2 + b2 (2.2)

All the key, query, and value vectors in the subsequent encoder layers come from

the output of their respective previous layers.

Transformer Decoder: The decoder of the transformer also consists of a stack

of six identical layers similar to the encoder. However, in addition to the two sub-

layers (the multi-head self-attention layer and the fully connected feed-forward layer

as used in each encoder layer), the decoder inserts another sub-layer, which performs

multi-head attention over the output of the encoder stack. In the decoder, the query
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Q comes from the previous decoder layer, but the key K and the value V comes from

the output of the encoder. Similar to the sub-layers in the encoder, each sub-layer

in the decoder also contains residual connections followed by layer normalization.

To reserve the auto-regressive property of the decoder [5, 97], the self-attention sub-

layer of decoder is modified to prevent it from attending to subsequent positions

by allowing it to only attend to the previous positions [150].

In transformer, the dimension of input and output is dmodel = 512. The di-

mension of the inner-layer is dff = 2048, To keep track of positional information

of the tokens in a sequence, sinusoidal positional encodings are added to the input

embeddings at the bottoms of both encoder and decoder stacks [150].

2.5.3 Language Models based on Transformer

Though the original transformer model [150] contains an encoder and a decoder to

solve the sequence-to-sequence problems, various language models based on only

the encoder or the decoder of the transformer were also proposed recently for dif-

ferent natural language understanding tasks [36, 16, 123]. For example, Cer et al.

[16] utilized the transformer encoder to generate embeddings from sentences for

transfer learning [53] to other tasks. Radford et al. [123] utilized the transformer

decoder by pre-training it on large text corpora for the language modeling task and

then fine-tuned the model for downstream tasks. One of the most remarkable trans-
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former encoder based model is the BERT [36] model which showed state-of-the-art

performance across several NLP tasks [155].

The BERT model was pre-trained for masked language modeling [147] and next

sentence prediction task on the BooksCorpus (800M words) [180] dataset along

with the English Wikipedia (2,500M words) [36]. For the masked language mod-

eling task, 15% tokens in each text sequence are replaced with a [MASK] token.

The model then attempts to predict the original value of the masked words based

on the context provided by the non-masked words in the sequence. In the next

sentence prediction task, the model receives a pair of sentences as input and learns

to predict if the second sentence in the pair is the subsequent sentence in the orig-

inal document. After being pre-trained on large datasets, the BERT model learns

the contextualized representation of each word in a sentence. Moreover, with just

fine-tuning the pre-trained BERT model in the task specific datasets, state-of-the-

art results have been achieved in a wide range of natural language understanding

tasks [36, 155]. In order to fine-tune the pre-trained BERT model in a task specific

dataset, a special [CLS] token is required to be added at the beginning of the input

text [36]. If there are multiple sequences in the input text, then these sequences are

combined together into a single sequence by separating them with a special [SEP ]

token. Moreover, for BERT fine-tuning, new parameters are added for an additional

classification layer which along with the parameters of the pre-trained BERT model
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are jointly updated to maximize the log-probability of the correct label. Note that

during the fine-tuning stage, only the output of the first token ([CLS]) is taken to

predict the label of the input sequence. The output of this token is considered as

the aggregate representation of the entire input sequence [36].

The outstanding performance of the BERT model [36] also led to the develop-

ment of various new models [166, 96, 74, 134] that utilized the pre-trained language

modeling objective. For example, Liu et al. proposed the MT-DNN model [91] that

combined the BERT model with the multi-task neural network [90] to effectively

learn multiple related tasks jointly along with outperforming the original BERT

model. The newly proposed Transformer-XL [34] architecture was utilized by the

XLNet model [166] which also outperformed BERT in several NLP tasks by ef-

fectively learning contextual representations. The RoBERTa model [96] proposed

new design choices and training strategies for the traditional BERT model that

resulted in significant performance gain in several natural language understanding

tasks. Different parameter reduction techniques were utilized by the recently pro-

posed ALBERT model that provided significant performance improvement over the

original BERT model along with leveraging lower memory consumption and higher

training speed [74]. Besides, the ALBERT model set new state-of-the-art results

in various natural language understanding datasets [155]. More recently, a new

method to pre-train a smaller general-purpose language model called DistilBERT
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was proposed [134]. Via leveraging knowledge distillation during the pre-training

stage to reduce the size of a BERT model by 40%, it was shown that DistilBERT

could still provide comparable performance with its larger counterpart BERT by re-

taining 97% of the language understanding capabilities of BERT along with having

60% faster speed than BERT [134].

In addition, language models based on BERT are also proposed for many other

languages [100, 81, 32] except English, as well as being proposed as a multilingual

model [121] via pre-training it on multiple languages. Moreover, language mod-

els based on BERT are proposed for various other domains as well, such as the

biomedical domain [47, 82], the clinical language processing domain [1], as well as

for understanding the source codes of different programming languages [41, 64] and

etc.

2.6 The Question Answering Task

In this section, we discuss recent work on the question answering task by dividing

it into two categories. In the first category, we review the question answering task

where the requirement is to select the answer from the source document(s). In the

second category, we focus on the question answering task where the requirement is

to generate the answer in natural language. Since in this thesis, we primarily study

the answer selection and ranking task for the answer sentence selection problem
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and the query focused abstractive summarization task for the answer summary

generation problem, we mainly review these two tasks here.

2.6.1 Answer Sentence Selection

The answer sentence selection task is a fundamental problem of NLP and IR

[169, 22, 23]. One common problem for such tasks is the answer selection and

ranking task, where given a question with a list of candidate answers, the ob-

jective is to rank the candidate answers based on their relevance with the ques-

tion [22, 23]. For this task, various sentence similarity modeling frameworks are

utilized to measure the relevance between the query and the candidate answer

[21, 22, 20, 126, 127]. Earlier, the sentence similarity models for such tasks relied

on different feature engineering-based approaches [152, 169]. One example of the

feature engineering-based sentence similarity model is the work of Yih et al. [169],

where the WordNet13 based semantic features were utilized to measure the similar-

ity between the question and the candidate answer sentence. However, these feature

engineering-based approaches have some critical limitations. For instance, the fea-

tures which are used in one dataset may not perform well in another dataset [22].

Moreover, these approaches require lots of handcrafted rules and are often error-

prone. Recently, several deep learning-based approaches for sentence similarity

13https://wordnet.princeton.edu/
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modeling showed impressive performance without requiring any handcrafted fea-

tures [23, 22, 126, 161, 21, 13, 99, 149, 139, 63, 127, 89]. In such deep neural

models, some researchers focused on extracting the common features in a sentence

pair to improve the performance of sentence similarity modeling [22, 23, 161]. For

instance, a collaborative and adversarial network was proposed in which a generator

and a discriminator had been utilized to extract the common features between the

question and the candidate answer [22]. In addition, to improve the performance of

recurrent neural network-based sentence similarity models, Chen et al. [23] utilized

the contextual information from the question sentence while generating the hidden

states of the candidate answer sentence. They first detected the aligned words in

a question-answer pair and then utilized the context of these aligned words to gen-

erate the hidden state representation of the candidate answer sentence. Moreover,

various recurrent neural models also utilized the attention mechanism [144, 136] to

improve the sentence representation for sentence similarity modeling.

Though the recurrent neural network architecture was extensively used for the

answer selection and ranking task, the transformer architecture has been rarely

evaluated for such tasks [150]. Very recently, some models were proposed which

utilized the pre-trained transformer encoders such as BERT or RoBERTa for the

answer selection and ranking task [73, 43]. Some work also utilized transfer learning

from such transformer-based models via first pre-training the model in a large
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dataset for the answer selection and ranking task followed by fine-tuning it in the

target dataset [73, 43]. Though these models provided state-of-the-art performance

in different datasets such as TREC-QA [159] and WikiQA [165], the effectiveness of

combining transfer learning with pre-trained transformer encoders are not deeply

investigated yet: i) these models were not evaluated in other datasets such as

community question answering datasets [107, 108, 109], ii) these models were not

compared with some of the state-of-the-art pre-trained transformer encoder models

such as RoBERTa [96] that did not require such transfer learning.

2.6.2 Answer Summary Generation

The answer summary generation task is a natural language generation problem

where the requirement is to generate the required answer or summary from the given

source document(s). However, there is a major difference between the generic text

summarization task and the answer summary generation task. In the generic text

summarization task, the goal is to just summarize the given source document(s);

whereas in the answer summary generation task, a question or query is also included

along with the input document(s) and the summary or answer is generated based

on the given query. Thus, the query focused text summarization task is an example

of the answer summary generation problem [114, 35].

For the query focused text summarization task, sentence representation of the
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input text plays a vital role to generate the summary [113, 168]. Earlier, most deep

learning-based models utilized various pre-trained word embedding techniques like

GloVe [118] or Word2Vec [103] to obtain the initial representation of the input

text. The fixed embedding representations extracted from such word embeddings

are then fed into the neural models which are later utilized by the encoder of neural

nets to learn the encoded representations [168]. For extractive summary generation,

only the encoder of the neural net is needed to extract the relevant text spans from

the input text. But when the requirement is to generate abstractive summaries, a

decoder is also needed along with the encoder since the abstractive summaries may

contain some words which are not appeared in the source document(s) [138].

For abstractive summarization, various encoder-decoder based neural models

have been utilized in recent years [132, 110]. As in the summarization task, most

salient features from the source document(s) are required for summary genera-

tion, various attention-based neural encoder-decoder architectures are also proposed

[135, 19]. However, one of the major problems of these neural models is that they

tend to repeat the same word multiple times which leads to generate non-cohesive

summaries [138, 113]. To overcome this issue, See et al. [138] proposed the copy and

coverage mechanism. Note that all work stated above used various models based

on the recurrent neural network architecture. Very recently, the BERT for SUM-

marization (BERTSUM) model was [73] proposed for abstractive summarization
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where the BERT model [36] was used as the encoder and the transformer decoder

[150] was used as the decoder. Despite being a promising approach to generate

abstractive summaries, the transformer architecture [150, 92] is not utilized for the

query focused abstractive text summarization task yet.

It is also worth mentioning that even though significant research has been

done in different datasets for generic abstractive or extractive summarization, the

amount of work for the query focused abstractive summarization task is very lim-

ited [113, 10]. Moreover, the amount of datasets available for the query focused

summarization task is also very small [10]. Among the datasets used for such tasks,

one of the most widely used datasets is the dataset from Document Understanding

Conference14 (DUC) [10]. This dataset is used for the query focused summarization

task for both extractive [98, 40, 164] and abstractive [10] cases in multi-document

scenarios. Though most of the previous work for the query focused summarization

task was concentrated on multi-document scenarios [9, 98, 40, 10], some research in

recent years also studied this problem in single document scenarios [113, 10]. For

the query focused summarization task in the single-document scenario, Nema et al.

[113] created a dataset from the Debatepedia15 which is the only available dataset

for such tasks in the single-document scenario.

14https://duc.nist.gov/

15http://www.debatepedia.org/
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3 Answer Selection and Ranking Task

3.1 Background

In the Answer Selection and Ranking Task, one crucial step is to measure the

similarity between the question and the candidate answer [169]. For this task, given

a question along with a list of candidate answers, at first the similarity between

the question with each candidate answer is measured. Then based on the similarity

score, the candidate answers are ranked.

Since the neural models have been found to be more effective than the non-

neural models for sentence similarity modeling, several models based on the recur-

rent neural network architecture or the convolutional neural network architecture

are utilized in recent years for the answer selection and ranking task to measure

the similarity between the input sentences (the question and the candidate answer)

[50, 49, 21, 22, 20, 126, 127, 171, 89]. In such neural models, word embeddings

like GloVe [118] or Word2Vec [103] are mostly utilized to obtain the initial repre-

sentations of the input sentences. Then the input sentences based on their word
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embedding representations are fed into the neural models to obtain their encoded

representations. Note that the encoded representation is the sentence level rep-

resentation of each input sentence obtained from the neural network. Afterwards,

the similarity between the encoded representation of each sentence produced by the

neural models is measured [23, 22]. However, since in this approach various word

embeddings like GloVe or Word2Vec are used, one critical limitation of using such

embeddings is that they could only provide the fixed representation of a word and

fail to capture the context when the same word is used in different sentences.

Recently, contextualized word representation models such as ELMo and BERT

have shown superior performance over traditional word embeddings such as GloVe

or Word2Vec in a wide range of tasks [119, 36]. For the ELMo model [119], a deep

bidirectional language model is pre-trained on a large text corpora to learn the

contextualized representations of a word. For the BERT model [36], the encoder of

transformer [150] is utilized to learn the contextualized representations. Since these

contextual embeddings can capture better representation of a sentence via generat-

ing embedding of each word based on its surrounding context, in this thesis, we use

such contextualized embeddings for the answer selection and ranking task. More-

over, due to the superiority of the transformer architecture over the other neural

network models, we combine these embeddings with the encoder of the transformer

model to investigate the effectiveness of using contextualized embeddings with the
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transformer encoder for the answer selection and ranking task.

We organize this chapter as follows. First, we propose two new approaches for

the answer selection and ranking task via utilizing different contextualized embed-

dings, namely, the ELMo, BERT, and RoBERTA [96] and integrate these embed-

dings with the transformer encoder. Then we present the details of our experimental

setup that we used to evaluate our proposed approaches. Finally, we discuss the

findings of our experiments to end this chapter.

3.2 Our Proposed Approach

Let us assume that we want to measure the similarity between the two sentences

X = x1, x2, ..., xm and Y = y1, y2, ..., yn for the answer selection and ranking task. In

this thesis, we accomplish this goal via combining the transformer encoder [150] with

different contextualized embeddings [36, 119, 96]. For that purpose, we propose two

approaches: i) Feature-based approach, and ii) Fine-tuning-based approach.

