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Abstract 

Dynamic Modeling and System Identification of the Human Respiratory System  

Jiayao Yuan 

 

The lungs are the primary organ of the respiratory system. Their main function is to provide 

freshly breathed oxygen (𝑂") to the blood capillaries, while taking carbon dioxide (𝐶𝑂") from 

them and expelling it to the atmosphere. Lung conditions such as Acute Respiratory Distress 

Syndrome (ARDS), Idiopathic Pulmonary Fibrosis (IPF), Coronavirus Disease (COVID-19), etc., 

cause impaired gas exchange that is life-threatening. In this dissertation, I developed 1) a 

physiology-based dynamic pulmonary system to study the lung normo- and patho-physiology, and 

2) a model-based constrained optimization algorithm to do parameter estimation in order to non-

invasively assess lung health. The goals of this work are 1) to accomplish a respiratory 

personalized medicine example for clinical decision support, and 2) to further the understanding 

of respiratory physiology, via a mechanistic physiology-based model and system identification 

techniques.  

The mechanistic model presented in this thesis comprises six subsystems: 1) a lung mechanics 

module that computes airflow transport from the mouth and nose to the alveoli (gas exchange 

units), 2) a respiratory muscles and rib cage mechanics module that simulates the effect of the 

respiratory muscle contraction on the lungs and the rib cage, 3) a microvascular exchange system 

that describes fluid (water) and mass (albumin and globulin) transport between the pulmonary 

capillaries and the alveolar space, 4) an alveolar elasticity module that computes alveolar 

compliance as a function of the pulmonary surfactant concentration and the elastic properties of 

the lung tissue fiber, 5) a pulmonary blood circulation that describes blood transport from the heart 



 
 

to the pulmonary system, and 6) a gas exchange system that describes 𝑂"  and 𝐶𝑂"  transport 

between blood in the pulmonary capillaries and gas in the alveoli. Each subsystem was developed 

based on the latest knowledge of lung physiology and was validated using patient data when 

available or published and validated physiology-based models. To our knowledge, the combined 

six-module model would be the most rigorous and expansive lung dynamic model in the literature. 

This dynamic respiratory system can be used to describe human breathing under healthy and 

diseased conditions. The model can readily be used to test different what-if scenarios to find the 

optimal therapy for the patients.  

Further, I tailor the proposed lung model and adopt system identification techniques for 

noninvasive assessment of the lung mechanical properties (resistance and compliance) and the 

patient breathing effort. Pulmonary syndromes or diseases, such as ARDS and COPD (Chronic 

Obstructive Pulmonary Disease) evoke alterations in lung resistance and compliance. These two 

parameters reflect, by and large, the state of health and functionality of the respiratory system. 

Hence tracking these two parameters can lead to better disease diagnosis and easier monitoring of 

the respiratory disease progression. For spontaneously breathing patients on ventilatory support, 

the estimation of the lung parameters is challenging due to the added patient’s breathing effort. 

This dissertation presents a model-based nonlinear constrained optimization algorithm to estimate, 

breath-by-breath, the lung resistance, the lung compliance, as well as the patient breathing effort 

due to the respiratory muscle activity, using readily available non-invasive measurements (airway 

opening pressure and airflow). 
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Introduction 

Many therapeutic decisions follow generalized protocols, or guidelines, that are based on 

epidemiological studies, and hence may not be suited for the individual patient. From basic 

measured patient signals and patient status, clinicians make clinical judgments derived from their 

experience and/or guidelines. Clinicians and researchers have recently put a lot of effort into 

improving guidelines, machine learning algorithms, and data mining techniques to detect diseases. 

A dynamic model of the human body for predicting diseases is still uncommon in current medicine, 

however, its benefits are numerous, including parameters that have real physical meaning and 

changes in which can be related to diseases and/or interventions. Building a mechanistic dynamic 

model that is physiology-based could be beneficial to the current state of medicine.  

 

Figure 0. 1: Cardio-Pulmonary-Renal (CPR) model representation. Red: cardio-vascular system; Blue: 

pulmonary system; Green: renal system. 

Dr. Chbat’s research group aims to gain a deep understanding of fluid balance, since it has a 

major effect on human health. Our group has yielded two doctoral theses, one in cardiovascular 

modeling [1] and the other in cardio-respiratory modeling [2]. Two more are under development, 

one in pulmonary modeling (my work) and the other in renal modeling [3]. Dr. Albanese in our 
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group, developed a cardio-pulmonary (CP) dynamic model [1]. Following Albanese’s work, Dr. 

Karamolegkos improved the cardiac section of the CP model by focusing on the heart-lung 

interaction phenomena [2], while the pulmonary system remains simplistic. My work fills an 

important gap, the pulmonary system model shown in Figure 0.1. Such a cardio-pulmonary-renal 

(CPR) model would certainly help in understanding interactions and ultimately fluid, solute and 

gas balance. This also facilitates the understanding of CPR diseases. System identification 

techniques can then be employed to estimate model parameters of the specific patient, in real-time. 

Such approaches can be utilized to facilitate personalized medicine. The first step towards 

achieving the goal is by developing a dynamic model of the targeted organ (for acute diseases).  

In the respiratory system modeling field, many researchers have contributed to the 

understanding of the breathing mechanisms. Weibel published the morphometry of the human lung 

in 1963, which serves as the foundation of lung mechanics [4]. Guyton et al. published the classic 

medical physiology in 1956 [5], and updated regularly with the advancement of this field. In 1972, 

Guyton also published a rigorous physiology-based cardiopulmonary model in 1972 [6]. West then 

described respiratory physiology essentials systematically in 1974 [7]. In what follows is a current 

understanding of respiratory physiology. During quiet breathing, the nerve that originates in the 

neck (C3–C5) sends electric signals to activate the diaphragmatic and intercostal muscles. The 

contraction of respiratory muscles expands the thoracic cavity, generating a negative hydraulic 

pressure in the pleural cavity. This negative pressure generates a pulling force expanding the lungs 

and reducing the alveolar pressure. Due to the pressure gradient between atmospheric and alveolar 

pressures, airflow is then induced into the alveolar space through the mouth/nose, larynx, trachea 

and bronchi. The trachea and bronchi are airway tubes that divide repeatedly into more and more 

tubes of smaller and smaller diameter. The amount of air that reaches the alveolar space depends 
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on the energy stored and dissipated along the way. The alveoli are the main space for gas exchange. 

Due to the oxygen/carbon dioxide partial pressure gradient between the blood in the capillaries 

and gas in the alveoli, oxygen dissolves in the blood and gets carried to the entire body, and carbon 

dioxide leaves the blood and gets exhaled during expiration. The parameters (resistances and 

compliances, i.e. material property and geometry of the lungs) of lung tissue change when diseases 

are introduced. For Chronic Obstructive Pulmonary Disease (COPD) patients, for instance, the 

lung pathways are clogged and thus, resistances increase. With the contraction of respiratory 

muscles, very little air reaches the alveolar space, causing respiratory distress. Another pulmonary 

disease is pulmonary pneumonia, where the lung tissue becomes porous. Water from the 

pulmonary capillaries seeps into the alveoli, clogging the airway, and often causing acute 

respiratory distress syndrome. Under such conditions, alveolar surface tension also increases and 

collapses the alveolar space, which in turn, prevents gas exchange and causes acute respiratory 

distress. This is shown as a decrease in the lung compliance value. 

Six subsystems were defined to rigorously capture lung behavior. They are: 1) lung mechanics 

module (Chapter I) that computes airflow transport from the mouth and nose to the alveoli (gas 

exchange units), 2) respiratory muscles and rib cage mechanics module (Chapter II) that simulates 

the effect of the respiratory muscle contraction on the lungs and the rib cage, 3) microvascular 

exchange system [8] (Chapter IV) that describes fluid (water) and mass (albumin and globulin) 

transport between the pulmonary capillaries and alveolar space, a link from the pulmonary 

circulation to the lungs, 4) alveolar elasticity module (Chapter I) that computes alveolar 

compliance as a function of the pulmonary surfactant concentration and the elastic properties of 

the lung tissue fiber, 5) pulmonary circulation (Chapter V) that describes blood flow transport from 

the heart to the pulmonary system, and 6) gas exchange system (Chapter V) that describes 𝑂" and 
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𝐶𝑂" exchange between blood in the pulmonary capillaries and gas in the alveoli,  another link 

from the pulmonary circulation to the lungs. These six subsystems form one complete dynamic 

lung model that will serve as a tool for disease detection and prediction.  

To achieve personalized medicine, we adopt optimization algorithms to estimate parameters 

of the physiological model that represent diseases. However, a more rigorous model indicates a 

bigger number of parameters, which could yield poor estimation results that do not make 

physiological sense. Therefore, we sometimes tailor the rigorous physiological model, i.e., 

simplify or select a part of the model, based on different diseases in order to estimate the minimal 

number of parameters that best represent a disease. In this thesis, we tailor the proposed lung model 

to a simplistic lung mechanics model to estimate parameters of patients who have impaired lung 

mechanical properties, i.e., obstructive and restrictive diseases like COPD and Acute Respiratory 

Distress Syndrome (ARDS). For ventilated patients with spontaneous breathing, we estimate the 

lung resistance, lung compliance, and respiratory muscle effort for better disease diagnosis, easier 

monitoring of the respiratory disease progression, and optimal ventilation settings. 

In this dissertation, all the biological systems/mechanisms are represented using linear graphs. 

Linear graphs are a graphical representation of the physical system that can help in the construction 

of the equations of motion. The equations are derived by way of energy dissipation, storage, as 

well as transduction within or between different energy domains. The linear graph concept with a 

generic simple hydraulic example is introduced first. The six chapters are then introduced: 

Chapter I: Alveolar Tissue Fibers and Surfactant Effects on Lung Mechanics – Model 

Development and Validation on ARDS and IPF Patients.  

Chapter II: Respiratory Muscles and Rib Cage Mechanics – Mathematical Model 

Development and Validation with Patient Data. 
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Chapter III: Pulmonary Function Monitoring: Physiology-based Optimization Algorithm. 

Chapter IV: Modeling of Transport Mechanisms in the Respiratory System: Validation via 

Congestive Heart Failure Patients. 

Chapter V: Integrative Pulmonary Model with Lung Gas Exchange System and Pulmonary 

Blood Circulation. 

Chapter VI: Summary and Future Work. 
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Modeling Approach – Linear Graph 

We employ linear graph technique to aid in the development of our dynamic model. A linear 

graph is a visual tool that can concisely display all dynamics of a complex system to allow for a 

systematic formulation of all the system’s dynamic equations [9]. We develop a linear graph of 

the respiratory system comprising all energy domains with transducers linking them together to 

present a complex dynamic system. As an example, Figure 0.2a shows a hydraulic system, where 

hydraulic flow from a source enters compartment 1. Every node (filled circle) represents a physical 

compartment and is labeled with a variable, pressure. Every line with an arrow represents a flow 

and is labeled with a parameter like a resistance, capacitance, inertance. Subscripts show the 

variables and parameters of the corresponding compartment. Any variables subscripted with ref 

are considered as known reference values. Arrows are illustrated in the positive defined direction, 

however, flow may occur in either direction. By using conservation of mass (analog to Kirchhoff’s 

Current Law), as shown in Figure 0.2b, the flows entering must equal the sum of all flows leaving, 

being stored, or being transduced:  

𝑄mn 	= 𝑄pq 	+ 𝑄qs 	+ 𝑄t																																																						(1)	 

 

Figure 0. 2: 𝑃1, 𝑃2: hydraulic pressures in compartments 1 and 2; 𝑃𝑟𝑒𝑓: reference pressure; 𝐶1, 𝐶2: 

hydraulic capacitances of compartments 1 and 2; 𝑅vw": hydraulic resistance between compartments 1 and 
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2; 𝑄𝑠: flow input source; 𝑄𝑖𝑛: flow going into compartment 1; 𝑄𝑠𝑡: flow stored in compartment 1; 𝑄𝑑: 

dissipative flow leaving compartment compartment 1; 𝑄𝑡𝑟: flow transduced into another energy domain  
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Chapter I: Alveolar Tissue Fibers and Surfactant Effects on Lung 

Mechanics – Model Development and Validation on ARDS and IPF 

Patients 

Alveolar compliance is a main determinant of lung airflow. The compliance of the alveoli is a 

function of their tissue fiber elasticity, fiber volume, and surface tension. The compliance varies 

during respiration because of the nonlinear nature of fiber elasticity and the time-varying surface 

tension coating the alveoli. Respiratory conditions, like acute respiratory distress syndrome 

(ARDS) and idiopathic pulmonary fibrosis (IPF) affect fiber elasticity, fiber volume and surface 

tension. To better understand the lungs, we developed a physiology-based mathematical model to 

1) describe the effect of tissue fiber elasticity, fiber volume and surface tension on alveolar 

compliance, and 2) the effect of time-varying alveolar compliance on lung mechanics for healthy, 

ARDS and IPF conditions. The proposed model is validated with healthy and diseased human data. 

 

1.1 Introduction  

The main function of the lungs is to provide freshly breathed oxygen (O2) to the blood 

capillaries, while taking carbon dioxide (CO2) in exchange from them and expelling it to the 

atmosphere. It does so tidally via repetitive inspiratory and expiratory cycles. This exchange is 

possible thanks to a hydraulic and a diffusive transport mechanism. Hydraulically, the respiratory 

system is defined as one tracheobronchial tree, that has 24 generations of dichotomous branching, 

extending from the trachea (close to the mouth) down to the alveolar sacs [4]. Generation 0 

(trachea) to generation 16 (terminal bronchioles) are conducting pipes, known as dead space, 

where no gas exchange takes place. The branches from the respiratory bronchioles to the alveolar 
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sacs (generation 17 to 23) are defined as transitional and respiratory zones where CO2 in the blood 

is exchanged for O2 in the air diffusively. 

Lung parenchyma, comprising a large number of thin-walled alveoli, has a complex internal 

structure with an inner surface area that maximizes gas exchange. The alveolus the basic gas 

exchange unit, is lined with a layer of epithelial cells (type I and type II). Type II epithelial cells 

secrete surfactants that are a mixture of lipids and proteins that line the inside of the alveoli, forming 

a film that reduces surface tension, to keep alveoli open, hence preventing alveolar collapse 

(atelectasis) and facilitating respiration. Alveolar surface tension is generated from molecular 

attractive forces of water on alveoli tissue. The surfactant plays a critical role in maintaining lung 

elasticity by lowering those attractive forces, effectively reducing surface tension [10][11]. Low 

surfactant concentration keeps alveoli closed at low lung pressure range (lung threshold opening 

pressure increases) due to the alveoli’s inability to withstand increased surface tension. In between 

epithelial cells and the capillary basement membrane is the extracellular matrix (ECM) of the 

alveolar septal wall. The ECM contains elastin and collagen that determine the elasticity of the 

pulmonary tissue. Elastin is an essential load-bearing component of the ECM, and can withstand a 

large range of strain. Collagen, a helical shaped protein, provides considerable recoil stress during 

stretching. When lung volume increases to a certain level, the stress of the lung tissue increases 

significantly due to the nonlinear stress-strain relation of the collagen. Considering all these effects, 

the alveoli are held open under the balance of three pressures: 1) the transmural pressure, which is 

the difference between pleural cavity pressure and alveolar pressure, 2) the stresses in the elastin 

and collagen fibers, and 3) the alveolar surface tension, as determined by the surfactant 

concentration. The balance of these three pressures plays a crucial role in patients with respiratory 

distress. Patients with acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis 
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(IPF) have severely impaired gas exchange [4]–[9], due to increased lung stiffness that could cause 

alveolar collapse. Poor gas exchange causes hypoxemia, low levels of oxygen in the blood, that 

would lead to tissue and organ failure. Studies have shown that patients with ARDS, caused by 

pneumonia, sepsis, chest injury, etc., have low surfactant concentration and an increased amount of 

collagen compared to a healthy population [12]–[14]. On the other hand, patients with IPF were 

identified as not only having an increased amount of collagen but also a degraded quality of collagen 

[15]–[17]. ARDS and IPF patients have deficient pulmonary compliance and experience shortness 

of breath. Severe cases are life-threatening and need exogenous breathing support, like a mechanical 

ventilator. Pressure vs volume (PV) curves have been used at times at the patient’s bedside [18] to 

show the stiffness of the diseased lungs, and it is crucial to recruit the collapsed alveoli in order to 

improve gas exchange. 

Understanding the pulmonary system is studying lung mechanics, alveolar elasticity, gas 

exchange, as well as respiratory muscles and ribcage mechanics. Our focus here, however, is on 

lung mechanics and alveolar elasticity. The proposed lung model calculates alveolar compliance in 

time as a function of surfactant concentration, lung fiber (elastin and collagen) quantity, and fiber 

quality. Lung mechanics variables (e.g., alveolar pressure) can then be computed using this time-

varying alveolar compliance, and lung resistances. We validate the model via ARDS and IPF 

patients’ data and PV curves. Furthermore, a study by, Gattinoni [19] claims that 20-30% of the 

coronavirus disease (COVID-19) patients admitted to the intensive care unit have severe 

hypoxemia associated with low lung compliance values. The proposed model thus has the potential 

to simulate COVID-19 patients who are lung compliance compromised. 

In what follows, we first provide a brief literature review of the mathematical models of the 

respiratory system. We then describe the development of the proposed lung model (modeling 
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approach, equations, and parameters). We present simulation results and compare them to healthy 

human data [20], a published lung mechanics model [1], ARDS patient data and IPF patient data 

[24]. Finally, we summarize the model performance, and highlight future extensions of this work. 

 

1.2 Method 

1.2.1 Literature Review 

Lung mechanics models with varying levels of rigor have been developed by researchers. A 

linear one-compartment (balloon type) dynamic model of the respiratory system with one resistive 

element (𝑅) and one capacitor (𝐶) is well accepted by the clinical community due to its simplicity 

[25]. A few mechanical ventilator applications adopt such a model to assess the patient’s 

pulmonary health status by estimating 𝑅 and 𝐶 [26][27]. In 1991, a more rigorous linear model 

was proposed by Rideout [28] that included four compartments: larynx, trachea, bronchi, and 

alveoli. In his work, lung air tubes that share similar geometric and functional properties were 

lumped into one compartment. Rideout’s model adequately describes lung mechanics, but fails to 

include (the nonlinear) alveolar elasticity and dynamic compliance, both of which are included in 

our work. Further, a complex model with several (10-50) parallel lung sections can also be found 

in the literature [29]. This work describes each section with an analog electrical network of a 

resistance in series with a capacitor.  

To describe the nonlinear behavior of alveolar compliance, Venegas et al. proposed a 

sigmoidal equation to represent lung pressure – volume relationship [30]. This equation fits well 

to inflation and deflation limbs of the PV curves of normal and diseased lungs. Denny and Schroter 

developed a series of finite element models for the mammalian lung alveolar duct [31]–[34]. In 

their models, alveolus geometry was considered as a truncated octahedron and the amount and 
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distribution of elastin and collagen fiber bundles were studied. Surface tension effects as a function 

of surfactant concentration were fitted from available published patient data [35], [36]. Finally, 

Fujioka et al. developed a lung parenchyma model [37], which  comprises individual alveoli. In 

that work, alveolar deformation was computed based on the elastin and collagen stresses, surface 

tension, and transmural pressure. Fujioka et al. focused on the effect of surfactant on the tethering 

force that is applied on the alveoli. To validate the model, Fujioka et al. simulated ARDS and 

compared their simulation results to the sigmoidal functions proposed by Venegas et al. [30]. We 

build upon Fujioka’s and Venegas’s by modeling the lung mechanics from the elasticity of 

individual alveolar units and their contribution to the time-varying alveoli capacitance, while 

including additional lung mechanics compartments per Rideout. 

1.2.2 Model Development – Equations and Parameters 

A model of the human pulmonary system can be described via four modules, as per Figure 

1.1:  

1) A lung mechanics (LM) module that computes airflow (𝑄xms), volumes, and pressures at 

different lung compartments, such as the alveolar space, as a result of a given pleural cavity 

pressure (𝑃yz) and an alveolar capacitance (𝐶xz{), where 𝑃yz  and 𝐶xz{  change in time.  

2) An alveolar elasticity (AE) module that quantifies alveolar capacitance as a function of the 

nonlinear tissue fiber elasticity and the surfactant concentration, both of which change depending 

on the health of the pulmonary system. 

3) A gas exchange module that computes the oxygen and carbon dioxide transport between 

blood in the pulmonary capillaries and gas in the lungs based on the airflow computed in the LM 

module. 
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4) A respiratory muscles and ribcage mechanics module that describes how respiratory muscle 

contraction affects ribcage motion and pleural cavity pressure. 

 

Figure 1. 1: Block diagram of lung modules. The two modules highlighted in black are described in this 

chapter. The full respiratory model comprises: lung mechanics, alveolus elasticity, respiratory muscles 

and rib cage mechanics, and gas exchange modules. 𝑃xq|: atmospheric pressure; 𝑃}: alveolar space 

pressure; 𝑃yz: pleural cavity pressure;	𝑃q|: transmural pressure; 𝐶xz{: alveolar capacitance; 𝑄xms: airflow 

into and out of the lungs. 

In this chapter, we are presenting the first and the second modules only (dark boxes in Fig. 1). 

Following Rideout’s work [28], we define four spatial compartments in series, which are larynx, 

trachea, bronchi and alveoli. A nonlinear module that computes time-varying alveolar capacitance 

was developed to replace the constant capacitance (or compliance as explained below), used by 

Rideout. We computed time-varying alveolar capacitance as a function of tissue fiber elasticity 

and surfactant concentration. Typically, parameters (representing material property and geometry) 

are constant values and variables, the solutions of the ordinary differential equations, change in 

time. However, in this work, we computed the time-varying property of the alveolar capacitance. 

Hence, it is a time-varying parameter. Figure 1.2A shows the linear graph of the lung mechanics 

module. We employ this graphing technique to allow for a systematic formulation of the system’s 
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dynamic equations [38]. These equations consist of variables and parameters. Parameters represent 

material property and geometry of the lung compartments, such as hydraulic resistances and 

capacitors. Pressures and volumes are termed variables, which could potentially be measured 

through an instrument. In Figure 1.2A, every node (solid circle) represents pressure within a 

compartment of the respiratory system. Every line with an arrow represents a flow between two 

compartments and is labeled with the associated parameter of that segment. Alveolar capacitance 

(𝐶xz{), is indicated with an additional oblique arrow because it is a time-varying parameter that is 

derived from the AE module. Airway opening (𝑃x~) and larynx (𝑃z) pressures are referenced to 

atmospheric pressure. Tracheal (𝑃qs), bronchial (𝑃�), and alveolar (𝑃xz{) pressures are referenced 

to pleural cavity pressure (𝑃yz ) since the pleural cavity anatomically encloses these three 

compartments. In this model, collagen volume (𝑉�~z) and surfactant concentration (Γ) appear as 

parameters in the AE module equations, since they are variables’ fixed initial conditions that 

determine the severity of a lung disease in one simulation study, and as such they could be 

considered like parameters. 

The pleural cavity pressure decreases as respiratory muscles contract, as is the case of 

inspiration, and increases as the pulmonary muscles relax, as in expiration. The reduction in 𝑃yz 

generates a positive transmural pressure forcing the alveoli to expand. Alveolar expansion causes 

an alveolar pressure to drop and creates a pressure gradient between the mouth and the alveoli. Air 

subsequently gets inhaled into the lungs, and hence we breathe. 𝑃yz  is modeled according to 

Equation (1.1) [1]: 
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where 𝑇� is the inspiration time, 𝑇� is the expiration time, 𝑇 is the total time for one breath, and 𝜏 

is the time constant of the exponential expiratory profile. 𝑃|x�  is the magnitude of 𝑃yz and 𝑃mnmq is 

the initial 𝑃yz value at the beginning of inspiration. During quiet breathing, typically, 𝑃mnmq is -5 

cmH"O, 𝑃|x�  is 3.5 cmH"O, 𝜏 is 0.44 s, when the respiratory rate is 12 breaths/min (bpm), and 

the I:E ratio (ratio of the inspiratory time to the expiratory time) to 0.6 [1].  

 

Figure 1. 2: (A) Linear graph of the lung mechanics module, and (B) force balance diagram of alveolar 

tissue. 𝑎𝑜: airway opening; 𝑙: larynx; 𝑡𝑟: trachea; 𝑏: bronchi; 𝐴: alveoli; 𝑝𝑙: pleural cavity; 𝑎𝑡𝑚: 

atmosphere; 𝑚𝑙: mouth to larynx; 𝑙𝑡: larynx to trachea; 𝑡𝑏: trachea to bronchi; 𝑏𝑎: bronchi to alveoli; 𝑡𝑚: 

transmural; 𝑠𝑡: surface tension; 𝑓𝑖𝑏: fibers; 𝑃: hydraulic pressure; F: force; 𝐶: hydraulic capacitance. 

From the linear graph in Figure 1.2A, we can write the dynamic equations to solve for the 

variables in time at each node by applying continuity and compatibility laws. Continuity equations 

are derived from the laws of conservation of mass. As an example, Equation 1.2 represents the 

larynx pressure node: 

𝐶z�̇�z =
𝑃x~ − 𝑃z
𝑅|z

−
𝑃z − 𝑃qs
𝑅zq

																																																				(1.2) 

All the variables in the system of equations change in time but the expression of variables as a 

function of 𝑡  has been omitted for clarity. As such 𝑃z  should really be 𝑃z(𝑡) , etc. Table 1.1 

summarizes capacitances (𝐶), resistances (𝑅), and unstressed volume (𝑉�) values in the LM module 
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[1] [28], with subscripts, 𝑙: larynx; 𝑡: trachea; 𝑏: bronchi; 𝑎𝑙𝑣: alveoli; 𝑚𝑙: mouth to larynx; 𝑙𝑡: 

larynx to trachea; 𝑡𝑏: trachea to bronchi; 𝑏𝑎: bronchi to alveoli. 

The mechanical properties of the alveolar tissue, which determine alveolar capacitance, are a 

function of fiber (elastin and collagen) stresses and surface tension [39]. At every simulation time 

step, the alveolus dimension is computed from the quasi-steady state of the force balance equation, 

𝐹q| − 𝐹pq − 𝐹�m� = 0, where 𝐹pq is the force due to surface tension, 𝐹�m� is the force due to lung 

fiber elasticity, and 𝐹q| is the force due to transmural pressure (𝑃} − 𝑃yz), as shown in Figure 

1.2B.  Note that this model simulates patients in supine position, where gravity gradient is 

negligible. The alveolus volume can then be determined by the transmural pressure (𝑃q|) that 

changes in time. The following describes the empirical relations of the fiber forces that relate fiber 

force/stress to alveolus dimension, and the assumptions of fiber distribution on a single alveolus. 

Table 1. 1: Parameters for lung mechanics and alveolus elasticity. 

Lung mechanics parameters 
Capacitance 
(L/cmH2O) 

Resistance 
(cmH2O⋅ s ⋅ Lwv ) 

Unstressed Volume 
(L) 

𝐶z = 0.00127 [20] 𝑅|z = 1.021 [20] 𝑉�,z = 34.4 [20] 

𝐶q = 0.00238 [20] 𝑅zq = 0.3369 [20] 𝑉�,q = 6.63	[20] 

𝐶� = 0.0131 [20] 𝑅q� = 0.3063 [20] 𝑉�,� = 18.7 [20] 

𝐶xz{	(Equation (1.6)) 𝑅�x = 0.0817 [20] 𝑉�,xz{ = 1.26 [12] 

Alveolus elasticity parameters 

 Septal border 
(cm3) 

Cross-linking  
(hex) (cm3) 

Cross-linking 
(square) (cm3) 

Elastin 4.4610×10-11 8.6574×10-11 9.9960×10-11 
Collagen 6.9616×10-11 1.2986×10-10 1.4994×10-10 

 

The elastin fiber is assumed to have a linear stress-strain relation with a Young’s modulus of 
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7.1	 × 10�  dynes/cm2 [32]. The collagen fiber has a highly nonlinear stress-strain relation, as 

shown in Equation (1.3): 

𝜎¡ = 	 𝑐v log ¢1 −
£¤¥(¦§)wv

�¨
© + 𝑐ª𝜖�																																																			(1.3)  

where 𝑐v = 	−2.25 × 10� dynes/cm2, 𝑐" = 1.264 , 𝑐ª = 	−1.78 × 10� dynes/cm2, and 𝜖�  is the 

fiber strain [32]. In Equation (1.3), the coefficients of collagen elasticity (𝑐v , 𝑐"  and 𝑐ª) can 

quantify collagen degradation, where 𝑐v and 𝑐ª are coefficients in the first nonlinear and second 

linear term, respectively, while 𝑐" limits strain nonlinearly as a disturbance to the exponential and 

the log function. In order to compute the fiber force due to fiber elasticity, the volume distribution 

of elastin and collagen on an alveolus was determined from the following four assumptions: 1) a 

truncated octahedron is adopted as the shape of one alveolus in the AE module, since Fung et al. 

found that the most common shapes of the surfaces of alveoli were hexagons and rectangles [40]. 

As shown in Figure 1.3, we defined septal border fibers and cross-linking fibers on square and 

hexagonal surfaces following the works by Fujioka et al. and by Denny et al. [32][37]. 2) 

Assuming the amount of the cross-linking fibers per unit area on a hexagonal face is identical to 

that on a square face, the volume of the cross-linking fibers on a square face is computed as √2 

times the volume of same fibers on a hexagonal surface. 3) The alveolus expands and contracts 

analogously as the inner pressure changes, then the ratio of cross-sectional area between a septal 

border and a cross-linking fiber bundle is computed as 1.077 [37]. 4) The ratio of the amount of 

collagen to elastin is 1:5 [37][41]. The elastin and collagen volume of cross-linking fibers and 

septal borders are shown in Table 1.1. The fiber forces can thus be computed from the fiber stresses 

and the cross-sectional area of the fibers. 



18 
 

 

Figure 1. 3: Geometry and fiber structure of a single alveolus. 

Surface tension is a function of surfactant concentration as shown in Equation (1.4): 

𝛾 = ¯
𝛾° − 𝐸Γ																																			Γ < Γ²
Γ² exp ¢

�

µ́
(𝛤² − 𝛤)© 										Γ ≥ Γ²

																																			(1.4) 

where Γ	is the surfactant concentration, Γ¥ is a critical surfactant concentration = 3.1×10-7 g/cm2 

[42],  𝛾~ is basal surface tension = 72 dynes/cm and EΓ¥/𝛾~ = 0.7. Γ is calculated as the ratio of 

the mass of surfactant to the surface area of an alveolus (i.e., 𝑚p�s�/𝐴xz{). The surfactant mass in 

one single alveolus is 3.35 × 10-10 g [37]. The pressure due to surface tension is determined by 

Laplace’s law.  

