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ABSTRACT

Topics in Bayesian Design and Analysis for Sampling

Yutao Liu

Survey sampling is an old field, but it is changing due to recent advancement in statistics

and data science. More specifically, modern statistical techniques have provided us with

new tools to solve old problems in potentially better ways, and new problems arise as data

with complex and rich information become more available nowadays. This dissertation is

consisted of three parts, with the first part being an example of solving an old problem with

new tools, the second part solving a new problem in a data-rich setting, and the third part

from a design perspective. All three parts deal with modeling survey data and auxiliary

information using flexible Bayesian models.

In the first part, we consider Bayesian model-based inference for skewed survey data.

Skewed data are common in sample surveys. Using probability proportional to size sampling

as an example, where the values of a size variable are known for the population units, we pro-

pose two Bayesian model-based predictive methods for estimating finite population quantiles

with skewed sample survey data. We assume the survey outcome to follow a skew-normal

distribution given the probability of selection, and model the location and scale parameters

of the skew-normal distribution as functions of the probability of selection. To allow a flexi-

ble association between the survey outcome and the probability of selection, the first method

models the location parameter with a penalized spline and the scale parameter with a poly-

nomial function, while the second method models both the location and scale parameters

with penalized splines. Using a fully Bayesian approach, we obtain the posterior predictive

distributions of the non-sampled units in the population, and thus the posterior distributions

of the finite population quantiles. We show through simulations that our proposed methods

are more efficient and yield shorter credible intervals with better coverage rates than the

conventional weighted method in estimating finite population quantiles. We demonstrate



the application of our proposed methods using data from the 2013 National Drug Abuse

Treatment System Survey.

In the second part, we consider inference from non-random samples in data-rich settings

where high-dimensional auxiliary information is available both in the sample and the target

population, with survey inference being a special case. We propose a regularized prediction

approach that predicts the outcomes in the population using a large number of auxiliary

variables such that the ignorability assumption is reasonable while the Bayesian framework

is straightforward for quantification of uncertainty. Besides the auxiliary variables, inspired

by Little and An (2004), we also extend the approach by estimating the propensity score

for a unit to be included in the sample and also including it as a predictor in the machine

learning models. We show through simulation studies that the regularized predictions using

soft Bayesian additive regression trees (SBART) yield valid inference for the population

means and coverage rates close to the nominal levels. We demonstrate the application of the

proposed methods using two different real data applications, one in a survey and one in an

epidemiology study.

In the third part, we consider survey design for multilevel regression and post-stratification

(MRP), a survey adjustment technique that corrects the known discrepancy between sample

and population using shared auxiliary variables. MRP has been widely applied in survey

analysis, for both probability and non-probability samples. However, literature on survey

design for MRP is scarce. We propose a closed form formula to calculate theoretical margin

of errors (MOEs) for various estimands based on the variance parameters in the multilevel

regression model and sample sizes in the post-strata. We validate the theoretical MOEs

via comparisons with the empirical MOEs in simulations studies covering various sample

allocation plans. The validation procedure indicates that the theoretical MOEs based on

the formula aligns with the empirical results for various estimands. We demonstrate the

application of the sample size calculation formula in two different survey design scenarios,

online panels that utilize quota sampling and telephone surveys with fixed total sample sizes.
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i=1(yi − ȳ)2) and (b) T3(y, G, σ) =

1
n

∑n
i=1

(
yi−θi
σ

)2
with θi = G(zi,xi). The observed quantity (T1(y), T2(y))

is at the center of the cloud of the predictive quantities and the observed

quantity T3(y, G, σ) has about half the chance to be below the 45 degree

line. The Bayesian posterior predictive p-values for T1(·), T2(·) and T3(·) are

p1 = .50, p2 = .51 and p3 = .50, respectively. . . . . . . . . . . . . . . . . . . 119

S3 (a) Scatterplot of prolongation vs baseline QTc with a LOESS curve (b) In-

clusion propensity vs baseline QTC using LEOSS among COVID patients

admitted at CUIMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

vii



List of Tables

2.1 Empirical bias and RMSE of the proposed Bayesian model-based quantile

estimators and the HA quantile estimator with 500 PPS samples of size n =

200 from the four artificial populations of size N = 2, 000. . . . . . . . . . . 35

2.2 Average widths (AIW) and non-coverage rates of the 95% probability inter-

vals for the proposed Bayesian model-based quantile estimators and the HA

estimator with 500 PPS samples of size n = 200 from the four artificial pop-

ulations of size N = 2, 000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Emprical bias, empirical RMSE, average 95% probability interval widths (AIW)

and non-coverage rates for the proposed Bayesian model-based methods and

the HA method with 500 PPS samples of size n = 50 from NDATSS popula-

tion of size N = 475. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Simulation results - empirical bias and RMSE of various methods in estimating

population means, from 500 simulation replicates, for each simulation setting 64

4.1 Definition of post-strata and corresponding post-strata sizes for OHARNG . 81

4.2 Total sample sizes and sample sizes by post-stratification cells for all simula-

tion scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Value sets of the variance parameters for sensitivity analysis . . . . . . . . . 92

viii



Acknowledgments

My greatest gratitude goes to my dissertation advisors, Dr. Qixuan Chen and Dr. Andrew

Gelman. Qixuan has always been so available whenever I need support or mentorship, and

has witnessed every single step as I toddle along my way into statistical research. Andrew

has inspired me via his blog and recorded presentations online since I was in college, even

before graduate school. It has been a true privilege working with and learning from him.

Many thanks to Dr. Ying Wei, Dr. Thomas D’Aunno and Dr. Lauren Kennedy for

being on my committee and offering helpful comments. Ying also offered me a research

opportunity through which I gained training in high performance computing.

I am grateful to the Department of Biostatistics for the friendly environment and fellow-

ship support, with acknowledgments to all faculty, fellow students and staff. I learn a little

bit of life wisdom every single day.

I appreciate the research assistantships with Dr. Guohua Li, Dr. John Santelli and

Dr. Jessica Justman. The collaborative research projects expose me to important scientific

questions and interesting real data problems, and I also learn to work with public health

researchers as an applied practicing statistician.

Special thanks to my intern mentors and intern fellows at Boehringer Ingelheim, Google

and Facebook. I would like to thank Dr. Qiqi Deng for offering the internship opportunity

when I was a first year Ph.D. student, before taking the qualify exams, so that I had the

chance to see statistical research in industry early on. And the internship experience at

Google and Facebook changes my mindset substantially.

Last but not least, I would like to thank friends and family for love and companion over

the years.

ix



CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Overview

Sample surveys are widely used to collect information about various characteristics of a finite

population of interest. In complex surveys, units are selected with unequal probabilities and

non-response presents in almost all surveys. Such survey design features and practical issues

need to be considered to perform valid statistical inference. In this chapter, we review

statistical methods for estimating population total with survey data drawn from a finite

population, including both design-based and model-based inferential approaches. In the

design-based approach, estimators can be constructed using either survey weights or model-

assisted approaches that incorporate auxiliary information with the intention of improving

efficiency. In model-assisted estimators, we also review methods using modern statistical

learning techniques when more flexible methods other than linear model is desired or high-

dimensional auxiliary information becomes a challenge. For the model-based approach, we

review both super-population and Bayesian approaches but focus on Bayesian modeling in

1



CHAPTER 1. INTRODUCTION

various sampling schemes.

1.2 Statistical Analysis of Complex Surveys

1.2.1 Framework and Notation

In finite population scenarios, we consider a finite population of size N < ∞ and the set,

consisted of units in the population, is denoted as U = {1, . . . , N} . We are interested in

a particular survey variable Y , representing some certain characteristic of the population,

with value yi corresponding to the ith unit. A survey sample s of size n is drawn from the

finite population, in other words, s ⊂ U , according to a given sampling design p(·), where

p(s) is the probability of selecting sample s. For i, j ∈ U , the first-order probabilities of

selection are given by πi = Pr[i ∈ s] =
∑

s⊂U :i∈s p(s) and the second-order probabilities of

selection are given by πij = Pr[i, j ∈ s] =
∑

s⊂U :i,j∈s p(s). Let Ii be the sample inclusion

indicator of unit i, with value 1 if unit i is included in the sample and value 0 if otherwise.

Without the presence of survey nonresponse, Ii = 1 if i ∈ s and Ii = 0 if otherwise; and

inclusion probabilities are equal to probabilities of selection Pr[Ii = 1] = Pr[i ∈ s] = πi. Very

often, we have information on other characteristics of the population, denoted by variables

x = (x1, x2, . . . , xp), prior to conducting a survey. Lohr (2009) defines auxiliary variable

as any variable available prior to sampling. Such auxiliary information can be used to

improve survey inference. A subset of the auxiliary variables Z ⊂ {x1, x2, . . . , xp} could be

used for survey design, e.g. size variable in probability proportional to size (PPS) sampling

design. Such variables are called design variables. Usually the purpose of the survey is to

make “descriptive” inference about the finite population quantity Q(Y ,Z), a function of

2



CHAPTER 1. INTRODUCTION

Y = {y1, y2, . . . , yN} and potentially Z, e.g. domain estimation. For now, we focus on

inference on the population total Q(Y ) = ty =
∑

i∈U yi =
∑N

i=1 yi, considering that more

complex finite population quantities can be written as functions of ty (Breidt and Opsomer,

2017).

1.2.2 Design-Based Inference

In the design-based approach, the reference distribution is the distribution of sample inclu-

sion indicator I. The survey outcomes of the units Y = {y1, y2, . . . , yN} are treated as fixed

and inference is based on the statistical distribution of I = {I1, I2, . . . , IN}. The statistical

uncertainty that needs to be quantified comes from repeated sampling from the finite popu-

lation using the sampling design. The statistical inference procedure consists of the following

parts:

(a) choosing an estimator Q̂ = Q̂(Y s, I), a function of the observed survey outcomes Y s =

{yi}i∈s and sampling inclusion indicators, which enjoys certain statistical properties,

e.g. unbiasedness or consistency, with respect to the distribution of I.

(b) choosing a variance estimator V̂ = V̂ (Y s, I) which is unbiased or approximately un-

biased for the variance of Q̂, with respect to the distribution of I.

Then the point estimate is given by Q̂(Y s, I) and (1− α) level confidence interval could

be constructed based on large sample approximation using the standard normal distribution,

(Q̂−zα
√
V̂ , Q̂+zα

√
V̂ ). For small sample scenarios, confidence intervals based on resampling

methods are available for some sampling designs (Rao, Wu, and Yue, 1992; Rao and Wu,

1988).

