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ABSTRACT

Design of an Integrated CMOS Transceiver with Wireless Power and Data

Telemetry with Application to Implantable Flexible Neural Probes

Jordan Thimot

Recent developments in implantable medical devices (IMDs) have created

a need for communication systems integrated directly into the implant with

feedback data for various sensing systems. The need for modern communication

techniques, power delivery systems, and usable interfaces for smart implants

present an interesting challenge for engineers trying to provide doctors and

medical professionals with the best resources available for medical research.

This dissertation will cover the design of an integrated CMOS transceiver

and near-field inductive link used for an IMD and the accompanying CMOS

front end for the application space of neural recording in the brain of lab mice.

The design process of the CMOS IC, along with thinning techniques, the near-

field inductive link, and the design of an external reading system will be dis-

cussed in detail. The various wireless power and data telemetry techniques

applicable for IMDs and their strengths and weaknesses will also be described.

Software techniques and implementation for real-time analysis of a high data

rate communication system from the designed IMD will be covered. Finally,

transceiver verification will be given for both power and data telemetry under

various scenarios, with front end verification performed via controlled lab bench

experiments using input sinusoidal wave forms.
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Chapter 1

Introduction

Inductively coupled links have become commonplace in supplying both power and

data to implantable medical devices (IMDs). Previous wireless IMDs have typically

used off-chip receiver (Rx) antennas and circuitry for telemetry and voltage recti-

fication, increasing the required volume of the implant considerably and creating a

rigid interface between implant and tissue that triggers stronger immune response

[1–4]. In our case, we seek to push down the scale and form-factor of RF transceivers

and wireless powering to create millimeter-scale antennas for these links and do so

on-chip, while achieving Mbps data rates and mW-scale power levels at mm-scale im-

plantable depths. Other approaches for scaled power transfer such as ultrasound [5],

which have advantages in implantation depth, do not allow high-data-rate telemetry

because of MHz-scale carrier frequencies.

Our wireless implant has the Rx antennas integrated on-chip and, by thinning the
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substrates to 15µm, allows the implant transceiver to displace an overall volume of

less than 0.08 mm3 with the Rx coils covering an area of only 4 mm2. Once thinned,

the integrated transceiver has the form factor of tissue paper allowing it to conform

to tissue surface. Removal of the lossy silicon substrates also improves wireless power

transfer (WPT) efficiency.

The requirements for mW-scale power and Mbps-scale data rates necessitates the

use of backscatter techniques (passive modulation of Rx resonance frequency) for data

uplink (IMD to outside). Other high-data-rate telemetry techniques such as the use

of ultra-wide-band (UWB) transmitters or non-passive frequency modulation, require

larger antennas and power amplifiers to drive the antennas to achieve acceptable bit-

error-rates (BERs) [6]. The use of millimeter-scale integrated coils produces smaller

transmission radii and lower power transfer efficiency (PTE) than what would be

achievable with larger, lower-loss antennae. Backscatter data transfer at high-data-

rates with this antenna scale through lossy media, even at mm-scale implantation

depths, also presents intersymbol-interference (ISI) challenges, which we overcome

with extensive equalization of the channel.

This thesis will be divided into 5 chapters including this introduction. The re-

mainder of chapter 1 provides an background information to the three main topics

covered by the application space of this work. Specifically the three section to be

covered will be a discussion on the history of wireless power systems, with an empha-

sis on how system design changes in biological media, a discussion of wireless data

communications techniques, with emphasis of reconstruction in an unknown wireless

channel, an introduction to the intended application space of the transceiver system,

neural interface systems for recording in the brain of mice. Chapter 2 will cover the

design of the ASIC itself, specifically covering the circuit design of critical blocks and

designed performance metrics. Also covered will be the thinning and post-processing

that is performed on the chip to become flexible and reduce implant volume. Chapter
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3 will cover the design of the external reader system. Heavily emphasis in this section

will be devoted to data reconstruction of the back-scattered data signal, as a custom

and rigorous equalization technique needed to be implemented to maintain connec-

tion across the wireless channel. Chapter 4 will cover the simulated and measured

results of the implant systems that are covered in chapters 2 and 3. Finally, chapter 5

will conclude the work with a summary of the results and discussions of future work

that can be done on comparable systems.

1.1 Wireless Near-Field Power Systems

Through the history of development of IMDs, the need for transmission of wireless

energy to power the implant, typically referred to as wireless power transfer (WPT),

has become a main staple in most implants [7]. Wireless power has been a topic

of interest even outside of the biomedical field since Nikola Tesla’s experiments for

worldwide wireless power distribution in the late 19th to early 20th century [8]. The

type of operation for wireless power networks can be broken down into three distinct

regions: the reactive near-field region, the radiating near-field or Fresnel region, and

the far-field or Fraunhofer region [9]. Far-field transmission is suitable for a variety of

uses, typically either low-power sensor networks where efficiency is not a concern and

the entire network could be safely illuminated with radiation to supply low amounts of

power to all receivers in the field, or in military or space applications, where both the

efficiency and cost hits are necessary for the application space. For most applications,

where both higher power transfer and power transfer efficiency (PTE) become the

driving force in the design, the transmission radius must be reduced into the near-

field or Fresnel region. While this limits the physical radius of operation of systems,

it greatly improves both operating efficiency of the system and safety, as the distance

between receiver and transmitter is typically on the order of a wavelength or less, and
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radiated power outside that zone is considerably lower and thus well outside specific

absorption rate (SAR) limits as indicated by the IEEE [10]. By definition the three

wireless regions are defined by:

Near − Field : R < 0.62
√
D3/λ

Fresnel : 0.62
√
D3/λ < R < 2D2/λ

Fraunhofer : R > 2D2/λ

(1.1)

Where R is the distance from the antenna, D is the largest dimension of the

antenna, and λ is the wavelength of the electromagnetic wave [9]. Depending upon

application, research into WPT based technologies are split into far-field radiation sys-

tems [11–14] and near-field systems [15–18]. In the near-field the magnetic field dom-

inates inductive coupling between close proximity antennas, which greatly increases

the coupling, mutual inductance, and wireless power transfer between a matched coil

pair. This has made near-field magnetic coupling the go to method for wireless power

transfer for high efficiency systems. A general model for a near-field WPT system for

DC delivery in an implantable system is depicted in figure 1.1. A inductor coil pair is

matched to impedance transformation networks such that the ratio of the radiation

resistance for each coil is maximized. This occurs when the input matching network’s

impedance is designed to be the complex conjugate of each inductor’s impedance at

the desired resonance frequency. Examples of wireless power systems utilizing the

near-field magnetic field strength for high efficiency WPT are commonly seen in the

biomedical application space [19–24].

For a printed circuit board loop antenna, the self-inductance of a single loop

antenna coil can be calculated by the equation:

Lself (R,w) = µR[ln(16R
w

)− 2] (1.2)
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Figure 1.1: Standard WPT Model for Wireless Systems

Where R is the radius of the loop, µ is the magnetic permeability of the surround-

ing medium, and w is the diameter of the wire, assuming a circular cross section [25].

For an N turn loop, the self-inductance is scaled by a factor of N. When two coils

are placed within close proximity, the mutual inductance for the coil pair in the near

field can be calculated by the Neumann formula to be:

M = µ

4π

∮ ∮ dI1 · dI2

R
(1.3)

Which involves the double line integral of both the magnetic fields generated by

the current in L1 and the field generated by the current in L2 [26]. Solving this

integral two circular inductors, the mutual inductance between 2 coils in a link can

written as functions of the effective spiral radii and number of turns of each spiral,

and the separation radius:

M12(R1, n1, R2, n2, d12) = πµon1R
2
1n2R

2
2

2
√

(R2
1 + d2

12)3
(1.4)

Giving mutual inductance dependence and therefore coil coupling on coil sepa-

ration as 1
d

3
2
. The coupling coefficient, k, can be written as a function of the coil

inductances and mutual inductance, and the quality factor, Q, of an inductor can be

expressed as a function of the coil inductance and internal resistance:
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k12 = M12√
L1L2

(1.5)

Q = ωL

R
(1.6)

Algebraically combining equations for k, Q and solving the 2-port RLC equiva-

lent for the near-field wireless power transfer, we can determine the theoretical peak

efficiency of the link without load to be:

ηmax = k2
12Q1Q2

(1 +
√

1 + k2
12Q1Q2)2

(1.7)

Now considering loads, At resonance for a near-field coil pair, the power delivered

to a load attached to the receiver can be calculated to be:

Pload = V 2
inω

2M2RL

(R1(R2 +RL)2 + ω2M2)2 (1.8)

Where R1, R2, RL, Vin, and ω are the parasitic coil resistances, the resistance

of the load being driven at the output of the receiver coil, the input voltage to the

transmitter coil, and the frequency of operation respectively. From this equation, we

see that the output power is a direct function of the input power at the TX, and

will increase with mutual inductance as a function of the driven load. The power

transmission efficiency for a driven load can be then written as:

ηload = ω2M2RL

R1(R2 +RL)2 + ω2M2(R2 +RL) (1.9)

In general this means the PTE of a wireless link increases as the series resistance

of the transmitter and receiver coils are minimized. Using these equations, the WPT

can be maximized by designing inductors L1, and L2 to have low parasitic resistance,

high self and mutual inductance, and high quality factors [27, 28].
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1.1.1 WPT in Biological Systems

For implantable systems, the use of near-field inductive links has become the stan-

dard technique for wireless power transfer [29–33]. Biological systems are unique

transmission mediums and may, in general, be described as a fairly dense, lossy, di-

electric that presents difficult challenges to maintain functionality without harming

the biological system in which the system is implanted. In order to properly simulate

expected electromagnetic losses in in-vivo systems, living tissue may be modeled as a

planar set of layered homogenous boundaries with the appropriate permittivities and

conductivities [7].

The dielectric properties of tissue result in high power absorption, particularly

in terms of the electric field, making far-field communications extremely difficult,

and requiring near-field inductive links [32, 34]. Luckily for magnetic coupling, the

magnetic permeability in a majority of tissues is close to 1, causing the magnetic

permeability to approach µo, the permeability in free space, favoring inductive links

for both data and power transmission in implants even more [35]. Simulations high-

lighting this stark difference in energy radiation between electric and magnetic fields

were performed by [32] can be seen in figure 1.2.

(a) Electric Field Propagation (b) Magnetic Field Propagation

Figure 1.2: Near-field E and H penetration in a human head model

Temperature considerations are also critical for WPT in tissues, as the tissue
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absorbs a significant amount of energy in radiated electromagnetic fields which is

quantified as the specific absorption rate (SAR). Mathmatically SAR can be expressed

as:

SAR = σ

2ρ | E |
2 (1.10)

Which shows a quadratic relationship of SAR to the generated electric field [36].

In general the magnetic field in tissues are approximately equal to the equivalent field

in air, since the magnetic permeability of tissues in general is close to one. Therefore

energy focused into electromagnetic fields in tissue will primarily be delivered by the

magnetic component, why the loss and heating components will be dominated by the

electric field. Any tissue heating, particularly in brain tissue, causes damage to living

cells, which places extra emphasis on power transfer efficiency to maximized as much

as possible in a biological environment for implants.

1.2 Wireless Communications Links

For near-field data communications, emphasis on wireless power transfer is not as

important as for near-field power links, with a large emphasis placed on signal band-

width for increased data rate. From an antenna standpoint, wider bandwidths actu-

ally occur from a lower quality factor, meaning antenna layout needs to be adjusted

to increase coupling and bandwidth at the cost of power delivery and efficiency. This

section will cover the encoding techniques commonly used in implant technologies

and in wireless communications in general, and will cover the primary data recovery

technique on the receiver side for noisy channels, equalization.
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1.2.1 Encoding Techniques

For wireless data transmission, a carrier signal is modulated in order to encode data

onto a higher frequency system. In the near-field, the primary mode of energy cou-

pling is still the magnetic field as was the case for WPT. The oldest standard in

near-field coupling is the radio-frequency ID tag (RFID) which was invented in the

1940s [37], where data is measured by reflected power from a receiver coil in the pres-

ence of a transmitter. RFID was limited to 1-directional communications however,

so various bi-directional near-field communications (NFC) systems were developed.