As 𝑃q| changes at every time step, the edge length of an alveolus, 𝑙xz{, is computed at quasi-

steady state using the force balance equation. The volume of an alveolus (truncated octahedron) is 

computed as 8√2𝑙xz{ª , and surface area of an alveolus is solved as (6 + 12√3)𝑙xz{" . The alveolar 

space volume (𝑉}) is then computed as the product of the number of alveoli and the volume of a 

single alveolus (𝑉xz{). The number of alveoli is set to be 600 million [43]. As such, we have the 

needed 𝑉} that will be used in determining alveolar capacitance. 

The fluid (hydraulic) capacitance (𝐶�) represents the potential energy storage element. It is a 

combination of three components: open reservoir effects (𝐶s¸p¸s{), elasticity/compliance effects 
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(𝐶�~|yz), and fluid compressibility effects (𝐶�~|ys), as shown in Equation 1.5. 

𝐶� = 𝐶s¸p¸s{ + 𝐶�~|yz + 𝐶�~|ys																																															(1.5)	  
During normal breathing, the potential energy storage due to the air compressibility effect is 

negligible (that is, 𝐶�~|ys = 0 ), since air pressure in the lungs is about one cmH2O [7]. 

Approximating air to an ideal gas, the potential energy storage in the alveolar space due to open 

reservoir effect (𝐶s¸p¸s{) is then derived from the ideal gas law, 𝐶s¸p¸s{ = 𝑉}/𝜌𝑅𝑇, where 𝑅 is the 

ideal gas constant, 𝜌 is the density, and 𝑇 is the temperature. The compliance effect is derived as 

the ratio between the change of alveolar volume and the change of alveolar pressure, 𝐶�~|yz =

Δ𝑉}/Δ𝑃}. We then compute the alveolar fluid capacitance (𝐶xz{) as: 

𝐶xz{ =
𝑉}
𝜌𝑅𝑇 +

Δ𝑉}
Δ𝑃}

																																																																(1.6) 

Simple calculations show that 𝐶s¸p¸s{  is two orders of magnitude smaller than alveolar 

compliance 𝐶�~|yz. Therefore, we conclude that the lung compliance effect serves as the main 

determinant of potential energy storage in the lungs. As such, we now use the terms capacitance 

and compliance interchangeably throughout the chapter. 

The LM module has four dynamic equations and four unknown pressures (at the four nodes in 

where gravity gradient is negligible. The alveolus volume can then be determined by the 

transmural pressure (𝑃q|) that changes in time. The following describes the empirical relations of 

the fiber forces that relate fiber force/stress to alveolus dimension, and the assumptions of fiber 

distribution on a single alveolus 2A). For non-sedated patients, 𝑃yz serves as the input of the model. 

The time-varying alveolar compliance, computed as a function of surfactant concentration 

(Equation 1.4) and fiber (elastin and collagen) elasticity (Equation 1.3 for collagen and the linear 

stress-strain function for elastin), is fed into the LM module at every simulation step. The LM 
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variables and the pulmonary diseases (i.e., ARDS and IPF) can thus be simulated as results of the 

surfactant concentration and the lung fiber elasticity. 

  

1.3 Results 

In this section, we first present the model sensitivity analysis to show the effects of model 

parameters on the lung mechanics variables. Then, we perform model simulation and validate on 

healthy non-ventilated subjects and ventilated ARDS or IPF patients, along with the corresponding 

interpretation and analysis. To validate the model in healthy conditions, we compare the proposed 

model to 1) an accepted lung model with a constant alveolar compliance value, and 2) measured 

healthy human flow data. To validate the model in diseased conditions, we compare the model to 

ARDS and IPF human data. Finally, we assess the robustness and stability of this dynamic system. 

1.3.1 Sensitivity Analysis 

To evaluate the effects of model parameters (collagen volume (𝑉�~z ), collagen elasticity 

coefficients ( 𝑐v , 𝑐" , and 𝑐ª  from Equation (1.3)), surfactant concentration ( Γ ), hydraulic 

resistances, and hydraulic capacitances) on the LM variables, we performed a sensitivity analysis 

of the lung mechanics variables to changes in parameters via sigma (Σ) values, as shown in Table 

1.2. Sigma values were computed to quantify the sensitivity, as ¼½xsmx�z¸×¾xsx|¸q¸s
¼¾xsx|¸q¸s×½xsmx�z¸

. The sigma 

value is a measure of the effect of the change in parameters to changes in variables, where 

parameters represent material property and geometry of the system (first column of Table 1.2), 

while variables are the system outputs (first row of Table 1.2). A bigger Σ value indicates a higher 

sensitivity. Each sigma value is computed using a change in a parameter and corresponding 

changes in variable. For comparison purposes, we have selected a common range of parameter 

change in Table 1.2 (50% decrease to a 100% increase in 10% increments). The range -50% to 
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100% corresponds to halving and doubling each parameter, thereby covering a reasonable range 

to study negative and positive changes of the nominal value. A mean sigma was then generated 

for each parameter (across all variables) and reported in the cells of Table 1.2. As seen, surfactant 

concentration is the most sensitive parameter across all lung mechanics variables and has an 

average sensitivity of 1.17 (computed from the 2nd row). The alveolar elasticity parameter, 𝑐", is 

the second highest sensitive parameter, across all variables, and has an average sensitivity of 0.71. 

Among the three collagen elasticity parameters (𝑐v, 𝑐", and 𝑐ª) in Equation (1.3), 𝑐ª has the least 

impact on the LM variables, when compared to 𝑐v and 𝑐". The collagen volume (𝑉�~z) is the fourth 

sensitive parameter. The compliances of the upper airways (𝐶z, 𝐶qs, 𝐶�) were the least sensitive 

parameters, followed by some of the resistances (𝑅q�  and 𝑅zq ) of the upper airways. This 

observation was expected since parameters affecting the alveolar compartment (and not the upper 

airways) are the main determinants of respiratory conditions such as ARDS and IPF, as mentioned 

in the Introduction, [4]–[9]. 
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Table 1. 2: Sensitivity results 

𝛴 𝑃} 𝑉} 𝑄 𝑉z�n� 𝑃� 𝑃qs  𝑃z Mean 

𝑉�~z  0.114 0.313 0.214 0.294 0.113 0.113 0.112 0.182 

Γ 0.929 1.492 1.630 1.396 0.921 0.916 0.915 1.171 

𝑐v 0.148 0.242 0.394 0.227 0.146 0.147 0.144 0.207 

𝑐" 0.496 1.138 0.826 1.066 0.492 0.490 0.488 0.714 

𝑐ª 0.038 0.108 0.240 0.101 0.047 0.038 0.036 0.087 

𝑅|z  0.195 0.074 0.148 0.074 0.217 0.332 0.541 0.226 

𝑅zq  0.071 0.037 0.074 0.034 0.080 0.121 0.111 0.075 

𝑅q�  0.069 0.029 0.074 0.027 0.076 0.098 0.097 0.067 

𝑅�x 0.128 0.081 0.069 0.079 0.144 0.225 0.226 0.136 

𝐶z  0.019 0.064 0.022 0.060 0.019 0.018 0.019 0.032 

𝐶qs  0.037 0.047 0.016 0.045 0.037 0.035 0.036 0.036 

𝐶� 0.023 0.068 0.025 0.029 0.024 0.024 0.024 0.031 

Table 1.2 quantifies the sensitivity of the lung mechanics variables to parameter change. 𝑐v, 
𝑐" , 𝑐ª : coefficients in collagen stress-strain function; 𝑉�~z : collagen volume; Γ : surfactant 
concentration; 𝑉z�n�: lung volume; 𝑄: total airflow;	𝑙: larynx; 𝑡𝑟: trachea; 𝑏: bronchi; 𝐴: alveoli; ml: 
mouth to larynx;	𝑙𝑡: larynx to trachea; 𝑡𝑏: trachea to bronchi; 𝑏𝑎: bronchi to alveoli; 𝑃: hydraulic 
pressure; 𝐶: capacitance. 

 
Figure 1.4 shows the effects of the variations of collagen volume, surfactant concentration and 

𝑐 values on static transmural pressure vs alveolar volume (PV) curves in the subplots (Figure 4A-

E), respectively. Every curve in Figure 1.4 represents a severity level that is defined by the 

magnitude of a parameter change (increase by 2, 4, 6 times, or decrease by 20%, 40%, 60%). The 

severity levels indicated follow ARDS simulation by Fujioka et al. [37]. Alveolar volume in Figure 
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1.4 is normalized by total lung capacity (TLC) in order to compare patients with different body 

weights (lung volume). As reflected in Table 1.2 and Figure 1.4 (subplots C-E), lung pressures and 

volumes are not sensitive to 𝑐ª compared to the other collagen elasticity coefficients (𝑐v and 𝑐"). 

As we analyze the subplots of the sensitivity analysis shown in Figure 1.4, the subplots A and B 

reveal that an increase in collagen quantity and/or a decrease in surfactant concentration create 

stiffer lungs, a fact which agrees with clinical findings [10][11][15]–[17]. In Figures 1.4A and 1.4C, 

we find that the inflection points shift to the right as severity level increases. Figure 1.4B shows 

that a decrease in surfactant concentration flattens the PV curves, especially in the low-pressure 

range. Further, the slopes of the curves (compliances) rise faster as surfactant concentration (Γ) 

decreases (severity level increases), and all curves reach the same alveolar volume at high pressures. 

Figure 1.4B also shows that once pressure exceeds the alveolar threshold opening pressure, the 

alveoli are open and lung volume increases according to their elastic properties. This threshold 

opening pressure may be higher for the lower surfactant concentrations, as shown. In Figure 1.4D, 

PV curves show high sensitivity of pressures and volumes to changes in 𝑐". When 𝑐" decreases, not 

only do the lungs get stiffer (lower slope), but also the maximum alveolar volume is reduced at high 

𝑃q|. More interpretation of the sensitivity results can be found in the Discussion section. 

Hence from the sensitivity results, LM variables are sensitive to 1) the surfactant concentration 

(Γ), 2) the collagen elasticity parameters (𝑐v, 𝑐") in Equation 1.3, and 3) the collagen volume (𝑉�~z). 

Clinical studies also support the fact that ARDS and IPF patients have abnormal Γ, 𝑐 values and 

𝑉�~z	[4]–[9], we thus simulate ARDS and IPF by varying these parameter values. 
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Figure 1. 4: Sensitivity of alveolar volume (total lung capacity (TLC) normalized) and transmural 

pressure to the change of collagen volume (A), surfactant concentration (B), 𝑐 values in collagen stress-

strain function: Equation 1.3 (C-E). 

1.3.2 Simulation and Validation for Healthy Subjects 

As a first validation step, we compare the proposed model to a published model [1] for a healthy 

non-ventilated human. Simulation of normal (healthy) breathing is shown in Figure 1.5 (blue 

curves). The model’s lung mechanics variables (solid blue), airflow, alveolar pressure and alveolar 

volume, are plotted with respect to time and compared to an accepted model (dashed blue) [1]. Our 

A

B

C

D

E
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simulation results show that the alveolar pressure becomes negative during inspiration and returns 

to positive during expiration (varying between -0.6 and 0.98 cmH2O). This trend is expected since 

the airflow follows the pressure gradient between the 𝑃x~ and 𝑃} nodes of Figure 1.2A, as airflow 

is positive during inspiration and negative during expiration. The lower panel in Figure 1.5 shows 

a tidal volume of 500 ml, which agrees with values reported for normal subjects in literature [7]. 

Our model also reveals a close match to the accepted pulmonary mathematical model (from 

Albanese et al.) [1] — such a model was validated with experimental data from healthy subjects 

under different environmental conditions [44]. The slight difference between the blue solid and blue 

dashed curves in Figure 1.5 is expected since the proposed model adopts a time-varying alveolar 

compliance, while [1] assumes a constant alveolar compliance of 0.2 L/cmH2O. The comparison 

between the two model simulations in Figure 1.5 indicates that our proposed model generates 

waveforms that resemble those predicted by [1]. This observation serves as a preliminary validation 

of our model. 
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Figure 1. 5: Model simulation of a healthy subject during normal breathing (blue) compared to Albanese’s 

model simulation (blue dashed) [13], and ARDS model simulation with two severity levels (red and 

yellow): 1) 20% reduction in surfactant concentration, and 2) 40% reduction in surfactant concentration 

and 8 times more of collagen volume. Airflow, alveolar pressure, and alveolar volume waveforms are 

shown.  

Figure 1.6 compares our model-simulated airflow to a healthy (non-ventilated) person’s  airflow 

as reported by Proctor [20]. In order to match the experimental breathing pattern in [20], we tuned 

the parameters in Equation (1.1) to determine the 𝑃yz profile (the model’s forcing function) in order 

to match the patient flow waveform: we approximated I:E ratio as 0.45, 𝜏 as 0.627 s, and magnitude 

of 𝑃yz as 6.5 cmH2O. Using this new input and nominal (healthy) parameter values of Table 1.1, 

our model calculates an airflow waveform that is close to the real human data (root mean squared 
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error: 6.79 L/min). The proposed model emulates healthy patient well since, besides the model 

input, neither the model parameters nor the equations were changed to fit the human data.  

 

Figure 1. 6: Airflow validated against healthy human data from Proctor et al. [11]. Red curve represents 

healthy human data, and blue curve represent simulation results. 

1.3.3 Simulation and Validation for Patients with ARDS or IPF 

As described in the sensitivity analysis, pulmonary conditions such as ARDS and IPF are 

greatly affected by, and can be understood as, changes of these four parameters (Γ, 𝑉�~z, 𝑐v, 𝑐") that 

represent the surfactant concentration, collagen quantity, and collagen quality. In the following 

sections, we present the simulation results of the time-varying compliance waveforms and the 

corresponding LM variables under diseased conditions for non-ventilated patients. We then 

validate our model with ARDS and IPF patient data by tuning these four parameters so the 

simulation matches experimental results. 
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In Figure 1.7, the simulated time-varying compliance waveforms for healthy subjects and 

diseased nonventilated patients are shown. The solid blue curve represents the simulation of normal 

subjects whose compliance values oscillate around 0.16 L/cmH2O with a magnitude of 0.045 

L/cmH2O. The purple dashed line represents the constant alveolar compliance that Rideout and 

Albanese et al. adopted in their models [1], [28]. They reported similar LM variable waveforms as 

ours, as presented in Figure 1.4. The red and yellow solid curves are the compliance waveforms 

simulation, using the parameter change for ARDS patients from Fujioka et al. [37]. The red curve 

(low ARDS severity) has 20% reduction in surfactant concentration, and the yellow curve (high 

ARDS severity) has 40% reduction in surfactant concentration as well as 8 times increase in basal 

collagen volume. The ARDS simulation with a high severity level generates a compliance curve 

that barely oscillates since the lungs are much less elastic. The yellow compliance waveform 

reaches a value close to 0.04 L/cmH2O, which matches the severe compliance reported in the 

literature as shown in the green dashed curve [45], [46]. Note that the simulated time-varying 

compliance shown in Figure 1.7 is bounded between the static healthy and diseased compliance 

values from literature, further supporting the simulation results. 
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Figure 1. 7: Time-varying alveolar compliance waveforms under two severity levels: 1) 20% reduction in 

surfactant concentration, and 2) 40% reduction in surfactant concentration and 8 times increase in basal 

collagen volume. Purple dashed line is the constant alveolar compliance value adopted by Rideout [20]. 

Green dashed line represents the severe alveolar compliance value in ARDS [40], [41]. 

The resultant LM variables in time (airflow, alveolar pressure, and alveolar volume) with time-

varying compliances are shown in Figure 1.5 for healthy subjects (blue) and diseased nonventilated 

subjects (red and yellow curves). As alveolar compliance decreases (disease severity level 

increases), all LM variables exhibit peak-to-peak decreases. Tidal volumes are reduced and airflow 

and pressure reach lower peaks as compared to healthy patient simulation. The tidal volume reduced 

to approximately 150 ml from a normal value of 500 ml (77% reduction). This is expected due to 

the increased stiffness of the lungs. The low tidal volume in the high-severity case also indicates 
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the need for exogenous ventilation. 

ARDS human data from three different studies [21]–[23] were obtained to validate our model. 

All patients were fully sedated and intubated with mechanical ventilator support. Orfao et al. [22] 

reported a mean PV curve from 23 ARDS patients,  plotted as the dashed black line in Figure 1.8. 

The reported lung volume is normalized by total lung capacity (TLC), which was estimated from 

the sigmoidal fitting function: 𝑉 = 	𝑎 + �
vÀ¸Á(ÂÁÃ)/Ä			

, where 𝑎, 𝑏, 𝑐, and	𝑑  are four fitting 

parameters. The TLC can be estimated from 𝑎 + 𝑏 or read from the upper asymptote by considering 

the pressure interval from 0 to 100 [22]. The sigmoidal function has been shown to fit the PV curve, 

and it is a well-accepted approximation for understanding the lung mechanics of ARDS patients 

when appropriately tuned [22], [30]. The transmural pressure in Figure 1.8 is determined by the 

difference between 𝑃} and 𝑃yz. The pleural cavity pressure shows positive swings as the ventilator 

blows air into the lungs tidally. Assuming nominal chest wall compliance (𝐶�Å) of 0.2445 L/cmH2O 

[1], pleural cavity pressure is equal to ½Æ
¡ÃÇ

. Using the low and the high severity defined in Figure 

1.5, we generated two independent PV curves (blue solid) that envelop the mean PV curve. This is 

expected since the two border PV curves are determined with the extreme parameter change 

following the work by Fujioka et al. [37].  
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Figure 1. 8: Model validation against mean PV data from 23 ARDS patients (dashed curve). Two border 

lines were simulated with low and high severity levels as defined in sensitivity analysis. The blue shadow 

covers the area of general ARDS PV curve data according to our simulation.  

 
Orfao, Servillo, and Pereira [21]–[23] each reported PV data for one ARDS patient, plotted in 

black, blue, and green dashed lines in Figure 1.9, respectively. The sensitive and disease-important 

parameters for the ARDS patients, namely Γ and 𝑉�~z , are determined via exhaustive search to 

match the literature-reported PV curves. Once the parameters are estimated, we fix the set of the 

disease-related parameters, and generate this patient’s PV curve from the model to compare to the 

data reported in literature. The 𝑅"  values computed from comparing the model-simulated and 

literature-reported PV curves are reported in Table 1.3 along with the corresponding parameter 

scaling factors applied to fit the model to the data. The model approximates the physical data 



32 
 

reasonably well. In Figure 1.9, the simulated PV curves with the estimated parameters also agree 

with the sensitivity analysis (Figure 1.4). As noted, Pereira’s ARDS data is flatter at low pressure 

(steeper S-shaped) than the other two (Orfao’s, Servillo’s) PV curves, indicating a reduced surface 

tension effect, as learned from Figure 1.4B. As a result, a greater reduction of Γ was indeed needed 

to emulate the Pereira patient data, as compared to the Orfao or Servillo patient data. The estimated 

parameter variations of the three ARDS patients are reasonable since the scaling factors are between 

the low and high severity as defined earlier. Also, the collagen volume change in ARDS patients 

were quantified by Saldiva et al. [47]. In their study, the color intensity of stained lung tissue 

showed that collagen volume of ARDS patients can increase by 2.7 times (and more than 10 times 

for a severe case) compared to a normal patient group on average. 

 

Figure 1. 9: Model validation against ARDS patient data from three references [13]–[15].  Dashed lines 

represent ARDS patient data, and solid lines represent model simulation results.  
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The proposed model is also employed to compute pulmonary elasticity (PV curves) of IPF 

patients. Six IPF patients’ PV curves were reported in [24]. All patients were fully anesthetized and 

intubated with mechanical ventilator support. IPF is a disease resulting from collagen degradation 

and increase in quantity. Since 𝑐ª does not greatly affect lung mechanics variables, according to the 

Sensitivity Analysis, and the IPF pathophysiology does not support a decrease in Γ for IPF patients, 

we simulate IPF by exhaustively searching for the optimal 𝑐v, 𝑐", and collagen volume only. To 

compare different patients and to compare patient data to model simulation, we normalized the 

reported lung volumes by TLC values. Table 1.3 summarizes the multiplicative factors applied to 

the healthy parameters and 𝑅" values from comparisons of model-simulated and literature-reported 

PV curves. A multiplicative factor of 1 means that either the nominal or the healthy parameter value 

was used. Figure 1.10 shows all six patients’ data along with our simulation results. Our model-

simulated PV curves match the six patients’ data well. The model simulates IPF data of patient 1 

by an eightfold increase in 𝑐v. This result agrees with the sensitivity analysis, as the first order 

derivative of the patient’s PV curve is monotonically increasing, which is similar to the effect of 

altering 𝑐v in Figure 1.4C. This result also agrees with findings by Fulmer [16] that certain IPF 

patients do not have an increase in collagen volume in the lungs. Other IPF patients require a 

combination of both the elastic properties of collagen and its volume. For example, the PV curve 

of patient 2 is flatter and the total lung capacity is low even at high pressures. This implies a greater 

increase in collagen volume (as seen in Figure 1.4A) and a reduction in 𝑐" (as seen in Figure 1.4D), 

which agrees with the estimated parameters. The alterations in collagen volume that emulate the 

reported patients’ data also fall in the 𝑉�~z range as reported by Saldiva et al. [47]. Saldiva et al. 

reported that IPF patients have an average of 3.9 times increase in the collagen volume compared 

to a normal patient group, and a severe case can have an increase of more than 10 times.  
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Table 1. 3 Parameter Scaling factors for ARDS and IPF Patients 

ARDS Patients 
Patient References 𝑉�~z Γ R2 

Orfao [15] 6 0.9 0.9973 
Servillo [14] 6.5 0.8 0.9937 
Pereira [16] 4 0.58 0.9794 

IPF Patients 
Patient ID 𝑐v 𝑐" 𝑉�~z R2 

Ferreira [17] - 1 8 1 1 0.9907 
Ferreira [17] - 2 0.7 0.5 6 0.9949 
Ferreira [17] - 3 0.7 0.61 4.5 0.9943 
Ferreira [17] - 4 2.4 0.78 4 0.981 
Ferreira [17] - 5 1.8 0.5 8 0.992 
Ferreira [17] - 6 0.3 0.75 1.6 0.9926 

R2: coefficient of determination; 𝑐v, 𝑐": coefficients in collagen stress-strain function; 𝑉�~z: collagen 

volume; Γ: surfactant concentration. 

 
Figure 1. 10: Model validation against six IPF patients [16]. Solid lines represent real IPF patient data, 

and dashed lines represent model simulation results.  
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1.3.4 Model Stability and Robustness Assessment 

To assess the stability and robustness of the proposed model, we perform an eigenvalue analysis, 

generate phase plane plots for unperturbed and perturbed long-time simulations, and assess feasible 

parameter ranges. To prove the dynamic stability, we first linearized the time-varying 𝐶xz{  in order 

to formulate the dynamic system into a state-space form, and the state equation can be found in the 

Appendix. The computed eigenvalues of the state matrix all have negative real parts, 

namely,	−4631.8,−1579.4, −740.2, and −2.7,  indicating stability of the linearized model. For 

numerical stability we have simulated the model for more than 4000 breaths (300+ simulation 

hours) on a 2.9GHz 8GB machine and plotted the PV loops for healthy (blue), low severity (red) 

and high severity (yellow) levels as shown in Figure 1.11. The system output loops (pleural cavity 

pressure vs alveolar volume) are closed, indicating a well-behaved system under both healthy 

(unperturbed) and diseased (perturbed) cases. Through these analyses, system stability is 

maintained when multiplicative factors perturbing the parameters (representing lung diseases) are 

bound by the following limits: 𝑉�~z > 0, Γ ≥ 0, 𝑐v > 0, and 0 < 𝑐" ≤1. Note that physiological 

systems typically have positive-only parameters, since negative parameter values do not have 

physical meaning. 
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Figure 1. 11: PV loops for long-time breathing simulation in healthy (blue), low severity (red) and high 

severity (yellow) sickness levels. Low severity: 20% reduction in surfactant concentration. High severity: 

40% reduction in surfactant concentration and 8 times increase in basal collagen volume. 

 
1.4 Discussion 

The lung is often modeled as an RC circuit, where R represents the hydraulic resistance and C 

represents the compliance of the whole respiratory system. Such a model can be used to describe 

dynamically the lung pressure and flow reasonably well, by first assigning values for R and C, and 

then solving, a system of 1st order ordinary differential equations (ODEs), for the pressure and 

flow in time. Disease simulation is then accomplished via changing the parameters R and C and 

again solving the ODEs. In such simulations, ARDS, IPF, and other compliance-compromised 

conditions would all be modeled in a similar fashion, e.g., change C and then solve for flow and 

pressure. In the present work, however, ARDS, IPF, and other compliance-compromised 
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conditions can be modeled through the mechanisms that cause compliance changes, such as 

collagen remodeling or surfactant degradation. In this way, a deeper level of understanding of 

respiratory dynamics is achieved through more rigor in the model.  

In this study, we presented a mechanistic model of the respiratory physiology, specifically how 

alveolar tissue fibers and surfactants affect lung compliance and breathing. The model validated 

reasonably well against ARDS and IPF patient data demonstrating its possible use to run what-if 

scenarios simulating lung conditions and diseases. Interestingly, through simulations of severe 

disease, we find that lung volumes are extremely low, indicating the need for interventional 

ventilatory support. Additionally, PV curves of severe disease simulations (increased collagen, 

decreased elasticity, decreased surfactant) have inflection points that are shifted to the right, 

indicating stiffer lungs and a greater pressure required to achieve the same volume. In some cases, 

such as severely reduced surfactant concentration, the PV curve remains nearly flat at low pressure 

levels, suggesting that more pressure is required to overcome the alveoli threshold opening 

pressure and supporting the use of high PEEP (positive end-expiratory pressure) to prevent 

alveolar collapse in ventilating ARDS patients [48]. 

Through the sensitivity analysis presented, we have confirmed that parameters that determine 

the health of the alveolar space, such as surfactant concentration (Γ) and collagen fiber properties 

(𝑐 values and 𝑉�~z), have a greater impact on lung mechanics variables (lung pressure, flow, and 

volume) than resistances and compliances of the upper airways. The role of these important 

parameters is supported in the literature. In ARDS, excess fluid accumulation in the lungs affects 

the concentration of pulmonary surfactant significantly, which causes alveolar collapse, especially 

at low pressure ranges [4]. ARDS has also been shown to cause an increase in collagen volume [5]–

[6]. IPF, on the other hand, which is characterized by scarring and destruction of the lung 
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architecture, tends to be a chronic disease with an excessive increase of collagen volume [49], and 

polymorphism [15]–[17]. Our model can differentiate between ARDS (via Γ and 𝑉�~z) and IPF (via 

𝑐v, 𝑐", and 𝑉�~z) since all these parameters appear explicitly therein.  

Further, with the linearized version of this model and system identification techniques, we can 

estimate not just compliance changes but fiber or surfactant properties that caused these changes. 

In this way, the model can also simulate some COVID patients who resemble ARDS patients in 

that they have compromised compliance. According to Gattinoni [19], 20-30% of the COVID 

patients admitted to the intensive care unit have severe hypoxemia associated with low compliance 

values. These COVID patients with compromised compliance can potentially be simulated via this 

model.   

While we present a time-varying compliance in this work, we have not yet modeled the 

development of ARDS or IPF in time, which may be of importance in ARDS, as the lungs often 

show signs of fibrosis or fibrotic scarring in late or severe stages [5]–[6]. However, with real-time 

parameter estimation we may be able to continually estimate these parameters to assess how they 

are changing and how the condition is progressing or deteriorating. Furthermore, though the model 

satisfies the need to understand compliance change during a breath cycle, its effect on LM variables 

is more prominent in diseased lungs than it is in healthier ones. 

 

1.5 Conclusion 

In this chapter, we have developed a mathematical model of the lung mechanics comprising 

alveolar tissue and surfactant properties that generates reasonable lung pressures and volumes 

when compared to healthy, ARDS, and IPF patient data. The model describes a time-varying 

alveolar compliance that provides a better understanding of lung diseases. We have also shown, 
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through sensitivity analysis, that the surfactant concentration and the collagen stiffness parameter 

𝑐" have a strong impact on lung mechanics variables. Further, the model has proven to be stable 

and robust under different disturbances. 

The model is a set of ODEs that can be implemented to allow for what-if scenario testing via 

changing specific parameters. Using measurements for patient and a parameter estimation 

technique a personalized version of the model can be obtained. The research team is working 

toward model simulations that test different ventilation strategies for a specific patient, e.g., varying 

ventilator settings (pressure and PEEP) to simulate the change of airflow, lung pressure and 

volume of that patient. 

 

1.6 Appendix – State Equation 

The state equation of the linearized model is shown below: 
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Chapter II: Respiratory Muscles and Rib Cage Mechanics – 

Mathematical Model Development and Validation with Patient Data 

During quiet breathing, the periodic contractions of the respiratory muscles (diaphragm and 

intercostal muscles) cause a cyclic movement of the rib cage (expansion and shrinkage) that varies 

the pleural cavity pressure (𝑃yz). Inhalation and exhalation consecutively happen following the 

change of 𝑃yz. In order to quantitatively study the human breathing mechanism of healthy and 

quadriplegic patients who breathe via phrenic paced diaphragm, we developed a physiology-based 

mathematical lung model that describes how contraction and relaxation of the respiratory muscles 

dictate human breathing. The proposed model includes: 1) a respiratory muscle and rib cage 

mechanics module that simulates the dynamic change of pleural cavity pressure in response to the 

motion of the rib cage and respiratory muscles, 2) a lung mechanics module that computes 

pressures and volumes of the lung compartments as 𝑃yz changes. The contraction forces of the 

diaphragm and intercostal muscles (𝐹tmx and 𝐹mnq) drive respiration. In the model, these two forces 

are the excitatory inputs. Typically, they are not measured in patients, and are not available in the 

literature We, however, have calculated their shape and relative magnitudes using three invasively 

measured human signals found in the literature: displacement of the diaphragmatic central tendon, 

abdominal cavity pressure, and pleural cavity pressure. Once evaluated, we use them as model 

inputs and perform breathing simulations. The model outputs were validated with 1) healthy 

human data, and 2) a simplistic rib cage model, where 𝑃|�p, the combined respiratory muscle 

effect, and the integrated chest wall elastic property (𝐶�Å), is adopted, and 3) quadriplegic patient 

data. The respiratory behavior of such patients, who breathe via isolated phrenic paced diaphragm, 

exhibits peculiar dynamics that our model has successfully captured. 
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2.1 Introduction 

Respiration requires periodic contraction and relaxation of the respiratory muscles. Figure 2.1 

shows the schematics of a human rib cage. As the respiratory muscles (diaphragm and intercostal 

muscles) contract, the pleural cavity expands, decreasing pleural cavity pressure (𝑃yz), generating 

a positive transmural pressure (𝑃q|) and subsequently expanding the alveoli (the gas exchange 

units). The alveolar expansion induces a decrease in alveolar pressure that leads to a pressure 

gradient between the mouth and the alveoli favoring the movement of air into the alveoli (and thus 

we breathe).  