3



CHAPTER 1. INTRODUCTION

1.2.2.1 Weighted Estimators without Auxiliary Information

Among estimators not utilizing auxiliary information, two weighted estimators play a central

role in design based inference, the Horvitz and Thompson (1952) estimator and the Hájek

(1971) estimator (Chen et al., 2017).

Note that, in the absence of survey nonresponse, inclusion probabilities are equal to

probabilities of selection. Weighting the units in the sample using inverse of the inclusion

probabilities, the Horvitz and Thompson (1952) estimator of finite population total ty takes

the form

t̂y,HT =
∑
i∈s

yi
πi

=
∑
i∈U

Ii
yi
πi
.

The estimator is design-unbiased in the sense that when taking expectation with respect to

sampling design p(·), the following holds

Ep(t̂y,HT) = Ep

(∑
i∈U

Ii
yi
πi

)
=
∑
i∈U

Ep(Ii)
yi
πi

=
∑
i∈U

πi
yi
πi

=
∑
i∈U

yi =
N∑
i=1

yi = ty.

The variance of the estimator is given by

Varp(t̂y,HT) = Varp

(∑
i∈U

Ii
yi
πi

)
=
∑
i∈U

∑
j∈U

Covp(Ii, Ij)
yi
πi

yj
πj

=
∑
i∈U

∑
j∈U

(πij − πiπj)
yi
πi

yj
πj
,

which involves second-order inclusion probabilities. For πij > 0, an unbiased estimator of

the variance is

V̂ (t̂y,HT) = ˆVarp(t̂y,HT) =
∑
i∈U

∑
j∈U

IiIj
πij − πiπj

πij

yi
πi

yj
πj

=
∑
i∈s

∑
j∈s

πij − πiπj
πij

yi
πi

yj
πj

(Sen, 1953).

4
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It can be seen from the variance formula that the Horvitz and Thompson (1952) estimator

could be very inefficient when some units have large values for survey outcome yi’s or very low

probabilities of selection πi’s, leading to extreme weights, given a sampling design. Various

approaches have been proposed to improve efficiency of weighted estimator, which will be

discussed later. An alternative weighted estimator is the Hájek (1971) estimator which is

given by

t̂y,HA =
t̂y,HT

N̂HT

N,

where N̂HT =
∑

i∈U Ii/πi. The Hájek (1971) estimator is design-consistent.

1.2.2.2 Model-Assisted Estimators

In many settings, auxiliary variables x = (x1, x2, . . . , xp) are available at the population level.

Model-assisted estimators can be used to account for such auxiliary information when it is

available. All model-assisted estimators in this section can be viewed as types of difference

estimator under various working models (Breidt and Opsomer, 2017; Särdnal et al., 1992,

chapter 6) . The difference estimator takes the following form

t̂y,diff =
∑
i∈U

m(xi) +
∑
i∈s

yi −m(xi)

πi
=
∑
i∈U

m(xi) +
∑
i∈U

Ii
yi −m(xi)

πi
,

where m(·) is some method that predicts yi using xi (Breidt and Opsomer, 2017). Note that

the second term is the Horvitz and Thompson (1952) estimator of finite population total

ty −
∑

i∈U m(xi) for the constructed population {y1 −m(x1), y2 −m(x2), . . . , yN −m(xN)}

and is, therefore, design-unbiased for ty −
∑

i∈U m(xi). Hence, the difference estimator is

design-unbiased for finite population total ty. In terms of variance of estimator, in design-

based approach, only the second term is random under the sampling design, as the reference
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distribution is the distribution of sample inclusion indicators. The variance of the difference

estimator is given by

Varp(t̂y,diff) = Varp

(∑
i∈U

Ii
yi −m(xi)

πi

)
=
∑
i∈U

∑
j∈U

Covp(Ii, Ij)
yi −m(xi)

πi

yj −m(xj)

πj

=
∑
i∈U

∑
j∈U

(πij − πiπj)
yi −m(xi)

πi

yj −m(xj)

πj
.

By weighting the difference instead of the original survey outcomes, the different estimator

potentially improves efficiency when the method m(·) has good performance in predicting

survey outcomes and the difference is small.

The method m(·) needs to be specified in the different estimator and model-assisted ap-

proach introduces a working model to predict survey outcomes yi’s with auxiliary information

xi’s. The general form of the working model is written as

yi = m(xi) + εi,

where E(εi) = 0 and the survey outcomes yi’s are modeled as realizations from super-

population. The working model does not have to be correctly specified to model the rela-

tionship as long as it has some predictive power for survey outcomes. With an observed

survey sample, m(·) can be estimated with some estimator m̂(·) and plugging m̂(·) into the

difference estimator leads to the model-assisted estimator

t̂y,MA =
∑
i∈U

m̂(xi) +
∑
i∈s

yi − m̂(xi)

πi
=
∑
i∈U

m̂(xi) +
∑
i∈U

Ii
yi − m̂(xi)

πi
.

Note that there is statistical uncertainty in m̂(xi) under the sampling design for m̂(xi)

depends on the sample and, more specifically, the sample inclusion indicators. The estimator

6
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could be further re-written in the following form

t̂y,MA =
∑
i∈U

m̂(xi) +
∑
i∈U

Ii
yi − m̂(xi)

πi

=
∑
i∈U

m̂N(xi) +
∑
i∈U

Ii
yi − m̂N(xi)

πi
+
∑
i∈U

(m̂(xi)− m̂N(xi))

(
1− Ii

πi

)
,

where m̂N(·) is the population-level fit estimated using data from all units in the finite

population. Note that m̂N(·) is fixed under the sampling design, as it does not depend

on the sample inclusion indicators. The first part, consisted of the first two terms, is the

different estimator based on the population-level fit m̂N(·) which is design-unbiased for the

finite population total ty, for any m̂N(·). Therefore, as long as the third term can be shown

to be negligible relative to the difference estimator, asymptotic design-unbiasedness can be

claimed for the model-assisted estimator.

Specifying a linear working model with heteroskedastic errors for the difference estimator

yields the generalized regression estimator. More specifically, the model is written as

yi = xiβ + εi, εi ∼ (0, σ2
i ),

where Cov(εi, εj) = 0, for i 6= j. The population-level model fit can be obtained using

weighted least squares

m̂N(xi) = x
′

iβ̂N = x
′

i

(∑
j∈U

x
′
jxj

σ2
j

)−1∑
j∈U

xjyj
σ2
j

.

Since only data from the sample is available, plugging in the Horvitz and Thompson (1952)

estimator for the finite population totals yields

m̂(xi) = x
′

iβ̂ = x
′

i

(∑
j∈s

x
′
jxj

πjσ2
j

)−1∑
j∈s

xjyj
πjσ2

j

7
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and plugging in the estimated model fit leads to the generalized regression estimator

t̂y,GREG =
∑
i∈U

x
′

iβ̂ +
∑
i∈s

yi − x
′
iβ̂

πi
=
∑
i∈U

x
′

iβ̂ +
∑
i∈U

Ii
yi − x

′
iβ̂

πi
.

The idea of choosing working models that better predict survey outcomes motivates the

direction of research in moving beyond linear models. Flexible models that capture non-

linearity have been considered. Statistical learning techniques have been used to construct

model-assisted survey estimators. The motivations of using statistical learning techniques in

survey inference include modeling potentially nonlinear relationship between survey variable

and auxiliary variables as well as handling high-dimensional issues if a large number of

auxiliary variables are available. The rest of the section consists a few such examples.

Kernel Methods. Kernel methods assume that the model is locally simple, constant or

linear, but globally smooth and then estimate the local regression function using nearby

points determined by a kernel weighting function. Breidt and Opsomer (2000) consider

modeling m(·) as a smooth function of a single auxiliary variable X estimated by local

polynomial regression. The smooth function is approximated locally at xi by a q-th order

polynomial, fitted at the finite population level via weighted least squares using weights

given by a kernel function centered at xi:

mN(xi) = (1, 0, . . . , 0) · (X ′

UiW UiXUi)
−1X

′

UiW UiyU

where XUi = [1 xj − xi . . . (xj − xi)
q]j∈U , W Ui = diag

{
1
h
K
(xj−xi

h

)}
j∈U and y

′
U =

[y1, y2, . . . , yN ]. Let Xsi = [1 xj − xi . . . (xj − xi)q]j∈s, W si = diag
{

1
h
K
(xj−xi

h

)}
j∈s and

y
′
s = [yi]j∈s, the estimated model fit with a sample is given by

m̂LPR(xi) = (1, 0, . . . , 0) · (X ′

siW siXsi)
−1X

′

siW siys.

8
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Breidt and Opsomer (2000) also show that the survey estimator of finite population total

can be written as weighted average of survey outcomes t̂y,LPR =
∑

i∈swisyi with weights wis

independent of y and is calibrated to powers of x,∑
i∈s

wisx
l =
∑
i∈U

xl (l = 0, 1, . . . , p).

Alternatively, Breidt, Opsomer, Johnson, and Ranalli (2007) consider a working model the

mean of which is a semiparametric additive model. Disadvantages of kernel-based methods

include the difficulties of adapting the kernel to incorporate multiple covariates, especially

the combination of categorical and continuous variables.

Penalized Spline. Breidt, Claeskens, and Opsomer (2005) consider penalized spline func-

tions of covariates and control model complexity via penalization/regularization. The work-

ing model is a linear mixed model

yi = β0 +

p∑
l=1

βlx
l
i +

K∑
k=1

bk(xi −mk)
p
+ + εi

b ∼ N(0, λ−1IK)

where the constants m1, . . . ,mK are K selected fixed knots and λ is chosen a priori to give

specified degrees of freedom in the smooth. As λ → 0, the model becomes a piecewise pth-

order polynomial, while as λ → ∞, the model approaches a global pth-order polynomial.

Similar to local polynomial regression survey estimator, the penalized spline survey estimator

can be also written in weighted form, with weights independent from the survey outcomes.

The weights are calibrated to the powers of x, {xl}pl=0, but not the truncated polynomial

basis functions. The survey asymptotic is discussed by McConville and Breidt (2013).

Neural network is a very popular statistical learning method that handles nonlinearity

by specifying the mean response using nonlinear functions of new covariates derived as linear
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combinations of original covariates. Montanari and Ranalli (2005) develop a model-assisted

estimator using a feedforward neural network with skip-layer connections,

m(xi) = x
′

iβ +
M∑
j=1

αja(γ
′

jxi),

where γ
′
jxi are derived new covariates, a(·) is a known nonlinear activation function and

β, {αj}Mj=1, {γj}Mj=1 are unknown parameters to be estimated. Design consistency and

asymptotic normality of the model-assisted estimator is proven.