In the feature-based approach, our framework works in the following steps as

demonstrated in Figure 3.1(a). For the given input sentences X and Y , our model

first creates contextualized embedding representations xi for each token xi ∈ X and

yi for each token yi ∈ Y using the pre-trained BERT/ELMo model. Then for each

sentence, the token embeddings are combined with the positional encodings [150] in

order to track the order of the token sequence. Then the contextualized embedding
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Figure 3.1: Our similarity modeling framework that applies contextualized embed-

dings: (a) Feature-based approach using randomly initialized transformer encoders,

and (b) Fine-tuning-based approach using pre-trained transformer encoders.

representations of all tokens in each sentence are sent to two separate randomly

initialized transformer encoders to obtain encoded representations. After the self-

attention calculation in each transformer encoder, the resulting representations are

passed through the feed-forward and pooling layers to obtain the condensed vectors

HX and HY for each sentence X and Y respectively. Finally, the cosine similarity

is calculated between HX and HY .

In the fine-tuning approach (see Figure 3.1(b)), we adopt a pre-trained trans-

former encoder model (e.g., BERT/RoBERTa) and concatenate the given question

and a candidate answer to give as input to the model [36, 96]. Then, we fine-tune
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the pre-trained transformer encoder model for the question-answer similarity task

to identify the most relevant candidate answers. In the following, we describe these

two approaches in detail.

3.2.1 Feature Based Approach

As shown in Figure 3.1(a), our feature-based approach adopts the encoder from the

transformer model [150]. It is to be noted that the original transformer architecture

includes both the encoder and the decoder to perform the machine translation

task. In contrast, we only adopt the encoder of transformer and combine it with

contextualized embeddings to measure the similarity between the question and the

candidate answer for the answer selection and ranking task. For that purpose, we

first extract the ELMo/BERT embeddings [119, 36] of each sentence and feed them

to two separate randomly initialized transformer encoders. Each encoder uses a self-

attention layer to represent each token based on other words in the input sentence.

This self-attention calculation is done by utilizing the following three vectors for

each token, a Query vector Q, a Key vector K, and a Value vector V. Note that

these three vectors are initially created by multiplying the embedding vector with

three weight matrices (WQ, WK, WV) respectively. Then, the output Z for each

word based on self-attention is computed as:
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Z = softmax

Q×KT
√

dk

V (3.1)

Note that the transformer encoder uses multi-head attention mechanism to give

attention on different positions. This is done by calculating the self attention eight

times with eight different Query/Key/Value weight matrices to obtain eight Z ma-

trices. The eight weight matrices used for self-attention calculation are also updated

during the training phase. Afterwards, the eight Z matrices are concatenated into a

single matrix which is then multiplied by an additional weight matrix. The result-

ing matrix is then sent to a feed-forward layer. Then, we apply the mean pooling

method [157] to obtain the sentence representation H. Finally, we utilize the Co-

sine distance similarity function and restrict it to a range of [0, 1] to calculate the

similarity score between the question and the candidate answer.

S (X, Y ) = cosine(HX , HY ) (3.2)

In order to obtain contextualized embeddings, we extract features from both

ELMo and BERT models. In the following, we describe these embeddings.

ELMo Embeddings: Instead of using fixed embedding representation, ELMo

provides contextual embedding of a word based on its context in the entire sentence

[119]. Thus, it can capture multiple meanings of a word based on where it is used.
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ELMo uses a bidirectional LSTM [55] to have a sense of both the next and the

previous word. It is pre-trained on a vast amount of text data [18] and provides

three layers of representations for each word: one layer provides a character based

word representation and the other two layers are the LSTM hidden states. The

ELMo layer is the weighted sum of these three layers. We use the output of this

layer as contextualized word embeddings.

BERT Embeddings: The BERT model [36] can also provide contextualized

embeddings like ELMo. The model was originally pre-trained for masked language

modeling and next sentence prediction task on the BooksCorpus (800M words) [180]

dataset along with the English Wikipedia (2,500M words). We use the token em-

beddings generated from the BERT model and feed them into the transformer

encoder.

3.2.2 Fine Tuning Based Approach

Instead of using contextualized embeddings as input to a randomly initialized trans-

former encoder, we also utilize various pre-trained transformer encoder models such

as BERT and RoBERTa for the answer selection and ranking task as demonstrated

in Figure 3.1(b). Below, we describe different pre-trained transformer encoder mod-

els that we fine-tune for the answer selection and ranking task.
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BERT Fine-tuning for Answer Selection: In the BERT model, sentence pairs

are combined together into a single sequence, separated by a special token [SEP ].

The output of BERT is taken only for the first token ([CLS]), which is considered

as the aggregate representation of the sequence. During fine-tuning, parameters are

added for an additional classification layer W . All the parameters of the pre-trained

BERT model along with W are fine-tuned jointly to maximize the log-probability

of the correct label. The label probabilities P ∈ RK (where K is the total number

of classifier labels) are calculated as follows:

P = softmax(CW T ) (3.3)

In the answer selection task, there are two classifier labels (similar = 1, dissimilar

= 0). In the original BERT model [36], sentence pair classification task was done

by predicting the correct label (1 or 0). But in our work, we modify the final layer

by only considering the predicted score PBERT for the similarity label to rank the

answers based on the question-answer similarity score.

PBERT = P (C = 1|X, Y ) (3.4)

RoBERTa Fine-tuning for Answer Selection: Since the BERT model was

significantly under-trained, the RoBERTa model was proposed by modifying dif-

ferent hyperparameters in BERT along with new design choices [96]. More specif-

ically, RoBERTa used a much larger mini batches and learning rates compared
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to the BERT. Also, the next sentence prediction task was removed from the pre-

training stage in RoBERTa. In addition, while the BERT model was pre-trained on

only two datasets, the RoBERTa model was pre-trained on five different datasets.

These new parameter settings and objectives showed significant improvements over

the original BERT model in different NLP tasks [96]. To utilize it for the answer

selection and ranking task, we followed the similar approach of BERT fine-tuning

by modifying the final layer to obtain the similarity score PRoBERTa.

PRoBERTa = P (C = 1|X, Y ) (3.5)

3.3 Experimental Setup

In this section, we present the datasets, evaluation metrics, the training procedure,

and the parameter settings that we used in our experiments.

3.3.1 Datasets

To evaluate the effectiveness of our approach, we ran experiments on six different

datasets for the answer selection and ranking task as shown on Table 3.1. Specif-

ically, we used two widely used question answering (QA) datasets, namely, the

TREC-QA and WikiQA as well as four community question answering (CQA)

datasets, namely, the YahooCQA, SemEval-2015CQA, SemEval-2016CQA, and
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Table 3.1: Dataset Overview (‘#’ denotes ‘Number of’ and ‘RAW’ indicates the

‘Original’ version).

Dataset # Questions # Candidate Answers

Train Dev Test Train Dev Test

TREC-QA RAW 1229 82 100 53417 1148 1517

Cleaned 1229 65 68 53417 1117 1442

WikiQA16 RAW 2118 296 633 20360 2733 6165

Cleaned 873 126 243 8672 1130 2351

YahooCQA 50112 6289 6283 253440 31680 31680

SemEval-2015CQA 2600 300 329 16541 1645 1976

SemEval-2016CQA 4879 244 327 36198 2440 3270

SemEval-2017CQA 4879 244 293 36198 2440 2930

SemEval-2017CQA. These datasets are described below.

TREC-QA: The TREC-QA dataset is created from the QA track (8-13) of

Text REtrieval Conference [159]. It has two versions: RAW and Cleaned. The

difference between the two versions is that the RAW version has some questions for

which there is no answer or there are only positive/negative answers, whereas the

Cleaned version removes those instances from the development and test sets. As a

result, the RAW version contains 1148 question-answer pairs in the development set
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and 1517 question-answer pairs in the test set, while the Cleaned version contains

1117 question-answer pairs in the development set and 1442 question-answer pairs

in the test set.

WikiQA: This is an open domain QA dataset [165] in which the answers were

collected from the Wikipedia. In this dataset, there are many questions that do

not contain any answers. Only 873, 126, and 243 questions out of 2118, 296,

633 questions in the training, development, and test sets contain any answers,

respectively16.

YahooCQA: This dataset was prepared for answer selection task by Tay et al.

[145] from the Yahoo! Answers Manner Question17 dataset. It is a community-

based question answering dataset and comparatively larger than TREC-QA or

WikiQA. Each question in the YahooCQA dataset is associated with at most one

correct answer. The negative answers were generated by sampling 4 samples from

the top 1000 hits obtained via Lucene18 search. There are 253440, 31680, and 31680

question-answer pairs in the training, development, and test sets respectively.

SemEval-2015CQA: This CQA dataset is created from the Qatar Living Fo-

rums19. We focus on subtask A, the question-comment similarity task. Each com-

16For WikiQA, we used the original training data. But evaluation was done only on the cleaned
test data where questions having no correct answers were removed.

17https://webscope.sandbox.yahoo.com

18https://lucene.apache.org/

19https://www.qatarliving.com/forum
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ment is tagged with “Good”, “Bad” or “Potentially Useful”. We consider “Good”

as the positive example and other tags as the negative examples by following the

work of Sha et al. [139].

SemEval-2016CQA: This is another CQA dataset created from Qatar Living

Forums. Though the task is similar to SemEval-2015CQA, the dataset used in

SemEval-2016CQA is different.

SemEval-2017CQA: This one has the same training and development sets as

SemEval-2016CQA. Only the test set is different in the SemEval-2017CQA which

contains 293 questions whereas the SemEval-2016CQA contains 327 questions.

3.3.2 Evaluation Metrics

Similar to the recent work on the answer selection and ranking task [127, 43, 73],

we used Mean Average Precision and Mean Reciprocal Rank as evaluation metrics

to measure the performance of our models.

Mean Average Precision (MAP): The MAP of a model for a set of questions

Q is the mean of the average precision score of each question obtain based on

the retrieval performance. Note that in the domain of information retrieval, the

precision score for a given query is the ratio of the retrieved documents that are

relevant to the user’s query to the total number of documents that are retrieved.

In the answer selection and ranking task, the average precision is the mean of the
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precision score of each relevant answer that is retrieved. If the total number of

retrieved answers is n, then the Average Precision (AP) is calculated as follows

[175]:

AP =

∑n
i=1 P@i

R
(3.6)

Here, R is the total number of relevant answers given in a set of candidate answers,

and P@i is the precision of the top-i retrieved answers (P@i is 0 if the retrieved

answer i is not a relevant answer). After calculating the AP for each question q,

the MAP for the set of questions Q is calculated as follows [11]:

MAP =
1

Q

|Q|∑
q=1

APq (3.7)

Mean Reciprocal Rank (MRR): The reciprocal rank of a model for a given

question is the reciprocal of the rank of the first correct answer [31]. The MRR

is the mean of the reciprocal ranks of the results that are obtained for a set of

questions Q. If the rank of the first correct answer for each question i is ranki, then

the MRR is calculated as follows:

MRR =
1

Q

|Q|∑
i=1

1

ranki
(3.8)

3.3.3 Training and Parameter Settings

Here, we discuss the training parameters of our models that we used in our exper-

iments.
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In our feature-based approach, the dimensions of the input layer and the output

layer as well as the inner feed forward layer were same. Specifically, when we used

ELMo, the dimensions of the hidden layers dmodel and the feed forward layers dff

of the transformer encoder were both set to 1024. When we used the BERTBase

model, the size of dmodel and dff were set to 768. Similar to the original transformer

architecture [150], we set the number of attention heads A to 8. However, based on

the performance in the development set, we used one encoder layer (L = 1) instead

of six identical layers used in the original transformer model. For the parameter

update, we used the Adam optimization algorithm [68] and for the loss function,

we used the mean squared error. Moreover, we set the learning rate to 5 × 10−5

and the dropout value to 2× 10−1.

For fine-tuning, we experimented with both the Base and the Large versions of

BERT and RoBERTa for the pairwise sentence classification task [36]. For training,

we used cross entropy loss function to calculate the loss. The parameters of the

BERTBase and RoBERTaBase models were: dmodel = 768, dff = 3072, A = 12, L

= 12. For the BERTLarge and RoBERTaLarge models, the parameters were: dmodel

= 1024, dff = 4096, A = 16, L = 24. For all models, the Adam was used as the

optimizer, the batch size ∈ {8, 16, 24}, and the learning rates ∈ {1e− 5, 2e− 5}.
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3.3.4 Implementation

We implemented our models using Pytorch20. For fine-tuning, we used the Hugging-

Face Transformer21 model [163] and ran our experiments in multi GPU [44, 105]

settings with 4 Nvidia V100 GPUs. For the feature-based approach, we used a

Pytorch-based implementation of the Transformer Encoder22 and ran our exper-

iments using a single Nvidia 1080 GPU. The BERT contextualized embeddings

were generated using the MXNet23 library and the ELMo contextualized embed-

dings were generated using the AllenNLP24 library.

3.4 Results and Discussions

We performed extensive experiments to compare our contextualized embeddings

based transformer encoder (CETE) with the recent progress. To understand the

effectiveness of our approaches, we also compared with several baselines.

For the feature-based approach, we used a baseline that had the transformer

encoder but utilized the GloVe word embeddings [118] which could not consider

the contextual information. As the dimensions in the hidden layers and the feed

20https://pytorch.org/

21https://github.com/huggingface/transformers

22https://github.com/AnubhavGupta3377/Text-Classification-Models-Pytorch

23https://mxnet.apache.org/

24https://allennlp.org/
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forward layers in our feature-based approach were same as the dimension of the

contextualized embeddings, we also used the dimensions in those layers for this

baseline same as the dimension of GloVe: dmodel = 300, dff = 300, A = 6, L = 1.

