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ii Abstract 
 

Composite materials are seeing increased industrial usage in high-performance applications 

were lightweight, high-strength, and material tailorability is required. Due to their heterogenous 

structure, displacement and strain fields developed under loading conditions are often complex 

and difficult to predict. Digital volume correlation (DVC) offers a novel method for the 

deformation analysis of composite structures. Through the utilization of micro-computed 

tomography datasets can be obtained and utilized to visualize three-dimensional dataset for DVC. 

This thesis explores the utilization of DVC for the analysis of composite materials. A methodology 

is developed based on artificially seeding materials with micro-particles to acquire the sufficient 

image contrast. A rigid body displacement test is then utilized to evaluate the errors associated 

with each particle, narrow DVC parameters, and select between particles. Utilizing this 

methodology displacement and strain fields were obtained for copper seeded epoxy, and 3D 

printed copper impregnated PLA sample under compressive, and tensile loading respectively.  
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Chapter 1: Introduction  

1.1  Motivation  

With the increasing industry demand for lightweight and high-performance materials, 

composites have found increased industrial adoption in recent years. According to global forecasts, 

the market for these materials is expected to reach a size of USD 160.54 billion by 2027[1]. This 

industry growth is due to manufactures preferring these material to traditional ones for their 

lightweight, high strength, and material tailorability [2], [3]. A further advantage comes from the 

wide variety of manufacturing techniques and structures, which provided differing materials and 

logistical benefits. The most common type of composites are laminates, which are formed by 

sheets of fibres stacked and impregnated with a matrix material that provides their high strength 

to weight ratio [2], [4]. Another example are braids which are formed by interlaced fibres which 

are impregnated into the matrix. Manufacturing through braiding rather than in a stacked laminate 

structure, provide thru-thickness strength for applications that require this property, such as in 

aircraft fan structures [5], [6]. The final structure discussed in this thesis are one that have been 

produced with additive manufacturing (AM) design principles, the most popular of which is fused 

filament fabrication (FFF). This process combines the material advantages of composites with the 

quick to-form manufacturing methods of AM[7], [8]. 

Composite materials and FFF parts contain complex heterogenous micro-structures. The 

complex microstructures of composites and FFF parts lead to anisotropic material properties. For 

composite materials, this is due to their multi-material composition, fibre alignment, and interfacial 

bonding between phases [3]. Additionally, a further layer of complexity is seen in textile and 

woven composites due to the shifting of fibre tows, which alter the material parameters during 

loading conditions [3], [9]. For parts produced via FFF beyond the bonding of the reinforcing 
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material to the base material, regions of high localized porosity and imperfect layer bonding lead 

to their anisotropic material properties [10], [11].  

With the expected growth of the composites and additive manufacturing industries, it has 

become essential for accurate and detailed quantification of their material properties and behaviour 

during loading. Traditional methods such as extensometers and strain gauges provide insufficient 

and inaccurate details about the behaviour of these complex materials as they can only capture the 

generalized movement in the region they are applied. Digital image correlation (DIC) can 

circumvent this issue by providing a full field-view of the displacement and strain behaviour on 

the surface of the materials [12]. However, the 2D DIC method is inherently limited to only an in-

plane view of mechanical response as external images are captured using high-resolution digital 

cameras. 3D DIC utilizes a camera set in a stereo configuration allows for out-of-plane as well as 

in-plane movement to be captured. However, the 3D DIC method is still limited in its inability to 

capture thru-thickness deformation. If interactions within the sample and its internal 

microstructure are to be captured, a new method must be utilized.  

With the recent advent of micro-computed tomography (µ-CT), a third option has become 

available for experimental strain analysis [13]. µ-CT allows for high-resolution images of a 

material microstructure to be captured volumetrically. By subsequently capturing the 

microstructure during different loading conditions, the volumetric response of the material can be 

analyzed. This data can then be utilized as an input for a correlation algorithm known as digital 

volume correlation (DVC) [14]. DVC addresses the concerns of DIC by providing a full-field 

volumetric view of the sample’s displacement and strain. Measurements are made in this manner 

to provide a complete view of the sample’s mechanical behaviour while helping to provide direct 

inputs for numerical models.   
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1.2 Thesis Objective  

This thesis utilizes the new DVC approach for strain measurements of complex materials. 

The overall objective of this thesis was to utilize DVC to capture the deformation and strain 

behaviour of advanced materials such as FFF composites and tubular braided composites.  Since 

DVC is an emerging technology, the supporting literature is limited. Thus, before the analysis of 

advanced materials can be performed accurately, an investigation on sample preparation for 

analysis is a vital initial step. For this requirement, a study on the implementation of artificial 

speckling methodologies to improve image quality for composite materials was undertaken. By 

providing a complete assessment of the advantages and errors of the artificial speckling technique, 

a methodology could be developed to allow for advanced materials to be analyzed accurately via 

DVC.  The creation of these best practices allowed for the ultimate goal of volumetric advanced 

material analysis. Thus, the methodology was applied to an FFF composite to capture its 

mechanical response to tensile loading conditions. The application of the speckling methodology 

gained from the material test of FFF composites will ultimately allow for better DVC technique 

and material knowledge to had, which can be applied in the future to other materials such as tubular 

braided composites.  

1.3 Thesis Scope  

As DVC software in the early phases of development, commercially available software are 

few and are prohibitively expensive. Additionally, development of a DVC algorithm can prove 

time-consuming and would be the subject matter of a standalone project. Thus, it was determined 

that the best option was through the utilization of open-source DVC software. This thesis utilizes 

a MATLAB based open-source DVC software known as the fast-iterative digital volume 

correlation algorithm (FIDVC)[15]. To further the objective of developing a methodology for 
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preparing composite samples for DVC measurement studies were limited to 5 different high-

density particles consisting of copper, zirconium oxide, and aluminum nitride impregnated into an 

epoxy resin. Once sample speckling was understood, this methodology could be applied towards 

FFF printed tensile coupons containing seeding particles for accurate DVC analysis.  

1.4 Thesis outline 

This thesis is organized into five chapters. As a starting point of discussion, Chapter 2 

discusses the current state of research on the topics addressed in this thesis.  Chapter 2 is divided 

into three major topics: fundamentals of composite and AM structures, concepts and applications 

of DIC, and concepts and application of µ-CT and DVC. This chapter highlights current gaps in 

the literature to help establish the motivation for the remaining chapters.  

A discussion on the development and implementation of the artificial seeding to enhance the 

image quality of composites for DVC is detailed in Chapter 3. A full error analysis of the effects 

of each particle in relation to resulting DVC sample displacement is outlined to determine the most 

optimal seeding particle. Additionally, this error analysis aided in the determination of DVC 

parameters that provided the highest accuracy. This chapter finally shows the application of this 

technique by seeding an epoxy resin with a center hole to analyze the stress and strain behaviour 

during uniaxial compression.  

Chapter 4 utilizes the findings of the previous chapter to provide a full-scale study on FFF 

materials. FFF composites manufactured from PLA impregnated with copper particles crafted in 

the form of tensile coupons. Samples were tested in-situ under tensile loading to obtain images of 

the microstructure under deformation. These images could be analyzed to help understand the bulk 

changes in the microstructure before being used as an input for DVC.  The DVC measurements 
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allowed for detail full-field 3D displacement and strain results to be calculated and related to the 

printing parameters which formed the coupon.  

A complete summary of the results of this thesis and their implication towards future work 

is detailed in Chapter 5.  This section highlights the critical finding of the artificial seeding 

technique and the results of the mechanical tests and measurements performed on the copper 

impregnated PLA FFF samples. A section providing the author’s recommendations for performing 

successful DVC measurements is also included in Chapter 5. The focus of this subsection is to 

transfer the experimental knowledge gained throughout the author’s thesis work to help future 

researchers perform accurate DVC measurements. Finally, the potential research areas that can be 

investigated with the aid of the knowledge from this study are provided. The underlying 

formulation and methodologies for the utilized image segmentation procedures are detail in 

Appendix A.  Appendix B provides the MATLAB software code developed for analysis is these 

studies along with an explanation of their functionality.  
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Chapter 2: Literature Review 
 

2.1 Introduction   
 

As discussed in the introductory chapter of this thesis the ultimate goal of this work is to 

develop a methodology from data collection to analysis of strain fields for composites, braided 

composites, and 3D printed structure via digital volume correlation (DVC). Before discussing the 

work done to meet this goal, it is necessary to provide a point of reference to the topics discussed 

in this work. The purpose of this section is to provide a comprehensive review of the literature and 

the gaps that surround the work currently done in the three major areas of this thesis. In this section, 

a formal review of the terminology, fundamental principle, and current literature surrounding 

composites, image acquisition, and image analysis will be provided.  

Composites provide a technical advancement over traditional materials such as metals, due to 

their high strength-to-weight ratio, and tailorability. This makes them particularly desirable in 

many high-performance industries, such as aerospace. The first section of this chapter will aim to 

introduce the field of composite materials.  A discussion is first made on the fundamentals of 

composite materials and their classification. Then a more in-depth review of the structure, 

advantage, and disadvantage of composite laminates, braided composites, and fused-deposited 

modelling produced composites is presented.  

The next section presented is on 2D image analysis and its application towards composite 

studies. While, have many mechanical advantages over traditional materials, due to their 

heterogeneous structure, traditional mechanical property measurement technique such as strain 

gauges are ineffective. A particularly elegant solution to this challenge is provided through the 

usage of digital image correlation (DIC). Digital image correlation allows for a full-field view of 
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strain and deformation to be captured rather than a single isolated point making it very useful for 

capturing the mechanical response of heterogeneous materials. In this section, the guiding 

principles of DIC, and its application in composite materials by researchers is provided.     

The final topic discussed is on the operating principles and application of the relatively new 

DVC. DVC extends the principles of DIC into the third dimension. DVC addresses the limitations 

of DIC by allowing for volumetric displacement and strain fields to be capture through the bulk of 

the sample rather than simply surface strains. This section looks to capture how the image 

acquisition is performed for DVC through micro-computed tomography. Next, the operating 

principles of DVC are discussed, before finally, discussing the current applications of DVC for 

material behaviour measurements. 

2.2 Composites  

2.2.1 Fundamentals of Composites  
 

Traditional composites are a multiphase material consisting of two or more materials that are 

bonded macroscopically. These materials fall into one of two phases, the first being the matrix 

phase, which is continuous and forms the bulk of the material [1]. The second phase, the reinforced 

phase, is supported by the matrix phase and is typically has a fibrous (continuous or short), 

particulate or flake structure. A 2D representation of a cross-section of a matrix that is supported 

by these three phases is shown in Figure 2-1. The macroscopic bonding of these phases provides 

a material with unique and enhanced mechanical properties. Examples of conventional composites 

materials are resin-infused carbon fibres and steel-reinforced concrete.  

.  
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Figure 2-1: Diagram of the three types of reinforcements for composites: a) Continuous and 

short fibers, b) Particulate, and c) Flakes  

 

High-performance composites have begun to replace traditional materials across several 

different industries. A few examples of the broad where composites are utilized include use in 

aircraft fuselages, golf clubs, and bone casts [2]–[4]. The reason for this lies in the mechanical 

advantage of the material. The mechanical advantage is calculated through the specific modulus 

and specific strength, which are shown in equations 2.1 and 2.2. Specific modulus is calculated by 

the ratio of the Young’s modulus (E) and the density (ρ), while the specific strength is calculated 

by taking the ultimate strength (σult) and density. For composite materials, both these factors are 

equivalent to many times higher than traditional engineering materials such as steel. Thus, 

composites offer a high-performance alternative to traditional materials at a fraction of the weight, 

which results in less material and energy consumption, additionally, the versatility of the materials 

that allow them to be tailored to tackle specific design problems.  

                                                Specific Modulus =
E

ρ
  (2.1) 
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                                               Specific Strength =
σult

ρ
                        (2.2)                           

 

2.2.2 Composite Classification 
 

Composites are classified by either the structure of the reinforcement phase or material of the 

matrix phase. As previously mentioned, there are three types of structures for the reinforcement 

phase: fibres, particulates and flakes. Their large aspect ratio characterizes fibres compared to the 

other reinforcement types. The aspect ratio is calculated as the ratio between length (L) and 

diameter (d), as shown in equation 2.3. Fibres are further classified into short (discontinuous) or 

long (continuous) fibres based on their aspect ratio. Depending on the degree of alignment, the 

fibre-reinforced composites can have quasi-isotropic properties for randomly distributed fibres to 

highly anisotropic properties when aligned [5]. Particulate composites are consisting of small 

particles that are randomly dispersed and suspended inside the composite matrix. Due to the 

random dispersion of particles, most particulate composites have isotropic mechanical properties. 

Finally, flake composites contain a reinforcement phase of flat pieces that are unique because they 

provide high out-of-plane flexural stiffness. 

                                                        Aspect Ratio =
L

d
            (2.3)                                            

Composites classified by their matrix phase are often put into four categories: 1) polymer 

matrix composites (PMC), metal matrix composites (MMC), ceramic matrix composites (CMC), 

and carbon matrix composites. The most common of these is the PMC, which consisted of a resin 

matrix (e.g. epoxy) with a reinforcement phase [6]. The adoption of PMC in favor of other 

alternatives is due to their low cost and high strength to weight ratio. However, PMCs are not 

feasible for use at high operating temperatures due to the degradation of the polymer matrix. 
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Additionally, the low elastic properties make them unsuitable for loading conditions that require 

more rigidity.  

MMCs have matrix phases that are typically, but not exclusively made from aluminum, 

magnesium, and titanium. The main advantage of MMC compared to traditional materials is the 

tailorability of their mechanical properties. For example, a designer can increase the mechanical, 

while decreasing the thermal expansion. MMCs provide superior mechanical properties to PMC 

but require much higher processing temperature.  Additionally, MMCs are significantly denser 

than PMCs due to their metal matrix. CMC, as their name suggests, are composites with a ceramic 

matrix material. CMC offers very high strength, hardness, service temperature and low density, 

but are susceptible to fracturing under impact or tension through the reinforcement phase does 

improve these over regular ceramics. Carbon matrix composites, also known as Carbon-Carbon 

composites, have a carbon matrix that has been reinforced by carbon fibres. Carbon-Carbon 

composites have high operating temperature ranging, high tensile and compressive strengths and 

thermal conductivity, but are very costly, have a low shear strength and may oxidate at very high 

temperatures.   

2.2.3 Laminate Composites  
 

In addition to classifying the matrix material and reinforcement phase of a composite, one 

must define the type of composite [6]. There are several different types of composite, each with 

their unique properties and distinct advantage and disadvantages. The most commonly used type 

of composite material is laminate.   

The fundamental unit of composite laminates is the lamina. A lamina is a single sheet of either 

unidirectional or woven fibres that have been embedded into a matrix material. A single lamina is 

an orthotropic material that is used to build up the individual layers of the laminate. Though 
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individually, each lamina may have unidirectional fibres, a laminate need not have each ply in 

alignment, as seen in Figure 2-2. The laminate plies may be perfectly aligned or completely offset 

to improve mechanical properties in a specific plane or to increase the anisotropy of the material. 

Though it is most common for each ply in a laminate to consist of the same matrix and 

reinforcement, it can be advantageous to use different reinforcement material in each layer and 

occasional in the same layer. Composites with different materials in each layer are known as intra-

ply hybrid composites, and ones with various materials in each ply are known as inter-ply 

composites.  

The advantages of laminate lie in their high strength, lightweight, and the tailorability of their 

material properties [7]. Laminates particularly have high in-plane strength in the direction of their 

fibres compared to other composite materials [8]. However, there are two significant disadvantages 

of laminates: their through-thickness strength and damage resistance. The low through-thickness 

strength is due to no interlayer connectivity between fibres [9]. Indeed, this means that the 

laminates are particularly weak between laminae. The low damage resistance is also a result of the 

lack of interlayer connectivity, which makes laminates extremely susceptible to both formation 

and subsequent propagation of cracks in the laminate layers [10]. This process of crack formation 

and fracturing along layers is known as delamination.   
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Figure 2-2: Cross-Section of a stacked fibre laminate with layers stacked at: 0°,45°, and 90°. 

 

2.2.4 Braided Composites  
 

Braided composites are interwoven composite material that typically consists of two phases: 

fibres and matrix material. The fibres are elongated elements that are high in strength and light in 

weight. Braided composites are formed by entwining fibre bundles or yarns at a specific braid 

angle along the principal axis leading to the name angle-ply composites [9].  The weaving of these 

braids provides thru-thickness reinforcement and enhanced damage resistance to impacts when 

compared with traditional laminates  [9], [11].  While theoretically, any range of angles can be 

produced, practically angles are restricted to a range of 20o to 70o [12]. The reason for this is that 

braids with angles below 20o have insufficient fibre locking and above 70o display extreme fibre 

damage. This distinguishes them from woven composites which feature orthogonal yarns [4]. The 

second part, the matrix or resin, adheres to the fibres together while protecting them from external 

damages [1]. Impregnation of the resin can be performed either before the yarns are weaved 
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together or after the braid structure is formed. The most commonly used matrix materials are 

thermoset or thermoplastic polymer [1].  

Typically, braided composites are classified as either two-dimensional (2D) or three-

dimensional braids (3D). 2D braids, which will be the focus of this study, are characterized by 

having yarns that are entwined only in a single plane. 2D braided composites can be distinguished 

by braid type of braid pattern. There are two types of 2D braids: biaxial and triaxial braids [9], 

[13]. Biaxial braids are distinguished by a two-yarn bias system woven at a chosen angle [13]. 

Triaxial braids are produced on a three-yarn bias system where the third yarns lay at 0 degrees. 

Figure 2-3 a) shows a pictorial representation of a biaxial braid. A triaxial braid is shown in Figure 

2-3 b) and is easily distinguishable from a biaxial due to the presence of yarns in the direction of 

the principal axis. Generally speaking, 2D braided composites come in three patterns, each defined 

by the yarn overlapping: diamond (1/1), regular (2/2), and Hercules (3/3) [9]. The overlapping 

braid pattern can be seen in Figure 2-4, which shows a unit for each braid pattern.   

 

Figure 2-3: Schematics of types of 2D diamond braids: a) biaxial braid, & b) Triaxial braid 

 



16 
 

 

Figure 2-4: Schematic drawings of the three most common braided composite patterns: a) 

Diamond (1/1), b) Regular (2/2), and c) Hercules (3/3) 

 

The geometry and interlaced structure, which is seen in Figure 2-5, are the primary 

contributors to the superior properties of braids over traditional laminate composites. There are 

three key factors geometric components that affect the braided composite strength: the braid 

pattern, the braid angle, and the mesh spacing.  The most important feature is the braid angle, 

which is the angle the yarns make with the principle axis [1]. Alterations to the braid angle of the 

braided composite can change the composite’s mechanical properties [1]. Generally, the more 

aligned the yarns are, the stronger the braid will perform under longitudinal loading and, worse 

under transverse loading, while at 45o, the material is most durable in shear [4]. However, there is 

a limit to the range of braid angles achievable, known as the jam angle, where adjacent yarns 

interfere with one another to preventing further shifts in the braid angle.  The tendency of the braid 

angle to shift during loading resulting in a subsequent change in mechanical properties in addition 

to possible jamming of the braid makes their mechanical properties very difficult to predict. Figure 

2-6 shows a braid in an unjammed state compared to that of a braid in a jammed state. It is easily 

seen that in Figure 2-6  a), the yarns have space to shift when a force in applied, while in Figure 
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2-6 b) that yarns are in a position such that further movement is not possible. Finally, braids can 

have an open or closed mesh; the difference between them is easily identifiable and can be seen in 

Figure 2-7. Open meshed braids, typically have a low fibre volume percentage, perform better in 

torsion, and have lower flexural rigidity then closed mesh braids [14]–[16].  

 
Figure 2-5: Interlaced structure and braid angle of 2D tubular braided composite shown on a 

true carbon fibre preform with a diamond unit cell.  
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Figure 2-6: Schematic of a diamond braid that has gone from the state a) unjammed to b) 

jammed. 

 

Figure 2-7 Braid coverage for a) closed mesh braid and b) open mesh braid. 
  

2.2.5 Injection Moulding Composites 

 

Conventional composites require a complicated manufacturing procedure and can be time-

consuming to produce. This has led researchers to investigate methods for crafting composites 

with a quick production cycle and can be easily implemented into industrial mass production [17]. 

The following sections will provide an overview of two of the most researched methods for 

achieving expedited near-net shape composite production. The first procedure discussed is on the 
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working principles of composite injection molding. The proceeding section will discuss 

composites produced through additive manufacturing principles.   

The injection molding procedure is utilized primarily for the production of PMC [18]. 

However, it is not solely limited to the fabrication of PMCs as MMCs, and Carbon-Carbon 

composites are possible to produce via the injection molding procedure [17]. While the end 

product's constituent materials may differ, generally speaking, the production cycle employs the 

same general principles. Thus, as PMCs are the most commonly produced composite through 

injection molding and of particular interest for the work outlined in this thesis, this section will 

delve into these materials' production cycle.   

The first step in fabricating PMCs is to create a feedstock material typically in the form of 

composite pellets. The feedstock for PMC is generally produced by compounding a thermoplastic 

resin with reinforcing fibres or particulates. A twin-screw extruder is then utilized to mix the 

polymer resin and reinforcement phase. Twin Extruders are generally preferred over single screw 

extruders due to their high throughput and more thorough mixing [18]. Typically, the mixed 

compound has a reinforcement content of 20-50 wt%. The composite's pellets fabricated from the 

extruder are then utilized as the injection molding process's input material.  

The composite pellets are first loaded into the injection molding machine's hopper, which 

feeds them into the barrel. A single screw transports the reinforced polymer through the barrel into 

the mold [18]. As the screw transports the polymeric material, heat generates through the screws 

shearing motion melt and plasticizes the polymer along with the help of auxiliary heaters'. The 

reciprocal action of the screw builds up the molten polymer until it is ready to be injected into the 

mold cavity.  To force the polymer into the chamber and account for shrinkage, an external device 

holds the screw under pressure forcing the polymer mixture into the mold cavity and holding the 
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part under pressure [17].  The part is then cooled via an external cooling unit's help until it typically 

reaches a temperature below its glass transition point. The final piece is then ejected from the mold 

cavity.  

While the fast production cycles, near net-shape design, and ease of implementation within 

mass-manufacturing production, are advantages of the injection molding procedure, there are still 

some limitations. The first limitation is the amount of filler content that is possible to compound 

with the polymer. Large amounts of filler result in correspondingly high viscosity, which cannot 

be transported through the machine [19]. Additionally, the flow fields created in the barrel result 

in the alignment of the reinforcement phase, making random orientation fibre-reinforced 

composite difficult to produce [18], [20]. Consequently, this fibre alignment results in material 

properties that tend to be highly anisotropic, with superior strength in the fibre alignment direction. 

The development of more complex injection molding machines, such as fluid-assisted injection 

molding composites, has allowed for the production of more randomly oriented fibre composites 

[18]. Finally, continuous or long fibre composites are challenging to produce utilizing the 

traditional injection molding process as the fibres tend to break during the plasticization process 

[18].    