LASSO. The least absolute shrinkage and selection operator (LASSO) proposed by Tib-

shirani (1996) has been widely used since developed. The method simultaneous performs

variable selection and regularization using L1 penalty. Mcconville, Jay Breidt, Lee, and Moi-

sen (2017) consider a linear working model with homogeneous variance and high-dimensional

auxiliary variables and propose survey-weighted lasso estimator for the regression coefficients

β̂
(L)

s = argminβ(Y s −Xsβ)TΠ−1
s (Y s −Xsβ) + λ

p∑
i=1

|βi|,

where Πs = diag(πj)j∈s. Design consistency was established for the LASSO survey regression

estimator of finite population total.

1.2.3 Model-Based Inference

In the model based approach, the survey outcomes {y1, y2, . . . , yN} are viewed as realizations

of random variables {Y1, Y2, . . . , YN}. A statistical model is specified to model the (random)

survey variable and to predict survey outcomes for units not included in the sample. Inference

of finite population quantities is viewed as a prediction problem. The finite population total
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ty can be partitioned into two terms

ty =
∑
i∈U

yi =
∑
i∈s

yi +
∑
i∈U/s

yi,

and the problem of estimating finite population total can be solved by predicting the survey

outcomes {yi}i∈U/s. A probability distribution p(Y |Z,θ) indexed by parameter θ is specified

for predictive purpose and inference is based on the joint distribution of survey variable Y and

sample inclusion indicator I. Rubin (1976) demonstrates that, under probability sampling,

inference can be based on the distribution of survey variable Y alone, as long as the design

variables Z are included in the model and the distribution of I given Y is independent of the

distribution of Y conditional on the design variables, p(I|Y,Z) = p(I|Z). The model-based

approach includes two variants, super-population modeling and Bayesian modeling.

1.2.3.1 Super-Population Modeling

In the super-population model-based approach, the population survey outcomes {Yi}i∈U are

assumed to be a random sample from a super-population model. A probability distribution

p(Y |Z,θ) index by parameter θ is specified for the survey variable (Little, 2004). The

underlying assumption is that the model holds for both the population and the sample.

Example 1: Hospital Discharges. Consider estimation of total number of patients dis-

charged (Y ) during a given month in all the hospitals in the sampling frame consisting a

finite population. For each hospital i in a sample drawn from the finite population, we ob-

serve number of patients discharged yi and number of beds xi. It is reasonable to believe

that the number of patient discharged is roughly proportional to the number of beds in each
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hospital and the belief naturally leads to the following model specification

EM [Yi] = βxi, VarM(Yi) = σ2xi, i = 1, . . . , N

where CovM(Yi, Yj) = 0, for i 6= j. Under the model above, the best linear unbiased estimator

(BLUE) of β can be obtained via Weighted Least Squares (WLS) estimator

β̂ =

∑
i∈s yi∑
i∈s xi

,

and the model-based estimator is given by

t̂y =
∑
i∈s

yi +
∑
i∈U/s

ŷi =
∑
i∈s

yi +
∑
i∈U/s

β̂xi =

∑
i∈s yi∑
i∈s xi

∑
i∈U

xi =

∑
i∈s yi∑
i∈s xi

tx,

which is the ratio estimator. Given a sample, the estimator is unbiased under the model

specification in the sense that

EM [t̂y − ty] = EM [
∑
i∈U/s

β̂xi −
∑
i∈U/s

yi] = 0.

(Royall, 1992)

1.2.3.2 Bayesian Modeling

Bayesian modeling requires prior specification on the parameters and inference of finite

population quantities is based on the posterior predictive distribution of the survey variables

for non-sampled units p(Y ns|Y s,Z), where Y s = {Yi}i∈s consists of survey outcomes in

the selected sample and Y ns = {Yi}i∈U/s consists of survey outcomes in the reminder of the

population. Specification of the prior distribution can be achieved by specifying a model

p(Y |Z,θ) on the survey variable Y indexed by parameter θ and a prior distribution p(θ|Z)

12



CHAPTER 1. INTRODUCTION

on the parameters. With observations in sample s, the model can be fitted and the posterior

distribution of θ computed via Bayes’s theorem

p(θ|Y s,Z) =
p(Y s|Z,θ)p(θ|Z)∫
p(Y s|Z,θ)p(θ|Z) dθ

.

Therefore, the posterior predictive distribution is given by

p(Y ns|Y s,Z) ∝
∫
p(Y ns|Y s,Z,θ)p(θ|Y s,Z) dθ,

which induces the posterior distribution of finite population quantity p(Q(Y ,Z)|Y s,Z).

(Little, 2004) The model formulation does not include the sample inclusion indicator I,

which is justified when the sampling mechanism is ignorable given the design variables

Z, p(I|Y ,Z) = p(I|Z) which leads to p(Y ns|Y s,Z, I) = p(Y ns|Y s,Z) (Gelman et al.,

2014; Rubin, 1983). Actually the condition holds for all probability sampling design, which

avoids the need to specify a model for sampling mechanism (Rubin, 1983). Below we review

Bayesian model-based inference under various sampling designs.

Example 2: Bayesian Model-Based Inference for the Mean from a Stratified Random

Sample. If the survey variable of interest takes very different values in different subpopu-

lations, stratified random sampling is considered to improve precision of the estimates of

population quantities. The population is partitioned into H disjoint strata so that the sur-

vey variable takes similar value within each stratum and then a simple random sample of

size nh is independently taken within each stratum. Therefore, parametric models with dis-

tinct parameters assigned to different strata are considered to reflect strata differences for

such stratified samples. Denote Yhi the survey outcome for unit i in stratum h. A common

baseline model for continuous outcome assumes normal distributions for Yhi with distinct

13



CHAPTER 1. INTRODUCTION

parameters mean µh and σ2
h for strata h = 1, . . . , H. A simple Bayesian non-informative

prior specification leads to the following model

p(yhi|zhi = h, µh, σ
2
h)

iid∼ N(µh, σ
2
h), p(µh, log σ2

h) = const.

With known variances {σ2
h}Hh=1, standard Bayesian calculations indicate that the posterior

distribution of finite population mean Ȳ given Y s, I and {σ2
h}Hh=1 is normal with mean and

variance

E(Ȳ |Y s, I, σ
2
h) =

H∑
h=1

Nh

N

(
1

nh

nh∑
i=1

yhi

)
,

Var(Ȳ |Y s, I, σ
2
h) =

H∑
h=1

(
Nh

N

)2

σ2
h

(
1

nh
− 1

Nh

)
,

where Nh is the sub-population size and nh is the sample size in stratum h. Note that the

posterior mean is the stratified mean from design-based inference and, if replacing {σ2
h}Hh=1

with sample variance {s2
h}Hh=1 in each stratum, the posterior variance equals the design-based

variance. The fully Bayesian inference quantifies the uncertainty in estimating the variances

{σ2
h}Hh=1 by integrating out of the posterior distribution of Ȳ |Y s, I, σ

2
h over the posterior of

distribution σ2
h|Y s, I.

Example 3: A Non-robust Model for Disproportionate Stratified Sampling. If the model

fails to differentiate the strata by assuming the same distribution for all strata, the validity

of inference is compromised. In the setting of stratified sampling, assigning same parameters

for all strata leads to the following misspecification

p(yhi|zhi = h, µ, σ2)
iid∼ N(µ, σ2), p(µ, log σ2) = const.
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The posterior mean under the model is unweighted sample mean

E(Ȳ |Y s, I, σ
2) =

H∑
h=1

nh
n

(
1

nh

nh∑
i=1

yhi

)
=

1

n

H∑
h=1

nh∑
i=1

yhi,

which is biased if the probabilities of selection vary across the strata. Therefore, attention

needs to be drawn to the limitation of model-based inference that it is subject to bias if the

model is miss-specified.

Example 4: Bayesian Model-Based Inference for Probability Proportional to Size Sam-

ple. When units in a survey population are of very different sizes, units with large sizes

often contribute more to population quantities than units with smaller sizes. In probabil-

ity proportional to size (PPS) sampling design, units of large sizes are selected with higher

probabilities by assigning the probability of selection π is proportional to the value of a size

variable X available for all population units. Such design can be considered for efficient

estimation of population mean of a survey variable if the variance of which increases with

size of the unit. Consider a finite population of size N , a PPS sample of size n is drawn by

assigning probabilities of selection πi = nXi/
∑N

i=1 Xi to unit i. The size variable here is

a design variable and, therefore, should be included in the model to construct model-based

predictive estimators. Model-based estimators, as discussed above, are subject to bias when

the underlying model is miss-specified and such limitation motivates the development of

flexible models that are robust against model miss-specification. As a Bayesian extension of

Zheng and Little (2003), Chen et al. (2010) propose a Bayesian penalized spline predictive

(BPSP) estimator for finite population proportion in unequal probability sampling. Denote

Y a binary survey variable of interest and p = N−1
∑N

i=1 Yi be the population quantity, the

proportion of population units for which Y = 1. A probit truncated polynomial penalized
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spline regression model is considered

Φ−1(E(Yi|β, b, πi)) = β0 +

p∑
l=1

βlπ
l
i +

K∑
k=1

bk(πi −mk)
p
+

b|τ 2
b ∼ N(0, τ 2

b IK)

where Φ−1(·) denotes the inverse CDF of standard normal distribution and the constants

m1, . . . ,mK are K selected fixed knots. The function (πi−mk)
p
+ is called truncated polyno-

mial spline basis function with power p, where (u)p+ = {u× I(u > 0)}p for u ∈ R. Penalty is

imposed by specifying a normal distribution for the coefficients b = (b1, . . . , bK)′ for truncated

polynomials, which is equivalent to smoothing via penalized likelihood. In fully Bayesian

inference, a weak informative prior N(0, ϕ2 = (103)2) is specified for the polynomial coeffi-

cients β = (β0, . . . , βp)
′ and an inverse-Gamma distribution or improper uniform prior for

the variance component for the truncated polynomial coefficients τ 2
b and the posterior pre-

dictive distribution of finite population proportion is obtained by generating a large number

of draws using Markov chain Monte Carlo simulations.

Zangeneh and Little (2015) consider Bayesian finite population inference of finite pop-

ulation total when only summary information of the aggregate size of non-sample units is

available.

