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Abstract: Software-Defined Networking (SDN) offers an abstract view of the network and assists
network operators to control the network traffic and the associated network resources more effectively.
For the past few years, SDN has shown a lot of merits in diverse fields of applications, an important
one being the Wireless Body Area Network (WBAN) for healthcare services. With the amalgamation
of SDN with WBAN (SDWBAN), the patient monitoring and management system has gained much
more flexibility and scalability compared to the conventional WBAN. However, the performance of the
SDWBAN framework largely depends on the controller which is a core element of the control plane.
The reason is that an optimal number of controllers assures the satisfactory level of performance and
control of the network traffic originating from the underlying data plane devices. This paper proposes
a mathematical model to determine the optimal number of controllers for the SDWBAN framework
in healthcare applications. To achieve this goal, the proposed mathematical model adopts the convex
optimization method and incorporates three critical SDWBAN factors in the design process: number
of controllers, latency and number of SDN-enabled switches (SDESW). The proposed analytical
model is validated by means of simulations in Castalia 3.2 and the outcomes indicate that the network
achieves high level of Packet Delivery Ratio (PDR) and low latency for optimal number of controllers
as derived in the mathematical model.

Keywords: Software-Defined Networking (SDN); Wireless Body Area Network (WBAN); SDN with
WBAN (SDWBAN); Controller; SDN-enabled switches (SDESW); healthcare applications

1. Introduction

The healthcare industry is advancing rapidly in providing remote healthcare services to patients
with the assistance of information and communication technologies [1,2]. The WBAN is regarded
as one of the pioneers in delivering remote healthcare services. The remote patient monitoring
applications for various physiological data such as blood pressure, glucose level, calorie, temperature,
heart rate, pulse rate measurement, etc. are now being feasible through WBAN [3–5]. On top of that,
the overall management and operations of WBAN has become much more flexible and independent
with the incorporation of SDN technology. Since the working principle of SDN offers programmable
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features in installing new applications irrespective of the devices designed by numerous vendors [6–9],
the combination of SDNs and WBANs is considered to enhance the remote healthcare services to an
outstanding level (see Table 1 for a list of abbreviations).

The SDWBAN framework for patient monitoring applications simplifies the data packet
forwarding functions from a source to a destination via SDN-enabled switches [10] as shown in
Figure 1. The SDWBAN framework consists of three planes that reflect the basic principle of the SDN
architecture. The data plane of the SDWBAN framework holds the WBAN sensors, SDESWs and
gateways. The distributed controllers reside in the control plane which maintains communication with
the underlying SDESWs in order to provide instructions for packet_in requests. On top of that, the
healthcare authorities manage various sorts of applications through the application plane. In a nutshell,
the working procedure of SDWBAN is as follows: the WBAN sensors at the data plane form clusters
and connect with SDESWs. These sensors forward data to the connected SDESWs in order to reach
out to the gateway. Upon receiving the data from body sensors, the SDESW checks for a match with
the flow table and initiates a packet_in request to the controller in the case of mismatch. The controller
then processes the request and sends a packet_out response to the SDESW with appropriate action
instructions. The SDESW then forwards/drops the data packet based on the retrieved instructions
from the controller. The detailed functionalities of the SDWBAN framework can be found in [10].
The SDWBAN becomes more complex as the number of applications and patients increase in the
deployed area. A successful implementation and assurance of optimal performance in a complex
SDWBAN largely depends on the appropriate design of the control plane. In the design of the SDN
control plane, the number of controllers plays a crucial role in maintaining Quality of Service (QoS) and
network performance. For wired SDN deployment, multiple controllers can reside in the control plane
as the controllers have own dedicated physical resources to maintain inter-controller communication.
However, in the case of wireless deployment, the controllers share the same in-band frequency and this
could ultimately cause congestion while supporting inter-controller communication. As bandwidth is
one of the scarce resources in the wireless medium, using multiple frequency bands for the control
plane is very complex and hence, leads to further challenges such as interference, synchronization, etc.
Therefore, choosing the optimal number of controllers to maintain the QoS in SDWBANs is imperative.
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Figure 1. SDWBAN Framework.
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Table 1. List of Abbreviations.

Abbreviation Elaboration

WBAN Wireless Body Area Network
SDN Software-Defined Networking
SDWBAN SDN-based WBAN
PDR Packet Delivery Ratio
SDESW SDN-enabled Switch
QoS Quality of Service

Even though a logically centralized controller can provide a global view of the network,
a large-scale deployment of a SDWBAN has several limitations in regard to performance and
scalability [11]. This is obvious that having a multiple number of controllers in the control
plane, can relax the bottleneck of excessive load on a single controller. However, in order to
maintain an abstract view of the network, the controllers need regular state synchronization [12].
This synchronization enables the controllers to support the underlying SDESWs with their queries
for unknown applications or data forwarding instructions. Another issue is that the formation of the
clusters is not fixed in a SDWBAN. Similarly, the number of supporting application groups under
the SDEWSs could also vary from scenario to scenario. As such, when the cluster size is bigger, the
probability of receiving more packet_in requests gets higher. Hence, it is vital to have a sufficient
number of controllers in the control plane so that the originating packet_in requests from the SDESWs
respond within an acceptable time frame. Consequently, an optimum number of controllers is required
so that the SDWBAN supported healthcare applications ensure reliability and the timely delivery of
physiological data. On the other hand, the redundant use of controllers in the design of the control
plane is an unnecessary waste of resources and thus, adds redundant complexity.