 

Figure 2. 1: Human rib cage schematics. 

The respiratory muscles driving respiration comprise the diaphragm muscles, the intercostal 

muscles, and the accessory muscles. The diaphragm muscles are the main muscles that sustain 

ventilation. The intercostal muscles drive respiration to a lesser extent, compared to the diaphragm, 

while accessory muscles, such as scalene muscles, are conventionally considered inactive during 

quiet breathing [50].  
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The intercostal muscles are formed of two thin layers (external and internal) that span the 

intercostal spaces. During normal breathing, the contraction of the intercostal muscles facilitates 

breathing by expanding the rib cage laterally via rotating the ribs about the spine, similar to a 

bucket handle motion [51]. Because of the homogeneous distribution of the neurological control 

on the intercostal muscles’ activity (contraction and relaxation), the 12 pairs of ribs move in the 

same direction during normal breathing. Thus, the entire chest wall is often conceptually 

considered as one compartment. 

The diaphragm is a dome-shaped partition that separates the thoracic and abdominal cavities. 

It is composed of peripheral muscle sheets that originate from the circumference of the thoracic 

outlet and converge into the diaphragmatic central tendon. Figure 2.2 summarizes the respiratory 

muscle effects on 𝑃yz as the direct diaphragm and intercostal muscle effects, and the diaphragm 

insertional and appositional effects [52], described as follows:  

The diaphragm contraction pulls the central tendon caudally (toward the tail end of the body), 

flattening the diaphragm and increasing the vertical dimensions of the thoracic cavity (direct effect 

on 𝑃yz) [53].  

The insertional force exerted by the tension in the diaphragm muscles acts directly on the line 

of insertion to the thoracic outlet. This force pulls the lower ribs cranially (toward the head end of 

the body) and increases the horizontal dimensions of the thoracic cavity, shown as 𝐹tmxmnp¸sin Figure 

2.2.  

The appositional force, generated by the abdominal cavity pressure, is applied on the inner 

aspect of the lower mediastinal wall, known as the zone of apposition (ZOA). As the diaphragm 

is activated during inspiration, its muscle fibers shorten and its dome (the central tendon) moves 

in the caudal direction. The descending of the diaphragmatic central tendon increases the 



43 
 

abdominal cavity pressure, generating an appositional force ( 𝐹tmx
xyy~ ) on the ZOA. The 

𝐹tmx
xyy~ induces a torque that rotates the lower ribs, leading to an increase in the horizontal 

dimensions of the thoracic cavity. 

 

Figure 2. 2: Respiratory muscle effects on the rib cage and the pleural cavity. The diaphragm muscles 1) 

directly affect the pleural cavity pressure (𝐹tmxtms¸�q), 2) have an insertional effect (𝐹tmxmnp¸s) on the lower rib 

cage and 3) an appositional effect (𝐹tmx
xyy~) on the lower rib cage, all of which alter the pleural cavity 

pressure. The intercostal muscles (𝐹mnq) expands the upper rib cage to affect the pleural cavity pressure. 

 A mathematical model of the human pulmonary system can be described via four modules as 

per Figure 2.3:  

The respiratory muscles and rib cage mechanics (RMRM) module computes the motion of the 

rib cage (expansion and shrinkage) as the respiratory muscles contract and relax during quiet 

breathing. The pleural cavity pressure is computed in time as the volume of the rib cage changes. 

The variation of 𝑃yz determines the inspiratory and expiratory flow, and it serves as an input to the 

lung mechanics module. 

The lung mechanics (LM) module computes airflow, volumes, and pressures of different lung 

compartments (i.e. larynx, trachea, bronchi, and alveolar apace) in response to 𝑃yz and the alveolar 

compliance (𝐶xz{ ). Both 𝑃yz  and 𝐶xz{  change in time, and they are computed from the RMRM 

module and the alveolus elasticity module, respectively. 
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The alveolus elasticity (AE) module quantifies the alveolar compliance as a function of the 

nonlinear tissue fiber elasticity and the surfactant concentration, both of which change depending 

on the health of the pulmonary system. 

The gas exchange module computes the oxygen and carbon dioxide transport between the 

blood in the pulmonary capillaries and the gas in the lungs based on the airflow computed in the 

LM module. 

 

Figure 2. 3: Block diagram of mathematical lung modules that would make up the respiratory system. The 

full respiratory model comprises: lung mechanics, alveolus elasticity, respiratory muscles and rib cage 

mechanics, and gas exchange modules. 𝑃xq|: atmosphere pressure; 𝑃}: alveolar space pressure; 𝑃yz: 

peural cavity pressure; 𝑃q|: transmural pressure; 𝐶xz{: alveolar compliance; 𝑄xms: airflow into the lungs. 

The two modules highlighted in black are described in this work. 

In this work, we focus on the first and the second module (RMRM and LM modules). The 

proposed lung model computes the change of the pleural cavity pressure as the result of the 

contraction and relaxation of the diaphragm and intercostal muscles. The LM variables (airflow, 

pressures and volumes of different lung compartments) are simultaneously determined by the 

changes of 𝑃yz caused by the respiratory muscle efforts.  

In the following, we first review other lung mathematical models published in the literature. 

Then we describe the development of the proposed lung model (modeling approach, parameters, 
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and equations). We then present simulation results and compare them to healthy human data [1], 

[54], [55] and quadriplegic patient data [56]. Finally, we conclude by summarizing the model 

performances, describing the limitations, and highlighting future extensions of this work. 

 

2.2 Model Development 

2.2.1 Literature Review 

Mecklenburgh developed a simplistic lung model that consists of a compliance (𝐶), a resistance 

(𝑅), and a negative pressure source (𝑃|�p) that represents the respiratory muscle efforts [57]. The 

model consists of one algebraic equation of motion that is easy to understand. This simplistic 

model was developed to test the performance of mechanical ventilators when ventilated patients 

breathe spontaneously. The Mecklenburgh model is often applied on mechanical ventilator related 

applications. For example, Vicario et al. applied the real-time estimation of R, C, and 𝑃|�p on 

ventilated patients in order to better provide	 mechanical	 ventilator	 support	 [27]. The 

Mecklenburgh model, however, does not capture any rib cage motion nor respiratory muscle 

effects on the thoracic and the abdominal cavities.  

A common way to include rib cage mechanical characteristics into a lung model has been to 

adopt a lumped chest wall compliance (𝐶�Å). See [58][25] as examples. 𝐶�Å is a single parameter, 

lumping both abdominal and rib cage compliances, that describes the elasticity of the entire chest 

wall. Conditions such as obesity, ascites, and neuromuscular weakness can cause alterations in the 

respiratory system compliances, and lead to respiration inefficiency [59]. These diseases are then 

modeled by changing 𝐶�Å. However, since 𝐶�Å lumps the effects of both abdominal cavity and rib 

cage, it is hard to discern between conditions affecting one and not the other, like ascites, which 

primarily affects the abdomen. 
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Ward et al., Kenyon et al. and Wilson et al. [60]–[62] published rib cage models that 

comprehensively describe the rib cage mechanics, including 1) the pleural cavity and the 

abdominal cavity, 2) a rib cage (thoracic cavity) that is separated into two parts: the lung-apposed 

rib cage and the abdomen-apposed rib cage, and 3) the diaphragm insertional and appositional 

effects on rib cage. However, some breathing mechanisms were simplified or missing based on 

the respiratory physiology: 1) all the hydraulic pressure-volume relations of the chest wall 

compartments are simplified as mechanical spring systems, 2) the rib rotation (bucket handle 

mechanism) during normal breathing is not included, 3) the effect of the respiratory muscle 

contraction force on the rib cage is simplified as a negative pressure source.  

Using springs to model the pressure-volume relations of human breathing [60]–[62] is a good 

step to understand the breathing mechanism, however, in this work, we follow the anatomy and 

the physiology of the chest wall and include energy storage and dissipation elements in both 

mechanical and hydraulic domains to sufficiently capture human breathing behavior. We model 

the rib cage as a mechanohydraulic system from the contraction of the respiratory muscles, and we 

derive the chest wall volume from the angular displacements of the upper and lower ribs via a 

bucket handle mechanism. Lung air tubes that share similar geometric and functional properties 

are lumped into one compartment. The lungs are thus partitioned into four compartments: larynx, 

trachea, bronchi, and alveoli, like Rideout’s work [1], [28]. However here, the proposed 

compartmental lung model has multiple energy domains: translational mechanical, rotational 

mechanical, and hydraulic domains. Direct measurements of muscle tension force are invasive 

[18] and hence not found in the literature. However, we assessed the muscle tension force using 

three invasively measured signals: 1) diaphragmatic central tendon displacement (𝑑�q) [54], 2) 

abdominal cavity pressure (𝑃x�t) [55], and 3) pleural cavity pressure (𝑃yz) [1]. We utilize these 
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three invasively measured signals only once to compute the respiratory forces during breathing, 

and then use these forces as inputs to perform simulation studies. 

Figure 2.4 shows the human respiratory system in a 2-D anatomical diagram. The thoracic 

cavity (grey) and the abdominal cavity (white) are anatomically separated by the central tendon of 

the diaphragm. The diaphragm is presented as the central tendon (CT) and the diaphragm muscles 

at the zone of apposition (ZOA). The pleural cavity enveloping the lungs plays a critical role in 

respiration, as it affects the alveolar pressure, determining inhalation and exhalation. The pleural 

cavity pressure thus serves as the connection point that links the RMRM and the LM modules. In 

this model, we consider the rib cage as two separate compartments, the upper rib cage (URC) and 

the lower rib cage (URC). In healthy conditions, the movements of URC and LRC are similar, 

however, De Troyer [63], [64] found that in both dogs and humans, the upper ribs move 

paradoxically inward during inspiration whereas the lower ribs move outward when only the 

diaphragm is active. In quadriplegic patients with phrenic paced diaphragm, who suffer from 

intercostal muscle paralysis, the URC and the LRC move differently [56], [65], [66]. This 

observation shows that the rib cage does not act as a single unit. Thus, we include two angular 

velocity nodes to model the human rib cage. The rotation of ribs (i.e. the expansion of the rib cage) 

and the descending of diaphragmatic dome alter the pleural cavity volume and change the pleural 

cavity pressure. The LRC is separated by the diaphragm as the pleura-apposed and abdomen-

apposed parts. In Figure 2.4, colors represent different energy domains. The green nodes represent 

hydraulic pressures of the different compartments in the chest wall, the purple nodes are the 

angular velocities of the ribs and the blue node is the translational velocity of the diaphragmatic 

central tendon during respiration.   
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Figure 2. 4: 2-D anatomical diagram showing the human respiratory system and the important nodes to 

model. URC: upper rib cage; LRC: lower rib cage; ZOA: zone of apposition; CT: central tendon; 𝐹: 

force; 𝑃: pressure; 𝜔: angular velocity; 𝑣: velocity; 𝑝𝑙: pleural cavity; 𝑎𝑏𝑑: abdomen; 𝐴: alveoli; 𝑏: 

bronchi; 𝑡𝑟: trachea; 𝑙: larynx; 𝑎𝑜: airway opening.  

 
2.2.2 Model Development 

Figure 2.5 shows a linear graph of the LM and RMRM modules. We employ this technique to 

aid in the development of our dynamic model. A linear graph is a visual tool that can concisely 

display all dynamic interactions of a complex system, hence aiding to systematically formulate the 

dynamic equations of the system [7]. 
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Figure 2. 5: Linear graph of the lung mechanics and the respiratory muscles and rib cage mechanics 

modules. 𝑃: pressure; 𝑣: velocity; 𝜔: angular velocity; 𝐹: force; 𝑄: flow; 𝜏: torque; 𝐶: hydraulic 

capacitance; 𝑅: hydraulic resistance; 𝑏: friction (damper effect); 𝑘: spring effect; 𝑚: mass; 𝐼: moment of 

inertia; 𝑐𝑡: central tendon; 𝑑𝑖𝑎: diaphragm; 𝑎𝑏𝑑: abdomen; 𝑙𝑟𝑐: lower rib cage; 𝑢𝑟𝑐: upper rib cage; 𝑖𝑛𝑡: 

intercostal muscles; 𝑝𝑙: pleural cavity; 𝑎𝑜: airway opening; 𝑙: layrnx; 𝑡𝑟: trachea; 𝑏: bronchi; 𝑎: alveoli; 

𝑚𝑙: mouth to layrnx; 𝑙𝑡: laryx to trachea; 𝑡𝑏: trachea to bronchi; 𝑏𝑎: bronchi to alveoli; 𝑟𝑒𝑓: reference; 

𝑎𝑡𝑚: atmosphere; GR: gyration ratio; TR: transformation ratio. 

In Figure 2.5, we adopted three colors to represent the three aforementioned energy domains 

(translational mechanical, rotational mechanical, and hydraulic). The inputs of the proposed model 

are considered to be the contraction forces of the diaphragm and the intercostal muscles (𝐹tmx, 

𝐹mnq), denoted by the diamond shape in the linear graph. 
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In the linear graph, every node (filled circle) represents a spatial compartment and is labeled 

with a variable, more specifically an across-variable, i.e., pressure, velocity, and angular velocity 

(quantities that could potentially be measured across two terminals, one of which is considered 

reference). Every line with an arrow represents a through-variable that could potentially be 

measured, i.e., flow, force, or torque. A line (hence linear graph), in which the through-variable 

flows, is either labeled with a parameter (a resistance, a capacitance, etc.), or is linked to an energy 

transducer element.  Two types of energy-transducing elements are shown in Figure 2.5, 

transformers (ring shape) and gyrators (cross-linked ring shape). We assume ideal energy 

transduction and hence the transducers are lossless power devices and are represented by algebraic 

equations. Each transducer is labeled by either a gyration ratio (GR) or a transformation ratio (TR). 

Across- and through-variables are then used in continuity and compatibility relations to derive the 

differential equations of the dynamic system. In Figure 2.5, the diaphragm muscles displace the 

LRC via the appositional and the insertional gyrators (𝐺𝑅tmx
xyyv , 𝐺𝑅tmx

xyy" , and 𝐺𝑅tmxmnp ). The 

intercostal muscles displace the URC via a transformer (𝑇𝑅mnq). The rotation of the upper ribs and 

lower ribs change 𝑃yz via two gyrators (𝐺𝑅�s�	and	𝐺𝑅zs�).  

Both the LRC and the URC have stiffness and damping characteristics. Hence, we assigned 

energy dissipation, potential and kinetic energy storage elements ( 𝑏 , 𝑘  and 𝐼 ) for each 

compartment. The LRC and the URC are anatomically connected, and hence we modeled this 

coupling via a stiffness and a damping element in series. The LRC and URC individual mechanical 

behaviors are modeled via parallel arrangement of the energy dissipation (damper parameter) and 

the potential energy storage elements (stiffness parameter). However, their coupling is modeled 

via a series arrangement, as seen in Figure 2.5. 
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From the linear graph, we derived the dynamic equations at each node. The equations in the 

hydraulic domain are derived following the laws of conservation of mass. For example, to solve for 

the pleural cavity pressure, we derive the following: 

	𝐶yz�̇�yz = 	𝑄zwqs − 𝑄yz�q − 𝑄¾zzs� − 𝑄yz�s�																																									(2.1) 

where 𝑄yz�q , 𝑄¾zzs� , 𝑄yz�s�  are the entrained flows generated by the respiratory motion of the 

diaphragmatic central tendon, the lower rib cage, and the upper rib cage, respectively. 𝐶yz is the 

hydraulic capacitance of the pleural cavity, 𝑃yz is the hydraulic pressure of the pleural cavity, and 

𝑄zwqs is the fluid flow from larynx to trachea. For instance, the entrained flow 𝑄yz�q can be solved 

for via a transducer equation: 

Ø
𝑣�q
𝐹�q
yzÙ = Û 0

1
𝐴t~

−𝐴t~ 0
Ü Ø
𝑃¾z
𝑄yz�q

Ù																																																		(2.2) 

𝐴t~ is the surface area of the diaphragm dome and is also the gyration ratio, the parameter that 

characterizes energy transduction from the translational mechanical domain to the hydraulic 

domain. 𝑣�q is the velocity of the central tendon, and 𝐹�q
yz is the force applied on the pleural cavity 

from the diaphragmatic central tendon. Using Equation 2.1 and substituting the other two entrained 

flow terms (Equation 2.10 and 2.11 in Appendix), we have 

𝐶yz�̇�yz = 	𝑄zwqs − 𝐴t~𝑣�q − 𝐴�s�𝑙s�� sinÝ𝜃�,~ − 𝜃�ß𝜔�s� − 𝐴zs�
yz 𝑙s�z sinÝ𝜃z,~ − 𝜃zß𝜔zs�			(2.3) 

where 𝐴�s� and 𝐴zs�
yz  are the surface areas of the upper and lower rib cage that are apposed to the 

pleural cavity. 𝑙s��  and 𝑙s�z  are the average rib length of the upper and the lower rib cage, 𝜃�,~ and 

𝜃z,~ are the initial angles between the ribs on the coronal plane and the horizontal line of the URC 

and the LRC, 𝜃� and 𝜃z are the angular displacement of the URC and the LRC during respiration, 
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𝜔�s� and 𝜔zs�  are the angular velocity of the URC and the LRC during respiration, and the rest 

variables are the same as shown in the earlier equations.  

The dynamic equation of the velocity of the central tendon is derived according to Newton’s 

Second Law of motion, as shown in the following: 

𝑚�q�̇��q = 	𝐹tmx − 𝐹�qx�t − 𝐹�q
yz − 𝑏tmx𝑣�q																																							(2.4) 

where 𝐹�qx�t and 𝐹�q
yz are the resultant forces applied on the abdominal cavity and the pleural cavity 

due to the movement of the diaphragmatic central tendon, 𝑚�q is the mass of diaphragmatic central 

tendon, 𝐹tmx is the diaphragm contraction force, 𝑏tmx  is the friction of the diaphragm, and the other 

variables are the same as shown in the earlier equations. These forces are computed via gyration 

relations. The equations of the entire system can be found in the Appendix. 

 

2.2.3 Parameter Assignment 

Table 2.1 shows the model parameters of the chest wall compartments, i.e., the diaphragm 

muscles, the rib cage and intercostal muscles, and the abdominal and pleural cavities, that are either 

measured or computed based on human studies as described in the following sections. 
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Table 2. 1: Model Parameter Values 

Parameter Value Reference 
Diaphragm Muscles 

𝒎𝒄𝒕 (kg) 19.81e-3 [67] 
𝑨𝒅𝒐 (m2) 4.9E-2 [68] 

𝒃𝒅𝒊𝒂 (N/m⋅s) 3.9E-1 - 
Rib Cage and Intercostal Muscles 

𝑨𝒖𝒓𝒄 (m2) 1.115E-1 [69] 
𝑨𝒍𝒓𝒄 (m2) 1.115E-1 [69] 
𝑨𝒛𝒐𝒂,𝒐	(m2) 8.92E-2 [70] 
𝜭𝒍,𝒐 (radians) 0.72 - 
𝜭𝒖,𝒐 (radians) 0.57 - 

𝒍𝒓𝒃𝒖  (m) 1.76E-1 [71] 
𝒍𝒓𝒃𝒍  (m) 1.98E-1 [71] 

𝑰𝒍𝒓𝒄 (kg ⋅	m2) 1.77E-2 - 
𝑰𝒖𝒓𝒄(kg ⋅ m2) 1.17E-2 - 
𝒎𝒖𝒓𝒄 (kg) 0.752 [72] 
𝒎𝒍𝒓𝒄 (kg) 0.903 [72] 

𝒃𝒖𝒓𝒄	(N/cm⋅s) 0.23 - 
𝒃𝒍𝒓𝒄 (N/m⋅s) 0.35 - 

𝒃 (N/m⋅s) 7870.5 App. Eqn 
(A-23) 

𝒌𝒖𝒓𝒄 (N/m) 30 - 
𝒌𝒍𝒓𝒄 (N/m)  50 - 

𝒌 (N/m) 57.15 App. Eqn 
(A-23) 

Abdominal and Pleural Cavities 
𝑪𝒂𝒃𝒅 (m5/N) 2.07E-6 [73] 
𝑪𝒑𝒍  (m5/N) 2.08E-6  [74]–[76] 

 

2.2.3.1 Diaphragm Muscles 

This section introduces the parameters that are used in the Appendix Equations 2.1-2.3 that 

relate to the diaphragm muscles. The diaphragm consists of the diaphragmatic central tendon and 

the diaphragm muscles. The mass of the central tendon (𝑚�q) serves as the kinetic energy storage 

element as the diaphragm muscles contract. Arora et al. [67] measured the weight and the surface 
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area of the diaphragm muscles of 27 normal patients (average weight of 68 kg and average age of 

46 years). The average weight of the whole diaphragm was measured as 283 ± 53 g, and the mass 

of the muscular portion is measured to be 93 ± 2% of the total [67]. The mass of the central tendon 

was derived as 𝑚�q = 	 (1 − 93%) × 283 = 19.81	g. Cassart et al. [68] reported the surface area 

of the diaphragm dome (𝐴t~) as 490 ± 22 𝑐𝑚" at functional residual capacity (FRC) for healthy 

patients. The friction of the diaphragm muscles during contraction is 𝑏tmx. Though small, we have 

calculated it to be 0.39 N/m⋅s via exhaustive search that minimizes the error between the simulated 

𝑑�q to the real human 𝑑�q [54].  

2.2.3.2 Rib Cage and Intercostal Muscles 

From geometry (triangle formed by the respiratory muscle force, the ribs, and the horizontal 

line), we found that the products of the rib length, the rib cage surface area and the sine function 

of the angular displacement (i.e., 𝑙s�� 	𝐴�s�	sin(θô,õ − θô)  and 𝑙s�z 	𝐴zs�	sin(θö,õ − θö) ) are the 

transducer ratios that relate the rotation of the ribs to the pressure of the pleural cavity. See 

Appendix Equations 2.10 and 2.11 for details.  

To compute the surface area of the rib cage, we adopted the measurement of the surface area 

of the ZOA at rest,  (𝐴÷~x,° = 892 𝑐𝑚") as reported by Pettiaux et al. [70], and the estimation by 

Troyer and Wilson [69] that 𝐴÷~x at rest is 40% of the total surface of the rib cage (𝐴s�). The total 

rib cage area was computed as Aùú = Aûõü/0.4 = 2230	cm". The entire rib cage is dichotomized 

into 1) the upper rib cage (1st to 5th pairs of ribs) that are apposed to the lungs, and 2) the lower rib 

cage that has partial surface (6th pair of the ribs) apposed to the pleura (𝐴zs�
yz ) and partial surface 

(7th to 10th pairs of ribs) apposed to the abdominal cavity (𝐴zs�÷~x), known as zone of apposition. 

Thus, we have both 𝐴zs� and 𝐴�s� computed as 1115 cm2, where Aöùú is made of 𝐴zs�
yz  and 𝐴zs�÷~x 

with values of 223 cm2 and 892 cm2, respectively. 
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To compute the angles between the rib projection of the coronal plane and the horizontal line 

of the URC (𝛳�,~) and LRC (𝛳z,~), we derive the following from geometry (triangle formed by the 

ribs, the horizontal line and the vertical line) 𝛳m,~ = tanwv þÿ!(zÒ"
"

"
+ ÅÒ"

"

"
) ∗ tanÝ𝜃�$qm ß + zÃ%&"Ä

'

"
∗

sinÝ𝜃y�|ym ß( /𝑙qs	), where 𝑖 represents the rib cage compartment (URC or LRC), 𝑙qs and 𝑤qs 	are 

the length and width of the human thorax on the transverse plane, 𝑙�+~stm  is the average rib chord 

length, 𝜃�$qm 	 and 𝜃y�|ym  are the average bucket handle angle (caused by intercostal muscle 

contraction) and the average pump handle angle (caused by accessary muscle contraction during 

forced inspiration. The values of 𝑙�+~st� , 𝑙�+~stz , 𝑙qs , 𝑤qs , 𝜃�$qm  and 𝜃y�|ym  are measured by 

Dansereau et al. [71]. Thus, we compute 𝛳�,~ and 𝛳z,~ as 0.57 and 0.72 radians, respectively.  

To compute the rib length (𝑙s�m ) in Appendix Equations 2.10 and 2.11, we derive 𝑙s�m  as 

zÒ"
"
/cos	(𝜃m,~). The values of  𝑙s��  and 𝑙s�z  are 17.6 cm and 19.8 cm respectively.  

The 𝐺𝑅tmx
xyy"gyrator (Appendix Equation 2.9) that relates 𝑄x�tzs�  and 𝜔zs�  as a product of  𝑙s�z , 

𝐴÷~x , and 𝑠𝑖𝑛	(qz,~ − qz) is shown in the upper panel of Figure 2.6. Both 𝐴÷~x  and qz  change 

during respiration, which makes the 𝐺𝑅tmx
xyy"  a time-varying gyrator. We hence expect to see 

hysteresis in this relation, as it indeed shows in Figure 2.6, since both 𝐴÷~x and qz are time-varying 

parameters. Similarly, the plot of 𝐺𝑅zs� gyrator (Appendix Equation 2.11), that relates 𝑄yzzs�  and 

𝜔zs�  as the product of  𝑙s�z , 𝐴zs�
yz , and 𝑠𝑖𝑛	Ýqz,~ − qzß, is shown in the lower panel of Figure 2.6. 

Since we observe that both gyrator functions have negligible hysteresis behavior in Figure 2.6 and 

adopting linear slopes maintains the system linearity, which is advantageous in future system 

identification work, we approximate the gyration ratio as a constant, i.e., the slope of the curve. 
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Figure 2. 6: Angular velocity of the LRC vs the entrained flow 𝑄x�tzs�  and angular velocity of the URC vs 

the entrained flow 𝑄x�t�s� . 

In Appendix Equation 2.4 and 2.5, the kinetic energy storage in LRC and URC during 

respiration, i.e., the moment of inertia (𝐼�s�  and 𝐼zs� ) is derived as 𝐼m = 	𝑚m ×
z"Ó
' ¨

"
, where 𝑖 

represents the rib cage compartment (URC or LRC). To compute the masses of the rib cage (the 

masses of the intercostal muscles and the ribs), we take the density of the skeletal muscle as 1.06 

kg/L [72], the thickness of the ribs as 0.7 cm [77], and assuming the same density of the ribs and 

the density of the intercostal muscles, the rib cage mass is computed as 𝑚s� = 𝐴s� × 𝑑sm� × 𝜌 =

1.65	𝑘𝑔. The masses of the upper and the lower rib cage (𝑚�s� and 𝑚zs�) are taken as 0.75 kg and 

0.9 kg respectively. Taking the lengths computed earlier (𝛳m,~ Equation) and the newly computed 

masses, we computed the moment of inertias (𝐼�s�  and 𝐼zs� ) as 117 kg⋅cm2 and 177 kg⋅cm2, 

respectively.   
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In Appendix Equation 2.4 and 2.5, the stiffness and damping effects of the LRC and URC, i.e., 

𝑘zs�, 𝑏zs�  ,	𝑘�s�, and 𝑏�s�, were tuned so that 1) the healthy simulation of 𝜔�s� matches the human 

data, and 2) 𝜔�s� simulation stays in a reasonable range. Note that these parameters are fixed after 

one-time tuning, and simulation subsequently will be run with the fixed set of these parameters.  

The potential energy storage element 𝑘, and the energy dissipation element 𝑏 at the connection 

between the LRC and the URC are not available from literature search. We estimate these two 

values via the least squares approach using the model Appendix Equation 2.6 with the measured 

𝜔�s�, 𝜔zs� data and 𝜏 waveform computed from Appendix Equation 2.4. The values of 𝑘 and 𝑏 are 

estimated by minimizing the sum squared error of �̇� and 𝑘 ,𝜔zs� − 𝜔�s� −
v
�
𝜏-., which are the left 

and the right side of the Appendix Equation 2.6, respectively.   

 

2.2.2.4 Abdominal and Pleural Cavities: 

In the Appendix Equation 2.2 and 2.3, the compliances of the abdominal and pleural cavities 

serve as potential energy storage elements.  

The abdominal compliance is a measure of the ease of abdominal expansion, determined by 

the elasticity of the abdominal wall and the diaphragm. Malbrain et al. [73] reported a normal 𝐶x�t 

to be from 250 to 450 ml/mmHg. In this model, a 𝐶x�t value of 276 ml/mmHg was selected, since 

this value offers a good estimation of 𝜔zs�  (Appendix Equation 2.2), i.e., the computed 𝜔zs�  has 

the same order of magnitude as 𝜔�s� [78], but slightly bigger. We expect 𝜔zs�  to be bigger than 

𝜔�s�, since the diaphragm muscles have stronger effect (appositional and insertional effects) on the 

angular displacement of the rib cage than the intercostal muscles during quiet breathing. 

The compliance (inverse of elastance) of the pleural cavity is a measure of the ease of pleural 

cavity expansion. Heidecker et al. [74] measured normal pleural cavity compliance values from 
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124 patients, and they defined the normal range of pleural compliance to be 0.0689–2 L/cmH2O. 

We used a 𝐶yz value of 0.2 L/cmH2O, since the 𝜔�s� simulated for healthy patient matches well 

the human data (𝜔�s�) as measured by Wilson [78].  

In the proposed model, we have 10 dynamic equations (6 equations in RMRM module and 4 

equations in LM module), 30 parameters (22 parameters in RMRM module and 8 parameters in 

LM module), and 10 unknowns (9 nodes shown in Figure 2.4 and 1 torque between LRC and 

URC). The LM variables (pressures and volumes at different lung compartments) of healthy and 

diseased conditions (e.g., respiratory muscle paralysis) can be now be simulated as the diaphragm 

and the intercostal muscles contract and relax. 