While stratified sampling and probability proportional to size sampling is limited to de-

sign variables that are known prior to survey design and data collection, post-stratification

provides a way to combine data collected in the survey with aggregate data at population-

level from other sources. Post-stratification can improve efficiency of survey estimates and

can correct for bias, in the presence of differential nonresponse, by correcting for known

differences between sample and population. In basic formulation, joint distribution of post-
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stratification discrete variablesX is known and the population can be partitioned into J sub-

populations according to possible categories ofX, each category labeled as post-stratification

cell j with population size Nj and sample size nj. The total population size N =
∑J

j=1 nj

and the sample size n =
∑J

j=1 nj. The implicit assumption is that the data are collected by

simple random sampling or, more generally, the relative probabilities of selection are equal,

within each of the J post-strata. Further assume that the population size Nj of each post-

stratification cell j is known. The population mean of any survey response can be written

as

θ =

∑J
j=1Njθj∑J
j=1Nj

,

where θj denotes subpopulation mean of each cell. And the corresponding estimates

θ̂PS =

∑J
j=1Nj θ̂j∑J
j=1 Nj

.

(Gelman, 2007; Little, 1993)

Example 4: Bayesian Multilevel Regression Post-Stratification. Gelman (2007) considers

a continuous survey variable Y for the CBS/New York Times polls and assume a normal hier-

archical regression model Y ∼ N(Xβ,Σy) with a prior distribution on regression coefficients

β ∼M(0,Σβ). The following predictors are included

• A constant term

• An indicator for sex (1 if female, 0 if male)

• An indicator for ethnicity (1 if black, 0 otherwise)

• Sex × ethnicity
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• 4 indicators for age categories

• 4 indicators for education categories

• 16 age × education categories.

For simplicity, conditional independence is assumed for the components of β in the prior dis-

tribution, conditioning on the hyperparameters for the variance components. Therefore, the

prior precision matrix Σ−1
β is diagonal, with zeros for non-hierarchical regression coefficients

(coefficients for the first 4 terms including the constant term) and 3 different parameters for

the last 3 groups of coefficients. The regression coefficients can be estimated using posterior

mean β̂ = (X tΣ−1
y X + Σ−1

β )−1X tΣ−1
y Y . Denote X the n × k matrix of predictors in the

data, Xpop the J × k matrix of predictors for the J post-stratification cells and label the

vector of post-stratum populations as Npop = (N1, . . . , NJ). The Bayesian post-stratification

estimator is given by

θ̂PS =
1

N
(Npop)tXpopβ̂ =

1

N
(Npop)tXpop × (X tΣ−1

y X + Σ−1
β )−1X tΣ−1

y Y .

Si, Pillai, and Gelman (2015) consider a scenario where inverse-probability weights are

available for sample units only. They uses a hierarchical Bayesian approach to model the

distribution of the weights of the nonsample units and simultaneously include the weights

as predictors in a nonparametric Gaussian process regression.

In some applications, a large number of auxiliary variables are available with some vari-

ables potentially not significantly related to survey variable interest. At the same time, some

of the the auxiliary variables are highly correlated. In such scenario, it is natural to consider
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variable selection and shrinkage methods to improve the model when constructing survey

estimator.

Shrinkage Priors for Sparse Bayesian Estimation. The spike-and-slab prior proposed by

Mitchell and Beauchamp (1988) and George and McCulloch (1993) is often considered as

the “gold standard” for sparse Bayesian estimation. For a p-dimensional vector of regression

coefficients β, the prior can be written as a two-component discrete mixtures

βj|λj, c, ε ∼ λjN(0, c2) + (1− λj)N(0, ε2),

λj ∼ Ber(π), j = 1, . . . p,

where ε � c and the indicator variable λj ∼ {0, 1} denotes whether the coefficient βj is

close to zero (λj = 0) or nonzero (λj = 1). Carvalho, Polson, and Scott (2010) proposed

a continuous horseshoe prior that is easy to implement and has been shown comparable

performance to the spike-and-slab prior

βj|λj, τ ∼ N(0, τ 2λ2
j),

λj ∼ C+(0, 1), j = 1, . . . , p.

The horseshoe is one of the so called global-local shrinkage priors. The global hyperparameter

τ shrinks all the parameters towards zero while the local hyperparameters λj allow some

coefficients to escape the shrinkage.
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Chapter 2

Bayesian Inference of Finite

Population Quantiles for Skewed

Survey Data Using Skew-Normal

Penalized Spline Regression

2.1 Introduction

Skewed data commonly arise in sample surveys. In such scenario, it is of more interest

to draw inference of population quantiles, especially the lower and upper tails of the dis-

tribution, than the population mean. In this paper, we study the inference of population

quantiles with skewed survey data from unequal probability sampling. Inference of finite

population quantities can be either design-based or model-based, in which the survey de-

sign is incorporated into the statistical analysis in different ways (Kish, 1995; Little, 2004;

Smith, 1976, 1994). In the design-based approach, the survey outcomes Y are treated as
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fixed and inference is based on the distribution of the sample inclusion indicator I, a binary

variable that indicates whether a unit is included in the survey sample (Cochran, 2007). In

the model-based approach, a regression model is specified to model Y and inference is based

on joint distribution of Y and I. Inference can be based on the distribution of Y alone, as

long as I is independent of Y conditional on the design variables (Rubin, 1976).

Estimation of finite population quantiles is intimately tied to estimation of finite popu-

lation distribution functions (Dorfman, 2009). From a design-based perspective, Kuk (1988)

compared three estimators of distribution functions, including the Hájek estimator, the

Horvitz-Thompson estimator, and the complementary proportion estimator; and gave the-

oretical reasoning for preferring the Hájek or complementary proportion estimators to the

Horvitz-Thompson estimator. The Hájek estimator, which is design-consistent and approxi-

mately design-unbiased, is considered the “customary design-based estimator” and is usually

the estimator against which other estimators of cumulative distribution functions are com-

pared (Dorfman, 2009). Taking a model-based approach, Chambers and Dunstan (1986)

(CD) estimated the distribution function utilizing auxiliary information and specifying a

linear super-population model with heterogeneous variance through the origin. Dorfman

and Hall (1993) modified the CD estimator by replacing the linear model with nonpara-

metric regression model. To estimate the distribution of the CD and the nonparametric

CD estimators, Lombardıa, González-Manteiga, and Prada-Sánchez (2003, 2004) proposed

bootstrap methods in which bootstrap populations were constructed by sampling the em-

pirical distribution of the re-centered residuals from the fitted super-population model. Kuk

and Welsh (2001) further modified the CD estimator with robust estimation technique to
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handle outliers and model misspecification, which fine-tunes for departure from the model

assumed by estimating the conditional distributions of the residuals as a function of the

auxiliary variable after fitting the working model to the sample. Rao, Kovar, and Mantel

(1990) (RKM) proposed a design-based alternative to the model-based CD estimator and

constructed model-assisted difference and ratio estimators of distribution functions with ref-

erence to the CD’s linear working model through the origin. Based on asymptotic variances,

Wang and Dorfman (1996) constructed a weighted average of the CD and RKM estimators,

with weights derived to achieve minimal (asymptotic) mean square error of the resulting

estimator. Kuk (1993) proposed a method combining the known distribution of the aux-

iliary variable with a kernel estimate of the conditional distribution of the survey variable

given the auxiliary variable. Chambers, Dorfman, and Wehrly (1993) proposed a robust

model-based estimator via nonparametric kernel smoothing. Chen, Elliott, and Little (2012)

(probit-BPSP) proposed a Bayesian penalized spline model-based estimator that first esti-

mates cumulative distribution functions at selected survey outcome values by fitting a series

of probit penalized spline regression models on the inclusion probabilities, and then smooths

the estimated cumulative distribution functions using a monotonic smooth cubic regression

model.

Quantile estimators can be obtained by inverting the estimators of finite population

distribution functions with monotonicity property. For example, the CD estimator and the

probit-BPSP estimator of finite population distribution function can be inverted to obtain

quantile estimators. Quantiles can also be estimated directly without requiring estimation of

distribution functions. Rao, Kovar, and Mantel (1990) proposed simple ratio and difference
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estimators of quantiles. Using Bayesian model-based approach, Chen, Elliott, and Little

(2012) develop a Bayesian two-moment penalized spline predictive (B2PSP) estimator that

predicts the values of non-sampled units based on a normal distribution, with mean and

variance both modeled with penalized splines on the inclusion probabilities. The B2PSP

estimator is more efficient than the Hájeck estimator, the CD estimator, and the RKM’s ratio

and difference estimators using simulation studies on artificially generated data. The B2PSP

estimator is also more robust to model misspecification than the CD estimator when the

conditional normality assumption is reasonable. However, the B2PSP estimator is potentially

biased when the normality assumption is violated. Although in practice, transformation can

be applied before modeling, data can still be skewed after transformation, and thus it is of

great interest to develop more flexible methods for modeling skewed data.

In this paper, we consider inference of finite population quantiles in probability propor-

tional to size (PPS) sampling. In PPS sampling design, information of a size variable is

available for all units in the finite population at design stage and a sample of units are

drawn with probabilities of selection proportional to the values of the size variable. Such

design improves efficiency in estimating finite population quantities when variance of the

survey outcome increases with size of the unit, as units of larger size are selected with higher

probabilities. We propose two Bayesian model-based predictive estimators of finite popula-

tion quantiles, assuming skew-normal distribution for the survey outcome of interest given

the probability of selection. We assume that, at analysis stage, unit level information of the

size variable is available for all units in the finite population.
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2.2 Methods

2.2.1 Notation

Let Y denote a continuous survey outcome of interest in a finite population U of size N <∞,

with values {yi}Ni=1. The finite-population α-quantile is defined as:

Q(α) = inf

{
t;N−1

N∑
i=1

∆(t− yi) ≥ α

}
,

where ∆(u) = 1{u > 0}. Note that

FN(t) = N−1

N∑
i=1

∆(t− yi), −∞ < t <∞,

is known as finite population distribution function.

In PPS sampling, let Xi be the size variable for unit i. A PPS sample s ⊂ U of size n

is selected with the probability of selection πi = nXi/
∑N

j=1Xj, i = 1, . . . , N . Let Ii be the

sample inclusion indicator for unit i with 1 for the sampled units and 0 for the non-sampled

units. The Hájek estimator of the cumulative distribution function is defined as

F̂HA(t) =

∑N
i=1 Iiπ

−1
i ∆(t− yi)∑N

i=1 Iiπ
−1
i

=

∑
i∈s π

−1
i ∆(t− yi)∑
i∈s π

−1
i

, (2.1)

with the estimated α-quantile of Y defined as Q̂HA(α) = inf
{
t; F̂HA(t) ≥ α

}
.