For the fine-tuning approach, we compared our models with the fine-tuned XL-

Net model [166]. Note that the XLNet model did not use the original transformer

architecture [150]. Rather, it utilized the Transformer-XL [34] architecture by using

the segments recurrence mechanism as well as the relative encoding scheme [166].

It also proposed the permutation-based language modeling to capture bidirectional

context [166]. Similar to our fine-tuning-based models, we use both the Base and

the Large versions of XLNet and keep the hyperparameters such as optimizer, batch

size, and learning rates identical to our fine-tuning-based models.

First, we show the results our experiments in the TREC-QA and the WikiQA

datasets in Table 3.2 and Table 3.3 respectively. Next, the performance of our

models in the four CQA datasets, namely, the YahooCQA, the SemEval-2015CQA,

the SemEval-2016CQA, and the SemEval-2017CQA are shown in Table 3.4, 3.5,

3.6, 3.7 respectively. Below, we first discuss the performance of our feature-based

approach in these datasets, followed by discussing the performance of our fine-

tuning-based approach in these datasets.
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Table 3.2: Performance comparisons on the TREC-QA dataset.

TREC-QA

Model RAW Cleaned

MAP MRR MAP MRR

Rao et al. [126] 0.780 0.834 0.801 0.877

Chen et al. [21] - - 0.781 0.851

Chen et al. [22] - - 0.841 0.917

Chen et al. [23] - - 0.823 0.889

Tay et al. [146] 0.770 0.825 0.784 0.865

Madabushi et al. [99] 0.836 0.863 0.865 0.904

Tymoshenko et al. [149] 0.777 0.869 - -

Kamath et al. [63] 0.852 0.891 - -

Rao et al. [127] 0.774 0.843 - -

Yoon et al. [171] - - 0.875 0.940

Lai et al. [73] - - 0.914 0.957

Garg et al. [43] - - 0.943 0.974

Transformer Encoder + GloVe 0.708 0.764 0.728 0.812

CETE (ELMo Embeddings) 0.798 0.869 0.791 0.858

CETE (BERTBase Embeddings) 0.799 0.855 0.791 0.857

CETE (BERTLarge Embeddings) 0.806 0.897 0.789 0.887

XLNetBase Fine Tuning 0.903 0.939 0.900 0.938

XLNetLarge Fine Tuning 0.939 0.979 0.920 0.973

CETE (BERTBase Fine Tuning) 0.891 0.925 0.888 0.953

CETE (BERTLarge Fine Tuning) 0.917 0.947 0.905 0.967

CETE (RoBERTaBase Fine Tuning) 0.927 0.962 0.905 0.950

CETE (RoBERTaLarge Fine Tuning) 0.950 0.980 0.936 0.978
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Table 3.3: Performance comparisons on the WikiQA dataset.

Model WikiQA

MAP MRR

Rao et al. [49] 0.709 0.723

Bian et al. [13] 0.754 0.764

Chen et al. [21] 0.721 0.731

Chen et al. [22] 0.730 0.743

Chen et al. [23] 0.736 0.745

Sha et al. [139] 0.746 0.758

Tay et al. [146] 0.712 0.727

Tymoshenko et al. [149] 0.762 0.776

Zhang et al. [177] 0.766 0.780

Liu et al. [89] 0.735 0.751

Kamath et al. [63] 0.700 0.716

Yoon et al. [171] 0.834 0.848

Lai et al. [73] 0.857 0.872

Transformer Encoder + GloVe 0.671 0.686

CETE (ELMo Embeddings) 0.762 0.774

CETE (BERTBase Embeddings) 0.727 0.741

CETE (BERTLarge Embeddings) 0.714 0.731

XLNetBase Fine Tuning 0.808 0.820

XLNetLarge Fine Tuning 0.836 0.847

CETE (BERTBase Fine Tuning) 0.829 0.843

CETE (BERTLarge Fine Tuning) 0.843 0.857

CETE (RoBERTaBase Fine Tuning) 0.847 0.860

CETE (RoBERTaLarge Fine Tuning) 0.900 0.915
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Table 3.4: Performance comparisons on the YahooCQA dataset.

Model YahooCQA

MAP MRR

Tay et al. [146] - 0.801

Transformer Encoder + GloVe 0.667 0.667

CETE (ELMo Embeddings) 0.762 0.762

CETE (BERTBase Embeddings) 0.776 0.776

CETE (BERTLarge Embeddings) 0.778 0.778

XLNetBase Fine Tuning 0.939 0.939

XLNetLarge Fine Tuning 0.945 0.945

CETE (BERTBase Fine Tuning) 0.948 0.948

CETE (BERTLarge Fine Tuning) 0.951 0.951

CETE (RoBERTaBase Fine Tuning) 0.951 0.951

CETE (RoBERTaLarge Fine Tuning) 0.955 0.955

Table 3.5: Performance comparisons on the SemEval-2015 dataset.

Model SemEval-2015

MAP MRR

Transformer Encoder + GloVe 0.843 0.864

CETE (ELMo Embeddings) 0.875 0.909

CETE (BERTBase Embeddings) 0.890 0.924

CETE (BERTLarge Embeddings) 0.883 0.923

XLNetBase Fine Tuning 0.929 0.960

XLNetLarge Fine Tuning 0.945 0.969

CETE (BERTBase Fine Tuning) 0.923 0.949

CETE (BERTLarge Fine Tuning) 0.935 0.961

CETE (RoBERTaBase Fine Tuning) 0.933 0.956

CETE (RoBERTaLarge Fine Tuning) 0.947 0.970
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Table 3.6: Performance comparisons on the SemEval-2016 dataset.

Model SemEval-2016

MAP MRR

Sha et al. [139] 0.801 0.872

Transformer Encoder + GloVe 0.741 0.810

CETE (ELMo Embeddings) 0.767 0.824

CETE (BERTBase Embeddings) 0.773 0.835

CETE (BERTLarge Embeddings) 0.765 0.831

XLNetBase Fine Tuning 0.849 0.912

XLNetLarge Fine Tuning 0.860 0.912

CETE (BERTBase Fine Tuning) 0.843 0.906

CETE (BERTLarge Fine Tuning) 0.866 0.927

CETE (RoBERTaBase Fine Tuning) 0.851 0.900

CETE (RoBERTaLarge Fine Tuning) 0.888 0.938

3.4.1 Effectiveness of Feature-based Approach

Performance on TREC-QA and WikiQA: For the TREC-QA and the Wik-

iQA datasets, we can see from both Table 3.2 and Table 3.3 that integrating

the transformer encoder with ELMo or BERT have outperformed the baseline

where only the GloVe embedding was used with the transformer encoder. Specif-

ically, in terms of MAP, our CETE model with ELMo achieves 13.56% improve-

ment over the transformer encoder with GloVe in the WikiQA dataset. For the

TREC-QA dataset, the improvement is 12.71% in the RAW version and 8.65%

in the Cleaned version over the baseline. Though our best performing CETE
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Table 3.7: Performance comparisons on the SemEval-2017 dataset.

Model SemEval-2017

MAP MRR

Nakov et al. [109] 0.884 0.928

Transformer Encoder + GloVe 0.824 0.881

CETE (ELMo Embeddings) 0.860 0.914

CETE (BERTBase Embeddings) 0.875 0.922

CETE (BERTLarge Embeddings) 0.867 0.922

XLNetBase Fine Tuning 0.902 0.934

XLNetLarge Fine Tuning 0.930 0.962

CETE (BERTBase Fine Tuning) 0.904 0.942

CETE (BERTLarge Fine Tuning) 0.921 0.963

CETE (RoBERTaBase Fine Tuning) 0.909 0.944

CETE (RoBERTaLarge Fine Tuning) 0.943 0.974

model with ELMo could not outperform the state-of-the-art [73] in the WikiQA

dataset, it outperformed or provided comparable performance with many recent

work [22, 23, 139, 149, 63]. For both versions of TREC-QA, the feature-based

CETE models do not outperform the state-of-the-art [63, 43]. However, their per-

formances are still comparable or better than many recent work [146, 149, 23, 127].

Performance on CQA datasets: We notice from Table 3.4, 3.5, 3.6, 3.7 that

our proposed approach of integrating transformer encoder with ELMo or BERT

have again outperformed the baseline in all the CQA datasets. Specifically, in terms

of MAP, our best performing feature-based approach BERTLarge achieves 16.64%

63



Figure 3.2: Similarity between the words of a question and a relevant candidate

answer. Here, darker color indicates more similarity.

improvement over the transformer encoder with GloVe in the YahooCQA dataset.

In the SemEvalCQA datasets, The CETE model with BERTBase performs the best

with an improvement of 5.58%, 4.32%, and 6.19% over the baseline in terms of MAP

in the SemEval-2015CQA, SemEval-2016CQA, and SemEval-2017CQA datasets

respectively. Though none of our feature-based approaches outperform the current

state-of-the-art models25 [109, 139], they show comparable performance in each

dataset.

Case study: To get deeper insights about why our feature-based CETE models

with ELMo or BERT are more effective than the transformer encoder with GloVe,

we randomly selected some question and candidate answer pairs and analyze the

word-by-word similarity between them. Figure 3.2 shows the word-by-word simi-

larity heatmap for a relevant question and candidate answer pair. We observe that

25We did not report any recent progress for SemEval2015-CQA as we found that prior work
used different evaluation metrics.
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Figure 3.3: Similarity between the words of a question and an irrelevant candidate

answer. Here, lighter color indicates less similarity.

for the similar sentence pair, words between two sentences are more similar in the

CETE model with ELMo/BERT embeddings than the transformer encoder with

GloVe model. It indicates that for the similar sentence pair, the transformer en-

coder with contextualized embeddings effectively captures the overall context of the

sentence, resulting in better performance for answer selection. For the dissimilar

sentence pair, we observe from Figure 3.3 that the words between the sentence pair

were more dissimilar in the CETE model than the transformer encoder with GloVe

model, suggesting the effectiveness of integrating contextualized embeddings with

the transformer encoder.

3.4.2 Effectiveness of Fine-tuning-based Approach

Performance on TREC-QA and WikiQA: We fine-tune the pre-trained BERT,

RoBERTa, and XLNet models for the answer selection and ranking task. Among

these three models, BERT and RoBERTa are transformer encoder based, whereas
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the XLNet model is based on the Transformer-XL model. From the Table 3.2

and 3.3, we find that the Large versions of BERT, RoBERTa, and XLNet always

outperform their respective Base versions in the TREC-QA and WikiQA datasets

respectively. While comparing XLNet with BERT, we find that XLNet outperforms

BERT in both versions of the TREC-QA. However, in the WikiQA dataset, the

BERT model achieves superior performance. In all datasets, the RoBERTa model

outperforms both XLNet and BERT.

In comparison to the prior work, we observe new state-of-the-art results in

the RAW version of TREC-QA by fine-tuning with both Base and Large versions

of BERT. The fine-tuned BERTLarge and BERTBase models have an improvement

of 7.63% and 4.58% respectively in terms of MAP over the previous state of the

art [63]. However, these models do not achieve the state-of-the-art results in the

Cleaned version of TREC-QA [43] as well as in the WikiQA [73]. With the fine-

tuned RoBERTa models, we observe even more improvements in the WikiQA and

the RAW version of TREC-QA compared to the fine-tuned BERT models. In the

RAW TREC-QA, both the Base and Large versions of RoBERTa outperform the

previous state-of-the-art [63], with RoBERTaLarge performing the best with MAP

0.950 and MRR 0.980. In the WikiQA dataset, our fine-tuned RoBERTaLarge model

sets a new state-of-the-art result with an improvement of 5.02% in terms of MAP

and 4.93% in terms of MRR over the previous best performing model [73].
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Though our approach of fine-tuning RoBERTaLarge provides new state-of-the-

results in TREC-QA (RAW) and WikiQA datasets, in terms of MAP it could not

outperform the RoBERTaLarge with Transfer Learning approach: the RoBERTa-

TANDA model [43] in the Cleaned version of TREC-QA. It is to be noted that in the

two-step fine-tuning-based RoBERTa-TANDA model, the first step of fine-tuning

was done in a large dataset created from the Wikipedia [72] which contains 57242

questions, along with more than 20 Millions candidate answers. Then the second

step of fine-tuning was done in the target domain. In comparison to them, we only

do a one-step fine-tuning in the target domain which contains 1229 questions with

53417 candidate answers in the training set (our training data size is only about 2%

of total questions and 0.3% of total candidate answers used to train the RoBERTa-

TANDA model). Without the leverage of large datasets, our fine-tuning approach

provides almost similar result in terms of MAP with only 0.75% less than the

RoBERTa-TANDA model. In terms of the MRR, we observe a new state-of-the-art

result with an improvement of 0.41% compared to the RoBERTa-TANDA model.

We could not conduct any significance tests to determine whether the performance

difference between our fine-tuned RoBERTaLarge model and the RoBERTa-TANDA

model [43] is statistically significant or not because the RoBERTa-TANDA model

was only evaluated26 on the cleaned version of the TREC-QA dataset among the

26We did not report the result of RoBERTa-TANDA for the WikiQA dataset as the number of
questions and the candidate answers used in their test data were different than ours.
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datasets that we used in our experiments. Thus, we did not have enough results

for the RoBERTa-TANDA model to conduct the significance test.

Performance on CQA datasets: In all CQA datasets, we find from Table 3.4,

3.5, 3.6, 3.7 that the RoBERTa model again outperforms both BERT and XLNet.

Among BERT and XLNet, we find that BERTLarge outperforms XLNet in the

YahooCQA and SemEval-2016 datasets, whereas in SemEval-2015 and SemEval-

2017, XLNetLarge outperforms BERT.