 

2.3 Results 

In order to simulate and produce results, we have first derived the two unknown inputs, i.e., 

the contraction forces of the diaphragm and the intercostal muscles, from real patient data (three 

invasively measured signals from literature [54][55][1]). We have validated the computed force 

inputs with the unitless muscle force (shape-verification) proposed by Wilson’s [62]. Secondly, 

we compared the force inputs to the published 𝑃|�p waveform [1] after converting the force inputs 

into the respiratory muscle pressure. Thirdly, we simulated the breathing mechanism using these 

two computed inputs in a healthy state, and validated the model outputs against healthy patient 

data [78]. A sensitivity analysis was also performed in order to find the effects of the model 

parameters on the model variables. Finally, we have validated our model with human data from 

quadriplegic patients [56]. 
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2.3.1 Respiratory Muscle Forces Validation 

The inputs of the proposed lung model (𝐹tmx and 𝐹mnq) were unavailable in the literature based 

on our extensive literature review, except a unitless force muscle force waveform that indicates 

the shape of the force during respiration [62]. Goldman [79] also claimed that in intact humans, 

clinicians generally do not measure lengths and tensions; rather they typically measure volumes 

and pressures. Therefore, to perform breathing simulation and to present the force waveforms of 

the diaphragm and the intercostal muscles during quiet breathing, we solve for 𝐹tmx  and 𝐹mnq 

algebraically from three invasively measured signals 𝑃yz , 𝑃x�t  and the central tendon 

displacement (𝑑�q) [54][55][1], using the dynamic Equations [2.1-2.5] in the Appendix. Note that 

once they have been computed, the forces are subsequently used without further computation or 

tuning. The measurements of 𝑃yz, 𝑃x�t and 𝑑�q of a healthy human during quiet breathing were 

reproduced in red in Figure 2.7. Adopting the parameters in Table 1 and the human 𝑃yz, 𝑃x�t and 

𝑑�q signals, we computed the respiratory muscle forces as shown in Figure 2.8. The diaphragm 

muscles play a vital role in sustaining ventilation and are considered essential for respiration [80], 

[81]. We would expect the computed contraction force of diaphragm to be greater than that of the 

intercostal muscles, as indeed indicated in Figure 2.8 where 𝐹tmx generates around 27.4 N while 

𝐹mnq generates only about 10 N. Wilson [62] reported dimensionless respiratory muscle force that 

was scaled from 0 to 1 showing the force waveform over a breath. After descaling them into the 

magnitude of the computed forces (𝐹tmxand 𝐹mnq), shown in black in Figure 2.8, both forces have 

shapes that match Wilson’s [62]. In addition, the shapes of both forces also follow the shape of the 

𝑃|�p waveform, which has a finite rate of rise, a rounded peak, and a rapid fall [57][82]. This gives 

further credence to our computed respiratory muscles forces. Pressure and force waveforms should 

share the same shape because they are directly related by a constant factor (surface area).  
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2.3.2 Simulation and Validation for Healthy Subjects 

Using the computed 𝐹tmx  and 𝐹mnq  as the inputs of the system, we simulate the model and 

validate the model outputs with the real patient data. The simulated 𝑃yz , 𝑃x�t  and 𝑑�q  closely 

match the real patient data as shown in Figure 2.7. The upper panel shows that the simulated pleural 

cavity pressure decreases from -5 cmH2O to -8 cmH2O during quiet breathing, matching to a 

validated human 𝑃yz waveform from an accepted lung model (red) [1], which has been validated 

with an average human profile proposed by Mecklenburgh and Mapleson [57]. The middle panel 

shows the simulated abdominal cavity pressure changing from 6.9 to 9.7 cmH2O, with a magnitude 

of 2.8 cmH2O. This magnitude matches the human data reported by Mills et al. [55] as shown in 

Figure 2.7 middle panel. The lower panel shows the simulated central tendon displacement 

movement of 1.34 cm during quiet breathing, which also matches the human measurements from 

Ayoub et al.  
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Figure 2. 7: Pleural cavity pressure, abdominal cavity pressure, and diaphragmatic central tendon 

displacement simulation and validation for healthy human during quiet breathing. The upper panel shows 

the simulated pleural cavity pressure in one breath (blue), and its validation against an validated model 

from Albanese [1]. The middle panel shows the simulated abdominal cavity simulation (blue), and its 

validation against one healthy human data from Mills [55]. The lower panel shows the diaphragmatic 

central tendon displacement simulation (blue), and its validation with  one healthy human data from 

Ayoub [54]. 
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Figure 2. 8: Contraction forces of the diaphragm and the intercostal muscles during quiet breathing. The 

blue curves are the computed forces and the black are the unitless force reported by Wilson [62]. 

Though the angular rotation of the rib cage may not be a critical clinical variable to measure, 

it is nonetheless a state in our dynamic system, and hence we need to account for it to complete 

the picture of rib cage dynamics. Figure 2.9 shows the simulated angular displacements of the LRC 

and the URC. The measurement of human rib angular displacement during quiet breathing is 

unavailable from our literature review, however, we found a few recorded static values. Wilson 

reported a URC angular displacement of 11.1° from FRC to total lung capacity (TLC) [78]. Cassart 

[68] reported that the surface area of the human ZOA changes linearly from FRC to TLC. We thus 

apply the same assumption (linear rib rotation from FRC to TLC) to Wilson’s study [78], and the 

study shows a human upper ribs rotation of 1.54° (0.026 rad) during quiet breathing. In Figure 2.9, 

the simulation shows that the URC rotates about 0.026 radians (1.54°) and the LRC rotates about 

0.037 radians (2.1°). The simulated URC angular displacement matches to the reference data from 
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Wilson [78], and the LRC has a greater angular displacement as compared to the URC from our 

simulation. This is expected since the respiratory muscles, especially the diaphragm muscles (the 

appositional and the insertional effects), have stronger effect on the angular displacement of the 

LRC, while the movement of the URC is only controlled by the intercostal muscles during quiet 

breathing. 

 

Figure 2. 9: Simulation and validation of the angular displacement of the LRC and the URC. The blue and 

red curves are the simulation results of the LRC and the URC, respectively. The green dashed line shows 

the magnitude of the URC angular displacement reported by Wilson [78].  

The 𝑃|�p  is a “lumped pressure” used to describe the collective respiratory muscle and is 

estimated to have a magnitude of about 4.5-5.5 cmH"O during quiet breathing [9],[27],[39]. To 

compare the computed 𝐹tmx  and 𝐹mnq  in the proposed model to the 𝑃|�p  waveform from an 

accepted model [9], we have derived the muscle pressure due to the force applied to the rib cage 

and diaphragmatic central tendon. This muscle pressure is derived from the diaphragm force 
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applied to the diaphragmatic central tendon and the lower ribs (0Ä'Ô
Ä'"

}Ä&
+ 0Ä'Ô

'123"

}Ï"Ã
+ 0Ä'Ô

Ô44&

}Ï"Ã
), and the 

intercostal muscle force applied to the upper ribs (0'1Ò
}5"Ã

). Figure 2.10 shows the muscular pressure 

waveform from our computed muscle forces (blue) and the 𝑃|�p  waveform from an accepted 

model (red) [9]. The simulation results from Albanese et al. [1] are validated based on the average 

human profile proposed by Mecklenburgh and Mapleson [57]. The computed muscle pressure has 

a peak magnitude of 6 cmH2O, and Albanese et al. [1] adopted a 𝑃|�p magnitude of 5 cmH2O. 

This shows that our derived 𝑃|�p is within a reasonable range, as compared to a validated model 

[1]. Since 𝑃|�p is an approximation of respiratory muscle effort, our model's combined muscle 

pressure (derived from 𝐹tmx and 𝐹mnq) may in fact be more accurate. 

 

Figure 2. 10: Respiratory muscle pressure on the rib cage. The blue curve is from the model simulation, 

and the red curve is from an accepted model [1]. 
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2.3.3 Sensitivity Analysis 

We performed a model sensitivity analysis to quantify the effect of each model parameter on 

each variable. The sensitivity was evaluated via the sigma values (Σ) as shown in Table 2.2. The 

sigma value, computed as Σ = ¼½xsmx�z¸×¾xsx|¸q¸s
¼¾xsx|¸q¸s×½xsmx�z¸

, is a measure of the effect of the change in 

parameters on the resulting change in variables, where parameters represent material property and 

geometry of the system, while variables are the system outputs (or inputs) that could potentially 

be measured with sensors. A bigger Σ value indicates a higher sensitivity of a certain parameter to 

a certain variable. In Table 2.2, the sigma values were computed by changing the parameters from 

a 50% decrease to a 50% increase with an increment of 10%. Then, a mean sigma was generated 

for each parameter, reported in every cell in Table 2.2. Finally, mean sigma values for each 

parameter on all the variables were presented in the last column in Table 2.2 to determine which 

parameters are the most sensitive. The LM model variables, such as 𝑃}, 𝑉}, 𝑄, 𝑒𝑡𝑐.,	are the most 

sensitive to 𝐴�q, as 𝐴�q directly determines the diaphragm muscle effect on 𝑃yz and 𝑃x�t. Though, 

the surface area of the central tendon (or the diaphragmatic dome) (𝐴�q) may vary from person to 

person, it does not change up or down by 50% with disease. Therefore, 𝐴�q is a sensitive parameter 

numerically but treated as a constant number in most disease conditions. The model variables are 

also sensitive to the two compliance values, 𝐶x�t and 𝐶yz, which is expected since the compliance 

𝐶x�t has a strong effect on abdominal pressure (Appendix Equation 2.2) and the diaphragmatic 

central tendon displacement during breathing (Appendix Equation 2.1). In addition, the 

compliance 𝐶yz greatly affects the pleural cavity pressure (Appendix Equation 2.3), and thus all 

the pressures of different lung compartments. The model variables are less sensitive to other 

parameters (e.g. the rib length, initial rib angle, central tendon mass, and the muscle friction) 

compared to the compliance values. This is expected since the rib length, the initial rib angle and 



66 
 

the central tendon mass do not often change in adults, and they do not often cause respiratory 

diseases. Similarly, the change of muscle friction during muscle contraction is also negligible, 

since muscle friction does not often cause respiratory stress either. 

 

Table 2.2: Sensitivity Results 

S 𝑷𝑨 𝑽𝑨 𝑽𝑳 𝑸 𝑷𝒃 𝑷𝒕𝒓 𝑷𝒍 𝑷𝒑𝒍 𝑷𝒂𝒃𝒅 𝜽𝒖𝒓𝒄 𝜽𝒍𝒓𝒄 𝒅𝒄𝒕 Mean 

𝑪𝒑𝒍 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.58 0.35 0.26 0.53 0.50 

𝑪𝒂𝒃𝒅 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.42 0.25 0.19 0.47 0.36 

𝑨𝒄𝒕 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.32 0.18 0.13 2.59 1.00 

𝒎𝒄𝒕 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.01 

𝒍𝒓𝒃𝒖  0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.30 0.08 0.06 0.09 

𝒍𝒓𝒃𝒍  0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.47 0.66 0.02 0.17 

𝜶𝒛𝒐𝒂 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.12 0.21 0.10 0.11 

𝜶𝒑𝒍 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.09 0.03 0.02 

𝜽𝒖𝒓𝒄𝒊𝒏𝒊  0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.60 0.20 0.03 0.08 

𝜽𝒍𝒓𝒄𝒊𝒏𝒊 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.30 0.42 0.02 0.10 

𝒃𝒍𝒓𝒄 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.01 

𝒃𝒖𝒓𝒄 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.01 

𝒌𝒍𝒓𝒄 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.45 0.65 0.02 0.16 

𝒌 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.16 0.10 0.01 0.03 

𝒃 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.01 0.01 

𝒃𝒄𝒕 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.01 
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2.3.4 Simulation and Validation for Quadriplegic Patients 

To validate the proposed model in a diseased state, we leverage data from quadriplegic patients. 

Quadriplegic patients with injury of the cervical cord have respiratory paralysis that needs 

respiratory support. They rely on the electrical stimulation of the phrenic nerve so that the 

diaphragm gets activated to sustain respiration [65]. Phrenic pacing on the diaphragm alone allows 

us to examine breathing behavior so that we can better understand the breathing mechanism. 

Quadriplegic patients with isolated paced diaphragm have paradoxical URC and LRC movements, 

i.e., the URC shrinks and the LRC expands during inspiration. Since the intercostal muscles are 

paralyzed, the negative 𝑃yz effect dominates the motion of the URC and causes the URC to move 

inward as 𝑃yz  decreases during inspiration. In addition, due to the inactivity of the intercostal 

muscles, the rib cage loses the muscle control, thus tends to be more flexible. Therefore, the 

parameters of the URC and the LRC are directly affected, i.e. 𝑏zs� , 𝑏�s�, b, 𝑘zs�, 𝑘�s�, k. In order 

to prove that we could successfully simulate quadriplegic patients we have tuned the model 

parameters to fit the patient data. Note that we change and fix the parameters in order to simulate 

the breathing response of a quadriplegic patient. We reduced the rib cage stiffnesses and 

resistances from the basal values and increased abdominal compliance values. Specifically, and 

through an exhaustive search on the parameter values, we have replicated quadriplegic patient 

measurements by decreasing 𝑏zs� , 𝑏�s� by 2 times, decreasing b by 20 times, decreasing 𝑘zs�, 𝑘�s� 

by 1.8 times and 14 times respectively, and increasing 𝐶x�t by 2 times. In addition, as the phrenic 

nerve gets stimulated by electromagnetic waves, we have increased the diaphragm contraction 

force by 50% from the 𝐹tmx during quiet breathing. Figure 2.11 shows the angular displacements 

of the lower and the upper rib cage of quadriplegic patients. Our simulation replicates the 

quadriplegic patient data well, especially the angular displacement of the URC that decreases 
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during inspiration. Figure 2.12 shows the simulation of 𝑃yz , 𝑃x�t , and 𝑃tm  for quadriplegic 

patients, and the validation against human measurements in [56]. As shown in Figure 2.12, our 

simulation closely matches the real patient data with an average error of 7.69%.  

 

Figure 2. 11: Angular displacements of the lower and the upper rib cage. The blue curves are model 

simulation and the red dashed curves are real patient data from [56].  
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Figure 2. 12: Pleural cavity pressure (𝑃yz), abdominal cavity pressure (𝑃x�t), and transdiaphramatic 

pressure (𝑃tm) simulation, shown in blue, red, and green respectively. The pressure magnitudes are 

validated against [56], shown in dashed lines.   

For quadriplegic patients, a drop in 𝑃yz (9 cmH"O) is generated due to phrenic stimulation, 

which induces a bigger tidal volume into the lungs compared to the tidal volume during quiet 

breathing (𝑎	𝑃yz	drop of 5 cmH"O). The lung mechanics variables: 𝑉= , 𝑃} , and 𝑄xms  were also 

simulated with this 𝑃yz, as shown in Figure 2.13. The simulated lung volume reaches 4.1 liters, 

and the increase of the lung volume is 220% greater compared to the lung volume change during 

quiet breathing. Danon et al. reported that with a 𝑃tm of 13 cmH2O, the lung volume increased by 

about 2 liters from FRC, which agrees with our simulation (1.7L). The 0.3-liter offset is expected, 

since 1) the sample patient in the Danon’s study may have lungs with different compliance values 

(greater 𝐶xz{  than those in our simulation), 2) Danon’s sample patient may have different lung size 



70 
 

compared to the model. Note that in the simulation of quadriplegic patients, we adopted lung 

parameters (compliances and resistances) for the healthy human from Rideout et al. [28], a 

different human study.  

 

Figure 2. 13: Lung mechanics variables simulation for quadriplegic patients with isolated paced 

diaphragm (blue) and healthy state (red). The lung volume (𝑉=), alveolar pressure (𝑃}), and air flow 

(𝑄xms) are shown. 

 
2.3.5 Model Stability and Robustness Assessment 

 Further, to check the stability of the proposed model, we formulate the dynamic system into a 

state-space form, and the state equation can be found in the Appendix Equation 2.5. We then 

computed the eigenvalues of the state matrix to study the stability of the system. The eigenvalues 

all have negative real parts, i.e. −9.99	± 	272.83𝑖,−10.49	± 	53.78𝑖, and	 − 4.99	± 	20.33𝑖, 

indicating stability of the linearized model. For numerical stability we have simulated the model 
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for more than 17,000 breaths on a 2.9GHz 8GB machine and plotted the pleural cavity pressure vs 

abdominal cavity pressure. The pleural cavity and the abdominal cavity pressures are important 

indicators of the respiratory muscle efforts as discussed in early sections. We thus plot pleural 

cavity pressure vs abdominal pressure for a healthy (unperturbed) case and a diseased (perturbed) 

condition following the quadriplegic patient simulated in the Results section, see Figure 2.14. 

Further, when we disturb the model parameters, hence simulate with diseased parameters, the 

system output loops (pleural cavity pressure vs alveolar volume) are closed, indicating a well-

behaved system under parameter change. 

 

Figure 2. 14: Plot of pleural cavity pressure vs abdominal cavity pressure for long-time breathing 

simulation (over 17000 breaths) for healthy and quadriplegic patients.  
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2.4 Discussion  

The respiratory muscles and rib cage effects on the lung mechanics is often modeled as solely 

a negative pressure input 𝑃|�p. The 𝑃|�p is a ubiquitous pressure source term that is used in the 

respiratory community to describe collective respiratory muscle efforts that was coined, 

anecdotally, by hydraulic ventilator engineers, and it is estimated to have a magnitude of about 

4.5-5.5 cmH"O during quiet breathing [9],[27],[39]. The value of 𝑃|�p is computed from a simple 

equation of motion of the respiratory system, 𝑃|�p = 𝑃| − 𝑅𝑄 − 𝐸𝑉 − 𝑃° , where 𝑃|  is the 

pressure at the mouth, 𝑄  is the airflow, 𝑉  is the tidal volume, 𝑅  and 𝐶  are the resistance and 

compliance of the respiratory system, and 𝑃° is the alveolar pressure at the end of expiration. 

Mecklenburgh et al. [57] computed the value of 𝑃|�p  by first estimating the resistance and 

compliance values of a fully sedated patient with zero 𝑃|�p  using the patient’s 𝑃| , 𝑄 , and 𝑉 

signals measured at the bed side and the least-squares approach. Then, the 𝑃|�p was computed 

from the estimated 𝑅 and 𝐶  parameters and the 𝑃| , 𝑄, and 𝑉 signals measured after the same 

patient woke up from the sedation and started spontaneously breathing. The computation of 𝑃|�p 

is not feasible during clinical practice, since it requires not only the measurements of the pressure 

and flow at the patient’s mouth, but also the estimated lung parameter values (𝑅 and 𝐶). The 𝑃|�p 

signal lumps all the effects of the respiratory muscles and rib cage, however, we cannot 

differentiate between a respiratory muscle compromised and a rib cage compromised case from a 

perturbation of the 𝑃|�p in a diseased condition. In the present work, the respiratory muscles and 

the rib cage mechanics have been modeled separately in rigor to best capture the latest physiology 

of human breathing mechanisms. Lung diseases can thus be understood from a parameter 

perturbation of not just a lumped 𝑃|�p  value, but parameters like pleural cavity compliance 

(pleural effusion), abdominal cavity compliance (abdominal hypertension), etc. 
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In this study, we presented a mechanistic model of the respiratory physiology, specifically how 

the contraction and relaxation of the respiratory muscles affect rib cage mechanics and breathing. 

The model validated reasonably well against healthy subject data and quadriplegic patient data 

demonstrating its possible use to run what-if scenarios simulating lung conditions and diseases. 

As indicated in Figures 2.9, 2.11, and 2.13, the upper and lower ribs rotate about 1.48 degrees and 

2.11 degrees during quiet breathing for a healthy human to reach a tidal volume of 500 ml, while 

the upper and lower ribs rotate about 9.9 degrees and 12.2 degrees for a quadriplegic patient in 

[56] to reach a tidal volume of 1700 ml. A rib rotation of 2.11 degrees during quiet breathing is a 

small angular displacement, and a rib rotation of 12.2 degrees can still be considered small relative 

to a tidal volume of 1700 ml, which is more than three times the human need during quiet 

breathing. This small angular rotation has a great impact on the lung mechanics variables (alveolar 

volume, airflow, etc.), thus affecting the gas exchange in the lungs. The diaphragm muscles, the 

main respiratory muscles, play a critical role in driving respiration. From our simulation, a 100% 

increase of the contraction force of the diaphragm muscles (input of the model) in healthy state 

causes an increase of 325% in the LM variables. A 100% increase of the contraction force of the 

intercostal muscles (input of the model) causes an increase of about 13% of the LM variables. This 

shows that the diaphragm muscles are the main muscles determining ventilation, and thus the 

activation of diaphragm muscles can efficiently provide quadriplegic patients enough air for 

breathing. 

 

2.5 Conclusion 

In this chapter, we have demonstrated that a mathematical rib cage mechanics model with the 

contraction forces of the diaphragm and the intercostal muscles can replicate the rib cage behavior 
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of a healthy human and of a quadriplegic patient with isolated paced diaphragm. This model 

includes reasonably realistic respiratory muscle behavior and rib cage mechanics: 1) the inputs of 

the model are the contraction forces of the diaphragm and the intercostal muscles during quiet 

breathing that were calculated once from real human measurements (pleural cavity pressure signal, 

abdominal pressure signal, and the diaphragmatic central tendon displacement measurement) and 

used subsequently, 2) the rotation of the ribs (bucket handle mechanism) was modeled to represent 

the change of the thoracic volume following rib cage anatomy, 3) the rib cage was considered as 

two individual parts (upper and lower rib cage) in order to study the paradoxical movements of the 

lower and the upper rib cage of quadriplegic patients, 4) the diaphragm direct, appositional, and 

insertional effects were included following the latest knowledge on the diaphragm muscles. We 

have also shown through sensitivity analysis that the diaphragm dome surface area, the pleural 

cavity compliance and the abdominal compliance have a strong impact on lung mechanics 

variables (𝑃}, 𝑉}, 𝑄, 𝑒𝑡𝑐. ). Further, the simulation of both healthy and diseased (quadriplegic 

patients) cases were validated with real patient measurements, and our model was able to emulate 

rib rotation and abdominal and pleural pressures that closely match real patient data in the diseased 

state. In addition, lung mechanics variables, such as airflow and pressures in different lung 

compartments (i.e. larynx, trachea, bronchi), can be predicted leveraging the proposed lung model. 

In future work, personalized parameter values can be adopted in order to simulate different 

patients, e.g., the dimensions of the rib cage, the diaphragm muscle and the intercostal muscle 

masses can be estimated individually as a function of a patient’s height and weight.  Such a model, 

tuned to an individual, could aid in providing a more optimal diaphragm pacing or in designing a 

diaphragm stimulator. 
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2.6 Appendix – State Equation 
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Chapter III: Pulmonary Function Monitoring: Physiology-based 

Optimization Algorithm 

In this chapter, we present the optimization algorithms that we use to assess patient lung health 

breath-by-breath. These algorithms take non-invasive measurements at the patient’s mouth 

(airway opening pressure and airflow) and estimate lung resistance, lung compliance, and the 

patient breathing effort due to the respiratory muscle activity (spontaneous breaths). For passive 

patients, i.e., completely sedated and ventilated (no spontaneous breaths), well established 

algorithms have been implemented in modern mechanical ventilators. However, for spontaneous 

breathing patients, say, when a patient starts to wake up from sedation, while still on ventilatory 

support, the estimation of the lung parameters is challenging due to the added patient’s breathing 

effort. We can tackle this added difficulty in modeling. In estimation, however, this becomes a 

challenging problem, one that can no longer be solved using the existed approach for fully sedated 

patients and demands an iterative technique. To solve this estimation problem, parametric 

optimization was used with two optimization methods: least-squares (nonetheless, since 

applications use least-squares during sedation and spontaneous breaths) and the interior point 

method. A patient lung emulator was built to collect the data to be used for estimation. The lung 

emulator is a motor-controlled bellow system with adjustable resistance and compliance values 

built by Quadrus Medical Technologies. The motor applies programmable forces on the bellow 

system to emulate the human respiratory muscle effect on the lungs. We measure the pressure 

waveforms at the mouth and inside the bellow (to represent the airway and the lung pressure), and 

the airflow at the mouth via sensors. Utilizing the developed optimization algorithms along with 

the data collected from the lung emulator, we manage to estimate the lung mechanics parameters 

and the respiratory muscle effort within an average percent error of only 5%. 
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3.1 Introduction 

The health of the respiratory system can typically be described by two parameters: 1) the 

resistance (𝑅sp) and 2) the elastance (𝐸sp), or compliance (𝐶sp = 1/𝐸sp). The resistance value 

measures the tendency of the pulmonary system to oppose airflow, and the compliance measures 

the lung's ability to stretch and expand. Pulmonary conditions, such as Acute Respiratory Distress 

Syndrome (ARDS), Chronic Obstructive Pulmonary Distress (COPD), and Idiopathic Pulmonary 

Fibrosis (IPF) have alterations in the lung resistance and/or compliance values [84][85][86]. In 

addition, one of the Coronavirus Disease (COVID-19) types is known to have low lung compliance 

value [19]. Therefore, these two lung mechanics parameters (𝑅sp  and 𝐶sp ) are critical in 

representing the lung disease since they closely reflect the state of health and functionality of the 

respiratory system. Unfortunately, however, these two quantities, like most parameters, are not 

measurable via sensors. Hence, tracking these two parameters can aid clinicians to better diagnose 

certain diseases and to easily monitor the progression of certain respiratory disease as the patient 

recovers (the lung mechanics parameters return to the normal values in time). Quantitative 

assessment of the 𝑅sp and 𝐶sp also has the potential to optimize the ventilator settings to best meet 

the patient’s ventilation needs. Two common approaches to estimate the lung resistance and the 

compliance values are available in modern ventilators: 1) a well-established technique that requires 

a ventilator maneuver, i.e., the end-inspiratory pause maneuver, known as EIP  [87], and 2) a 

noninvasive, maneuver-free method using least-squares (LS). Both approaches do not require 

invasive measurements, however, the first approach requires maneuver that interferes the normal 

operation of mechanical ventilation and might cause a little discomfort to patients and cannot 

continuously report the 𝑅sp and 𝐶sp	values. Although the second method (LS) provides accurate 

results, it only applies to fully sedated patients. For partially sedated or non-sedated mechanical 
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ventilated patients, (or for patients waking up from sedation), the contraction of the respiratory 

muscles (diaphragm, intercostal, and accessary muscles) increases the pleural cavity volume via 

chest wall expansion, generating a negative pressure on the patient lungs along with the mechanical 

ventilation, known as 𝑃|�p. When the patient is breathing spontaneously, 𝑃|�p is not a negligible 

driving force. Therefore, when applying the same approaches used for sedated patients on patients 

who breathe spontaneously, the estimation performance degrades significantly (we have re-created 

this scenario). The goal of this work is to develop an algorithm that monitor the respiratory 

mechanics (𝑅sp, 𝐶sp) and the respiratory muscle effort (𝑃|�p) breath by breath for spontaneous 

breathing patients with ventilator support. In addition, the algorithm shall 1) use measurements 

that are routinely measured at the bedside, and 2) shall require no additional instrumentation, and 

3) shall cause no interference with the normal operation of the ventilator.  

Our group has previously proposed two approaches to non-invasively estimate 𝑅sp, 𝐶sp, and 

𝑃|�p waveform [27][88]: 1) a parametric optimization algorithm utilizing LS, and 2) a constrained 

nonlinear optimization using MATLAB toolbox. In the first method, linear functions are adopted 

to approximate the 𝑃|�p waveform during inspiration and expiration based on respiratory muscle 

physiology. The 𝑃|�p  waveform is thus parameterized to two pressure values to estimate, the 

pressure at the beginning of inspiration and at the end of inspiration. Instead of estimating a 𝑃|�p 

value at every sampling time (sampling frequency = 100 Hz), only two values are estimated per 

breath, which is much more computationally efficient. In the second method, the quadprog 

(quadratic programming) MATLAB function is leveraged to perform the estimation, including 

constraints on the 𝑃|�p waveform. Using that built-in function, a 𝑃|�p value is estimated at every 

data sampling time. In this work, we continue to improve the estimation performance following 
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our old work, and program the optimization algorithm without leveraging any built-in MATLAB 

function. 

This work proposes a parametric optimization that adopts a more physiological 𝑃|�p 

waveform (2nd order functions) using interior point method (IPM) with Newton-Raphson method 

to solve nonlinear constrained optimization problems. We programmed IPM and a backtracking 

line search technique to compute the optimal solution, whose details are shown in the Method 

section. We have also compared the proposed algorithm to the LS optimization method from 

[27][88]. To test our algorithm, we built a lung emulator that represents human lungs’ physical 

properties and generates patients’ spontaneous breathing. Data collected from this lung emulator 

was used to test the algorithm. 

In the Method section, we first introduce the setup of the patient lung emulator and the data 

collection. We then describe the optimization methods and the programming routine. In the results 

section, we present and compare the estimation results using different algorithms, least squares 

and interior point method. In the Discussion section, we analyze and summarize the algorithm 

performance, i.e., why least-squares may fail in the optimization problem. Finally, we conclude 

and highlight future extensions of this work. 

 

3.2 Method 

3.2.1 Lung Emulator and the Simplistic Lung Mechanics Model 

We have built a lung emulator to represent human lungs in the lab of Quadrus Medical 

Technologies as shown in Figure 3.1. The passive bellow system is a product called QuickLung 

from IngMar Medical. This device emulates the mechanical properties of the respiratory system 

(resistances and compliances) with adjustable parabolic resistances (5, 20, 50 cmH2O/L/s) and 
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compliances (50, 20, 10 mL/cmH2O). However, the QuickLung does not generate spontaneous 

breaths, hence it can only emulate fully sedated patients. In order to test algorithms on patients 

who breathe spontaneously, we have applied a programmable torque on the QuickLung bellow to 

emulate the respiratory muscle effects on the lungs. As shown in Figure 3.1, two aluminum lift 

arms (wings) are rotated by the controlled motor torque. These two arms lift the upper plate of the 

QuickLung causing bellow expansion, and spontaneous breath happens. 

 

Figure 3. 1: Lung emulator with adjustable resistance, compliance values, and programmable respiratory 

muscle efforts.  

The lung emulator is developed to represent a simplistic human respiratory system, more 

specifically, a single-compartment first-order linear model that is widely accepted in the 

respiratory research community [25]. We describe this simplistic lung mechanics model using a 

linear graph as shown in Figure 3.2. We employ this graphing technique to allow for a systematic 

formulation of the system’s dynamic equations [9]. These equations consist of variables and 

parameters. Parameters represent material property and geometry of the lung compartments, such 

as hydraulic resistances and capacitors. Pressures and volumes are termed variables, which could 
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potentially be measured through an instrument. In Figure 3.2, every node (solid circle) represents 

the pressure within a compartment of the respiratory system, e.g., 𝑃= represents the lung pressure. 