2.2.6 Fused Filament Fabrication (FFF) Composites  

 

Conventional composites require a complicated manufacturing procedure and can be time-

consuming to produce.  The advent of additive manufacturing has allowed for the automated 

production of complex composite structures. Additive manufacturing has made it possible to create 

to-scale composite parts directly from solid models.  One of the most common additive 

manufacturing methods for producing scale parts is fused filament fabrication (FFF) [21]. Fused 
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deposit modelling heating material beyond its melting temperature and deposits it upon working 

bed. This process builds the material layer by layer until the full geometry of the part is realized.  

FFF is one of the most commonly utilized additive manufacturing methods due to the vast 

array of thermoplastics compatible with the procedure and ease of implementation into 

manufacturing production lines [22]. However, traditional FFF parts are typical only see use in the 

production prototypes or simple toys [23]. The reason that FFF parts see limited commercial usage 

is due to the low mechanical properties resin material and inconsistent part production from the 

FFF printers [22].  To improve upon the mechanical strength of FFF parts, researchers have begun 

to incorporate reinforcing materials, such as graphite, carbon fibre, or metal particles [22], [24]. 

The addition of this reinforcing phase helps to address this issue by improving mechanical strength 

to allow for use in functional design parts.  

As with all composite material, FFF composites can be manufacture as continuous fiber, short 

fiber,  or particulate based composite materials [25]–[27].  For this literature review, the focus will 

be placed on particulate FFF composites. Particulate-reinforced composite material offers a low-

cost alternative to fibre-reinforced FFF composites [25]. The addition of particles to thermoplastic 

matrix material offers a vast degree of tailorability and improvements to tensile storage, wear-

resistance and dielectric permittivity [25], [28].  

When considering particle-reinforced composites, there are many factors, including particle 

loading, particle size, particle loading, surface treatment, and interfacial adhesion, that can have a 

significant effect on the mechanical properties of the composite material [25]. Of these factors 

particle size, particle adhesion and particle loading all play an essential role in the strength of the 

materials. It is often challenging to separate the role of these three factors due to their interplay in 

determining the overall mechanical behaviour [29].  
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While the speed of production and increased mechanical properties of FFF-composites make 

them an attractive alternative to traditional materials, there are still many challenges with regards 

to FFF composites. One of the most glaring challenges when it comes to the analysis of FFF 

composite is the characterization of their mechanical properties. Due to the previously described 

interplay between particle size, particle loading, and adhesion, the mechanical properties are often 

difficult to predict and are not always linear. An example of such can be seen in Hwang et al. were 

the effects of fill density increase the tensile stress of the material, but had no significant effects 

on strain other than the 60% infill samples which showed increased ductility [24]. Additionally, 

not all particles and particle loading conditions are easily achievable. The addition of a high 

amount of dense filler material can cause a significant increase viscosity of the filament, making 

the FFF procedure impossible to achieve without the addition of plasticizers [30].   

2.3 Digital Image Correlation  

2.3.1 Image Acquisition for Surface Measurements  

 

To realize the mechanical properties of complex material, researchers have moved from 

traditional point measurements to surface measurements. Before discussing the fundamentals and 

utilization of digital image correlation (DIC), a brief overview of surface imaging will be provided. 

With the advent of high-quality digital CMOS and CCD cameras, it became possible to capture 

the full-field images of materials during deformation. Cameras offer a distinct advantage over 

traditional methods for capturing deformation as the field of view can be altered by merely 

changing the optics of the system. This modularity of the DIC system allows for both a full sample 

or localized images of deformation to be capture [31].  

When selecting a camera for imaging in DIC experiments, it is essential first to determine the 

parameters of the experiment. The first parameter that must be determined is the region of interest 
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(ROI) that will be imaged [32]. It is ideal to select a camera where the ROI fits within the camera’s 

field of view (FOV). Intertwine with the selected FOV of the camera, is the standoff distance 

(SOD) and depth of field (DOF). These parameters determine the position of the camera and the 

required depth to ensure the sample remains. While these are the significant parameters affecting 

camera selection for DIC, one must also be aware of selecting a camera with an appropriate sensor 

size to capture the FOV, and a low signal-to-noise ratio to capture high-quality images. Finally, it 

is essential to note that the camera selection and lens selection must be made together due to the 

interplay between sensor size and lens effects on the scale of the image.    

2.3.2 Fundamentals of DIC 
 

The traditional method of analysis for strain fields such as strain gauges and extensometer 

only provide discrete strain measurement. For full-field strain measurements of materials optical 

measurement, digital image correlation (DIC) being the most common, has been adopted by 

researchers [33]. DIC can be broken into two general categories 2D DIC and 3D DIC. 2D DIC 

utilizes a single camera, which is limited to flat samples, to provide in-plane displacements and 

strains. For samples where out-of-plane strain fields exist, such as those exhibited in curved 

samples, 3D DIC is utilized. Nevertheless, the operating principles of both the DIC system can be 

broken down into three major phases: 1) sample preparation, 2) image acquisition, and 3) digital 

image processing and numerical computation.  

The principles of correlation for DIC require a sufficient speckling pattern, which is achieved 

by a variation in greyscale patterns. This speckling pattern can be achieved through the natural 

texture of the material or artificially produced by applying paint to the sample surface [33].  An 

optimal greyscale pattern is one that is both random and abundant in a wide range of greyscale 

intensities. Once the samples speckle pattern is determined, a series of images can be recorded for 
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the reference and deformed data set by the usage of a CCD or CMOS camera. Figure 2-8 shows a 

standard setup for 2D DIC with a speckled sample is shown laid flat in-plain with a digital camera. 

A light source is typically used to illuminate the sample and prevent uneven lighting conditions. 

A second camera can also be used at a stereo-angle with the first, similar to the Figure 2-8 setup. 

This technique is known as 3D DIC and useful for calculating out-of-plane displacement and strain 

fields [34]. 

 

Figure 2-8: Example Schematic of a 2D DIC for a sample under mechanical loading. 

 

The first step toward calculating the displacements is the choice of region of interest to 

correlate over and a square subset size [33]. Both the reference and deformed data set is then 

discretized into these subsets were correlation is performed. The displacement of the subset is 

calculated by tracking the movement of pixels within the subset by matching the greyscale level 

between reference and displaced dataset. Displayed in Figure 2-9 is an example of a specimen that 

has been speckled for DIC with a selected ROI. A single representative correlation window is 

shown, where the particles within are tracked to measure the displacement.  To determine the 

degree of similarity between the subsets, a cross-correlation or the sum-squared difference 
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criterion is defined. The three most commonly utilized cross-correlation criterion: 1) cross-

correlation (CC), 2) normalized cross-correlation (NCC), and 3) zero normalized cross-correlation 

(ZNCC) are defined in equations 2.4-2.10.  In these equations f(xi, yi) and g(xi
' , yi

') represents the 

greyscale intensity in the reference and deformed subsets respectively and  fm and gm are their 

respective mean greyscale intensity.    

 

Figure 2-9: Example of a speckled test sample for DIC and representative correlation window 
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The first step in computing the displacement is to determine the peak of the cross-correlation 

coefficient. This identifies the location of maximum similarity between the deformed and refer 

subset. By analyzing the change of the reference subset to form the deformed subset integer level 

displacements can be computed through the cross-correlation formulation [35].  However, for 

many application integer displacements are insufficient as deformation may lay between pixels 

these locations are known as sub-pixels. It is thus, required for applications that a quantification 

of the sub-pixel displacement be made for an accurate measure of displacement to be had.   

To compute sub-pixel displacement values, an interpolation scheme is necessary. Before the 

degree of similarity is calculated via the cross-correlation coefficient a measure of the intensity of 
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the reference and deformed image must be calculated with sub-pixel accuracy. An initial guess is 

made by searching through the image in the spatial or frequency domain [33]. In the spatial 

domain, this is done by searching pixel by pixel. In contrast, in the frequency domain, this is done 

through the implementation of a fast Fourier transform (FFT), which is useful for most cases 

without large deformation or rotation [33]. In these cases, custom algorithms have been developed 

to obtain a reliable initial guess. After a guess is made for the initial displacement, a sub-pixel 

displacement algorithm, the most common being the Newton-Raphson method, can is utilized to 

capture the sub-pixel displacement behavior between the initial and deformed dataset [35].  

Strain measurements can be calculated either directly from the displacement results of the 

Newton-Raphson method or through it on mathematical differentiation. Both methods have their 

advantages and disadvantages. Generally a direct calculation of strain through the Newton-

Raphson is only applicable for strain greater than 0.010 [33]. When using the numerical approach, 

errors in the displacement data due to noise is reflected and amplified in the strain data [33]. 

Minimization of these effects is done through different smoothing algorithms that have been 

developed to improve the displacement data before strain measurements are calculated.     

2.3.3 DIC for Mechanics of Materials  
 

DIC has provided an avenue for the analysis of the material properties of complex 

heterogeneous materials where traditional methods such as strain gauges may fail. DIC also 

provides valuable experiment data that help in the creation and validation of more accurate 

numerical models of these complex materials.  A 3D textile glass fibre and SC-15 epoxy resin 

composite was subject to a 1 mm/mm bending load by Zhang et al. [36]. During the elastic loading 

region, the experimental strain results were captured via a Nikon D2 x camera in a DIC experiment. 

The DIC results show two distinct behaviour when the sample is loaded in the weft direction 
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compared to the warp direction. When loaded in the weft direction, cracking was exhibited when 

the tows began to kink on the compressive side. However, when the material was loaded in the 

warp direction, cracking formed when fibres kinked on the tensile side. 

Additionally, the critical load, which corresponds to the kinking of the fibres, occurs at 4.2 

mm and 4.7 mm for the warp and weft direction. Using this data, a FEM model was proposed 

based on the global-local modelling method for the prestress region. This model was able to predict 

similar peak stress to the experimental DIC data consistently.   

Leung et al. utilized stereo-DIC to analyze the resultant effects of tensile loading effects on 

braid angle and radius for a tubular braided composite and how they relate to the material’s elastic 

modulus [37]. To study these effects, a Kevlar composite impregnated in epoxy resin was subject 

to a tensile load. Images were obtained at three regions each 9 mm apart from each other along the 

braid with two stereo cameras attach to a stereomicroscope. Under these conditions, an average 

strain of 1.64 ±0.67% occurred before material failure. A change in radius and braid angle before 

failure was measured at -0.072 ± 0.095 mm and -0.8o ± 0.26o, respectively. It was shown that the 

changes in radius during loading caused a resultant change in the area, thus leading to increased 

stress and modulus. As the axial tension causes the braid angle to decrease, a subsequent increase 

in longitudinal modulus can be observed. Considering the combined effects of radius change and 

angle change, a 9.12% increase in longitudinal modulus is observed, illustrating the importance of 

accurate braid angle and radius measurement for modelling the behaviour of tubular braided 

composites.  

Melenka et al. expanded upon the study of tubular braided composite by using stereo-DIC 

to analyze the effects on braid pattern, braid angle, and load on strain fields and elastic properties 

[38]. Kevlar braid preforms were prepared in two different patterns: 1) diamond and 2) regular, 



29 
 

which were impregnated into an epoxy resin. A tension and torsion experiment were conducted 

separately using a universal material test stage. Tension tests were performed at a rate of 0.5 

mm/min. Under tension, high regions of strains were visualized at the cross-over points, which 

lead to these areas to experience matrix failure.  For the torsional test, a load was applied at a rate 

of 0.05 rad/min via a 20 Nm load cell. The torsional tests showed a linear shear stress-strain 

relation. After the maximum shear stress was reached, there was a continuous decrease in the 

stress-strain due to torsional buckling. 

While the usage of DIC to study complex materials has proved a powerful tool, its adoption 

for the analysis of additive manufactured parts is limited. Zaldivir et al. extended the usage of DIC 

to investigate the effects of build orientation on the thermal and mechanical properties of the FFF 

printed parts [39]. The material of choice in this study was Ultem 9085, which was printed into 

ASTM D638-10 Type 1 tensile coupons. Results of the analysis showed that build orientations 

that produced a majority of their fibres along the load direction exhibited increased mechanical 

performance. The effects on the performance of the FFF parts showed a strength of roughly 45-

86% of the reported materials values. The DIC measurements showed that the deformation 

behaviour of the parts was highly anisotropic. Indeed, based on the build orientation, the strain in 

the sample could develop with minimal irregularities, such is the case for a sample built on its 

edge, or to perpendicular strain layers for a sample produced upright.  

Goodarzi Hosseinabadi et al. was one of the first researchers to study the utilization of DIC 

for the analysis of both FFF and polyjet produced parts [40]. Two honeycomb models were 

produced one using ABS and FFF technology and another with a photocured resin and the polyjet 

technology. Analysis of the strain distribution under a compressive load was then measured using 

a 3D DIC experimental setup. The results of the analysis showed the capability of DIC to resolve 
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the strain localization in the struts of the 3D printed layers. Comparing the strain data between the 

polyjet printed and FFF printed parts, the maximum local strains were shown to be much smaller 

for the polyjet part. This is contributed to the FFF parts rigidity and weld lines in the FFF materials 

microstructure. Thus, it was concluded that the nozzle based FFF technique was more likely to fail 

under plastic deformation compared to the polyjet technique.  

An extension of Goodarzi Hosseinabadi et al. work on FFF produced honeycomb was further 

investigated to capture the development of shear bands. Samples were again produced with ABS 

filament, and subject to a compressive and flexural test [41]. Results from the experimental DIC 

data were then used as a point of comparison for numerical finite element (FE) simulations. The 

shear strain was shown to develop in three stages for the sample shear band coalescence, shear 

band expansion, and shear band deformation.  Both the FE model and the DIC experiment showed 

good agreement between the strain contours and strain development.  

As just shown, DIC can provide an accurate measure of displacement and strain for complex 

materials. The data obtained from DIC results is invaluable for analyzing the mechanical response 

of composites, and additive manufacturing produced parts were traditional techniques may prove 

unsuitable. However, DIC is not without its limitation, namely that the results are limited to 

surface-level measurements. In the upcoming sections, a discussion is provided in the 

advancement of micro-computed tomography (μ-CT) and digital volume correlation. With the 

advent of these two technologies, it has become possible to capture 3D images of a sample 

deformation and analyze then to capture a full-field view of displacement and strain.  
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2.4 Volume Measurements and Digital Volume Correlation  

2.4.1 Fundamentals of Micro-Computed Tomography  
 

Before discussing the fundamentals and uses of DVC, it is important to discuss first how 

datasets are captured for analysis. The most commonly used method for obtaining 3D-dataset is 

through μ-CT.  μ-CT is an x-ray based imaging technique in which radiographic images of samples 

can be taken at sub-millimeter resolutions. The μ-CT method works by first passing x-rays 

produced by an x-ray receptor through the desired material [42]. As the x-ray passes through the 

sample, the beam is attenuated based on the density of this material [42]. The attenuated x-ray is 

then acquired by a sensor adjacent to the material, the x-ray receiver, and the intensity is measured 

as a ratio of the attenuated x-ray intensity to the initial intensity  [42]. From these values, a 2D 

radiographic image can be reconstructed for that individual plane.  

By rotating the sample within the μ-CT machine, a series of radiographic images can be taken 

that describe the entire internal structure of the material [42]. This process is shown in Figure 2-10, 

where x-rays produced by an x-ray receptor are passed through a rotating sample and collected by 

the x-ray receiver.  After the completion of this scan, the 2D radiographs or shadow projections 

must be reconstructed into a volumetric image [43]. Reconstruction is completed by applying a 

Fourier slice theorem [43]. The fourier slice theorem states that fourier transform of a parallel ray 

projection at any angle is the same as a line taken at the same angle is a slice of the Fourier 

transform of the reconstructed image. Thus by performing this over a sufficient amount of 

projections allows the entire Fourier space can be defined and then reconstructed to give a 

volumetric view of the object’s internal structure [43].    
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Figure 2-10: Schematic drawing showing the layout and operation of a µ-CT machine during 

the scanning of sample material.  

 

What makes μ-CT ideal candidate for imaging composite materials is its high sensitivity to 

changes in density [42]. This allows for the matrix, yarns, voids and their interfaces within laminate 

and textile composites to be accurately mapped to a digital image and analyzed. Furthermore, as a 

load is applied, the response of the composite structure and formation of cracks in the structure 

can be visualized. By imaging and tracking the response of the structure, measurements of 

displacement and strain can be measured through the bulk of the sample via image processing 

technics that will be discussed in depth later in sections 2.4.3 to 2.4.8.    

2.4.2 Micro-Computed Tomography for Composite Analysis   
 

μ-CT has found substantial use for the imaging and analysis of composite materials. The 

sub-millimeter volumetric imaging of composites allows for geometric measurements to be made 

on the reinforcement and matrix phase. The yarn architecture of textile composite is of particular 

interest to many researchers. Due to the often low and often similar density of the matrix phases, 

it is often useful to add contrast-enhancing additives on the particular phase of interest before 
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imaging. To this end, Djukic et al., provided a detailed starting point for studying contrast 

enhancement by adding gold, copper, and iodine on carbon fabric yarns both pre and post weaving 

[44], [45]. Due to the precense of metals within the sample CT artifacts became apparent within 

the initial images. Particularly appearance of the beam hardening artifact was present. Beam 

hardening  appears as small streaks across the image or bright spots due to the attenuation of low 

energy x-rays. Additionally, some light ring artifacts became present in a few of the samples which 

appear due to poor calibration of the sensor. To reduce the precense of these artifacts a correction 

algorithm during reconstruction. The addition of gold, copper, and iodine all help improved 

contrast of the samples with gold performing the most optimal. Furthermore, while both methods 

proved useful, the group was more successful when coating the fibres before weaving, as this led 

to better image quality and dimension accuracy when visualized.  

This technique of adding material to enhance image contrast has been applied to ceramic 

matrix composite by Bale et al., who used chemical vapour deposition to coat Boron Nitride (BN) 

on SiC nitride yarns [46]. Chemical vapour deposition allowed for sufficient contrast between tows 

to be achieved so that the architecture could be mapped and analyzed for defects and irregularity 

in 3D. Continuing research in this field has shown its potential for mapping composite yarn 

structures with a high statistical degree of dimensional accuracy in 3D via the µ-CT method [47], 

[48].     

Recent research in textile composites has begun to examine the geometrical properties of 

both 2D and 3D braided composite materials. Melenka et al. used the µ-CT to examine the yarn 

pathing for diamond braids [49]. The cross-sections of the tubular braids were acquired for analysis 

of critical geometrical properties of the braid, such as aspect ratio, braid angle, and undulation 

utilizing µ-CT imaging. An example of a µ-CT cross-section of a tubular braided composite with 
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an 11.1 mm inner diameter (ID) can be seen in Figure 2-11. From the reconstructed cross-section, 

essential features of the braid architecture can be identified, such as the matrix, fibre tows and void 

content. An unwrapping algorithm was employed to help automate and simplify the analysis of 

the braids. This algorithm allowed for the mapping of individual yarns in 3D and for the aspect 

ratios, braid angle and fibre undulations period to be precisely measured.  

 

Figure 2-11: Composite architecture (Tow, voids, and matrix) of a reconstructed cross-section 

of a tubular braided composite with an 11.1 inner diameter (ID) produced from µ-CT.  

 

Ya et al. utilized the µ-CT method to model and analyze the highly complex geometry of 3D 

full five-directional braided composites (3DF5D) [50]. A tracer yarn was added to the composite 

to improve image contrast for geometrical analysis. A tracer yarn is yarn of different density than 

the rest of the bulk of the braid material is added into a composite weave to improve image contrast. 

In this study, glass fibre was used as a tracer yarn in a carbon fibre composite due to its lower 

density. This tracer yarn allowed for the path, cross-section, and ellipticity to be calculated. 

Ellipticity (e) is the ratio of the major access to the minor access. Equation 2.11 shows the 
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formulation for ellipticity, where a represents the polar radius, and c represents the equatorial 

radius. 

                                                          e = √
a2-c2

a2                    (2.11)                                               

In addition to making geometric measurements, μ-CT is capable of detecting manufacturing 

defects such as voids and damage. The initial usage of µ-CT was for crack and air bubble detection 

in more traditional materials such as concrete and sandstone. In a study performed by Skarżyński 

et al., concrete was subject to a quasi-static three-point bend test and later imaged using µ-CT [51], 

[52]. The high resolution provided by the µ-CT allowed cracks to be measured and analyzed along 

the width of the material [53]. Furthermore, the technique has proven to show the minimal 

difference between experimental and theoretical void content by Cai et al. [54]. Cai et al. laser 

sintered an Aluminum powder alloyed with Silicon and magnesium (AlSi10Mg) at four different 

porosities and calculated the void percentage of each sample using µ-CT and Archimedes 

principle. A 5.338-17.431 percent difference between porosity values from the Archimedes 

principle and µ-CT measurements was found, showing the high-level accuracy of the technique.  

More recently, the technique has been seeing utilization for defect and damage detection in 

laminates and braided composite materials. Initial studies in this area looked at directly quantifying 

the size, shape, and pore distribution in the matrix phases of composite materials [55]–[57]. In a 

study by Aratama et al., they employed µ-CT to show the connection between voids and crack 

formation in carbon fibre reinforced plastic (CFRP) laminates [58]. These tests were completed 

using an in-situ three-point bend test on a CFRP made from several 0o lamina stacked between a 

few layers of 90o lamina. Some key observations were made upon examination of the tomographs. 

In the 90o layers, the most significant stress contributor was in-plane transverse stresses. 
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Additionally, there were many voids (30 µm) that ran in the width direction and were several 

micrometres larger in diameter than the fibre (7 µm). These voids in the matrix acted as areas of 

high strain concentration and thus was the epicentre of transverse cracking in the laminate under 

loading.    

2.4.3 Fundamentals of Digital Volume Correlation (DVC) 
 

Digital Volume Correlation (DVC) is the volumetric equivalent to the more commonly known 

digital image correlation (DIC). While DIC can observe the deformation at the surface of a sample, 

DVC gives a volumetric view. DVC software requires a reference and a deformed 3D image (ex.µ-

CT) to correlate over. Bay et al. first showed this technique for measuring the displacements and 

strains through a 3D image set.[59]. DVC operates by first discretizing an image into a series of 

nodes throughout the volume of the image. These nodes represent the center locations at which the 

displacement and strain between the reference and deformed images will be calculated.  

After discretization, a correlation volume size is then defined and created around these nodal 

points where displacement will be calculated. To first calculate displacements, the degree of 

similarity between subsets is analogously calculated via 3D cross-correlation coefficient to DIC. 

For DVC the degree of similarity between subsets is captured through an objective function. 

Equation 2.12 presents the formulation for the normalized cross coefficient (NCCxyz) for DVC 

which is one of the most widely utilized objective functions [60]. Within this equation, f(xi,yj,zk) 

is the representative greyscale intensity in a correlation volume, while g(xi
’,yj’,zk

’) represents the 

greyscale intensity in the corresponding deformed correlation volume. A representative picture of 

the displacement principle for DVC is shown in Figure 2-12. For simplicities sake two particles 

are considered, U and W, which are located in the subset P, the reference subset. When a load is 

applied, the subset P may translate in x, y, & z or rotate around any axis; this deformation is 
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represented by P’. This geometric transformation can be calculated by tracking the movement of 

U and W from P to P’. It is important to note that a general recommendation of 27 particles is 

required for accurate correlation measurements, and two particles are shown only to allow for easy 

visualization of the process [61].  