We observe new state-of-the-art results in all CQA datasets by fine-tuning both

BERT and RoBERTa models. Though both Base and Large versions of BERT and

RoBERTa provide state-of-the-art results across all CQA datasets, we find that

the Large versions outperform their respective Base versions in all of them. For

the SemEval datasets, our best performing RoBERTaLarge model has an improve-

ment of 10.86% in SemEval-2016CQA and 6.67% in SemEval-2017CQA in terms of

MAP than the state-of-the-art models [139, 109], respectively. For the YahooCQA

dataset, the RoBERTaLarge model again performs the best with an improvement of

19.23% in terms of MRR over the previous state-of-the-art result [146].

Comparing Fine-tuning with Feature Extraction: To analyze the perfor-

mance difference between the fine-tuning approach and the feature-based approach
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in more detail, we conduct significance tests. We notice based on the paired t-test

(p ≤ .05) that all the fine-tuning-based approaches perform significantly better

than the feature-based approaches. It is worth noting that in our feature-based

approach, features are first extracted from the pre-trained model and then they

are fed to the transformer encoder which is required to be trained from scratch.

In contrast, in the fine-tuning approach, the pre-trained model is fine-tuned for a

specific task by adding some additional randomly initialized parameters. As Peters

et al. [120] suggest, the performance of the fine-tuning-based approach and the

feature-based approach depends on the similarity between the pre-training and the

target task. They also observed that fine-tuning the BERT model significantly out-

performed the feature-based approaches for the textual similarity task. This may

explain why fine-tuning approach performs better than the feature-based approach

for the answer sentence selection task.

3.4.3 Ablation Studies

In order to further investigate the effectiveness of our proposed approaches, we

conduct several ablation studies. Below, we first discuss the ablation test result on

the feature-based approach, followed by discussing the result on the fine-tuning-

based approach.
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Effects on feature-based approach: In order to investigate the effectiveness

of integrating transformer encoder with contextual embeddings in the feature-based

approach, the following models are included in our ablation test:

• ELMo Embeddings: Only the feature-based ELMo Embeddings were used

without any Transformer Encoder.

• BERTBase Embeddings: Only the feature-based BERTBase Embeddings were

used without any Transformer Encoder.

• BERTLarge Embeddings: Only the feature-based BERTLarge Embeddings were

used without any Transformer Encoder.

The above models simply measure the similarity between the question and the

candidate answers based on the fixed contextualized embeddings generated from

ELMo and BERT without sending them to the transformer encoder. We compare

these models with our feature-based models that do include the transformer en-

coder. The results of our ablation study based on the average MAP and MRR

scores across all datasets are given in Figure 3.4. From the ablation test, we

find that integrating transformer encoder with contextual embeddings improves

the performance by 43.73%, 25.23%, and 26.34% in terms of MAP and 41.32%,

21.27%, and 24.08% in terms of MRR in ELMo, BERTBase, and BERTLarge respec-

tively. These improvements are statistically significant based on paired t-test
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Figure 3.4: Performance comparisons based on the ablation test. Only the fixed

contextual embeddings of each model (ELMo, BERTBase, and BERTLarge) are com-

pared with their integration with the Transformer Encoder. MAP and MRR of

each model are based on the average across all datasets.

(p ≤ .05). This shows the effectiveness of our proposed approach of integrating

transformer encoder with the features extracted from the BERT or ELMo models.

Effects on fine-tuning-based approach: To investigate the effectiveness of

our approach of fine-tuning pre-trained transformer models, we excluded fine-tuning

and ran experiments by utilizing only the feature-based embeddings generated from

the pre-trained model. For that purpose, we selected the BERTLarge model and

studied the effect of removing fine-tuning from this model (see Table 3.8) in fol-

lowing four datasets for performance comparisons: TREC-QA (RAW), WikiQA,

YahooCQA, and SemEval-2016CQA.
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Table 3.8: Performance comparisons based on the Ablation Test. Here, ‘FT’ denotes

‘Fine Tuning’ and ‘L’ denotes ‘Large’.

QA datasets CQA datasets

Model TREC-QA WikiQA YahooCQA SemEval'16

MAP MRR MAP MRR MAP MRR MAP MRR

BERTL FT 0.92 0.95 0.84 0.86 0.95 0.95 0.87 0.93

without FT 0.41 0.48 0.57 0.57 0.44 0.44 0.60 0.67

From Table 3.8, we find that removing fine-tuning from BERT decreases the

performance by 55.4%, 32.1%, 53.7%, and 31.0% in terms of MAP in the TREC-

QA, WikiQA, YahooCQA, and SemEval-2016CQA datasets respectively. Note that

the deterioration here without fine-tuning is statistically significant based on

paired t-test (p ≤ .05).

3.4.4 Summary

In this chapter, we present two approaches to utilize contextualized embeddings

with the transformer encoder for the answer selection and ranking task. Our ex-

periments on six datasets demonstrate that the performance of our feature-based

approach is comparable with most of the prior work. Moreover, we find that

our approach of fine-tuning the pre-trained transformer encoder models for answer
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sentence selection is more effective compared to the feature-based approach. We

also show that our fine-tuning-based models are effective for the answer selection

and ranking task even without leveraging transfer learning from large question-

answering corpora. More importantly, we observe new state-of-the-art results on

all six datasets in terms of the MRR metric using our proposed fine-tuning-based

RoBERTa model along with setting new state-of-the-art results with the same

model on five datasets in terms of the MAP metric.
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4 Query Focused Text Summarization Task

In the Query Focused Text Summarization Task, given a query along with a set of

document(s), the goal is to generate a summary from the source document(s) that

is relevant to the given query. This task can be done in two scenarios:

1. Query Focused Single-Document Summarization: where a query along with a

document are given, and the objective is to generate a query focused summary

from the source document.

2. Query Focused Multi-Document Summarization: where a query along with a

set of documents are given, and the objective is to generate a query focused

summary from all the documents which are given in the document set.

In this thesis, we generate abstractive summaries for the query focused summariza-

tion task in both single-document and multi-document scenarios. Here, we divide

the chapter into two sections, where we first discuss the Single-Document Query Fo-

cused Abstractive Summarization (SD-QFAS) task followed by the Multi-Document

Query Focused Abstractive Summarization (MD-QFAS) task.
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4.1 Single-Document Query Focused Abstractive Summa-

rization

4.1.1 Background

In the abstractive text summarization task, the generated summaries may contain

words or phrases that did not appear in the source document(s) [168]. Recently,

various neural encoder-decoder models have provided state-of-the-art performance

in a wide range of natural language generation tasks [172, 168]. The impressive

success of using neural models for sequence to sequence modeling in such tasks

have also inspired researchers to utilize the neural encoder-decoder architecture

for abstractive summary generation in recent years [110, 132]. However, one major

problem in the neural models for abstractive summarization is that while generating

the summaries they tend to repeat the same word multiple times that lead to

the generation of non-cohesive summaries [138]. To address this issue, See et al.

[138] proposed the Pointer Generation Network (PGN) that utilized a novel copy

and coverage mechanism to discourage the repetition of the same words. More

recently, the BERTSUM [92] model was proposed which used the BERT model

[36] as the encoder and the decoder of transformer [150] as the decoder. It is to be

noted that the BERTSUM model showed impressive performance for the abstractive

summarization task and set new state-of-the-art results in several datasets.
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While significant progress has been made on the single-document generic ab-

stractive summarization task, applying neural models for the query focused abstrac-

tive summarization task in the single-document scenario has been rare [10]. One

notable exception on utilizing neural models for such tasks is the Diversity Driven

Attention (DDA) model [113]. This model can effectively generate query focused

abstractive summaries via focusing on different portions of a document based on

the given query at different times. However, similar to the less amount of work

for the SD-QFAS task, the number of datasets available for this task is also very

small. To the best of our knowledge, the only available dataset for such tasks is the

Debatepedia dataset27. Nonetheless, the size of this dataset is very small compared

to the datasets used for generic abstractive summarization [10, 92, 138]. Thus, the

lack of large training data for the SD-QFAS task in the available dataset makes this

task a few-shot learning problem. To address this issue, the Relevance Sensitive

Attention (RSA) for Query Focused Summarization[10] utilized transfer learning

by first pre-training the PGN model [138] on a large generic abstractive summa-

rization dataset and then incorporated query relevance into the pre-trained model

to generate the query focused abstractive summaries in the Debatepedia dataset.

However, they did not fine-tune their model on QFAS datasets and obtained a very

low Precision score [10].

27http://www.debatepedia.org/
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To tackle the above issues, we introduce a novel transfer learning approach for

the SD-QFAS task by first pre-training our summarization model on a large generic

abstractive summarization dataset followed by fine-tuning it for the SD-QFAS task

via incorporating query relevance. In contrast to the prior work [113, 10, 2, 61] that

are based on the recurrent neural network architecture, we utilize the transformer

architecture to leverage the effectiveness of pre-training and fine-tuning since the

former and the latter with the transformer-based models have been found more

effective on various natural language processing tasks [36, 83, 43].

4.1.2 Our Proposed Approach

Let us assume that we have a query Q = q1, q2, ..., qk containing k words and a

source document D = d1, d2, ...dn containing n words. Our task is to generate an

abstractive summary S = s1, s2, ...sm containing m words from the source document

D based on the given query Q.

To achieve this goal, our proposed method adopts the BERTSUM model [92]

that utilizes the transformer architecture for abstractive summarization via utiliz-

ing the BERT model [36] on its encoder and the decoder of transformer [150] on its

decoder. However, the BERTSUM model was designed for the generic summariza-

tion task without considering any query relevance [92]. Therefore, we incorporate

query relevance (QR) in the BERTSUM model along with leveraging transfer learn-
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Figure 4.1: Our proposed approach works in two steps: (a) Pre-train the BERT-

SUM model on a generic abstractive summarization corpus (e.g., XSUM) and (b)

Fine-tune the pre-trained model for the SD-QFAS task on the target domain (e.g.,

Debatepedia).

ing (TL) to utilize this model for few-shot learning in the SD-QFAS task. More

specifically, our model (denoted as QR-BERTSUM-TL) performs the SD-QFAS

task in two steps as shown in Figure 4.1. In the first step, we pre-train the BERT-

SUM model on a large training corpus of generic abstractive summarization. Then,

we fine-tune the pre-trained model for the SD-QFAS task by utilizing the query

relevance. In the following, we describe these two steps in detail.

(i) Pre-training the BERTSUM Model: In this step, we pre-train the

BERTSUM model on a large generic abstractive summarization dataset. Among
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the datasets used for BERTSUM [92], the XSUM28 [111] dataset was the most

abstractive one containing highest number of novel bi-gram. Therefore, we pre-

train the BERTSUM model on this dataset. During the training process, the model

utilizes the pre-trained BERT model [36] as the encoder and the randomly initialized

Transformer decoder [150] as the decoder. However, the original BERT model

inserted the special token [CLS] at the beginning of only the first sentence. In

contrast, the BERTSUM model inserts the [CLS] token at the beginning of each

sentence. Moreover, each sentence-pair in BERTSUM is also separeted by the [SEP]

token.

(ii) Incorporating Query Relevance and Fine-tuning BERTSUM: In

this step, we fine-tune the BERTSUM model on the Debatepedia dataset which

was pre-trained on the XSUM dataset in the previous step. During fine-tuning,

we incorporate the query relevance via concatenating the query with the document

as the input of the encoder (see Figure 4.1b). We do this because we find that

a similar approach of concatenating the question with the document works well

for different question-answering tasks [83]. Furthermore, we use different types of

attention mechanisms to utilize the incorporation of query relevance in BERTSUM.

These attention mechanisms are described in the following.

28https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset
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Figure 4.2: An overview of various attention models. (a) The Bidirectional Self-

Attention Mechanism. (b) The Query-Document Attention Mechanism.

Attention Mechanisms in QR-BERTSUM-TL: We utilize two types of at-

tention mechanisms to utilize the query relevance in our proposed QR-BERTSUM-

TL model. These are: (i) the Bidirectional Self-Attention mechanism, and (ii)

the Query-Document attention mechanism. These two attention mechanisms are

shown in Figure 4.2. Below, we describe these attentions.

(i) The Bidirectional Self-Attention Mechanism: In the QR-BERTSUM-

TL architecture, we concatenate the query with the document and then the concate-

nated text is given as input to the encoder of the model. This is how we incorporate

the query relevance in the original BERTSUM model [92]. Note that the original

BERTSUM architecture uses the BERT model as its encoder [36] that utilizes the

bidirectional self-attention mechanism [150] to generate the encoded representation.

When we utilize the bidirectional self-attention mechanism [36] (Figure 4.2a) in the

QR-BERTSUM-TL model, both the query and the document gives attention to
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each other to provide the encoded representation of the concatenated input.

(ii) The Query-Document Attention Mechanism: Dong et al. [37] pro-

posed the sequence-to-sequence language modeling objective for text sequences that

are consisted of two segments. In such text sequences, each token in the first seg-

ment can only attend to the tokens in both directions within the same segment

but cannot attend to any tokens in the second segment, while the tokens in the

second segment can attend to the leftward tokens in their own segment as well

as to all tokens in the first segment. Based on the this objective, we propose the

Query-Document (QD) attention mechanism. In our QD attention, each token

in the query can only attend to the tokens which are within the query. While

the tokens in the document can attend to all tokens in both query and document

bidirectionally. Our intuition behind this approach is that, since in the original

QR-BERTSUM-TL model the bidirectional self-attention allowed the query to also

attend to the document, the final encoded representation of the concatenated input

might lose some query related information. Because the bidirectional self-attention

let the query segment to also be influenced by the document segment to produce

the encoded representation of the query segment. Thus, we hypothesize that dur-

ing the decoding process, the decoder may produce summaries that may not be

fully relevant to the query. To avoid such scenarios, we allow the query segment to

only attend to itself whereas the document segment is allowed to provide a query
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focused representation by attending to both the query and to itself. Given query,

key, and value vectors Q, K, and V respectively, with dk as the square root of the

dimension of K, we calculate the encoded representation Z using QD attention via

adding the mask matrix M in the self-attention formula of the transformer encoder

[150]:

Z = softmax

Q×KT
√

dk

+ M

V (4.1)

In equation (4.1), Mij = 0 allows attention from token i to token j, whereas Mij =

−∞ prevents attention from token i to token j.