Every line with an arrow represents a flow between two compartments and is labeled with the 

associated parameter of that segment. The 𝑃|�p value, note as the straight-dashed line in Figure 

3.2, is the negative pressure generated by the contraction of the respiratory muscles, and the 𝑃|�p 

serves as the reference pressure of the lung pressure (𝑃=). The atmospheric pressure (𝑃xq|) serves 

as the reference pressure of the airway pressure (𝑃x~). 

Figure 3. 2: Linear graph of the simplistic lung mechanics system. 𝑃: pressure, 𝑅: resistance, 𝐶: 

compliance, 𝑎𝑜: airway opening, 𝐿: lungs, 𝑟𝑠: respiratory system, 𝑎𝑡𝑚: atmosphere, 𝑚𝑢𝑠: respiratory 

muscles. 

The dynamic equation of the system is thus derived as the following: 

�̇�= =
1
𝐶sp

�
𝑃x~ − 𝑃=
𝑅sp

� + �̇�|�p																																															(3.1) 

where 𝑃= is the lung pressure, 𝑃x~ is the airway opening pressure, 𝑃|�p is the negative pressure 

generated by the respiratory muscles, 𝑅sp is the lung resistance, and 𝐶sp is the lung compliance. 

Our goal is to construct an equation of motion that relates the non-invasive measurements 

(𝑃x~,	airflow) at the bedside to the parameters of interest, 𝑅sp, 𝐶sp	and	𝑃|�p. To achieve this, we 

add 𝑅sp𝑄(𝑡) on both sides of Equation 3.1 and solve for Pao, which yields the following equation 

of motion: 
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𝑃x~(𝑡) =
1
𝐶sp

𝑉(𝑡) + 𝑅sp𝑄(𝑡) + 𝑃|�p + 𝑃°																																					(3.2) 

where 𝑉(𝑡) represents the volume of air inhaled from the beginning of the breath (𝑡	 = 	0), and 𝑃° 

is the pressure at the airway opening at 𝑡	 = 	0 (𝑉(0) 	= 	𝑄(0) 	= 	𝑃|�p(0) 	= 	0). This is the 

equation of motion that relates the parameters of interest directly to pressure and flow data 

measured at patient’s mouth. This model is also well-known in the literature as the linear first-

order single-compartment model of respiratory mechanics [25]. 

The 𝑃|�p waveform for healthy human during quiet breathing is shown in Figure 3.3. The input 

to the lung model 𝑃|�p is represented in Equation 3.3 from Albanese et al. [1]. The 𝑃|�p waveform 

is modeled as exponential functions, generating negative pressures during inspiration, and returns 

back to zero during expiration.  

𝑃|�p(𝑡) =

⎩
⎪
⎨

⎪
⎧	−	

𝑃|�p,|mn
𝑇�𝑇�

𝑡" +
𝑇 ⋅ 𝑃|�p,|mn

𝑇�𝑇�
𝑡																	(𝐼𝑛𝑠𝑝)

𝑃|�p,|mn

�1 − 𝑒w
��
� �

�𝑒w
qw��
� − 𝑒w

��
� �																				 (Exp)

																				(3.3) 

where 𝑇� is the inspiration time, 𝑇� is the expiration time, 𝑇 is the total time for one breath, 𝜏 is the 

time constant of the exponential expiratory profile, and 𝑃|�p,|mn is the minimum end inspiratory 

pressure value representing the amplitude of the inspiratory efforts. During quiet breathing, 

𝑃|�p,|mn is 5 cmH"O, 𝜏 is 0.44 s, the respiratory rate is set as 12 breaths/min (bpm), and the I:E 

ratio (ratio of the inspiratory time to the expiratory time) to 0.6 [1]. The motor of the lung emulator 

was programmed to generate a force waveform that is applied on the bellow to emulate 𝑃|�p with 

adjustable 𝑃|�p magnitude, respiratory rate, IE ratio, and time constant by controlling the pulse 

width modulation command to the motor.  
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Figure 3. 3: The 𝑃|�p waveform in time for healthy human during quiet breathing. 

 

3.2.2 Data Collection 

From the lung emulator, we measured the pressure and the flow waveforms via the Allsensors 

pressure sensors and a Sensirion flow sensor. Sample data with 100 Hz sampling frequency are 

shown in Figure 3.4 with patient settings: 𝑅sp 5 cm H2O /L/s, 𝐶sp 0.05 L/cm H2O, 𝑃|�p 5 cmH2O, 

RR 12 bpm, and ventilator settings: PSV mode, IE ratio 0.6, pressure 15 cmH2O. The sample data 

contains 33 consecutive breaths of three measurements: the airway opening pressure, airflow, and 

the lung pressure. Note that a major difference between the human data and the lung emulator data 

is that the lung emulator data does not contain the frequency component from the cardiac cycle 

(heart beats). Thus, we do not observe the higher frequency noise from the heart beats. However, 

the respiratory characteristics are maintained in these waveforms, which is adequate to estimate 

the lung mechanics parameters and the respiratory muscle efforts as shown in the accepted 

equation of motion above (Equation 3.2).  
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Figure 3. 4: Sample data of airway opening pressure, airflow and lung pressure for patient settings: 𝑅sp  5 

cmH"O/L/s, 	𝐶sp 0.05 𝐿/cmH"O, 𝑃|�p 5 cmH"O, RR 12 bpm, and ventilator settings: PSV mode, IE 

ratio 0.6, and pressure 15 cmH"O. 

 

3.2.3 Optimization Methods 

In this section, we first introduce the least-squares approach and interior point method (IPM). 

Then we describe how we use parametric optimization to estimate the resistance value, the 

compliance value, and 𝑃|�p waveform breath by breath using the data that was collected from the 

lung emulator device.  

 

3.2.3.1 Least-squares Approach 

Many physical systems may be represented as a linear system of equations, 𝐴𝑥 = 𝑏, where the 

matrix 𝐴 and the vector 𝑏 are known measured signals, and the vector 𝑥 is an unknown parameter 

vector, e.g., the proposed simplistic lung mechanics model (Equation 2) is an algebraic equation 

that can be written in such form. If 𝐴 is a square, invertible matrix, then there exists a unique 
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solution 𝑥 for every 𝑏. However, when 𝐴 is either singular or rectangular, there may be one, none, 

or infinitely many solutions, depending on the 𝑏 and 𝐴 matrix. Take the respiratory system of a 

sedated patient as an example, since there are more data (100 sampling frequency) than unknowns 

(𝑅sp, 𝐶sp ), the system is an overdetermined system (i.e., a tall-skinny A matrix). Follow the 

equation of motion, i.e., 𝑃x~ = 𝐸sp𝑉 + 𝑅sp𝑄, we can formulate it as 𝐴𝑥 = 𝑏, as: 

@
𝑉(0) 𝑄(0)
⋮ ⋮

𝑉(𝑡q) 𝑄(𝑡q)
B Ø𝐸sp𝑅sp

Ù = @
𝑃x~(0)
⋮

𝑃x~(𝑡q)
B 																																													(3.4) 

The goal is to find the solution 𝑥  of this overdetermined system that minimizes the sum-

squared error ‖𝐴𝑥 − 𝑏‖"", the so-called least-squares solution. The solution can be computed via 

singular value decomposition (SVD) of 𝐴 matrix: 𝐴 =	𝑈EΣF𝑉F �, where U is an orthogonal matrix 

whose columns are the eigenvectors of 𝐴𝐴G, known as the left-singular matrix, V is an orthogonal 

matrix whose columns are the eigenvectors of 𝐴G𝐴, known as the left-singular matrix, and Σ is a 

diagonal matrix of the form whose elements are the square roots of the eigenvalues of 𝐴G𝐴, known 

as singular values of 𝐴. Each of these matrices can be inverted, resulting in the Moore-Penrose left 

pseudo-inverse [89]: 𝐴H = 𝑉FΣFwv𝑈E�. The solution 𝑥 can thus be computed from 𝑥 = 𝐴H𝑏. 

 

3.2.3.2 Interior Point Method 

The IPM method is hereby introduced. We start from a general constrained optimization as the 

following: 

Minimize   𝑓~(𝑥)																																																																												(3.5) 

Subject to: 𝑓m(𝑥) < 0, 𝑖 = 1,… , 𝑚 

𝐴𝑥 = 𝑏 
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where 𝑓°  is the objective function, 𝑓m  is the inequality constraint function and 𝐴𝑥 = 𝑏  is the 

equality constraints. Assume 𝑓~,… , 𝑓|  are convex and twice continuously differentiable, and 𝐴	 ∈

𝑅y×n with rank 𝐴 = 𝑝 < 𝑛. We can use the interior point method with the barrier method [90] to 

solve convex optimization problems that include equality and inequality constraints. This method 

reduces the original optimization problem to an equality constrained problem by presenting 

inequality constraints as log functions in the objective function. The basic idea of the barrier 

method is to punish the objective function whenever inequality conditions do not hold. The original 

optimization problem thus converts into the following: 

Minimize   𝑓°(𝑥) −
v
q
∑ log(−𝑓m(𝑥))																																					(3.6)|
mLv  

Subject to: 𝐴𝑥 = 𝑏																																																																																			    

The new objective here is still convex, since − v
q
𝑙𝑜𝑔(−𝑓m(𝑥)) is convex and differentiable. The 

−∑ log(−𝑓m(𝑥))|
mLv  is called the logarithmic barrier for the problem. Note that the new 

optimization problem is only an approximation of the original problem. As the parameter 𝑡 

increases, the new problem (Equation 3.6) is converging to the original problem (Equation 3.5). 

However, when the parameter 𝑡  is large, the objective function is difficult to minimize by 

Newton’s method, since its Hessian, i.e., the square matrix of the second-order partial derivatives 

of the objective function, varies rapidly near the boundary of the feasible solution. This is because 

the punishment term −v
q
𝑙𝑜𝑔(−𝑓m(𝑥)) shoots to positive infinity as the solution gets closer to the 

boundary of the feasible solution. To resolve this issue, the centering path, i.e., an iterative process 

with increasing 𝑡 values, is adopted. As shown in Figure 3.5A, the centering path associated with 

the problem is defined as the set of points 𝑥∗(𝑡) with increasing positive t values, which we call 

the central points. In optimization theory, one optimization problem may be viewed from either of 

two perspectives, the primal or the dual problem. The solution to the dual problem provides a lower 
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bound to the solution of the primal problem (the original optimization problem Equation 3.6). In 

the centering path, every central point (𝑥∗(𝑡)) yields a dual feasible point, and hence a lower bound 

on the optimal value. The duality gap, i.e., the difference between the primal and dual solutions, 

associated with 𝑥∗(𝑡) and its dual solution is 𝑚/𝑡. Therefore, when the optimization terminates at 

a duality gap (𝑚/𝑡) less than an error value 𝜖 set by the user, we call this optimal solution as the 

𝜖-suboptimal solution of the original problem. The step to compute 𝑥∗(𝑡) given a 𝑡 value is called 

a centering step. The algorithm routine is summarized in Figure 3.5A.   

Figure 3.5B summarized the centering step, where we use the Newton-Raphson method to 

solve for the Karush–Kuhn–Tucker (KKT) conditions, the necessary condition of the optimization 

problem. The KKT condition has: 

M𝛻𝑓°(𝑥) +O
1

−𝑡𝑓m(𝑥)
𝛻𝑓m(𝑥)

|

mLv

+ 𝐴�𝜆 = 0

𝐴𝑥 = 𝑏

																																															(3.7) 

𝜆 is the Lagrange multiplier. Equation 3.7 is derived from the first order derivative of the objective 

function, and the equality constrains. To compute the Newton step (search direction) from 

Equation 3.7, we form the Taylor approximation for the nonlinear term ( 𝛻𝑓°(𝑥) +

∑ v
wq�'(Q)

𝛻𝑓m(𝑥)|
mLv ) occurring in the first equation. For 𝑣 small, we have the Taylor approximation: 

𝛻𝑓°(𝑥 + 𝑣) + ∑
v

wq�'(QÀ{)
𝛻𝑓m(𝑥 + 𝑣)|

mLv ≈ 𝛻𝑓°(𝑥) + ∑
v

wq�'(Q)
𝛻𝑓m(𝑥)|

mLv + 𝛻"𝑓°(𝑥)𝑣 +

∑ v
wq�'(Q)

𝛻"𝑓m(𝑥)|
mLv 𝑣 + ∑ v

wq�'(Q)¨
𝛻𝑓m(𝑥)𝛻𝑓m(𝑥)�|

mLv 𝑣																																		(3.8) 

which can be written as 

𝐻𝑣 + 𝐴�𝜆 = −𝑔																																																																	(3.9) 

where  
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𝐻 = 	𝛻"𝑓°(𝑥) +O
1

−𝑡𝑓m(𝑥)
𝛻"𝑓m(𝑥)

|

mLv

+O
1

−𝑡𝑓m(𝑥)"
𝛻𝑓m(𝑥)𝛻𝑓m(𝑥)�

|

mLv

 

𝑔 = 𝛻𝑓°(𝑥) +O
1

−𝑡𝑓m(𝑥)
𝛻𝑓m(𝑥)

|

mLv

 

𝐻 is the Hessian matrix (the last three terms on the right side of the Equation 3.8), and 𝑔 is the 

Jacobian matrix (the first two terms on the right side of the Equation 3.8). To solve for the search 

direction, i.e., the Newton step, we write the above equations into the matrix form: 

¢𝐻 𝐴�
𝐴 0

© ¢Δ𝑥𝜆 © = ¢−g0 ©																																																													(3.10) 

where Δ𝑥  is the searching direction, 𝜆  is the Lagrange multiplier, and 𝐴  is the matrix of the 

equality constraints.  

Figure 3. 5: Interior point method optimization routine. A: the centering path, B: the centering step. 

A B 
A B 
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Once we find the search direction, we use a backtracking line search technique to find the step 

size γ [90]. A backtracking line search technique is termed as such because it starts with unit step 

size and then reduces it (backtracks) by the factor 𝛽 until the stopping condition 𝑓	(𝑥	 + 𝛾∆𝑥) 	≤

	𝑓	(𝑥) 	+ 	𝛼𝛾𝛻𝑓	(𝑥)�	∆𝑥 holds, with 0 < 𝛼 < 0.5, 0 < 𝛽 < 1. 

3.2.4 Parametric Optimization  

The lung equation of motion (Equation 3.2) can be rewritten as 𝑃x~(𝑡) =
v
¡"2
𝑉(𝑡) + 𝑅𝑄(𝑡) +

𝑃F|�p, where 𝑃F|�p = 𝑃|�p + 𝑃°. Hence, we have the objective function: 

𝑀𝑖𝑛	𝐽 = O �𝑃x~(𝑡) − ,𝑅𝑄(𝑡) + 𝐸𝑉(𝑡) + 𝑃F|�p(𝑡).�
"

qLqÒ

qL°

																												(3.11) 

where 𝐽 is the cost of the objective function. Researchers have used parametric optimization to 

estimate respiratory mechanics and respiratory muscle effort [88]. Based on respiratory muscle 

physiology, Vicario et al. parameterized the 𝑃|�p waveform as linear functions for inspiration (0 ≤

𝑡 < 𝑡| ), muscle force releasing (𝑡| ≤ 𝑡 < 𝑡s ) and muscle relaxation (𝑡s ≤ 𝑡 < 𝑡q ) shown in 

Figure 3.6A. By doing so, a simple but realistic mathematical expression is structured to represent 

𝑃|�p(t) with only two pressure values. The piecewise function representing the 𝑃|�p waveform 

shown in Figure 3.6A is derived as: 

𝑃F|�p =

⎩
⎪
⎨

⎪
⎧𝑃X �1 −

𝑡
𝑡|
� + 𝑃|

𝑡
𝑡|
																																	0 ≤ 𝑡 < 𝑡|

𝑃X(1 +
𝑡 − 𝑡X
𝑡X − 𝑡|

) + 𝑃s(1 −
𝑡 − 𝑡|
𝑡X − 𝑡|

)						𝑡| ≤ 𝑡 < 𝑡X

𝑃X 																																																																			𝑡X ≤ 𝑡 < 𝑡q

																									(3.12) 

where 𝑃X  is the initial 𝑃F|�p  pressure and the pressure after muscle force releasing, 𝑃|  is the 

pressure at the end of inspiration,	𝑡| is the time at the end of inhalation, 𝑡s is the time at the end 
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of muscle force releasing, and 𝑡q is the time at the end of exhalation. The 𝑃F|�p is parameterized as 

two unknowns,	𝑃s, and	𝑃X .  

Figure 3. 6: Parameterized 𝑃|�p waveforms. A: linear 𝑃|�p	parametric function for inspiration and 

exhalation. 𝑃X: the 𝑃|�p pressure at the beginning of inspiration and the end of expiration, 𝑃|: the 

pressure at the end of inspiration, 𝑡|: time at the end of inhalation, 𝑡s: time at muscle relaxation, 𝑡q: time 

at the end of exhalation. B: quadratic 𝑃|�p	parametric function (black), and real human 𝑃|�p waveform 

(blue) measured by Mecklenburgh [57]. 𝑃v: initial 𝑃|�p pressure, 𝑃s: the 𝑃|�p pressure at the end of 

muscle force releasing, 𝑃q: 𝑃|�p pressure at the end of exhalation. 

In this work, we parameterized the 𝑃F|�p  waveform based on the real human 𝑃|�p 

measurement by Mecklenburgh [57], plotted as blue dashed line in Figure 3.6B. The blue dashed 

line shows the shape of human 𝑃|�p	waveform, serving as the guide to the 𝑃|�p  parametric 

function. A closer matching to the real human data can be achieved by approximating the 𝑃|�p 

waveform as quadratic functions for inspiration (0 ≤ 𝑡 < 𝑡|) and muscle force releasing (𝑡| ≤

𝑡 < 𝑡s), and we approximate the muscle relaxation (𝑡s ≤ 𝑡 < 𝑡q) as a linear function, as shown as 

black solid line in Figure 3.6B. We also set the pressure values different at 0, 𝑡s and 𝑡q, unlike the 

work by Vicario et al. (same pressure values at 0, 𝑡s and 𝑡q). The piecewise function that represents 

the 𝑃|�p waveform is derived as the following: 

A B 
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𝑃F|�p =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑃v

(𝑡 − 𝑡|)"

𝑡|"
+ 𝑃| ÿ1 −

(𝑡 − 𝑡|)"

𝑡|"
( 									0 ≤ 𝑡 < 𝑡|

𝑃| �
𝑡 − 𝑡ª
𝑡ª − 𝑡|

�
"
+ 𝑃s ÿ1 − �

𝑡 − 𝑡ª
𝑡ª − 𝑡|

�
"
( 					𝑡| ≤ 𝑡 < 𝑡s

𝑃q �1 +
𝑡 − 𝑡q
𝑡q − 𝑡s

� + 𝑃s	 �1 −
𝑡 − 𝑡s
𝑡q − 𝑡s

� 										𝑡s ≤ 𝑡 < 𝑡q

																							(3.13) 

 

where 𝑃v is the initial 𝑃F|�p  pressure, 𝑃|  is the pressure at the end of inspiration, 𝑃s  is the 𝑃F|�p 

pressure at the end of muscle force releasing, 𝑃q is the 𝑃F|�p pressure at the end of exhalation, 𝑡| is 

the time at the end of inhalation, 𝑡s is the time at end of muscle force releasing, and 𝑡q is the time 

at the end of exhalation. The 𝑃F|�p is parameterized as four unknowns that are 𝑃v, 𝑃|, 𝑃s, 𝑎𝑛𝑑	𝑃q.  

 

3.2.5 Optimization Setup 

We have two 𝑃|�p	parametric functions (Equation 3.12 and 3.13) and two optimization 

algorithms (LS and IPM). In this work, we test the two optimization algorithms with both 𝑃|�p 

parametric functions separately, using the lung emulator data. 

As shown in Figure 3.7, the initial set of 𝑡|, 𝑡s values in both parametric functions (Equation 

3.12 and 3.13) are determined from the 𝑃x~ measurement. The time when 𝑃x~ reaches its maximum 

within one breath is taken to be 𝑡|. The value of 𝑡s is approximated by the intersection between 

the 𝑃x~ at zero and a linear line between the maximal 𝑃x~ value and the following hump. Then we 

vary the initial approximation of the 𝑡|, 𝑡s pair and solve for the optimal solutions from the given 

𝑡|, 𝑡s  pair. We fix 𝑡| < 	 𝑡s  and vary 𝑡|, 𝑡s  by – 0.5 to 0.5 second for a breath of 5 seconds. 

Finally, we select the pair of 𝑡|  and 𝑡s  that has the minimal cost (residual sum of squares) as 

summarized in Figure 3.8. 
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Figure 3. 7: The initial approximate of time stamps 𝑡|, 𝑡s  (black asterisks) from 𝑃x~ waveform (blue). 

Figure 3. 8: Programming routine of finding the best pair of 𝑡|, 𝑡s. RSS: residual sum of squares. 
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In the following, taking the IPM method with the quadratic parametric 𝑃|�p function as an 

example, we show the setup of the optimization problem.  

For the IPM method, we setup the optimization problem by implementing the 𝑃F|�p piecewise 

function, we have: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝐽 = O ÿ𝑃x~(𝑡) − (𝑅sp𝑄(𝑡) + 𝐸sp𝑉(𝑡) +
(𝑡 − 𝑡|)"

𝑡|"
𝑃v + (1 −

(𝑡 − 𝑡|)"

𝑡|"
)𝑃|)(

"

	
qLqÑw¼q

qL°

 

+ O ÿ𝑃x~(𝑡) − (𝑅sp𝑄(𝑡) + 𝐸sp𝑉(𝑡) + �
𝑡 − 𝑡s
𝑡s − 𝑡|

�
"
𝑃| + (1 − �

𝑡 − 𝑡s
𝑡s − 𝑡|

�
"
)𝑃s)(

"qLq"w¼q

qLqÑ

 

+O �𝑃x~(𝑡) − (𝑅sp𝑄(𝑡) + 𝐸sp𝑉(𝑡) + 𝑃q �1 +
𝑡 − 𝑡q
𝑡q − 𝑡s

� + 𝑃s	 �1 −
𝑡 − 𝑡s
𝑡q − 𝑡s

�)�
"

qLqÒ

qLq"

 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜		0	 ≤ 	𝑅sp 	≤ 	100,0	 ≤ 	𝐸sp 	≤ 	100, 𝑃| < 𝑃s < 𝑃q, 𝑃| < 𝑃v 

where the three terms in the cost function 𝐽 are the equation of motion (Equation 3.11) in the three 

breathing states defined in the quadratic parametric function (3.11), i.e., inspiration, muscle force 

releasing and muscle relaxation. We choose to minimize the sum of squared errors of the lung 

mechanics model instead of formulating the entropy as our objective function, because we are 

interested in a good fit of the lung mechanics model, and not in optimizing energy. 

The bounded physiological constraints [0,100] are included for 𝑅sp and 𝐸sp. It is a range that 

covers all the physiological lung mechanics parameter values [88]. The shape of 𝑃|�p waveform 

is maintained with the constraints 𝑃| < 𝑃s < 𝑃q	and	𝑃| < 𝑃v . Then we can follow the 

programming routine in Figure 3.5 to compute the optimal solution. 
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For the LS approach, the least-squares setup follows the work from Vicario et al. [27], which 

is derived from Equation 3.2, written in the form of 𝑏 = 𝐴𝑥, where 𝑏 is the 𝑃x~  signal, and 𝐴 

consists of flow, volume and the coefficients of the 𝑃|�p parametric function. 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑃x~(0)

⋮
𝑃x~(𝑡| − Δ𝑡)
𝑃x~(𝑡|)

⋮
𝑃x~(𝑡s − Δ𝑡)
𝑃x~(𝑡s)

⋮
𝑃x~(𝑡q − Δ𝑡) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑄(0) 𝑉(0) (°wqÑ)¨

qÑ¨
(1 − (°wqÑ)¨

qÑ¨
) 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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⎤

⎣
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⎢
⎡
𝑅sp
𝐸sp
𝑃v
𝑃|
𝑃s
𝑃q ⎦
⎥
⎥
⎥
⎥
⎤

    

    (3.14) 

The matrix [𝑅sp, 𝐶sp, 𝑃v, 𝑃|, 𝑃s, 𝑃q]� in Equation 3.14 can be solved by applying the pseudo-

inverse of the 𝐴 matrix, 𝑥 = 𝐴H𝑏. 

 

3.3 Results 

In this section, the optimization algorithms with two parameterized 𝑃|�p waveforms are tested 

with the data collected from the lung emulator.  
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3.3.1 Parametric Optimization – Least-squares with Linear 𝑃|�p Function 

We first test the parametric optimization algorithm proposed by Vicario et al., i.e., linear 𝑃|�p 

parametric function and the least-squares optimization algorithm. The estimation of resistances, 

compliances and 𝑃|�p magnitudes for every breath are shown in Figure 3.9. The blue dots are the 

estimation using parametric optimization (LS), and the red dots are the true parameter values. 

Since the resistance setting of the lung emulator is flow dependent, we compute the true 

𝑅sp	 leveraging the invasively measured signal 𝑃z�n�  to validate the resistance estimates. We 

compute 𝑅spqs�¸ = 𝑄HÝ𝑃x~ − 𝑃z�n�ß  from the continuity equation, 𝑄 = ¾Ô&w¾Ï51]
Ð"2

. Using the 

collected data, we formulate this equation into matrix form, i.e., @
𝑄(0)
⋮

𝑄(𝑡q)
B [𝑅sp] =

Û
𝑃x~(0) − 𝑃z�n�(0)

⋮
𝑃x~(𝑡q) − 𝑃z�n�(𝑡q)

Ü. The true 𝑅sp can thus computed by 𝑄HÝ𝑃x~ − 𝑃z�n�ß. 

In Figure 3.9, using LS approach with linear parametric function (Equation 3.12), the average 

percent errors for the lung resistance, the lung compliance, and the 𝑃|�p magnitude estimates are 

19.99%, 1.43% and 4.53% respectively. The lung compliance and 𝑃|�p  estimations are fairly 

accurate with a percent error of less than 5%, however, the resistance estimate has poor 

performance. This is expected, since the real 𝑃|�p  pressure values at different states, i.e., the 

beginning of inspiration, the end of muscle force releasing and the end of expiration, are not the 

same according to the 𝑃|�p  measurement shown in Figure 3.6B. In addition, the linear shape 

assumption of the 𝑃|�p  parametric function (Equation 3.12) does not agree with the measured 

human data. Linear 𝑃|�p parametric function may be an acceptable approximation as a first step, 

however, the true 𝑃|�p waveform is not linear during inspiration and expiration as shown in Figure 

3.6B. In the following, we adopt the parabolic 𝑃|�p parametric function (Equation 3.13) that has 
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different pressure values at different breathing states (four pressure values), and we expect better 

estimation results. 

 

Figure 3. 9: The resistance, compliance and 𝑃|�p magnitude estimates using least-squares (blue) and IPM 

with Newton-Raphson’s method (black). The true parameter values are plotted in red. This estimation 

uses the linear 𝑃|�p parametric function (Figure 3.6A).  

3.3.2 Parametric Optimization – Least-squares and IPM with Quadratic 𝑃|�p Function 

Figure 3.10 shows the lung resistance, the lung compliance, and the 𝑃|�p magnitude estimates 

using least-squares (blue) and IPM method (black) with the quadratic 𝑃|�p parametric function 

(Equation 3.13). The average percent errors using the IPM method are 2.47%, 1.27% and 5.38% 

for the lung resistance, the lung compliance, and the 𝑃|�p magnitude, respectively. The interior 

point method with Newton-Raphson method successfully estimate the lung mechanical properties 

and the respiratory muscle effort with minimal error. Comparing to the LS method with the linear 
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𝑃|�p function, the resistance estimate improved with a percent error increase of 17.53% (from 

19.99% to 2.47%). For the least-squares method, the average percent errors are 5.73%, 52.11% 

and 138.90% for the lung resistance, the lung compliance, and the 𝑃|�p magnitude, respectively. 

The least-squares with quadratic 𝑃|�p  function completely failed the estimation. Figure 3.11 

shows the 𝑃|�p waveform estimate using least-squares (blue) and IPM with Newton-Raphson’s 

method (black). Same conclusion can be drawn that least-squares failed the estimation, while IPM 

method succeeds. The potential reasons for why LS fails are discussed in the later discussion 

section. Figure 3.12 shows the root mean squared deviation of the 𝑃|�p waveforms between the 

two methods. The optimization algorithm performances are summarized in Table 3.1. The IPM 

method with the quadratic 𝑃|�p  parametric function estimates the lung mechanics and the 

respiratory muscle effort more accurate than other algorithms with an average percent error of all 

parameters 3.04%.  

Figure 3. 10: The resistance, compliance and 𝑃|�p magnitude estimates using least-squares (blue), IPM 

with Newton-Raphson’s method (black). The true parameter values are plotted in red. This estimation 

uses the quadratic 𝑃|�p parametric function (Figure 3.6B). 
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Figure 3. 11: The 𝑃|�p waveform estimated using least-squares (blue) and IPM with Newton-Raphson’s 

method (black). The true 𝑃|�p waveform programmed in the motor is plotted in red. This estimation uses 

the quadratic 𝑃|�p parametric function (Figure 3.6B). A: all the estimation results. B: the first four 

estimation results. 
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Figure 3. 12: Root mean squared deviation of the 𝑃|�p waveforms using IPM with Newton-Raphson’s 

method (black) and least-squares (blue). This estimation uses the quadratic 𝑃|�p parametric function 

(Figure 3.6B). 

Table 3. 1: Optimization Algorithm Performance Comparison Between Least-Squares and Interior Point 

Method with Newton-Raphson (IPM-NR) 

Lung resistance (𝑹𝒓𝒔) 
% error 𝑃|�p (linear) 𝑃|�p (quadratic) 

Least-squares 19.99% 5.73% 
IPM – NR  - 2.47% 

Lung compliance (𝑪𝒓𝒔) 
% error 𝑃|�p (linear) 𝑃|�p (quadratic) 

Least-squares 1.43% 52.11% 
IPM – NR  - 1.27% 

𝑷𝒎𝒖𝒔 	magnitude  
% error 𝑃|�p (linear) 𝑃|�p (quadratic) 

Least-squares 4.53% 138.9% 
IPM – NR  - 5.38% 
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Figure 3.13 shows the cost (RSS) of the IPM optimization algorithm with different 𝑡| and 𝑡s 

pair variation. The best 𝑡|, 𝑡s pair that gives the optimal lung parameter estimate is determined by 

the minimal cost value. The minimal cost of the reported IPM algorithm in Table 3.1 corresponds 

to a time variation of 0.12 seconds as shown in Figure 3.13. Hence, a variation of 0.12 seconds in 

the positive direction from the initial approximation of the 𝑃x~ waveform is applied.  