The most common modulation techniques used for near-field magnetic systems in-

clude amplitude modulation methods such amplitude-shift-keying (ASK) and on-off

keying (OOK), load-shift-keying (LSK), and cyclic on-off-keying (COOK). In each of

these amplitude modulation methods, the magnitude of magnetic coupling occurring

in the transmitting antenna is increased or decreased which can be demodulated on

the receiver side using circuitry.

Frequency modulation encoding techniques include frequency-shift-keying (FSK),

phase-shift-keying (PSK), passive-phase-shift-keying (PSSK), and for extremely high

data rate communications, impulse radio-ultra wideband (IR-UWB) encoding is used.

Frequency modulation techniques modify the phase relationship of a carrier frequency,

while maintaining relatively even magnitude over time, and the binary decisions sent

by the transmitter can be recovered from the frequency shifts using demodulation

circuitry on the receiver, typically in the form of in-phase and quadrature (IQ) de-

modulation circuitry [38–42].

1.2.2 Load Shift Keying

For this work, the primary encoding technique employed is LSK. For a fully wireless

link where both power and data are supplied, a 4-coil link (figure 1.3) is often created,
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Figure 1.3: 4-Coil Model for simultaneous power and data transfer.

with one 2-coil pair (coils 1 and 2) employed for the wireless power link, and the other

2-coil pair (coils 3 and 4) employed for the data communications link. By tuning the

power coil pairs to have a sufficiently different resonance frequency than the data

coils, the cross coupling terms, k14 and k23 can be ignored. Typically modeled into

the lumped loss impedance calculated for the wireless power transfer equations is the

reflective impedance contribution from other coils in the link, Zr. This reflective

impedance comes from the backscattered return path from the transmitter coil to the

receiver coil and by definition can be modeled as, where the data coils are now coils

1 and 2:

Zr = (ωM12)2

Z2
(1.11)

Which has proportionality to the square of the mutual inductance. This means

that the backscattered amplitude of an LSK signal falls off as a function of the sepa-

ration radius cubed! For near-field links, which typically only operate at separation

distances of 1 to 2.5 times the largest geometric feature on a transmitting inductor

[43], this means the effective communication radius on an LSK link will likely fall
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below the outer diameter of the transmitting coil.

Adding the reflective impedance in the 4-port circuit depicted in 1.3, circuit anal-

ysis, and working under the assumption the coupling coefficients between the power

coils and the data coils are not considered to be significant since the power coils are

tuned for a different resonance, the effective 2-port network for the LSK coil pair can

be changed into the form of figure 1.4. Algebraically, we can determine the impedance

on the receiver side, Z2 to be:

Figure 1.4: 2-Coil Model including Reflective impedance for LSK Encoding

Z2 = jωL2 + (R2 || C2) (1.12)

Using voltage divsion, the voltage across the transmitting inductor, VL1), is :

VL1 = ( jωL1

R1 + Zr + j(ωL1 − 1
ωC1

))Vin (1.13)

Mathematically at resonance the conditions:

j(ωL1 −
1
ωC1

) = 0 = j(ωL2 −
ωC2R

2
2

1 + ω2C2R2
2
) (1.14)

are satisfied. Using these resonance conditions and equations for Z2, Zr, yields an

expression at resonance for the ratio of the input voltage to the transmitter voltage

in terms of the coupling coefficient and quality factors of the coils:
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Vin

VL1(ω = ωo)
= −j( 1

Q1
+ k2

Q2
) (1.15)

When the LSK enabled, the switch is closed so the effective parallel capacitance

increases from C2 to C ′
2 = C2 +nC2. Adding this parallel capacitance to the network

and rederiving the voltage ratio yields:

Vin

VL1(ω = ωo)
= −j( 1

Q1
+ k2

Q2
) + k2n (1.16)

Meaning the resonance shift in the receiver from load-shift-keying causes an in-

crease in the real impedance as seen by the transmitter, which causes an extremely

small dip in the output power of the transmitter power amplifier when the LSK switch

is opened or closed.

1.2.3 Intersymbol Interference and Signal Equalization

As in all wireless communications systems, infinite bandwidth would be required

to fully received a perfect binary waveform across a wireless medium. In physical

systems, bandwidth is finite, meaning sent binary levels will be both decayed and

spread out in the time domain to the point that one symbol’s time response will

bleed into the next and possibly multiple consecutive symbols. This bleeding effect is

referred to as intersymbol interference (ISI). Figure 1.5 depicts typical ISI in a binary

communication system [44].

Mathematically the original binary input waveform transmitted, ωin(t), can be

written as:

ωin(t) =
∑

n

anh(t− nTs) (1.17)

Where an Refers to the valid amplitude levels for different transmitted data, h(t)

is the unit impulse response, and δ(t − nTs) is a unit dirac delta function with a
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Figure 1.5: Example of ISI on received bianry pulses in a communication system

time width of 1/Ts. For a binary phase-shift-key sequence the valid values of an are

1 and -1. This binary waveform gets corrupted during transmission by the channel’s

unknown transfer function he(t) yielding the output corrupted waveform mathemat-

ically as:

ωout(t) =
∑

n

anhe(t− nTs) (1.18)

The corruption of this signal is identified as the ISI, and must be removed in order

to create an accurate wireless data link. One of the primary methods of removing ISI

from a signal is equalization. One form, linear channel equalization, involves the use

of a linear filter, called the equalization filter, which narrows the band of a distorted

digital waveform thus reducing the effects of ISI. This linear filter has a set number

of taps, each with different weights corresponding to the equivalent coefficients of the

filter’s transfer function. A normal linear filter FIR topology is depicted in figure 1.6

[45].

Since the actual wireless channel can be unknown, and can change from causes

such as interference or the multi-path problem, it becomes important for the equalizer
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Figure 1.6: Direct form linear FIR filter with 4-taps

to be able to adapt to the channel through the use on an adaptive filter. By adapting

the weights of the linear FIR filter using a feedback algorithm by defining an error

function, the linear filter is transformed into a linear equalizer. The structure of a

linear equalizer with adaptive feedback takes the structure depicted in figure 1.7 [46].

A linear equalizer is specified to have N taps, with M taps per symbol decision

Figure 1.7: Structure of a Linear Equalizer

To determine the error of the equalization channel, desired amplitude and phase

responses for respective binary values are predetermined in Hilbert space with a time

width corresponding to a single symbol. Error is considered to be minimized, when

the value of the hilbert-space magnitudes matches the input waveform after going

through the equalization filter. Those desired points can be plotted on a quadrature
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graph called the channels desired constellation. Two of the most commonly used

hilbert-space data constellations are depicted in figure 1.8 [47].

Figure 1.8: 16-QAM Constellation with a variable Modulus (a) and 8-PSK with
Constant Modulus (b)

The method at which the filter weights is tuned generally referred to as the used

equalization algorithm. The most common adaptive equalization algorithms are the

Least Means Square (LMS), Recursive Least Squares (RLS), and the Constant Mod-

ulus Algorithm (CMA). For the LMS and RLS adaptive algorithms, the filter weights

for all taps start with a normalized value of one and by recursive application of a

training sequence, where the desired output is already known to the equalizer. For

the CMA algorithm, no training sequence is necessary, since the filter goal is to cre-

ate a constant magnitude with only phase changes for every symbol decision. Since a

training sequence is not necessary, the CMA algorithm is the only application error

function that is compatible with the implant transceiver [46–48].

The ultimate quality measure in optical communication links is the bit error ratio

(BER). However, a direct experimental BER determination can be done only as long

as the link is out of service (if not a hard-decision forward error correction (FEC) is

able to report errors), because a known data sequence has to be transmitted, and it
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consumes a significant amount of time if the BER is small.

The BER of a signal is a direct function of the ratio of the energy-per-bit trans-

mitted in the signal to the noise level of the received signal, known as Eb/No. For

different designed hilbert-space constellations, the theoretical BER as a function of

Eb/No is depicted in figure 1.9.

Figure 1.9: Theoretical BER vs Eb/N0 for common constellations

Plotting at the graph of the hilbert-space function of binary-encoded constellation

data over the sample period T, a pattern forms known as the eye diagram (figure

1.10). Based on both the height and width of this eye, a graph known as a bathtub

curve can be generated, the spacing of which can be used to estimate the BER of an

equalized signal depending upon both the amplitude and phase of the sample point

in the periodic time in hilbert space. By choosing the center of the eye both in phase

jitter, and in noise amplitude, BER of a wireless link can be minimized [49–51].
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Figure 1.10: Ideeal Eye Diagram for PSK

1.3 Implantable CMOS Devices

Along with the development and advancement of microelectronics, modern IMDs have

been developed to assist in treatment of a plethora of diseases for both monitoring and

treatment of patients. Because of size constraints and power limitations, a variety of

different power systems have been developed, typically employed using small short-

term batteries that require regular charging to maintain functionality of the implant

or a physical tether outside of the body that supplies both energy and data to and from

the implantable system. Specifically in this thesis, the primary discussion of IMDs

will pertain to neural interface systems. As opposed to larger IMD systems such as

cochlear implants, pace makers, or heart monitors where a large foreign object can

be easily stitched in-between tissue layers without causing a strong immune response,

neural interface systems must take a much smaller form factor so as not to displace a

large amount of tissue and disrupt neural behavior. The exact volume limit that an

IMD is aiming for is therefore extremely dependent upon the organism in which it
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is being implanted. For our application, we have designed a transceiver system that

is compatible with neural recording systems for laboratory mice. Since the mouse

brain’s dimensions are on the order of a couple centimeters as opposed to a primate

brain which is on the order of 10s of centimeters, the volumetric displacement must

be limited to far less than 1mm3. In addition, a shank-based approach with a several

millimeter long and approximately 100 micron wide electrode interface will allow for

deep brain recording in the targeted region of the mouse brain.

Most current neural recording systems utilize passive silicon shanks in which only

electrodes and wires exist on the shank itself with all the electronics external. Recent

advances in nanofabrication techniques have allowed these systems to scale to up

to 256 recording sites per shank. More recently, active CMOS probes have been

developed that incorporate the electronics on the shank itself, allowing even higher

channel counts [52–54]. These CMOS neural probes, however, require a physical

tether to a power source and data acquisition system requiring wiring through the

skull and skin of the animal and mechanical fixation of the probe to the skull, resulting

in additional damage and inflammation as the brain moves relative to the probe. A

picture of the state-of-the-art neuropixel system [55] highlights how large and bulky

these tethers can be.

To remove the requirement of a bulky tether, the design addition of an integrated

transceiver on the ASIC itself is proposed. This transceiver will be fully wireless and

is designed to be completely implanted in the brain of the mouse itself for recording,

mechanically floating with the brain. Figure 1.12, depicts the intended final appli-

cation space of this thesis, a small wireless implant system-on-chip, with a shank

inserted deeply into the tissue of a mouse brain with both power delivery and data

telemetry supplied by an external reader system that communicates with the chip via

near-field RF communications. In addition, in order to lessen the immune response

of the brain tissue, the chip will be thinned While other systems have used wireless

18



Figure 1.11: Commercial Neuropixel System

power and data telemetry for biomedical implants, these efforts have all used multiple

components, specifically large off-chip antennas, increasing the required volume of the

implant considerably [1–3]. Since the system proposed decreases the entire package

volume considerably, the dedicated area for a front end neural interface is limited

compared to commercial systems, and this trade-off will be seen in the number of

total sites that can be integrated on a single system, the speed and accuracy of inte-

grated data converters, and the overall range of tunable controls for an amplification

system.