For model-based approach, the survey outcomes are partitioned into those of the units

in the selected sample and those of the non-sampled units Y = (Y s,Y ns). A regression

model is first fitted using data in the sample Y s. The unobserved survey outcomes of the

non-sampled units Y ns are then predicted using the fitted regression model. Therefore, the

model-based estimators, by plugging in the predicted survey outcomes for the non-sampled
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units, naturally take the following form

Q̂(α) = inf

{
t;N−1

(∑
i∈s

∆(t− yi) +
∑
j∈ns

∆(t− ŷj)

)
≥ α

}
,

where ŷj is a prediction for the jth non-sampled unit based on the fitted regression model.

The model can be fitted in a frequentist (Royall, 1971) or Bayesian (Ericson, 1969) setting.

2.2.2 Bayesian Model-Based Inference

We consider the fully Bayesian approach as we find it a natural setting to implement predic-

tive inference. The Bayesian model-based approach posits a probability model for the data

p(Y |π,θ) with prior distributions on parameters θ, and focuses on prediction of the non-

sampled units Y ns relevant to the quantity Q(α) of interest (Little, 2004). In PPS sampling,

we have p(I|Y ,π) = p(I|π), so that given π, the sampling mechanism is ignorable (Gelman

et al., 2014; Rubin, 1983), and it follows

p(Y ns|Y s,π, I) = p(Y ns|Y s,π) =

∫
p(Y ns|ys,π,θ)p(θ|ys,π) dθ.

The posterior distributions of the finite population quantities are simulated by generating a

large number of draws based on the Markov chain Monte Carlo (MCMC) simulation from

the posterior predictive distributions. For each iteration of the MCMC simulation, indexed

by r = 1, . . . , R, the algorithm is as follows:

1. Draw θ(r) ∼ p(θ|ys,π)

2. Generate ŷ(r)
ns ∼ p(Y ns|ys,π,θ(r))

3. Compute Q̂(α)(r) = inf
{
t;N−1

(∑
i∈s ∆(t− yi) +

∑
j∈ns ∆(t− ŷ(r)

j )
)
≥ α

}
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The point estimates of population quantiles are obtained using the median of the draws

of Q̂(α) across R iterations, and the 95% credible intervals are formed by splitting the tail

area equally between the upper and lower endpoints of the MCMC simulations or using the

highest probability density method.

Under the Bayesian modeling framework, we propose two model-based predictive estima-

tors by assuming the survey outcome to follow a skew-normal distribution, SkewNorm(ξ, ω2, α),

given the probability of selection. The location parameter ξ and scale parameter ω2 are mod-

eled as functions of the probability of selection π and the slant parameter α is used to catch

the skewness in the data (Azzalini, 2013). We describe next the two proposed estimators in

details.

2.2.2.1 Skew-Normal Bayesian P-Spline Predictive Approach (SN-BPSP)

The skew-normal penalized spline predictive approach models the location parameter using

a penalized spline and the scale parameter as a polynomial function of the probability of

selection, which leads to the following model specification.

Yi|πi,β, b, σ2, α, γ
ind.∼ SkewNorm(SPL(πi,m), ω2

i , α),

ω2
i = (α2 + 1)σ2π2γ

i ,

SPL(πi,m) = β0 +

p∑
l=1

βlπ
l
i +

K∑
k=1

bk(πi −mk)
p
+,

b = (b1, . . . , bK)T |τ 2
b ∼ N(0, τ 2

b IK),

(2.2)

where the constants m = (m1,m2, . . . ,mK)T are K pre-selected fixed knots, and (πi −

m1)p+, . . . , (πi−mK)p+ are truncated polynomial spline basis functions of degree p with (u)p+ =

{u× I(u > 0)}p for u ∈ R and p = 1, 2 or 3 for linear, quadratic or cubic splines. Penalty is
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imposed on the coefficients b by specifying a normal distribution, with the amount of penalty

controlled by the variance component τ 2
b . In hierarchical Bayesian approach, a hyper prior is

specified on τb and the amount of penalization is automatically determined in the posterior

inference procedure.

The skewed-normal distribution has the following hierarchical representation that is cru-

cial to the posterior distribution derivations for Bayesian inference.

Proposition 1. If W ∼ N(0, 1)1{w > 0} and Y |W = w ∼ N(ξ + ασw, σ2), then Y ∼

SkewNorm(ξ, ω2, α) with probability density function

f(y|ξ, ω2, α) =
2

ω
φ

(
y − ξ
ω

)
Φ

(
α

(
y − ξ
ω

))
,

where ω2 = (α2 + 1)σ2. In other words, the skew-normal distribution SkewNorm(ξ, ω2, α)

can be simulated using the algorithm Y = ασ|Z1| + (ξ + σZ2), with Z1, Z2
i.i.d.∼ N(0, 1) and

ω2 = (α2 + 1)σ2.

Proof. See Appendix A.

Using the hierarchical representation, the distribution specification in line 1 of model

(2.2) can be rewritten as

Yi|πi,β, b, σ2, α, γ,Wi = wi
ind.∼ N(SPL(πi,m) + ασπγi wi, σ

2π2γ
i ),

where Wi
i.i.d.∼ N(0, 1)1{wi > 0}. We use a uniform prior U(−2,+2) for the order of poly-

nomial function γ, a weakly informative prior distribution N(0, ϕ2 = (103)2) for each of

the polynomial coefficients β = (β0, . . . , βp)
T , an improper uniform distribution U(0,+∞)

for τb and σ, and a half-normal distribution N(0, ψ2 = 102)+ for the slant parameter α.
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The full conditionals of the posteriors are included in Appendix A, which can be used to

develop posterior simulation scheme. Improper uniform prior is considered here for purpose

of posterior derivations. Half-Cauchy priors suggested in Gelman (2006) are also considered

with τb ∼ Cauchy(0, 1)+ in the simulation studies, and implemented using probabilistic pro-

gramming language Stan (Carpenter et al., 2017). Stan obtains samples from the posterior

distribution using the no-U-turn sampler, a variant of Hamiltonian Monte Carlo (Hoffman

and Gelman, 2014). The Stan script is included in Appendix A.

2.2.2.2 Skew-Normal Bayesian Two-Moment P-Spline Predictive Approach (SN-

B2PSP)

The skew-normal Bayesian two-moment penalized spline predictive estimator takes a more

flexible approach by modeling both the location and scale parameters of the skew-normal

distribution as penalized spline functions of the probability of selection, which leads to the

following model specification.

Yi|πi,β, b, σ2
i , α

ind.∼ SkewNorm(SPL1(πi,m), ω2
i , α),

ω2
i = (α2 + 1)σ2

i ,

σ2
i |πi,λ,ν, σ2

A
ind.∼ LogNorm(SPL2(πi,m), σ2

A),

SPL1(πi,m) = β0 +

p∑
l=1

βlπ
l
i +

K∑
k=1

bk(πi −mk)
p
+,

SPL2(πi,m) = λ0 +

q∑
l=1

λlπ
l
i +

K∑
k=1

νk(πi −mk)
q
+,

b|τ 2
b ∼ N(0, τ 2

b IK),ν|τ 2
ν ∼ N(0, τ 2

ν IK),

(2.3)

where the constants m1, . . . ,mK are K selected fixed knots shared by both splines. Without

loss of generality, number of knots and locations of knots can be different between the two
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splines if suggested by data. Model (2.3) is an extension of the B2PSP model in Chen,

Elliott, and Little (2012) which assumes a normal distribution.

Similarly, to derive the posterior distributions, we consider a weakly informative prior

distribution N(0, ϕ2 = (103)2) for each of the polynomial coefficients β = (β0, . . . , βp)
T and

λ = (λ0, . . . , λq)
T , an improper uniform distribution U(0,+∞) for the hierarchical variance

components τb and τν , and a half-normal distributionN(0, ψ2 = 102)+ for the slant parameter

α. The full conditionals of the posteriors can be found in Appendix B2. The model can

also be easily implemented in Stan (Carpenter et al., 2017). The Stan script is included in

Appendix A.

2.2.3 Transformations on Outcomes and Selection Probabilities

In practice, transformations can be applied to the survey outcome and the probability of

selection to achieve better model fit and, consequently, better predictive accuracy. If the

conditional distribution Y |π is skewed with a heavy tail, natural logarithm (log) or square

root transformation on Y could be considered to reduce skeweness, after which the shape

of the transformed distribution can be better modeled by the skew-normal distribution. If

the values of π are not equally spread out over the range, logit or square root transfor-

mation again can be applied to reduce skewness and sparseness within certain ranges and

improve model fit. To select appropriate transformations on Y and π, we use Bayesian

Pareto smoothed importance sampling leave-one-out (PSIS-LOO) cross-validation (Vehtari,

Gelman, and Gabry, 2017), which estimates expected log pointwise predictive density (elpd)
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as a measure of out-of-sample predictive fit

êlpdPSIS−LOO =
n∑
i=1

log

(∑R
r=1w

(r)
i pY (yi|θ(r))∑R
r=1w

(r)
i

)
, (2.4)

where pY (y|θ) denotes the distribution of Y , r = 1, . . . , R labels the posterior draws and w
(r)
i

are regularized importance weights smoothed by fitting a generalized Pareto distribution to

the tail distribution of the raw importance weights. Higher value of elpd indicates better out-

of-sample predictive accuracy. Therefore, the transformation corresponding to the highest

êlpdPSIS−LOO is preferred. The algorithm for computing êlpdPSIS−LOO based on a fitted model

is implemented in the loo package in R (Vehtari, Gabry, Yao, and Gelman, 2018).

When transformation is applied to survey variable Y , the Bayesian PSIS-LOO cross-

validation estimate needs to be modified based on the transformed variable Z = Z(Y ), with

the following derivation:

êlpdPSIS−LOO =
n∑
i=1

log

(∑R
r=1 w

(r)
i pY (yi|θ(r))∑R
r=1w

(r)
i

)

=
n∑
i=1

log

∑R
r=1w

(r)
i pZ(zi|θ(r))

∣∣∣ dzidyi

∣∣∣∑R
r=1 w

(r)
i


=

n∑
i=1

log

∣∣∣∣dzidyi

∣∣∣∣
(∑R

r=1w
(r)
i pZ(zi|θ(r))∑R
r=1w

(r)
i

)

=
n∑
i=1

log

∣∣∣∣dzidyi

∣∣∣∣+
n∑
i=1

log

(∑R
r=1w

(r)
i pZ(zi|θ(r))∑R
r=1 w

(r)
i

)
. (2.5)

Note that the above first term is easily computed based on the specific transformation and

the second term is the PSIS-LOO estimate based on the transformed variable Z that can be

implemented using the loo package in R.