  

          NCCxyz =
∑ ∑ ∑ F(kji xi,yj,zk)G(xi

' ,yj
' ,zk

' )

√∑ ∑ ∑ F(xi,yj,zk)
2

∑ ∑ ∑ G(xi
' ,yj

' zk
' )2 kjikji

          (2.12) 

 

Figure 2-12: Depiction of displaced DVC sub-volume where reference particle U and W displace to 

from the reference state f to deformed state g’ where they are shown as U’ and W’ respectively.  

 

To map the reference and deformed subset on top of one another for displacement calculation, 

an objective function is utilized by the DVC software. Variations of the voxel intensity values 

form the basis of this correlation and by tracking the movement of internal features. This process 
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of tracking particles in 3D space can be seen in Figure 2-12. These features or “speckles” can be 

inherent to the material or artificially induced if the inherent contrast is insufficient for correlation. 

As with DIC it is often that displacement lay between voxels and the displacement must be 

captured in these non-integer or sub-voxel location. To achieved sub-voxel accuracy, the objective 

function must be minimized.  

Typically, this minimization is done by utilizing using one of three techniques: 1) Levenberg-

Marquadt method 2) Broyden–Fletcher–Goldfarb–Shanno, or 3) steepest decent technique [62]. 

By utilizing a correlation algorithm over these subsets, a highly accurate approximation of the 

deformation of the structure can be found. These displacements can be further transformed to allow 

for the observation of the full strain field. The ability to qualitatively estimate the displacement 

and strain fields based on an internal speckling pattern has proved useful for quantifying the 

properties of many different materials: bone, wood, metals, and composites.    

2.4.4 Open-Source DVC  

As DVC is relatively new, commercial software’s are currently prohibitive due to their high 

cost.  Due to this fact, a few research groups have begun to develop open-source alternatives to 

commercial DVC software packages. Réthoré et al. were one of the first research groups to develop 

an open-source DVC software which is known as ‘uFreckles’ [63], [64]. The ‘uFreckles’ program 

utilizes a finite element continuum method in conjunction with a non-linear least-squares error 

minimization method to calculate displacement. The finite element continuum method gains its 

name from the fact that common finite element shape functions are utilized to help predict 

displacement discontinuities of the mesh. Another open-source alternative for DVC was developed 

by Bar-Konchba et al [65]. FIDVC and its software extensions were developed utilizing the 

MATLAB programing language for the analysis of cell-induced material formations [65], [66]. 
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The code utilizes an iterative deformation method were subsequent passes decrease the window 

size to improve the resolution of sample deformation. The final open-source DVC software 

discussed is by Tudisco et al. provided a python-based DVC software known as TomoWarp 2 [67]. 

TomoWarp 2 was made to study the deformation of geological materials. Displacement vectors 

and strain vectors are calculated utilizing a local approach, were the best mapping of displacement 

is calculated between local correlation windows of reference and deformed datasets.   

2.4.5 DVC Contrast Enhancement  

Before discussing the various works in which DVC has put into practice, it is important to 

preface this with a discussion on image quality. For an accurate correlation to be obtained image 

datasets for DVC must have an internal random contrast pattern similar to the speckle patterns 

discussed for DIC. Despite this requirement, relatively few studies have discussed the nature of 

contrast regarding DVC. Croom et al. [61] were one of the first groups to study natural contrast 

patterns i.e. contrast pattern intrinsic to the material. Within Croom’s study, elastic foams were 

crafted at different volume fractions to mimic a natural contrast pattern. These foams were then 

compressed to analyze the effects of deterioration of natural contrast patterns under deformation. 

Results showed that before 30%-40% of the speckle pattern had deteriorated within these DVC 

results were highly accurate. However, after this threshold, noise in the sample made displacement 

and strain measurement highly inaccurate.  

Currently, most work focuses on samples which contain natural greyscale contrast and 

variation.  Gonzalez et al. began to investigate the effects of artificial contrast enchantment [68].  

This process of adding external particles to increase the contrast of the microstructure for the 

purpose of imaging and correlation is known as artifical speckling. To investigate this PVDF and 

PDMS samples were seeded various sized ZrO2 and SiO2 marker particles. Each sample was then 
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compressed to a certain amount of rigid-body displacement and correlated to match said 

displacement. A 41 x 41 x 41 voxel correlation window was utilized to calculate these 

displacements within each dataset. This study described most artificial speckling materials to 

provide a displacement accuracy of less than 5.3 % error. The selected material and seeding 

particle that provided the highest accuracy was 35 µm SiO2 mixed at 10% with a PDMS base..  

2.4.6 DVC of Trabecular Bone  
 

The first practical application of DVC was for the analysis of the trabecular bone of animals. 

A significant portion of the research in this area was performed to analyze the precision of the 

DVC measurement technique when applied to trabecular bone. The trabecular bone was first 

analyzed in Bay et al., initial DVC study to emphasize the usage of the measurement technique in 

obtaining full-field strain values [59]. To illustrate the strain behaviour of the bone, two samples 

were tested: one loaded within the elastic region at a nominal strain 0.004 and 0.008, and one 

loaded beyond the bones yield at a nominal strain of 0.006 and 0.018. Strain measurement in the 

elastic sample showed pockets of considerable strain within the high-density regions of the bone. 

For the sample brought to yield principle, the strain begins to develop in the lower part of the 

sample until it reaches failure, after which high levels of local strain forms. Measurements for both 

samples showed the development of local strains before nominal strains, which is a behaviour that 

can’t be observed from standard material test procedures.  

In a later study, Zauel et al. performed a compression test on a trabecular bone and compared 

against the results against a FEM model [69]. Using linear regression, the two models predicted 

similar displacements in the loading direction resulting in an R2 value of 0.970 for a femoral 

sample. In contrast, results within the transverse direction proved less accurate. The vertebral 

results performed similarly, with slightly lower coefficients due to the sample’s lower density. 
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Strain results were only showed a similarity when comparing strains from the average 

displacement of the FEM model with the DVC results. However, with the bottleneck from µ-CT 

machines at the time of the study, the unaveraged strain was not directly comparable.   

While most studies at this point simply focused on 1-2 specimens, Liu et al. studied the 

accuracy and precision of the measurements against both the DVC correlation method and 

trabecular structure [70]. Across the five different trabecular bones, the maximum likelihood 

estimation implemented showed the most accurate and precise results for both displacement and 

strain rather than the cross-correlation or normalized cross-correlation technique. Utilizing the 

MLE technique displacements precision across all five bone types, precision ranged between 1.86-

3.39 µm within a 40-voxel subset. The error in strain within a subset of the same size was between 

345-794 µε. These results suggested that trabecular bone DVC measurement will provide its most 

accurate results when analyzing bone in the yield or post-yield regimes.    

Gillard et al. looked to study the compression behaviour of porcine trabecular bone [71]. The 

main aim of the study was to utilize DVC to quantify strain behaviour, bone failure, and the 

Poisson ratio of the trabecular bone. Results from the analysis showed strain value ranging -0.03 

to 0.002, located at different edges of the material, indicating non-axial compression. As expected, 

as the compressive force increased strain also increased. At the maximum load step, however, 

layers of the sample began to crush, providing a significant source of unreliable results. Using the 

strain data from properly correlated regions of the sample, the Poisson ratio was able to be 

calculated. The results showed as compression increased, there was a decrease in the Poisson’s 

ratio from 0.32-0.21. This showed the viability of DVC to provide accurate strain and Poisson’s 

ratio measure as there was good agreeability between experimental results and other literature on 

trabecular bone.  
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To obtain accurate strain measurement at a tissue level, Pena Fernandez et al. looked to 

optimize imaging, post-processing and DVC setting to study bone tissue [72]. To obtain images 

for a localized DVC approach, image quality needed to be reduced by decreasing exposure time 

of the synchrotron radiation x-ray to prevent radiation damage to the tissue. To provide to allow 

for better segmentation of the bone and biomaterial, a local median filter and non-local mean filter 

were applied to the sample. By applying these methods, it became possible to investigate the full-

field displacement and strain on the sample on a tissue level.    

2.4.7 DVC of Traditional Materials  
 

Tran et al. utilized µCT alongside DVC to analyze the material response of wood and 

polyester fibres to a compressive load [73]. The compression test was done by applying a 

compressive load at seven steps to compress the sample by 0 to 31% of its initial size. The DVC 

results showed that the movement of the fibre was solely along the axial direction, and the 

transverse and shear deformation negligible. The local strain showed a non-linear relation with 

local porosity, which compared favourably with theoretical results. Furthermore, by plotting the 

mean strain against the solid phase volume fraction shows a linear trend. These results showed that 

the material porosity could closely approximate the strain behaviour of these materials. 

Furthermore, verifying the applicability of DVC at estimating the strain behaviour of multiphase 

fibrous materials.  

Along with traditional metal, some researchers have adopted the DVC technique for their 

alloys. Morgeneyer et al. conducted a feasibility analysis on the usage of DVC paired with 

synchrotron radiation computed laminography (SRCL) for understanding the crack behaviour of a 

2XXX series of aluminum alloy [74]. Laminography was preferential in this study for capturing 

the ductile crack propagation in a thin sheet of alloy. A 0.15 mm radius notch was imbedded into 
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the aluminum surface. Using an in-situ material loading and scanning setup, the crack was scanned 

at a reference state and three different displacements: 0.5 mm, 0.75 mm, and 1 mm. The correlation 

was supported using the internal porosity and metallic particles natural present in the alloy. From 

the DVC study, the correlation residuals, displacements, and strain. A principle interest for this 

feasibility of were the correlation residuals. As the correlation residual matched to within 4.2 ± 

0.3% between the loaded states and unloaded states giving validation to the feasibility of this 

method. 

Additionally, strain and displacement behaviour agree with that expected from the loading 

configuration. A follow-up study was then conducted on an Al-Cu-Li sheet using similar 

techniques to observe strain localization behaviour [75]. DVC results were able to capture the 

development in strain bands along the fracture surface. The development of strain can capture 

much before surface fractures to mechanical loading.   

While some researcher continues to look at the feasibility of DVC at accurately capturing 

displacements and strains within metals, some have moved towards the implementation stage. 

Mostafavi et al. analyzed the yield behaviour around the indentation induced from a Vickers 

hardness test on a magnesium alloy and aluminum-silicon carbide composite [76]. Traditional 

hardness tests only examine the surface of the impacted structure. Still, the deformation processes 

such as strain hardening happen due to changes in the microstructure of the material, which can be 

seen through DVC. While correlation failed directly at the surface of indentation were plastic 

deformation caused a change, in contrast, radial and axial displacement showed good agreement 

between with finite element method (FEM) simulation. Additionally, it was shown that the 

displacement field could be utilized as a modelling input to help refine the FEM models allowing 

for the extrapolation of material properties..    
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2.4.8 DVC of Composite and Non-Traditional Materials  
 

Brault et al. were one of the first to introduce the DVC technique to a composite material, by 

performing a 3-point bend test conducted at five load states up to 3.7 KN on a composite laminate 

[77]. The laminate used was composed of carbon fibres and epoxy resin with imbedded copper 

particles associated with the DVC subset size to help increase the resolution and improve the 

correlation. The results showed a low level of shear strain and displacement in a longitudinal 

direction, while the bending direction showed a displacement gradient with accuracy up to 0.2 

voxels. Indeed, the copper may have affected the mechanical properties, but the low seed 

percentage shows only a result of the experimentation showed an uncertainty of 0.04 voxels.  

Instead of looking at the bulk strains and displacement, Lecomte-Grosbras et al. applied both 

the DIC and DVC technique on laminate composites to understand free-edge effects [78]. A glass 

fibre reinforced polymer (GFRP) was subject to several loading steps from 0 N, the reference state 

to 8000 N when material failure occurred. The 2D DIC and DVC in this study both validate one 

another and show similar trends in the material with the DVC analysis allowing the evolution of 

displacement and its discontinuity to be measure through the depth. Three significant trends were 

shown about the free edge effects of the samples: residual displacement localized at the edges 

when the load is increased so too is the residual displacement, and as the load increases, an 

observable enlargement in the region of residual displacement can be observed.   

For more complex composite materials, Mendoza et al. utilized DVC techniques for 

comparing 3D woven textile composites [79]. Employment of the DVC technique was used for 

the assessment of the yarn displacement, and differences in the material topology. To study the 

yarn displacement, a scan of two textiles that were manufactured in the same manner were scan 

via µ-CT and compared. The displacement measurements were converted to strain and overlapped 
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onto the textile model. The results of these measurements showed the development of two 

localized strain behaviour: 1) compression of the yarns, and 2) shearing between yarn layers. To 

assess the capability of measuring the topological difference, Mendoza et al. manufacture samples 

with intentional defects. It was shown here that by observing the image residuals missing yarn can 

be identified through highly negative residuals and additional yarns can be identified through 

highly positive residuals.   

Melenka provided a preliminary study on the utilization of DVC in combination with µ-CT 

for tubular braided composites [80]. A 45o regular braid was made from cellulose fibres 

impregnated with a bio-based resin. Images of the braid were obtained utilizing µ-CT (SkyScan 

1272, Bruker, Belgium) equipped with an integrated material test stage (400 N Integrated Test 

Stage, MTS2, Bruker, Belgium). A reference scan was taken before applying a 244.6 N 

compressive load to the sample and taking the deformed scan. DVC was done with open-source 

python code (TomoWarp2) to examine the 3D displacement and strain fields [67]. Both 3D 

dimensional displacement fields and shear stress were able to visualize, showing to the potential 

of the technique for full-field analysis of braided composites under different loading conditions.  

As a first look at the capability of mapping internal displacement fields for additive 

manufactured parts, Wang et al. created a porous polymeric structure [81]. The porous structure 

was then built subject to uniaxial compression tests, with compressive strains increasing stepwise 

from 4%-20%.  The resolution of the six Cauchy strain field showed a high degree of strain that 

are localized periodically on the porous unit cells of the material. As the applied load increased, 

results showed that not only was there a significant increase in strain but its localization as well. 

By then extending the analysis to the calculation of principles strains on a unit cell level, it was 
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shown possible to predict specific damage forms and possible damage mechanisms present in the 

material.   

With DVC being a new field, it is essential to summarize the critical inputs for image 

acquisition and correlation so they may be used as a building point for new and emerging research. 

Table 2-1 provides a recap on the five significant inputs for the µ-CT image used in the studies 

previously discussed. It is vital to notice that these settings are highly dependent on the material 

used and resolution required for visualization of the microstructure. Additionally, Table 2-2 

provides a summary of the DVC setting used in prior research specifically, the correlation window 

size and step size, which defines the correlation window overlap, has been provided. These two 

parameter play a important role in determining the amount of information within each correlation 

window and the overall spatial resolution of the displacement fields both of which effect 

displacement accuracy [82], [83]. It can be seen that a wide range of correlation window sizes and 

step sizes are used for each experiment. These settings are influenced by three major factors, which 

is the degree of deformation, the size of features in the microstructure, and greyscale distribution 

in each subset.   
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Table 2-1: Summary of inputs used in micro-CT for DVC experiments 

 CT Information  

Material Voltage Current Resolution Voxel Size 

(µm/voxel) 

Trabecular Bone [66] 105 kV - - 24.6 

Femur Condyles (sheep)[67] 5-35 keV 2560x2160 2.6 

Magnesium Elektron WE43 Alloy [71] 90 kV 80 µA 1015x512 3.95 

Al616061 Alloy Matrix Composite with 

SiC Particles [71] 

53 keV 4008x2672 0.9 

AA2139 Aluminum Alloy [69] 25 keV 2040x2040x2040 0.7 

AA2128 Al-Cu-Li Alloy [70] 25 keV 2040x2040x2040 0.7 

Wood-Based Fiber Board [68] 65 kV 240 µA 1024x10240 6 

Carbon Fiber Laminate with 150 µm 

Copper Particles [72] 

100 833 961x384 52 

E-glass and M9 Epoxy Laminate [73] 60 kV - 1920x1536 4.5 

Cellulose Braid and Bio Resin [75] 40 200 4904x3280 3 

Porous 3D Printed Structure [76] 140 kV 0.62 mA 1000x1024 55.3 
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Table 2-2: Summary of input parameters for DVC software 

Material  Correlation Window 

(voxel x voxel x voxel) 

Step Size (voxel) 

Trabecular Bone [66] 64x64x64 32 

Femur Condyles (sheep)[67] 112x112x112, 

96x96x96, 80x80x80, 

64x64x64, and 

48x48x48  

16 

Magnesium Elektron WE43 Alloy [71] 128x128x128 

 32x32x32 

16x16x16 

64 

24 

8 

A1616061 Alloy Matrix Composite with SiC 

Particles [71] 

256x256x256 

64x64x64 

128 

32 

AA2139 Aluminum Alloy [69] 16x16x16 - 

AA2128 Al-Cu-Li Alloy [70] 32x32x32 - 

Wood-Based Fiber Board [68] 90x90x90 20 

Carbon Fiber Laminate with 150 µm Copper 

Particles [72] 

31x31x31 - 

E-glass and M9 Epoxy Laminate [73] 64x64x64 to 6x6x6 (at 

center), and 8x8x8 at 

(edge) 

- 

Cellulose Braid and Bio Resin [75] 10x10x10 5 

Porous 3D Printed Structure [76] 21x21x21 to 61x61x61 10 

 

2.4.9  Gaps in Literature   

As DVC is relatively new, there are many areas of study that have yet to be thoroughly 

investigated. As previously shown, much of the DVC researcher has been focused on the 

application toward materials with natural contrast patterns such as trabecular bone. However, 

materials that lack a sufficient natural contrast pattern such as PMC have been studied to a much 

lesser degree. Gonzalez et al. were one of the first researchers to provide a generalized outlook on 

the particle seeding technique, which helps to provide contrast to materials that don’t have a natural 

contrast [68]. However, as this was one of the only studies in this area there is still many area’s 

must be investigated before the technique can be implemented with full confidence to provide 
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accurate DVC results for material such as polymer matrix composite. These include investigation 

of different seeding particle i.e. metals and ceramics, decoupling the analysis from the MTS stage, 

and understanding the effects of reducing of artificially seeded datasets to help lessen computation 

burden. Better understanding the particle seeding technique will provide a avenue for which later 

implementation into complex composite materials such as braided composites and AM parts can 

be analyzed via DVC.  

Concerning material analysis, there is still a wealth of information to be gained from DVC. 

The current literature only taps into a smaller portion of the material analysis that can be provided 

for the DVC technique. Complex materials such as composites have only been investigated to a 

limited degree regarding material composition and loading profile. This is no more evident than in 

relation to additively manufactured parts, either single-phase or composite, and braided composite 

materials. To this author’s best knowledge, Wang et al. study on compressive loading of 

stereolithography produced porous structure is the only in the field of AM, while Melenka 

preliminary study on DVC is the only to examine braided composite materials [80], [81]. Thus, 

there is still a plethora of research to be conducted on material testing and DVC of both traditional 

and composite. As previously mentioned by first establishing a technique for which to provide 

sufficient dataset for DVC both traditionally produced, and AM produced composites can then be 

analyzed to provide a volumetric view of both displacement, and strain. 

2.5 Conclusion 
 

The continued advancements and usage of composite materials in the industry have resulted 

in an increasing need for a true understanding of their material behaviour. Due to their complexity, 

the heterogeneous nature of composite materials, traditional material testing methods do not 

provide adequate information on these materials. Researchers have thus developed different testing 
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techniques based on the principles of capturing images of the sample during deformation and 

correlating over said images digitally for material data. Traditionally this is done by utilizing 

cameras to image the surfaces and DIC to capture the surface behaviour of these materials. 

However, recent research has allowed for the acquisition of 3D data via µ-CT and correlation 

through DVC. The research previously discussed provides an outlook on the current data available 

in this field. Continued research in this area is an essential step in providing a comprehensive 

understanding of advanced materials like composites and additive manufactured components. This 

thesis looks to address the gaps present in current literature, by analyzing contrast enhancement 

technique with a outlook on future usage in braided composites materials. Then utilizing these 

findings to provide a analysis on FFF composite materials.   
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Chapter 3: Artificial Seeding for Micro-Computed Tomography Image 

Contrast Enhancement for Digital Volume Correlation  
 

3.1 Introduction  
 

Composite materials are a multi-phase material composed of a reinforcing phase that has been 

impregnated into a material matrix [1]. Comparatively to their traditional material counterparts, 

composites display a high strength to weight ratio. This overall reduction in mass results in less 

material needed to manufacture a part and energy saving (ex. fuel savings) then an equivalent part 

made from traditional engineer part. These properties have led many industries, such as aerospace, 

sporting equipment, and biomedical materials, to manufacture their goods using composite 

alternatives. While many industries have begun to utilize composites, there are still many 

challenges that prevent these materials from widespread adoption. One of the most pressing 

challenges with composite materials is the assessment of mechanical properties. Due to the 

complex multi-phase structure of composites, the material properties are typically non-isotropic, 

and displacement fields non-homogenous making them challenging to analyze using traditional 

methods such as strain gauges. Currently, one of the common ways to obtain full-field 

displacement and strain measurement is via two dimensional (2D) and three dimensional (3D) 

digital image correlation (DIC) [2]–[8]. While, these measurements are able to capture the non-

homogenous deformation field they are restrictive as they only provide information along the 

surface of the material [3]. Thus, for composite behaviour to fully be understood a method in which 

the deformation throughout the bulk of the material can be analyzed in crucial. 

 

Micro-computed tomography (µ-CT) is a radiographic imaging technique that allows for the 

non-destructive analysis of materials in 3D.  The µ-CT approach can be used to image the internal 

microstructure of composites [9]. µ-CT operates by emitting X-rays through a material to capture 
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the internal structure of the sample [9]. As the X-ray passes through a sample, the beam attenuates 

with the density of the material [9]. By measuring the ratio of the attenuated beam to the original 

beam, a shadow projection is formed, which can be reconstructed into cross-sections of the internal 

micro-structure [9]. µ-CT has proven itself a powerful tool for the analysis of the geometry of 

textile and braided composite materials [10],[11]. Additionally, its ability to resolve internal 

features on the microscale has proven useful for the identification of voids and irregularities within 

braided structures [10].  

 

Analysis of 3D full-field deformation of a material can be done by combining the image data 

from µ-CT with a measurement method known as Digital volume correlation (DVC). DVC is the 

three-dimensional (3D) volumetric counterpart to digital image correlation (DIC). DIC is 

commonly utilized for measuring displacement and strains of complex materials such as braided 

composites, wood, metals and biological materials [2]–[4], [7], [8], [12]. However, DVC has a 

distinct advantage over DIC since it is a volumetric technique rather than a surface measurement 

technique, thus allowing for full internal 3D volumetric displacement and strain fields to be 

visualized. The principles of DVC were first described by Bay et al. [13]. DVC operates by first 

discretizing a reference and deformed 3D datasets into a series of nodes [13]. By defining a subset 

size which is placed at the center of each node, an objective function is used to map the deformed 

dataset to the reference [13]. For a successful correlation, there must be variation in greyscale 

intensity throughout the micro-structure [13]. The full-field volumetric view of the displacement 

and strain behaviour has proved particularly useful for the analysis of various complex material 

[14]–[19].  
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The usage of DVC in its early stages had primarily been focused on obtaining strain fields of 

trabecular bone [20], [21]. As the technique further developed, researchers began to utilize this for 

more typical engineering material such as wood and metals [15], [16]. More recent studies have 

adopted this method for strain field analysis of composite structures, such as composite laminates 

and textiles [17], [19], [22]–[25]. However, DVC measurements are still an emerging area and are 

computationally intensive due to the large datasets required as inputs. As a result, limited studies 

have been performed for composites structures.  