To address the issues and limitations discussed above, it is vital to design an optimal control
plane for a specific network. In the case of deploying i.e., SDWBAN, the design of the control plane is
significant to ensure acceptable network performance in terms of PDR and latency. The optimal design
of the control plane would be able to respond to the packet_in requests originating from all SDESWs.
In this paper, a mathematical model is developed based on three influential factors of SDWBANs i.e.,
number of controllers, latency and number of SDESWs. The proposed mathematical model institutes
a relationship between the number of controllers, SDESWs and the body sensors. The latency factor
consists of important parameters related to the communication between the controller and the SDESW.
The contributions of this paper are twofold:

• Development of a mathematical model that determines the optimal number of controllers for
an SDWBAN framework. In addition, the mathematical model also establishes a relationship
between the number of controllers and SDESWs.

• Implementation and validation of the proposed mathematical model through the Castalia
simulator.

The rest of the paper is organized as follows: Section 2 presents the related works. Influential
factors related to the optimization of control plane are presented in Section 3. Section 4 describes
the mathematical model developed for SDWBAN framework optimization. Section 5 presents the
analytical outputs of the mathematical model as well as experimental results. Finally, Section 6
concludes the paper with future research directions.

2. Related Works

The design of the control plane occupies a major role in maintaining the optimum level
performance and QoS in an SDN deployed network. Several works pertaining to the design of control
planes for SDN-based deployment on a large-scale have been published . However, the development of
an optimization model for the SDWBAN framework has remained unexplored. This section provides
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a brief overview of some of the significant control plane design works that led to the development of
the proposed optimization model.

One of the first works related to the design of the control plane of SDN was done by
Heller et al. [13]. This work was motivated by three types of SDN users, namely network operators,
controller application writers, and network management software writers. Being motivated by these
instances, the authors analysed the controller placement problem (CPP) which addresses questions
related to the number of controllers to use for a given topology and the placement of the controllers
in the given topology. The authors defined a primary metric for the placement of the controllers
and evaluated the average propagation latency of the control plane based on Euclidian distance.
They also offered a solution based on the k-median and k-center algorithm. However, the solutions
were stringently based on the average and worst case delay between the network elements. In the
proposed method, decision to find the placement of the controllers was based on a brute force approach
with the evaluation of possible locations. However, the approach did not consider traffic load variation
and the dynamic adaptation with the number of controllers and position. More comprehensive work
related to the CPP solution can be found in [14–16].

The flow setup delay in setting up paths between the controller and the switch is considered in [17]
for wired SDNs. The functions of the proposed model are based on the activation and de-activation of
the links throughout the network whenever required. The paper considers link cost, equipment cost,
the capability of the controllers, path setup delay and traffic patterns to determine the optimal number
and location of the controllers. The prime focus of the work is to minimize the financial cost involved
in the installation and removal of network elements. On the other hand, our work focuses on finding
the optimal number of controllers for SDWBAN. In addition, we provided simulation-based results
that validate our proposed analytical outputs with the simulation-based output ones for a certain
delay boundary. This clearly defines that our contribution conveys an added value in the context of
the optimization of control plane in SDWBAN.

Hock et al. [18] designed a trade-off mechanism among various placement of controllers that
comprises different control latency and controller overheads. The authors used a mechanism called
Pareto-based Optimal Controller (POCO) placement that enables a decision to be made by exploring
the solution space and performing various analysis through a GUI. The weakness of this approach is
that the controllers require a lot of link state information which affects inter-controller latency.

A network partitioned-based controller placement strategy is proposed in [19] that employs a
k-center algorithm in order to assist load balancing and network stability. In this work, the authors
considered heterogeneous data plane traffic for optimization. In contrast, Jimenez et al. [20] considered
homogeneous type of traffic for optimal controller placement. However, both of these works are
restricted to the initial observation of constant traffic load and neglect the issue of dynamic traffic
load adaptation.