We considered no transformation, log or square root transformation on Y , and no trans-

formation, logit or square root transformation on π. To compute êlpdPSIS−LOO, we used (2.4)
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for the models without transformation on Y and (2.5) for the models with log or square root

transformation on Y . We chose the transformations that lead to the largest êlpdPSIS−LOO in

the simulation studies and application.

2.3 Simulation Studies

Simulation studies were conducted to evaluate the performance of the two skew-normal

model-based predictive estimators in estimating finite population quantiles. The two model-

based estimators were compared with the conventional weighted quantile estimator Q̂HA(α) =

inf{t, F̂HA(t) ≥ α} (henceforth HA) obtained by inverting the Hájek (1971) estimator of dis-

tribution function defined in (2.1).

2.3.1 Simulation Design

Four artificial populations of size N = 2, 000 were simulated with size variable X generated

from a skewed Gamma distribution with shape parameter k = 1.5 and rate parameter

1/θ = .001. With sampling rate of 10%, systematic PPS samples of size n = 200 were drawn

with the probability of selection πi = nXi/
∑N

j=1Xj for unit i, i = 1, . . . , N . The survey

outcome Y was generated using the following conditional distributions:

(a) Skew-Normal distribution with location parameter positively associated with proba-

bility of selection

Yi|Xi
ind.∼ SkewNorm(ξ = 150 + 100πi, σ

2 = 122π2×0.8
i , α = 4)

(b) Gamma distribution with constant mean

Yi|Xi
ind.∼ Gamma(k = 0.3 logXi, θ = 500/ logXi), with E(Yi|Xi) = kθ = 150
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(c) Gamma distribution with mean positively associated with size variable

Yi|Xi
ind.∼ Gamma(k = 0.3 logXi, θ = 500

√
Xi)

(d) Log-Normal distribution with location parameter positively associated with probability

of selection

Yi|Xi
ind.∼ LogNorm(µ = −2 + 3 log 10 + 5πi, σ

2 = 0.82π2×0.1
i )

Setting (a) was designed to examine whether the SN-BPSP works well when the underly-

ing model is true and how much efficiency the SN-B2PSP loses by assuming a more complex

model structure for the scale parameter. Settings (b)-(d) were used to assess whether the

skew-normal models, combined with transformations, can adequately model other types of

commonly seen skewed distribution other than skew-normal distribution. Figure 2.1 displays

the scatter plots of Y against π for the four generated artificial populations, each with red

diamonds denoting a selected PPS sample. Except for setting (b), where the conditional

expectation of Y is not associated with π (NULL), the other three settings were constructed

such that Y is positively associated with π (Positive).

For each of the simulation settings, 500 systematic PPS samples were drawn from the

population, with population units permuted before sampling. The three estimators were

compared in estimating quantiles at levels α = .05, .10, .25, .50, .75, .90, .95. Empirical bias,

root mean squared error (RMSE), average widths and non-coverage rates of 95% probability

intervals were calculated. For Bayesian model-based approach, credible intervals were com-

puted using equal tail quantiles from posterior predictive distributions. For HA weighted

approach, confidence intervals were constructed using the variance estimation of Woodruff

(1952) implemented in survey package in R (Lumley, 2016). Except for setting (a), where
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Figure 2.1: Scatter plots of survey outcome against probability of selection for the four

artificially generated populations of size N = 2, 000, each with red diamonds denoting a

selected PPS sample of size n = 200.
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skew-normal distribution is the true underlying distribution for generating the survey pop-

ulation, the Bayesian PSIS-LOO cross-validation suggests that, after squared root transfor-

mation on both survey outcome and probability of selection, the Bayesian models achieve

better out-of-sample predictive fit. Therefore, squared root transformation was applied to

both variables before fitting the Bayesian predictive models.

2.3.2 Results

Table 2.1 summarizes empirical bias and RMSE of the three estimators. The two Bayesian

model-based estimators are more efficient than the HA quantile estimator at all quantile

levels, with lower RMSE across the four scenarios. The two Bayesian model-based estimators

lead to similar or larger bias compared to the HA quantile estimator, with the largest bias in

estimating upper quantiles (α = .90, .95) in scenarios (b) and (d). The two Bayesian model-

based estimators perform similarly in general. In scenario (a), where the model assumed in

SN-BPSP is the true underlying model, the SN-BPSP estimator yields slightly smaller bias

and RMSE than the SN-B2PSP estimator. This indicates that the SN-B2PSP does not lose

much efficiency by specifying a more complex model than the true model. In contrast, the

SN-B2PSP estimator leads to smaller bias and RMSE than the SN-BPSP in scenarios (b)

and (d), especially in estimating the upper quantiles. This suggests the benefit of a more

flexible model of SN-B2PSP when the data have a more complex underlying distribution

than skew-normal.

Table 2.2 shows average widths and non-coverage rates of the 95% credible/confidence

intervals (CIs). The HA weighted approach has close to nominal level non-coverage rate

of 5% in estimating middle and upper quantiles but poor coverage for lower quantiles in

34



CHAPTER 2. BAYESIAN INFERENCE OF FINITE POPULATION QUANTILES
FOR SKEWED SURVEY DATA USING SKEW-NORMAL PENALIZED SPLINE
REGRESSION

Table 2.1: Empirical bias and RMSE of the proposed Bayesian model-based quantile esti-

mators and the HA quantile estimator with 500 PPS samples of size n = 200 from the four

artificial populations of size N = 2, 000.
Truth Bias RMSE

α Qα SN-B2PSP SN-BPSP HA SN-B2PSP SN-BPSP HA

Skew-Normal - Positive

.05 148.0 −0.4 0.1 −0.1 1.0 0.8 0.9

.10 149.7 −0.3 0.0 −0.2 0.8 0.7 0.8

.25 152.3 0.3 −0.1 0.0 0.6 0.6 0.9

.50 156.7 0.4 0.1 0.0 0.7 0.5 1.1

.75 164.6 −0.1 0.0 −0.1 0.7 0.7 1.4

.90 175.0 −0.3 −0.1 0.0 1.1 1.0 2.1

.95 183.3 −0.5 −0.4 −0.1 1.4 1.3 1.9

Gamma Distribution - NULL

.05 28.1 2.1 1.8 0.4 5.5 5.3 7.8

.10 41.5 3.0 2.7 0.7 6.2 5.9 9.1

.25 73.0 3.6 3.5 0.7 7.4 7.2 10.0

.50 125.8 1.9 2.3 1.1 9.0 9.1 12.8

.75 201.9 0.0 1.5 1.1 12.3 12.8 20.7

.90 288.3 3.1 6.3 1.4 19.3 21.5 32.7

.95 353.7 3.7 8.1 −4.9 26.5 29.9 40.2

Gamma Distribution - Positive

.05 8.2 1.6 1.4 1.0 2.9 3.0 4.1

.10 13.3 2.6 2.1 1.0 3.8 3.6 5.4

.25 29.3 2.3 1.3 0.7 3.9 3.5 6.4

.50 58.6 2.2 1.1 1.0 4.4 4.1 7.8

.75 107.6 0.4 −0.2 −0.4 5.1 5.3 9.6

.90 171.6 0.2 0.4 −1.0 7.1 7.4 11.6

.95 225.4 −2.1 −1.8 −2.5 10.8 11.3 18.8

Log Normal - Positive

.05 105.0 −3.3 −1.1 −1.9 9.3 9.1 10.7

.10 118.3 −2.0 −1.0 −0.1 8.5 9.2 10.1

.25 149.9 −1.8 −3.9 −0.4 7.9 9.5 10.1

.50 202.8 0.4 −3.4 0.1 8.1 8.9 14.0

.75 301.4 −0.3 2.1 −0.7 10.5 10.7 18.9

.90 449.4 15.1 30.3 6.1 23.4 35.1 37.8

.95 620.1 4.1 22.7 −3.5 25.8 33.8 44.0

35



CHAPTER 2. BAYESIAN INFERENCE OF FINITE POPULATION QUANTILES
FOR SKEWED SURVEY DATA USING SKEW-NORMAL PENALIZED SPLINE
REGRESSION

all four scenarios. Both Bayesian model-based approaches lead to close to nominal level

coverage rate in estimating all levels of quantiles in scenarios (a)–(c), whereas in scenario

(d), the more flexible SN-B2PSP has better credible interval coverage than the SN-BPSP.

The Bayesian model-based approaches also yield shorter intervals of 95% CIs than the HA

approach in most of the scenarios.

2.4 Application to NDATSS

The National Drug Abuse Treatment System Survey (NDATSS) is a panel survey of sub-

stance abuse treatment programs in the United States (D’Aunno, Friedmann, Chen, and

Wilson, 2015). The population considered here is defined by N = 475 substance abuse

treatment programs surveyed in the 2016 wave of NDATSS with complete information on

both number of staff and number of active clients receiving treatment at the unit. We con-

ducted two sets of analysis to compare the two Bayesian model-based estimators with the

HA estimator. We first treated number of staff as size variable, drew a systematic PPS

sample of size n = 50, and estimated population quantiles of total number of active clients

at α = .10, .25, .50, .75, .90. We then conducted a simulation study by repeating the above

procedure 500 times.