 

While the application of DVC for various material has been the primary focus of current 

research, there are relatively few studies that focus on the preparation of samples, and analysis of 

sample adequacy for a DVC measurement such as that which has been provided for DIC by 

Haddadi et al. [26].  Gonzalez et al. were one of the first to analyze the effects of adding ZrO2 and 

SiO2 marker particles to PDMS and PVDF samples [27]. In this study, samples were mechanical 

compressed, and the accuracy of the DVC to match the displacement from the compression was 

measured. From this analysis, the 35 µm SiO2 was selected for use in a uniaxial compression test 

to measure displacement and strain.  Croom et al. focused their work on the analysis of natural 

contrast patterns by creating foams with various void contents. The foams were then compressed, 

and DVC measurements were done to measure both the displacement and strain accuracy for the 

different void content and compression states.  

 

While these studies provide an initial basis for the analysis of different datasets for DVC, there 

are still many unanswered questions that need to be addressed for DVC to meet its full potential 

for composite analysis. For studies focused on artificial speckling, the measure of accuracy has 

been previously tied to displacement provided by the material test stage (MTS). As such, any lack 

of rigidity, error in the load cell, or movement of the sample can introduce sources of error to the 
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data. Additionally, to adequately address how to handle large datasets leading to the long 

processing time and intensive computations has not been discussed. Finally, in the analysis of 

artificial speckling, to the best of the author’s knowledge, no studies have investigated the 

displacement and strain behaviour around a samples that contain features such as a hole or notch.  

 

The focus of this work is to outline the usage of artificial seeding for obtaining high-quality 

tomographs for DVC studies with a focus for later use in composite materials. Specifically, this 

study will examine the effects provided by seeding different sized metal and ceramic particles in 

a polymer matrix phase to provide images that are suitable for DVC analysis. To examine the 

effect of artificial seeding, epoxy resin was chosen as a polymer base for which copper, zirconium 

(IV) oxide, and aluminium nitride particles were seeded. After seeding these samples, datasets to 

analyses the seeding effectiveness for DVC were captured via a desktop µ-CT. 

 

The DVC measurement technique relies on a random image contrast for accurate deformation 

and strain measurement to captured.  This contrast pattern can be formed naturally or can be 

artificially produced (the focus of this study) [27], [28]. When evaluating sample contrast, it is 

necessary to have a sufficient grayscale distribution within the image dataset. The greyscale 

distribution for images obtained through μ-CT relates to the density of different phases in the 

microstructure of the material.  The usage of an artificial seeding technique to improve image 

contrast was explored in this work through an error assessment made by artificially displacing the 

µ-CT data by 35 µm, thus eliminating any errors present from displacing the samples 

mechanically. An open-source MATLAB based DVC software, fast-iterative digital volume 

correlation (FIDVC), was then used to determine how accurately this movement could be captured 

for each seeding particle, and the effect of DVC inputs[29]. The FIDVC software operates by 

performing multiple iterations, each with subsequently smaller subsets to improve displacement 
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accuracy. It is important to note that this software and it’s extension module LD-3D-TFM were 

initially programmed to capture large deformations and strain, and traction force measurement for 

cell material but it has been repurposed for determining the optimal seeding particles required for 

material analysis in this study [30].  

Once the optimal seeding particle and DVC parameters were determined, a DVC measurement 

was conducted on an epoxy sample subjected to compressive loading. A hole was introduced in 

the test sample to create a stress concentration and to allow for analysis of the resulting volumetric 

displacement and strain fields. Two views of deformation were capture one with a large volume 

of interest (VOI), but reduced resolution to decrease computation time, and one at a full resolution 

to accurate capture deformation around the center hole of the sample. This allowed for the 3D 

displacement and 3D equivalent strain fields to be captures throughout the sample. The methods 

utilized in this study provide a framework for acquire high contrast images for the DVC analysis. 

This methodology can be later adopted for the analysis of strain fields within advanced composite 

structures such as braided composites, laminated composites, textile composites, or 3D printed 

composite structures.   

 

3.2 Methodology  

3.2.1 Sample Preparation  
 

TThe test samples were prepared from a two-part epoxy made from resin (#2000 epoxy resin, 

Fibre Glast, Brookville, OH), and hardener (#2020 epoxy hardener, Fibre Glast, Brookville, OH).  

The resin and hardener were mixed at a ratio of 100:27 wt%. Within the epoxy, different size and 

density seeding particles were embedded and mixed, which are shown in Table 3-1. The difference 

between the epoxy and the denser seeding particles, is of particular importance as this will result 

in two distinct phases appearing in the μ-CT tomographs. These particles were manually mixed 
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into the epoxy mixture with a weight percentage of 5%. The samples were cured in cylindrical 

Pyrex test tubes with a 10mm outer diameter and 8.5 mm inner diameter. Each test tube was placed 

inside an oven (5851 vacuum oven, Napco, Winchester, VA) at 66 oC (150 oF) for 6 hrs to expedite 

curing time. The resulting cured sample had an 8.5 mm in diameter and 11.5 mm in length. 

For the loading test, a 2 mm hole was drilled through the centre of the sample to introduce a 

stress concentration. The manufactured test sample and testing fixture are shown in Figure 3-1 a). 

These final dimensions are shown to coincide with the inner diameter of the test tube and drill bit 

size used to create the center hole. The epoxy test sample contained with the material testing stage 

used to load the sample in this study is shown in Figure 3-1 b).  The testing fixture consists of 

single static platen which the top or static face of the sample is placed against and a movable platen 

to provide compression and load cell force measurements.  The load cell of this material test stage 

adapts with the µ-CT to allow for imaging with in-situ deformation measurements.  

 

Table 3-1: Size and density of particles used for epoxy seeding 

Particle Particle Size (µm) Density (kg/m3) 

Copper (200 micron purity 100%, Copper powder 

coarse, Goodfellow, England) 
200 8960 

Copper (50 micron purity 100%, Copper powder 

coarse, Goodfellow, England) 
50 8960 

Copper (14-25 micron purity 99.8%, Copper powder, 

Sigma Aldrich, Canada) 
14-25 8960 

Zirconium (IV) Oxide (50 micron purity Zirconium 

(IV) oxide, Sigma Aldrich, Canada) 
50 5680 

Aluminum Nitride (10 micron Aluminium nitride, 

Sigma Aldrich, Canada) 
10 3950 

Epoxy Resin  
Mixture Ratio 

(resin/hardener) 
Density (kg/m3) 

Fiberglast 2000 Series Epoxy 100:27% 1134.89 

 

 

 
 



68 
 

 
Figure 3-1: Test epoxy sample for DVC analysis: (a) Final cured sample of the epoxy-copper 

sample, (b) Epoxy sample within the material test stage. The material test stage is placed within 

the µ-CT scanner for in-situ mechanical testing 

 

3.2.2 Computed Tomography  
 

Sample x-ray imaging was performed using a desktop µ-CT (Skyscan 1272 µ-CT scanner, 

Bruker, Belgium) to obtain 3D datasets. Datasets were collected for all epoxy samples seeded with 

the particles outlined is Table 3-1. Table 3-2 shows the scanning parameters utilized to image each 

sample of seeded epoxy. The µ-CT settings for these scans were based on the procedures and 

recommendation for obtaining a high-quality scan by the manufactures of the µ-CT. For this study, 

the scanning parameters were kept constant, and thus, the voltage and current were chosen to 

ensure all particles could be visualized. As a result of the selected voltage, a 0.5 mm aluminium 

filter was selected based on manufacturer recommendations to ensure high contrast images and 

minimize X-ray artefacts. The resolution of the scan was set to 4904 pixels by 3280 pixels with a 

pixel size of 3.5 µm/px, capturing a volume of 3.47 cm3. These settings allowed for the entire 

sample volume (2.61 mm3) to be in the VOI while still being able to resolve the smallest particles 

(10 µm aluminium oxide) within the epoxy sample. A 0.1° rotation step was chosen to provide a 
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good signal to noise ratio on the scan and ensure all particles are adequately defined. To reduce 

scan time due to the general symmetry of a 180° scan was performed rather than a 360° scan.  

These scanning parameters resulted in 1920 X-ray shadow projections. These shadow projections 

were then converted into 2D bit maps through the use of a reconstruction software (NRecon 

version 1.7.1.0, Bruker, Belgium). Each dataset was then used to determine the optimal seeding 

particles based on contrast, particle distribution, and their overall cross-correlation coefficient.    

Table 3-2: Scanning parameters utilized for acquiring tomographs of seeded epoxy 

Scan Parameter Setting 

Source Voltage 70 kV 

Source Current 142 µA 

Resolution 4904 pixels by 3280 pixels 

Pixel Size 3.5 µm/pixels 

Filter 0.5 mm aluminium filter 

Rotation Step 0.1º 

 

 

After the optimal seeding particle size was determined, a deformed data set was captured to 

analyze the deformation and strain behaviour epoxy sample through DVC. A compressive load 

was applied by utilizing the µ-CT’s corresponding integrated MTS (440 N integrated test stage, 

Bruker Belgium) on the sample with the 2 mm drilled hole. The same scanning parameters 

previously discussed used for the compressive testing and DVC analysis as well.  A custom platen 

was 3D printed to aid in sample alignment within the MTS during compression. Scans were 

performed on the sample at two different load steps: 1) 100 N, and 2) 300 N. Between each load 

step, the sample was stabilized at each force for 5 minutes before scanning.   

 

After scanning at each load step, the image x-ray projections were reconstructed into a series 

of 2D perpendicular cross-sectional images that span the volume of the scanned sample. 

Reconstruction was performed utilizing a reconstruction software package (NRecon version 
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1.7.1.0, Bruker, Belgium) and reconstruction engine (InstaRecon version 2.3.0.7, Bruker 

Belgium). For reconstruction, a threshold of greyscale values must be selected that fully capture 

all features within the image microstructure. The reconstruction software manufacturers 

recommends that the lower limit be set to attenuation of 0 (-1000 HU), and the upper limit be set 

to a 10-20% higher than the maximum variation in greyscale [31].  An example X-ray projection 

of the epoxy sample is shown in Figure 3-2 a). A reconstructed cross-section along the A-A plane 

of the particle impregnated epoxy is shown in Figure 3-2 b). Observing the A-A plane, the contrast 

between the epoxy and particles are easily identifiable from one another due to their different 

greyscale values associated with their density. Additionally, the center hole can be seen 

represented by the black pixel streak bisecting each half of the epoxy. The resulting reconstruction 

process leads to 2940 images with a resolution of 4904 px by 4904 px.  

 

 
 

Figure 3-2: Example images from CT scan of copper impregnated epoxy sample: a) X-ray 

shadow projection showing the sample with central hole and b) reconstructed cross-section 

across the A-A plane (contrast-enhanced where the copper particles and epoxy can be seen) 
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3.2.3 Pre-Processing for Digital Volume Correlation  

 

Due to the computational load that is required to perform a DVC measurement, the images 

were cropped to lessen the burden. Images were cropped to different sizes based on the analysis 

Belgium). For reconstruction, a threshold of greyscale values must be selected that fully capture 

being performed. The associated crop size and corresponding analysis are listed in Table 3-3. For 

the greyscale and particle quantification and distribution analysis, the data for each sample was 

cropped down to a size of 128 x 128 x 128 voxels or a physical volume of 0.09 mm3, which 

corresponds to the maximum correlation window size from FIDVC. While, it is expected and 

indeed desired for there to be some variation in greyscale intensity and particle distribution, as 

long as there is not any observable agglomeration of particle a single correlation window is 

sufficient for a preliminary assessment of image quality and general trends. Additionally, in the 

next test a larger volume of interest is considered which in doing so will capture the effect of 

variation in greyscale and particle distribution.   

 For the numerical translation error analysis, the data was cropped down to a size of 832 x 832 

x 832 (6.5 correlation window size). The full resolution analysis was cropped to a size of 898 x 

898 x 768 voxels to allow for the entire region surrounding the hole to be analyzed. For the reduced 

resolution dataset, the crop x-resolution and y-resolution were kept the same as the first full 

resolution dataset analysis. However, to increase the size of the volume of interest the data was 



72 
 

first resized by 1/3 utilizing an image segmentation and visualization software package (CTAn, 

1.16.90, Bruker, Belgium).  

Table 3-3: Image sizes utilized for DVC measurements 

DVC Measurement  Data Size (voxel x voxel x voxel)  

Greyscale and Particle Measure 128 x 128 x 128 

Numerical Translation 832 x 832 x 832  

Full Resolution Epoxy with Embedded Hole  898 x 898 x 768 

Reduced Resolution Epoxy with Embedded Hole 898 x 898 x 980 
 
 

3.2.4 Contrast, Particle Distribution and Cross-Correlation Measurement  
 

To To determine the optimal particle size and material for DVC analysis, the contrast and 

distribution of particles throughout the sample must be first quantified. To quantify the contrast 

and particle distribution, a single subset was selected from the center of the sample with a size of 

128 x 128 x 128 voxels, corresponding to the maximum correlation window size. The contrast can 

be quantitatively measured by comparing the greyscale counts for a single correlation window for 

each sample. Then to quantify the particle distribution on a subset level, the same subset was 

segmented through a commercial CT segmentation software (CTAn, 1.16.90, Bruker, Belgium). 

This allowed distinct greyscale features (particles) within the subset to be located and quantified.   

For examination of the distribution of particles within a single correlation window, particles 

were segmented from the epoxy and then counted digitally. To analyze the segmented particles, 

the data set was first converted to a binary image. Table 3-4 shows the threshold values for each 

dataset. Due to the aluminium oxide greyscale pattern it was difficult to distinguish the particles 

from the epoxy resin and were not possible to segment out of the image; thus, the particle 

distribution study was not conducted for this dataset. The particles within each sample and the 
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position of their centroids were then calculated within the correlation window via the 3D image 

analysis function of the utilized segmentation software.  

Table 3-4: Greyscale thresholds utilized for particle segmentation 

Particle Greyscale Threshold 

200 µm Copper 33-255 

50 µm Copper 33-255 

25µm Copper 33-255 

50 µm Zirconium (IV) Oxide 35-255 

 

To validate this analysis for a DVC study, it is vital to gauge the degree of similarity between 

a reference and a deformed dataset. The zero normalized cross-correlation coefficient (ZNCCijk) 

provides a measure of similarity between two subsets on a scale of 0-1 [3]. Equation 3.1 presents 

the formula for the ZNCCijk where the greyscale intensity at a point in the undeformed subset and 

deformed subsets are represented by F(xi,yj,zk) and G(xi
*,yj

*,zk
*) respectively. In this equation, Fm 

and Gm represent the mean greyscale value of the undeformed and deformed subsets. To get an 

accurate measure of the effects of each particle on the ZNCCijk, a deformed dataset was created by 

artificially displacing each subset by the same amount. Utilizing the aforementioned segmentation 

software, each 128x128x128 subset was artificial displaced 10 voxels (35 µm) in the x-direction 

through the utilization of a geometrical transformation. This displacement was chosen based on a 

similar study for 2D DIC and as it is of the same magnitude of displacement that the compressed 

epoxy coupon is expected to experience [26]. The ZNCCijk between this artificially displaced data 

set and reference data set was then calculated through an open-source MATLAB based code [32]..   

ZNCCijk =
∑ ∑ ∑ {F(xi,yj,zk)-Fm}{g(xi

*,yi
*,zi

*)-Gm}kji

√∑ ∑ ∑ [{F(xi,yj,zk)-Fm}
2

] ∑ ∑ ∑ [{f(xi
*,yi

*,zi
*)-Gm}kj

2
]ikji

  (3.1)  

 

     



74 
 

3.2.5 Digital Volume Correlation 
 

A MATLAB based DVC software package (FIDVC, version 1.2.4) was utilized to calculate 

the in-situ 3D deformation [29]. The software discretizes a 3D volume into a series of user-defined 

square subsets. Correlation is performed within these subsets between the reference and displaced 

image datasets to determine the relative change between them. To improve the resolution on the 

displacement, FIDVC utilizes an iterative approach where the subsets, or correlation window, 

become smaller between iterations. In addition to the subset size, the subset spacing between the 

canters of adjacent subsets must be chosen to determine the overlap.  It is thus critical to select an 

initial subset size and node spacing to allow for the best accuracy for displacement and strain. 

3.2.6 Artificial Displacement Error Calculations  
 

To determine seeding particle that provides the highest degree of accuracy, a full resolution 

subvolume of the sample equal to 832 x 832 x 832 voxels was artificially displaced by 10 voxels 

in the x-direction. The undeformed and artificially displaced datasets were then input into the DVC 

software and correlated to determine both the optimal input parameters and seeding particle. This 

was done in two stages. First, the effects of subset size (correlation window) were taken into 

consideration. Each particle was correlated at 3 different subset sizes 32 x 32 x 32 voxels, 64 x 64 

x 64 voxels, and 128 x 128 x 128 voxels. Due to the iterative nature of the software, each pass 

would reduce the size of the subset and thus not give a true measure of the displacement at that 

correlation window size. This was circumvented by setting the max iteration to 2, which forces the 

software to only pass through the data once. The mesh spacing was set to 50% of the subset size 

as recommended for the software, of note this was later tested to ensure 50% was optimal for the 

particles utilized in this study [29]. The remaining correlation parameters were left to the 

recommended default values of the software and are shown in Table 3-5. After correlation, the 
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results were compared with the digital displacement to measure the accuracy at replicating the 10 

voxel displacement.    

Table 3-5: Correlation parameters used with FIDVC for subset and artificial displacement 

accuracy test  

Correlation Parameter  Value  

Subset Size   128 x 128 x 128  64 x 64 x 64 32 x 32 x 32 

Mesh Spacing 64 32 16 

Max Iteration  2 

Overlap  50% 

Convergence Criteria 0.25,0.5,0.0625 

Cross-Correlation Threshold 0.0001 
 

After measuring the error results produced from the subset test,  the effects of overlap on 

accuracy was determined. To measure the overlap error, both the subset and particle that provided 

the most accurate measure of displaced from the first stage were held constant while varying the 

overlap. It is important to note that the subset selection process was based upon the relatively small 

and simple deformation expected to see within our epoxy resin. This same reason is used for 

selection of the sample overlap. For these measurements, overlaps of 25%, 50%, and 75% were 

utilized. The remaining correlation parameters are left to their defaults, are shown in Table 3-6. 

Table 3-6: DVC parameters utilized to determine optimal overlap between subsets 

Correlation Parameter  Value  

Subset Size   128 x 128 x 128  

Mesh Spacing 64 

Max Iteration  2 

Overlap  25% 50% 75% 

Convergence Criteria 0.25,0.5,0.0625 

Cross-Correlation 

Threshold 
0.0001 
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3.2.7 Effects of Data Downsampling 

 

T To address one of the significant challenges with DVC, large data sets leading to an 

intensive computational burden, the effects of downsampling were studied. The data chosen for 

this test was the 25 µm copper particles, which was demonstrated as the most accurate from the 

previous two experiments. To replicate the effects of the procedure that would be utilized for DVC 

experimental measurement, the µ-CT data was first shifted at full-resolution by 35 µm (10 voxels) 

in the positive x-direction. Samples were then downsampled by 1/3 their full resolution utilizing 

the previously mentioned CT image segmentation  and visual analysis software (CTAn, 1.16.90, 

Bruker, Belgium). The samples were then cropped to a size of 832 x 832 x 832 so that a direct 

comparison could be made with the results from the full-resolution artificial displacement tests. 

Samples were correlated according to the same setting shown in Table 3-5, so that a direct 

comparison of results could be made.             

3.2.8 DVC Displacement and Strain  

 

After determining the optimal correlation parameters, the epoxy sample with the embedded 

hole was mechanically compressed, and the displacement field and strain fields for the sample 

were calculated at both full and downsampled resolutions. The displacement and correlation 

strength are calculated through Fast Fourier Transform (FFT) approach which performs the cross-

correlation and track the movement of the imbedded copper particles from the reference. Full-field 

Lagrangian strain measurements were then calculated from the displacement fields using a 

software extension (LD-3D-TFM, version 1.1) [30]. The formulation for the lagrangian strain 

measurement is shown in equation 3.2. In conjunction with the cross-correlation and iterative 

deformation, the method is used to improve the accuracy of the displacement.  
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Correlation for the mechanical tests was done according to the parameter listed in Table 3-7.  

The parameters here were chosen based on the optimal setting from the artificial displacement test. 

Of note for the epoxy coupon, the maximum iterations were set to 5, to take advantage of added 

accuracy provided from the iterative nature of the software, while ensuring the final subset was set 

to 32 x 32 x 32. Additionally, the mesh spacing was set to 16 voxels, which is 50 % of the final 

subset size to ensure there is no super-sampling or sub-sampling of the data. 

 

The DVC measurement was performed by first saving the image stacks as a 3D matrix with 

the MAT file extension. Correlation for the four displacement fields calculated: displacement in x, 

y, z, and displacement magnitude, are then calculated via the FIDVC software. Displacement fields 

were then uploaded into the strain software package to calculate the 3D strain fields. Six unique 

values of strain are measured from this procedure: three normal strain and three shear strain 

according to the 3D strain matrix seen in equation 3.3. The equivalent strain field was then 

converted into equivalent Von-Mises strain according to equation 3.4 [33]. The Von-Mises strain 

was utilized since this will provide a strain measure that is independent of the sample coordinate 

system. Displacement and strain were calculated through the volume of the material and then 

displayed in three planes, according to Figure 3-3. Computation was performed on a computer 

(Precision T5600, Dell, Round Rock, Texas) equipped with 112 gigabytes of RAM. Results were 

visualized utilizing open-source visualization software (ParaView) [34].    

 

 Eij =
1

2
(

∂ui

∂xj
+

∂uj

∂xi
) i = 1,2,3 j = 1,2,3   (3.2) 

 

 ε = [

εxx τxy τxz

τyx εyy τyz

τzx τzy εzz

]  (3.3) 
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Table 3-7 Correlation parameters used for the compression test on the cylindrical epoxy coupon 

Correlation Parameter  Value  

Subset Size   128 x 128 x 128  

Mesh Spacing 16 

Max Iteration  5 

Overlap   50%  

Convergence Criteria 0.25,0.5,0.0625 

Cross-Correlation Threshold 0.0001 
 

 
Figure 3-3: 3D Model of the copper impregnated sample: a) Geometrical solid model showing 

the coordinate planes: i) XY plane, ii) XY plane, & iii) YZ  plane, and b) 3D reconstruction of 

the sample geometry from µ-CT tomographs 
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3.3 Results and Discussion 

3.3.1 Particle Selection  
 

As previously discussed, the two factors that need to be considered for DVC analysis are the 

image contrast and the distribution of particles throughout the sample.  The greyscale values were 

measured against the greyscale count on a log scale and shown in Figure 3-4. Across from each 

histogram is a representative slice from the corresponding dataset. It is important to note here that 

the tomographic images were intentionally left dark as this represents their true greyscale pattern. 