Compared to other wireless implants, neural systems require a much higher data

bandwidth than cochlear or cardiac devices, as the neural signal content covers both

a much higher bandwidth, and the density of sites to be recorded from is significantly

higher. To address this, while still providing a fully wireless system, the proposed

system will utilize the highest data rate possible communications scheme while still

maintaining a very small volumetric form factor. The primary consequence of higher

data rates means significantly higher operational bandwidth than what might be seen
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Figure 1.12: Proposed System Application

in current medical devices. While a wireless band is already dedicated for medical im-

plant communications (known currently as the MedRadio bands) in the low 400MHz

range, the data bandwidth of these bands is limited to 300kHz [56–58]. Neural signals

cannot be properly captured at this small a data bandwidth, as the primary frequency

content of high frequency potentials can be as high as 10-20kHz. As such, current

neural recording systems require data bandwidths of 10-30kS/s per site! With only

a 300kHz data band to work with, that would limit the total number of concurrent

sampled sites to approximately 10, and that’s assuming a multi-bit sample can be

sent in a single cycle. To achieve higher data rates, therefore, the use of both a higher

and non-standard frequency carrier is required, in addition to the use of a custom

data protocol that will maximize data communication rate.
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Chapter 2

Design of Implantable ASIC

2.1 Design Specifications and Goals

In the design of this ASIC implant, there are three distinct sub-blocks each with

their own set of requirements to meet the desired goals of the implant system. These

three blocks are the physical antennas for both power and data telemetry, the data-

modulation and demodulation systems, power harvesting circuitry, including clock-

and-data recovery, and the biological interface circuitry including front end amplifiers

and on-chip ADC. In parallel, each of these sub-blocks was also designed to operate

after being thinned post-fabrication from the foundry.

A system block of the implantable IC is depicted in figure 2.1. The overarching

ASIC design goals were to be able to be fully wirelessly power-able while remaining

under the Specific Absorption Rate (SAR) limit specified by the IEEE guidelines
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for limited exposure for medical implants and for the transceiver to provide a high

enough data-rate to be able to concurrently sample all sites in the neural amplification

system at a high enough sample rate to capture the relevant data bandwidths for

neural signals.

Figure 2.1: Implant IC System Block

The final IC layout with each major block labeled is depicted in figure 2.2. The

shank with bio-interface circuitry measures 3.25mm by 70µm wide, with 60µm of

metal exclude for post-processing of the shank. The antenna blocks with power and

data coils measures 2mm by 2mm with all remaining circuitry encompassed in a

0.5mm by 2mm block. A majority of the remaining circuitry’s area is taken up by

arrays of decoupling capacitors to maintain as steady a DC voltage to power the

ASIC as possible. The simulated power required to fully power the implant is 2.7mW

for the transceiver circuitry, and 1.5mW for the neural interface system and ADC.

Including insertion loss, this requires 10.4mW of total WPT from reader to implant

to achieve full wireless functionality.
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Figure 2.2: Physical Layout of Implantable ASIC

2.2 Near-field Four Coil Design

For the on-chip antennas, the first design decision was which type of wireless link to

employ, with the most common link types for implant systems described in detail in

Chapter 1. Also, the antennas were designed considering both the specific-absorption-

rate (SAR) limits as specified for localized fields by the IEEE standards. In order to

meet these absorption rates, assuming the overall PTE would be on the order of 1−3%

and at least 50% of the energy received by the power coils could be harvested, a total

power budget of 1W was given at the reader transmitter, leaving 10mW of expected

received power in the implant power coil, resulting a total of 5mW remaining for all

the circuitry in both the transceiver and the neural amplifier system.

The downsides of using integrated inductors for transmission comes with the prob-

lem of electrical smallness. As you can see from plots of the current distributions given

in figure 2.3, the transmission efficiency of IC side radiation is significantly lower than

for large coils that can be fabricated on the PCB side of the system. By definition, a

radiating antenna becomes electrically small when the area of the entire antenna fits

inside a sphere of radius a = λ/(2π) [59–63]. The effects of this electrical smallness

can be observed in figure 2.3, where the energy radiated by the TX and absorbed by
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the RX is great when the PCB side is transmitting and the implant side is absorbing

(2.3a), and the energy absorbed by the RX is very small when the implant side is the

radiator (2.3b).

For power transmission, the implant is simply a passive receiver, so the concept

of electrical smallness is not a problem since it will never actually transmit power

at 27MHz, the power transfer efficiency just takes a hit since the coils cannot be

perfectly matched. For data transmission, however, this presents a challenge which

greatly limits the effective range for data transmission. Also, since we are only able to

use passive modulation to save power in the implant design, the data coil’s backscat-

tered matching is what is measured for the data uplink, meaning we are taking the hit

for RF losses from the TX/RX separation twice. To change the backscattered match-

ing we shift the load impedance that is attached in parallel to the inductive coil which

modifies the resonance frequency of the data receiver coil. Since we are shifting the

load of the coil, we call this type of modulation load shift keying (LSK). An example

design from ADS where the resonance frequency of a receiver is shifting from being

in tune with the RX at close to 800MHz (curves in black) to being completely out of

tune at < 200MHz (curves in blue) is depicted in figure 2.4. Without LSK enabled,

the amount of power supplied by the TX side is actually effectively modulated to two

separate binary states on the receiver side in terms of output power.

(a) EM Current Distribution with PCB side
transmission

(b) EM Current Distribution with IC side
transmission

Figure 2.3: IC side vs PCB side RF transmission
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Figure 2.4: RX Power, TX Power, and TX/RX Efficiency with LSK modulation

For physical inductor size of the on-chip coils, the coil outer diameter was limited

by the size limit of the implant while still being usable in the brain of a small mouse.

Total implant volume was targeted to be less than 0.1mm3, which for assumed 20µm

thickness, allowing for a total chip surface area of 5mm2. Budgeting 80% of surface

area for the near-field inductors, yielded an outer radius of 2mm by 2mm for the power

coil. For the near-field link being designed, we show in figure 2.5 that the amount of

coupling between TX and RX increases with turn count as a function of N2 where N

is the number of turns in a loop inductor. Increasing the number of turns, however,

also has the downside of increasing the resistive losses as a function of N, which at

some point will both create too much heat loss and diminish the radiation efficiency

of the coil. For our system, the optimal turn count was iteratively determined to be

5 for the power coil and 7 for the data coil.

For the cross sectional area of the antennas, the goal was to maximize the qual-

ity factor of the coils. The Q of the inductors is directly proportional to the coil

inductance, and inversely proportional to the resistance per unit length of the coil.

Therefore a maximal Q-factor will occur when the width, and height of the inductor

is maximized, while the separation between loops is minimized, which increases L and

decreases R. Unfortunately in integrated coils, the height is a set-value by the chosen

technology (4µm in 180nm SOI), and the minimum separation between metal shapes

increases as wire width increases. For example, fabrication limitations limited metal

trace widths to 50µm, as long as spacing between traces exceeded 30µm. If trace
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Figure 2.5: Coupling coefficient for power coils vs transceiver radius

widths were limited to 20µm, spacing could be reduced to 10µm, adding a series of

non-allowed ratios between draw-length, trace width, and trace spacing for iterative

simulation using an electromagnetic method of moments solver.

Taking these manufacturability limitations in mind, iterative analysis for the peak

possible Q in the power coil showed peak PTE with an optimal trace width greater

than 50µm with separation less than 30µm, so the DRC limits were chosen as the

power coil inductor parameters. For the data coil, the design process differed slightly,

as the goal was not to maximize power transfer efficiency, but voltage coupling be-

tween the coils. Theory shows that a peak in coupling occurs at so by decreasing

trace thickness and spacing to maximize draw length and Q-factor, with less impor-

tance placed on reducing resistive losses, the goal was able to reach a self-resonance

frequency in the desired band of 600MHz − 800MHz.

2.2.1 Power Systems Circuitry

With inductor parameters, and thus usable scattering parameters for an importable

cadence model available, the next step was to design power harvesting circuitry to
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convert the . For implantable devices, both passive and active rectifier circuit topolo-

gies have been created, with strengths and weakness of both designs [64–68]. For this

implant, a passive voltage rectifier based on a voltage quadrupler circuit was imple-

mented. The voltage qaudrupler topology used is depicted in figure 2.6 in the left

most block. For this design the transistors M1, M2, M3, and M4 are all simply acting

as diode connected FETs which only allow current to flow in one direction at the cost

of a turn on voltage. When the AC input across the voltage quadrupler exceeds the

diode-connected-FET threshold voltage, the system acts as a charge pump in both

the positive and negative AC phases, effectively rectifying two times the positive AC

input voltage at the output of M2 and two times the negative AC voltage amplitude

at the output of M4. Setting the negative voltage to be the ground reference of the

chip, and adjusting the magnitude of the input power signal to create 900mV on

both the positive and negative phases, we yield a 1.8V DC voltage at the rectifier

output. In order to reduce the 27MHz ripple on this rectified voltage, the value of the

differential capacitors at the output of the passive rectifier are made large enough to

limit DC ripple to less than 150mV, allowing 150mV of overhead for the regulator of

the chip to create a steady 1.5V DC rail which is the suggested operating voltage for

optimal performance of the 180nm SOI technology. The efficiency of this passive rec-

tifier was simulated to be between 60to65%, or an overall insertion loss from antenna

to available power of approximately −4dB.

To create the regulated 1.5V rail for the remaining chip circuitry, a low dropout

regulator (LDO) was implemented with circuit topology depicted in the center of

figure 2.6. A telescopic op-amp is driven by a bandgap reference set to 750mV in a

non-converting gain configuration with a gain of 2. A large PFET, M1 is placed at

the output of this op-amp which acts as a current source for the regulated DC output.

As long as the current average drawn by the chip never exceeds the RMS current in

the power receiver coil, the LDO will be able to properly regulate. A function of the
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Figure 2.6: System Block for Rectification, Regulation, and RF Protection Circuitry

power supply rejection ratio, PSRR, of the designed LDO is depicted in figure 2.7.

Monte Carlo simulations for the PSRR show a minimum of 36dB at 50MHz, which

is twice the expected operating bandwidth of all signals on chip outside of the data

receiver carrier frequency.

Figure 2.7: PSRR of LDO block

The final block in the power systems circuitry is the RF Limiter. The FETs used

in all subsystems outside of the rectifier and regulator blocks have a strict operating

voltage limit of 1.65V before permanent damage is done to the transistors. The
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bandgap reference in the LDO block, which is powered by the rectifier output, will

exceed 0.8V in the rectifier output exceeds 1.95V, which will create a regulated LDO

output that exceeds safe operating voltages for the internal circuitry. To protect the

system from this, an RF limiter circuit was added in parallel to the voltage rectifier

output as depicted in the rightmost circuit block of figure 2.6. In this block, a voltage

sensing circuit composed of the series stack of a resistor, M1, and M2 generate a

current called Isense. When Isense is small, M3 is in cutoff and does not draw current,

causing the voltage at the source to drop to zero, leaving M4 also in cutoff. Ass the

voltage output of the rectifier approaches 1.9V , the current Isense increases, creating a

cascading effect of turning on M3, which turns on M4 creating a current shunt at the

output of the voltage rectifier. This causes any excess RF energy being converted into

DC power to be shunted to the implants ground reference. The RF limiter will only

function up an input power level of 21.mW, however, by the time this limit is reached,

the transistors in the rectification system will have already exceeded safe operating

voltages and have already ceased to function. The RF limiter’s primary function is

to protect against unexpected rises in the transmitted power from the reader that

might occur when programming the output power of the external transceiver.

2.3 Data Modulation Circuitry

In order to limit power usage and stay under SAR limits, the data modulation topolo-

gies for both uplink and downlink were chosen to be as low power as possible and

passive in terms of modulation technique. For downlink, ASK modulation was chosen

and for uplink, passive backscattering LSK modulation was chosen.