An optimization model for the deployment of controllers and sinks for wireless sensor networks
(WSN) is proposed in [21]. The prime focus of the proposed model is to determine the optimal location
of the controllers and sinks to maintain reliability and performance in a delay sensitive Internet of
Things (IoT) system. Similarly, Wei et al. in [22] proposed a two-level hierarchy control framework for
SDN-based IoT networks to relax the bottleneck with the growing number of IoT devices. The authors
addressed the issue of a controller placement strategy based on the priority of the nodes and use
a binary particle swarm optimization (BPSO) algorithm to optimize the control performance of the
SDN-based IoT network. In addition, Kushan et al. in [23] discussed the optimization of controller
placement for a hierarchical distributed software-defined vehicular network (SDVN). The prime focus
of the work is to find the optimal placement of the controllers to reduce operational latency by locally
distributing the top layer of the controllers while the bottom layer of the controllers is placed near
the road side unit (RSU). Nevertheless, the studies in [21–23] do not consider the optimal number of
controllers in their proposed models and scenarios.
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An effective controller placement strategy was designed by Bagga et al. [24] that withstand the
quality of services, although drops the network cost for an SDN-based 5G system. Another study
focuses on the distributed controller placement architecture for wireless sensor network that fortifies the
scalability [25]. Even though, these studies can yields decent output in terms of control cost or reliability,
but overlooked the variance in importance of diverse network nodes. Gorkemli et al. [26] propose
an approach for designing a programmable and distributed control plane architecture consisting of
multiple controllers, out-of-band and in-band control channels that can be managed dynamically
at scale. The authors introduced a “control flow table” where the rules can be embedded of a
switch to manage in-band control flows and off-load the congested controllers and in-band control
channels. The proposed architecture has been experimented over multiple topologies to demonstrate
its scalability and performance superiority.

The aforementioned works are mostly related to the optimal location of controllers for the
SDN-based network. The aim of optimization differs based on the nature of deployment and the
requirements. Therefore, the problems and solutions related to the optimal control plane design have
been discussed from various angles in the literature. However, our work is represented differently
compared to the aforementioned studies. Since the timely delivery of data is of paramount significance
in WBAN, the total flow resolution time sets a boundary limit for healthcare applications. Therefore,
several flow resolution-related parameters are taken into account in developing a mathematical model
to find the optimal number of controllers for the SDWBAN framework. To the best of our knowledge,
the optimization model presented in this paper is the first attempt to find the optimal number of
controllers in an SDWBAN framework.

3. Influential Factors of Optimization

There are several factors that play vital roles in the design of a control plane for SDWBAN
implementation. These important factors are described as follows.

• Number of Controllers: The number of controllers plays a crucial role in the design and
implementation of an optimal SDWBAN framework. The installation of a large number of
controllers increases the complexity and cost of network management. The processing capacity
of commercially available controllers typically varies, for instance, the processing speed of an
industrial controller is usually very high and capable of maintaining millions of client devices
simultaneously [27,28]. In such a case, the use of industrial controllers for SDWBAN deployment
in an elderly home would be redundant. Since responding to the packet_in request initiated
by the SDESW mostly depends on its processing speed, it is desirable to have an optimum
number of controllers in SDWBAN deployment. The objective is to ensure a well-maintained
communication between the controller and the SDESW and thus, patient monitoring activities
are not compromised at all.

• Latency: Latency is related to several factors such as flow request processing time,
propagation delay, service rate etc. In SDWBAN deployment, if an inadequate number of
controllers is deployed, the controllers might undergo a considerable amount of delay in route
setup. Consequently, sending out the data forwarding instructions to the SDESW will be affected
in terms of flow requesting resolving time. In addition, there could be an increased amount
of traffic load in the control channel communication between SDESW and the controller as
new applications are introduced in the system. Ultimately, the latency incurred by this will
affect the overall network performance in terms of packet delivery which will hamper patient
monitoring activities.

• Geographical Location: The geographical location of controllers and SDESWs is another
important factor in designing the control plane. The issue of line of sight (LOS) and non-line of
sight (NLOS) exists in wireless network deployment between the transmitter and the receiver.
The NLOS scenario could be due to the fact that the patients in SDWBAN are at liberty to
roam around, and in addition, the placement of a particular application sensor might block the
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direct propagation from body sensors to the SDESW. Similarly, other objects such as the walls of
buildings, deflections at sharp edges, and multipath propagation may affect the signal strength
in an SDWBAN environment. Considering these factors, it is important to design a system that
maintains a standard receiver sensitivity level. Furthermore, an arbitrary placement of network
elements (controllers, SDESWs, gateway) would cause additional propagation delay between the
network elements and ultimately increase overall latency.

• Traffic Load distribution: The number of SDESWs residing under a controller is an important
issue in determining traffic load. If the number of SDESWs is high under a controller,
the probability of receiving a packet_in request also increases. Consequently, the number of
packet_out responses to the SDESW also increases. As a result, traffic load increases between the
communication channel of the controller and the SDESW. Considering the processing capacity of
a particular type of controller, SDN controllers can be programmed in such a way that the excess
load can be distributed to the neighboring controllers.

• Flow Setup Time: The flow setup time is the amount of time a SDESW needs to send a
query to the controller to install data forwarding rules in its flow table. If the number of flow
requests originating from the underlying SDESW is larger than the processing capacity of the
controller, the average flow setup time can increase significantly which will degrade the service
performance [29,30].

• Statistics Collection Time and Synchronization Cost: In the case of multiple controllers residing
in the control plane, inter-controller communication takes place to maintain an abstract view
of the network and this assists the controllers to provide data forwarding decisions to the
switches [11]. The controllers deployed in the network can be inter-connected so that upon failure
of one controller, the next available controller can serve the orphaned SDESWs. Moreover, to
maintain a consistent view of the network, it is important to keep the synchronization between
the controllers [12]. The controllers can have an overall view of the network by collecting various
statistics such as port information, flows, flow table level etc. from the switches. This requires
several messages to be exchanged between the controllers and switches. Consequently, a trade-off
is necessary between the flow setup time and statistics collection time in order to avoid delay in
flow resolution.