For the first set of analysis using a single PPS sample, we performed model checking

using posterior predictive p-values (Gelman et al., 2014, chapter 6) based on two test quan-

tities, including (a) T1(y) = 1
n−1

∑n
i=1(yi − ȳ)2 and (b) T2(y, ξ,ω) = 1

n

∑n
i=1

(
yi−ξi
ωi

)2

. The

two test quantities catch different aspects of the data, with T1(·) measuring the variability

of the survey outcome and T2(·) measuring the discrepancy between the survey outcome
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Table 2.2: Average widths (AIW) and non-coverage rates of the 95% probability intervals

for the proposed Bayesian model-based quantile estimators and the HA estimator with 500

PPS samples of size n = 200 from the four artificial populations of size N = 2, 000.
Truth 95% AIW non-coverage rate (%)

α Qα SN-B2PSP SN-BPSP HA SN-B2PSP SN-BPSP HA

Skew-Normal - Positive

.05 148.0 3.6 2.8 3.8 6.6 6.4 16.6

.10 149.7 3.0 2.4 3.3 6.6 7.8 14.8

.25 152.3 2.5 2.0 3.4 7.6 7.4 9.0

.50 156.7 2.5 2.1 4.4 9.2 4.2 4.6

.75 164.6 2.9 2.7 5.5 4.0 4.6 4.4

.90 175.0 4.3 4.1 8.5 4.6 2.4 4.4

.95 183.3 5.6 5.3 8.3 5.0 3.6 3.6

Gamma Distribution - NULL

.05 28.1 21.5 21.8 23.5 4.4 4.2 14.4

.10 41.5 22.4 22.5 27.9 5.8 5.6 7.6

.25 73.0 25.8 25.7 35.4 8.0 6.6 6.8

.50 125.8 35.0 35.2 49.4 4.6 5.0 4.2

.75 201.9 53.5 54.8 79.5 3.6 4.6 4.4

.90 288.3 89.8 94.3 125.3 3.6 5.4 4.8

.95 353.7 128.7 137.0 161.8 3.0 4.0 5.4

Gamma Distribution - Positive

.05 8.2 11.1 10.6 10.1 4.2 5.0 23.4

.10 13.3 12.2 11.6 15.3 7.6 7.6 14.2

.25 29.3 13.6 12.9 23.2 6.4 5.0 7.6

.50 58.6 17.1 16.4 29.0 5.8 5.6 7.4

.75 107.6 23.1 22.7 37.3 3.4 4.4 6.4

.90 171.6 35.2 34.6 52.2 3.4 3.6 4.4

.95 225.4 51.0 50.8 76.1 2.2 3.0 3.8

Log Normal - Positive

.05 105.0 34.9 28.6 33.1 9.0 13.4 14.8

.10 118.3 31.8 27.0 36.0 7.4 15.4 11.2

.25 149.9 28.7 25.7 38.2 6.6 18.2 7.2

.50 202.8 31.9 29.1 54.4 7.0 10.2 5.6

.75 301.4 43.3 42.3 78.5 4.8 5.8 5.4

.90 449.4 77.0 80.4 145.9 7.6 30.4 4.2

.95 620.1 117.2 120.7 200.6 2.6 8.6 4.4
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and fitted parametric distribution. In each MCMC iteration r, the realized test quanti-

ties Ti(y, ξ
(r),ω(r)) under the observed data and predictive test quantities Ti(ỹ

(r), ξ(r),ω(r))

under the simulated data can be computed, with ỹ(r) drawn from the posterior predictive

distribution. The Bayesian posterior predictive p-value is defined as the probability that the

predictive test quantity is greater than the realized test quantity, evaluated over the poste-

rior distribution. The Bayesian p-value measures the discrepancy between the observed data

and the posterior predictive distribution in the aspect characterized by T (·). A Bayesian

p-value close to 0.5 indicates good fit while a Bayesian p-value near 0 or 1 indicates that the

observed pattern would be unlikely to happen if the model were true and, therefore, lack of

fit. Both of the two Bayesian predictive models yielded a posterior predictive p-value close

to 0.5, indicating adequate model fit. The posterior predictive plots and p-values for the

SN-BPSP model are displayed in Figure 2.2. Since the number of active clients are known

for all the units in our defined population, we also compared the distributions of predicted

and actual number of active clients for the non-sampled units.

2.4.1 Quantile Estimation of Number of Active Clients Using a

Single PPS Sample

Figure 2.3 displays number of active clients against probability of selection with and without

squared root transformation on both variables. The black open circles and red dots represent

units in the population and a PPS sample, respectively. The scatter plots show that the data

points are more equally spread out with respect to both axes with squared root transforma-

tion on both variables. Such transformation was also suggested by the Bayesian PSIS-LOO
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Figure 2.2: Realized v.s. posterior predictive distributions for the two test statistics and

corresponding posterior predictive p-values for the SN-BPSP model with a PPS sample from

the NDATSS population: (a) Sample standard deviation (vertical line) compared to 9000

simulations from the posterior predictive distribution of sample standard deviation. (b)

Scatter plot showing the test statistic T2(y, ξ,ω) = 1
n

∑n
i=1

(
yi−ξi
ωi

)2

with T2(ỹ(r), ξ(r),ω(r))

in the vertical axis and T2(y, ξ(r),ω(r)) in the horizontal axis based on 9000 simulations from

the posterior distribution of (ξ,ω, ỹ).
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cross-validation in comparison to no transformation and natural logarithm transformation.
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Figure 2.3: Scatter plots of number of active clients against probability of selection for

NDATSS population of size N = 475 with and without squared root transformation and a

PPS sample of size n = 50 in red dot.

Figure 2.4 shows the point estimates and 95% CIs of the HA estimator and the two

skew-normal model-based estimators with squared root transformation applied to both Y

and π in estimating population 10th, 25th, 50th, 75th, and 90th percentiles. The known

true population quantiles are denoted using a solid horizontal line in each quantile plot. In

estimating the population 10th percentile, the two model-based methods yield closer to the

true quantile estimates than the HA method; while in estimating the other four quantiles,

the two model-based methods yield shorter 95% CIs than the HA method.

Figure 2.5 compares the distribution of the predicted number of active clients to the

distribution of actual number of active clients for the non-sampled units. Figure 2.5(a)

40



CHAPTER 2. BAYESIAN INFERENCE OF FINITE POPULATION QUANTILES
FOR SKEWED SURVEY DATA USING SKEW-NORMAL PENALIZED SPLINE
REGRESSION

● ●
●

●
●

●

● ●

●
●

●

●

● ●

●

● ●

●

●
●

●
●

●

●

● ●
●

● ●

●

75% 90%

10% 25% 50%

SN−B2PSP

SN−BPSP
HA

SN−B2PSP

SN−BPSP
HA

SN−B2PSP

SN−BPSP
HA

SN−B2PSP

SN−BPSP
HA

SN−B2PSP

SN−BPSP
HA

100

150

200

250

300

40

80

120

500

750

1000

1250

25

50

75

100

200

300

400

500

600

nu
m

be
r 

of
 a

ct
iv

e 
pa

tie
nt

s

Figure 2.4: Point estimates and 95% probability intervals for quantiles of number of active

patients at various quantile levels using a PPS sample of size n = 50 from the NDATSS

population.
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plots the densities of predicted number of active clients from 10 randomly selected MCMC

iterations based on the SN-BPSP model and the density of actual number of active clients

for the non-sampled units. Figure 2.5(b) plots predicted number of active clients from

one MCMC iteration based on the SN-BPSP model versus the actual number against the

probability of selection. Both plots suggest good model predictions for the non-sampled

units using the SN-BPSP.
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Figure 2.5: (a) Density plot of predicted number of active clients (in red) from 10 MCMC

iterations based on SN-BPSP vs actual number of active clients (in thick black) for non-

sampled units (b) scatter plot of predicted number of active clients (in red dots) vs actual

number of active clients (in black crosses) against probability of selection with square root

transformation
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2.4.2 Repeated Simulation Studies on Quantile Estimation of Num-

ber of Active Clients

We estimated the quantiles of total number of active patients by repeatedly drawing 500

systematic PPS samples. Table 2.3 summarizes empirical bias, RMSE, average widths and

non-coverage rates of 95% CIs, comparing the SN-BPSP, SN-B2PSP, and HA quantile es-

timates to the true population quantiles of N = 475 units. The simulation suggests that

the two model-based estimators yield smaller RMSE, shorter 95% probability intervals, and

closer to the nominal level coverage rates than the HA estimator. These findings are consis-

tent with those conveyed by simulation study with artificially generated population data.

2.5 Discussion

Skewed data commonly arise in sample surveys. Estimation of population quantiles is of

greater interest than population means for skewed data. Although weighted estimators of

population quantiles are widely used in survey practice, they can be inefficient and have

poor confidence coverage in small-to-moderate-sized samples. Model-based approaches can

improve efficiency of survey estimates when the model is correctly specified. Previous lit-

erature on model-based methods mostly assumes a normal or log-normal distribution for

the survey variables. Although transformations could be applied on the survey variables,

in many scenarios skewness is still present after transformation. When the normality as-

sumption is violated, the model-based estimators that rely on normality assumption can be

biased. Therefore, development of more flexible modeling techniques for handling skewed

data is of great interest. We propose two model-based predictive estimators for estimating
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Table 2.3: Emprical bias, empirical RMSE, average 95% probability interval widths (AIW)

and non-coverage rates for the proposed Bayesian model-based methods and the HA method

with 500 PPS samples of size n = 50 from NDATSS population of size N = 475.

Truth Method Bias RMSE AIW non-coverage rate (%)

Q.10 = 22.4

SN-B2PSP 6.2 14.3 49.6 4.6

SN-BPSP 5.5 14.5 46.8 6.6

HA 6.8 18.2 63.0 14.2

Q.25 = 60.0

SN-B2PSP 6.5 18.5 69.6 4.2

SN-BPSP 4.3 17.8 65.3 5.2

HA 4.7 28.1 154.8 1.4

Q.50 = 150.0

SN-B2PSP 1.0 26.4 103.9 2.8

SN-BPSP −1.4 26.3 98.6 5.4

HA 3.7 42.5 319.2 0.4

Q.75 = 315.0

SN-B2PSP 3.8 43.2 176.7 5.2

SN-BPSP 5.7 43.8 169.1 6.4

HA 3.0 71.1 582.2 0.2

Q.90 = 599.6

SN-B2PSP −1.2 65.2 315.2 3.0

SN-BPSP 5.6 67.9 290.2 4.0

HA −16.2 92.8 1483.2 0.6
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finite population quantiles with skewed survey data in the setting of probability proportional

to size sampling. We assume a conditional skew-normal distribution for the survey variables

given probability of selection and model the location and scale parameters of the skew-normal

distribution as functions of the probability of selection. To allow a flexible association be-

tween the survey variable and probability of selection, the first method models the location

parameter with a penalized spline and the scale parameter with a polynomial function, while

the second method models both the location and scale parameters with penalized splines.

Simulations using both artificially generated population data and a real establishment

survey suggest that the two skew-normal model-based quantile estimators outperform the

weighted quantile estimator. Combined with transformations selected using the Bayesian

PSIS-LOO cross-validation, our proposed skew-normal models can be used to handle var-

ious skewed data with distributions including but not limited to Gamma, log-normal, and

skew-normal, in obtaining more efficient estimates of population quantiles than the weighted

method. By using a fully Bayesian approach, the variance and 95% credible interval of the

model-based estimators can be easily calculated from the posterior predictive distributions.

The two model-based estimators yield shorter 95% credible intervals than the weighted es-

timator with variance estimated using the Woodruff’s method. In estimating the lower tail

regions of the population distribution where data is typically sparse, Woodruff’s method

tends to yield confidence intervals with lower coverage rates, whereas the two model-based

estimators have closer to the nominal level coverage rates. By modeling the scale parameter

as a second spline on the probability of selection, the SN-B2PSP estimator is more robust

than the SN-BPSP estimator, yielding smaller RMSE and a closer to the nominal level cover-
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age rate when a more complex model than the underlying model for the SN-BPSP is needed.