This greyscale contrast pattern is what is shown in the second column of Figure 3-4. Thus, the 

contrast was not enhanced for the tomographs to avoid confusions that may arise when comparing 

the greyscale patterns to the tomographic image.  

 To access the contrast pattern, the greyscale count and greyscale value needs to be considered. 

As can be seen in Figure 3-4, there are two distinct profiles for the greyscale histograms. The first 

profile is for the aluminium nitride, which represents the closest tomographs to a natural contrast 

pattern due to its emulsification of the material in the epoxy.  The profile for the aluminium nitride 

shows a classic unimodal greyscale histogram. This profile has been well reported in literature and 

is shown to generally perform well for 2D DIC and DVC experiments [27], [35], [36]. The copper 

particles and zirconium (IV) oxide particles show a distinctly different profile. While this profile 

is not the standard unimodal profile, this has been previously been seen by Pan et al. [37]. Pan et 

al. investigated artificially created spackled samples for 2D DIC experiment which had a similar 

downward sloping greyscale histogram. In these experiments this profile proved to provide a high 

degree of accuracy. Considering these features each sample contains a sufficient enough greyscale 

profile that DVC displacement measurements can be conducted between each sample to analyze 

their accuracy. However, before this can be done the particle distribution should be quantified as 

this will aid in the underlying displacement accuracy between each sample.   
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Figure 3-4: Comparison of the greyscale histogram and sample CT Slice: a) 200 µm copper, b) 

50 µm copper, c) 25 µm copper, d) 10 µm aluminum nitride, and e) 50 µm zirconium (IV) oxide 

  

To quantify the particle distribution, there are two necessary measures to consider: the number 

of particles with a correlation window and their location within said window. There are two 
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possible cases that can form when considering the dispersion of particle within a sample, which 

are shown in Figure 3-5. Figure 3-5 a) shows the case in which all particle agglomerate in a 

particular region of the subset set. This case does not lend itself toward proper correlation as the 

bundling will behave as a single particle within the correlation window. This also may result in 

subsets devoid of particle entirely within the entire sample, reducing the overall accuracy of results. 

Figure 3-5 b) demonstrates the ideal case of spackles distributed randomly through the sample. 

This has previously been shown to provide the highest degree of accuracy for DIC experiments 

[26].   

 
Figure 3-5: 2D representation of the two cases of particle distribution throughout the sample: a) 

agglomeration of particles within a region,  and b) random distribution of particle 

 

To determine the effectiveness of particle seeding the number of particles and their 

distribution was quantified within a correlation volume. Table 3-8 and Table 3-9 define these two 

metrics by showing the number of particles within a 128x128x128 correlation-volume and the 

standard deviation of the distance between there centroid and the center of the correlation window, 

respectively.  As previously discussed, since the aluminium oxide emulsified within the sample it 
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is excluded from this discussion. As a general guideline for DIC/DVC, it has been previously 

reported and put into practice by Croom et al. that any subset should contain a minimum of 27 

particles for proper correlation [28]. In Table 3-8, it is evident that each sample meets these criteria, 

with the 200 µm particles containing only 28 particles, which will be important when discussing 

the effect of subset size on particle accuracy. To measure the dispersion of particle within the 

sample, the frequency of particles appearing at differing distances and their variance were 

measured. It is seen in Figure 3-6 that the particle distances with respect to the center of the 

correlation window has an approximately normal distribution. This data shows that there is little 

agglomeration of particles within the correlation windows. To quantify their distribution, the 

standard deviation of these distances was quantified in Table 3-9. The high standard deviations are 

seen here show that there is little agglomeration of particles within the correlation windows. Thus, 

each sample should provide a reasonably accurate correlation for the 128 x 128 x 128 voxel 

correlation window size.   

Table 3-8: Amount of particle within a 128x128x128 subset 

Particle 
Quantity of Particles within Correlation 

Voxel 

200 µm Copper 28 

50 µm Copper 72 

25 µm Copper 484 

50 µm Zirconium (IV) Oxide 87 
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Figure 3-6: Histogram of amount of particles at different distances from correlation window 

centroid: a) 200 um copper sample, b) 50 um copper sample, c) 25 um copper sample, and d) 50 

um zirconium (IV) sample 
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Table 3-9: Standard Deviation of the distance between the centroid of the seeding particle and 

center of the subset 

Particle Standard Deviation of Distance from Center (µm) 

200 µm Copper 60.08 

50 µm Copper 68.69 

25 µm Copper 65.65 

50 µm Zirconium (IV) Oxide 59.10 

 

To determine the effectiveness of particle seeding the number of particles and their 

distribution was quantified within a correlation volume. Table 3-8 and Table 3-9 define these two 

metrics by showing the number of particles within a 128x128x128 correlation-volume and the 

standard deviation of the distance between there centroid and the center of the correlation window, 

respectively.  As previously discussed, since the aluminium oxide emulsified within the sample it 

is excluded from this discussion. As a general guideline for DIC/DVC, it has been previously 

reported and put into practice by Croom et al. that any subset should contain a minimum of 27 

particles for proper correlation [28]. In Table 3-8, it is evident that each sample meets these criteria, 

with the 200 µm particles containing only 28 particles, which will be important when discussing 

the effect of subset size on particle accuracy. To measure the dispersion of particle within the 

sample, the frequency of particles appearing at differing distances and their variance were 

measured. It is seen in Figure 3-6 that the particle distances with respect to the center of the 

correlation window has an approximately normal distribution. This data shows that there is little 

agglomeration of particles within the correlation windows. To quantify their distribution, the 

standard deviation of these distances was quantified in Table 3-9. The high standard deviations are 

seen here show that there is little agglomeration of particles within the correlation windows. Thus, 

each sample should provide a reasonably accurate correlation for the 128 x 128 x 128 voxel 

correlation window size.   
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Table 3-10: Zero Normalized cross-correlation coefficients for 128x128x128 voxel displaced by 

35 µm 

Particle Zero Normalized Cross-Correlation Coefficient 

200 µm Copper 0.7879 

50 µm Copper 0.7910 

25 µm Copper 0.8007 

50 µm Zirconium (IV) Oxide 0.6990 

10 µm Aluminum Nitride 0.7094 

 

3.3.2 Artificial Displacement Error Calculations  

3.3.2.1 Effects of varying Subset Size  
 

The measure of the effectiveness of each seeding particle for providing accurate displacement 

measurements was calculated by correlating the artificially displaced samples and calculating the 

percentage error between the digital translation and the DVC results. The error results across each 

sample are shown in Figure 3-7 as varying with each subset size. It can be immediately recognized 

from the data that as the correlation window or subset size increases, there is a decrease in the error 

on displacement. This trend of increase accuracy as a result of increasing subset size has been 

previously seen in experiments by Gates et al. [38].  

 

In terms of the effects of particle size on correlation results, when comparing the trends seen 

between the copper samples, it is evident that as the size of the copper particles decreases, so too 

does the percentage error. The decrease in error as a result of decreasing particle size has been 

previously seen within DIC [39], [40]. Smaller particles allow for a more unique correlation pattern 

present in each correlation window which thus results in a pointier cross-correlation which 

increases accuracy of the algorithm and makes the data less susceptible to noise. This trend is 

verified for µ-CT and DVC in this study by examining the particle distribution and number of 

particles within each subset. It was previously shown that while each sample had a similar random 

distribution between subsets, the 25 µm copper has substantial more particles within each 
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correlation window, thus increasing the accuracy of the measurement. Both these parameters lead 

to a more pointy and thus accurate correlation. Indeed, the 25 µm copper seeded samples show the 

highest degree of accuracy of all seeding particles, making it the optimal choice for seeding a 

sample for mechanical testing. The remaining tests that will be carried out in this paper are thus 

done utilizing this dataset.  

 

Of note is the very high degree of error that is present at the smallest subset sizes for the 200 

µm copper sample, 50 µm copper sample, 50 µm Zirconium (IV) oxide, and aluminum nitride. 

This error is likely a result of the amount of particle within each correlation window being below 

the 27-particle minimum. To quantify this, the particle in 32 x 32 x 32 voxel subset was calculated 

using the same method presented in section 3.3.1. A subset of 32 x 32 x 32 voxel was cropped 

from the center of the 128 x 128 x 128 voxel subset, and the amount of particle contained within 

was then computed. The results from this are shown in Table 3-11. It is seen here that the number 

of particles within each correlation window is relatively small. The number of particles within 

each sub-volume for the 200 µm copper sample, 50 µm copper sample, and 50 µm zirconium (IV) 

oxide are well below the 27 particles which are necessary for an accurate correlation [28]. While 

this analysis for the aluminum nitride sample could not be performed, the error present is also 

likely a result of the tomographs not containing enough indicators within to accurately correlate.  
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Figure 3-7: Percentage error produced from DVC calculation compared against three standard 

subset sizes 
 

Table 3-11: Amount of particle within a 32 x 32 x 32 voxel correlation window  

Particle Number of Particles within Correlation Window 

200 µm Copper 1 

50 µm Copper 3 

50 µm Zirconium (IV) Oxide 3 
 

3.3.2.2 Effects of varying overlap  
 

The effect of subset overlap was measured using the 25 µm copper, which proved to be the 

most accurate measurement of displacement. It is evident from Figure 3-8 that the effect of 

overlapping does not have a significant effect on mean accuracy as the correlation window size. 

The range of errors shown in this data only ranges from 2.372%-0.887%. However, when 

considering the variance between each dataset only the 50 % and 75 % dataset have what would 

be considered a reasonable range of variance which are 0.883 % and 1.24% respectively. There is 

a very clear break down in result reliability when correlation windows are overlap at 25%. This is 

likely a result of a insufficient region of comparison to capture displacement.  Nevertheless, the 
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optimal subset overlap is 50%. This agrees with previous data reported by Gates et al., that shown 

a 50% overlap as providing the highest accuracy toward displacement [41].  Thus, this analysis 

can confirm the optimal input parameter for the mechanical test. Additionally, the fact that both 

the effects of subset size and overlap show similar trends to data already seen in DVC studies and 

show a low degree of error demonstrates the effectiveness of the seeding pattern provided by the 

25 µm copper samples.  

 
Figure 3-8: Effect of percentage overlap of subsets on overall accuracy 

 

3.3.2.3 Effects of downsampling    
 

To address the computational burden of the data set, the numerically displaced data was 

reduced by a third of its original resolution, and the resulting errors were observed. The effects of 

the resolution reduction are shown in Figure 3-9. While the overall trend has remained the same, 

the effects of downsampling introduced a non-insignificant amount of error. Within this figure the 

mean displacement and variance in results is plotted for the 128 x 128 x 128 voxel, the 64 x 64 x 
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64, and the 32 x 32 x 32 voxel correlation window for both the full resolution, and reduced 

resolution dataset. Due to the reduced resolution data including some black space around the outer 

area of the sample a border of 1.34 mm was removed from the results to unbias the displaced data.    

Comparing Figure 9 a) to Figure 9 b) by reducing the resolution of the dataset there is an 

accompanying increase both the accuracy of the program to capture the 35 voxel displacement and 

variance in displacement captured. For the full-resolution data error is between 17.75%-0.887% 

while for the reduced resolution dataset is 14.3%-7.682%. In addition to the increased error over 

each subset the full-resolution data shows very minimal variance in displacement data at the 128 

x 128 x 128 voxel, and 64 x 64 x 64 voxel correlation window, while the reduced resolution shows 

increased standard deviation across all correlation windows. This error and variation are likely due 

to the 35 µm displacement of particles being more difficult to capture in a correlation window size 

that has triple in size from 0.448 x 0.448 x 0.448 mm to 1.344 x 1.344 x 1.344 mm. 

 While this amount of error and variation may prevent a truly a precise and  accurate measure 

of the displacement of the sample to be made, this data could still prove useful when preforming 

a mechanical test. As a direct result of downsampling the data, a higher region of the sample can 

be analyzed without significantly increasing the computational burden. It is thus possible that the 

entire sample can be analyzed at a reduced resolution allowing for a general sense of the response 

of the sample to a mechanical load to be observed before doing full resolution measurement on 

regions of interest for accurate measurement. This methodology will be put into effect and 

analyzed when observing the effects of the compression test on the copper seeded epoxy sample.   

   



90 
 

 
Figure 3-9: Error produced as a result of down sampling numerically displaced data: a) full 

resolution dataset, b) 1/3 reduced resolution dataset 
 

3.3.3 Sample Displacement  
 

By utilizing the data from the particle selection study and input parameter analysis, it became 

possible to select an optimal seeding particle and overlap for DVC analysis. A new sample was 

then prepared, and the DVC measurement technique was utilized to provided full-field 

measurements of the displacement and strain development from the compressive load applied in 

this study. The axial displacement measured in micrometres is shown yz-plane and xy-plane are 

shown in Figure 3-10 at the reduced resolution. In regard to the isometric view, a clip is shown to 

display the internal displacement behaviour of the sample.  It can be seen in Figure 3-10 that the 

displacements there is no displacement along the 2 mm hole. From this point, the displacement 

radiates outward equivalently from the center hole the samples. This even displacement seen is a 

result of direct uniaxial compression of the specimen. Figure 3-10 b) the displacement is shown in 

the yz-plane, which gives a clear view of the displacement field. The pattern of the field of 

displacement seen in the yz-plane is similar to that which can be seen from other compression 
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studies of the hole in sample designs [42]. This view clearly shows three bands of displacement 

within the sample.  

 

The first band of displacement is shown at the bottom of the sample describing a displacement 

along the z-direction at the compression end. There are then two bands of displacement that radiate 

outward from the hole in the bulk of the material. The final region of displacement is at the top of 

the sample along the static end. While it is expected for there to be 0 displacement in this region, 

the displacement seen is between the 0 to -14 µm range. This displacement is likely a result of a 

lack of rigidity in the MTS, resulting in some bulk movement of the sample near the static end. 

Viewing the xy-plane of the sample shown in  Figure 3-10 c), there is minimal variation in 

displacement, and the bulk of the material translates. The results shown in Figure 3-10 demonstrate 

that the bulk deformation of the test sample can be measured using the DVC analysis technique.  

Additionally, the particle seeding technique has proven effective at detecting sub-millimetre levels 

of displacement from the applied loading.  

 

Measurement of the actual displacement on the sample was done through an additional DVC 

study at full resolution. A section of the sample equal to 898 x 898 x 768 voxels was taken around 

the hole of the sample and analyzed utilizing the same DVC parameters. The results of this 

measurement are shown in Figure 3-11. A small trim around the dataset was performed to display 

only the displacement within the bulk of the sample and not capture the data at the artificially 

cropped edges. Indeed, the effect of downsampling of the data has an observable effect on the 

resolution of the displacement field. Comparing the data shown in Figure 3-10 compared to that 

in Figure 3-11, not only is the displacement field less detailed but as previously discussed of 

slightly higher displacement due to the introduction of error. Importantly, however, there is not a 

significant difference between the overall pattern of displacement between the downsampled data 
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and full-resolution data. It is thus possible to use the reduced resolution dataset to get a general 

idea of the overall displacement pattern and regions of interest and then utilize the full-resolution 

data to obtain an accurate portrayal of displacement within specific regions. 

 
Figure 3-10: Views of displacement of the sample along the direction of compression: a) 

isometric view, b) yz plane, and c) xy plane 
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Figure 3-11: Views of displacement of the full resolution sample along the direction of 

compression: a) isometric view, b) yz-plane, and c) xy-plane 

 

3.3.4 Strain Data  
 

Along with the displacements, the equivalent Von Mises strain calculated for the full geometry 

of the epoxy resin and is shown in Figure 3-12. Figure 3-12 shows the Von Mises strain in the 

isometric view, yz-plane and xy-plane. From the xy-plane shown in Figure 3-12 c), the 

development of strain through the resin can be seen to form at the edge of the 2 mm hole. At the 

edge of the hole, it is expected that a region of high strain exists as the hole act as a concentration 

for high stress. Throughout the bulk of the material, there exists minimal to 0 strain. At the outer 

surface of the material, another high region of strain exists. At this point, it is essential to recognize 

that DVC software and strain extension are not optimized for strain measurements, but rather 
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displacement and traction force measurements. Thus, it is likely that the strain being capture on 

the surface of the cylinder is a result of the rigid body motion of the sample and poorer correlation 

that occur at the border of the sample known as DVC edge effect. This rigid body motion, as 

previously discussed, is likely due to movement in the sample due to the MTS lack of rigidity. 

This lack of rigidity in the MTS could result in some unwanted sway or movement in the sample 

during loading which has already been seen in Figure 3-10. Figure 3-13 shows a visualization of 

the strain with the edge effects removed from the sample. By removing the edge effects, the strain 

around the center hole is highlighted within the sample and is shown to be less biased by the edge 

effects varying the colour scale. The surrounding strain around the hole for the reduced resolution 

is shown to have a two stage gradient 0.018-0.04 (µm/µm).  

 

As was done in the displacement study, a correlation at full resolution taking a region around 

the hole was performed. Figure 3-14 shows the result of the strain distribution around the hole of 

the sample along three viewing planes. What is immediately evident from this data is that the strain 

field around the center hole is more well defined than in the down-sampled data shown in Figure 

3-12. The development of a concentric ring of equivalent strain around a hole has been previously 

seen for uniaxial loading by Yoon et al. [43]. In  Figure 14 d), the strain along two lines crossing 

the sample through the y-axis and z-axis has been plotted. The normal development of strain 

increasing approaching the perimeter of the hole before decreasing to 0 at the center can be seen 

as plotted along both axes. The strain around the hole ranging between 0.02-0.1 (µm/µm), with 

only slight variations when plotted along both axis in the magnitude of strain.  

 

This methodology demonstrates the advantage of utilizing the full-resolution dataset in 

conjunction with a down-sampled dataset. The downsampled dataset has the advantage of 

providing a relatively accurate portrayal of how the development of strain happens within the full 
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bulk of the material. With this methodology, it is possible to locate a region of high strain, and 

then utilize the full-resolution dataset to investigate the behaviour of strain within these regions. 

Such was shown in Figure 3-14, where the perpetration of stress around the hole is shown in greater 

detail.  These results demonstrate the capability of the seeding technique in combination with μ- 

CT imaging and DVC for capturing the inner strain behaviour epoxies. These techniques can be 

extended toward full-field strain measurement of more complex composite materials.   

 
Figure 3-12: Equivalent Von Mises strain for the down-sampled epoxy sample subjected to 

compressive loading: a) Isometric View b) yz-plane and c) xy-plane. 
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Figure 3-13: Equivalent Von Mises strain for the down-sampled epoxy sample subjected to 

compressive loading with edge effect removed: a) Isometric View b) yz-plane and c) xy-plane 
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Figure 3-14: Equivalent Von Mises strain for the full-resolution epoxy sample subjected to 

compressive loading: a) Isometric View, b) yz-plane, c) xy-plane view and d) strain across y-

axis and z-axis of hole 

 

3.4 Conclusion  
 

In this study, a particle seeding technique was utilized to improve the image contrast of 

tomographic images for DVC measurements. An epoxy resin was seeded with five different 

particles at a 5wt% ratio to epoxy: 200 µm copper, 50 µm copper, 14-25 µm copper particles, 

zirconium (IV) oxide (O2Zr), and aluminium nitride. A 3D image stack was obtained via µ-CT for 

each seeded epoxy to assess their quality for DVC. The particles were then analyzed for greyscale 

contrast, particle distribution, and correlation accuracy to determine the best seeding particle. 

Utilizing a µ-CT segmentation technique, the number of particles and their greyscale contrast 

within a single correlation window was determined. These factors showed that each particle should 
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be utilizable for DVC comparison. To selected between particles, each dataset was numerically 

displaced by 35 µm and correlated with its original dataset to determine the most accurate seeding 

particle. Considering these factors, the 14-25 µm copper particles was determined the optimal 

seeding particles. 

 

For the DVC measurement, a reference and deformed state was required for displacement and 

strain measurements. An integrated testing stage within the µ-CT allowed for the performance of 

in-situ compressive loading at forces of 100 N and 300 N.  Resultant displacement and strain fields 

for the test sample was demonstrated. Displacement and strain were computed using an open-

source DVC software package. To address the computational burden associated with DVC 

measurement, two studies were conducted. A first study was done by analyzing the sample at a 

third of their original resolution to determine the overall displacement behaviour. Then a second 

study was conducted around the hole of the sample at full resolution to obtain accurate details on 

the strain and displacement around the sample hole.  

 

The measurement technique allowed for the volumetric visualization of both the bulk 

movement of the epoxy and the equivalent strain. Displacements were shown to develop in 3 bands 

similar to what has previously been discussed in other holes-in sample compression tests.  The 

equivalent volumetric strain displayed two regions of high strain through the sample. The first 

region of strain is present along the radius of the inner hole having a strain in the range of 0.02-0.1 

µm/µm. The second region of strain is occurred along the outer surface of the sample. The more 

considerable strain present on the perimeter of the sample is likely due to poor rigidity with the 

MTS and sample edge effects. This lack of rigidity likely caused possible sway in the sample while 

being compressed and scanned by the µ-CT. To investigate further into the displacement and strain 

behaviour around the hole of the sample a VOI of interest was selected around it. By utilizing the 
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full-resolution dataset, it was evident this resulted in a better view of both the strain and 

displacement field. The full-resolution data demonstrated the advantage of utilizing first a down-

sampled dataset to investigate regions of high strain within the sample and then utilizing a full-

resolution data set to investigate in detail around these regions. The particle seeding method used 

in this work was demonstrated to be a useful technique for enhancing the image contrast for DVC 

results. This is a critical first step towards the measurement and investigation of volumetric 

deformation and strain of braided, laminated or textile structures.    
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Chapter 4: Digital Volume Correlation Analysis of PLA based fused 

filament fabrication copper infused composites*                                    
*a version of this chapter has been submitted to Material Characterization Journal as:  

Timpano, C.S, Melenka, G.W, Digital volume correlation analysis of PLA based fused filament 

fabrication printed composites  

 

4.1 Introduction 

 

The emergence of additive manufacturing (AM) has provided a powerful tool for the rapid 

design and fabrication of parts for engineering applications. Fused filament fabrication (FFF) has 

become a popular option in the industrial sector due to the wide selection of compatible 

thermoplastic polymers with the process [1]. Additionally, the process is well suited for 

implementation into current manufacturing operations for mass production. Traditional FFF parts 

are held back due to their lower mechanical properties and inconsistent quality. The poor material 

strength of traditional FFF parts results in them typically being only suitable for prototyping [2]. 

Thus, to improve the material strength and improve AM produced pieces, researchers have begun 

to produce AM components composed of multiple materials. To this end, researchers have studied 

the effects of the addition of various reinforcing materials such as carbon nanotubes, graphene, or 

metal particles to the base polymer [1], [3]. These 3D printed composite materials help address the 

lack of strength of traditional AM and FFF produced parts but further complicate the already 

complex material analysis.  

Before discussing the challenges involved in composite FFF parts, it is crucial first to discuss 

the issues with analyzing single-phase FFF parts. FFF parts exhibit anisotropic mechanical 

properties due to their complex microstructure. Regions of high localized porosity and imperfect 

layer bonding contribute to FFF parts’ complex microstructure and anisotropic material properties 

[4], [5]. This complexity is further complicated by adding a reinforcing phase where factors such 

as particle loading, size, and adhesion affect the mechanical properties of the part [6]. Traditional 
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testing methods of material properties, such as strain gauges or extensometers, are unreliable for 

materials produced through FFF. Thus, researchers have proposed an alternative approach for 

analyzing samples with anisotropic material properties and heterogenous deformation fields 

known as Digital Image Correlation (DIC) [7]. DIC captures a coupon’s images during material 

testing from either a 2D or 3D stereo camera set up to visualize the material’s deformation [8]. 