When powered on, the implant starts in a “blinking configuration” state. Since

LSK transmission effectively shunts the received carrier signal to the no-amplitude

condition to modulate a zero, only data uplink or downlink can occur at any given
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time. While in the blinking state, the implant alternates between transmitting the

chip’s current configuration settings for eight downlink cycles and listening for an

ASK response. While listening, the LSK modulation circuitry is disabled. The ex-

ternal data Tx tracks this blinking state and sends the configuration word in the

listening phase. If one of 16 valid words (which act as input configuration gain for

the biological interface circuitry) is received, the implant enters the data transmit

state where it continuously sends digitized data. At this point the ASK demodula-

tion circuitry is disabled to both save power, and to prevent the chip’s configuration

from changing during sampling. In order to reset the system and transmit a new

input code, the system must be fully powered off by either disabling the power trans-

mission signal, or by moving the implant out of both power and data range. Since

the power transmission operation range is approximately 3-5 times longer in radius

than the data link, the suggested method is to turn off the power signal. This will

also have the bonus effect of preventing a false programming condition, that will be

highlighted when discussing the modulation circuitry in detail. The waveform with

the LSK enable and disabled on the chip-side is depicted in figure 2.8.

2.3.1 Clock Recovery

For higher power wireless systems, a local oscillator is typically used to create an

on-chip clock signal. While the advantages of this include on-chip tunability of the

clock signal, it comes at the heavy cost of requiring some type of phase-locked-loop

(PLL) or delay-locked-loop (DLL) which can sync to the external system, adding

high complexity and power requirements to the system [66, 69–71]. In this passive

system, the power budget is limited to only 2.7mW for all of the transceiver circuitry,

not allowing this circuitry overhead for an on-chip oscillation system.

The clock recovery circuitry used on the chip is depicted in figure 2.9. The positive
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Figure 2.8: LSK Waveform on the Chip’s Data Receiver

terminal of the power coil is connected to the input of the block which is AC coupled

using a blocking MIM capacitor. This captures only the AC signal of the power

coil, and ignores the DC value that has been set to the power coil in steady-state

operation. This is then fed into an inverter that has a feedback resistance, which at

no AC-input will cause both the input and output of the inverter to be set to V dd/2,

which for this technology is approximately 750 mV. The inverter then simply acts as

a highly non-linear amplifier, amplifying the AC input from sinusoidal into a square

wave with a switching time window close to the inverter time constant τinv which

is approximately 50ps for the 180nm SOI process. To reduce glitching, this square

waveform is fanned out to Schmitt triggers which distribute the recovered 27MHz

clock to the control blocks of the chip. To prevent uneven loading on the positive and

negative terminals of the power inductor, an unpowered replica of the MIM capacitor

and inverter with resistive feedback is place on the negative terminal with closely

matched wire lengths.
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Figure 2.9: Clock Generator Circuitry

2.3.2 Data Modulation and Demodulation Circuitry

For data recovery, since the external reader is creating the power signal with a COTS

PLL, the IC’s clock frequency can be assumed to match the sent power signal, thus

effectively phase-locking the on-chip clock to the external reader clock without the

use of an on-chip PLL. For the passive LSK backscattering modulation, the circuit

topology used can be seen in figure 2.10. For this block, the differential AC signal on

the data receiver coil, RXD is matched using a small MIM Capacitor, Cmatch, giving

the parallel LC circuit a resonance frequency of:

ωo =
√
LRXData

Cmatch (2.1)

Depending upon process corner, and the remaining bulk capacitance after thinning

the silicon, this value is designed to range from 650 − 750MHz. A second larger

detuning capacitor, Cmod can be added in parallel to Cmod. The desired modulated
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data decision LSK is used to open and close pass gates, effectively changing the

resonance frequency to:

ω
′

o =
√
LRXData

(Cmatch + Cmod) (2.2)

Where the value of Cmod is large enough to reduce the resonance frequency to far

below 150Mhz, which effectively shunts the received 700Mhz carrier signal to 0V .

The circuit topology for the ASK demodulation and LSK modulation systems are

depicted in 2.10.

Figure 2.10: ASK Demodulation and LSK Modulation Circuitry

For the LSK circuitry, Cmatch and Cmod are implemented via 400fF and 10, 000fF

MIM capacitors, and the pass gates are implemented with 10µm width complemen-

tary gates. For the ASK circuitry (depicted on the left in figure 2.10), an envelope

detector is implemented using the triode connected PFET M1 and MoM capacitor

Csmooth. This envelope level is compared to a bias voltage Vref which will trigger an

ASK value of 1 when the LSK level drops below the reference threshold. Since the

time constant of this envelope detector is quite long, a shunting NFET biased by

Vb1 is placed in parallel to the envelope voltage that will attempt to pull down the

envelope voltage quickly, allowing for a very fast reaction to a shift in data carrier
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amplitude during ASK transmission. This shunting FET also serves a secondary pur-

pose after programming, as the bias voltage is increase to always transmit a value ’0’

in the ASK, preventing accidental reprogramming during data uplink. Since the ASK

detection occurs when the envelope drops below a threshold, it is also important that

the data carrier frequency be switched on before the power carrier is turned on to

prevent a false programming of ’1111’. Since this state is the most likely accidental

programming state, the ’1111’ state is also designed to be the minimum gain setting

and most stable setting for the neural amplifier system.

The impedance load caused by the LSK circuitry and ASK demodulation system

at 700MHz can be modeled by a parallel RC circuit with C = 430fF and R = 4.3kΩ

with the LSK disabled, and C = 10.6pF and R = 106kΩ with the LSK enabled. To

maintain equal loading the positive and negative terminals, an unpowered replica of

the ASK Demodulator is placed on the negative terminal of the data coil.

2.4 Neural Interface Circuitry and Post

Processing

The neural interface system is implemented with a multi-stage amplifier with time

multiplexing and an 8 bit successive approximation register (SAR) ADC. A system

level circuit block for the neural system is depicted in figure 2.11.

2.4.1 SAR ADC

To digitize analog input signals on the shank, an 8-bit successive-approximation-

register (SAR) ADC was designed. The SAR-ADC has an asynchronous controller,

providing all 8-bits in parallel in a single clock cycle. In order for the SAR data rate

to match the 27MHz clock frequency, the SAR’s clock was divided down by 8 for a
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Figure 2.11: Neural Interface Circuitry and ADC System Block

designed sample rate of 3.375MS/s. The ADC runs continuously, with the previous

8-bit decision from the last clock cycle stored in a register block that is forwarded

to the LSK modulator. The capacitor array for the ADC was designed using MIM

capacitors, with a unit capacitance of 33fF . In order to greatly decrease the overall

capacitance of the capacitor array, a split-capacitor array was implemented with

separate capacitor arrays for the upper and lower nibbles. The system block level

schematic for the design SAR ADC is depicted in figure 2.12. The total capacitance

in the array that needs to be driven is 2.11pF , which without the split-capacitor

array would be 16.83pF , meaning the use of 2 4-bit nibbles in the split capacitor

array reduce the required capacitance in the SAR by 87.4%. The asynchronous block

arrives at the full 8-bit binary decision in under 50ns, meaning the SAR could properly

function at up to 20MS/s if required.

The comparator for the ADC was implemented using a standard strong-arm topol-

ogy and the input switches were implemented using large CMOS pass gates, which are

capable of driving the input well before the 3.375MHz switching time. The reference
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Figure 2.12: SAR ADC System Block Diagram with asynchronous controller

voltage was generated using a bandgap reference and was designed to give a reference

voltage of 800mV, giving the whole switching procedure a difference dynamic range

of 1.6V. The capacitor array is reset to V DD/2 which is 750mV before each sample

period. This means that the SAR can operate accurately for input voltages ranging

from 350mV to 1150mV . The switching logic was designed to follow the asynchronous

monotonic switching algorithm as highlighted by Liu, et al. [72]. The flow chart and

waveforms for the logic block for the monotonic switching procedure is highlighted in

figure 2.13. As the decision logic moves from MSB to LSB, the effective DC average

for Vin approaches 350mV. The strong-arm comparator is driven with a PFET based

differential input, meaning the strength of the comparison becomes stronger as the

required voltage precision increases in the lower LSBs. Virtuoso simulations for the

comparator block show functionality for differences as small as 540nV .
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(a) Logic flow chart for Monotonic SAR

(b) Waveforms for monotonic switching pro-
cedure

Figure 2.13: Monotonic Switching Controller

2.4.2 Neural Amplification System

The neural amplification system can be summarized as a time-multiplexed 3-stage

amplifier chain, with the load on the third stage being the 2.1pF differential capacitor

array from the SAR ADC. The first stage of the amplifier has 256 copies, with an

amplifier present under each site along the shank. Of these 256 electrode sites, 255

correspond to active amplifier inputs, with the 256th connected to the chip’s ground

as a reference. Circuit schematics for the first two stages of the amplifier chain are

depicted in fig 2.14.

In the shank, there are 4 blocks of 64 amplifier stages, each connected to their

own large bias generators that both supply current for the amplifier, and supply bias

voltages for the gate input at the elctrode interface. Each electrode site (referred to as

pixels) has a common source amplifier implemented directly under the 20µm by 20µm

top metal square on the shank with the glass-cut opening to the surface sized at 14µm

by 14µm. To protect the gate of this amplifier from any ESD effects, an ESD diode
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Figure 2.14: 2 Stages of Neural Amplifier System

is placed in parallel to the gate input to the chip’s ground. While this is not the full

recommended ESD protection circuitry for 180nm SOI, which also requires a second

reverse biased ESD diode to the voltage rail, it is sufficient to prevent massive yield

problems in the pixel amplifiers. To select a given pixel on the shank, digital inputs

S2 and S3 are used to turn on transistors M4 and M5. The DC bias voltage at Von is

set by the current mirror formed M7, M8, M9, and R. M6 acts as a large resistance to

provide an AC block and a DC feed through path for the current mirror. There are

4 copies of the current mirror on the base on the shank, and each one sets the DC

value of 64 sites. Transistors M2 and M3 function as deep triode devices to maintain

the DC value at the drain of M1 when a site is not being sampled, which greatly

decreases the power-on time when a given pixel is selected. At a given time, 4 pixels

are selected and powered, 1 from each quadrant. A single pixel is output to the next

stage of the amplifier, Op − Ampstage1, with the selected quadrant chose by sending

a digital ’1’ to S to close M11. Each powered quadrant draws approximately 50µW ,

meaning the total shank power drawn is limited to 200µW . The mean simulated

gain for the common source stage when a pixel is selected is 20dB for a bandwidth of

10Hz to 1MHz. Since the circuit is sampled at 12.9KHz, this bandwidth is aliased

down into the 10-6.5kHz band. The circuit topology for the amplifier Op−Ampstage1

is depicted in 2.16b. It is a simple telescopic five transistor amplifier with a current
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mirror that provides a gain of 23dB in closed loop for the resistance values R1 and

R2 over the necessary bandwidth necessary bandwidth.

Figure 2.15: Tunable 3rd Stage of Amplifier System

The final stage of the neural amplification system is depicted in figure 2.15. This

amplifier stage singled ended to differential and is tunable by opening and closing the

pass gates g3 through g0 which are set by the ASK configuration on start-up. The

unit resistance value of R for this design was 25kΩ, making valid tunable gains from

this stage to be 0dB, 14dB, 21dB, and 24dB respectively. The input code g3g2g1g0

is a one-hot design, and the gain value will take the value of the left most binary ’1’

input code. This means the programmed gain codes are 0dB for gain codes 8 through

15, 14dB for codes 4 though 7, 21dB for codes 2 and 3, 24dB for code 1, and code 0

is invalid, leaving the amplifier in open-loop. The circuit topology for op− ampstage2

is depicted in figure 2.16c. This topology also uses a 5 transistor telescopic base, but

also uses common mode feedback to set the common-mode voltage to 750mV at both

the input and output. The output common mode is of heightened importance since

it will be driving the DC average sent to the SAR ADC at every clock cycle.