Figure 3.14 shows the disturbance analysis of the IPM algorithm. A zero-mean gaussian noise 

with changing variance has been introduced to the patient measurements, 𝑃x~ and 𝑄. The percent 

errors of the estimates from the data with noise are plotted against the noise variances in Figure 

3.14. The percent errors increase monotonically as the variance increases. This is expected, since 

the Gaussian noise with higher variance induces bigger estimation errors.  

 

Figure 3. 13: Costs (RSS) vs time stamps (𝑡|, 𝑡s) variation from -0.5 to 0.5 sec using IPM with Newton-

Raphson method. 
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Figure 3. 14: IPM algorithm disturbance analysis. The percent errors of 𝑅sp , 𝐶sp , and 𝑃|�p magnitude are 

plotted against noise variance percent. 

In order to find a confidence metric for our estimation, we sought to find the ranges of 

estimated parameters during one breath. We choose to quantify the confidence ranges of the 

estimates (akin to confidence intervals) by varying (increasing and decreasing) the measured 

signals by 20%, and then run the developed optimization algorithm. Take the flow measurement 

as an example, with a change of flow data from -20% to 20%, the estimates of lung resistances are 

found to be in the range [5.43, 8.15] cmH"O/𝐿/𝑠, lung compliances in the range [0.04, 0.06] 

𝐿/cmH"O, and 𝑃|�p magnitudes in the range [-3.85, -5.78] cmH"O. All three ranges envelop the 

true parameter values, which gives more credence in the proposed algorithm.  
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3.4 Discussion 

In this section, we discuss the potential reasons of why least-squares approach failed the 

quadratic parametric optimization. In order to answer this question, we analyze the second order 

derivative of the objective function, i.e., Hessian matrix. The eigen analysis of the Hessian matrix 

provides good intuition of the shape of the search dimension. We also performed a principal 

component analysis (PCA) on the data matrix (𝐴 matrix) to compare the most important data 

signals under different 𝐴 matrix structures, i.e., in the linear and quadratic parametric optimization.  

3.4.1 Eigen Analysis  

The objective function (Equation 3.11) is twice continuously differentiable. We can compute 

the Hessian matrix of the objective function as follows: 

𝐻 =	 Û
2𝑄"(𝑡) 2𝑄(𝑡)𝑉(𝑡) 2𝑄(𝑡)

2𝑄(𝑡)𝑉(𝑡) 2𝑉"(𝑡) 2𝑉(𝑡)
2𝑄(𝑡) 2𝑉(𝑡) 2

Ü 

The eigenvalues of the Hessian matrix are 0, 0, 𝑉"(𝑡) + 𝑄"(𝑡) + 1. Note that the matrix H of 

the objective function 𝐽  has non-negative eigenvalues, implying 𝐻  is a positive-semidefinite 

matrix. Since 𝐻 is the second derivative of the 𝐽 with respect to unknowns and it is positive-

semidefinite, the cost function is convex. However, the cost function is not strictly convex because 

the two eigenvalues are equal to 0. This implies that the corresponding eigenvectors span the plane 

of solutions with same minimum cost, in other words, the linear combinations of the corresponding 

eigenvectors do not contribute to cost reduction. Hence, different linear combinations of these two 

eigenvectors give rise to the infinitely many solutions of the estimation, and the optimal solution 

may not make physiological sense. However, in the IPM method, the physiological constraints are 

introduced in the optimization problem aiming to restrict the search dimension for the solution that 

we are after. 
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3.4.2 Principal Component Analysis  

We performed a PCA analysis of the data matrix in the least-squares formulation, i.e., the two 

𝐴 matrices in the quadratic (Equation 3.13) parametric optimization and in the linear (work from 

Vicario et al. [88]) parametric optimization. We compute the variances of the column data in 𝐴 

matrix in principal component space. For the linear parametric optimization, the data that has the 

highest variance in the principal component space is the volume waveform (𝑉), while the data that 

has the highest variance in the principal component space is the flow waveform (𝑄) for the 

quadratic parametric optimization. Note that these two different algorithms use the same dataset, 

and the only difference is the way the 𝐴 matrix is structured, since the structure of the 𝐴 matrix 

depends on the parametric function. In the equation of motion, 𝑃x~(𝑡) =
v
¡"2
𝑉(𝑡) + 𝑅𝑄(𝑡) +

𝑃F|�p	(𝑡), when the volume signal does not have the highest variance in the principal component 

space, 𝑃F|�p is estimated to increase during inspiration since the sum of v
¡"2
𝑉 and 𝑃F|�p can then 

match the shape of 𝑃x~ that also increases during inspiration. Note that the poor estimate of the 

𝑃|�p waveform in the LS quadratic parametric optimization has a shape that is similar to the 𝑃x~ 

measurement, i.e., the 𝑃|�p estimate increases during inspiration and decreases during expiration. 

On the other hand, when the volume is the principal component with the highest variance, like in 

the linear parametric optimization, 𝑃F|�p  decreases during inspiration and increases during 

expiration, which agrees with the respiratory physiology.  
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3.4.3 Information Criterion   

We also computed the Akaike Information Criterion (AIC) of the two parametric optimization 

algorithms, i.e., the two models of the 𝑃|�p functions. AIC measures the trade-off between the 

goodness of fit of the model and the simplicity of the model. It also estimates the relative amount 

of information lost by a given model, i.e., the less information a model loses, the higher the quality 

of that model. Thus, AIC provides a means for model selection that deals with both the risk of 

overfitting and the risk of underfitting. AIC is computed as 𝐴𝐼𝐶	 = 	𝑛	𝑙𝑜𝑔(𝜎") 	+ 	2𝐾, where 

𝜎" = ∑(¦')¨

n
, and the 𝜖m is the estimated residual from the fitted model, 𝐾 is the total number of 

parameters in the model, including the intercept and 𝜎". The AIC values for the linear parametric 

optimization and quadratic parametric optimization are −142.45 and −214.93 respectively. The 

smaller AIC value of the quadratic parametric optimization also supports that a quadratic 

formulation of 𝑃|�p waveform performs better in estimation. 

 

3.5 Conclusion 

In this work, we have developed a constrained nonlinear optimization algorithm to 

continuously monitor the respiratory mechanics (lung resistance and compliance), and the 

respiratory muscle effort (𝑃|�p ). This algorithm performs accurate estimation in spontaneous 

breathing patients with ventilator support. It is based on a physiological mathematical model of 

the lung mechanics, more specifically on a single-compartment first-order linear model that is 

widely accepted in the respiratory research community. This algorithm uses measurements that are 

routinely monitored at the patient bedside without additional instrumentation and interference of 

normal ventilation operation. Estimating resistance and compliance values can aid clinicians to 

differentiate between restrictive or obstructive diseases, monitor disease progression, and 
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optimally adjust ventilator settings to best meet patient’s needs. In addition, estimating 𝑃|�p 

waveform can help to detect patient-ventilator dyssynchrony, avoid diaphragmatic fatigue and/or 

atrophy, and assess patient readiness to extubation. Comparing to the previous work, we include a 

more physiological quadratic 𝑃|�p  function, i.e., four pressure values to estimate versus two 

pressure values, and proved the estimation performance improvement. In future work, we will 

further validate the algorithm with animal or human data. 

 

 

  



106 
 

Chapter IV: Modeling of Transport Mechanisms in the Respiratory 

System: Validation via Congestive Heart Failure Patients  

Circulation of blood in the body takes place in the pulmonary system. The pulmonary 

circulation carries deoxygenated blood away from the right ventricle, to the lungs for oxygen and 

carbon dioxide exchange, and return oxygenated blood to the left atrium and ventricle of the heart. 

For congestive heart failure patients, since the blood does not flow out the (left) heart normally 

due to congestion, fluid (plasma) backs up into the vessels in the pulmonary circulation. The 

accumulation of the fluid in the pulmonary circulation increases the microvascular hydraulic 

pressure. As a result, fluid could seep into the alveolar space (pulmonary edema) within minutes. 

This excess fluid induces extra stress during breathing that affects respiratory health. In this 

chapter, we focus on the effect that high pulmonary capillary pressure has on the development of 

this extravascular lung water (EVLW). A mathematical model of pulmonary fluid and mass 

transport mechanisms is developed in order to quantitatively analyze the transport phenomena in 

the pulmonary system. The proposed microvascular exchange module is validated on 15 male heart 

failure patients from published literature [91]. The model shows reasonable estimation of EVLW 

in heart failure patients, which is useful in assessing the severity of pulmonary edema.  

 

4.1 Introduction 

Pulmonary edema caused by increased capillary pressure is known as cardiogenic pulmonary 

edema. In congestive heart failure, the heart is not able to pump efficiently. This causes fluid from 

the heart to back up in the pulmonary vessels and increases the pulmonary capillary pressure. 

Figure 4.1 shows the circulation between the heart and the lungs. High pulmonary capillary 

pressure breaks the force balance across the capillary membrane (glycocalyx) and causes fluid to 
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leak into the alveolar interstitium. When the fluid seeping into the interstitium exceeds the fluid 

clearance by the lymphatic system, interstitial fluid builds. This interstitial edema then damages 

the epithelium and causes alveolar flooding. The total fluid outside the pulmonary capillaries 

(inside the interstitium and alveolar space) is termed extravascular lung water (EVLW). EVLW 

induces high stress during breathing, which can lead to life-threatening issues. In an effort to 

understand and explain the pulmonary edema of heart failure patients, we develop a mechanistic 

mathematical model of the human pulmonary microvascular exchange system (MVES). 

In the following, we first describe our MVES model (basic physiology and modeling 

approach). Then, we present simulation results and compare them to Heijmans’ model and clinical 

data of 15 heart failure patients. Finally, we conclude by summarizing the accomplishments, 

describing the limitations, and highlighting future extensions of this work. 

Figure 4. 1: Schematic block diagram of the heart-lung circulation and the microvascular exchange 

system (MVES). 
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4.2 Model Development 

4.2.1 Literature Review 

Many researchers have attempted to quantify fluid and mass transport in the MVES [92]–[94]. 

Heijmans et al., in particular, developed an MVES model [95] to simulate edema development in 

the human pulmonary system. However, the model uses simple linear lymphatic and alveolar flows 

and the traditional Starling equation. Drake et al. developed a model of interstitial-lymphatic 

clearance using both a lymphatic pumping mechanism and a nonlinear lymphatic resistance [96]. 

However, their model includes few compartments and their parameters are for dogs, limiting the 

application in humans. Michel and Weinbaum have developed a revised form of the Starling 

equation [97], [98]. They claim that the Starling forces, which move fluid across the microvessels, 

are not determined by the hydraulic and osmotic pressure differences across the endothelium. 

Instead, the forces are determined by pressure differences across the endothelial glycocalyx, a 

complex fiber matrix covering the endothelial cells. It is now well accepted that the glycocalyx 

serves as the primary molecular sieve for fluid and mass transport. More recently, several studies 

and simulation models of the endothelial glycocalyx have supported the revised Starling hypothesis 

and equation [99], [100]. Our human MVES model is the first to include nonlinear lymphatics, a 

revised Starling equation with a lumped sub-glycocalyx region, and endothelial glycocalyx 

filtration regulation. 

 

4.2.2 Physiology 

Figure 4.1 also shows a simplified microvascular fluid and mass exchange diagram. The fluid 

and mass transports discussed herein occur transversally across a capillary (microvessel), which is 

around 0.2 micron thin in humans [101]. Fluid and mass move from the pulmonary capillaries into 
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the alveolar interstitium through the sub-glycocalyx region. From the interstitium, fluid can move 

into the thoracic veins through the lymphatic vessels and/or into the alveolar space (lungs) through 

the epithelium. In healthy scenarios, very little fluid enters the alveolar space. 

Figure 4.2 shows the schematics of the pulmonary blood circulation. In Figure 4.2, the blood 

stream is noted as a red arrow, and the water and solute flow is noted as a blue arrow. The main 

blood stream at the pulmonary microvessels flows into the pulmonary veins, and returns to the 

heart. However, some water can transport across the pulmonary endothelium due to the hydraulic 

pressure gradient and the osmotic pressure gradient at the pulmonary microvessels and the 

interstitium, or a leaky (sick) interface. Some solutes (e.g., albumin and globulin) flow crosses 

endothelium due to diffusion and advection effects. Figure 4.2 A shows a macroscopic view of 

fluid and mass transport in the pulmonary system, and Figure 4.2 B shows a microscopic view of 

fluid and mass transport, where endothelium is sub-divided into the glycocalyx layer and the 

junction strand, where the junction strand includes sub-glycocalyx region with junction breaks. 

Detailed descriptions of important MVES compartments that differentiate our model follow. 

 

Figure 4. 2: Pulmonary Blood Circulation Schematics. A: blood circulation in the pulmonary system from 

the pulmonary microvessels to the interstium, the alveolar space, and the lymphatic system B: water and 

solute transport across endothelium in more details (glycocalyx, sub-glycocalyx region, junction strand, 

junction break, and interstitium). 
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4.2.2.1 The Glycocalyx 

The endothelial cells in the microvessels are coated with the glycocalyx layer, which is a fuzzy 

and filamentous coat that comprises sulfated proteoglycan, hyaluronan, glycoproteins, and plasma 

proteins [102]. Glycocalyx is also a highly charged layer of membrane-bound biological 

macromolecules. Due to its complex structure, glycocalyx passively limits fluid and mass flow 

and actively regulates the endothelial permeability via mechanotransduction. The glycocalyx layer 

serves as a mediator for cell-cell interactions and protects a cell membrane from the direct action 

of physical forces and stresses allowing the membrane to maintain its integrity. When the 

glycocalyx senses the fluid stress in the vessel, its integrity is altered via released nitric oxide and 

reactive oxygen species. Dull found that during increased pulmonary microvascular pressure, 

endothelial filtration coefficient increases significantly [103]. 

4.2.2.2 The Sub-glycocalyx Region 

Between the glycocalyx layer and the junction break is a ‘protected region’ known as the sub-

glycocalyx region [102]. Since the glycocalyx layer strictly selects the mass flow crossing the 

microvessels, the protein concentration difference between the microvessels and the sub-

glycocalyx region is great. Therefore, sub-glycocalyx osmotic pressure, 𝜋p�, replaces interstitial 

osmotic pressure, 𝜋mnq, in the revised Starling equation [97], [98].  

4.2.2.3 The Junction Break 

The endothelial cells of the pulmonary capillaries form as a tight junction strand with few 

breaks, resulting in very small pathways for fluid and mass to traverse. The pathways are known 

as the junction break.  
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4.2.2.4 The Lymphatic System 

The primary function of the pulmonary lymphatic system is to maintain interstitial fluid 

balance. The lymphatic system returns excess interstitial fluid to the blood circulation via the 

thoracic duct. It plays an important role in homeostasis by controlling interstitial fluid volume. The 

interstitial hydraulic pressure is lower than the thoracic vein pressure. To pump lymphatic fluid 

against this pressure gradient (lymph propulsion), lymphangion smooth muscles rhythmically 

contract. Drake proposed a pumping pressure be added in modeling lymphatic flow. He also found 

that an increase in interstitial fluid volume causes the lymph vessels to dilate, thus decreasing their 

resistance [96].  

 

4.2.3 Modeling 

The microvessels, the sub-glycocalyx region, and the interstitium are three model 

compartments connected in series (Figure 4.1). The glycocalyx is a first membrane (filter) between 

the microvessels and the sub-glycocalyx, and the junction break is a second filter between the sub-

glycocalyx and the interstitium. Connected in parallel to the interstitium, the lymphatic vessels and 

the alveolar epithelium filter the fluid and mass passing through them. Two proteins, albumin and 

globulin, are modeled as they are the most common plasma proteins and affect osmotic pressure 

most. 

To model the complex MVES, we use the linear graph approach [38]. This approach can 

describe a complex dynamic system graphically via simple energy storage and dissipative elements. 

Figure 4.3 describes four transport mechanisms for both water and protein in the pulmonary 

microvascular system. Every node (filled circle) represents a physical compartment and is labeled 
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with a variable, pressure or concentration, depending on the transport mechanism. Every line with 

an arrow represents a flow and is labeled with a parameter like a resistance or a capacitance. 

The oblong ellipses are transducers, and they represent the transport mechanisms’ effects on 

one another. The red lines represent hydraulic transport, yellow osmosis, purple diffusion, and 

green advection. The hollow circles represent sources and the shaded lines represent reference 

variables. The direction of the arrows on the lines is picked by convention but the true direction is 

determined by the net fluid (or mass) flow at any time instant. For example, the protein 

concentration at the interstitium is determined by equating the mass flows entering to the mass 

flows leaving and mass being stored at that location. Mass flows entering are from the sub-

glycocalyx region by two mechanisms, mass flows leaving are to the thoracic veins and/or alveolar 

space by advection, and mass stored is due to the capacitance (dashed line denoted 𝑉mnq) of the 

interstitium. This is seen in Figure 4.3 by the green and purple lines connected to 𝒞mnq . The 

pumping pressure, 𝑃y, which is a function of 𝑃mnq, is the added source into the lymphatic vessels 

(+ sign).  
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Figure 4. 3: Microvascular exchange system linear graph. Red color represents hydraulic, yellow 

represents osmotic, purple represents diffusive, and green represents advective mechanisms. 𝑃, hydraulic 

pressure;	𝜋, osmotic pressure; 𝒞, protein concentration; 𝑄+ , hydraulic fluid flow; 𝑄~ , osmotic fluid flow; 

𝐽x, advective mass flow; 𝐽t, diffusive mass flow; 𝑅+ , hydraulic resistance; 𝑅t , diffusive resistance; 𝑉, 

fluid volume; 𝐶, fluid capacitance; 𝑡𝑟~, osmotic transducer; 𝑡𝑟x, advective transducer; 𝑚𝑣, microvessel; 

𝑠𝑔, sub-glycocalyx region; 𝑖𝑛𝑡, interstitium; 𝑡𝑣, thoracic vein; 𝑎𝑠, alveolar space; 𝑙𝑦𝑚, lymphatics; 𝑟𝑒𝑓, 

reference; 𝑔𝑙𝑥, glycocalyx; 𝑗𝑐𝑛𝑏𝑟𝑘, junction break; 𝑒𝑝𝑖, epithelium; 𝑒𝑛𝑑𝑜, endothelium; 𝑟𝑒𝑓, reference; 

𝑃y, pumping pressure. 

4.2.3.1 Equations 

From the linear graph, we can write the dynamic equations to solve for the variables in time at 

each node. The equations are derived from the laws of conservation of mass. Typically, the 

conservation equations give rise to differential equations while transducers generate (linear or 

nonlinear) algebraic equations. As an example, to solve for the fluid flow from the microvessels 

to the interstitium via hydraulic and osmotic mechanisms, we can derive the following: 



114 
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⋅ (𝑄|{wmnq − 𝑄mnqwq{ − 𝑄mnqwxp)                    (4.1) 

𝑄|{wmnq+ = v
Ð31Ä&
% ⋅ (𝑃|{ − 𝑃mnq)			                                 (4.2) 

𝑄|{wp�~ = 𝑄p�wmnq~ = − v
Ð31Ä&
% ⋅ 𝜎�zQ ⋅ (𝜋|{ − 𝜋p�)	              (4.3) 

				𝑄|{wmnq = 𝑄|{wmnq+ + 𝑄p�wmnq~ = v
Ð31Ä&
% ⋅ [(𝑃|{ − 𝑃mnq) − 𝜎�zQ ⋅ Ý𝜋|{ − 𝜋p�ß							(4.4)  

 
Equations (4.1-4.4) are derived from the linear graph in Fig. 2. Note that Equation (4.4) is in 

fact the same as the revised Starling equation proposed by Michel and Weinbaum [97], [98]. The 

model has 34 equations and 34 unknown variables. 

 

4.2.3.2 Parameter Assignment 

Parameters, the coefficients multiplying the variables in the preceding equations, typically, 

represent material property and geometry. The model has a total of 14 parameters that are 

determined from curves in animal experiments or previously published studies. Table 4.1 shows 

examples of four parameters for the healthy human. The endothelial filtration coefficient, 𝐾¸nt~, 

is derived from the steady-state flow for a healthy human, where Bert and Pinder used 1.12 

ml/hr/mmHg for 𝐾¸nt~  [94], while Dull measured 6.6 ml/hr/mmHg per 100 g predicted lung 

weight from 116 rat experiments [103]. The interstitial capacitance, 𝐶mnq, is assumed as in [94]. 

The glycocalyx reflection coefficient, 𝜎�zQ , was adopted from Adamson [99]. The permeability 

coefficient of albumin at the glycocalyx layer, 𝑃𝑆�zQxz� , is solved via steady-state mass balance as 

1.2 ml/hr, while it is estimated as 3 ml/hr for the entire endothelium [94].  
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Table 4. 1: Parameter Values for a Healthy Human  

Parameters Definition Value 

𝑲𝒆𝒏𝒅𝒐  (ml/hr/mmHg) Filtration coefficient of the 
endothelium 7.64 

𝑪𝒊𝒏𝒕	(ml/mmHg) Interstitial capacity 4.4 [94] 

𝝈𝒈𝒍𝒙 Reflection coefficient of the 
glycocalyx 0.94 [99] 

𝑷𝑺𝒈𝒍𝒙𝒂𝒍𝒃(ml/hr) Permeability coefficient of 
albumin at the glycocalyx 1.2 

 

4.3 Results 

4.3.1 Simulation and Validation for Healthy Subjects 

Table 4.2 holds the normal steady-state values of critical variables for a healthy human. As 

shown in Table 4.2, the proposed model’s steady-state outputs stay within the range of values 

published in the literature (e.g., 𝑉mnq ,	𝑄mnqwq{	) or in agreement with the outputs of a published 

model (e.g., 𝑃mnq , 	𝑄|{wmnq , Cghi
jöõ/Ckl

jöõ	 ,and Cghiüöm/Cklüöm  ). The interstitial pressure has not been 

directly measured for human lungs, but the value from our model closely matches that of 

Heijmans’ model [93], [95]. The interstitial fluid volume, as predicted by simulation, is in very 

good agreement with values reported by Staub [104]. To solve for the pulmonary lymphatic flow, 

P¥ is assumed to be 39 mmHg for normal pulmonary lymphatics. This value is measured at the 

arms’ lymphatics of 16 normal subjects [105]. Similar to Drake, we consider P¥	(lymphatic pump 

pressure source) as a linear function of interstitial hydraulic pressure, Pghi , and consider the 

lymphatic resistance as a nonlinear function of the interstitial fluid volume, Vghi [96]. In steady-

state, the flow going from the microvessels to the interstitium should equal the lymphatic flow to 

maintain fluid balance. As expected, via simulation, the fluid flow from the microvessels to the 

interstitium, Qklwghi , indeed equals the fluid flow from the interstitium to the thoracic veins, 
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Qghiwil. Due to the limited physical space of the sub-glycocalyx region, our assumption of no fluid 

or mass storage capacity for the sub-glycocalyx region to be also justified by Equation 4.4. 

Therefore, the protein concentration of the fluid in the sub-glycocalyx region (Cnj
¥ùõ) equals the 

protein concentration of the fluid that flows across the glycocalyx layer. From the literature, no 

Cnj
¥ùõ values were found. The albumin and globulin concentration ratios between the microvascular 

plasma and the interstitial fluid are reported in Table 4.2 and are in good agreement with the values 

reported by Yoffey [106]. 

Table 4. 2: Steady-state  Simulation Variable Values for a Healthy Human 

Variables (Human) 
Simulation 

Value 
(Proposed 

Model) 

Simulation 
Value 

(Heijmans [93]) 

Experimental 
Value/Range from 

Literature 

Pghi (mmHg) -3.02 -3.3 - 

Vghi (ml) 378.75 378.4 
383 [104] 
274 [107] 

range: 331-406 
Qklwghi (ml/hr) 8.81 8.8 - 

Qghiwil	(ml/hr) 8.81 8.92 range: 10-20 [104] 
range: 5-10 [108] 

Cnj
¥ùõ (g/ml) 0.036 - - 
Cghi
jöõ/Ckl

jöõ 0.49 0.4 0.55 [106] 
Cghiüöm/Cklüöm 0.63 0.6 0.8 [106] 

  

4.3.2 Simulation and Validation for Heart Failure Patients 

Figure 4.4 shows a heart failure simulation induced by setting the pulmonary microvascular 

pressure to 25 mmHg, which is a typical high value for heart failure patients. Fluid volumes of the 

interstitium Vghi and the alveolar space Vün are plotted in time under healthy and diseased scenarios. 

The disease condition followed the Dull study [103] where at Pkl  of 25 mmHg the endothelial 

filtration coefficient (K£hpõ) increased 5 fold. Due to the drastic increase in both hydraulic pressure 
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and filtration coefficient, the interstitial fluid volume increases immediately. As Miff, Prichard, and 

Staub suggest, alveolar flooding happens when Vghi reaches approximately 450 – 600 ml [104], 

[109], [110]. Heijmans [93] suggested the onset of alveolar flooding occurs at an interstitial fluid 

volume of 460 ml. When Vghi reaches 460 ml, alveolar edema develops. Rimoldi [111] claimed that 

acute decompensated heart failure patients can develop flash pulmonary edema, i.e. within minutes. 

Our model, indeed, shows that in about 7 minutes the interstitial fluid starts to seep into the alveolar 

space (after Vghi  exceeds 460 ml). Heijmans, on the other hand, reported the onset of alveolar 

flooding as more than 5 hours and at an even higher pressure (Pkl = 35 mmHg). Their reported 

time to development of alveolar edema, hence, may be too long for heart failure. There is little 

clinical data in the literature on human interstitial and alveolar edema development in time.  

 

Figure 4. 4: Congestive heart failure dynamic simulation with Pkl = 25 mmHg. Model outputs Vghi, Vün 

for heart failure and healthy human 

Figure 4.5 shows simulation results of fluid accumulation in the interstitium and lungs (EVLW) 

in red with 𝑃mv	varying from 12 to 32 mmHg and for durations of 0.5 hours to 10 days or more. 

We compare our results to experimental invasive EVLW measurements by Grover et al. [91] 
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containing 7 chronic heart failure (HF) patients (blue) and 8 acute HF patients (cyan), as well as 

to Heijmans’ [93] simulation model (magenta). The 0.5 hour to 1 day simulation results best 

matched Grover’s acute HF patients, while the 10 days or more results best matched the chronic 

HF patients. Grover reported capillary pressure to be 23.2 ± 3.6 mmHg for the chronic HF group 

and 25.8 ± 8.1 mmHg for the acute HF group, after a duration of symptoms (difficulty breathing) 

of 28 ± 14 hours and 9 ± 4 hours, respectively.  

In the chronic group, EVLW was measured to be in the range of 13.12 to 24.75 ml/kg, while 

Heijmans simulates EVLW to be roughly 5.89 to 6.28 ml/kg for a Pkl  range of 23.2 ± 3.6 mmHg. 

Their value underestimates EVLW for HF patients as compared to Grover. For the same Pkl  range, 

our model predicts an EVLW range between 11.25 to 35.84 ml/kg (10 day, red), a closer adherence 

to the clinical measurements of chronic HF patients (blue) than [93]. Similarly, for the acute HF 

patient group, our model’s acute HF EVLW estimates (5.93 to 14.33 ml/kg) cover the range of 

experimental results more closely than [93]. Further, just as the experimental values show lower 

EVLW for acute patients than for chronic patients, so do our simulation results. Hence, knowing 

the HF patient’s symptom duration and capillary pressure, our model can provide reasonable 

estimation of EVLW non-invasively. 
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Figure 4. 5: EVLW accumulation at different pulmonary capillary pressures 

Figure 4.5 shows pulmonary blood capillary pressure (x-axis) and extravascular fluid volume 

(y-axis). The red lines show fluid accumulation at different Pkl values. From bottom to top, a 

black stem line shows fluid accumulation in time at a sustained Pkl value. As an example, at half 

an hour after insult (Pkl = 25 mmHg, 70 kg person, shown as black dot) EVLW is 8.87 ml/kg. 

This volume indeed equals the sum of the volumes corresponding to the two black dots in Figure 

4.4. 

 

4.3.3 Sensitivity Analysis 

To evaluate the effects of model parameters (filtration coefficients, reflection coefficients, 

osmotic reflection coefficients and permeability coefficients) on the MVES variables (hydraulic 

pressure and the volume of the interstitial space, fluid flow, protein concentration, etc.), we 

performed a sensitivity analysis of the MVES variables to changes in parameters via sigma (Σ) 

values, as shown in Table 4.3. Sigma values were computed to quantify the sensitivity, as 
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¼½xsmx�z¸×¾xsx|¸q¸s
¼¾xsx|¸q¸s×½xsmx�z¸

. The sigma value is a measure of the effect of the change in parameters to 

changes in variables, where parameters represent material property and geometry of the system 

(first column of Table 4.3), while variables are the system outputs (first row of Table 4.3). A bigger 

Σ value indicates a higher sensitivity. Each sigma value is computed using a change in a parameter 

and corresponding changes in variables. For comparison purposes, we have selected a common 

range of parameter change in Table 4.3 (50% decrease to a 100% increase in 10% increments). 

The range -50% to 100% corresponds to halving and doubling each parameter, thereby covering a 

reasonable range to study negative and positive changes of the nominal value. A mean sigma was 

then generated for each parameter (across all variables) and reported in the cells of Table 4.3. 