These images are then utilized as input for a software algorithm to calculate the material’s 

deformation and strain [8]. DIC provides an advantage over traditional testing methods as a full-

field profile of deformation and strain can be determined.  

Though DIC offers many advantages, its adoption for material analysis for FFF produced parts 

has been limited. Zaldivir et al. were one of the first groups to use DIC to study the effects of build 

orientation on FFF fabricated ULTEM 9085 tensile coupons [5]. The study showed that 

deformation developed in a highly anisotropic manner. Additionally, the build orientation had a 

significant effect on the material strength and formation of strain irregularities within the sample. 

Goodarzi Hosseinabadi et al. provided a comparison study aided by DIC on Acrylonitrile 

butadiene styrene (ABS) FFF honeycomb parts and photocured polyjet honeycomb parts [9]. The 

usage of DIC allowed for the resolution of strain fields for samples under a compressive load. An 

extension of this study was completed to understand the shearing effects of a compressive load on 

the piece. This study showed that shear occurred in three stages, which agreed with finite element 

analysis (FEA) models [10].  

While DIC allows for full field testing of FFF parts, the cameras used for capturing images 

limit it to only surface level results [11]. The advent of micro-computed tomography (µ-CT) has 

provided a non-destructive method to capture interior features of materials on the sub-millimeter 

level. µ-CT operates by passing x-rays through a rotating sample to obtain a volumetric set of 
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images [11]. As the x-rays pass through the material, they are attenuated based on the density of 

the material they pass through and collected by an x-ray receptor [11]. This data is used to form 

shadow-projections of the images, which are reconstructed into 2D cross-sections of the volume 

[12].  

µ-CT has recently emerged as a valuable tool for the analysis of AM produced parts. 

Researchers have begun to utilize µ-CT to image the microstructure, quality, and printing 

parameters of various AM parts. The effects of printing parameters such as temperature, raster 

orientation, and extrusion width on the materials’ microstructures are of particular interest [13]–

[16]. Through the aid of the µ-CT images, accurate measurements can be made on critical 

structural parameters such as porosity and raster size. This paper proposes to utilize µ-CT to 

measure changes in the microstructure of FFF composites to external loading.  

With the 3D data set provided through µ-CT, the ability to capture volumetric full-field strain 

data is made possible via digital volume correlation (DVC). As a 3D alternative to DIC, DVC was 

first outlined in the ground-breaking paper by Bay et al. [17]. DVC operates by discretizing a 

reference and displaced data set into a series of subsets. For an accurate correlation, these subsets 

must contain features with a random variation of greyscale values. Greyscale variation can be 

formed naturally from the natural microstructure or as a result of elements externally seeded into 

the material. Features in each subset are tracked using an objective function to determine the 

displacement from the reference position to the deformed position. This data can then be directly 

converted into strain, thus providing a volumetric model of the internal deformation. 

DVC is an emerging method for displacement and strain measurement; therefore, current 

literature in these areas is limited. DVC was first used in bioscience, particularly for obtaining 

existing strain fields in trabecular bone samples [18]–[20]. Current DVC research has begun to 
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extend out of the field of bioscience and into engineering material science. DVC has proved a 

powerful tool for analyzing heterogeneous materials such as wood, metal alloys, and composites 

laminates [21]–[28]. However, with the rapid advancements in additive manufacturing, the 

technique has been sparsely utilized to aid in the investigation of their mechanical properties [4].  

This study aims to address the current gaps present in the literature on the analysis and 

application of µ-CT and DVC for FFF produced composite materials. Mainly, this work 

demonstrates the viability and advantages of utilizing µ-CT and DVC to obtain structural and 

mechanical data.  For this purpose, an FFF part was constructed according to a modified ASTM-

D648 14 Type V that is compatible with the utilized μ-CT integrated material test stage (MTS). 

The samples were then imaged at each stage of a 3-part stepwise load to capture deformation 

progression on the sample’s microstructure. The µ-CT images were analyzed to demonstrate the 

bulk response of the material’s microstructure and porosity and air gap orientation. This 

information was then utilized to lead the discussion on DVC results for internal displacement and 

strain fields.   

The resulting µ-CT tomographs were utilized as an input for DVC to capture the internal 

displacement and strain fields. To this end, an open-source DVC software known as Fast Iterative 

Digital Volume Correlation (FIDVC) was employed to calculate the 3D strain and displacement 

[29].  FIDVC operates based on an iterative algorithm, where the correlation window size becomes 

smaller through each pass to improve resolution on the sample’s displacement. In this study, a 100 

N load was first applied to the test sample as a reference point with subsequent loads applied at 

150 N and 200 N load states. Due to the coupon’s deformation experience and reduced 

computational burden, it was necessary to reduce the dataset to a quarter of their original 

resolution. Measurements of the longitudinal displacements and longitudinal and transverse strains 
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were then calculated via DVC at the 150 N and 200 N load conditions by utilizing the 100 N load 

as a reference point. Renderings of the displacement and strain behaviour were then made, 

allowing for the 3D visualization and analysis of the sample’s mechanical response to the uniaxial 

load condition. The volumetric displacement and strain results can be built upon in later works 

allowing for input or direct comparison to improve current FEA models [30]–[33].    

4.2 Methodology  

4.2.1 Manufacturing  
 

Samples were 3D printing using a 1.75 mm diameter PLA filament with embedded copper 

particles (Metal Filled PLA, CCTree-Mech solutions LTD, Concord, Ontario).  Samples were 

designed and printed into tensile coupons based on ASTM D638-14 Type V [34]. Due to the 

MTS’s restrictive size (440 N integrated test stage, Bruker, Belgium), modifications were required 

to the geometry. The coupon’s total length was reduced to 30 mm and thickness to 3 mm while 

maintaining the gauge length and width to ensure the coupon fit within the MTS’s. Additionally, 

the end tabs were increased to a width of 18 mm, and a pair of 3 mm holes were included to 

improve compatibility with the MTS. The difference between the ASTM D638-14 type V tensile 

coupon and the modified used in the current study are seen in Figure 4-1 a) and b), respectively.  

Modelling the tensile coupons was done using a computer-aided design (CAD) modelling 

package (Solidworks, S2018, Dassault Systemes, Vélizy-Villacoublay, France). The sample CAD 

model was sliced using open-source software (Cura, 15.04.06, Ultimaker, Geldermalsen, 

Netherlands). The sliced sample was finally printed using a desktop 3D printer (Select mini V2, 

Monoprice, Rancho Cucamonga, California, United States) fitted with a 0.4 mm nozzle diameter. 

Table 4-1 shows a list of the printing parameters utilized to manufacture the tensile coupons. 

Samples were printed with a 100% infill at a layer thickness of 0.10 mm. The nozzle’s temperature 
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was set to 210 °C, and the build plate temperature was 70 °C. Samples were printed first by creating 

a 0.8 mm shell on each layer that outlined the coupon’s geometry before completing the infill with 

rasters on a +45o/-45°. In Figure 4-2, a) the nozzle start position and path for a single layer is 

presented. Figure 4-2 b) shows the center layer’s corresponding view as produced by the utilized 

slicer software. To improve layer adhesion to the printer bed was increased by using the “raft” 

setting in Cura.  A render of the tensile coupon housed inside the MTS is shown in Figure 4-3. The 

tensile coupon is connected to the sample’s end tabs via two 3 mm screws at each end. Surrounding 

the tensile coupon is a radiolucent pain, which provides some rigidity to the test frame during 

loading. During loading, the top end of the coupon remains static as the bottom face is displaced 

downward by 420 N rated load cells. 

 
Figure 4-1: Cross-section sketch of the tensile couple: a) ASTM D638-14 type V b) modified 

design to fit in MTS 

 

Table 4-1: Manufacturing parameters for slicer software utilized to produced tensile coupon 

Manufacturing Parameter  Parameter Value  

Layer Thickness  0.1 mm  

Infill Density  100 %  

Fill Direction  +45°/-45° 

Shell Thickness  0.8 mm  

Nozzle Temperature  210 °C 

Bed Temperature  70 °C 
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Figure 4-2: Representation of the tensile coupons printing scheme: a) nozzle path, b) slicer view 

of the center layer of coupon 

 

 
Figure 4-3: Model render of the MTS loaded with tensile coupon 

 

4.2.2 Micro-Computed Tomography 
 

The copper PLA tensile coupons were imaged using a desktop µ-CT (Skyscan, 1272 µ-CT, 

scanner, Bruker, Belgium.). Table 4-2 presents a complete list of the µ-CT inputs employed to 

image the sample. The PLA samples were imaged using a pixel size of 1.6 µm/px with a 
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4904x3280 pixel resolution. Settings were selected to ensure the embedded copper particles were 

captured in the image while allowing for a majority of the gauge length to be captured. The source 

voltage and current used in this study were 65 kV and 125 μA. Due to metals’ tendency to cause 

metal scattering artifacts and beam hardening, a 0.5 mm aluminum filter was used to reduce 

possible metal artifacts that may appear in tomographs post-reconstruction. Three scans were 

completed successively at loads of 100 N, 150N, and 200 with a 0.2° rotation step. The final dataset 

size before reconstruction for each load contained 938 shadow projections. A single shadow 

projection from each dataset is shown in Figure 4-4. Measurements of the sample thickness show 

a decrease in the width of approximately 0.01 mm per load step. This decrease in sample width as 

the tensile load increases is indicative of a reduction of cross-section size. Of note, the 

measurements shown are larger than the 3.18 mm width of the solid model used to manufacture 

the sample. The larger width seen in the sample shadow projections indicates manufacturing 

inconsistencies on the part of the 3D printer. The increase in the model’s width is shown to be 

between 0.02 mm to 0.04 mm, which is well within the typical tolerancing of the FFF printed part 

[35].     

Table 4-2: List of scan parameters utilized to image the tensile coupon 

µ-CT Parameter Setting 

Source Voltage 65 kV 

Source Current 125 µA 

Resolution (WxH) 4904 x 3280 px 

Pixel Size 1.6 µm/px 

Filter 0.5 mm Aluminum 

Rotation Step 0.2° 
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Figure 4-4: Shadow projections of the copper PLA sample for a) 100 N, b) 150 N, and  c) 200 

N loads  
 

4.2.3 Reconstruction  
 

A μ-CT reconstruction package (NRecon version 1.7.1.0, Bruker, Belgium) was utilized to 

convert the shadow projection into a series of perpendicular cross-sectional images. Before 

reconstruction, a range of greyscale values must be selected to provide image contrast and allow 

for the visualization of microstructure features. It is recommended by the software package 

provider to set the lower limit of the attenuation range to 0 (-1000 HU) and the upper value to be 

around 10-20% greater than the maximum variation in greyscale [36]. Using the criteria previously 
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presented, the attenuation range selection was 0 (-1000 HU) to 0.5 (31768 HU) for the 100 N and 

200 N and 0 (-1000 HU) to 0.25 (15384 HU) for the 150 N load. It is important to note that the 

attenuation ranger utilized for the 150 N load differs from the 100 N and 200 N load. The reason 

being is that samples were scan using a 180° scan rotation. Thus, starting position for the scans 

differed between the 150 N sample and the 100 and 200 N loads. Therefore, it was necessary to 

set the attenuation range differently to meet the previously mentioned criteria.  

While procedures were put in place to reduce noise and artifacts before scanning, this does 

not eliminate the possibility that artifacts appear. Thus, a 49% beam hardening filter and a 10% 

ring artifact filter was applied to the image set during reconstruction. The beam hardening filter’s 

aggressive use compensated for the streaking caused by metal particles’ presence within the 

sample [37]. Figure 4-5 shows an example of a reconstructed cross-section from the 100 N dataset. 

The contrast in Figure 4-5 was enhanced beyond what was used in the current study to provide 

better microstructure visibility. Within the tomographs, the copper particles can be easily 

distinguished from the PLA due to higher greyscale values resulting from their higher density.  
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Figure 4-5: Reconstructed cross-section of copper PLA sample with enhanced contrast. 

 

4.2.4 Image Segmentation  

4.2.4.1 Image Quality Assessment 
 

Before performing DVC measurements, the quality of the tomographic images must be 

assessed for DVC compatibility. For DVC measurements, the greyscale distribution and particle 

quantification can be used to evaluate image data quality. These parameters were measured within 

a single correlation window, which was cropped out of the full resolution 100 N dataset equal to 

128 x 128 x 128 voxels or 0.2048 x 0.2048 x 0.2048 mm. The greyscale histogram of the 3D image 

stack was then measured using MATLAB (MATLAB R2018a, The MathWorks, Natick, Mass) 

digital image processing toolbox. The particle numbers’ quantification was done through a 

commercial CT image segmentation software (CTan version 1.16.8.0, Bruker μCT, Belgium). As 

a requirement to quantify features within the images, it is first required that the dataset be binarized. 

Binarization was done by thresholding the dataset between greyscale values of 11-256, which 
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highlights the internal particles. Particles were then measured using the “3D analysis” command, 

which counts all-white features within the image sequence and measures their area and volume.  

4.2.4.2 Cross-Section Analysis   
 

Measurements of sample manufacturing variability and the microstructure response to the 

tensile load were first measured through an image segmentation procedure before a more detailed 

analysis of the latter was conducted utilizing DVC. Of particular interest for this paper was 

quantifying the change of cross-sectional area and air gaps between rasters with the tensile loading. 

This measurement was performed via CT image segmentation software. Typically, segmentation 

in CTAn is broken into three steps: 1) binarization, 2) filtering, and 3) morphological operation. 

For quantifying the sample’s cross-sectional area, the images were segmented to show one single-

phase cross-section. Due to the large sizes of the reconstructed data, a 3 mm section of each sample 

was examined to decrease the computational burden.  

As a result of the different attenuation ranges used to reconstruct the data, the 100 and 200 

N dataset and 150 N dataset were processed slightly differently. The steps utilized for these two 

procedures are listed in Table 4-3 and Table 4-4, respectively. The 100 N and 200 N datasets were 

binarized by thresholding the sample between greyscale values of 10-255. This binarization was 

shown to provide the best compromise of realizing the sample’s internal features and reduce noise. 

Filtration of the resultant noise from binarization was done by performing a despeckling operation 

in 2D space, eliminating all white details below a size of 8 pixels. To fill the material’s internal 

structure, a morphological closing operation that consists of a dilation followed by erosion was 

used with a 10 pixel round kernel. While the morphological closing did homogenize most of the 

internal cross-section, it also increased the size of some of the noise not eliminated by the 

despeckling operation. Thus, an erosion operation of 5 pixels was utilized to eliminate this noise, 
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followed by a 5-pixel dilation to address a subsequent reduction in size resulting from the erosion. 

As a final step to close a few outstanding gaps in the cross-section, a 60-pixel square kernel 

morphological close was completed. The effects of this procedure on the µ-CT images are shown 

in Figure 4-6. Figure 4-6 a) highlight the µ-CT tomograph before image segmentation. Note that 

this has been intentionally left dark to highlight the true greyscale variation. While in Figure 4-6 

b) the realized cross-sectional from the µ-CT image segmentation procedure is shown.  

Table 4-3: Image processing parameters used to define the cross-sectional area of 100 N and 200 

N datasets 

Image Processing Operation  Image Processing Parameter  

Binarization (Greyscale threshold)  10-255 

2D Despeckling (white pixels) <8 pixels  

2D Morphological Closing (Round) 10 pixels  

2D Erosion (square) 5 pixels  

2D Dilatation (square)  5 pixels  

2D Morphological Closing (Square) 60 pixels  

 

 

Figure 4-6: Segmentation of copper PLA sample cross-section: a) µ-CT image, and b) filled 

sample cross-section  
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The procedure used to process the 150 N dataset followed the same general steps presented in 

Table 4-3.  However, due to the difference in the attenuation range used for reconstructing the 150 

N dataset, the input parameters differed slightly from the 100 N and 200 N datasets. In practice, 

the differing attenuation range only affects the binarization and despeckling steps. Due to the 

narrower attenuation range, the greyscale thresholding utilized to binarize the image was set 

between 23-255. As a consequence of this, the noise surrounding the sample was much more 

extensive. Thus, a more aggressively sized despeckling operation was performed by removing 

white features below a size of 15 pixels. Beyond this step, the remaining procedures and reasoning 

for utilization are the same for the 100 N and 200 N dataset. The entire utilized process is outlined 

in Table 4-4.   

Table 4-4: Image processing parameters used to define the cross-sectional area of 150 N datasets 

Image Processing Operation  Image Processing Parameter  

Binarization (Greyscale threshold)  23-255 

2D Despeckling (white pixels) <15 pixels  

2D Morphological Closing (Round) 10 pixels  

2D Erosion (square) 5 pixels  

2D Dilatation (square)  5 pixels  

2D Morphological Closing (Square) 60 pixels  

 

After segmenting the images, the cross-sectional area of each image within the stack was 

quantified. This quantification was done by utilizing the image processing toolbox in MATLAB. 

A series of statistical measurements can be made within MATLAB on the binarized image using 

the ‘regionprops’ command. For this study, the area parameter was used, which measures the size 

of all connected white pixels within a single image. By inputting each segmented image 

individually through the software, the area and its variation along the 3 mm section were computed. 
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4.2.4.3 Air Gap Measurements  
 

A similar image segmentation procedure was utilized to quantify the air gaps present in the 

sample. Quantification of the air gaps allows for assessing the actual sample parameters post-

manufacturing and how they change during the material’s mechanical testing. Additionally, this 

will enable the examination and relation of the strain fields obtained from the DVC analysis to 

printing patterns. To perform this measurement, it was useful to reslice the reconstructed data in 

the layer thickness direction to improve visualization. Each dataset’s reslicing was achieved by 

utilizing an open-source java-based image processing program (Fiji, National Institutes of Health, 

Bethesda, MD). As seen in Figure 4-5, the reconstructed data is slightly rotated; thus, before 

reslicing the data, images were first rotated 45° using a bilinear approximation interpolation 

scheme to realign the sample. An image stack could then obtain in the thickness direction by 

utilizing the reslice command. Figure 4-7 provides a comparison of the reconstructed images and 

the reconstructed dataset. The original reconstructed images are shown to lay in the XY plane of 

the sample and vary along the Z direction. By reslicing the dataset into the XZ plane, the cross-

section area’s variation along Y or the nozzle’s height-wise direction, visualization of the airgaps 

becomes possible.  
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Figure 4-7: Schematic showing original reconstruction plane from micro-CT, and resliced plane 

 

After reslicing the data, a segmentation procedure was again utilized to visualize and measure 

the sample air gaps. Unlike the cross-sectional analysis, each dataset was processed using the same 

parameters as it was found the best range for binarization was to contain the entire greyscale range. 

A similar image segmentation procedure was followed to that used in a previous µ-CT study to 

quantify open pores in PVDF foams [38]. For this analysis, the datasets were reduced to half their 

original resolution to decrease computation time.  

The image processing parameters for each dataset are shown in Table 4-5. As a first step 

toward filling in the sample, small black features that did not constitute air gaps were removed. 

This was done in two stages first by removing all-black features surrounded by white with a 

volume of 50 voxels and second by eliminating all features with an area of 200 pixels or less. After 

removing the majority of small black features within the sample, three items still existed within 

the image data: the significant air gaps, white noise, and unfilled gaps in the PLA that don’t 
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constitute air gaps. A 2D white despeckling operation was undergone to remove all white pixels 

below 200 pixels to remove the image’s white noise. Removal of the unfilled openings in PLA, a 

3D despeckling was done to remove voxels below a size of 2000 voxels. This procedure was then 

followed by a small morphological close in 3D space to reduce the size of any remaining gaps 

before passing over the data one final time with the same 2000 voxel despeckling operation. After 

these steps, the PLA was successfully realized as white pixels within the image. Thus, to analyze 

the air gaps, the images were inverted by subtracting the original image from a region of interest 

(ROI) surrounding the sample. Finally, measurements were conducted on these images using the 

built-in 3D analysis tool to quantify the volume of the air gaps.  The resulting images for each 

significant step in the image segmentation process are shown in Figure 4-8. Figure 4-8 a) was 

notably left dark to reflect the true contrast of the image before binarization and segmentation.    

Table 4-5: Image processing parameters to segment out sample air gaps for 100 N, 150 N and 

200 N dataset 

Image Processing Operation  Image Processing Parameter  

Binarization (Greyscale Threshold)  1-255 

Despeckling (3D black voxels) <50 voxels  

Despeckling (2D black pixels) <300 pixels  

Despeckling (2D white pixels)  <200 pixels  

Despeckling (3D black voxels) <2000 voxels  

Morphological Close (3D Round) 1 Voxel  

Despeckling (3D black voxels) <2000 voxels 

Arithmetic Operation  Sub ROI 
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Figure 4-8: Pores identification steps for copper PLA sample: a) µ-CT image, b) filtered and 

despeckled, c) large despeckled and closed, d) inversed image highlighting air gaps 
 

4.2.5 Digital Volume Correlation 

4.2.5.1 Fundamental principles of FIDVC 
 

Calculations of internal displacements and strains were determined using an open-source 

MATLAB based DVC software (FIDVC, version 1.2.4) [29]. The DVC software utilized operates 

by first discretizing a volume into a series of subsets based on a user-selected subset size and subset 

spacing. The DVC software used an iterative approach where the subset’s size is reduced between 

passes to a volume as small as 32x32x32 voxel to increase correlation accuracy. After correlation 

displacement is provided by four separate 3D arrays. These four arrays consisted of displacements 
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in the x-direction, y-direction, z-direction, and displacement magnitude. Figure 4-9 shows a 

representation of the dataset after discretization. Each subset in the array contains a single value 

representing the estimated displacement in that region.  Not shown in Figure 4-9 is the overlap of 

each subset. After discretization each subset is overlapped by a specified percentage from the user 

with all other surrounding subsets in order to improve spatial resolution. 

 
Figure 4-9: Illustration of DVC discretization process of sample into invidual speckled subset. 

 

Strain measurements were computed using an open-source extension to the DVC software 

(LD-3D-TFM, version 1.1). This extension calculates strain values directly from the displacement 

data according to the Lagrangian strain formulation. Equation 1 shows the general form for 

Lagrangian linear elastic strain tensor where E represents the strain tensor, i represents the first 

coordinate direction, j the second coordinate direction, u the displacement, and x the direction of 

the displacement [39]. Equation 2 shows the final strain tensor matrix with six unique entries: the 

three normal strain (ε) and three shear strain (τ). Each strain tensor component is made up of a 3D 

matrix of equal size to the displacement matrix. Custom code was used to convert the matrices into 

the Visualization Toolkit (VTK) to visualize the data in 3D. Visualization and analysis were then 
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carried out using an open-source scientific visualization platform (Paraview, 5.8.0, Sandia 

National Laboratories, Kitware Inc, Los Alamos National Laboratory). 