The DC-steady state gain for the full amplifier chain is depicted for a bandwidth of

10Hz to 1MHz, and shows a peak voltage gain of 1377 or 62.7dB. The integrated input

referred noise of the amplifier without multiplexed switching was found to be 4.2µV
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(a) Topology for Reference Generator Ampli-
fiers

(b) Stage 1 Op-amp Circuitry

(c) Stage 2 Op-amp Circuitry

Figure 2.16: Operation Amplifier Circuit Topologies

over the 10Hz-1MHz bandwidth. The sampling frequency of the multiplexing will fold

noise contributions between 6.5kHz and 1MHz into the amplifier output, and this will

be reflected in a higher recorded noise value. The recommended time-multiplexing

ratio to limit noise folding for neural recording systems was recommended to be 20

by Raducanu et. al [73], however our system oversamples at a rate of 64:1, leading

to poor noise performance in measurement.
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Figure 2.17: Gain Performance of Amplifier Chain

2.4.3 Chip Thinning

Thinning of passive implantable medical devices has been documented with shank

cross sections on the order of 10s of µms [74–76]. In our system, we perform thinning
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on after silicon electrodes after receipt from the foundry, when the probe is post-

processed to thin the chip. The chip is implemented on SOI such that removal of the

p-type silicon substrate has minimal effects on the bodies of the active transistors,

since a blocking silicon dioxide box layer isolates the active silicon base connection

from the substrate. While this comes at the cost of the circuits being vulnerable to

the floating body effect, it causes chip performance and transceiver operation to be

indistinguishable pre and post thinning. The passivation, dielectric of the back-end

stack, and silicon substrate are trenched by successive dry etching, separating the

probe from the rest of the die. The final shank is 3.2mm-long and 130µm-wide with

a tapered tip. The thickness of the whole device is approximately 20µm, yielded an

overall implant volume of 0.08mm3. The trenching process can be seen in figure 2.19.

First mask layers are used to etch down the metal exclude areas surrounding the

perimeter of the die (2.19a), the sounding portions of the chip are then mechanically

grinded down (2.19b), and finally the bulk silicon is thinned from behind until the now

trenched chip is cleaved from the remaining portions of the die (2.19c). An implant

post-thinning is depicted in figure 2.18a and a fully processed shank is depicted in

figure 2.18b. At this thinned, the shank is flexible as is apparent in the visible

curvature of the thinned die and the thinned shank. To combat this and prevent the

shank from rolling to the point of damage, the chip is temporarily glued to a stiff

silicon guide shank.

As can be seen in the picture, the die is now flexible, to the point that the shank is

naturally curving upward. At this thickness, the probe is extremely brittle, requiring

attachment to a thicker guide shank system.
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(a) Post Thinning
(b) Post Shank Formation

Figure 2.18: IC post thinning and shank formation
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(a) IC surface post chemical etch of trench

(b) IC post mechanical grinding

(c) IC fully detached from substrate

Figure 2.19: IC Shank Formation Procedure
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Chapter 3

Design of External Reader

System

The external reader system can be divided into three major sections: 1) The physical

PCB trace transmitter design using electromagnetic simulations 2) The boards de-

signed to create the power transmission signal and reconstruct and transmit the data

signals 3) The verilog based reconstruction and equalization instantiation via FPGA

The system block diagram for these three systems are depicted in figure 3.1, and

the physical boards can be seen in figure 3.2. The necessity for these systems come

from the ISI challenges introduced by the high-data-rate backscattering through lossy

media present for uplink data recovery using an integrated coil. The thickest metal

layer available on the implant is limited to 4µm in 0.18µm SOI, giving the integrated
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coils low quality (Q) factors from small trace cross sectional area. Low Q decreases

greatly radiation efficiency, causing the received power signal to have extremely poor

PTE and the data LSK signal to be >60dB lower than the transmitted 700MHz

carrier. To overcome this, equalization techniques must be employed to process the

LSK data and achieve acceptable BERs, and highly tunable power amplifiers must

be implemented on the transmitter boards to achieve reliable powering.

3.1 PCB Coil Design

The four-coil near-field inductive link was designed using Mentor Graphics’ IE3D

method-of-moments solver. The power inductor pair was designed to operate at the

27MHz ISM band, while the data inductor pair was designed to be matched at half

the self-resonance frequency of the data coil ( 700MHz), where a peak in inductor

coupling is observed. Due to maximum size limitations on the RX implant coils,

total coil draw length, spacing, and outer diameter could not be perfectly matched as

would be ideal for maximal PTE. Instead an iterative design sweeping the minimum

possible PCB line width, spacing, and copper trace thickness to find which param-

eters maximized radiation transfer. It was found that energy transfer efficiency was

maximized when the total PCB coils internal diameter and total draw length closely

matched the implant power and data coils. For the 5 turn 2mm power coil on the

implant, this maximum matching occurred for a 3 turn, 6mil trace width and spacing

PCB coil with an outer diameter of 4mm and inner diameter of 2mm. For the 7

turn 1.2mm data coil on the implant, maximum coupling occurred for a 3 turn, 4mil

trace width and spacing with an outer diameter of 1.6mm. It was attempted to make

the draw length of the data transmitter long enough to match the self-resonance fre-

quency of the implant data receiver, since a coupling peak occurs at 1/2fsr and is

the intended carrier frequency for data uplink and downlink for the system, however
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Figure 3.1: System Block of full Reader System

that draw length could not physically fit without extending past the 1.6mm outer

diameter allotted and become too close to the 2mm inner diameter of the power coil.

Also designed, was a differential coupled line placed on a 10 mil wide, 2 mil spaced

PCB trace that is used to detect the LSK amplitude shift without effecting the tightly

constrained s-parameters of the data TX coil. The 4-coil system layout is depicted in
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Figure 3.2: Full Physical Reader System

figure 3.3 with a 5th differential port on the coupled line. The inductor parameters

for the designed 4-coil system are given in table 3.1.

Figure 3.3: Physical Layout of 4-coil System

Matching networks for the s-parameters generated by IE3D were then designed us-
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Power TX Power RX Data TX Data RX
Qpeak 58.9 6.1 82.0 5.8

No.Turns 3 5 3 7
Dout 4mm 2mm 1.6mm 1.2mm
Fsr 1.75GHz 1.59GHz 1.88GHz 1.48GHz
L 35nH 55nH 15.4nH 95nH

Rloss 0.33Ω 9Ω 0.91Ω 82Ω
K 0.1(27MHz) 0.047(700MHz)

Table 3.1: 4 Coil Link Physical Parameters

ing ADS as a simulation tool. To simulate the LSK enabling and disabling, impedance

parameters were generated in virtuoso for the chip in both the LSK ’1’ state and the

LSK ’0’ state and an ideal switch was used to toggle the load impedance on the in-

ductor coils for this ADS simulation. For matching the PCB side of the 4-coil link, a

precise and tuanble variac was connected in parallel to the inductor output to create a

50Ω matching network as seen from the power amplifier. The resulting s-parameters

for the PCB data coil with the LSK enabled and disabled on the implant side can be

seen in figure 3.4a, and the simulated power transmission from reader to implant can

be seen in figure 3.4b. Enabling and disabling the LSK causes the peak matching of

the coil-pair to drop from approximately −45dB to −7dB and the peak S21 power

transfer was simulated to be −9.94dB or 10.14% PTE in air.

All of the above design considerations were performed assuming a 1mm separation

and perfect alignment between the TX coils and RX coils in the transceiver. Also,

the simulation assumes the bulk silicon has been thinned off the implant, and the

ground plane lying beneath the implant coils is a biological medium with dielectric

properties matching brain matter and skull. When the dielectric medium between the

TX and RX coils is changed from air to biological media (instead of only below the

implant system), skull/brain tissue were simulated to account for −2.6dB additional

electromagnetic losses for the power signal, and −13dB additional electromagnetic

losses for the data signal. While powering could theoretically still occur at these losses,
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(a) Simulated LSK Performance (b) Simulated Power Transmission Perfor-
mance

Figure 3.4: Power and Data Transmission ADS Simulations

the −13dB data signal loss is far too large to overcome and stay under safe SAR limits

for tissue, therefore the data link can only function either with air separation or a

very low loss dielectric material.

3.2 Data Acquisition System

The entire data acquisition system can be divided into three distinct boards, the

external transmitter board which powers the power and data PCB coils, a low noise

LSK recovery board that partially reconstructs the LSK from an extremely small

unsable signal to one that can be properly digitized and equalized, and a large mother

board that controls both boards and acts as a control block between the FPGA

interface and any COTS components that need to be programmed. This section will

include subsections detailing the design and important blocks of each board.

3.2.1 External Transmitter Board

The external transmitter board (bottom block of fig 3.1) is implemented with a

3.8-cm-by-3.8-cm transceiver board containing transmitter (Tx) antennas and power
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amplifier HEMTs capable of delivering 4 W of power to each of the antennas. The

circuit schematics for both TX systems on the board are depicted in figure 3.5. For

the power transmitter, LC matching networks are present at both the input and

output of the power HEMT, which matches the driving load to 50Ω at the 27MHz

transmitter frequency. The data transmitter has a higher order matching network

at the HEMT input in order to get a deeper voltage matching at the cost of power

transfer efficiency, which is fine since we only care about the coupling and not directly

energy transfer for the data coil pair. In addition, the data transmitter network has

the coupled line sensing circuit for detection of the backscattered LSK data. Each

amplification circuit operates with a drain voltage of 15V and the gate voltage is

tunable using a negative voltage regulator and typically operates between −3V to

−1.2V . The radiation efficiency of the network ranges from 45% to 68% depending

upon frequency of operation. The typical total power drawn from both data and

power TX systems is approximately 900mW for each HEMT, which at 68% radiation

efficiency corresponds 612mW of radiated energy for the power transmitter. Since

this supplies the minimum amount of power the implant requires (10.4mW ), the PTE

of the link must be greater than 1.7% to proper power the device. If operating at

the maximum 4W of DC power, the PTE of the link can be as low as 0.38% and still

operate.

The physical layout for transmitter board is pictured in figure 3.6, where the

actual PCB coils can be seen in the alignment boxes on the silkscreen on the left

side of the board. The components including the power HEMTs, matching networks

and DC bias systems are located on the top side of the board. Heat sinking for

the transmitter board must be performed if operating at greater than 900mW of

DC, as the board will become hot to the touch (measured to be > 50◦C using a IR

temperature sensor) and thus be unsuitable for placing in close proximity to brain

and skull, as it will cause localized heating in the tissue.
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(a) Power Transmitter Schematic

(b) Data Transmitter Schematic

Figure 3.5: Power and Data TX Board Circuitry

S-parameters of the energy transfer for the power and data transmitters is given

in figure 3.7. As can be seen in 3.7a, the power amplifier can provide at least 15 dB

of power gain to the TX power coil from the 25− 30MHz band, and from 3.7b, the

data amplifier can provide at lease 10 dB of power gain to the TX data coil across a

wide band of 600 − 1000MHz, giving a large amount of flexibility to tuning of the

exact power and data frequencies.
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Figure 3.6: Transmitter PCB with Reader Transmitter Coils

3.2.2 LSK Reconstruction Board

An ADS simulation for the expected backscattered LSK signal is depicted in figure

3.8. Since the LSK is an incoherent amplitude modulation technique, the typical

circuit based approach for data recovery is to implement an envelope detector that

will track the data waveform. Unfortunately, as can be seen in 3.8, the power signal

is modulated onto the 700MHz carrier at approximately a 1V amplitude for a 10V

carrier, while the actual amplitude shift caused by the LSK for different LSK modu-

lation states is only 10-20mV as depicted in figure 3.9. This 10-20mV shift from the

LSK indicates the dynamic range for the difference in LSK states is on the order of
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(a) Power Transmitter Amplifier S-
parameters (b) Data Transmitter Amplifier S-

parameters

Figure 3.7: TX Board Amplifier S-parameter performance

60-80dB smaller than the carrier amplitude and 40-60dB smaller than the power sig-

nal interference. This means a simple envelope detector will not capture the required

data set and a more innovative solution is required.