4.1.3 Experimental Setup

In this section, we describe the datasets that we used to evaluate the effectiveness of

our proposed approach, followed by the evaluation metrics, the training parameters

that had been used in our experiments, and the details of our implementation.

4.1.3.1 Datasets

In our experiments, we primarily used the Debatepedia [113] dataset to evalu-

ate our proposed approach for the SD-QFAS task. Moreover, due to the lack of

datasets available for the SD-QFAS task, we also use the QA-NLG dataset from

MS-MARCO [6] and utilize it for the SD-QFAS task to further investigate the

generalized effectiveness of our proposed approach across different datasets.
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Debatepedia Dataset: Debatepedia is an encyclopedia of pro and con argu-

ments and quotes on debate topics. Nema et al. [113] utilized Debatepedia to

create a dataset for the SD-QFAS task [113]. The average number of words per

document, summary, and query in the Debatepedia dataset is 66.4, 11.16, and 9.97

respectively. They used 10-fold cross validation in their experiments with the DDA

model on this dataset. The average number of instances in each fold is 10,859 for

training, 1,357 for testing, and 1,357 for validation respectively. It is to be noted

that, we find in the source code29 of the DDA [113] model that the dataset was

augmented to create new training instances while it was evaluated using the DDA

model [113]. However, the data augmentation approach was not mentioned in the

original paper of the DDA model where this dataset was first introduced for the

SD-QFAS task [113]. Based on our analysis of the source code of the DDA model,

we find that in the augmented dataset, the test data and the validation data were

same as the original, but the average training instances in each fold were 95,843.

For data augmentation, a pre-defined vocabulary of 24,822 words was used where

each word had been associated with a synonym. Then for each training instance,

N (10 ≤ N ≤ 17) words in each document and M (1 ≤ M ≤ 3) words in each

query were randomly selected (except stop words and numerical values) and then

replaced with their synonyms found in the vocabulary. If a selected word was not

29https://git.io/JeBZX
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found in the vocabulary, it was added there with the most similar word found based

on cosine similarity in the GloVe [118] vocabulary. For each training instance, this

process is repeated 8 times to create 8 new document and query instances. But

the same summary of the original instance was used in the newly generated in-

stances. Note that we did not leverage any data augmentation for our proposed

model. Instead, we used the original Debatepedia dataset for evaluation and only

pre-processed it by removing the start token <s> and the end token <eos>.

MS-MARCO: Due to the lack of datasets available for the SD-QFAS task, we

utilize the QA-NLG dataset from MS-MARCO [6] for such tasks. However, in this

dataset, a set of passages along with a query are given and the abstractive answer

is required to be generated from the most relevant passage among them. To utilize

this dataset for QFAS, we follow the work of Nishida et al. [114], where they only

utilized the gold passages in the training set as well as in the development set to

evaluate their model in one of their experiments. We use this dataset similarly for

the SD-QFAS task by only utilizing the gold passage as the source document. In

the MS-MARCO dataset, the training set contains 153725 queries which is much

higher than the Debatepedia dataset. Thus, we did not use this dataset to study

the effectiveness of our proposed model for few-shot learning. Rather, we use this

dataset to investigate the generalized effectiveness of our proposed model for the SD-
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QFAS task. Moreover, similar to the prior work [114], we use the development set of

this dataset that contains 12467 queries as the evaluation data. During experiments,

we use 10% data from the training set for validation and select the model for

evaluation in the development set which performs the best in the validation set.

4.1.3.2 Evaluation Metrics

To evaluate the performance of our proposed model in the Debatepedia dataset as

well as in the MS-MARCO dataset, we follow the prior works that utilized these

datasets to select the evaluation metrics [113, 10, 114].

For the Debatepedia dataset, we report the results based on the Recall-Oriented

Understudy for Gisting Evaluation (ROUGE) metric in terms of the ROUGE-1,

ROUGE-2, and ROUGE-L scores30. Though the prior works on the Debatepdia

dataset only addressed the ROUGE scores in terms of the Recall metric [113, 10],

in this work, we also included the Precision and F1 metrics in addition to the Recall

metric to address the ROUGE scores. Similar to the prior work, we calculated the

result based on the average across 10-folds. When the ROUGE score is calculated

based on Recall, it focuses to determine how much of the reference summary is

covered by the model’s predicted summary. If the number of overlapping n-grams

between the reference summary and the model’s predicted summary is ON and the

30We used the following package for calculation: https://pypi.org/project/pyrouge/
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total number of n-grams in the reference summary is TNR, then the ROUGE-N

(Recall) for n-grams overlap calculated as follows:

ROUGE-n (Recall) =
ON

TNR

(4.2)

When the ROUGE score is calculated based on Precision, it focuses to determine

how much of the model’s predicted summary is relevant. If the number of overlap-

ping n-grams between the reference summary and the model’s predicted summary

is ON and the total number of n-grams in the model’s predicted summary is TNM ,

then the ROUGE-N (Precision) for n-grams is calculated as follows:

ROUGE-n (Precision) =
ON

TNM

(4.3)

For the MS-MARCO dataset, it should be noted that the prior work on this

dataset used the Bilingual Evaluation Understudy (BLEU) metric based on uni-

grams along with utilizing the ROUGE-L metric for performance evaluation [114].

Thus, similar to the prior work [114], we also use these two metrics in terms of

the F1 score to evaluate our proposed models in the MS-MARCO dataset. Below,

we briefly discuss the Recall, Precision, and F1 metrics. Then, we discuss various

ROUGE scores followed by the BLEU-1 metric that we use for the SD-QFAS task

in different datasets.

Recall: It is is used to measure the performance of a model in terms of iden-

tifying what percentage of the positive examples in a dataset that the model has
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successfully labeled as positive. If we denote the total number of examples that the

model has correctly predicted as positive as TP and the total number of examples

that the model has incorrectly predicted as negative as FN , then the recall will be

calculated as follows:

Recall =
TP

TP + FN
(4.4)

Precision: It is is used to measure the performance of a model in terms of

identifying the percentage of examples that the model has labeled as positive are

actually positive. If we denote the total number of examples that the model has cor-

rectly predicted as positive as TP and the total number of examples that the model

has incorrectly predicted as positive as FP , then the precision will be calculated

as follows:

Precision =
TP

TP + FP
(4.5)

F1: It is the harmonic mean of precision and recall which is calculated as

follows:

F1 = 2× Precision×Recall

Precision + Recall
(4.6)

ROUGE-1: It uses the overlap of the unigrams between the summary produced

by the model and the gold reference summary.
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ROUGE-2: It uses the overlap of the bigrams between the summary produced

by the model and the gold reference summary.

ROUGE-L: It utilizes the overlap of the n-grams of the Longest Common

Subsequence (LCS) between the summary produced by the model and the gold

reference summary. It is to be noted that instead of using any pre-defined length of

the n-grams, the ROUGE-L automatically calculates the longest common n-grams

to compute the score.

BLEU-1: BLEU [115] utilizes a modified form of the precision metric to eval-

uate the performance of the candidate summary generated by a model. Given a

set of gold reference summaries for each candidate summary, the modified precision

mechanism works as follows:

1. At first, for each distinct word in the generated candidate summary, the

maximum number of times the word appears in any gold reference summaries

is identified.

2. Afterwards, the total number of times each distinct word appears in the gen-

erated candidate summary is counted which is then clipped by the maximum

value counted for that word in the previous step. For each word w, if the

total count for w in the candidate summary is tw and the maximum value

found in the gold reference summaries for w is mw, then the clipped value cw
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is counted as follows:

cw = min(mw, tw) (4.7)

3. Finally, the BLEU-1 score is calculated via dividing the sum of the clipped

values CW by the total number of words generated in the candidate summary

TW .

BLEU-1 =
CW

TW

(4.8)

4.1.3.3 Training and Parameter Settings

Here, we discuss the training parameters that we used in our experiments for the

SD-QFAS task. To pre-train the BERTSUM model on the XSUM dataset, we kept

the parameters similar to the original work [92]: dropout = 0.1, label smoothing

with smoothing factor = 0.1, the hidden units in the transformer decoder = 768

and the hidden size for all feed-forward layers = 2048, the warmup steps for the

encoder = 20000 and for the decoder = 10000, the learning rate for the encoder

= 0.002 and for the decoder = 0.1, the batch size = 140 with total training steps

= 30000. To fine-tune the QR-BERTSUM-TL model on the target dataset, we set

new values to the following parameters31: batch size = 500, warmup steps encoder

= 6000, warmup steps decoder = 2000, and total training steps = 60000. Moreover,

we truncated each input document to 100 tokens and each generated summary to

31We also use these values for the baseline QR-BERTSUMVanilla model.
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consider at most 25 tokens. As used in the original BERTSUM model [92], we also

utilized the beam search decoding mechanism with size = 5.

4.1.3.4 Implementation

For implementation, we utilize the Transformer Library of HuggingFace [163] along

with using the official source code of the BERTSUM32 model [92]. All of our

experiments were run using NVIDIA V100 with 4 GPUs.

4.1.4 Results and Discussions

To evaluate the effectiveness of our approach, we consider the following models as

baselines:

QR-BERTSUMVanilla: This model adopted the BERTSUM architecture [92]

and incorporated Query Relevance (QR) by concatenating the query with the doc-

ument. We trained it end-to-end only on the target SD-QFAS dataset.

BERTSUMXSUM: This baseline used the BERTSUM model pre-trained on

the XSUM dataset and did not do any fine-tuning on the target dataset.

Below, we first discuss the performance of our model in the Debatepedia dataset.

Then we discuss the performance of our model in the MS-MARCO dataset.

32https://github.com/nlpyang/PreSumm
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Table 4.1: Performance of different models for the SD-QFAS task on the Debate-

pedia dataset. Here, ‘*’ denotes ‘results based on our experiments with DDA’. ‘R’,

‘P’, and ‘F’ denote ‘Recall’, ‘Precision’, and ‘F1’ respectively. The ‘Original’ and

‘Augmented’ versions of DDA are denoted by ‘ORG’ and ‘AUG’ respectively, while

‘†’ denotes ‘QD attention’ and ‘§’ denotes ‘Bidirectional Self-Attention’.

MODEL ROUGE-1 ROUGE-2 ROUGE-L

R P F R P F R P F

QR-BERTSUMVanilla 22.3 35.7 26.4 9.9 16.7 11.9 21.2 33.9 25.1

BERTSUMXSUM 17.4 11.5 13.3 3.0 2.5 2.8 15.0 10.0 11.5

DDA*(ORG) 7.5 7.7 7.4 2.8 2.9 2.8 7.1 7.5 7.2

DDA*(AUG) 37.8 47.4 40.5 27.6 33.7 29.4 37.3 46.7 39.9

DDA [113] 41.3 - - 18.8 - - 40.4 - -

Selection Driven [2] 43.2 - - 27.4 - - 42.7 - -

Overlap-Wind [61] 44.4 - - 30.5 - - 44.2 - -

RSA [10] 53.1 - - 16.1 - - 46.2 - -

QR-BERTSUM-TL † 58.0 60.3 58.7 45.2 46.1 45.5 57.1 59.2 57.7

QR-BERTSUM-TL § 58.0 60.4 58.5 45.2 46.1 45.5 57.1 59.3 57.7

Performance on Debatepedia: For the Debatepedia dataset, in addition to

the baselines, we also compare the performance of our proposed model with some
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of the previous models proposed for this dataset: the first model proposed for this

dataset, the DDA model [113]; the current state-of-the-art in terms of ROUGE-

1 and ROUGE-L, the RSA model [10]; the current state-of-the-art in terms of

ROUGE-2, the Overlap-Wind model [61]; and the recently proposed Selection

Driven model [2]. Moreover, we also ran our own experiments with the DDA

model on both the original and augmented versions of the Debatepedia dataset.

The experimental results of our proposed approach and other models are shown in

Table 4.1. To be noted that, The QR-BERTSUMVanilla model shown in Table 4.1

was trained end-to-end on the original version of the Debatepedia Dataset.

We find that among the baseline models, both the QR-BERTSUMVanilla and the

BERTSUMXSUM models outperform the DDA*(ORG) model for few-shot learning.

Moreover, since the QR-BERTSUMVanilla and the BERTSUMXSUM are based on the

transformer architecture, these models outperforming the RNN based DDA*(ORG)

model suggests the effectiveness of using transformer instead of RNN for the SD-

QFAS task. We also find that data augmentation significantly (based on paired

t-test with p ≤ .05) improves the performance of DDA, with the DDA*(AUG)

model outperforming all baselines. As our result with DDA*(AUG) could not fully

reproduce the result in [113], we assume that different pre-processing settings for

the input document as well as the generated summary could be the possible reason

behind this since Nema et al. [113] did not mention their pre-processing techniques.
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When we compare our proposed QR-BERTSUM-TL model with the baselines,

we find that the QR-BERTSUM-TL model with both attentions significantly im-

proved the performance over the QR-BERTSUMVanilla model (which did not lever-

age transfer learning) as well as the BERTSUMXSUM model (which did not utilize

fine-tuning). These improvements suggest the effectiveness of utilizing both transfer

learning and fine-tuning in the QR-BERTSUM-TL model.