 𝐸𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗
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] (4.2) 

 

4.2.5.2 Digital Volume Correlation Input Parameters 

    

This study’s DVC measurement was conduction on a server computer (Precision T5600, Dell, 

Round Rock, Texas) equipped with 112 Gb of Ram and two Intel® Xeon ® CPU E5-2680, 2701 

Mhz 8 core processors. Before the DVC was run first, the dataset was downsampled to a quarter 

of its original size. The downsampling algorithm works by averaging voxel greyscale level in a 

cube with dimensions equal to the user selected resizing, for this study a 4x4x4 downsampling 

voxel was utilized. While downsampling the dataset reduces image resolution and may introduce 

a source of error, this process provided many benefits that aided in the analysis of displacement 

and strain. The first benefit associated with downsampling is the associated reduction 

computational burden required to perform DVC on the full volume of interest (VOI). Additionally, 

this can increase the size of data contain within a correlation window. With the restrictive number 

of subset sizes provide, for the full resolution, the data was restrained to between a 128 x 128 x 

128 voxel (0.2048 x 0.2048 x 0.2048 mm) subset size and 32 x 32 x 32 voxel (0.052 x 0.052 x 

0.052 mm) subset size.  Considering the rigidity of copper filled PLA sample, which has previously 

been presented by Liu et al., the displacements seen are likely to exceed some of the sizes of these 

subsets [40]. Thus, by reducing the data, it was found that enough detail is provided within each 
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subset so that the DVC software will be effectively able to capture the sample displacement and 

strain caused by the applied forces of 100 N, 150 N, and 200 N.  

 

Table 4-6 shows a list of input parameters utilized for the DVC studies. The preload state of 

100 N was used as the reference dataset from which displacements and strains were calculated. A 

list of the program input parameters can be seen in Table 4-6. The analysis was started with a 

course subset size of 128 x 128 x 128 pixels, and over four iterations, the correlation subsets were 

reduced to 32 x 32 x 32 pixels. A subset overlap was of 50% was utilized, which has previously 

been shown to provide the most accurate results for DVC measurements [41]. Finally, the mesh 

spacing was set to a size of 16, which is equivalent to half the size of the final subset as 

recommended by the software providers [29].   

Table 4-6: Digital volume correlation input parameters for displacement and strain 

measurements of copper-PLA sample 

Correlation Parameter  Value  

Subset Size   128 x 128 x 128  

Mesh Spacing 16 

Max Iteration  5 

Overlap   50%  

Convergance Criteria 0.25,0.5,0.0625 

Cross-Correlation Threshold 0.0001 

 

4.3 Results and Discussion  

4.3.1 Image Segmentation 

4.3.1.1 Greyscale Distribution and Particles  
 

The quality of the obtained images was first assessed for the sample’s greyscale distribution. 

The ideal greyscale patterns utilized for DIC measurements exhibit a unimodal profile centering 

around mean greyscale values [42]–[44]. Figure 4-10 shows a sample slice taken from the dataset 

and the entire subsets representative greyscale pattern. The greyscale histogram shows data with a 
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peek at the low grayscale values representing black pixels within the image. Pan et al. has 

previously demonstrated the accuracy of a similar greyscale pattern for digital correlation 

measurement [45]. Thus, while this does not display the typical greyscale distribution, it should 

still provide enough variation for correlation measurement to be obtained. 

Before discussing the sample particle quantification, it is first necessary to discuss potential 

sources in error for the measurement. Observing Figure 4-10 a), one can quickly identify beam 

hardening and streaking within the image due to the metal particles. These features within the 

tomographs make a precise measurement of the copper particle’s volume challenging to resolve. 

Fortunately, particle quantity is a more meaningful indication of image performance for DVC 

measurement. Thus, the discussion here will be focused on the amount of the particles rather than 

their size. However, in regards to the DVC, it has been shown that beam hardening has little effect 

on the accuracy of displacement measurement [46]. For these measurements’ particles smaller than 

4.097 µm3, the volume of a resolved voxel was considered noise. Segmentation showed 1022 

features with a volume above 4.097 µm3. This quantity is well above the minimum number 

required for an accurate correlation of 27 presented by Croom et al. and should provide an exact 

correlation [47].  
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Figure 4-10: µ-CT data for 128 voxel correlation window size: a) single µ-CT slice from 

correlation window, b) resultant greyscale histogram for correlation window 
 

4.3.1.2 Cross-Sectional Analysis   
 

Results from the CT segmentation analysis of the cross-sectional area through a 3 mm section 

of each dataset are shown in Figure 4-11. Two clear trends can be seen regarding the cross-

sectional area along the gauge length of the sample. The first trend seen is that each slice’s cross-

section is shown to vary along the gauge length of material. Variation of the cross-sectional area 

is likely a result of manufacturing inconsistencies, which has led to specific layers forming larger 

than other layers. The standard deviation of the area along each slice is reported in Table 4-7 to 

quantify the cross-section area variation across the gauge length. It is shown here that variation in 

each segment lies in the range of ±0.0493 mm2 to ±0.0536 mm2. These tolerance ranges are well 

within the printer’s linear tolerance range of 0.1 mm to 0.3 mm.  This cross-sectional area variation 

is reflected through the mean cross-sectional area of each sample: 9.7013 mm2, 9.6081mm2, and 

9.5763 mm2 at the 100 N, 150 N, and 200 N loads, respectively. These areas are all slightly larger 

than the theoretical cross-sectional area of 9.42 mm2 obtained from the sample’s solid model.  
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The second trend observed through the data is the reduction in the cross-sectional area due to 

the increased tensile load. As seen in Figure 4-11 b), the cross-sectional area has reduced between 

0.4-1.8% of the preloaded condition. Furthermore, the mean area’s observation shows a resulting 

reduction in the area of 0.0932 mm2 and 0.125 mm2 or 0.9607% and 1.2880% from the preloaded 

state to 150 N and 200 N, respectively. This reduction in the cross-sectional area is reflected in a 

later section discussing the resolved DVC strain data. As a final note, as seen in Figure 4-10 a) the 

reduction of the cross-section is more significant between the 100 N to 150 N load than between 

the 150 N to 200 N. This is indicative of an increase in sample stiffness, which will be discussed 

in the porosity and air gap measurement section of this report. 

 
Figure 4-11: Variation of cross-section area through 3mm section of the sample: a) cross-

section area variation through 3mm gauge length of the sample, b) percentage change of cross-

section area compared to 100 N load 
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Table 4-7: Statistical analysis of the cross-section area for different load conditions 

Sample Load Mean Cross-Section 

Area (mm2) 

Percent Change from 

100 N load 

Standard Deviation 

100 N 9.7013 - ±0.0536 

150 N 9.6081 0.9607 ±0.0681 

200 N 9.5763 1.2880 ±0.0493 
 

4.3.1.3 Air Gap Analysis  
 

Before making a quantitative assessment of the air gap volume, it is crucial to discuss the 

qualitative benefits of performing this CT segmentation procedure. As seen in Figure 4-8 d), 

segmenting out the sample air gaps, the print pattern can easily be identified. Within the sample, 

there are two significant sources of pores that can be recognized. The first source of porosity is 

between the sample’s shell layers and the infill of the material. The second is between the 

supporting infill raster of the material. As expected, these air gaps occur between the raster at an 

approximate +45°/-45° angle as specified by the print parameters. The orientation of these air gaps 

will play a significant role in assessing strain within the sample. As previously discussed by Tao 

et al., features contained by air gaps support more of the tensile force [48].  

The total air gap volume is shown in Table 4-8. It is evident that even though the samples 

were sliced to be produced with an infill density of 100%, air gaps are still present between raster. 

As calculated through the CT segmentation procedure, the actual infill density lies between 99.2% 

to 99.5% as force is applied. As a result of the increasing tensile load samples, pores and air gaps 

begin to close. The changes in air gap size can be detected using the μ-CT analysis process. The 

closure of these air gaps is not linearly proportional to the applied load. The reason being is as 

these air gaps begin to close, there is a resultant increase in the young’s modulus of the sample 

[16]. This increase in stiffness is likely why the decrease in cross-sectional area between the 100 

N to 150 N is much more significant than between 150 N to 200 N.   
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.   

Table 4-8: Air gap volume and actual sample infill density measured for a 3 mm section through 

µ-CT 

Applied Force (N)  Air Gap Volume (mm3) True infill (%) 

100  0.025  99.2 

150 0.020 99.4 

200 0.017 99.5 

 

4.3.2 Digital Volume Correlation of Downsampled data  

4.3.2.1 Sample Displacement 
 

While a wealth of information about the sample’s manufacturing and surface-level 

microstructure changes can be obtained strictly from sample segmentation, the DVC method was 

utilized for precise volumetric displacement and strain measurements. The longitudinal 

displacement fields are shown in Figure 4-12. Figure 4-12 provides two views of the resulting 

displacement fields between the preload condition of 100 N and the 150 N load and 200 N load. 

The longitudinal displacement is displayed with an isometric view and view of the XZ plane from 

the sample’s direct center. The isometric view aims to provide a 3D view of displacement fields 

and highlight the displacement variation within the 3D space. This view of experimental 

displacement variation within 3D space is only possible to obtain via DVC. Simultaneously, the 

XZ plane’s displacement provides a detailed perspective of the total variation along the sample’s 

gauge length.  

 The gradient of displacements through the sample shows a typical development to ones 

obtained from DIC for +45°/-45° FFF samples under tensile loading [49]. There is a displacement 

of 28 µm for the 100-150 N test, and 71 µm for the 100-200 N test at the samples end closest to 

the load cell. This displacement slowly decreases toward the static end of the load cell. One would 
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expect that at the stationary face, the displacement to be 0, but there is a small concentration of 

displacement present. The absence of an absolute static end is likely to present due to a lack of 

rigidity within the MTS, leading to a small region of longitudinal displacement.  

While the displacement development is similar to ones obtained through DIC, a distinction 

can be made between the two based on the displacement pattern. Previous DIC results show 

longitudinal displacement in horizontal bands from the tensile face through the sample [49]. DVC 

results from this study show the development of strain in angular segments throughout the piece. 

A probable cause for the evolution of displacement in this manner is due to incongruent loading 

between two the load pins attached to the sample’s end tabs. The development of this incongruent 

loading is possibly due to the nozzle starting position creating a stress concentration at the end of 

one side of the gauge length. This loading would result in a single end receiving slightly higher 

force than the other face, leading to angular displacement. Additionally, as previously mentioned, 

the MTS’s lack of rigidity could also contribute to unsymmetrical loading conditions. While this 

is a potential source of error, the purpose of this study is to prove the validity of DVC for 

displacement and strain analysis of FFF parts. Thus, the resulting strain field will be analyzed 

under the presumption that the developed force within the tensile coupon has been applied on a 

slight angle. 
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Figure 4-12: Displacement in direction (z-axis) of tensile load: a) isometric view of displacement 

for 100-150 N test, b) XZ plane displacement for 100-150 N test, c)  isometric view of 

displacement 100-200 N test, d) XZ plane view of displacement for 100-200 N test 

  

4.3.2.2 Sample Strain Analysis   

Figure 4-13 displays an isometric view and XZ plane view of strain for the sample. Similarly 

to the displacement, this demonstrates a variation of the strain in 3D space and provides a detailed 

outlook of strain in a single plane. Additionally, Figure 4-13 shows the 1D development of strain 

along the x-axis about the samples’ center.  Two loading states between the coupon are shown 

here, the first being between 100 N and 150 N and the second between 100 N and 200 N. It is seen 

that the strain develops mostly on the outer surface of the material, particularly within the shell of 

the sample. Comparing the isometric view to the XZ plane view, a positive strain is shown to 

develop on the shell’s leftward face and the area closest to the build plate. In contrast, the negative 
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strain is realized in the sample’s rightward front and face furthest from the build plate. As expected, 

the strain between the 100 N and 200 N test is greater than the 100 to 150 N test indicating the 

overall cross-sectional contraction in the x-direction as the load increases.  

   Figure 4-14 demonstrates the isometric view and XZ plane for both the 100 N to 150 N load 

step and the 100 N to 200 N load step. As expected, the strain increased between the two different 

loading conditions. The transverse strain, εyy, is shown to develop on the sample’s outer faces 

similar to that of the strain εxx. This similarity is seen on the material’s shell as the leftward shell 

face is in positive strain, and the rightward face is experience strain in the opposite direction. For 

εyy, the strain on the sample face closest to the build plate is negative, while the face furthest from 

the build plate is positive.  

 Analyzing Figure 4-13 and Figure 4-14 in conjunction provides details on the strain 

similarities between the transverse strain and the sample’s overall behavior. The development of 

strain in the transverse direction indicates the overall contraction of the coupon. It is notably shown 

that the material’s shell is reducing in size in the XY plane. This size reduction is reflected in the 

µ-CT tomographs, demonstrating an overall cross-sectional area across this sample plane. The 

development of strain within the shell of the sample is not entirely unprecedented. As previously 

mentioned, it has been reported that a higher concentration of force is supported within features 

that have surrounding air gaps [48]. As observed in Figure 4-4 and Figure 4-7, large air gaps exist 

between the material’s shell and the infill. Thus, the material’s outer shell is likely bearing a more 

significant portion of stress, which is reflected through the development of strain.  

Precise quantification of the transverse strain is plotted in Figure 4-13 (e) and Figure 4-14 (e). 

The data shown within these graphics were collected by plotting the 1D strain variation across the 

x-direction from the sample’s midpoint. The analysis of strain development of the material is 
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reflected within these plots. Strain εxx and εyy are shown to peak approximately evenly on each 

face of the material. The 100 to 150 N dataset strain εxx is between 0.03 to -0.035, and εyy is 

between 0.069 to -0.080. The 100 to 200 N strain εxx is between 0.083 to -0.081, and εyy is between 

0.157 to -0.125. The transverse strain peaks occur on the test samples’ outer faces, which are 

associated with the material shell. Measuring the mean width of the peaks for the 100 to 150 N 

and 100 to 200 N data, the strain peaks’ size is 0.78 mm and 0.75 mm. It can be seen that the size 

of these peaks relates closely to the slicer shell thickness shown in Table 4-1. 
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Figure 4-13: Volumetric strain 𝜖𝑥𝑥 developed through the sample: a) isometric view of 100 to 

150 N test, b) XZ plane view of 100 to 150 N test, c) isometric view of 100 to 200 N test, d) XZ 

plane view of 100 to 200 N test, d) strain profile across the sample width. 
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Figure 4-14: Volumetric 𝜖𝑦𝑦 yy developed through the sample: a) isometric view of 100 to 150 

N test, b) XZ plane view of 100 to 150 N test, c) isometric view of 100 to 200 N test, d) XZ 

plane view of 100 to 200 N test, d) strain profile across the sample width. 
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The longitudinal strain (εzz) uniquely does not develop on the sample’s shell but within the 

sample cross-section. This difference in strain development is indicative of the anisotropic and 

nonhomogeneous deformation of the sample. In Figure 4-15 a) and Figure 4-15 b), the longitudinal 

strain develops within the infill at an angle. As the load is increased to 200 N, strain within the 

sample forms in periodic diagonal bands within the material’s bulk. These diagonal bands of strain 

appear to form at a 45o angle within the sample’s internal layers, which coincide directly with the 

raster infill pattern. This strain pattern has previously been seen for FFF printed parts within 2D 

DIC studies but has not been previously shown volumetrically [49]. Notably is the lack of strain 

forming on the -45° raster. This lack of strain development at a -45° angle relates to the previous 

discussion concerning the displacement fields. As previously mentioned, the sample is likely to be 

loaded on a slight angle. This uneven loading experienced by the sample results in the 45° bearing 

the majority of the load, while the -45° experience minimal loading.  

Figure 4-15 (c) displays the 1D strain through the material’s gauge length about its center. 

The 100-150 N test is visibly less smooth, indication the beginning formation of strain within the 

sample. Subsequently, the 100-150 N presents a bimodal profile indicating only the initial strain 

formation within a few rasters. Observation of the 100-200 N test shows a much smoother profile, 

representing neatly formed bands of strains. An approximation of the strain band size was made 

from the strain data, resulting in mean size of 0.489 mm in width. This length relates directly to 

the rasters’ measure, which should have a theoretical size of 0.4 mm in width based on the nozzle 

size. The increase in raster size can be attributed to the DVC data’s discretization and the 

approximation made by not calculating the raster geometry directly perpendicular to the raster 

print direction. As a final comment, the longitudinal strain on the sample can be seen to be much 

smaller than the transverse strain shown figures  Figure 4-13 and Figure 4-14. This is a direct result 
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of the transverse strain developing on the sample’s shell, directly in line with the load [48]. Thus, 

the material’s shell bearing a more substantial portion of the force and consequently experiences 

higher strain.  Both the DVC transverse and longitudinal strain results can provide useful inputs 

for creating a complete FEA of FFF composites [30]–[33]. 
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Figure 4-15: Volumetric strain εzz developed through the sample: a) isometric view of 100 to 

150 N test, b) XZ plane view of 100 to 150 N test, c) isometric view of 100 to 200 N test, d) 

XZ plane view of 100 to 200 N test, d) strain profile across the sample width. 
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4.4 Conclusions  
 

A uniaxial tensile test at three loads was conducted on a 3D printed copper reinforced PLA 

tensile coupon in-situ with a µ-CT. According to ASTM-D648 14 Type V standards, the tensile 

coupon’s geometry was made with slight modifications to ensure compatibility with the utilized 

MTS. As a preliminary step toward the analysis displacement and strain analysis, the sample’s 

bulk structural response was measured through µ-CT image segmentation. The specimen was 

shown to have a bulk cross-sectional area larger than the solid model used to develop FFF but still 

within the printer tolerance. As the sample’s load increased, it was clear that the mean cross-

sectional area was reduced due to the sample’s elongation. However, the sample cross-section 

decrease was much more significant between the 100-150 N than 150-200 N indicating an increase 

in material stiffness as the sample was strained. The raster air gap was segmented from the sample 

and measured to support this statement. Two significant air gaps contributed to the sample’s 

porosity: 1) air gaps between the samples shell and infill, and 2) between the infill rasters. The 

formation of airgaps was aided in the analysis strain as features surrounded by air gaps are seen as 

regions that bear significantly more loading [48]. The resulting volume of the air gaps showed a 

decrease in porosity as a tensile force increase, which has previously been shown to relate to a rise 

in sample stiffness [16].  

After segmenting the samples to determine DVC image compatibility, the resulting images 

were used as input into an open-source DVC software, FIDVC, to obtain the tensile coupon’s 

internal displacement and strain behaviour Lagrangian linear elastic strain formulation. Sample 

displacement had a similar gradient to typical tensile tests but was developed on an angle due to 

potential incongruent force application from the load cell. Thus all analysis for the strain fields 

was considered under the pretense of a slightly angular load condition. The resulting strain fields 
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showed the effects of printing geometry on the development of strain within the sample. The axial 

strain on the part was developed on the 3D printed structure’s surrounding faces, which relates to 

the overall reduction in the cross-sectional area seen from the image segmentation study. The 

development of this strain appears to form in 0.75-0.78 mm, which is associated with the shell 

thickness printing parameter  

The longitudinal strain was shown to develop within the bulk of the material along the internal 

rasters uniquely. The development of strain along the rasters rather than the shell is due angularity 

of the rasters. The strain was observed to only develop on the +45° degree raster, but not the -45° 

raster, which relates to the force of load cell being skewed in +45° raster direction. Furthermore, 

the longitudinal strain developed within the sample was much less than the axial strain due to the 

shell’s alignment compared to the rasters. The sample shell in direct alignment with the load 

direction will bear a much higher degree of force than the rasters. DVC’s ability to capture the 

internal strain behavior provides a necessary first step towards a greater understanding of 3D 

printed composites’ deformation behaviour. Future work on the effects of different print 

parameters and loads is essential for a complete understanding of these materials’ mechanical 

behaviour using the DVC measurement method. Additionally, these results can help build more 

intricate FEA models of FFF materials and allow for FFF parts to reach full potential in industrial 

applications.     
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Chapter 5: Conclusions, Recommendations, and Future Works 

5.1 Conclusions  

This thesis aims to utilize the novel DVC measurement technique to assess and examine 

advanced materials. A comprehensive literature review was first conducted to provide the 

necessary background knowledge in composites and digital measurement techniques. Composites 

were shown to have many material properties that make them attractive as an engineering design 

material, such as their lightweight, high strength, and material tailorability. However, composites 

are often difficult to analyze due to inhomogeneous deformation fields and anisotropic material 

properties. Thus, traditional contact-based methods for measuring deformation, such as strain 

gauges and extensometers, cannot capture the actual sample deformation.  

Two alternatives were shown to exist in digital image correlation (DIC) and digital volume 

correlation (DVC). DIC is the more established of the two methods and provides a full-field view 

of displacement and strain but can only capture in-plane and out-of-plane motion of the sample’s 

surface. For precise measurements within the bulk of a material, the novel DVC technique is 

required. Thus, for complete measurement of the internal displacement and strain behaviour DVC 

is utilized in this study. However, as DVC is relatively new, the supporting literature surrounding 

it is less developed than DIC or other material measurement methodologies. It was the purpose of 

this thesis to begin to address these current gaps in the literature. This work focused on how to 

obtain and assess sample quality for DVC measurements and utilize DVC to analyze fused 

filament fabrication (FFF) printed composites, which are two areas where the current literature is 

still limited.  

To meet the end goal of applying the DVC technique to composite structures, developing a 

method for obtaining and assessing high-quality images for DVC measurements was critical. It 
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was determined that the artificial seeding technique, a technique that has previously seen 

successful results in a relatively limited amount of studies, was a potential candidate for achieving 

the desired image contrast. However, to implement this technique, an investigation of the 

advantages and sources of error were required.  

Achievement of this goal was undergone by seeding epoxy with five different marker 

particles: 200 µm copper, 50 µm copper, 25 µm copper, 50 µm zirconium oxide, and 10 µm 

aluminum nitride. As a preliminary step to assess the seeding particle technique, a micro-computed 

tomography (µ-CT) segmentation analysis was first performed to analyze and measure the 

greyscale distribution, particle quantity, and particle distribution within a single correlation 

window. It was shown that each particle provided a greyscale distribution to the sample that would 

contribute toward proper correlation. The seeding particles could be measured and locations 

pinpointed within the correlation window by utilizing image segmentation techniques. Each 

particle met the correlation recommendation of 27 particles per subset for the 128 x 128 x 128 

voxel correlation window. The 200 µm copper was just above the limit at 29 particles, and the 25 

µm copper contained the most features with 484 particles. Finally, there was no significant particle 

clumping source, with each sample having a unimodal distribution of particles at different 

distances from the correlation windows center.  

A rigid body displacement (RBD) test was performed for each seeding particle to assess the 

accuracy and narrow the optimal DVC inputs. The seeding particles were digitally displacement 

rather than experimentally to decouple the effects of seeding from the tolerance of a load cell or 

micro-positioning stages. This procedure was determined to provide more accurate results then 

displacing them experimentally. For each sample, it was shown that as the correlation window size 

was increased from 32 x 32 x 32 voxel to 128 x 128 x 128, the error on displacement diminished, 
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with the 25 µm copper particles proving to be the most accurate across the three subsets studied. 

Thus, the 25 µm copper particles were selected as the most optimal seeding particle and were 

utilized to determine the percent overlap necessary for analysis. A final study was done to examine 

the error associate with downsampling. Downsampling was shown to introduce some error to the 

displacement data but was still useful in studying displacement for a hole-in epoxy coupon that 

had been compressed. This usefulness was mainly due to downsampling, reducing the 

computational workload resulting from the full-resolution images.   