Figure 3.8: Simulated expected waveform across data TX with normal implant oper-
ation

If instead we look at the signal in the frequency domain, we observe that a random
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Figure 3.9: 10mV Amplitude difference on carrier with LSK at different binary states

binary sequence at 27Mbps will actually have very limited frequency content atMbps

and instead will have non-symmetrical frequency content around half the clock data

rate at 13.5MHz with the magnitude of spikes varying based on the percentage of

’1’s and ’0’s in the given data window. When we modulate this data signal onto the

700MHz carrier, we actually see these frequency spikes symmetrically distributed at

687.5MHz and 713.5MHz. The power interference provides large spectral energy

at 27MHz, 673MHz and 727MHz. Plotting the spectral content in a FFT, we get

frequency content that looks like the distribution in figure 3.10. If we tightly bandpass

filter this signal to keep only the carrier spike (blue spike in figure 3.10) and the LSK

content (green spikes in figure 3.10) we can remove the 27MHz power interference.

If we then self-mix the signal, we will remove this 700MHz signal entirely, and the

remaining LSK spectral data will be converted back into the baseband, leaving a

usable and reconstructable LSK signal for data processing via FPGA.

To create this LSK reconstruction circuitry, an 8-cm-by-5-cm low-noise board was

designed. The primary circuitry blocks on this board is depicted in figure 3.11 and the
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Figure 3.10: FFT content of signal at data receiver

physical was previously pictured in figure 3.2. The bandpass filter, mixer, and lowpass

filter blocks are instantiated using COTS RF components. To keep the noise level

low on this board, the only other components present on the board are DC regulators

which are used to power the variable amplifiers on the board and to supply the tunable

gate voltage and 15V drain voltage for the HEMTs on the external transmitter board.

The power regulators for the transmitter board was moved off board and onto the

LSK board to address heating concerns.

Figure 3.11: LSK Recovery Circuitry Blocks

After filtering, mixing to convert the signal to the baseband, and subsequent

lowpass filtering and amplification, the resulting LSK waveform appears as in figure
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3.12. The original 10mV shift due to the LSK with 1V interference, has now been

converted into a 150mV amplitude LSK signal with clear distinct binary states and

power interference is less than 20mV in amplitude. While this signal is still not

completely clean, it is now in a state where software reconstruction can be used to

fully analyze and record the data sequence.

Figure 3.12: Signal Waveform at output of LSK Reconstruction Board

3.3 Data Reconstruction

The final data reconstruction can be divided into two portions, the development of a

custom equalization algorithm called the Modified CMA Algorithm and the FPGA

Interface that is responsible for controlling, sorting, and reading the binary decision

of this equalization out to the user in a Kintex 7 FPGA controlled via a python

interface.

3.3.1 Modifed CMA Algorithm

As discussed in chapter 1, depending upon the reconstructed LSK signal’s properties,

different data decision blocks can be used to come to a final binary decision. Since
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the recovered LSK signal is incoherent and we do not have access to a training se-

quence, traditional adaptive filter techniques such as the least-means-square (LMS)

or recursive-least-squares (RLS) algorithms are not possible. The constant-modulus

algorithm (CMA) can recover incoherent signals without a training sequence but re-

quires a constant carrier waveform amplitude that the adaptive filtering can try to

match and just check the signal’s phase. However, the use of self-mixing to demodu-

late the LSK signal only produces positive in-phase amplitude impulses for ‘0’-to-‘1’

transitions and negative in-phase amplitude impulses for ‘1’-to-‘0’ transitions that re-

turn to zero in-phase amplitude in two to three data cycles. This settling scenario is

easily visible in figure 3.12, where an amplitude of 150mV corresponds to a ’1’ value

at the −1µs time stamp, but corresponds to a ’0’ value at 0.5µs. The consequence

of this setting is that three or more consecutive ‘0’s or ‘1’s become indistinguishable

in amplitude, causing the CMA error function to fail since the signal does not have

a constant average amplitude. To correct this, we change CMA error function is

changed from adaptively forcing the data carrier to have a constant absolute value

to only detecting if the current error function value is above or below the impulse

threshold of a data transition. If the signal is above the threshold and of positive

in-phase amplitude, the decision is a ‘1’; if of negative in-phase amplitude, the deci-

sion is a ‘0’. When the error function drifts below the threshold, we know the signal

has settled back to zero amplitude but no change in data output has occurred. The

M-CMA decision can be represented in equation 3.1 as:

yd(T ) =


0, 1 e(T ) > Thres

yd(T − 1) e(T ) < Thres

(3.1)

where yd(T ) is the data decision at for the current sample time, T, and e(T ) is

the original error function for the CMA algorithm. The error threshold (thres) is
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an eight-bit user defined input constant, which varies based on Tx/Rx separation

and the lossy medium. Because there are eight samples per symbol, a phase-picking

algorithm takes the XOR of the current and previous M-CMA-decision to identify

the time stamps of data transitions, recovering the phase of the incoherent signal and

centering the FPGA clock to the data’s phase. The M-CMA hardware was designed

using MATLAB Simulink which generated synthesizable Verilog.

From an ISI perspective, the channel response depicted in figure 1.5 had two

unique power transmission levels for ’1’ and ’0’ code communications. This differs

slightly from our designed ASIC with passive LSK, which transmits a positive 90◦

power impulse for a ’0’ to ’1’ transition and a negative 90◦ power impulse for a ’1’

to ’0’ transition. Graphically, this causes our ISI to take the form depicted in figure

3.13.

Figure 3.13: ISI for implant (blue), standard NRZ ISI (red)

The details of this ISI problem, lead the steps for creating the error function of

the M-CMA algorithm. First the Raw LSK signal is filtered knowing the ratio of

samples to symbols is 8:1. Then, to isolate the impulses a subtraction function is

implemented between each sample and the sample from 2 previous time stamps. We

then threshold the results of this subtraction using the 8-bit value of Thres and do

signed boolean comparison for the subtraction result to 0. This yields three separate
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strings of boolean decisions, a set that shows the time stamps of clear ’0’ to ’1’

transitions, a sample set that shows the time stamps where the current amplitude

is below the equalizer threshold, and a final sample set that shows the time stamps

where a clear ’1’ to ’0’ transition occurred. We continuously run the previous 128

decisions from these three sample sets. 128 decisions are stored as that represents 2

bytes worth of data of subsampled data for an 8:1 sample to symbol ratio. For error

correction, we identify portions were consecutive ’0’ to ’1’ transitions occurred where

an accompanying ’1’ to ’0’ transition did not occur in between and vice versa. When

this error condition is met, it means the first transition was a false threshold flag, and

that transition is reset to a below equalizer threshold, effectively changing the value

of all final symbol decisions between the false transition and true transition. This

error correcting routine is depicted in figure 3.14.

Figure 3.14: Error Correction for M-CMA final decision

3.3.2 FPGA Interface

To perform the software reconstruction, an Opal Kelly XEM 7350T-160 was used,

which has a Kintex 7 FPGA capable of operating at 200MHz for data processing.
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The final goal of the software reconstruction is to be able to select and live-plot an

individual site. The expected data routine on start up is the chip’s blinking config-

uration state. In this state we expect the implant to repeat the same configuration

word for 4096 bytes cycles, then listen for the input configuration for 4096 cycles. We

implement the FPGA to identify when the configuration word is repeated in excess of

4 times, and then trigger the desired input ASK code (a 4 bit code repeated twice).

Upon successful writing of this configuration code, the implant will enter the data

transmission routine. The expected binary sequence in the data transmission mode is

depicted in figure 3.15. The programmed configuration word will be cycled every 256

bytes of data, meaning we need to sync the data to the point where the programmed

implant configuration repeats itself every 2080 bits.

Figure 3.15: Expected Data Sequencing for input word ’1111’

Now that we know what data sequence we are searching for, we can implement

a data-sorting routine. The FPGA waits until the configuration word is identified

and triggers a data-start flag. The system resets the pointer on an 8kB SRAM block

which sorts the 2048 bit sequence into 256 consecutive 8 bit words in the expected

sampled site address, starting at address 8’hFF and ending at 8’h00. The system

then expects the configuration word to be repeated exactly 2080 bits after the first

configuration word, and if it appears, the FPGA triggers a data-synced flag, which

allows the SRAM block to move on to the next 2kB of addresses. If no configuration

word is detected at 2080 bits, the system identifies the previous 2080 bits as a false flag

and resets the SRAM block of address that were programmed. On three successful

consecutive data-synced flags, the SRAM block is filled enough to send a full word

of data for each address along the shank. With a 27Mbps data rate coming out of
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the equalizer, it therefore takes 231µs for the equalizer to trigger this flag. These

words of data are loaded into a FIFO using the DDR3 RAM clock provided on

the XEM7350 at 100MHz. Each word entered into the fifo is of the digital form

32′h(< ADDR >,< V samp1 >,< V samp2 >,< V samp3 >), meaning the FIFO

block is able to upload 24 bits of equalizer data in a single 100MHz clock cycle

including the data’s physical location on the shank. Doing the math, we can see that

the 100MHz FIFO block is therefore able to upload the entirety of the previous 6kB

of equalizer data (now with an added location address for 8kB total) in only 2.6µs.

To prevent this FIFO block from overflowing and having data lost and to sort the

data into long time sequences from any selected site, the FIFO block is uploaded to

the 512MiB DDR3 RAM interface available on the XEM7350. The DDR3 interface

was implemented using a Xilinx Mig 7 Series DDR3 RAM controller. The block is

capable of burst writing up to 4 words (128bits) of data from the FIFO in a single

write sequence, and read data 4 words at a time, meaning it is simple to create a

pipeline system that will automatically sent four sites of data to a connected computer

through the USB3 interface. A write cycle takes an average of 5-8 clock cycles to

complete, while a read cycle takes 3-4 clock cycles. Time wise, this means it takes

the FPGA between 13µs to 20.8µs to fully empty 8kB of data from the FIFO block,

leaving approximately 200µs of excess time before the next data-sync request from

the sorting block to read any stored data from the RAM block before another write

block request is issued. The RAM block is able to collect data for 121 seconds before

filling, requiring rewriting over previous data to continue real-time data collection.

If the user wants to continuously plot data from a quartet of sites in real time, the

user can request to always read the previous 1000ms of data from the current write

point in the RAM block, or a user can choose to extract and read the entirety of the

512MiB RAM for all 256 sites after the RAM is filled, which corresponds to about 2

minutes of continuous sample points. This flexibility gives a user the ability to always
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be monitoring up to four sites in real time, or have the ability to massively record

from all sites in a two minute window. The block diagram for the FPGA sorting

block, FIFO pipeline, and DDR3 RAM interface are depicted in figure 3.16.

Figure 3.16: FPGA design for real-time data sorting
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Chapter 4

Measurement and Simulation

Results

This chapter will cover both measurement and simulation results for the power de-

livery systems and data transceiver, effects of post-processing and thinning the IC on

the system’s performance, and neural amplifier results.

4.1 Power and Data Telemetry Results

This section will cover both ADS simulations and measured analysis of the 4-coil

link for both power and data telemetry performance. Direct measurements for power

delivery are able to be taken through wirebonded connections to the positive and
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negative terminals of the power coils. Comparable measurements for the data coils

could not be taken, as the wirebonds and cabling at the carrier frequency of 700MHz

dominate the measurement, so data coil measurements are estimated using backscat-

ter amplitude shifts and compared to expected simulated backscattered performance

from ADS.

4.1.1 Power Harvesting

Direct measurements of the S-parameters of the power coils for an unthinned die

with 250 − 300µm of 1000Ω-cm silicon substrate present were taken through direct

wire bonds to the power receiver coil. This measurement was used to calculate and

record the WPT and efficiency of the link. Measured S21 for WPT for an unthinned

implant in air and phantom are depicted in figure 4.1 a. This measurement shows

peak power transfer of −15.9dB for the silicon substrate in air, and drops to −19.8dB

of peak PTE when transmitting through 1mm of a gelatin substrate, which has a real

dielectric constant, ε′, of approximately 85 with a small complex dielectric constant

less than 10, ε′′, which is comparable within an order of magnitude to most tissues and

can accurately represent losses in an in-vivo environment [77–79]. These measured

results are also comparable to ADS simulations at 1mm separation for a thinned

implant transceiver with a 300µm brain and skull model representative of a mouse

which show a peak expected WPT of −14.7dB.