While we compare the performance between different attentions in the QR-

BERTSUM-TL model, we observe that both attentions provide the exact same

result in most ROUGE scores with only a few exceptions. Based on the result, we

find that the QR-BERTSUM-TL model with the bidirectional self-attention out-

performs its QD attention counterpart in two cases in terms of the Precision metric,

with an improvement of 0.17% for both ROUGE-1 and ROUGE-L scores. The only

case when The QR-BERTSUM-TL model with the QD attention outperforms the

QR-BERTSUM-TL with the bidirectional self-attention is based on the F1 metric

in terms of the ROUGE-1 score, with an improvement of 0.34%. The overall result

in the Debatepedia dataset suggests that the QD attention is not more effective

than the bidirectional self-attention for the SD-QFAS task.

In comparison to the prior work, we observe that the proposed QR-BERTSUM-

TL model sets a new state-of-the-art result in all three ROUGE scores for both

attentions. More specifically, in terms of recall, we find that the QR-BERTSUM-
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TL model (for both attentions) has an improvement of 9.23%, and 23.59% in terms

of ROUGE-1, and ROUGE-L respectively, over the previous state-of-the-art RSA

model [10]. As mentioned in [10], the RSA model provided very low ROUGE

precision score (the authors did not state the exact score) by generating very large

summaries which are 10 times longer than the required length. In contrast, our

proposed model shows high precision score by effectively generating summaries

according to the required length. We also observe a huge gain in comparison to the

previous models based on the ROUGE-2 score, with an improvement of 140.43%,

180.75%, 64.96%, 48.20% over the DDA [113], RSA [10], Selection Driven [2], and

Overlap-Wind [61] models respectively in terms of the recall metric.

Performance on MS-MARCO: For the MS-MARCO dataset, in addition to

the baselines33, we compared our proposed model with the current state-of-the-art

in this dataset: the MASQUE model [114]. We show the result in Table 4.2.

From Table 4.2, we observe that our proposed QR-BERTSUM-TL model (for

both attentions) again outperforms all the baseline models. More specifically,

we find that our best performing QR-BERTSUM-TL using the bidirectional self-

attention outperforms the baseline QR-BERTSUMVanilla with an improvement of

9.50% in terms of ROUGE-L and 14.53% in terms of BLEU-1. Further to note

33The QR-BERTSUMVanilla model in Table 4.2 was trained end-to-end on the MS-MARCO
dataset.
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Table 4.2: Performance of different models for the SD-QFAS task on the MS-

MARCO dataset in terms of ROUGE-L and BLEU-1 based on the F1 metric.

Here, ‘†’ denotes ‘QD attention’ and ‘§’ denotes ‘Bidirectional Self-Attention’.

MODEL ROUGE-L BLEU-1

QR-BERTSUMVanilla 71.6 70.2

BERTSUMXSUM 20.1 21.5

MASQUE [113] 78.7 78.1

QR-BERTSUM-TL † 72.3 72.1

QR-BERTSUM-TL § 78.4 80.4

that the improvement with this model is much higher while comparing with the

other baseline: the BERTSUMXSUM model, where the performance improvement is

290.05% in terms of ROUGE-L and 273.95% in terms of BLEU-1. These improve-

ments demonstrate the effectiveness of utilizing both pre-training and fine-tuning

in our proposed model.

Though previously we found in the Debatepedia dataset that the performance

of both the QD attention and the bidirectional self-attention was almost similar,

we find in the MS-MARCO dataset that the proposed QD attention is much less

effective than the bidirectional self-attention mechanism. More specifically, we find

that the performance is deteriorated by 7.78% in terms of ROUGE-L and 10.32% in
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terms of BLEU-1 when the QD attention is used instead of using the bidirectional

self-attention.

In comparison to the prior work, we find that our proposed models (for both at-

tentions) could not outperform the current state-of-the-art MASQUE [114] model in

terms of the ROUGE-L score. Though the QR-BERTSUM-TL model with the QD

attention fails to outperform the MASQUE model in terms of both ROUGE-L and

BLEU-1 metrics, it outperforms the MASQUE [114] model with an improvement of

2.94% in terms of the BLEU-1 score when it utilizes the bidirectional self-attention.

Note that we find from Table 4.1 and Table 4.2 that when transfer learning

is not utilized, the performance of QR-BERTSUMVanilla model in the MS-MARCO

dataset is much better than its performance in the Debatepedia dataset. This could

be due to the fact that the total training instances (153725 examples) in the MS-

MARCO dataset is almost 15 times higher than the total training instances (10859

examples) in the Debatepedia dataset. Nonetheless, the performance improvement

via utilizing query incorporation and transfer learning to fine-tune the BERTSUM

model in both datasets shows that our proposed QR-BERTSUM-TL model is very

effective for the SD-QFAS task.

Since we observe inconsistent effects in different datasets when we utilize var-

ious types of attentions to incorporate the query relevance in the proposed QR-

BERTSUM-TL model, we conduct ablation studies to further investigate the in-
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Table 4.3: Ablation test results in terms of Recall on Debatepedia and F1 on

MS-MARCO. Here, ‘†’ denotes ‘QD attention’ and ‘§’ denotes ‘Bidirectional Self-

Attention’, while ‘w/o’ denotes ‘without’. Moreover, we denote ‘ROUGE’ as ‘R’

and ‘BLEU’ as ’B’.

Datasets

MODEL Debatepedia MS-MARCO

R-1 R-2 R-L B-1 R-L

QR-BERTSUM-TL ‘§’ 57.96 45.20 57.05 80.39 78.39

QR-BERTSUM-TL ‘†’ 57.97 45.21 57.06 72.10 72.25

w/o Query Relevance 56.82 44.66 56.07 66.21 61.50

corporation of query relevance in our proposed model. In the following, we discuss

our findings from the ablation study.

Ablation Studies: In our ablation test, we remove the query incorporation from

our proposed QR-BERTSUM-TL model. We show the result of our ablation test in

Table 4.3 which suggests that the removal of query relevance leads to huge perfor-

mance deterioration in the MS-MARCO dataset, which is statistically significant

based on paired t-test (p ≤ .05). However, we surprisingly find that the performance

deterioration in the Debatepedia dataset is very small (less than 1%). For each at-
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Table 4.4: An example from the Debatepedia dataset.

Query: Is self-defense a good reason for guns ownership?

Document: The supreme court case warren vs district of Columbia main-

tained that there is no way to police protection and there is no contracts

between the individuals and local police. In short, the court has ruled that

each person is responsible for his/her own protection.

Gold Summary: Individuals are responsible to defending themselves as cops

are not.

tention, the performance deterioration in the Debatepedia dataset after the removal

of query incorporation is not statistically significant based on paired t-test (p

≤ .05). The discrepancy in performance deterioration between MS-MARCO and

Debatepedia gives a strong indication that the queries in the Debatepedia dataset

are not effective for summarization. In the following, we analyze the Debatepedia

dataset to investigate the possible reasons behind the discrepancy in performance

deterioration.

Analyzing the Debatepedia dataset: Due to the surprising performance in

the Debatepedia dataset that we observe after removing the query relevance, we

manually analyze the dataset to find out the possible reasons. Based on our analysis,
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we find that many queries in this dataset are not relevant to the document as well

as to the summary. Table 4.4 shows such an example from this dataset where the

gold summary is more of a generic summary where the query has no relevance

with both the document as well as the gold summary. We also find many examples

where words in the query do not appear in the document, as well as the requirements

for some queries are just yes/no type answers. Besides, we observe some examples

where excluding queries that are relevant to the documents do not have any negative

effects to generate the most appropriate summaries. These findings suggest that

the queries in the Debatepedia dataset are not relevant to the generated summaries

and this dataset is more of a generic summarization dataset.

4.1.5 Summary

In this section, we presented a transfer learning technique with the transformer-

based BERTSUM model and utilized it for the SD-QFAS task via incorporating

query relevance. Our approach shows state-of-the-art result in the Debatepedia

dataset without the leverage of any data augmentation. This suggests that our

model can overcome the lack of availability of large training data for the SD-QFAS

task by effectively generating summaries with few-shot learning. Moreover, our ex-

perimental results in this dataset also suggest the effectiveness of using the trans-

former model instead of RNN for such tasks. Furthermore, we propose a novel QD
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attention mechanism to incorporate query relevance in the BERT encoder for the

SD-QFAS task and observe that our proposed attention performs on par with the

original bidirectional self-attention used in BERT encoder.

In the larger sized MS-MARCO dataset, we again find that our proposed ap-

proach is effective to improve the performance. However, in this dataset we observe

that utilizing the QD attention in our proposed QR-BERTSUM-TL model is much

less effective than using the bidirectional self-attention in the same model. Due

to observing different effects with the QD attention in the Debatepedia and the

MS-MARCO datasets, we conduct an ablation test to investigate the incorporation

of query relevance in the QR-BERTSUM-TL model. Based on the ablation test,

we find that the removal of query relevance from the QR-BERTSUM-TL model

significantly degrades the performance in the MS-MARCO dataset for both atten-

tions. However, we surprisingly find that the removal of query relevance from this

model could still provide identical result in the Debatepedia dataset when the query

relevance is incorporated into the model. Based on further investigation, we find

that the queries in the Debatepedia dataset have little to no effect in summary

generation and the gold summaries in this dataset are quite generic.
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4.2 Multi-Document Query Focused Abstractive Summa-

rization

4.2.1 Background

Since the rise of the internet, accessing the ever-increasing amount of unstructured

text has become a major problem for many users [168, 40]. Often, users require

a readable summary generated from multiple sources to fulfill there information

needs [40, 164, 71]. To this end, the query focused summarization task in the

multi-document scenario focuses to summarize a set of documents while answering

a given query. With the increasing popularity of virtual assistants in recent years,

there is a growing interest to incorporate the abstractive summarization capability

for response generation in such systems [114]. Thus, the importance of studying

the Query Focused Multi-Document Abstractive Summarization (MD-QFAS) task

to tackle these issues has been on the rise.

For the multi-document abstractive summarization task, most of the early works

were focused on generic summarization [112, 42]. Whereas the amount of work

for the MD-QFAS task had been very limited [168]. Note that the currently

available multi-document summarization datasets (e.g., DUC 2005, 2006, 2007)

do not contain any labeled training data. Thus, it is required to generate sum-

maries from the source documents without any in-domain knowledge. To tackle
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the lack of training data for the MD-QFAS task, most previous works were based

on various unsupervised approaches that could only generate extractive summaries

[158, 48, 153, 167, 179, 154, 98, 40]. To generate the abstractive summaries in such

tasks, Baumel et al. [10] proposed a transfer learning technique that addressed the

issue of no dedicated training data for the datasets available for such tasks. They

adopted the Pointer Generation Network (PGN) [138] pre-trained for the generic

abstractive summarization task in a large dataset to predict the query focused sum-

maries in the target dataset via modifying the attention mechanism of the PGN

model. However, their model failed to outperform the extractive approaches in

terms of various ROUGE scores. It should be pointed out that utilizing the state-

of-the-art neural summarization models [92] that leveraged supervised training is

not applicable in these datasets due to the unavailability of the training data. More-

over, while using datasets similar to the target dataset as the training data, we find

that these datasets only contain multi-document gold reference summaries. Thus,

the state-of-the-art neural summarization models cannot be trained in such datasets

since these models cannot consider long text sequences (i.e., multiple documents)

as input at once due to the computational complexities [174, 12].

In the MD-QFAS task, another key challenge to address is the identification

of the sentences from multiple documents which are relevant to the query [160].

Because there could be several irrelevant candidate sentences from different doc-
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uments which are semantically similar with the relevant ones as well as with the

query [10, 40]. To identify the sentences which are relevant to the query, various

approaches such as similar word count [10] or Cross-Entropy Method [40] were

utilized. Though neural models based on supervised training have significantly

outperformed various non-neural models for the answer sentence selection task in

recent years [43, 73], due to the absence of labeled data for the relevant sentences

in the MD-QFAS datasets, neural models have not been effectively used for such

tasks yet. Recently, Garg et al. [43] showed that neural models such as BERT or

RoBERTa pre-trained in a large question answering dataset could effectively select

answers in other similar datasets without any supervised training. More recently,

such pre-trained answer sentence selection models were used by Xu and Lapata [164]

for the MD-QFAS task. In their work, they utilized distant supervision from vari-

ous question answering datasets using the fine-tuned BERT [36] model to filter out

the irrelevant sentences from the documents. However, Baumel et al. [10] showed

that filtering sentences as an early step could lead to performance deterioration for

the MD-QFAS task.

To address the above issues, we propose a novel weakly supervised learning ap-

proach via utilizing distant supervision using pre-trained transformer-based mod-

els to generate weak reference summary of each single-document from the multi-

document gold reference summaries. Moreover, we also propose a novel iterative
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approach to address the computational issue to train neural models for the abstrac-

tive summarization task in multi-document scenarios [174, 12]. In addition, instead

of directly applying pre-trained answer selection models to filter out sentences from

the source document as an early step as used in [164], we applied it in the final stage

to select the most relevant sentences from the generated query focused abstractive

summary via utilizing our best performing model for answer sentence selection: the

fine-tuned RoBERTa [96] model that we proposed in Chapter 3. In the following,

our proposed approach is described in details.

4.2.2 Our Proposed Approach

Suppose, we have a query Q = q1, q2, ..., qk containing k words and a set of N

documents D = d1, d2, ..., dN . For the MD-QFAS task, the goal is to generate a

summary S = s1, s2, ...sn for the query Q from D containing n words.