Table 4. 3: Sensitivity Results 

Σ 𝑷𝒊𝒏𝒕 𝑽𝒊𝒏𝒕 𝑽𝒂𝒔 𝑸𝒎𝒊 𝑸𝒊𝒍 𝑪𝒊𝒏𝒕
𝒑𝒓𝒐 𝑪𝒔𝒈

𝒑𝒓𝒐 𝑪𝒂𝒔
𝒑𝒓𝒐 Mean 

𝑲𝒆𝒏𝒅𝒐 0.2466 0.0126 0 0.1011 0.1012 0.0341 0.0198 0 0.0644 

𝝈𝒆𝒏𝒅𝒐𝒂𝒍𝒃  1.7948 0.0885 0.0185 0.6641 0.6641 0.3341 0.5175 0.0478 0.5162 

𝝈𝒆𝒏𝒅𝒐
𝒈𝒍𝒐  2.1046 0.0828 0.0185 0.5742 0.5741 0.4817 0.4155 0.0467 0.5373 

𝝈𝒈𝒍𝒙 2.2334 0.1621 0.185 1.4096 1.4096 0.4229 0.2421 0.9392 0.8755 

𝑷𝑺𝒈𝒍𝒙𝒂𝒍𝒃  0.6048 0.0245 0 0.1411 0.1411 0.0479 0.0798 0 0.1299 

𝑷𝑺𝒈𝒍𝒙
𝒈𝒍𝒐 0.2217 0.0123 0 0.0738 0.0738 0.0412 0.0416 0 0.0581 

Table 4.3 quantifies the sensitivity of the MVES variables to parameter change. 

As seen in Table 4.3, the MVES variables (fluid pressures, fluid flows, protein concentrations) 

are very sensitive to the glycocalyx reflection coefficient (𝜎�zQ ). This is expected, since the 

glycocalyx layer serves as the main sieve for the fluid and mass transport due to its complex 



121 
 

structure. In addition, reflection coefficient represents the restrictive effect of a pathway to the 

protein mass flow. The osmotic pressure demined by the reflection coefficient is one of the two 

pressure potentials (hydraulic and osmotic pressures) that drives the fluid flow. Hence, the 

reflection coefficients are expected to play an important role. Also, since the protein molecule size 

is much larger than the water molecule, when the pathway is wide enough to pass a protein, water 

molecules supposed to pass easily as well. Therefore, the hydraulic pressure is highly sensitive to 

the glycocalyx reflection coefficient. Among all the parameters, the MVES variables are more 

sensitive to the mass flow coefficients, i.e., endothelial reflection coefficients for albumin and 

globulin, osmotic reflection coefficient of the glycocalyx layer, and the permeability coefficients 

of albumin and globulin at the glycocalyx layer). This is expected with the similar reasons as 

mentioned above, i.e., 1) osmotic pressure gradient is greatly affected by the protein mass flow, 

and 2) water molecules are much smaller than protein molecules, thus fluid flow is sensitive to the 

mass flow coefficients. As expected, the change of the reflection coefficients greatly affects the 

MVES variables, especially for the interstitial pressure and the fluid flow. Note that in this 

sensitivity analysis, each parameter is changed individually without affecting the other parameters. 

In real patients, as the membrane gets more permeable, all the parameters that relate to the filtration 

of fluid and mass flow will alter at the same time, i.e., the filtration coefficients, the reflection 

coefficients, and the permeability coefficients.  

 

4.3.4 Model Stability and Robustness Assessment 

To assess the stability and robustness of the proposed model, we generate phase plane plots for 

unperturbed and perturbed long-time simulations, and assess feasible parameter ranges. For 

numerical stability we have simulated the model for more than 4000 breaths (300+ simulation 
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hours) on a 2.9GHz 8GB machine and plotted the interstitial volume vs interstitial pressure for 

healthy subject and heart failure patients as shown in Figure 4.6 upper and lower panels, 

respectively. The interstitial volume and pressure, two important variables that dictate the lymphatic 

pumping pressure, determine the interstitial fluid balance. We plot these two variables (interstitial 

volume vs interstitial pressure) against each other for both healthy (unperturbed) and diseased 

(perturbed) cases. Both variables reach steady state and have negligible variations that are caused 

by the pulsatile pulmonary capillary pressure input. As shown in Figure 4.6 upper panel 

(unperturbed case), the interstitial pressure oscillates around -3.02 mmHg, and the interstitial 

volume oscillates around 378.75 ml, which are in agreement with the reported values in the 

literature [93] [104] [107]. In the perturbed case, (Figure 4.6 lower panel), both the interstitial 

pressure and volume increase as expected due to the increase in porosity of the endothelium for a 

heart failure condition. The system outputs (interstitial volume vs interstitial pressure) are closed, 

indicating a well-behaved system under both healthy and diseased cases. Through these analyses, 

system stability is maintained when multiplicative factors perturbing the parameters (representing 

lung diseases) are bound by the following limits: 𝐾 ≥ 0, PS ≥ 0, 0 ≤ 𝜎 ≤ 1, and 𝐶mnq > 0. Note 

that physiological systems typically have positive-only parameters, since negative parameter values 

do not have physical meaning. 



123 
 

 

Figure 4. 6: Interstitium volume vs interstitium pressure for long-time breathing simulation in healthy 

subject (upper panel) and heart failure patients (lower panel).  

 

4.4 Conclusion 

In this chapter, we demonstrated via simulation studies that a mathematical microvascular 

exchange system (MVES) model, which has 1) a nonlinear lymphatic system, 2) a revised Starling 

equation including a lumped sub-glycocalyx region, and 3) endothelial glycocalyx filtration 

regulation via mechanotransduction, shows reasonable extravascular lung water (EVLW) 

estimation when compared to published clinical data. Such a model can be used to aid in clinical 

diagnostic or therapeutic decisions for heart failure patients. Prediction of the onset of edema or 

the amount of edema fluid in time could be used to better indicate when to move to a more invasive 

or costly diagnostic tests or when to administer therapies such as diuretics (to remove the excess 
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fluid). In future work, we will expand our model to include sodium-potassium pump, additional 

ions, and more accurate fluid alveolar compliance and pulmonary lymphatic pumping pressure 

values. Further exploration into the change in the tissue properties of acute and chronic heart failure 

patients is needed to better understand and simulate lung edema development.  
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Chapter V: Integrative Pulmonary Model with Lung Gas Exchange 

System and Pulmonary Blood Circulation 

The main function of the lungs is to provide freshly breathed oxygen (O2) to the blood 

capillaries, while taking carbon dioxide (CO2) in exchange from them and expelling it to the 

atmosphere. The oxygenated blood can thus be delivered to all parts of the body so that organs 

maintain functional. In this chapter, we introduce 1) the pulmonary gas exchange system that 

describes the oxygen (𝑂") and carbon dioxide (𝐶𝑂") transport between the pulmonary capillaries 

and the alveolar space, and 2) the pulmonary blood circulation module that describes blood 

transport from the heart to the pulmonary system. Linking these two lung modules (the pulmonary 

gas exchange system and the pulmonary blood circulation) to the other four lung modules 

introduced in the previous chapters, namely, the lung mechanics, the alveolus elasticity, the 

respiratory muscles and rib cage mechanics, and the microvascular exchange modules, we then 

have an integrative dynamic pulmonary system that quantitatively describes human breathing 

mechanism. Each subsystem was developed based on the latest knowledge of lung physiology and 

was validated using either patient data or other accepted physiology-based models. To our 

knowledge, the combined six-module model could be one of the most rigorous lung dynamic 

model in the literature. In this chapter, we simulate and validate this integrative lung model against 

three data sources: 1) blood gas content of healthy patients, 2) the ARDS patient of Chapter I, and 

3) the quadriplegic patients who breathe via isolated phrenic paced diaphragm in Chapter II. This 

integrative lung model helps to better understand the lung normo- and patho-physiology. It can 

determine and forecast the state of breathing mechanisms under healthy and diseased conditions. 

Different therapeutic scenarios could now be tested on the proposed dynamic respiratory model so 
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that the optimal therapy can be found for patients. In addition, system identification techniques 

can be applied to this, or part of this, model to achieve personalized medicine. 

 

5.1 Introduction 

In this work, we complete the human respiratory model by linking the lung gas exchange 

system and the pulmonary blood circulation to the four respiratory modules described in previous 

chapters, namely, the lung mechanics, the alveolus elasticity, the respiratory muscles and rib cage 

mechanics, and the microvascular exchange modules. The gas exchange system describes the 

oxygen (𝑂" ) and carbon dioxide (𝐶𝑂" ) transport between the pulmonary capillaries and the 

alveolar space, and the pulmonary blood circulation module describes blood transport from the 

heart to the pulmonary system. Both the gas exchange and the blood circulation systems are largely 

based on the work of Ursino et al. [112], [113], and Albanese et al. [3],[8].  

Albanese et al. [3],[8] developed a dynamic cardio-pulmonary (CP) model based on the work 

of Ursino et al. [112], [113] that includes cardiovascular circulation, respiratory mechanics, tissue 

and alveolar gas exchange, as well as neural control. Karamolegkos et al. [2] improved the cardiac 

section of the CP model by focusing on the heart-lung interaction phenomena, while the pulmonary 

system remains simplistic. This dissertation contributes a more rigorous human pulmonary system 

in order to 1) better understand the lung normo- and patho-physiology, and 2) achieve personalized 

medicine when system identification techniques are applied to this, or part of this, model.  

This model mathematically articulates the pulmonary physiology as follows. During quiet 

breathing (non-ventilated patients), the nerve that originates in the neck (C3–C5) sends electric 

signals to activate the diaphragmatic and intercostal muscles. The contraction of respiratory 

muscles expands the thoracic cavity, generating a negative hydraulic pressure in the pleural cavity. 
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In the respiratory muscles and rib cage mechanics module (Chapter II), the pleural cavity pressure 

(module output) is computed from the respiratory muscle activity (module input). The pleural 

cavity pressure is a negative pressure that generates a pulling force to expand the lungs and to 

reduce the alveolar pressure. In the lung mechanics module (Chapter I), the change of lung volume 

and the lung pressure (module outputs) during normal breathing are computed as the pleural cavity 

pressure (module input) changes. As the alveolar volume increases during inspiration, the alveolar 

pressure drops. The air thus flows into the alveoli following the pressure gradient through 

mouth/nose, larynx, trachea and bronchi. The trachea and bronchi are airway tubes that divide 

repeatedly into tubes of smaller and smaller diameters. One of the other main determinants of the 

lung volume expansion is the alveolar compliance that is determined by two factors: 1) the lung 

fibers (elastin and collagen) elasticity as quantified by the fiber volume and fiber quality (stress-

strain relation), and 2) the pulmonary surfactant concentration. The surfactant is a mixture of lipids 

and proteins that line the inside of the alveoli, forming a film that reduces surface tension to keep 

alveoli open. The alveolus elasticity module (Chapter II) computes the time-varying alveolar 

compliance value (module output) as a function of lung fiber elasticity and the surfactant 

concentration (module inputs). In the lung mechanics module (Chapter I), lung pressures and 

volumes are computed using the time-varying alveolar compliance as an input. A normal surfactant 

concentration is maintained by a healthy pulmonary microvascular exchange system (Chapter IV). 

This system simulates the water and protein (albumin and globulin) transport between the 

pulmonary capillaries and the alveolar space. The water transport depends on the hydraulic 

pressure gradient and osmotic pressure gradient, and the protein transport depends on the diffusive 

and advective effects across the endothelium and epithelium. During a diseased situation, water in 

the pulmonary capillaries seeps into the alveolar space due to abnormal capillary pressure and/or 
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leaky endothelium or epithelium (permeability coefficients become high). The water accumulated 

in the lungs reduces the pulmonary surfactant concentration, which increases surface tension that 

could collapse the alveoli [12]. The water in the lungs thus serves as an input to the alveolus 

elasticity module for determining the surfactant concentration. The pulmonary blood circulation 

simulates the blood transport from the right ventricle to the left atrium, passing pulmonary arteries, 

capillaries, and veins. The blood pressures and volumes at these locations are computed in time as 

the heart pumps, and the heart rate is also determined by the neural system. Finally, the pulmonary 

gas exchange system computes blood gas contents (module outputs), such as PaO2, PaCO2, etc., 

based on the blood in the pulmonary capillaries and the gas in the alveolar space (module inputs). 

The blood gas contents are computed as results of oxygen (𝑂") and carbon dioxide (𝐶𝑂") transport 

between the pulmonary capillaries and the alveolar space described in the gas exchange system.  

In this chapter, we introduce and link the lung gas exchange module and the pulmonary blood 

circulation module to the four modules that are described in the previous chapters (lung mechanics, 

alveolus elasticity, respiratory muscles and rib cage mechanics, and microvascular exchange) to 

complete the integrative pulmonary system. The relation among these six modules and their 

connections are shown in Figure 5.1. 

In the following Method section, we first summarize the physiology of the pulmonary blood 

circulation and the gas exchange system. We then describe the development of these two modules 

(modeling approach, equations, and parameters). In the Results section, we present simulation 

results and compare them to healthy human data [114], ARDS patient data [21], and quadriplegic 

patient data [56]. Finally, we report the model sensitive analysis, prove the model stability and 

robustness, and conclude on the potential applications of the proposed integrative lung model. 

 



129 
 

 

Figure 5. 1: Block diagram of the integrative dynamic pulmonary model. The six modules highlighted in 

black are described in this dissertation. The full respiratory model comprises: lung mechanics, alveolus 

elasticity, respiratory muscles and rib cage mechanics, pulmonary microvascular exchange, pulmonary 

gas exchange, and pulmonary circulation modules. Püik: atmospheric pressure; Pl£hi: ventilator pressure; 

P¥ö: pleural cavity pressure;	Pik: transmural pressure; Cüöl: alveolar capacitance; Qügù: airflow into and 

out of the lungs; C¥¥
jün: pulmonary peripheral gas (O", CO") concentration; P¥¥: pulmonary peripheral 

pressure; Vröôgp: lung fluid volume; RR: respiratory rate; HR: heart rate. 

 

5.2 Method 

In this section, the model development of the pulmonary blood circulation and the lung gas 

exchange systems are introduced. For each module, we first describe the physiology, then we 

derive the dynamic equations and assign parameter values. The mathematical models of the 

pulmonary blood circulation and the gas exchange systems have been developed by researchers 

[1], [2], [44], [112], [113]. We leverage the work of Ursino et al. [112], [113], and Albanese et al. 

[3],[8] to verify our equations and parameter values. 

 



130 
 

5.2.1 The Pulmonary Blood Circulation System 

Figure 5.2 shows the schematics of the pulmonary circulation. In the pulmonary circulation, 

the blood streams from the right ventricle to the left atrium, passing the pulmonary arteries, the 

pulmonary peripheral vessels, and the pulmonary veins. A pulmonary shunt compartment is added 

in parallel to the pulmonary peripheral circulation, between the pulmonary arteries and the 

pulmonary veins to account for the normal physiological amount of blood that bypasses the gas 

exchange process. When the venous blood (low in 𝑂"	and high in 𝐶𝑂") enters the pulmonary 

capillaries, it is in contact with the alveolar space that is rich in 𝑂" and poor in 𝐶𝑂". Thereby, gas 

exchange happens. The resulting 𝑂"	rich blood returns to the heart, and gets transported through 

the body to deliver 𝑂".  

 

Figure 5. 2: Pulmonary circulation schematics. pa: pulmonary arteries, pp: pulmonary peripherals, pv: 

pulmonary veins, ps: pulmonary shunts, rv: right ventricle,	P: hydraulic pressure, Q: fluid flow. 

Each vascular compartment shown in Figure 5.2 is described by traditional Windkessel 

models, i.e. a hydraulic resistance to account for pressure energy losses, and a hydraulic 

compliance to account for energy storage (blood volume stored at a given pressure). For the 

compartments where inertial forces in blood are significant, i.e., long pulmonary arteries, inertance 

is also included as a third parameter to account for kinetic energy storage in the Windkessel type 
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model. In this work, we adopt the linear graph technique to represent this dynamic system and 

write its dynamic equations of motion. The pulmonary circulation linear graph is marked in Figure 

5.3, and it is drawn in green representing the hydraulic domain. We employ this graphing technique 

to allow for a systematic formulation of the system’s dynamic equations [38]. These equations 

consist of variables and parameters. Parameters represent material property and geometry of the 

lung compartments, such as hydraulic resistances and capacitors. Pressures and volumes are 

termed variables, which could potentially be measured through an instrument. In the pulmonary 

circulation linear graph (green), every node (solid circle) represents pressure within a compartment 

of the vascular system. Every line with an arrow represents a flow between two compartments and 

is labeled with the associated parameter of that segment. We derive the dynamic equations of the 

pulmonary circulation system as: 

𝐶yx
𝑑Ý𝑃yx − 𝑃yzß

𝑑𝑡 = 𝑄s{ − 𝑄yx																																																			(5.1) 

𝐿yx
𝑑𝑄yx
𝑑𝑡 = 𝑃yx − 𝑃yy − 𝑅yx𝑄yx																																																		(5.2) 

Ý𝐶yp + 𝐶yyß
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𝑑𝑡 = 𝑄yx −
𝑃yp − 𝑃y{
𝑅yp

−
𝑃yy − 𝑃y{
𝑅yy

																											(5.3) 

𝑃yp = 𝑃yy																																																																									(5.4) 

𝐶y{
𝑑Ý𝑃y{ − 𝑃yzß

𝑑𝑡 =
𝑃yy − 𝑃y{
𝑅yy

+
𝑃yp − 𝑃y{
𝑅yp

−
𝑃y{ − 𝑃zx
𝑅y{

																										(5.5) 

where 𝑄 is blood flow, 𝑃 is hydraulic pressure, 𝐶  is hydraulic capacitance, 𝐿 is inertance, 𝑅 is 

resistance. The subscripts 𝑝𝑎 represents pulmonary arteries, 𝑝𝑝 represents pulmonary peripherals, 

𝑝𝑣 represents pulmonary veins, 𝑝𝑠 represents pulmonary shunts, 𝑟𝑣 represents right ventricle, and 

𝑝𝑙  represents the pleural cavity pressure. Since the pulmonary shunts and the pulmonary 

peripherals are assumed to be in parallel and no gravitational effects are considered, the pressures 
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inside these two compartments are hence assumed to be equal. Note that the only difference 

between the pulmonary shunts and the pulmonary peripherals are the blood gas concentration, 

since the blood in the shunts bypasses the gas exchange process. The parameters of the equations 

in the pulmonary blood circulation are summarized in Table 5.1, including resistances, 

compliances and inertance at each vascular compartment. 

 

Figure 5. 3: Linear graph of the pulmonary gas exchange and the pulmonary circulation systems. The 

yellow box represents the gas transport in the lungs, and the red box represents the blood transport in the 

pulmonary circulation. The purple line represents the gas (𝑂", 𝐶𝑂") diffusion between the air side and the 

blood side. The green, the purple, and the blue represent hydraulic, diffusion, and advection domains, 

respectively. 𝑝𝑎: pulmonary arteries, 𝑝𝑝: pulmonary peripherals, 𝑝𝑣: pulmonary veins, 𝑝𝑠: pulmonary 

shunts, 𝐴: alveolar space, 𝐷: dead space, 𝐷𝐴: dead space to alveolar space, 𝑟𝑒𝑓: reference,  𝑟𝑣: right 

ventricle, 𝑙𝑎:	left	atrium, 𝑝𝑙:	pleural	cavity, 𝑃: hydraulic pressure, 𝒞 : concentration, 𝑄: fluid 

flow,	𝐽:	mass	(gas	molecule)	flow, 𝑉: volume, 𝐶: capacitance, 𝑅: resistance, 𝐿: inertance, 𝑖: gas 

(𝑂", 𝐶𝑂"). 
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Table 5. 1: Parameters of the Pulmonary Circulation 

Compliances 
(ml/mmHg) 

Resistances 
(𝐦𝐦𝐇𝐠 ⋅ 𝐬 ⋅𝐦𝐥w𝟏) 

Inertance  
(𝐦𝐦𝐇𝐠 ⋅ 𝐬𝟐 ⋅𝐦𝐥w𝟏) 

C¥ü = 0.76 [112] R¥ü = 0.023 [112] L¥ü = 0.18e-3 [112] 
C¥n = 0.0986 [1] R¥¥ = 0.0909 [1] 

 

C¥¥ = 5.7014 [1] R¥n = 5.2588 [1] 
 

C¥l = 25.37 [112] R¥l = 0.056 [112] 
 

 

5.2.2 The Lung Gas Exchange System 

Figure 5.4 shows a schematic block diagram of the lung gas exchange system. The gas 

exchange system includes: 1) the air side (boxed in yellow) has the anatomical dead space (larynx, 

trachea, and bronchi in the lung mechanics module) where gas exchange does not take place, and 

the alveolar space, where gas exchange takes place, and 2) the blood side (boxed in red), i.e., 

pulmonary peripheral vessels and pulmonary shunts in the pulmonary blood circulation module. 

Between the air side and the blood side, 𝑂"	enters the blood from the alveoli compartment, and 

𝐶𝑂" gets expelled into the alveoli compartment from blood. In this module, only 𝑂" and 𝐶𝑂" gas 

species are considered, and they are assumed to be ideal gases. Also, every compartment is 

assumed to be homogenous and perfectly-mixed. The gas fractions in the lungs are computed from 

their partial pressures via the ideal gas law. Thus, we have 𝐹𝐼𝑂" = 21.04 % and 𝐹𝐼𝐶𝑂" = 0.04 % 

calculated from the air components. 
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Figure 5. 4: Pulmonary gas exchange system schematics. The yellow box represents the gas transport in 

the lungs, and the red box represents the blood transport in the pulmonary circulation. �̇�: airflow into the 

lungs, �̇�}: airflow into the alveoli, �̇�z¨ : oxygen flow, �̇�¡z¨ : carbon dioxide flow, 𝐹�xp: inhaled gas fraction 

(𝑂" and 𝐶𝑂"), 𝑉{: volume of the dead space, 𝑉}: alveolar volume, 𝐹},�xp: alveoli gas fraction (𝑂", 

𝐶𝑂"),	𝐹{,�xp: dead space gas fraction (𝑂", 𝐶𝑂"), 𝑄yx: blood flow at pulmonary arteries, 𝑄yy: blood flow 

at pulmonary peripherals, 𝑄yp: blood flow at pulmonary shunt, 𝐶|{,�xp: gas concentration at the pulmonary 

veins, 𝐶x,�xp: gas concentration at the pulmonary arteries, 𝐶yy,�xp: gas concentration at the pulmonary 

peripherals. 

We use linear graph to represent the dynamic gas exchange system as shown in Figure 5.3. In 

the lung mechanics part (green), air flows into the alveoli due to hydraulic pressure gradient. The 

gas species that enters the alveolar space follows the bulk air flow (marked in blue) via advection 

(or convection). The ring that crosses the hydraulic domain and the advection relates the total 

airflow and the gas (𝑂", 𝐶𝑂") flow via gas fractions. The ring represents an ideal energy transducer 

(transformer). Each transducer is characterized by a ratio, in this case, the ratio is the gas fraction. 

Similarly, on the pulmonary circulation side, the ring relates the blood flow and the gas species 
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flow via the blood gas concentration. From the linear graph, we derive the system dynamic 

equations following the conservation of mass: 

𝑉{𝑑𝐹{,�xp = 𝑢Ý�̇�ß�̇�Ý𝐹�xp − 𝐹{,�xpß + 𝑢Ý−�̇�ß�̇�}Ý𝐹{,�xp − 𝐹},�xpß															(5.6) 

																															𝑉}𝑑𝐹},�xp = 𝑢Ý�̇�ß�̇�}Ý𝐹{,�xp − 𝐹},�xpß 

−𝐾 ÿ𝑄yx(1 − 𝑠ℎ)Ý𝐶yy,�xp − 𝐶|{,�xpß + 𝑉yy
𝑑𝐶yy,�xp
𝑑𝑡 ( 		(5.7) 

where the subscript 𝑔𝑎𝑠  indicates either 𝑂"  or 𝐶𝑂" , 𝐷  indicates the dead space, 𝐴  represents 

alveoli,𝑢  is the Heaviside step function, 𝑠ℎ  represents the percentage of pulmonary shunts 

(assumed to be equal to 1.7% [115], see Table 5.2),	𝐾 is a proportionality constant that allows to 

convert volumes from BTPS (body temperature pressure saturated) to STPD (standard temperature 

pressure dry) conditions, 𝑉 is volume, 𝐹 is gas fraction, 𝑄 is flow, and 𝐶 is concentration. 

In Figure 5.3, the 𝑂" and 𝐶𝑂" diffusion between the alveoli and the pulmonary capillary is 

marked in purple. Empirical dissociation curves [116] are adopted to simulate this gas exchange 

mechanism, i.e., relating the gas partial pressure in the alveoli to the gas concentration in the 

pulmonary peripherals. The dissociation curve for 𝑂" transport is represented in Equations 5.8 and 

5.9, and the dissociation curve for 𝐶𝑂" transport is represented in Equations 5.10 and 5.11. 

𝐶yy,z¨ = 𝐶yy,z¨
Ý𝑋yy,z¨ß

v
+v

1 + Ý𝑋yy,z¨ß
v
+v
																																																						(5.8) 

𝑋yy,z¨ = 𝑃},z¨
vÀ~�¾Æ,��¨

��(vÀ��¾Æ,��¨)
																																																								(5.9)  

𝐶yy,¡z¨ = 𝐶yy,¡z¨
Ý𝑋yy,¡z¨ß

v
+"

1 + Ý𝑋yy,¡z¨ß
v
+"
																																																(5.10) 

𝑋yy,¡z¨ = 𝑃},¡z¨
vÀ~¨¾Æ,�¨

�¨(vÀ�¨¾Æ,�¨)
																																																		 (5.11)  
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where 	𝑃},�xp	 = 𝐹},�xp(𝑃xq| − 𝑃Åp) , 𝑃Åp  is the water vapor pressure, 

ℎv, ℎ",𝛼v,𝛼",𝛽v,𝛽", 𝑘v, 𝑘" are coefficients in the dissociation curves. The parameter values of the 

dissociation curves are summarized in Table 5.2. 

After solving for the 𝐶yy,�xp , which is the blood concentration of O2 and CO2 in the pulmonary 

peripheral vessels, the blood gas concentration in the arterial blood (𝐶x,�xp) is then computed via 

a mixing equation as shown in Equation 5.12. It is the weighted average of the blood coming from 

the pulmonary capillaries and from the pulmonary shunts:  

𝐶x,�xp =
𝑄yy𝐶yy,�xp + 𝑄yp𝐶|{,�xp

𝑄yy + 𝑄yp
																																																			(5.12) 

where 𝑄yy and 𝑄yp are the blood flow from the pulmonary peripheral vessels and the pulmonary 

shunts, 𝐶yy,�xp  and 𝐶|{,�xp  are the gas (𝑂" and 𝐶𝑂") concentration at the pulmonary peripheral 

vessels (where gas exchange happens) and at the pulmonary shunts (where gas exchange does not 

happen), respectively. Note that the blood gas concentration at the pulmonary veins equals to the 

blood gas concentration at the pulmonary shunts. From the arterial blood gas concentrations, 

𝐶x,z¨and 𝐶x,¡z¨ , the corresponding partial pressures can be computed by applying the inverse of 

the dissociation functions. Finally, arterial oxygen saturation can be computed:  

𝑆x,�xp% =
𝐶x,z¨ − 𝑃x,z¨ ⋅

0.003
100

𝐻𝑔𝑏 ⋅ 1.34 ⋅ 100																																													(5.13) 

where 𝐻𝑔𝑏 is the hemoglobin concentration (in per of blood), 1.34 is the oxygen capacity (in 𝑔 

per 𝑚𝑙 of 𝐻𝑔𝑏) and the term 0.003/100 represents the solubility of 𝑂" in blood (in 𝑚𝑙 of 𝑂" per 

𝑚𝑙 of blood per 𝑚𝑚𝐻𝑔).  
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Table 5. 2: Parameters of the Gas Exchange System 

ENVIRONMENTAL 
CONDITIONS 

FIO" = 21.04 % Püik  = 760 mmHg 
FICO" = 0.04% P�n  = 47 mmHg 

K = 1.21  

DISSOCIATION CURVES 
[116] 

Cnüi,�"	= 9 mmol/L	 Cnüi,��"	 = 86.11 mmol/L 
hv	= 0.3836 h"	= 1.829 

αv = 0.03198 mmHgwv α" = 0.05591 mmHgwv 
βv	= 0.008275 mmHgwv β"	= 0.03255 mmHgwv 
kv = 14.99 mmHg k" = 194.4 mmHg 

PHYSIOLOGICAL STATUS sh	= 1.7 [115] Hgb	= 15 g/dl [117] 
 

5.3 Results 

In this section, the proposed model is first compared to healthy human data reported in [114]. 

Then, we simulate ARDS and validate against ARDS patient data [21] from Chapter I. We also 

simulate the gas contents of the quadriplegic patient who breathes via isolated phrenic paced 

diaphragm as a continuation of Chapter II [56]. Finally, we report the model sensitivity analysis, 

and assess the stability and robustness of the proposed model. 

 

5.3.1 Simulation and Validation for Healthy Subjects 

Upon simulation of the integrative model, normal breathing simulation for a healthy human is 

shown in Figure 5.5. The partial pressure of oxygen (PaO2), the partial pressure of carbon dioxide 

(PaCO2), and the arterial oxygen saturation (SaO2) are plotted with respect to time. Our simulation 

results show that the PaO2 and SaO2 increase during inspiration and decrease during expiration. 

However, PaCO2 changes in the opposite direction to PaO2. This trend is expected, since 𝑂" enters 

the blood and 𝐶𝑂" gets expelled from the blood during inspiration, causing PaO2 increases while 

PaCO2 decreases. The healthy simulation has an averaged PaO2 value of 87.5 mmHg, an averaged 

PaCO2 value of 40.7 mmHg, and an averaged SaO2 of 95.8%. All of these values stay in the healthy 
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range as reported by Castro et al. [114]. In addition, there are two periodicities in the signal, the 

slower one, follows the respiratory rate, while the faster one follows the heart rate. This healthy 

patient simulation serves as an acceptable preliminary validation of our model.  

 

Figure 5. 5: Model simulation of a healthy subject during normal breathing, compared to healthy human 

data reported in literature [114]. The arterial partial pressure of oxygen (PaO2), the arterial partial pressure 

of carbon dioxide (PaCO2), and the arterial oxygen saturation (SaO2) are reported in the upper, middle, 

lower panel, respectively. 

 

5.3.2 Simulation and Validation for ARDS Patients 

In Chapter I, the lung mechanics variables (airflow, alveolar pressure and alveolar volume) are 

simulated for ARDS patients with different severity levels defined by Fujioka et al. [37]. In this 

work, since the pulmonary gas exchange system is linked to the lung mechanics module, the blood 

gas for such ARDS cases are simulated. In Figure 5.6, the arterial oxygen partial pressures (PaO2) 
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in time are shown for the healthy (blue) and the two ARDS severity levels (red and yellow): 1) 

low severity, i.e., 20% reduction in surfactant concentration, and 2) high severity, i.e., 40% 

reduction in surfactant concentration and 8 times more of collagen volume. For the low and high 

ARDS severity cases, PaO2 values are reduced when compare to the healthy patient simulation. 