Post thinning, direct WPT measurements for a thinned die was not possible to

be taken as the bond pads are cleaved from the chip, making such a measurement

not possible. However, ADS simulations indicate an expected WPT increase of 1.1dB

post thinning, which is consistent with observed coupling at the external transceiver.

Later wireless LSK signal recovery on a thinned and unthinned die will confirm this

increase in expected power performance and efficiency. S43 simulations (Fig. 4.1
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c.) for data coil coupling show a 30-dB decrease in received signal when the LSK

is enabled, which is consistent with the observed amplitude shift in the backscatter

LSK signal at the data Tx, and is also consistent with the expected LSK shift in

frequency response as covered in chapter 2.2 and chapter 3.1. The overall measured

PTE of the link is 2.57% with 1mm of air separation which drops to 1.04% through a

1-mm gelatin phantom. In both cases, this WPT exceeds the minimum required PTE

required for full operation while remaining under safe SAR thresholds. Peak WPT

from 1-5 mm of separation (Fig. 4.1 b.) show a decrease of 35dB from minimum

to maximum separation. Beyond 2.5 mm the overall WPT drops below 0.1% where

the external transceiver can no longer fully power the implant at this coil size at

all, and will also exceed SAR limits for tissue and causing a high level of tissue

heating and thus be incompatible for a live surgery. The exact range of wireless

power transfer at which the chip turns off, could not be directly recorded, since the

range of data communications is limited to < 1mm. It is known the power range is

longer than the LSK communications range, as it is possible to move the chip out

of data communications range and back into range without the system having to be

reprogrammed, indicating the implant never fully lost power to reset the system.

Figure 4.1: Power Loss vs misalignment

All of the above power verification measurements were taken by wirebonding the

power coil connections of an unprocessed die to a small connector PCB, aligning the

reader and wirebonded chip using a 3D-printed interposer, and using stacks of 250µm
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spacers to slowly increase the separation between the power transmitter and the

implant, taking S-parameter measurements at each stage using a network analyzer.

This recording process is depicted in figure 4.2.

Figure 4.2: Methodology for Power Measurements

To simulate determine the sensitivity of the link to exact orientation, separate

power simulations were ran in ADS comparing the power transfer efficiency of the link

with perfect alignment, and when offset by 0.25mm. The results of this simulation

are depicted in figure 4.3 which shows that 0.25mm misalignment (an easily alignable

metric by hand and visual inspection) only leads to power transfer degradation of

approximately 3dB. The relative robustness to alignment for WPT is confirmed in

operation, as the chip will power on and begin to communicate the moment the radius

between the reader TX and implant RX drops below approximately 1mm.

Since the power delivery and data communications do have sensitivity to alignment

within 1mm, an aligner 3D-part was designed that will secure the chip directly over

the alignment silkscreen marker on the transmitter PCB. A picture of the transmitter

with this alignment interposer with a chip correctly aligned is depicted in figure 4.4.
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Figure 4.3: Power delivery with 0.25mm alignment offset

4.1.2 Data Telemetry Results

Backscatter waveforms for the data transmitter coil agree with ADS simulations for

the implant ASIC with LSK toggled on and off as depicted in figure 3.8 with the

dynamic range issue addressed in figure 3.9. The dynamic range for the difference

in LSK states is on the order of 60-80dB smaller than the carrier amplitude (for

this simulation, the amplitude shift was on the order of 10-20mV for a 10V carrier).

To correct this problem, the LSK reconstruction algorithm covered in chapter 3 is

performed, afterwards the received LSK signal has visible separate binary states as

seen in figure 4.5. The curve in blue represents the raw waveform after the self-mixing

stage during the LSK reconstruction, and the red curve represents the final binary

decision after the M-CMA algorithm.

These separate binary states have one drawback, however, since the ISI causes the

amplitude to drift. This severity of this problem is highlighted with the eye-diagram of

this raw LSK signal as seen in figure 4.6. There are three distinct states visible in that

eye, the high positive amplitude from ’0’ to ’1’ transitions, the high negative amplitude

from ’1’ to ’0’ transitions, and a zero amplitude state that occurs when there are

consecutive strings of ’0’s or ’1’s and no state transition has occured. As can be seen
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Figure 4.4: 3D Printed Well for TX/RX Alignment

in the figure, the measured eye height is actually negative (specifically −0.08mV ),

indicating an overlap in the detectable ’0’ states and ’1’ states. This indicates two

problems when looking at the eye and constellation diagrams. First there will be two

distinct eyes, one separating clear ’1’ to ’0’ transitions and no state transition, and a
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Figure 4.5: Raw waveform post mixing and amplification (blue), with expected binary
decision (red)

second eye separation clear ’0’ to ’1’ transitions and no state transition. The second

problem is the no-state-transition amplitude of 0 volts contains both binary decisions

that should be decoded as ’1’, and binary decisions that should be decoded as ’0’.

In addition, the BER of the link here is estimated to be approximately 0.5 from the

bathtub curve, since the total measured jitter is 4.99 symbols, and the width of the

bathtub curve is less than 4.99 symbols for a 50% BER. This is where the M-CMA

algorithm that was outlined in detail in chapter 3 comes in, which amplifies the ’0’ to

’1’ transitions, and records the decision history for a minimum of 16 symbols using

the error correction code, which will allow both a clearer eye-diagram and a proper

BER to be recorded.

After applying filters, difference blocks, and before we apply the final step of error

correcting and sorting the no-state-transitions occurred into their respective ’1’ and

’0’ answers, if we plot the eye diagram (Figure 4.7) we can now see the split eye
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Figure 4.6: Eye Diagram of Raw LSK Signal pre-equalization

formation is now extremely distinct with two distinct eye amplitudes of greater than

0.6V . Since there are still two openings, the physical eye-height calculation cannot

be recorded until the final error correcting steps are taken, which will create a single

eye-diagram.

Once we apply the final steps of the M-CMA algorithm, we arrive at the final eye

formation in figure 4.8. From measuring the total jitter of the eye to be 4.88 symbols,

we can estimate the BER from the corresponding bathtub curve to be approximately

1 ∗ 10−9 using the Matlabs eye-diagram analysis tool based on the dual-Dirac Model

[80].

Next, to show the state of the signal at various points of the M-CMA reconstruc-

tion algorithm, the constellation is depicted in figure 4.9. As can be seen in the figure,

there are no clear binary states before any equalization steps (the green constella-

tion), and after filtering (red) and thresholding following the M-CMA error function

(blue), we can see distinct ’1’ and ’0’ states in the constellation.

For all of the eye-diagrams and constellation analysis, the LSK amplitudes used
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Figure 4.7: Eye Diagram mid M-CMA Equalization

for analysis are taken when the TX and RX data coils are perfectly aligned. To

measure the decrease in LSK backscattering in non-ideal situations, various mea-

surements were taken to wireless communications systems robustness to separation,

misalignment, and dielectric environment. The raw LSK signal was recorded using

the same 250µm spacers were used for the power transfer efficiency measurements.

LSK waveforms for no misalignment, 0.5mm of misalignment, and 1.0mm of misalign-

ment are depicted in figure 4.10a and the average RMS response vs misalignment is

given in figure 4.10b. The difference in recovered LSK RMS amplitude is measured

to be 16.1dB for 1mm of TX/RX misalignment.

For TX/RX separation, LSK waveform measurements were performed in incre-

ments of 250µm with the RMS amplitude of the response depicted in figures 4.11a

and 4.11b. As can be seen in the RMS plot, the amount of transferred energy re-

mains near 70mV until separation between TX and RX exceeds 0.4mm. While LSK

reconstruction via M-CMA can still occur at both misalignment and separation of up

to 0.75mm, the BER performance will be considerably worse than 10−9.
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Figure 4.8: Eye Diagram post M-CMA Equalization

Finally, we measure the effects of biological tissues as a dielectric medium under-

neath the implant, as will be the required environment for the final application of a

neural amplification system, by substituting air for skull and brain tissue in LSK noise

measurements. The three dielectric environments measured with a 250µm separation

between TX and RX consisting of lossy silicon substrate were air, skull from a mouse,

and a skull with fixed brain tissue from a mouse. The results of these backscattering

measurements in both raw waveforms, and a bar graph comparison of the RMS de-

tected are depicted in figure 4.12. As is seen in figure 4.12b, the skull decreases the

received backscattered signal by −1.9dB, and the brain/skull combination decreases

the received signal by −3.7dB. These losses are acceptable, as they do not include

the amplitude increase that is expected when the transceiver implant is thinned.
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Figure 4.9: Constellation diagram at various stages of MCMA processing

4.2 Application Results: Neural Amplifier

System

To test the transceiver in its intended application, in-vitro measurements were set-

up to input sinusoidal waveforms into the front end amplifiers of the system. The

method of in-vitro stimulation was to coat the open electrodes for each amplifier site

to a conductive saline, PBS, and stimulate groups of sites in distinct wells. This mea-

surement proved to be extremely problematic, as any coating of the coils with the

conductive saline would immediately reduce the effective amplitude of any backscat-

tered LSK to zero. To get around this physical problem, the 3D-printed alingner and

interposer was also designed with 2 separate wells with a large block placed directly

on top of the coils was used. This allows for stimulation of one side of the shank in

1-well, while the ground reference is placed in the 2nd well. Silver chloride electrodes
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were then used to stimulate one well, while the other well was used as a ground

reference. This in-vitro measurement process is depicted in figure 4.13. Using this

set-up, input sinusoids ranging from input RMS amplitudes of 540µV to 5mV and

from a frequency range of 10Hz − 3kHz, which are used to characterize the neural

amplification system.

With this setup, and using the python-based FPGA controller and M-CMA equal-

ization system described in chapter 3, we are able to record data from all electrodes at

27Mbps in real-time. From these measurements we were able to record a gain of 35-37

dB from working sites at the minimum gain setting, 0000, and a gain of 51-56dB at

the second lowest gain setting, 0010. The higher gain settings, 0100 and 1000 simply

do not function properly and thus cannot be tested for gain, as the output voltages

are stuck at the voltage rail for all input values. The measurements for the lower two

gain values closely follow the expected peak gains from simulation of 43dB and 57dB

respectively. The SNR was found to be between −1dBc to 4dBc with a measured

total harmonic distortion of −12dBc to −18dBc corresponding to approximately 20%

THD. Measurements for gain, SNR, and THD are depicted in figure 4.14 for the gain

setting of 0010.

Noise analysis for the amplifiers with no input at the electrode openings in air

are depicted in figures 4.15, 4.16, and 4.17. As can be seen in 4.15, 254 of the 255

electrodes have a comparable input DC offset of approximately 1mV to 1.5mV . The

power spectral densities of the amplifiers are taken at the output of the SAR ADC,

which explains why there are periodic zero-amplitude spikes that correspond to the

quantization levels available at the output. For the maximum usable gain setting, the

integrated quantization noise for the system is 5.9µV . Using the additive noise model

for quantized signals, which assumes gaussian white noise and quantization noise are

uncorrelated and thus can be added by a Pythagorean sum, the quantization noise

and measured integrated power spectral density yields the histogram results in 4.15,
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with the top two plots representing output noise, the bottom plots showing input-

referred noise, the left two plots showing the Gaussian contribution, and the right

two plots including the quantization noise.

For approximately 200 of the 255 electrode sites, the quantization noise is the

dominating factor, yielding a mean integrated noise of 6.12µV with a sigma of 0.37µV .

This value exceeds the steady-state input referred noise simulated during chip design

by 3.5dB, however this increase is expected since the steady-state simulation does not

include the effect of noise folding. This noise analysis is within an order of magnitude

to previously designed, however, does not match the performance of the state of the

art, in particular when it comes to harmonic distortion [52, 73, 81–83].