Figure 4.3 shows an overview of our proposed approach. Since the available

datasets for the MD-QFAS task do not include any training data, we provide su-

pervised training to our target dataset via utilizing other MD-QFAS datasets as

our training data [10, 98, 40]. However, the available MD-QFAS datasets only

contain the gold reference summaries generated by human experts from multiple

documents and don’t contain the gold reference summary of each individual docu-

ment [10, 98, 40]. Due to the limitations of using neural models in long documents
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Figure 4.3: An overview of our model that uses the fine-tuned

RoBERTaMS-MARCO in (i) and the pre-trained BERTSUM in (ii) to (a)

generate the initial weak extractive reference summaries followed by utilizing the

RoBERTaMRPC model for distant supervision to generate the weak abstractive

reference summaries. Then, (b) the pre-trained QR-BERTSUM-TL model is

fine-tuned to iteratively generate the query focused abstractive summaries which

are then (c) ranked by the RoBERTaMS-MARCO model.
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[92, 174], we propose an iterative approach with weakly supervised learning to

train our model on each document in a document set. For that purpose, the weak

reference summary of each document in a document set is at first generated via

leveraging distant supervision from the multi-document gold reference summaries.

Afterwards, the query focused abstractive summary of each document in a docu-

ment set is generated using our iterative summarization approach. Finally, we rank

the generated query focused summaries in a document set via utilizing a pre-trained

answer selection model.

In the following, we first describe how we utilize weakly supervised learning

with distant supervision. Then we discuss our proposed iterative approach to gen-

erate the query focused abstractive summary in multi-document scenarios using

transformer-based models followed by describing how we select the most relevant

sentences from the generated query focused summaries as our final summary.

4.2.2.1 Weakly Supervised Learning with Distant Supervision

We generate the weakly supervised reference summary of each document in a doc-

ument set in two steps (see Figure 4.3a). In the first step, we utilize various pre-

trained transformer-based models to generate the initial weak reference summary

of each document. In the second step, we replace each sentence in the generated

weak reference summary with each sentence in the multi-document gold reference
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summaries via utilizing a RoBERTa-based fine-tuned sentence similarity model.

For that purpose, we measure the similarity between each sentence in the multi-

document gold reference summaries with each sentence in the generated weak ref-

erence summary. Then, based on the similarity score, we select the most relevant

sentences from the gold reference summaries as the final weak reference summary

for each document. Below, we describe these two steps in details:

(i) Initial Weak Reference Summary Generator: To generate the initial

weak reference summary of each document in a document set, we utilize one of the

following transformer-based models:

1. Using Pre-trained BERTSUM Model: Due to the impressive perfor-

mance of utilizing the pre-trained BERTSUM model [92] in the SD-QFAS

task described in the previous section, we also utilize this model in this step.

First, we adopt the BERTSUM model (extractive or abstractive) pre-trained

for the generic summarization task in CNN/DailyMail dataset [92, 52]. Then,

we concatenate the query with each document in our training dataset and

give as input to the pre-trained BERTSUM model (similar to our approach

of concatenating the query with the document for the QR-BERTSUM-TL

model). Afterwards, the pre-trained BERTSUM model generates the initial

weak reference summary of each input document dk in a document set.
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2. Using Fine-tuned RoBERTa Model: We also utilize the RoBERTa model

to generate the initial weak summary of each document. For this purpose,

we adopt the fine-tuning-based RoBERTa model proposed for the answer

sentence selection task in Chapter 3 for its impressive performance in sev-

eral datasets for such tasks. To generate the weak reference summary of

each document dk, at first we fine-tune the RoBERTa model in the QA-ALL

dataset of MS-MARCO [6] for the passage ranking (i.e., answer sentence se-

lection) task. Then, the fine-tuned RoBERTa model measures the similarity

score C between the given query Qi and each sentence Sj in dk. Based on

the similarity score, we select the top 3 most relevant sentences as the weak

reference summary since extracting only 3 sentences was found effective in

different extractive summarizers such as the LEAD-3 baseline as well as the

BERTSUMEXT model [92].

(ii) Final Weak Reference Summary Generator: We further provide distant

supervision to manipulate the weak reference summary generated in the previous

step by replacing each sentence in the weak reference summary with the most

similar sentence found in the multi-document gold reference summaries. For this

purpose, at first we adopt the RoBERTa model fine-tuned for the sentence similarity

modeling task in the MRPC dataset [96]. Then for each document dk in a document
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set Di, we utilize the fine-tuned RoBERTaMRPC model to measure the similarity

between each sentence Sj in the weak reference summary and each sentence Sg in the

gold reference summaries. Based on the similarity score, each sentence in the weak

reference summary of a document is replaced with the most relevant sentence found

in the multi-document gold reference summaries. Note that for a document dk when

a sentence Sg from the gold reference summaries is already used to replace a sentence

Sj in the weak reference summary, then for the same document dk we don’t consider

the sentence Sg again for replacement. Instead, we use the next most relevant

sentence from the multi-document gold reference summaries for replacement. It

should be pointed out that since the multi-document gold reference summaries are

written by human annotators, the weak reference summaries generated in this step

can be considered as weak abstractive reference summaries. In this way, we utilize

distant supervision to generate the weak abstractive reference summary to train

our model for the MD-QFAS task in the following step.

4.2.2.2 Iterative Fine-Tuning for Multi-Document Summarization

For the MD-QFAS task, we adopt the transformer-based [150] BERTSUM model

pre-trained for generic summarization [92] to leverage the advantages of fine-tuning

it for the query focused abstractive summarization task (as demonstrated in section

4.1 for the SD-QFAS task). However, the BERTSUM model was trained for the
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single-document summarization task by considering at most 512 tokens [92]. Since

the total number of tokens in a document set in multi-document scenarios could be

much larger than 512 tokens [10, 40], and due to the computational complexity of

training transformer-based models in long sequences [69, 12, 174, 26], we take an

iterative approach (see Figure 4.3b). In our proposed iterative approach, we adopt

the QR-BERTSUM-TL architecture proposed for the SD-QFAS task in section 4.1.

To be noted that, the QR-BERTSUM-TL model used for the SD-QFAS task was at

first pre-trained on the XSUM dataset for the generic summarization task. Since

the generated summaries in the target dataset (e.g., Debatepedia) for the SD-QFAS

task were smaller in size, the XSUM dataset was used as the summaries in this

dataset were also short [92, 113]. But in the multi-document scenario, since the

generated summaries are longer in size [10, 40], we did not use the XSUM dataset.

Rather, we pre-train the model for generic summarization in the CNN/DailyMail

dataset as this dataset requires longer summaries. Then, for each document in a

document set, we fine-tune the pre-trained model using the weak abstractive refer-

ence summary to generate the query focused abstractive summary. Afterwards, we

filter out some sentences from the generated summaries to select the most relevant

sentences as the final summary in the next step.
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4.2.2.3 Fine-Tuned RoBERTa for Summary Sentence Selection

In this stage, for each document set, all the sentences in the query focused ab-

stractive summaries generated in the previous step are ranked using a fine-tuned

RoBERTa model. For this purpose, we adopt the RoBERTa model fine-tuned for

the answer selection task in the MS-MARCO dataset, which we also utilized for ini-

tial weak reference summary generation. The fine-tuned RoBERTaMS-MARCO model

is then utilized to measure the relevance between each sentence Si in the generated

summary and the query Qj for the document set Dj to select the sentences for the

final summary that are most relevant to the query (see Figure 4.3c). It should also

be pointed out that while selecting the most relevant sentences as the final query

focused summary, we use the Trigram Blocking to reduce redundancy [116].

4.2.3 Experimental Setup

In this section, we first describe the datasets used for the MD-QFAS task. Then

we discuss the evaluation metrics that we used to evaluate our model followed by

the training parameters used in our experiments. Finally, we describe the details

of our implementation.
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4.2.3.1 Datasets

We use the DUC 2005, 2006, and 2007 datasets for the MD-QFAS task. The

number of document sets were 50, 50, and 45 while the number of documents

in each document set were 32, 25, and 25 in DUC 2005, 2006 and 2007 datasets

respectively [40]. Each document set is associated with a topic statement (regarded

as the query) and the objective is to generate a summary containing at most 250

words from the document set based on that query. Given the absence of the training

data, to evaluate our model in each year’s dataset we use the datasets from other

two years for training. From each year’s training data, we randomly selected 20%

of the document sets for validation while the rest were used for training via utilizing

weakly supervised learning.

4.2.3.2 Evaluation Metrics

Similar to the prior work [10, 40], we reported the results based on both recall and

F1 metrics in terms of ROUGE-1, ROUGE-2, and ROUGE-SU4 scores [88] using

the standard parameter setting34. Since we already describe the ROUGE-1 and

ROUGE-2 scores alongside the recall and F1 metrics for the SD-QFAS task, below

we only define the ROUGE-SU score.

ROUGE-SU: In ROUGE-SU, S stands for skip-bigram whereas U stands for

34ROUGE-1.5.5.pl -a -c 95 -m -n 2 -2 4 -u -p 0.5 -l 250
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unigram. The skip-bigram is any pair of words in a sentence that maintains the

sentence order but allows arbitrary gaps in between the two words. Thus, the

ROUGE-SU score considers the overlaps of both the skip-bigrams as well as the

unigrams between the summary produced by the model and the gold reference

summary. Moreover, maximum skip distance between two words can also be set.

As used in prior work [98, 10], we select the value of skip distance = 4 and evaluate

the result based on the ROUGE-SU4 score.

4.2.3.3 Training and Parameter Settings:

To fine-tune the QR-BERTSUM-TL model for the MD-QFAS task, we kept most

parameters similar to what we used for the SD-QFAS task in Section 4.1 and ran

50 steps for fine-tuning with batch size equal to 250. For RoBERTa, we fine-tune

its pre-trained model for sentence similarity modeling using the same parameters

that we utilized for the answer sentence selection task in chapter 3.

4.2.3.4 Implementation

For the RoBERTa model, we use its Large version [96] when we generate the initial

weak reference summaries using this model as well as when the generated query

focused abstractive summaries are ranked in the final step. For the implementa-

tion of RoBERTa, we use the Transformer library of HuggingFace [163]. When
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the initial weak reference summaries are generated using BERTSUM, we experi-

mented with both of its extractive and abstractive models. For weak extractive

reference summary generation, we adopt the BERTSUMEXT model pre-trained on

the CNN/DailyMail dataset for the generic extractive summarization task [92, 52].

For the weak abstractive reference summary generation using BERTSUM as well

as for fine-tuning the QR-BERTSUM-TL model, we utilize the BERTSUMEXT-ABS

model pre-trained on the CNN/DailyMail dataset for the generic abstractive sum-

marization task [92, 52]. For the BERTSUM-based models, we use the same source

code for implementation that we used for the SD-QFAS task. All of our experiments

for the MD-QFAS task were run using NVIDIA V100 with 4 GPUs.

4.2.4 Results and Discussions

We now analyze the effectiveness of our approach by comparing with other models

and also perform ablation test to investigate the performance of various meth-

ods used in our model. We denote our approach of using the Pre-trained models

(RoBERTa and BERTSUM) for Query focused SUMmary generation as PQSUM.

As mentioned earlier, for the proposed PQSUMWSL-DS model, we experiment with

various initial weak reference summary generation models:

• BERTSUMEXT: We adopt the pre-trained BERTSUMEXT model from [92].

This model was trained for the generic extractive summarization task in the
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CNN/DailyMail dataset [52].

• BERTSUMABS-EXT: We adopt the pre-trained BERTSUMABS-EXT model from

[92] which was trained for the generic abstractive summarization task (after

being initially trained for extractive summarization) in the CNN/DailyMail

dataset [52].

• RoBERTaMS-MARCO: We adopt the pre-trained RoBERTa model [96] and fine-

tuned it for the question-answer similarity task in the QA-NLG dataset of

MS-MARCO [6].

Moreover, to analyze the effectiveness of using Weakly Supervised Learning with

Distant Supervision (WSL-DS) in our proposed model PQSUMWSL-DS, we use

two baselines that utilize the pre-trained BERTSUM model for zero-shot transfer

learning [8] without utilizing weak supervision and fine-tuning. For each docu-

ment, one baseline generates extractive summary: PQSUMUNS-EXT, while the

other generates abstractive summary: PQSUMUNS-ABS. Similar to our proposed

model, the generated summaries in both baselines are ranked using the RoBERTa

model. Moreover, we compare our model with four recent works: i) CES-50 [40], ii)

RSA [10], iii) Dual-CES [128], and iv) QUERYSUM [164]. Below, we give a brief

description of these models.

• CES-50 [40]: The CES-50 is an extractive summarizer that utilizes the cross-
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entropy method [130] to select a subset of sentences from the document(s).

• RSA [10]: It is an abstractive summarization model based on the pointer

generation network [138]. In the RSA model [10], at first, the pointer gen-

eration network is pre-trained on a large generic summarization dataset for

abstractive summary generation. Then to predict the abstractive summaries

in the target dataset, all the documents in a document set are sorted based

on their relevance with the query. Afterwards, for each document set the

query relevance is incorporated in the pre-trained model via modifying the

attention mechanism. Then the pre-trained model predicts the query focused

abstractive summary of each document in a document set. This approach is

continued until the model generates an abstractive summary that contains

250 tokens for each document set.

• Dual-CES [128]: This model is built on top of the CES model [40] and pro-

poses a novel two-step dual-cascade optimization approach for extractive sum-

marization.

• QUERYSUM [164]: This model proposes a coarse-to-fine modeling framework

for extractive summarization. In this model, document clusters are given as

input to the model and then three separate modules are utilized to estimate

which segments are relevant to the query and likely to contain an answer
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Table 4.5: Performance comparisons in terms of (a) F1 and (b) Recall on the

DUC 2005 dataset. Here, ‘*’ denotes extractive summarization model, while ‘†’,

‘∓’, and ‘§’ indicate that the initial weak reference summaries are generated by

BERTSUMEXT, BERTSUMABS-EXT, and RoBERTaMS-MARCO respectively. More-

over, we denote ‘ROUGE’ as ’R’.