• Number of SDESW: The number of SDESWs in the deployed area could be a crucial point and
may create a bottleneck in the network. With a higher number of SDESWs residing in the network,
a higher number of flow requests are initiated to the controllers upon realizing an unknown flow.
This will ultimately affect the PDR and latency of the network.

In a nutshell, in SDN deployment as well as in SDWBAN, various factors influence the
performance of the network. The aim of the optimization of any network is to achieve the optimum
level of performance that satisfies the purpose of the deployed application. When the network becomes
increasingly complex, more factors will play critical roles in the performance of the network. To make
the system robust and more secure, various influential factors and functionalities mentioned above can
be incorporated in SDN deployment. However, not all the above-mentioned factors might be crucial for
wireless deployment i.e., in SDWBAN deployment. From the perspective of healthcare applications,
the issues relating to geographical location can be handled by careful topology design whereas a
dynamic load balancing algorithm can effectively distribute traffic load among the controllers [31].
On the other hand, flow setup time and statistic collection time and synchronization cost are directly
associated with the number of SDESWs and SDN controllers respectively. Since patient monitoring
in SDWBAN should maintain a strict delay boundary, out of all the influential factors related to the
optimization of the control plane, we restrict our optimization constraints within three crucial factors:
number of controller, latency and the number of SDESWs. The rest of the factors are not elaborated in
this work as these factors are not within the scope of this work. The interested readers can look into
the given references for more details.
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4. Development of Optimization Model

This section describes the optimization aspects in the SDWBAN framework and proposes a
mathematical model to support the SDWBAN scenario.

4.1. Optimization in SDWBAN Scenario

The initial work of SDWBAN [32] concerns the validation of the proposed framework and the
impact of the application classification algorithm. The implementation scenario of the initial work
is depicted in Figure 2. In this case, the simulation area of 75 × 75 m2 consists of four intuitively
chosen controllers and randomly deployed body sensors. The SDESWs are deployed in a static fashion.
The body sensors form clusters in various sectors and associate with a SDESW. The SDESWs maintain
communication with the controllers for data forwarding instructions. The aim of this design is to
observe the performance of the network in terms of PDR and latency for several applications’ data
originating from the data plane. The primary implementation of this particular scenario performs
satisfactorily with the specific number of applications, SDESWs and controllers. However, in the case
of the scaling up or down of heterogeneous applications, the performance might degrade as well.
Furthermore, since the WBAN applications could include emergency data, responding to such events
should be given the utmost priority to avoid undesirable circumstances. Therefore, an optimal design
for the control plane is imperative so that the residing number of controllers are capable of supporting
the data plane functionalities.

SDESW
BS
Controller
Gateway

Figure 2. SDWBAN Implementation Scenario (adapted from our previous work Hasan et al. [32]).

4.2. Proposed Mathematical Model

According to SDN principle, controllers are responsible for installing flow commands in a switch
to route the data packets to appropriate destinations. As such, when an SDESW makes a query about
an unknown traffic, the controller processes the query and replies back to the SDESW with appropriate
flow commands. Thus, the time to process a flow is a crucial factor in identifying the optimal point for
the implementation of the SDWBAN framework.

Let us assume that T is the total flow resolution time of a controller to resolve an incoming flow
request and to respond to the request to a SDESW. We get,

T = TFR + Tq + Tproc + Tprop1 + Tprop2 + TRD (1)
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where TFR, Tq, Tproc, Tprop1, Tprop2 and TRD represent flow request delay, queuing delay, processing
delay, propagation delay from SDESW to controller, propagation delay from controller to SDESW
and relaying delay, respectively. These notations are summarised in Table 2. It should be noted that
these time parameters in Equation (1) (and the parameters in the subsequent equations of our model)
represent expected values of random variables.

Table 2. Notations and Meaning.

Notations Meaning

TFR Flow Request Delay
Tq Queuing Delay
Tproc Processing Delay
Tprop1 Propagation Delay—SDESW to Controller
Tprop2 Propagation Delay—Controller to SDESW
TRD Relaying Delay

The Flow request delay (TFR) is associated with a SDESW. This is the time it takes to realize
there is a new flow which is not in the flow table and to send the query to the controller by sending a
packet_in request. TFR depends on the matching probability in the flow table and the speed of the flow
look-up process.

The Queuing delay (Tq) is associated with the controller. This is the time experienced by each
packet while waiting in the queue of a controller. Let us assume that each SDESW and controller
maintains a single finite queue, which can be modelled by using the M/M/1/K queuing model.
The packet arrival rate from a SDESW to a controller due to the unmatched flow is assumed to be a
Poisson distribution. Let us assume, the mean packet arrival rate from a SDESW is λ, service rate at
the controller is α, K is the maximum queue size at the controller, and use factor ρ = λ/α.