The longitudinal displacement within the sample was shown to form in three bands, all 

radiating from the center hole. Each displacement band was associated with a different region of 

the epoxy. The top-end designated the static face, the bottom band designated the compressive 

end, and the side bands the outward expansion of the sample. Precise measurements of 

displacement were highlighted by undergoing a full resolution analysis around the center hole. 

This method of utilizing downsampled data to obtain a full sample view of deformation has 

allowed for identifying smaller regions of interest to perform the DVC at full resolution. The 

equivalent strain was shown to develop in two areas: the center hole and the sample’s perimeter. 

The strain on the border of the epoxy was likely a result of RBD and edge effects. However, the 

second region of high strain is located around the center hole due to deformation around a strain 

concentration. An accurate and more defined strain gradient was shown to propagate from the 

center by utilizing the full-resolution data.  

With the particle seeding technique’s success at providing strong µ-CT image contrast, the 

method was put into practice for FFF material testing. A polylactic acid (PLA) filament 

commercially impregnated with copper micro-particles was examined to extend the knowledge 

gained in the previous study. Tensile coupons were printed utilizing a commercially purchased 
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FFF 3D printer according to a modified ASTM D638-14 Type 5 design. The coupon’s important 

printing parameters were the +45°/-45° raster orientation, 100 percent infill density, nozzle size of 

0.4 mm, and shell thickness of 0.8 mm.  Samples were loaded and imaged at three load states 100 

N (preload), 150 N, and 200 N.  

One of the notable advantages of the DVC technique is the amount of data obtained and 

analyzed from the µ-CT images before correlation. Examining the sample’s cross-sectional area 

highlighted the printer’s dimensional tolerance and an overall reduction in cross-sectional area 

derived from the tensile load. Additionally, air gaps were segmented from the rasters and shown 

to form at alternating +45°/-45°. Two significant air gaps existed within the sample: ones along 

the internal rasters and ones between the materials shell and infill. Identification of these air gaps 

within the coupon plays a critical role in understanding the displacement and strain behaviour as 

features between them support a high degree of tensile force. The real infill percent and its 

variation with loading could be quantified through measurement of the air gap volume.  

Due to the lack of stiffness of the PLA sample and imaging parameters utilized to capture 

the deformation, it was required to downsample the data by a quarter of its initial resolution to 

capture the displacement. The longitudinal displacement showed of the sample at each load 

condition showed an angular gradient from the loading end to the static end. The displacement 

gradient’s angularity was likely due to the incongruent load between the pins due to the nozzle 

start position creating a stress concentration near one end. The displacement gradient played an 

essential role in understanding the longitudinal strain behaviour as the rasters angled toward this 

direction bore most of the load. The strain result of the transverse load showed the overall sample 

contraction. Additionally, the transverse strain manifested itself on the out surfaces of the material, 

the most important of which was the shell. In comparison, the longitudinal strain was shown to 
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develop on the internal rasters. Of final note, the shell’s strain was a greater magnitude than the 

rasters’ strain, as the shell was in direct alignment with the tensile force, thus bearing the majority 

of the strain.  

This thesis’s key finding showed the particle seeding technique’s successfulness to acquire 

sufficient contrast patterns for DVC. While each seeding particle seemed to provide accurate 

displacement measurement across the 64 x 64 x 64 voxel subset and 128 x 128 x 128, inaccuracies 

began to form when the subset was reduced to 32x32x32 voxels. However, across all subsets, the 

25 µm copper particles were shown to provide the highest degree of accuracy. This accuracy 

resulted from a random distribution of higher density particles existing within the correlation 

window leading to a stronger correlation. While downsampling the data provided an increase in 

displacement inaccuracy, it benefited from reducing computational burden, thus allowing for a 

greater volume of interest to be analyzed. By utilizing both full resolutions and downsampled 

resolution data, multiple displacements and strain views could be obtained for the compressed 

copper epoxy. The equivalent von-mises strain was between 0.08 to 0.11 µm/µm and was shown 

to propagate from the compressed sample’s center hole. The development of strain around a strain 

concentration is prevalent in many works and highlights the particle seeding technique’s 

successfulness for strain measurements.  

By utilizing the previously discussed information, some key findings could be made on the 

analysis and behaviour of copper filled PLA samples manufactured through FFF. The bulk 

response of the material, manufacturing tolerance, and material geometry was quantified through 

image segmentation. Of these three parameters, the sample raster and air gap configuration were 

particularly crucial for understanding the material strain measurements. The directional strain 

tensors were shown to be concentrated within regions that are surrounded by air gaps.  
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Transverse strains εxx, and εyy are shown to develop on the material shell in bands visualized 

in 3D to highlight their variation in the material’s bulk. The 1D variation of strain εxx and εyy were 

plotted and shown to be between 0.03 to -0.035 µm/µm and 0.069 to -0.08 µm/µm for the 100-150 

N load dataset, respectively, and 0.083 to -0.081 µm/µm and -0.125 to 0.157 µm/µm. The 

longitudinal strain εzz, on the other hand, was shown to develop within the internal rasters of the 

material at diagonal bands between material air gaps. This strain tensor is particularly significant 

as this view of strain is not obtainable through other measurement techniques without modifying 

the sample to expose internal features. Additionally, the utilization of a more aggressive metal 

filter on the µ-CT side will reduce the effects of scattering and beam hardening.  Of final 

importance is the magnitude of εzz, which is seen to be between 0.011 to 0.012 µm/µm, which was 

significantly smaller than εxx and εyy. This development of strain was due to the material’s shell 

being in direct alignment with the load cell, which could be seen in the µ-CT images, thus bearing 

a higher strain. 

In conclusion, DVC proved a useful tool for examining the internal strain behaviour of 

complex materials. The implication for this work in the scientific community revolves around 

fundamentally what this thesis was looking to achieve. Broadly this work looked to establish a 

methodology from which a sample can be prepared, imaged, and then 3D deformation behaviour 

analyzed.  First, to accomplish this goal, a method was presented to allow high-quality µ-CT 

images to be obtained that are compatible with the DVC correlation based on the artificial seeding 

technique. It was then necessary to present a way to allow complete analysis and evaluation of the 

sample speckling quality. The method showed the added benefit of simultaneously measuring 

errors, and consolidating DVC parameters was presented. This analysis was then utilized to meet 

the ultimate goal of this study, the analysis of the deformation behaviour of advanced material, by 
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examining a compressed epoxy sample’s internal strain behaviour with a center hole and FFF 

composite loaded in tension.  

5.2 Recommendations 

The artificial speckling methodology, in conjunction with µ-CT and DVC, has proved a 

versatile method for the analysis of complex materials. The recommendations provided in this 

section of the report will ensure repeatable and successful DVC experimentation. These 

recommendations have been based on best practice guidelines developed through the author’s 

thesis work experience. These recommendations are broken up into three main sections: 1) sample 

preparation, 2) µ-CT image parameters, and 3) DVC analysis.  

When preparing a seeding sample, one must select particles with a differing and preferably 

higher density than the medium that the particles are to be embedded inside. The difference in 

density becomes particularly essential when seeding low-density polymers as this will allow for 

each phase to appear within the µ-CT images. High-density particles will provide the necessary 

variation in greyscale distribution required for correlation. Additionally, smaller speckling 

particles seem to give a better distribution, but it is important to note that these particles must be 

in the resolution range of the µ-CT. Nano-particles may not provide the desired contrast, as they 

may be impossible to resolve via the µ-CT machine. Finally, working with particles of much larger 

density to the matrix, particles may settle toward the bottom rather than remain in the material’s 

bulk. It is recommended to choose fast curing matrix materials or expedite the curing time through 

heat curing or photocuring to mitigate particle settling in the case of thermosetting material or 

expediting the solidification process of thermoplastics through means such as a cooling system. 

These processes will ensure that most particles remain suspended within the sample instead of 

settling towards the bottom.  
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Selecting proper µ-CT image parameters can allow for better image quality for ease of 

segmentation analysis and ensure repeatability for DVC studies. When working with metal 

particles, there is a tendency for these particles to create artifacts in the form of beam hardening 

and scattering. While post-scanning filtration may help reduce these effects, this author’s opinion 

is that the best course of action is to select µ-CT parameters that diminish their presence. The 

manufactures of the µ-CT used in this study provided best practice guidelines for imaging, which 

were followed in this work. However, these settings do not seem to consider the presence of high-

density particles leading to metal artifacts. Thus, this author’s opinion is that increasing frame 

averaging and rotation step may help reduce artifacts.  

When imagining with µ-CT to utilize loading data image for DVC, it is recommended that as 

many imaging parameters as possible be kept the same for each load. While 180° rotation reduces 

the overall scan time, and as shown, able to produce valid datasets for DVC, in future studies, it 

may be recommended to utilize 360° scans to ensure the start position is also kept the same 

between load steps. A higher quality material test stage (MTS) would lead to ideal loading 

conditions for sample loading. The MTS provided by the CT manufacturers has a lack of rigidity 

that can affect DVC results. For higher accuracy testing, a more rigid structure can reduce RBD 

and sample set up time. Additionally, the loading parameter and information from the load cell is 

limited. Of final note, the open-source DVC software was restricted to only four subsets and 

reporting the cross-correlation peaks. One may wish to modify this code to allow for larger or 

smaller subsets depending on the expected scale of material deformation. One may also want to 

have the software output a more meaningful correlation quantity, such as the normalized cross-

correlation or zero normalized cross-correlation.  
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5.3 Future Works  

With the establishment of the artificial speckling technique and successful utilization of DVC 

to analyze FFF produced copper seeded PLA composites, several avenues are open for potential 

future research. A logical extension of the work may be to first study the effect of the seeding 

particles on the constituent mechanical properties of the material. Additionally, with the success 

of utilizing copper seeding within a common matrix material such as epoxy can be used as a 

starting point for the analysis of differing composites. Applying this technique by first seeding the 

epoxy with particles before impregnating it into the reinforcement phases of a laminate can allow 

DVC to measure the displacement and strain data during different loading conditions. This 

technique could potentially be used to help gain a greater understanding of the complex behaviour 

between the different phases and their interfaces.  

Another potential research area is to utilize this technique for the analysis of the novel braided 

composite material. Braided composite’s intricate weaving pattern, behaviour under loading, and 

thru-thickness interactions make them prime for analysis via DVC. A complete understanding of 

braided composites’ deformation behaviour could be explored through the utilization of particle 

seeding and DVC. Besides the benefits already mentioned for composite laminates, insights could 

be gained about the yarns’ internal behaviour within woven fibre tows.  

On the side of additive manufacturing (AM), the DVC technique has been utilized in limited 

compacity as the works described in this thesis is one of the first to be conducted. Thus, there are 

several areas for unique research opportunities. A direct extension of the work done in chapter 4 

can be completed by varying the printing parameter. Thus, the effects of infill percentage, print 

direction, print pattern, and layer thickness on mechanical properties can be investigated. 

Additionally, a comparison study between different filament compositions will provide valuable 
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information on deformation behaviour that can be utilized to select the appropriate material for 

practical applications. Finally, several other AM techniques such as stereolithography (SLA) 

printing, material jetting, binder jetting, and sheet lamination can benefit from analysis through 

DVC. 

Finally, finite element analysis (FEA) models for composites are challenging to create due to 

the complex interaction between the material phases and requirements of accurate material and 

mechanical data. One of the upsides of DVC is its usefulness for the development of detailed 

analytical material models. As DVC is a volumetric measurement technique, testing on composite 

materials can be useful in validating new FEA models. Furthermore, DVC results can provide 

experimental data on crucial material parameters such as Young’s modulus, shear modulus, and 

Poisson’s ratio that can be used to build more complete models. Additionally, by utilizing the DVC 

displacement and strain data as inputs for FEA, the inverse problem can be solved to obtain maps 

of materials’ mechanical properties with complex behaviours.  Finally, displacement fields as 

inputs to develop models for the virtual field method will allow for the superior quantification of 

mechanical properties.   
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Appendix A: Image Segmentation Formulations  
A.1: Image Dilation  

The image dilation procedure increases the size of all white objects within an image. This 

procedure requires the image to be first converted to binary format, so all black pixels within the 

image are represented by 0 and white features 1. The image dilation procedure in function expands 

all objects within a region of interest by the desired size and kernel shape of the user. Figure A-1 

shows the schematic representation of the image dilation procedure of a binarized image by a 3x3 

square kernel. The 3x3 square kernel is superimposed onto the image, with the center of aligning 

with each white pixel. Figure A-1 d) the white space inside the image matrix is shown to increase 

by a single pixel. This process is mathematically shown in equation A.1, where A represents the 

reference image, B the structural element, and ⊕ the image dilation procedure. The variable  𝐵̂ is 

representative of the reflection of structural element, which is overlapped on white pixels in image 

A at a set of pixel locations z.  This process can be adapted for 3D images sets by replacing the 2D 

kernel with its corresponding 3D projection, thus expanding the size of white image voxels.  

 𝐀 ⊕ 𝐁 = (z|z(𝐵̂)
𝑧

∩ 𝐴 ≠ ∅)   A.1 
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Figure A-1: Dilation procedure of binarized image: a) original image matrix, b) 3x3 square 

structural element, c) superposition of structural element, d) complete dilated image. 

 

A.2: Image Erosion  

The image erosion procedure provides a digital method for reducing the size of all white 

features within a digital image. As with the image dilation procedure previously shown, the image 

erosion procedure discussed here requires the image first to be computed in binary. Image erosion 

works similarly to image dilation, just in reverse. Thus, all-white features within an image are 

reduced by the size of the corresponding kernel. Equation A.2 presents the underlying formula for 
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image dilation (ϴ). This formula describes the overlapping of the structural element at each pixel 

location within the image and preceding elimination of each white pixel that is not surrounded by 

white pixels. Figure A-2 shows a graphical representation of the erosion procedure via a 3x3 

structural element. Figure A-2 d) presents the final product of the image shown in Figure A-2 a) 

that has been eroded by the structural elements shown in Figure A-2 c). It is evident from this 

image that each white pixel that was not surrounded by other white pixels has been replaced by 

black pixels. As with image dilation, image erosion is easily expanded into 3D by using the 

associated 3D kernel to reduce the size of white voxels.   

 𝐴 ϴ B = z|(Bz ⊆ A)   A.2 
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Figure A-2: Erosion procedure of binarized image: a) original image matrix, b) 3x3 square 

structural element, c) superposition of structural element, d) complete eroded image 

 

A.3: Morphological Closing  

The equation A.3 defines the morphological closing operation. A morphological closing 

procedure is undergone by first applying a dilation to increase of all-white features within the 

image. The dilation is then accompanied by following image erosion by the same kernel. Figure 

A-3 shows an image matrix that has gone through a morphological close by a 3x3 square structural 

element. The growth of the image due to the dilation procedure can be seen in Figure A-3 c). This 

image then goes through an erosion procedure that leads to the final image shown in Figure A-3 
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d). It is immediately evident that the closed image looks completely different than the initial image 

shown in Figure A-3 a). The benefits of the closing procedure are that elements without other 

features in its vicinity remain the same size, while others are connected. 

 A • B = (A ⊕ B)ϴB  A.3 

 
Figure A-3: Morphological closing procedure of binarized image: a) original image matrix, b) 

3x3 square structural element, c) image dilation, d) erosion of the dilated image  
 

A.4: Despeckling  

There are many different methods, formulations, or filters for achieving a despeckling 

operation. However, all methods look to achieve the same results, which is remove all features 

below a specified size and shape, while keeping all features above the designated size. This method 
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has become incredibly useful for removing noise within an image space. Thus, rather than provide 

a specific formulation for this procedure, it is more important to demonstrate the process, which is 

shown in Figure A-4. All features bellow the size of the 3x3 structure element in Figure A-4 a) 

have been removed from the final image in Figure A-4 c). Thus, only large features are presented 

within the image shown in Figure A-4 c) effectively removing image noise.  

 

Figure A-4: Despeckling procedure of binarized image: a) original image matrix, b) 3x3 

square structural element, c) despeckled image 
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Appendix B: MATLAB Code 

B.1: Image Stack Crop   

This program was developed to allow for batch cropping of the µ-CT dataset.  

%Author: Cristofaro Timpano  

%Date: September 9, 2020 

 

%this program allows for the batch cropping of micro-CT images to reduce %the overall data 

size of the image set for DVC. This program will crop the same area from each %sample, thus 

ensuring a similar volume of interest between reference and deformed data 

%the name of the  file for the sample code is ‘ImageXXXXX’ where X is a series of numbers 

%search for the first file in the dataset (one can change *bmp to the file extension their image 

%data is capture in, i.e. *.tif, *.jpg, *.png, etc.) 

[file, path]=uigetfile(‘*.bmp’); 

 

%combine the file name and file path of the image to create the full file string 

Filename=strcat(path,file); 

 

%read the first image file and saving its data to a MATLAB variable  

I=imread(Filename); 

 

%selecting the crop window size  

[j, rect2]=imcrop(I); 
 

% x-coordinate in pixels relative left edge of the image of the cropping rectangles upper left 

corner 

x2=rect2(1,1); 

 

% y-coordinate in pixels relative left edge of the image of the cropping rectangles upper left 

corner 

y2=rect2(1,2); 

 

 

%looping over all images in the designated file path and crop them down to specified size  

%replace k with the number of images you wish to crop over  

for x=1:k 

 %set the file indicator number for the first file you wish to start at, i.e. Image00128 

 X=sprint(‘%05d’,127+i); 

 

 %image file name   

 Name=strcat(‘Image’, X, ‘.bmp’); 

 

 %create the file path extension for the image  

 File=strcat(path, Name) 

 

 %read the image file  
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 Img=imread(File); 

 

%crop down the file to a rectangle with the top left corner at x2, and y2, and width and 

%height of x and y pixels, not MATLAB always adds a pixel to cropping, so you must 

%subtract by 1 to get the desired size  

 ImgCrop=imcrop(Img, [x2, y2, x-1, y-1]); 

 %create the new file path to save the cropped image data to  

 FL=strcat(‘C:\croppeddata\’, Name); 

 

 %write data into a new file path  

 Imwrite(ImgCrop,FL); 

end 

%crop the deformed data set to create the same VOI as the cropped reference  

%search for the first file in the deformed dataset (one can change *bmp to the file extension their 

%image data is capture in i.e. *.tif, *.jpg, *.png, etc) 

[file2,path2]=uigetfile(‘*.bmp’); 

 

%looping over all images in the designated file path and crop them down to specified size  

%replace k with the number of images you wish to crop over  

 

for x=1:k 

 %set the file indicator number for the first file you wish to start at, i.e. Imagedef00128 

 X=sprint(‘%05d’,127+i); 

 

 %image file name   

 Name2=strcat(‘Imagedef’, X, ‘.bmp’); 

 

 %create the file path extension for the image  

 File2=strcat(path2, Name2) 
 

 %read the image file  

 Img2=imread(File2); 

 

%crop down the file to a rectangle with the top left corner at x2, and y2, and width and 

%height of x and y pixels, not MATLAB always adds a pixel to cropping, so you must 

%subtract by 1 to get the desired size  

 ImgCrop2=imcrop(Img2, [x2, y2, x-1, y-1]); 

 %create the new file path to save the cropped image data to  

 FL2=strcat(‘C:\croppeddata\’, Name); 
 

 %write data into a new file path  

Imwrite(ImgCrop, FL2); 

end 
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B.2: Greyscale Histogram  

The development of this code was written to obtain the greyscale histogram for µ-CT images. 

This code was adapted from a previous code developed by G.W. Melenka to convert tif files to 

MATLAB image stacks.  

 

%Author: Cristofaro Timpano  

%Date: September 9, 2020 

 

%search for the first file in the image dataset (one can change *bmp to the file extension their 

%image data is capture in i.e. *.tif, *.jpg, *.png, etc) 

[file, path]=uigetfile(‘*.tif’) 

 

%combine the file name, and the path to create the full file string  

 Filename=strcat(path, file)  

 

%allocate a block of memory to save the image files. Set pixX to the x-resolution, pixY to the y-

%resolution, and ImgN the number of images in your image stack 

I=Zeros(pixX, pixY, ImgN, ‘unit8’);  

 

%loop over the image files and save within a 3D image matrix  

For i=1:ImgN 

 %set the file indicator number for the first file you wish to start at i.e. Image00128  

 X=sprintf(‘%05d’,127+i) 

 

 %image file name  

 Name=strcat(‘Image’, X, ‘.tif’) 

 

 %create the file path extension for the image  

 File=strcat(path,Name) 

 

 %save the image file to the preallocate image block space  

 I(:,:,i)=imread(File) 

 

End  

 

%obtain the greyscale distribution of the 3D image matrix I  

[counts, binlocation]=imhist(I); 

 

%save the 256 element vector of greyscale data to a variable   

Save(‘greyscalecounts.mat’,counts) 
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B.3: VTK Converter  

The MATLAB program presented here was developed to convert the 3D matrix data output from 

FIDVC in the VTK format to allow for it to be visualized in 3D.  

 

%Author: Cristofaro Timpano  

%Date: September 9, 2020  

 

%Required Prerequisites:  Tim (2020).  WriteToVTK 

(https://www.mathworks.com/matlabcentral/fileexchange/23416-writetovtk) , MATLAB Central 

File Exchange. Retrieved September 9, 2020. 

 

%Instruction: this code has been developed to run the required MATLAB function to convert 

%MATLAB 3D matrix data to VTK Files for input into Paraview. To convert voxel data into 

%displacement data, you must multiply each value in the MATLAB matrix by the CT scan 

%resolution. Additionally, if any downsampling was conducted, one must multiply this by the 

%downsampled data. 

 

%Function WriteToVTK(Variable, ‘name of file’) 

 

%xs is the lower matrix size in x 

%xf is the upper matrix size in x 

%ys is the lower matrix size in y 

%yf is the upper matrix size in y 

%zs is the lower matrix size in z 

%zf is the upper matrix size in z 

 

%displacement in x  

Ux=u{1,1}{1,1}(xs:xf, ys:yf, zs:zf); 

 

%displacement in y 

Uy=u{1,1}{1,2}(xs:xf, ys:yf, zs:zf); 

 

%displacement in z  

Uz=u{1,1}{1,3}(xs:xf, ys:yf, zs:zf); 

 

%displacement in magnitude  

Um=u{1,1}{1,4}(xs:xf, ys:yf, zs:zf); 

 

%strain xx 

ex=Eij{1,1}{1,1}(xs:xf, ys:yf, zs:zf); 

 

%strain yy 

ey=Eij{1,1}{2,2}(xs:xf, ys:yf, zs:zf); 

 

 

%strain zz 
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ez=Eij{1,1}{3,3}(xs:xf, ys:yf, zs:zf); 

 

%strain xy 

txy=uij{1,1}{1,2}(xs:xf, ys:yf, zs:zf); 

 

%strain xz 

txz=uij{1,1}{1,3}(xs:xf, ys:yf, zs:zf); 

 

%strain yz 

tyz=uij{1,1}{2,3}(xs:xf, ys:yf, zs:zf); 

 

WriteToVTK(Variable (i.e. ux), ‘name of file’) 
 
 

 

 