DUC 2005

Model F1 Recall

R-1 R-2 R-SU4 R-1 R-2 R-SU4

CES-50 [40] * 37.78 7.45 13.02 40.35 7.94 13.91

RSA [10] - - - 39.82 6.98 15.73

Dual-CES [128] * 38.08 7.54 13.17 40.82 8.07 14.13

PQSUMEXT * 37.52 7.84 13.29 37.55 7.84 13.31

PQSUMABS 38.35 7.94 13.44 38.36 7.92 13.43

PQSUMWSL-DS † 40.13 8.94 14.53 40.16 8.94 14.54

PQSUMWSL-DS ∓ 40.04 8.65 14.48 40.09 8.66 14.50

PQSUMWSL-DS § 40.32 9.17 14.73 40.36 9.17 14.74

to gradually filter out relevant sentences from the input document for final

selection in the summary. For relevance measurement, this model also utilized

the BERT model [36] pre-trained on question answering datasets.
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Table 4.6: Performance comparisons in terms of (a) F1 and (b) Recall on the

DUC 2006 dataset. Here, ‘*’ denotes extractive summarization model, while ‘†’,

‘∓’, and ‘§’ indicate that the initial weak reference summaries are generated by

BERTSUMEXT, BERTSUMABS-EXT, and RoBERTaMS-MARCO respectively. More-

over, we denote ‘ROUGE’ as ’R’.

DUC 2006

Model F1 Recall

R-1 R-2 R-SU4 R-1 R-2 R-SU4

CES-50 [40] * 40.47 9.13 14.73 43.01 9.69 15.65

RSA [10] - - - 42.89 8.73 17.75

Dual-CES [128] * 41.23 9.47 14.97 43.94 10.09 15.96

QUERYSUM [164] * 41.6 9.5 15.3 - - -

PQSUMEXT * 40.68 9.29 14.66 40.41 9.22 14.56

PQSUMABS 40.87 9.43 14.83 40.59 9.39 14.73

PQSUMWSL-DS † 43.44 10.94 16.46 43.11 10.85 16.34

PQSUMWSL-DS ∓ 42.48 10.55 16.02 41.96 10.39 15.79

PQSUMWSL-DS § 43.49 10.78 16.45 43.22 10.70 16.35

Performance Comparisons: The results of our experiments in the DUC

2005, DUC 2006, and DUC 2007 datasets are shown in Table 4.5, Table 4.6, and

Table 4.7 respectively. From these tables, we find that in all datasets, the proposed
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Table 4.7: Performance comparisons in terms of (a) F1 and (b) Recall on the

DUC 2007 dataset. Here, ‘*’ denotes extractive summarization model, while ‘†’,

‘∓’, and ‘§’ indicate that the initial weak reference summaries are generated by

BERTSUMEXT, BERTSUMABS-EXT, and RoBERTaMS-MARCO respectively. More-

over, we denote ‘ROUGE’ as ’R’.

DUC 2007

Model F1 Recall

R-1 R-2 R-SU4 R-1 R-2 R-SU4

CES-50 [40] * 42.86 11.34 16.53 45.45 12.02 17.54

RSA [10] - - - 43.92 10.13 18.54

Dual-CES [128] * 43.24 11.78 16.83 46.02 12.53 17.91

QUERYSUM [164] * 43.3 11.6 16.8 - - -

PQSUMEXT * 42.57 11.20 15.98 42.41 11.08 15.92

PQSUMABS 42.17 10.82 15.98 42.05 10.79 15.91

PQSUMWSL-DS † 44.29 11.89 17.24 44.11 11.84 17.16

PQSUMWSL-DS ∓ 44.20 11.80 17.12 43.72 11.53 16.92

PQSUMWSL-DS § 44.72 12.44 17.72 44.61 12.40 17.66

PQSUMWSL-DS model outperform the baselines as well as the prior work in terms

of the F1 metric for all ROUGE scores. To be noted that, these improvements in

performance are observed with all initial weak reference summary generators for
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the PQSUMWSL-DS model.

More specifically, in the DUC 2005 dataset, our best performing PQSUMWSL-DS

model with RoBERTaMS-MARCO as the initial weak reference summary generator

outperforms the previous state-of-the-art Dual-CES [128] with an improvement of

5.88%, 21.62%, and 11.85% in terms of ROUGE-1, ROUGE-2, and ROUGE-SU4

scores respectively based on the F1 metric. However, in terms of the Recall metric,

none of our models could outperform the prior state-of-the-art models based on

the ROUGE-1 [128] and ROUGE-SU4 [10] scores. Nevertheless, all of our models

outperform the prior work in ROUGE-2 (Recall) where the RoBERTaMS-MARCO

model as the initial weak reference summary generator sets a new state-of-the-art

with an improvement of 13.63% from the previous state-of-the-art Dual-CES [128].

In the DUC 2006 dataset, we again observe that our proposed models outper-

form all the prior work in terms of the F1 metric for all ROUGE scores, as well

as in terms of the ROUGE-2 score based on the Recall metric. However, for both

Recall and F1, we find in this dataset that in terms of the ROUGE-2 score, our

proposed model with BERTSUMEXT as the initial weak reference summary gener-

ator is the most effective model; whereas for the ROUGE-1 score, our model with

RoBERTaMS-MARCO as the initial weak reference summary generator is the most

effective one. Based on the ROUGE-SU4 score, we find that our model is most

effective in terms of the F1 metric when the BERTSUMEXT model is used as the
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initial weak reference summary generator; whereas in terms of the Recall metric, our

model with RoBERTaMS-MARCO performs the best. In terms of the F1 metric, the

proposed PQSUMWSL-DS model with RoBERTaMS-MARCO sets a new state-of-the-

art based on the ROUGE-1 score with an improvement of 4.54% from the previous

state-of-the-art QUERYSUM model [164]; while this model with BERTSUMEXT

outperforms QUERYSUM with an improvement of 15.16% and 7.58% based on

ROUGE-2 and ROUGE-SU4 respectively [164]. In terms of the Recall metric,

we observe that the PQSUMWSL-DS with BERTSUMEXT outperforms the previous

state-of-the-art Dual-CES with an improvement of 7.53% based on ROUGE-2.

We find in the DUC 2007 dataset that for the proposed PQSUMWSL-DS model,

the best performance is obtained in terms both Recall and F1 when the model uti-

lizes RoBERTaMS-MARCO for the initial weak reference summary generation (similar

to its performance in the DUC 2005 dataset). More notably, this model outper-

forms all the prior work in terms of the F1 metric for all ROUGE scores, with an

improvement of 3.28% [164], 5.60% [128], and 5.29% [128] from the previous state-

of-the-art models based on ROUGE-1, ROUGE-2, and ROUGE-SU4 respectively.

Further to note that when our proposed model utilizes the BERTSUM model [92]

as the initial weak reference generator, it also outperforms all the prior work in

terms of F1 for all ROUGE scores. However, none of our models could outperform

the previous state-of-the-art in terms of the Recall metric.
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While comparing between the baselines, we find that in both DUC 2006 and

DUC 2007 datasets, our abstractive baseline outperforms its extractive counterpart.

However, in the DUC 2007 dataset, we find that the extractive baseline performs

better than the abstractive one. This may indicate that the gold reference sum-

maries in the DUC 2007 dataset are more extractive in nature. Moreover, while

comparing the baselines with our proposed model, we find that for all initial weak

reference summary generators, the proposed model outperforms the baselines in all

datasets. This suggests the effectiveness of utilizing weakly supervised learning with

the transformer-based summarization models for the MD-QFAS task. Furthermore,

the improvements in our proposed models from the baselines are statistically sig-

nificant based on paired t-test (p ≤ .05).

It should also be pointed out that even though our abstractive baseline outper-

forms the extractive baseline, we find in all datasets that for initial weak reference

summary generation, using extractive models (BERTSUMEXT, RoBERTaMS-MARCO)

are more effective than the abstractive model (BERTSUMEXT-ABS). This finding

may suggest that while utilizing distant supervision to replace each summary sen-

tence in the initial weak reference summary with the most similar sentence found

in the multi-document gold reference summaries, the usage of extractive models for

initial weak reference summary generation is more effective for sentence similarity

modeling.
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Table 4.8: Ablation Test result in terms of F1 based on the average across all

three datasets. Here, ‘§’ denotes that the initial weak reference summaries in the

PQSUMWSL-DS model are generated using the RoBERTaMS-MARCO model, while

‘without’ is denoted by ‘w/o’ and ‘ROUGE’ is denoted by ’R’.

Model R-1 R-2 R-SU4

PQSUMWSL-DS § 42.84 10.80 16.30

w/o Weakly Supervised Learning 40.12 9.43 14.65

w/o Distant Supervision 41.88 10.16 15.55

w/o Trigram Blocking 41.01 10.53 15.87

Ablation Studies: We also conduct ablation studies to further study the

effects of different methods used in our proposed models. For the ablation test, we

select the PQSUMWSL-DS that utilize the RoBERTaMS-MARCO model as the initial

weak reference summary generator. The result of our ablation study based on the

average ROUGE scores in terms of the F1 metric across all datasets is shown in

Table 4.8.

We find from the Table 4.8 that by ranking the sentences in the source docu-

ments using the RoBERTaMS-MARCO model without leveraging Weakly Supervised

Learning to fine-tune the BERTSUM model, the performance is significantly de-

graded (based on paired t-test with p ≤ .05) by 6.35%, 12.69%, and 10.12% in terms
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of ROUGE-1, ROUGE-2, and ROUGE-SU4 respectively. The performance deterio-

ration also occurs if we exclude Distant Supervision by removing the RoBERTaMRPC

model as well as if the Trigram Blocking is not utilized. However, in these two cases,

the performance deterioration is not statistically significant based on paired t-

test (p ≤ .05).

4.2.5 Summary

In this section of Chapter 4, we propose a novel weakly supervised learning ap-

proach for the query focused multi-document abstractive summarization task that

alleviates the computational complexity issue to train transformer-based models in

long text sequences. We show that our proposed model could effectively leverage

the advantages of fine-tuning pre-trained summarization models by tackling the

issue of no labeled training data of each individual document in datasets available

for such tasks. Extensive experiments show that our proposed approach sets a new

state-of-the-art result in terms of various evaluation metrics for the MD-QFAS task

in three benchmark datasets.
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5 Conclusions and Future Work

We conclude the thesis in this chapter by first addressing our concluding remarks

followed by discussing our plans for the future work.

5.1 Conclusions

In this thesis, we utilize the transformer architecture on two types of question

answering tasks: (i) answer sentence selection and (ii) answer sentence generation.

For the answer sentence selection problem, we study the answer selection and

ranking task. For this task, we present two new approaches via utilizing contex-

tualized embeddings with the transformer encoder. In one approach, we extract

feature-based contextualized embeddings from BERT/ELMo and integrate them

with a randomly initialized transformer encoder. Our experimental results on six

benchmark datasets demonstrate that the performance of our feature-based ap-

proach is comparable with most of the prior work. For the other approach, we

utilize various pre-trained transformer encoder-based contextualized language mod-
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els such as BERT and RoBERTa and fine-tune them for the answer selection and

ranking task. Based on extensive experiments, we find that our fine-tuning-based

approach is more effective than the feature-based approach and obtains new state-

of-the-art results on all six datasets in terms of the MRR metric. In contrary to

the recent state-of-the-art answer selection models that leveraged transfer learning

from large question answering datasets, our model did not require such transfer

learning to obtain the state-of-the-art performance.

For the other question answering task, we study the query focused abstractive

text summarization task for answer summary generation. We present several novel

approaches for this task to address both single-document and multi-document sce-

narios. For the single-document scenario, we handle the few-shot learning issue

in the Debatpedia dataset via utilizing transfer learning from a transformer-based

generic summarization model. We show that our proposed approach significantly

outperforms the prior work for the query focused summarization task in this dataset.

In addition, we address several issues in the Debatepedia dataset and show that this

dataset is more of a generic summarization dataset. For the query focused sum-

marization task in multi-document scenarios, we handle the issue of no dedicated

labeled training data in the datasets available for such tasks via proposing a weakly

supervised learning model. We show that our proposed model that utilizes distant

supervision to generate the weak reference summary of each individual document
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in a document set can effectively leverage the advantages of fine-tuning pre-trained

transformer-based generic summarization models for the query focused summariza-

tion task. Moreover, our proposed model tackles the computational complexity

issue to train transformer-based models in long documents. Experimental results

in three benchmark datasets for the query focused multi-document summarization

task show that our proposed model is very effective to generate the abstractive

summaries and outperforms many prior works (both extractive and abstractive) to

set new state-of-the-art results in terms of various evaluation metrics.

5.2 Future Work

In the future, we will utilize various new transformer-based models [101, 141, 142,

65, 176, 129, 69, 122, 26, 39, 86, 67] to investigate their effectiveness in the question

answering task. In addition, we will utilize transformer-based models for question

answering on other domains, such as the biomedical domain [3] or the multilingual

domain [29]. We will also utilize the transformer architecture [150] on more tasks,

such as information retrieval applications [58, 59, 170, 60, 102], sentiment analysis

[94, 173, 95], learning from unlabeled or imbalanced datasets [7, 8, 93], and auto-

matic chart question answering [66]. Finally, for the future reproducibility of our

experiments, we have made the source codes used in this thesis publicly available

here: https://github.com/tahmedge/Tahmid-MSc-Thesis-YorkU.
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Hamdy Mubarak, Timothy Baldwin, and Karin Verspoor. Semeval-2017 task
3: Community question answering. In Proceedings of the 11th International
Workshop on Semantic Evaluation, pages 27–48, 2017.

[110] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Çağlar Gulçehre, and
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