Therefore, according to [23], queuing delay Tq can be represented by the following equation:

T
′
q =

ρ[1− ρK − K · ρK−1 · (1− ρ)]

α(1− ρ)(1− ρK+1)
(2)

Again, λ̄ = λ · (1− PK), where PK is the probability of exactly K packet in the queuing system
and λ̄ is the average packet arrival rate over the long run. Therefore, from equation 2,

T
′
q =

λ[1− ρK − K · ρK−1 · (1− ρ)]

α · α(1− ρ)(1− ρK+1)
(3)

and,

T
′
q =

λ̄[1− ρK − K · ρK−1 · (1− ρ)]

(1− PK)α · α(1− ρ)(1− ρK+1)
(4)

Assuming PK → 0, λ̄ = λ and the packet arrival rate from the SDESWs will never exceed the size
of the queue. Therefore, Equation (4) can be considered to be,

T
′
q =

λ[1− ρK − K · ρK−1 · (1− ρ)]

α · α(1− ρ)(1− ρK+1)
(5)

Assuming the similar packet arrival rate from θ number of SDESWs in the deployed area, queuing
delay Tq can be expressed as,

Tq = θ · T′q (6)

The Processing delay (Tproc), is associated with the controller and depends heavily on the
processor’s speed. This is the time taken by a controller to process a flow-request (packet_in) and reply
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to the SDESW with flow commands. The processing delay can be expressed as the inverse of service
rate α. Therefore,

Tproc = α−1 (7)

Propagation delay (Tprop1, Tprop2) occurs when a flow request is sent from a SDESW to the
controller and from the controller to a SDESW with an appropriate flow command (packet_out).
By considering,

Tprop1
∼= Tprop2 ∼= Tprop (8)

where Tprop is the total propagation delay and from Equations (1), (6) and (8),

T = TFR + θ · T′q + Tproc + 2 · Tprop + TRD (9)

Relaying delay (TRD) is associated with the SDESW. Let us assume, we have multi-hop
communication between the SDESW and the controller. The flow request originating at the SDESW
reaches out to the controller through multi-hop relay. Therefore, in each hop, the SDESW stores the
request packet and forwards it to the next SDESW and so on until it reaches the controller. Let’s say
there are n number of hops between a SDESW and a controller and TSF is storing and forwarding delay
which is a two-way computation associated with packet_in and packet_out responses. Therefore,

TRD = 2 · n · TSF (10)

Since we are considering n number of hops between a SDESW and a controller, the propagation
delay needs to be associated with the number of hops as well. The propagation delay, Tprop can be
written as,

Tprop = n · Thop (11)

where, Thop is the propagation delay in one hop between a SDESW and a controller. Therefore, from
Equations (9)–(11),

T = TFR + θ · T′q + Tproc + 2 · (Thop + TSF) · n (12)

Lemma 1. Assume there are θ number of SDESWs uniformly distributed in a (
√

θ X
√

θ) building grid with
one SDESW in each cell as depicted in Figure 3. A controller is deployed in the middle of the grid and all θ

SDESWs are assigned to this controller. Then the average number of hops from a SDESW to controller is
√

θ/2.
The proof is given in the Appendix A.

ControllerSDESW

n1 n2 ... ... ... ... n√ϴ

1 2 ........ (√ϴ+1)/2 ...... √ϴ

1
2

...
...
..

(√
ϴ
+1
)/2

...
...

√ϴ

Figure 3. Hops in Building Grid.
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Then Equation (12) can be rewritten as,

T = TFR + θ · T′q + Tproc + 2 · (Thop + TSF) ·
√

θ

2
(13)

Hence,
θ · T′q +

√
θ(Thop + TSF) + TFR + Tproc − T = 0 (14)

(
√

θ)2 · T′q +
√

θ(Thop + TSF) + TFR + Tproc − T = 0 (15)

Let us assume that, a = T
′
q, b = (Thop + TSF), and c = TFR + Tproc − T. Therefore, from equation

11, it can be written,
a(
√

θ)2 + b
√

θ + c = 0 (16)

The solution of the quadratic equation 12 is,

√
θ =

[
−b±

√
b2 − 4ac

2a

]
(17)

The solution to Equation (17) will identify the optimal number of SDESWs (θ) under a single
controller in a network. By substituting the coefficient values in Equation (17), we find the number of
SDESWs per controller,

√
θ =

−(Thop + TSF)±
√
(Thop + TSF)2 − 4T′q(TFR + Tproc − T)

2T′q

 (18)

The solution to Equation (18) will provide two different values of
√

θ that satisfy the quadratic
equation. According to our assumption, the numerical coefficient “c” contains the parameter “T”,
which is our total flow resolution time constraint, therefore we find “c” for a range of “T” and thus
find the

√
θ.

It can be seen from Table 3 that for a fixed delay requirement, we get two different values for
√

θ

that satisfy the derived quadratic equation. Based on our analysis, for a range of flow resolution time,√
θ we get non-integer value. The possibility of obtaining

√
θ as integer depends on the related

parameters considered in the quadratic equation (Equation (18)). To illustrate, for the flow resolution
time of 110 ms, the intercept of the quadratic equation is given in Figure 4.

Table 3. Numerical Co-efficient and Root.