4.3 Post Fabrication Thinning and Surgical

Results

Repeating the RMS analysis on the received backscattered LSK signal at various

post-processing stages, we can compare the effective recorded backscattered voltage

for two fully processed shanks that are currently attached to guide shanks and glued

with poly-ethylene-glycol (PEG), a pristine unprocessed die, and a thinned die that

has not gone through trench etching that is approximately 30µm thick. The raw

waveforms for those measurements are depicted in figure 4.18a and the RMS voltage

for each system over several seconds of data transmission are depicted in figure 4.18b.

As expected, the RMS value of the received LSK signal increases by approximately

3dB when compared to a pristine die from the foundry. This is expected behavior

as we have removed the 250− 300µm silicon substrate that was acting as a RF loss

layer. In comparison to the power gain of only 1.1dB at 27MHz, the gains in the

data TX/RX link are approximately 20% greater. For the fully processed shanks, we
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would expect to see similar performance to this 30µm chip, however these shanks are

still attached to both a lossy silicon guide shank and PEG, both of which will act as

RF blockers and will reduce the received amplitude. The overall amplitude loss from

these shanks compared to the baseline is 12dB, which is a significant loss, but does

not completely eliminate the ability to communicate with the probe. However, the

expected BER will not approach 1 ∗ 10−9 as that calculation assumed the 60mV LSK

RMS response from the unprocessed die. It is also likely these shank measurements

suffer from misalignment issues, as the 3D-interposer used for the unthinned tests is

not compatible with a thinned die due to its fragility.

Post thinning, the chip die thicknesses ranged from 20 − 30µm depending upon

thinning method, and all test circuitry and the bond pads have been cleaved off. At

this thickness, the entire shank system volume encompasses only 0.08mm3. The die

post-fabrication is depicted in figure 4.19. At this extremely small volume size, the

die becomes physically difficult to handle and is at incredibly high risk of breaking

along lattice weakness if improperly handled. In addition, the lack of a firm uniform

substrate causes the stress and strain tensors from the BOEL stack-up to vastly differ

from the 1µm box layer remaining on the back-side of the chip. As a result the die

will "roll-up" if not carefully handled, or in this case, the rolling is offset by surface

tension of water. To combat this, the processed probe is attached to a temporary and

possibly dissolvable stiffener made out of PEG. The processed die still attached to

this guide shank stiffener is depicted in figure 4.20 mid surgical insertion. To remove

the implant from this stiffener, the PEG is dissolved with saline until the probe head

separates from the stiffener, at which point the guide shank is slowly removed, leaving

the implant inserted and now using the tissue to prevent curling. It is important to

note that before communications with a thinned and implanted die, the power and

data coils must not be coated with fluid, as it acts as a critical RF blocker.

For surgical insertion, the die and guide shank are attached to a mounting probe
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using a vacuum system and micron-precise aligner. After insertion, the probe head is

flattened against the surface of the brain and dried. To communicate with the surgi-

cally inserted probe, a 3D-printed transmitter interposer (depicted in figure 4.21) is

used to position and align the implant to the external reader system with extremely

little misalignment and a radius of separation less than 700µm in order to commu-

nicate with the implant. Figure 4.22 depicts the entire surgical process. On the

left panel, the fully processed shank is seen attached to the guide shank system, the

center-left panel shows the vacuum system used to hold and align the system, the

center-right panels shows the slow insertion process into the brain, and finally the

right panel shows the probe head flattened against the surface of the brain with the

guide shank removed.

Full LSK communications were confirmed in-vivo for a thinned die without a

formed shank using the same aligner methodology for the fully formed shank system.

The experimental set-up for this in-vivo verification are depicted in figure 4.23 which

shows the alignment of the thinned die, and figure 4.24, which shows the external

transceiver aligned directly above the mouse skull during a live surgery.

The LSK blinking state during this surgical verification of transceiver operation

can be seen on the scope channel output in figure 4.25, with the RMS analysis of this

measurement previously shown on figure 4.18.
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(a) LSK Waveforms at various alignment

(b) LSK RMS vs alignment

Figure 4.10: Alignment effects on LSK

79



(a) LSK Waveforms at increased TX/RX radius

(b) RMS Amplitudes vs TX/RX Separation

Figure 4.11: TX/RX separation effects on LSK
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(a) LSK Waveforms at for different dielectric media

(b) RMS Amplitudes for biological dielectric media

Figure 4.12: LSK for different dielectric media
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Figure 4.13: In-vitro measurement methodology
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Figure 4.14: Measured SNR, THD, and Gain for Amplification System

Figure 4.15: Input referred noise waveforms for all 255 electrodes
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Figure 4.16: Input referred PSDs for all 255 electrodes

Figure 4.17: Noise histograms for all 255 electrodes
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(a) Raw LSK response at various levels of chip processing

(b) RMS amplitudes at different process steps

Figure 4.18: Thinning and Processing effects on LSK
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Figure 4.19: Fully processed implant
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Figure 4.20: Implanted transceiver with guide shank mid insertion
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Figure 4.21: Interposer system for aligning inserted probe to reader system

Figure 4.22: Surgical Insertion Process
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Figure 4.23: Thinned Die on surface of Mouse Brain
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Figure 4.24: Transceiver Alignment Invivo
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Figure 4.25: In-vivo LSK functionality
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Chapter 5

Conclusions

5.1 Summary of Contributions

The designed ASIC transceiver with integrated antennas transmits backscatter LSK

data at the highest data rate as opposed to previously published works [2, 84–86].

The power harvesting circuitry and power transfer efficiency is also competitive com-

pared to other integrated coil systems [87, 88], but does not perform at the level of

off-chip receivers. A summary of the IMD transceiver’s performance compared to

other similar systems for power harvesting performance and for data communications

performance is given in table 5.1. Our system exceeds the data rate for other passive

data modulation techniques, only trailing ultra-wide-band links which require both

larger antenna systems and extremely power hungry power amplifiers to actively drive

them at high frequencies and data rates [1–4, 6].
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Thinning of the ASIC has been confirmed to reduce the overall thickness of the

die from approximately 300µm down to 20 to 30µm, at which point the die is semi-

translucent and quasi-flexible. Operation of the transceiver link has been verified for

unthinned, thinned, shank-formed, and in an in-vivo dielectric environment implanted

in the brain of a lab mouse. Transceiver operation for power transfer has been verified

through 1 mm of gelatin phantom with power antenna PTE of 1.04% and 2.57% in

air. Data downlink of all 16 valid ASK words has been verified in both unthinned

and post-processed implants. LSK uplink at 27Mbps has been verified at a BER

of <1x10-9, giving energy efficiency of 103pJ/bit for 2.7mW of transceiver power.

Compared with other wireless IMDs that use near-field inductive links, this wireless

shank system achieves significantly higher data rates using LSK backscattering. Our

data rate is within an order of magnitude of systems utilizing UWB without the power

cost of an on-chip power amplifier system or the size of large antenna. While the use

of an on-chip inductor does decrease transmission radius, it reduces the volumetric

form factor by several orders of magnitude when compared to previously published

wireless implantable devices [1–4, 6]. This trade-off is advantageous for links where

high data rate and extremely small volumetric form factors are prioritized over system

efficiency. For table 5.1, since coils were implemented off-chip for the other implants,

volume was calculated assuming the implant coils constituted a majority of the other

system’s volumes, and were implemented using an ultra-thin flex PCB board with

a thickness of 220µm. This large volume decrease makes integrated Rx coils an

attractive option for the designed implantation application of neural recording in

small rodents. A summary of this transceiver performance results can be seen at [89].

For the application in neural recording, the front end amplification system has

worse noise performance with fewer ADC bits. In terms of overall number of con-

current recorded sites and data rate, this system performs well, but this increase in

concurrent sites creates the noise folding problem. In addition, in comparison to very
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[1] [4] [2] [3] [6] This Work
PowerCarrier(MHz) 13.56 13.56 13.56 309 - 27
DataCarrier(MHz) 13.56 13.56 50 309 3000-5000 700
ModulationType COOK PPSK PDM LSK UWB-OOK LSK
DataRate(Mbps) 6.78 1.35 13.56 2GHz 67 27

PowerDelivered(mW ) 6.3 100 42 0.79 - 4.2
ImplantV olume(mm3) 380 5 45 9.3 - 0.08
TX/RXpower(pJ/bit) 9.5/- - 960/162 -/395 30/- -/103
Technology(nm) 65 600 350 65 90 180
Separation(mm) 35 5-15 10 10 500-4000 0.5-2.5

BER 9.9−8 6−8 4.3−7 1−6 1−8 > 1−9

Table 5.1: Comparison to other implantable transceivers

recent systems, the total site count is lower, but that is a consequence of integrating

the entire system with a small area on the head of the shank. In other systems, the

entirety of the connected die is used for amplification, data converters, and control

systems. For our system, less than 1m2 is available for the amplifier system and mul-

tiplexing, since a majority of the chip’s area is dedicated to the transceiver. A table

highlighting our system application performance compared to other neural recording

systems with shanks is given in 5.2. While our noise level may seem comparable,

it does not capture the full bandwidth out to 10kHz, due to the 12.9kS/s sampling

limitation.

[53] [52] [73] This Work
Electrodes 144 966 1356 256

ConcurrentSites 144 384 678 256
Power/Channel(µW ) 46.29 49 45 52
InputNoise(µVRMS) 13.43 6.36 12.4 6.12
PixelP itch(µm) 70 20 22.5 25

ADCBits 11 10 10 8
SampleRate(kS/s/Ch) 30 30 20 12.9

Table 5.2: Comparison to Shank Systems
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5.2 Proposed Changes for Future Iterations

5.2.1 Wireless Transceiver

To truly create a fully integrated ASIC IMD with both a proper transceiver and front

end for a neural recording system, a variety of changes would need to be made to

in the ASIC design. From the transceiver side, currently the data-communications

protocol is both custom to this system and overly simplified in the actual handshaking

between transmitter and receiver. As a result, a custom reader system is required to

communicate with the probe as opposed to using a more standardized handshaking

protocol typically used in RFID systems in the 10 + MHz range. A more complex

handshaking routine between external reader and implant would also allow for more

precisely tunable functionality to be implemented, primarily with a data sequence

that could use an on-chip AC amplitude monitoring circuitry to either request a larger

power input signal, or to increase or decrease the data carrier for backscattering. In

both instances, this communication would allow for automatic gain control blocks to

be more easily implemented on the reader side, requiring less user input for robust

communications. If a larger area budget could be allowed, the replacement of a single

data coil with passive-backscattering could be replaced with multiple inductors spaced

at least 1mm away from each other on the chip surface. Since the LSK tolerance to

alignment must be less than 1mm anyway, it would be possible to implement two

parallel LSK receivers with minimal coupling between the pair. Each coil could also

be tuned to unique resonance frequencies, which would diminish cross-talk between

the links even farther.
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5.2.2 Neural Recording Systems

The intended application space for the designed ASIC IMD with integrated transceiver

is for neural recording and stimulation systems in the brain of mice. The mouse brain

is very small, and the typical mouse skull thickness is thin enough that the transceiver

can still be in range for communications if the implant transceiver is floating on the

surface of the mouse’s brain. The extremely small volume displacement from the

ASIC’s thinning is also desirable for this application.

For a redesign of the shank system, a much lower input referred noise value could

be obtained in the amplifier chain was redesigned to either remove time-multiplexing

entirely through the use of a single-bit quantizer in each pixel, or by limiting the time

multiplexing site ratio to less than 20, and compensate with parallelization of both

the final stage of the amplifier and ADC. The chip area encompassed by the neural

amplifier and ADC could fit inside the 2mm x 2mm space inside the power coil with

a minimum of 16 copies. Electromagnetic simulations would need to be performed

to see if the circuit performance drop caused by active circuitry being placed directly

under the active antennas outweighs the large parallelization of the amplifier and

ADC block, but the optimal number is likely greater than one now seeing the terrible

effects of noise folding. By adding the ability to only sub-sample a section of the

entire shank, a greater sampling frequency could also be used, which would allow

for a switch between low bandwidth measurements of many sites, or high-bandwidth

measurements of a few sites.
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