The PaO2 values are reduced to 60 mmHg (31% reduction) and 47 mmHg (46% reduction) for the 

low and high severities, respectively. This reduction of PaO2 is expected since an abnormal 

alveolar compliance causes a low tidal volume, which reduces arterial partial pressure of 𝑂". Note 

that both simulated PaO2 values (low and the high severity cases) fall out of the normal range 

[114]. 

 

Figure 5. 6: ARDS simulation: healthy (blue) and two severity levels (red and yellow): 1) 20% reduction 

in surfactant concentration, and 2) 40% reduction in surfactant concentration and 8 times more of 

collagen volume. The arterial partial pressure of oxygen	(PaO2)	is shown. 
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In the validation of the lung mechanics and the alveolus elasticity modules in Chapter I, 

Servillo et al. [21] reported one exemplary ARDS patient data with a measured PaO2/FIO2 (PF 

ratio). In Chapter I, we estimated the values of the surfactant concentration and the collagen 

volume of this exemplary patient to replicate the patient’s measured PV curve. In this work, as the 

gas exchange system is linked, we also compute the patient’s PF ratio and compare to the reported 

data. In Figure 5.7, the simulated PF ratio for this ARDS patient in time is plotted in blue, and the 

PF ratio reported in [21] is shown in red. The simulated PF ratio has an averaged value of 78.9 

mmHg, which is highly close to the value reported in [21], 79 mmHg. In this simulation, since the 

heart rate and venous blood gas concentration are not reported in the literature, a normal heart rate 

of 70 bpm and a normal venous blood concentration of 𝐶½,z¨  15 ml/dl and 𝐶½,¡z¨  of 52 ml/dl are 

assumed in the simulation.  

 

Figure 5. 7: Model validation against ARDS patient from Servillo et al. [21]. The blue line represents the 

simulated PaO2/FIO2 ratio, and the red is the measured PaO2/FIO2. 
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5.3.3 Simulation and Validation for Quadriplegic Patients 

In the validation of the respiratory muscles and rib cage mechanics module, the quadriplegic 

patient with phrenic paced diaphragm data [56] was adopted in Chapter II. In Chapter II, we 

replicated the patient’s measured pressure values (abdominal pressure, pleural pressure, and the 

transmural pressure), the angular displacement of the lower and upper ribs during respiration, and 

the patient’s tidal volume. Figure 5.8 shows the blood gas simulation (PaO2, PaCO2, SaO2) of this 

quadriplegic patient [56]. Since the heart rate and venous blood gas concentration are not reported 

in the literature, we assumed a normal heart rate of 70 bpm (beats per minute) and a normal venous 

blood 𝑂" concentration of 15 ml/dl and 𝐶𝑂" concentration of 52 ml/dl in the simulation. Due to 

the support of the phrenic paced diaphragm, the blood gas variables of this quadriplegic patient 

are all in normal range which agree with the literature [56].  

 

Figure 5. 8: Model simulation of a quadriplegic patient with phrenic paced diaphragm. The partial 

pressure of oxygen (PaO2), the partial pressure of carbon dioxide (PaCO2), and the arterial oxygen 

saturation (SaO2) are reported in the upper, middle, lower panel, respectively. 
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5.3.4 Sensitivity Analysis 

To evaluate the effects of model parameters on the gas exchange system variables we have 

performed a sensitivity analysis of the gas exchange variables to changes in parameters. We have 

computed the sigma (sensitivity) values (Σ) values, and tabulated them in Table 5.3. Sigma values 

were computed to quantify the sensitivity as ¼½xsmx�z¸×¾xsx|¸q¸s
¼¾xsx|¸q¸s×½xsmx�z¸

. The sigma value is a measure of 

the effect of the change in parameters to changes in variables, where parameters represent material 

property and geometry of the system (rows of Table 5.3), while variables are the system outputs 

(columns of Table 5.3). A bigger Σ  value indicates a higher sensitivity. Each sigma value is 

computed using a change in a parameter and corresponding changes in variable. For comparison 

purposes, we have selected a common range of parameter change in Table 5.2 (50% decrease to a 

100% increase in 10% increments). The range -50% to 100% corresponds to halving and doubling 

each parameter, thereby covering a reasonable range to study negative and positive changes of the 

nominal value. A mean sigma was then generated for each parameter (across all variables), and 

reported in the table. For instance, we have discovered that surfactant concentration is the most 

sensitive parameter across all gas exchange variables and has an average sensitivity of 0.22. This 

is expected, since the surfactant concentration greatly affects the alveolar compliance that affects 

the tidal volume, as learnt in Chapter I. The sensitivity analysis of the lung mechanics and alveolar 

elasticity modules (Chapter I) also agrees that surfactant concentration has a high Σ value. The 

pleural cavity compliance (𝐶yz) in the respiratory muscles and rib cage mechanics module is the 

second highest sensitive parameter, across all variables, and has an average sensitivity of 0.098. 

This agrees with the sensitivity analysis in Chapter II that the lung mechanics variables (pressures 

and volumes at different lung compartments) are indeed sensitive to 𝐶yz . The pulmonary 

physiology also supports this sensitivity result that pleural cavity pressure (𝑃yz ), which is 
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determined by 𝐶yz , dictates the airflow going in and out of the lungs. Hence, 𝐶yz  is a critical 

parameter that reflects pulmonary health. Note that, in Chapter I, 𝑃yz is modeled as the input to the 

lung mechanics system. The gas exchange system variables are also very sensitive to the collagen 

elasticity parameters (𝑐v, 𝑐"). This result is consistent with the sensitivity results in Chapter I. The 

importance of the collagen elasticity parameters makes sense, since LM variables are sensitive to 

the collagen elasticity parameters (shown in the sensitivity analysis in Chapter I), and the LM 

variables directly affect ventilation, thus the blood oxygenation. The resistances and compliances 

of the upper airways (𝑅�}, 𝑅q� , 𝑅zq , 𝐶z , 𝐶qs , and 𝐶� ) were the least sensitive parameters. This 

observation is expected since parameters affecting the alveolar compartment (and not the upper 

airways) are the main determinants of respiratory conditions such as ARDS and IPF [12]–[17]. 

Table 5. 3: Sensitivity analysis 

𝛴 𝑃𝑎𝑂" 𝑃𝑎𝐶𝑂" 𝑆𝑎𝑂" 𝐶𝑎𝑂" 𝐶𝑎𝐶𝑂" Mean 
𝛤 0.6871 0.1577 0.0985 0.1057 0.0884 0.22748 
𝐶yz 0.3193 0.0553 0.0398 0.0433 0.0341 0.09836 
𝑐" 0.3001 0.0504 0.0397 0.0429 0.0313 0.09288 
𝑐v 0.2851 0.0463 0.0356 0.0387 0.0292 0.08698 
𝐶x�t 0.209 0.0502 0.023 0.0256 0.0284 0.06724 
𝑉�~z 0.1596 0.0297 0.0184 0.0202 0.018 0.04918 
𝑅|z 0.07 0.015 0.0077 0.0086 0.0088 0.02202 
𝐶� 0.0608 0.0125 0.0067 0.0075 0.0074 0.01898 
𝑅q�  0.014 0.0031 0.0015 0.0017 0.0018 0.00442 
𝐶qs 0.0123 0.0026 0.0013 0.0015 0.0015 0.00384 
𝑅�} 0.0079 0.0017 0.0009 0.001 0.001 0.0025 
𝑅zq 0.0068 0.0013 0.0007 0.0008 0.0008 0.00208 
𝐶z 0.0005 0.0001 0.0001 0.0001 0.0001 0.00018 

 

Next, let us compute a confidence metric of our simulation based on the sensitivity analysis. 

Sensitivity analysis tells us what is the most/least sensitive parameter, however, it does not give 

an indication on the confidence ranges of those variables. We choose to quantify the confidence 
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ranges of the model variables (akin to confidence intervals) by varying (increasing and decreasing) 

the basal parameters by 10%, and then performing model simulation. Take the surfactant 

concentration (the most sensitive parameter) as an example, with a change of normal surfactant 

concentration from -10% to 10%, the simulation of SaO" values are in the range [94.58, 96.59] %, 

PaO" values in the range [79.17, 94.33] mmHg, and PaCO" values in the range [40.01, 41.38] 

mmHg. All the ranges are enveloped by the healthy variable ranges reported in the literature [114], 

which gives further credence to the integrative lung model. Similarly, the range of the lung 

mechanics variables are also simulated to be within the healthy variable ranges, e.g., tidal volume 

(Chapter I) is in the range [0.4, 0.58] L.  

 

5.3.5 Model Stability and Robustness Assessment 

In this part of the work, we assess the stability and the robustness of the proposed model. To 

prove numerical stability, we have simulated the model for more than 4000 breaths (300+ 

simulation hours) on a 2.9GHz 8GB machine. The model outputs 𝑃𝑎𝑂" and alveolar volume are 

plotted on a phase plane as shown in Figure 5.9. Both 𝑃𝑎𝑂" and alveolar volume are well-known 

indicators of blood oxygenation and ventilation in the lung gas exchange system and lung 

mechanics module respectively. Hence, we plot those two important states against each other (𝑃𝑎𝑂" 

vs alveolar volume) for healthy (blue), low severity (red) and high severity (yellow) levels 

(following Figure 5.5). The system output loops (𝑃𝑎𝑂" vs alveolar volume) are closed, indicating 

a well-behaved system under both healthy (unperturbed) and diseased (perturbed) cases. Through 

these analyses, system stability is maintained when multiplicative factors perturbing the parameters 

(representing lung diseases) are bound by the following limits: 𝑅|z > 0, 𝑅zq > 0, 𝑅q� > 0, 𝑅�} >

0, 𝐶z > 0, 𝐶qs > 0, 𝐶� > 0, 𝐶yz > 0, 𝐶x�t > 0, 𝑉�~z > 0, Γ ≥ 0, 𝑐v > 0, and 0 < 𝑐" ≤1. Note that 
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physiological systems typically have positive-only parameters, since negative parameter values do 

not have physical meaning. 

 

Figure 5. 9: Model output loops (PaO2 vs Alveolar volume) for long-time breathing simulation in healthy 

(blue), low severity (red) and high severity (yellow) sickness levels. Low severity: 20% reduction in 

surfactant concentration. High severity: 40% reduction in surfactant concentration and 8 times increase in 

basal collagen volume. 

 

5.4 Conclusion 

In this chapter, we have completed an integrative lung model that includes six pulmonary 

modules: lung mechanics, alveolus elasticity, respiratory muscles and rib cage mechanics, 

microvascular exchange, pulmonary circulation, and pulmonary gas exchange. This lung model 

simulates the pulmonary variables, across three transport mechanism: hydraulic, diffusive, and 
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advective, including lung pressures and volumes, rib cage kinematics, blood gas contents, lung 

fluid balance, and pulmonary vascular pressures.  

A dynamic model of the pulmonary system for predicting diseases is still uncommon in current 

medicine. However, its benefits are numerous, including parameters that have real physical 

meaning and changes in which can be related to diseases and/or interventions. The proposed 

integrative pulmonary system elevates the understanding of the lung normo- and patho-physiology 

via its integrative physiological knowledge and their mathematical functions. This model provides 

users the freedom to change the parameters that relate to a disease, and outputs the corresponding 

variables that reflect the patient’s health. The proposed model can also forecast the state of 

breathing mechanisms under healthy and diseased conditions by performing long time simulation. 

In addition, different therapeutic scenarios can be tested on the proposed dynamic respiratory 

model so that the optimal therapy can be found for a specific patient. In addition, system 

identification techniques can be applied to this, or part of this, model to achieve personalized 

medicine for better disease diagnosis and treatment. 

In future work, we will replace the simplistic pulmonary system in the cardio-pulmonary model 

developed by Albanese [1] with the proposed integrative pulmonary model to create a more 

rigorous cardio-pulmonary model. Then, more model validation against real human data should 

be performed. In addition, parameter estimation techniques can be applied to this, or part of this, 

model in order to personalize for the individual. 
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Chapter VI: Summary and Future Work  

6.1 Summary 

In this thesis we have taken another step toward personalized medicine via a physiology-based 

model and optimization algorithms, which improves patient health assessment, diagnosis, and 

therapy. This work proposed a dynamic pulmonary system that includes: 1) a lung mechanics 

module (Chapter I) that quantitatively describe the change of lung pressures and volumes, 2) an 

alveolus elasticity module (Chapter I) that determines the alveolar compliance as a function of 

surfactant concentration and lung fiber elasticity, 3) a respiratory muscles and rib cage mechanics 

module (Chapter II) that computes the rib cage movement and the variation of the pleural cavity 

pressure as the respiratory muscles (diaphragm and intercostal muscles) contract and relax during 

respiration, 4) a microvascular exchange system (Chapter IV) that describes the fluid (water) and 

mass (protein) transport between the alveoli and the pulmonary capillaries, 5) a lung gas exchange 

system (Chapter V) that quantitatively describes the oxygen and carbon dioxide transport between 

the air in the lungs and the blood in the pulmonary microvessels, and 6) a pulmonary blood 

circulation module (Chapter V) that describes the blood flows from the heart to the pulmonary 

system. Each module was developed based on the latest knowledge of lung physiology and was 

validated using patient data when available or published and validated physiology-based models 

when data is unavailable. This dynamic respiratory system can be used to describe human 

breathing under healthy and diseased conditions. It provides users the freedom to change the 

parameters that relate to a disease, and outputs the variables that reflect the patient health. Different 

therapeutic scenarios can be tested on the proposed dynamic respiratory model so that an optimal 

therapy can be found for a patient. In addition, system identification techniques can be applied to 
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this model, or part of it, to achieve personalized medicine for better disease diagnosis and 

treatment. 

To assess the pulmonary health state of a specific patient, we have also developed a simplistic 

lung mechanics model. Utilizing this simplistic model, the parameters that represent the state of 

lung health and pulmonary functionality, i.e., the lung mechanical properties (resistance and 

compliance) and the patient breathing effort, can be estimated via system identification techniques. 

Pulmonary syndromes or diseases, such as ARDS and COPD (Chronic Obstructive Pulmonary 

Disease) evoke alterations in lung resistance and compliance. Tracking these two parameters thus 

can lead to better disease diagnosis and easier monitoring of the respiratory disease progression. 

In Chapter III, a model-based nonlinear constrained optimization algorithm is developed to 

estimate, breath-by-breath, the lung resistance, the lung compliance, as well as the patient 

breathing effort due to the respiratory muscle activity, using readily available non-invasive 

measurements (airway opening pressure and airflow). Data collected from a lung emulator built at 

Quadrus Medical Technologies is used to test the algorithms. Utilizing the developed optimization 

algorithms along with the data collected from the lung emulator, we manage to estimate the lung 

mechanics parameters (resistance and compliance) and the respiratory muscle effort within an 

average percent error of only 5%. 

 

6.2 Future work 

The proposed pulmonary system and the developed optimization algorithms are a successful 

first step that accomplish one application of personalized medicine. This work can be further 

expanded in terms of modeling and parameter estimation so that the proposed work can achieve 
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personalized medicine under more conditions. In the following, we articulate some proposed future 

work per chapter. 

Chapter I: Utilizing the proposed dynamic model, the development of ARDS and IPF in time 

becomes possible to simulate. To validate such a model, ARDS and IPF human studies that 

measure the pleural cavity pressure and lung volume in time would be needed. Another piece of 

work would involve the real-time estimation of the lung fiber elasticity and the alveolar surfactant 

concentration so to achieve personalized medicine.  

Chapter II: The proposed model simulates human quiet breathing involving intercostal and 

diaphragm muscles activity only. For future research, the contraction of the accessary respiratory 

muscles (scalene muscles) ought to be included in order to simulate breathing during exercise 

(forced respiration). To validate forced respiration, human studies that measure the lower and 

upper rib angular displacement, sternum movement, abdominal and pleural cavity pressures would 

be needed.  

Chapter III: Testing of the proposed optimization algorithms on human or animal should be 

the next step to extend this chapter’s work. The human/animal airway opening pressure and airflow 

measurements would be required for optimization, and the alveolar and pleural pressure 

measurements are needed to compute the true lung mechanics parameters for algorithm validation. 

Chapter IV: In future work, this model can be expanded by including: 1) sodium-potassium 

pumping transport mechanism, and 2) additional blood ions (sodium, potassium, etc.) transport to 

simulate a more realistic blood condition. To further validate the lung water accumulation for heart 

failure patients, human studies that measure the change of extravascular lung water volume in time 

and pulmonary peripheral pressure are needed. 
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Chapter V: One of the future research possibilities is the simulation of corona virus disease 

(COVID) utilizing the proposed integrative lung model. Human studies are needed to further 

validate COVID simulation using the proposed model. COVID patients are known to be lung 

mechanics compromised or gas exchange compromised. To simulate and validate the lung 

mechanics compromised COVID patient, the measurement of pressure-volume curve is needed to 

estimate lung mechanics parameters. For the gas exchange compromised type, measurements of 

heart rate, arterial and venous blood gas concentration would be needed to estimate the parameters 

of the gas exchange system (the gas dissociation curve). The simulation of COVID patients with 

the estimated lung parameters can provide clinicians with specific what-if scenarios. 

In addition, the  pulmonary system in the cardio-pulmonary (CP) model developed by 

Albanese [1] should be enhanced with the proposed integrative pulmonary model. With the full 

CP model, more model-based applications can be researched, for example, fluid management, drug 

infusion, cardio-pulmonary interaction and monitoring, etc. 
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Appendix A 

The dynamic equations of the six pulmonary subsystems are summarized in this section.  

A1. Lung Mechanics module 

𝐶z
𝑑𝑃z
𝑑𝑡 =

𝑃x~ − 𝑃z
𝑅|z

−
𝑃z − 𝑃qs
𝑅zq

																																																		(𝐴 − 1) 

𝐶qs
𝑑(𝑃qs − 𝑃yz)

𝑑𝑡 =
𝑃z − 𝑃qs
𝑅zq

−
𝑃qs − 𝑃�
𝑅q�

																																								(𝐴 − 2) 

𝐶�
𝑑(𝑃� − 𝑃yz)

𝑑𝑡 =
𝑃qs − 𝑃�
𝑅q�

−
𝑃� − 𝑃}
𝑅�}

																																									(𝐴 − 3) 

𝐶}
𝑑(𝑃} − 𝑃yz)

𝑑𝑡 =
𝑃� − 𝑃}
𝑅�}

																																																			(𝐴 − 4) 

�̇� =
𝑃x~ − 𝑃z
𝑅|z

																																																																	(𝐴 − 5) 

𝑉z = 𝐶z𝑃z + 𝑉�,z																																																														(𝐴 − 6) 

𝑉qs = 𝐶qs(𝑃qs − 𝑃yz) + 𝑉�,qs 																																																	(𝐴 − 7) 

𝑉� = 𝐶�(𝑃� − 𝑃yz) + 𝑉�,�																																																		(𝐴 − 8) 

𝑉} = 𝐶}(𝑃} − 𝑃yz) + 𝑉�,}																																																		(𝐴 − 9) 

𝑉{ = 𝑉z + 𝑉qs + 𝑉�																																																							(𝐴 − 10) 

A2. Alveolus Elasticity Module 

𝜎¡ = 	 𝑐v log ¢1 −
£¤¥(¦§)wv

�¨
© + 𝑐ª𝜖�																																																			(𝐴 − 11)  

 
𝜎¸ = 𝐸𝜖�																																																																								(𝐴 − 12)  

 
𝜎�m� = 𝜎¸ + 𝜎�																																																																	(𝐴 − 13)  

 
𝐹�m� = 𝜎�m�𝐴�m�																																																																	(𝐴 − 14)  
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𝛾 = ¯
𝛾° − 𝐸Γ																																			Γ < Γ²
Γ² exp ¢

�

µ́
(𝛤² − 𝛤)© 										Γ ≥ Γ²

																																			(𝐴 − 15)  

 

Fnôùr =
2γ
Rüöl

Aüöl 																																																															(A − 16) 

𝐶xz{ =
𝑉}
𝜌𝑅𝑇 +

Δ𝑉}
Δ𝑃}

																																																												(A − 17) 

A3. Respiratory Muscles and Rib Cage Mechanics 

RMRM Differential Equations with Transducer Equations: 

𝑚�q�̇��q = 	𝐹tmx − 𝐴t~𝑃x�t + 𝐴t~𝑃yz − 𝑏tmx𝑣�q																															(𝐴 − 18) 

𝐶x�t�̇�x�t = 𝐴t~𝑣�q − 𝑙s�z 𝐴zs�÷~x sinÝ𝜃z,~ − 𝜃zß𝜔zs�																												(𝐴 − 19) 

𝐶yz�̇�yz = 	𝑄zwqs − 𝐴t~𝑣�q − 𝐴�s�𝑙s�� sinÝ𝜃�,~ − 𝜃�ß𝜔�s� − 𝐴zs�
yz 𝑙s�z sinÝ𝜃z,~ − 𝜃zß𝜔zs�		(𝐴 − 20) 

𝐼zs��̇�zs� = 𝐴zs�
yz 𝑙s�z sinÝ𝜃z,~ − 𝜃zß𝑃yz + 𝐴zs�÷~x𝑙s�z sinÝ𝜃z,~ − 𝜃zß 𝑃x�t − 𝜏- + 𝑙s�z cosÝ𝜃z,~ − 𝜃zß 𝐹tmx

− 𝑏zs�𝜔zs� − 𝑘zs�𝜃zs�																																																																																													(𝐴 − 21) 

𝐼�s��̇��s� = 𝑙s�� cosÝ𝜃�,~ − 𝜃�ß𝐹mnq + 𝐴�s�𝑙s�� sinÝ𝜃�,~ − 𝜃�ß𝑃yz + 𝜏- − 𝑏�s�𝜔�s� − 𝑘�s�𝜃�s�	 

(𝐴 − 22) 

�̇�- = 𝑘 �𝜔zs� − 𝜔�s� −
1
𝑏 𝜏

-�																																											(𝐴 − 23) 

RMRM Transducer Equations 

Ø
𝑣�q
𝐹�q
yzÙ = Û 0

1
𝐴t~

−𝐴t~ 0
Ü �
𝑃yz
𝑄yz�q

� 																																													(𝐴 − 24) 

Ø
𝑣�q
𝐹�qx�t

Ù = Û 0 −
1
𝐴t~

𝐴t~ 0
Ü Ø
𝑃x�t
𝑄x�	t�q Ù																																								(𝐴 − 25) 
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Ø
𝑃x�t
𝑄x�tzs� Ù = Û

0
−1

𝑙s�z 𝐴zs�÷~x sinÝ𝜃z,~ − 𝜃zß
𝑙s�z 𝐴zs�÷~x sinÝ𝜃z,~ − 𝜃zß 0

Ü Ø
𝜔zs�
𝜏zs�x�t

Ù														(𝐴 − 26) 

�
𝑃yz
𝑄yz�s�

� = Û
0

−1
𝑙s�� 𝐴�s� sinÝ𝜃�,~ − 𝜃�ß

𝑙s�� 𝐴�s� sinÝ𝜃�,~ − 𝜃�ß 0
Ü Ø
𝜔�s�
𝜏�s�
yz Ù													(𝐴 − 27) 

�
𝑃yz
𝑄yzzs�

� = Ö
0

−1
𝑙s�z 𝐴zs�

¥ö sinÝ𝜃z,~ − 𝜃zß

𝑙s�z 𝐴zs�
¥ö sinÝ𝜃z,~ − 𝜃zß 0

× Ø
𝜔zs�
𝜏zs�
yz Ù															(𝐴 − 28) 

Ø𝐹tmx𝑣tmx
Ù = Û

−1
𝑙s�z cosÝ𝜃z,~ − 𝜃zß

0

0 𝑙s�z cosÝ𝜃z,~ − 𝜃zß
Ü ¢
𝜏tmx
𝜔zs�©																						(𝐴 − 29) 

Ø𝐹mnq𝑣mnq
Ù = Û

1
𝑙s�� cos	(𝜃�,~ − 𝜃�)

0

0 −𝑙s�� cos	(𝜃�,~ − 𝜃�)
Ü ¢
𝜏mnq
𝜔�s�©																					(𝐴 − 30) 

RMRM Differential Equations 

𝑚�q𝑣�q̇ = 𝐹tmx − 𝐹�qx�t − 𝐹�q
yz																																																			(𝐴 − 31) 

𝐶yz�̇�yz = 	𝑄zwqs − 𝑄yz�q − 𝑄¾zzs� − 𝑄yz�s�																																								(𝐴 − 32) 

𝐶x�t�̇�x�t = −𝑄x�t�q − 𝑄x�tzs� 																																																						(𝐴 − 33) 

𝐼zs��̇�zs� = −𝜏zs�
yz − 𝜏zs�x�t − 𝜏- − 𝜏tmx																																					(𝐴 − 34) 

𝐼�s��̇��s� = −𝜏mnq − 𝜏�s�
yz + 𝜏-																																															(𝐴 − 35) 

�̇�- = 𝑘 �𝜔zs� − 𝜔�s� −
1
𝑏 𝜏

-�																																																			(𝐴 − 36) 

A4. Microvascular Exchange System 

t¾'1Ò
tq

= v
¡'1Ò

⋅ (𝑄|{wmnq − 𝑄mnqwq{ − 𝑄mnqwxp)										                (𝐴 − 37)            

𝑄|{wmnq+ = v
Ð31Ä&
% ⋅ (𝑃|{ − 𝑃mnq)			                                 (𝐴 − 38) 
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𝑄|{wp�~ = 𝑄p�wmnq~ = − v
Ð31Ä&
% ⋅ 𝜎�zQ ⋅ (𝜋|{ − 𝜋p�)	              (𝐴 − 39) 

				𝑄|{wmnq = 𝑄|{wmnq+ + 𝑄p�wmnq~ =
1

𝑅¸nt~+ ⋅ [(𝑃|{ − 𝑃mnq) − 𝜎�zQ ⋅ Ý𝜋|{ − 𝜋p�ß							(𝐴 − 40) 

𝑄mnqwxp =
1
𝑅¸ym+ ⋅ [(𝑃mnq − 𝑃xp) − 𝜎¸ym ⋅ (𝜋mnq − 𝜋xp)																				(𝐴 − 41) 

t¾Ô2
tq

= v
¡Ô2

⋅ (𝑄mnqwxp)													                        (𝐴 − 42)     

𝑉mnq = ∫𝑄|{wmnq − 𝑄mnqwq{ − 𝑄mnqwxp 	𝑑𝑡									                   (𝐴 − 43)     

𝑉xp = ∫𝑄mnqwxp 	𝑑𝑡									                                 (𝐴 − 44)     

 

A5. Pulmonary Blood Circulation 

𝐶yx
𝑑(𝑃yx − 𝑃yz)

𝑑𝑡 = 𝑄s{,~ − 𝑄yx																																										(𝐴 − 45) 

𝐿yx
𝑑𝑄yx
𝑑𝑡 = 𝑃yx − 𝑃yy − 𝑅yx𝑄yx																																							(𝐴 − 46) 

𝑉yx = 𝐶yx ⋅ Ý𝑃yx − 𝑃yzß + 𝑉�,yx																																							(𝐴 − 47) 

Ý𝐶yp + 𝐶yyß
𝑑(𝑃yy − 𝑃yz)

𝑑𝑡 = 𝑄yx − 𝑄yp − 𝑄yy																															(𝐴 − 48) 

𝑄yy =
𝑃yy − 𝑃y{
𝑅yy

																																																										(𝐴 − 49) 

𝑄yp =
𝑃yp − 𝑃y{
𝑅yp

																																																											(𝐴 − 50) 

𝑃yp = 𝑃yy																																																																			(𝐴 − 51) 

𝑉yy = 𝐶yy ⋅ Ý𝑃yy − 𝑃yzß + 𝑉�,yy																																														(𝐴 − 52) 

𝑉yp = 𝐶yp ⋅ Ý𝑃yp − 𝑃yzß + 𝑉�,yp																																														(𝐴 − 53) 

Ý𝐶y{ß
𝑑(𝑃y{ − 𝑃yz)

𝑑𝑡 = 𝑄yy + 𝑄yp − 𝑄y{																																						(𝐴 − 54) 
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𝑄y{ =
𝑃y{ − 𝑃zx
𝑅y{

																																																										(𝐴 − 55) 

𝑉y{ = 𝐶y{ ⋅ Ý𝑃y{ − 𝑃yzß + 𝑉�,y{																																														(𝐴 − 56) 

A6. Lung Gas Exchange System 

𝑉{𝑑𝐹{,�xp = 𝑢Ý�̇�ß�̇�Ý𝐹�xp − 𝐹{,�xpß + 𝑢Ý−�̇�ß�̇�}Ý𝐹{,�xp − 𝐹},�xpß															(𝐴 − 57) 

																															𝑉}𝑑𝐹},�xp = 𝑢Ý�̇�ß�̇�}Ý𝐹{,�xp − 𝐹},�xpß 

−𝐾 ÿ𝑄yx(1 − 𝑠ℎ)Ý𝐶yy,�xp − 𝐶|{,�xpß + 𝑉yy
𝑑𝐶yy,�xp
𝑑𝑡 ( 		(𝐴 − 58) 

𝐶yy,z¨ = 𝐶yy,z¨
Ý𝑋yy,z¨ß

v
+v

1 + Ý𝑋yy,z¨ß
v
+v
																																																						(𝐴 − 59) 

𝑋yy,z¨ = 𝑃},z¨
vÀ~�¾Æ,��¨

��(vÀ��¾Æ,��¨)
																																																								(𝐴 − 60)  

𝐶yy,¡z¨ = 𝐶yy,¡z¨
Ý𝑋yy,¡z¨ß

v
+"

1 + Ý𝑋yy,¡z¨ß
v
+"
																																																(𝐴 − 61) 

𝑋yy,¡z¨ = 𝑃},¡z¨
vÀ~¨¾Æ,�¨

�¨(vÀ�¨¾Æ,�¨)
																																																		 (𝐴 − 62)  

𝑃},�xp	 = 𝐹},�xp(𝑃xq| − 𝑃Åp)																																																				(𝐴 − 63) 

𝐶x,�xp =
𝑄yy𝐶yy,�xp + 𝑄yp𝐶|{,�xp

𝑄yy + 𝑄yp
																																														(𝐴 − 64) 

𝑆x,�xp% =
𝐶x,z¨ − 𝑃x,z¨ ⋅

0.003
100

𝐻𝑔𝑏 ⋅ 1.34 ⋅ 100																																										(𝐴 − 65) 

 

 

 

 