Flow Resolution Time (T ms) Numerical Coefficient (c) Root (
√

θ)

20 −0.0099 (0.4107, −2.4117)
30 −0.0199 (0.7292, −2.7302)
40 −0.0299 (0.9976, −2.9986)
50 −0.0399 (1.2340, −3.2349)
60 −0.0499 (1.4476, −3.4486)
70 −0.0599 (1.6441, −3.6451)
80 −0.0699 (1.8269, −3.8279)
90 −0.0799 (1.9986, −3.9996)

100 −0.0899 (2.1610, −4.1620)
110 −0.0999 (2.3155, −4.3165)
120 −0.1099 (2.4631, −4.4640)
130 −0.1199 (2.6046, −4.6056)
140 −0.1299 (2.7408, −4.7417)
150 −0.1399 (2.8722, −4.8731)
160 −0.1499 (2.9993, −5.002)
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Figure 4. Intercept of quadratic equation (for T=110 ms and y = a
(√

θ
)2

+ b
√

θ + c).

Since it is necessary to find the optimal number of SDESWs per controller, the negative part of the
solution is avoided and thus, the valid solution of the quadratic equation is

√
θ, 2.3155.

Let us assume that the packet arrival rate at the SDESW is δ, s is the number of WBAN sensors
under each SDESW, and ε is the packet generation rate at each sensor, Therefore,

δ = s · ε (19)

If a SDESW, SW can accommodate κ number of packets per second and the total number of
body sensors in a WBAN is S, the outcome of the following convex optimization problem derives the
optimal number of SDESW required in the network [33].

SWopt =
S
s

, subject to s ≤ κ

ε
(20)

The optimal number of controllers Copt for a certain delay boundary is,

Copt = [
SWopt

θ
] (21)

here, Copt is an integer.
It should be noted that we have avoided the stochastic process of incoming flow request in our

model for the sake of simplicity. For instance, queuing delay could be further elaborated by taking the
sum of the mean packet arrival rates of the individual Poisson process at the SDESW; however, for the
sake of simplicity, we have avoided the complex terms here.

5. Results and Analysis

This section details the results in two sub-sections. Firstly, the result of the optimization is
discussed and secondly, the performance analysis of a SDWBAN implementation is presented in
relation to the optimized number of controllers.

5.1. Analytical Output

Based on the derived mathematical model in Equation (18), the relationship between the number
of SDESWs per controller and the total flow resolution time is presented in Figure 5. The graph
shows that for a total resolution time of 110 ms, the number of SDESWs under a controller is 5.3615
≈ 6. Ultimately, the number of SDESWs per controller for a total resolution time of 110 ms leads to
finding the optimal number of controllers for the implementation of SDWBAN. Therefore, based on
the primary work of SDWBAN implementation [32], for a total number of 100 body sensor nodes and
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4 nodes under one SDESW, the optimal number of controllers is 5. Similarly, based on the optimization
model, the required number of controllers for a range of body sensors is provided in Table 4. The list
of parameters assumed in the mathematical model is given in Table 5.

Figure 5. Number of SDESW per Controller.

Table 4. Optimal Controllers.

Number of Body Sensors (S) Optimal Controllers

100 5
200 10
300 14
400 19
500 24

Table 5. List of Parameters.

Parameters Values

Flow Request Delay, TFR 100 µs [34]
Free space propagation speed, C 3× 108 m/s
Average length of a hop from SDESW to Controller, davg 32.30 m
Propagation Delay in one hop, Thop Thop = davg/C
Storing and Forwarding delay, TSF 20 ms
Packet Arrival Rate, λ 50 pkt/s [23]
Service Rate, α 100 pkt/s
Maximum Queue Size, K 15

Some significant observations can be noted from the obtained mathematical model. The observations
are listed as follows:

• The optimal number of controllers required in an implementation scenario largely depends
on the processing capacity of the controller. For instance, it is assumed that the service of the
controller is 100 pkt/sec, which is based on simulation output. It is found from the simulation
that the processing rate of a light-weight controller is 100 pkt/s. However, industrially available
controllers have higher processing capacity [35]. The controllers with higher processing capacity
or service will result in a faster response to the incoming packet_in request from a SDESW.
The consequence will be low queuing delay due to the variable packet arrival rate from the
underlying body sensors.

• The flow request delay is another important factor since it depends on the matching probability
in the flow table and the speed of the look-up process.
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• The packet arrival rate from the heterogeneous sensors affects the performance of the SDESW
and the controller. Since the heterogeneous nature of WBAN sensors generates data packets at
various intervals, this could imbalance the traffic load in the communication channel between the
SDESW and the controller.

• The number of controllers and the number of SDESWs affect the overall performance. If there are
fewer controllers in the deployed area, this limited number of controllers might have to cater for
all the SDESWs under the assigned controller. In such a case, packet forwarding might route in a
multi-hop fashion to the controller if the distance between the SDESW and the controller is out
of transmission range. Consequently, it degrades the performance in terms of success rate and
latency. In practice, various WBAN applications require to maintain various delay constraints.
From the literature, based on the general WBAN guideline, a strict delay of 110 ms–120 ms is
required to maintain.

5.2. Simulation Output

In this part of analysis, the simulation is conducted in Castalia 3.2 [36] on Ubuntu 16.04.4 platform.
Each experiment is conducted for 100 iterations and the average value has been computed for the
performance metrics of the given SDWBAN scenario. In the initial work [32], the experimental setup
has used a total number of four controllers. However, in this case, the number of controllers is varied
while the number of SDESWs remains fixed. The simulation is run for several groups of healthcare
applications where the number of applications is incremented gradually. The number of applications
per group is listed in Table 6. We have considered strict delay boundary of 110 ms for different
applications, which is crucial for WBAN. It is very important to maintain this strict delay boundary in
order to avoid undesirable circumstances in patient monitoring.

Table 6. Group of Applications.

Groups Number of Applications

Group 1 1
Group 2 5
Group 3 10
Group 4 15
Group 5 20

It should be noted that the simulation area and the other related parameters in this work are
kept similar to the initial work. These parameters are summarised in Table 7. A rectangular area of
75 × 75 m2 is considered in the simulation and the body sensors (BSs) are deployed randomly. The BSs
finds the received signal strength indicator (RSSI) from the corresponding SDESW and calculates the
distance of the corresponding SDESW using the time of flight (TOF) principle. Then, the BS-SDESW
association is completed on the basis of rank number calculated from RSSI and TOF. Thus, clusters
form in different sector. For each group of applications, the simulation is conducted by varying the
number of controllers from 1 to 10. Since the aim of this research is to find the optimal number of
controllers for an SDWBAN framework, the simulation is run for a different number of controllers to
obtain the average PDR and latency for each application group.
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Table 7. Simulation Parameters (adapted from our previous work Hasan et al. [32]).

Parameter Value(s)
Simulation Area 75 × 75 m2

Radio range (BS, SDESW, Controller) ∼8 m, ∼20 m, ∼20 m
Reference Distance (d0) 1 m
Transmission Power (SDESW, BS) 0 dBm, −10 dBm
Data Rate, Modulation Type, Bits
Per Symbol, Bandwidth 250 Kbps, PSK, 4, 20 MHz

Number of BS , Gateway 100, 4
Noise Bandwidth, Noise Floor, Sensitivity 194 MHz, −100 dBm, −95 dBm
BS density 4 nodes/225 m2

Free Space Path Loss exponent 2.4
Total SDESW 25 (1 node per sector)
Initial Average Path Loss (PL(d0)) 55 dB
Total Controller 4 (2 × 2 grid)
Gaussian Zero-Mean Random Variable (X) 4.0

Number of Clusters 25

In the first stage, the average PDR (PDR is defined as the ratio of the number of packets resolved
to the number of packets transmitted) with a varying number of controllers is depicted in Figure 6.
It can be seen that when the number of controllers is low, the PDR for all groups (group 1–5) is also
low and when the number of controllers starts to increase, the PDR increases as well. However, at
some point, the PDR starts to decrease even when the number of controllers increases. For instance,
when the number of controllers ranges from 1 to 3, the average PDR increases. When the number
of controllers ranges from 4 to 6, the average PDR still increases. However, after the 6th number of
controllers, the average PDR decreases. The reasons of this are as follows:

• When the number of controllers is low (1, 2, or 3), less controllers are used to cater for a lot of
flow resolve requests from a various number of application groups. This creates a bottleneck
to respond to the incoming packet_in requests coming from the SDESWs. Furthermore, a lot of
multi-hop communication takes place since the destination controller is beyond the transmission
range of SDESWs. This results in a delay in accessing the channel. In addition, the traffic load
increases between the communication channel of SDESWs and the controllers. Thus, the PDR of
all application groups decreases.

• When the controller number is between 4 to 6, the average PDR shows little variation in the
output which actually shows the optimal range of controllers that are required for the SDWBAN
framework.

• When the number of controllers is between 7 to 10, the PDR decreases due to the fact that a lot of
controllers reside nearby and use in-band frequency. This also causes congestion and interference
with the neighbouring nodes in the communication channel.

The simulation output is further observed by analyzing the average latency for a different number
of application groups. The average latency depicted in Figure 7 shows that initially with a low number
of controllers, all application groups experience high latency. The average latency stays more or less
stable when the number of controllers is between 4 and 6 but with an increase in the number of
controllers, latency increases. This phenomenon coincides with the facts of average PDR output.
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Figure 7. Average Latency with varying number of controllers.

From the simulation outcomes of average PDR and latency, it can be seen that the best performance
is received from the network when the number of controllers is set to 6. Although the PDR gain is high
when using 6 controllers, no significant improvement in the latency is noticed in the outcomes. In fact,
the average latency remains almost the same for 4, 5 and 6 controllers. These outcomes indicate that
the network would be able to achieve its peak performance when the number of controllers is set to 5.
Since latency is one of the key elements in the proposed mathematical model, the experimental results
validate the analytical outcome derived from the mathematical model for 100 body sensors.

The experimental output is further elaborated on for the cumulative distribution function (CDF)
of PDR and latency for the optimal five controllers. Figure 8 presents the output for a different
group of applications in terms of PDR. According to Figure 8, group1 has the highest PDR while
group5 exhibits the lowest PDR. A similar type of variation can be noticed in the PDR of the other
groups (2–4). The reason for this is due to the increased number of applications. As the number of
applications increases, the SDESW initiates more packet_in requests for every unknown flow. Therefore,
the traffic load between the control channel of SDESWs and the controller increases. Thus, more
data packets are dropped due to congestion. As can be observed from the group1 graph, at the 90th
percentile point, the PDR of group1 is 96.38% whereas the PDR of group5 is 86.78%. This performance
demonstrates that any packet of group1 at the 90th percentile has a 96.38% probability of being
delivered successfully and a 3.62% probability of being dropped. Similarly, any packet of group5 at
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90th percentile point has a 86.78% probability of being delivered successfully whereas it has a 13.22%
probability of being dropped.
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Figure 8. CDF Vs PDR.

An analysis is carried out to understand the performance of various groups of applications in
terms of latency. Figure 9 shows that at the 90th percentile point, the latency of the application group1
is the lowest whereas the latency of the group5 application is the highest. The group1 application
experiences a latency of 29.34 ms whereas group5 experiences a latency of 110.5 ms at the 90th
percentile point. This demonstrates that any packet of group1 has a probability of 90% of reaching the
destination gateway within 29.34 ms and in 10% of the time, the packet may not reach the destination
successfully or it might take higher than 29.34 ms. Similarly, for the data packet of application group5,
any packet has a probability of 90% of being delivered successfully within a 110.5 ms time period
while 10% of the time the packet may not be delivered or it might take more than 110.5 ms. The result
is obvious due to the fact that more time is required for the controller to resolve the packet_in request
as the number of applications increases.

In our previous work [32], we have chosen an arbitrary number of controllers to simulate the
performance study of software-defined application-specific traffic management for WBANs, whereas
in this paper a mathematical model has been developed and then, based on the analytical output to
find the optimal number of controllers, the simulation result is provided.
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Figure 9. CDF Vs Latency.
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6. Conclusions and Future Work

In this study, an optimization model for the design of the control plane for SDWBAN framework
has been developed to facilitate healthcare applications. The derived mathematical model leads to a
relationship between the number of controllers, SDESWs and WBAN sensors. Ultimately, from the
analytical output, the optimal number of controllers turns out to be 5 for the initial implementation of
the SDWBAN framework for a delay boundary of 110 ms. The analytical output is then validated by
varying the number of controllers while other physical resources in the simulation remain similar to
the initial one. The simulation output indicates the optimal point is 6 for both the average PDR and
latency analysis of application groups 1 to 5. However, based on the simulation output, the average
PDR and latency observed in the range of 4 to 6 controllers are quite acceptable. The outcome of the
proposed mathematical model supports the control plane design of the SDWBAN framework.

In future work, it would be interesting to observe the PDR and latency by varying the number of
SDESWs while keeping the number of controllers in the range of 4 to 6. This will enable us to visualize
the effect of flow requests originating from a various number of SDESWs. The service rate of the
controller could be varied in the optimization model since the higher the service rate, the better the
flow resolve rate. Therefore, fewer number of controllers would be able to support a higher number of
SDESWs. In addition, the optimization model does not consider the delay incurred in getting channel
access. In the future, the back-off time or time to get access in the channel can be included as well.
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Appendix A

Proof of Lemma. Let us assume that the total number of hop counts in the building grid is N.
The number of hops from the SDESWs to reach the controller located at the center are n1, n2, n3, ..., nθ .

Now, considering the hop counts row-wise from the SDESWs to the controller, the total number
of hops is:

N = (n1 + n2 + n3 +−−−+ n√
θ
) + (n√

θ+1 + n√
θ+2 + n√

θ+3 +−−−+ n2
√

θ
)

+(n2
√

θ+1 + n2
√

θ+2 + n2
√

θ+3 +−−−+ n3
√

θ
) +−−−+ (n(

√
θ−1)(

√
θ+1)

+n(
√

θ−1)(
√

θ+2) + n(
√

θ−1)(
√

θ+3) +−−−+ nθ)

(A1)

The hops are counted horizontally until they reach the intersection of the controller’s column.
Assuming the controller is located at the center of the grid and hops are counted in both X-Y
directions therefore,

N =
{
(
√

θ − 1) + (
√

θ − 2) +−−−+ (
√

θ − (
√

θ+1
2 ) +−−−+ (

√
θ − 2) + (

√
θ − 1)

}
+
{
(
√

θ − 2) + (
√

θ − 3) +−−−+ (
√

θ − (
√
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2 )− 1 +−−−+ (

√
θ − 3) + (

√
θ − 2)

}
+
{
(
√
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√

θ − 4) +−−−+ (
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√
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} (A2)
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N =
{

θ − (
√

θ+1)2

4

}
+
{

θ − (
√

θ+1)2

4 −
√

θ
}
+
{

θ − (
√

θ+1)2

4 − 2
√

θ
}

+−−−+
{

θ − (
√

θ+1)2

4

} (A3)

Finally, the average number of hops n from a SDESW to the controller is,

n =
N
θ
∼=
√

θ

2
(A4)
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