On the other hand, the SN-B2PSP estimator does not lose much efficiency due to overfitting

when a simpler model is required.

Although the methods are proposed in the context of PPS sampling, with the assumption

that unit-level information of size variable is available for all units in the population, the

methods can be naturally extended to handle skewed data in more general settings. In a

PPS sampling where only aggregated (instead of unit-level) information of size variable for

non-sampled units is available, Bayesian Bootstrap can be used to reconstruct unit-level

information of size variable for the non-sampled units (Zangeneh and Little, 2015). In two-

stage cluster sampling with PPS used in selecting primary sampling units, the proposed

skew-normal model can be extended to include cluster specific random intercepts and unit-

level covariates that are associated with both the survey variable and the sample inclusion

indicator (Yuan and Little, 2007). The skew-normal models can also be used for small area

estimation, where data tend to be sparse and normality assumption may not hold.

Bayesian methods are often criticized for being computationally intensive. However,

with the availability of high performance computing clusters, computation would not be a

major concern anymore. Using the compute cluster in the Department of Systems Biology

at Columbia University that consists of 6,384 CPU cores, 23TB of RAM and 148 NVIDIA

GPUs providing an additional 75,776 CUDA cores, the SN-BPSP method took 1.6 minutes

and the SN-B2PSP method took 11 minutes to obtain the estimates and 95% CIs in a single

sample in the NDATSS application, and the 500 replicates of simulation took less than 2

hours with 50 parallel computing tasks. Moreover, both of the two skew-normal model-
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based estimators as well as their extensions can be easily implemented in the probabilistic

programming language Stan (Carpenter et al., 2017). The Stan language is user-friendly,

intuitive and easy to use. The users only need to specify a Bayesian statistical model and the

priors for the parameters. Stan implements gradient-based MCMC algorithms for Bayesian

inference. It can be assessed through the R software environment or RStudio Cloud on web.

This is appealing to survey practitioners. Finally, although skew-normal distribution can be

used to model the skewness in various skewed data, it is not intended for multimodal data

due to mixture of distributions. More flexible models such as mixture normal or mixture

skew-normal models can be used for such data.
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Chapter 3

Inference from Non-Random Samples

Using Bayesian Machine Learning

3.1 Introduction

Inference about a target population based on sample data relies on the assumption that the

sample is representative. However, simple random samples are often not available in real

data problems. Therefore, there is a need to generalize inference from the available non-

random sample to the target population of interest. For example, randomized controlled

trials (RCTs) are considered a gold standard to estimate treatment effects, but the measured

effects can only be formally generalized to the participants within the trial. Recent evidence

has indicated that subjects in an RCT can be much different from patients in routine practice.

Such concern among clinicians about the external validity of RCTs has led to the underuse

of effective treatments (Rothwell, 2005). This highlights the importance of generalizing

treatment effect of RCTs to a definable patient population.
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Survey sampling is a field that specifically deals with inference on populations with non-

random samples, which can be viewed as a special case of generalizing inference. Probability

samples collected via probability surveys have historically proven effective. However, such

data comes with considerable cost, both time and budget. In the past several decades, large

scale probability surveys have suffered increasingly high non-response rates, besides the rising

costs. The probability surveys with low response rates are often non-representative, which

challenges the validity of survey inference. In the meanwhile, recent development of informa-

tion technology makes it increasingly convenient and cost-effective to collect large numbers

of samples with detailed information via online surveys and opt-in panels. Such samples

are highly non-representative due to selection bias. Classical weighting methods in survey

literature such as post-stratification (Valliant, 1993) and raking (Deming and Stephan, 1940)

can improve representativeness of survey samples when a small number of discrete auxiliary

variables about populations are available for survey adjustments. However, such weighting

methods can yield highly variable estimates of population quantities in the presence of ex-

treme weights. Alternatively, model-based methods can be used. Wang, Rothschild, Goel,

and Gelman (2015) demonstrates, through election forecast with non-representative voter in-

tention polls on the Xbox gaming platform, that multilevel regression and post-stratification

(MRP) can be used to generate accurate survey estimates from non-representative samples.

Their estimates are in line with the forecasts from leading poll analyst. MRP is very ap-

pealing when statistical adjustment are made using a small number of discrete auxiliary

variables.

In recent years, population data of high volume, variety, and velocity has become increas-
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ing available, with examples including administrative data or electronic medical records.

Such data contained detailed individual level information with high-dimensionality and can

be used to generalize inference of non-random samples to their target populations. Although

post-stratification, raking, and MRP methods can improve representativeness in the presence

of a small number of discrete auxiliary variables, they are infeasible to be applied in high-

dimensional settings. With high-dimensional auxiliary variables, Bayesian machine learning

techniques have been shown to be effective in improving statistical inference in missing data

and causal inference. Specially, Hill (2011) shows that Bayesian additive regression trees

(BART) produces more accurate estimates of average treatment effects compared to propen-

sity score matching, propensity-weighted estimators, and regression adjustment when the

response surface is nonlinear and not parallel between treatment and control groups. Tan,

Flannagan, and Elliott (2019) demonstrate, in the presence of missing data, that BART re-

duces bias and root mean square error of the doubly robust estimators when both propensity

and mean models were misspecified. Inspired by these works, we propose Bayesian machine

learning model-based methods and extensions for estimating population means using non-

random samples. The proposed methods can be applied not only in the context of survey

inference but also in more general settings, such as RCTs and epidemiological observational

studies. We evaluate the proposed methods using simulation studies and demonstrate their

applications in a mental health survey of Ohio Army National Guard service members and a

non-random sample from an observational study using electronic medical records of COVID-

19 patients.
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Figure 3.1: Population U and non-random sample s with shared discrete auxiliary variables

Z and continuous auxiliary variables X as well as outcome Y measured only in s

3.2 Methods

3.2.1 Notation and Background

Let U be the finite population of size N and s be a non-random sample of size n from the

population. In the sample s, information on the outcome of interest Y , discrete auxiliary

variables Z and continuous auxiliary variables X were collected. In addition, data from

the population U (e.g. census, administrative data, or electronic medical records) is also

available with the the same set of auxiliary variables Z and X measured for all units in the

population. Figure 3.1 illustrates the scenario under consideration, with population data

on the left and the sample data on the right. Without loss of generality, we consider a

continuous variable of interest Y with the estimand of interest being the finite population

mean Q(Y ) = 1
N

∑
i∈U Yi.

When the dimensions of Z and X are small, post-stratification, raking, and MRP can

be applied by first discretizing the continuous auxiliary variables X as X∗ using quantiles.
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Using the joint distribution of discrete auxiliary variables (Z,X∗), post-stratification parti-

tions the population into J disjoint post-strata with U =
⋃J
j=1 Uj of size Nj and the sample

into subsamples with s =
⋃J
j=1 sj of size nj for the jth post-stratum, correspondingly. With

respect to the post-strata, the finite population mean can be rewritten as

Q(Y ) =
1

N

J∑
j=1

∑
i∈Uj

Yi =
1

N

J∑
j=1

Njθj,

where θj = 1
Nj

∑
i∈Uj

Yi is subpopulation mean of post-stratum Uj. With the assumption

that the sample units in each post-stratum are representative of population units in that

post-stratum, the post-strata means are estimated using corresponding subsample means

θ̂j = ȳj = 1
nj

∑
i∈sj yi. Naturally, the post-stratification (PS) estimator takes the form

Q̂PS =
1

N

J∑
j=1

Nj ȳj =
1

N

∑
i∈s

wiyi, (3.1)

where wi = Nj/nj for i ∈ Uj is the post-stratification weight assigned to sample unit i

in post-stratum j which is inverse proportional to the sampling fraction nj/Nj. The post-

stratification estimator could be numerically unstable when such partition results in small

cells in the sample, in other words, small nj and large weights wj.

Alternatively, raking generates weights wi to match successively the marginal (rather than

the joint) distributions of (Z,X∗) via iterative proportional fitting. The raking weighted

estimator takes the form

Q̂R =
1

N

∑
i∈s

wiyi, (3.2)

with wj denoting raking weights. Raking weights could be highly variable, so the resulting

weighted estimators could be inefficient. Also, raking may have convergence issues as the

number of auxiliary variables increases.
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Gelman (2007) reviews a model-based perspective on the PS estimator. In the model-

based approach, a regression model is specified to model the conditional distribution of

outcome given the discrete auxiliary variables p(Y |Z,X∗). Define stratum-specific means

θj = E(Yi|Zi,X
∗
i ), i ∈ Uj. And estimating θ̂j = Ê(Yi|Zi,X

∗
i ) based on the fitted model

leads to the regression and post-stratification (RP) estimator

Q̂RP =
1

N

J∑
j=1

Nj θ̂j. (3.3)

As a special case, specifying a saturated regression model (including all possible interactions

terms) allows J post-stratum specific means and the least square estimators θ̂j = ȳj =

1
nj

∑
i∈sj yi. As a result, Q̂RP = Q̂PS.

From the model-based perspective, the problem of unstable estimates due to small cells in

post-stratification can be viewed as a model fitting problem due to model complexity. Such

perspective motivates using alternative modeling techniques to improve estimation. Instead

of using classical saturated regression models, multilevel regression and post-stratification

(MRP) utilizes hierarchical regression models to achieve stable estimates. Both main effects

and interaction terms could be specified as multilevel random effects so that information

across post-strata can be partially pooled in the model fitting procedure (Gelman and Little,

1997). MRP improves efficiency in the population mean estimation than post-stratification

and raking when data are sparse in some post-strata.

Still, it is challenging to perform MRP in high-dimensional setting, especially in the

presence of a large number of noise variables not associated with Y , because a parametric

form needs to be specified for the multilevel regression. Also, continuous auxiliary variables

need to be discretized before modeling.
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The model-based RP approach can also be viewed as a prediction approach and the RP

estimator in (3.3) can be rewritten as

Q̂RP =
1

N

J∑
j=1

Nj θ̂j =
1

N

J∑
j=1

∑
i∈Uj

θ̂j =
1

N

J∑
j=1

∑
i∈Uj

Ê(Yi|Zi,X
∗
i ) =

1

N

∑
i∈U

Ê(Yi|Zi,X
∗
i ),

where Ê(Yi|Zi,X
∗
i ) is predictive value of Yi based on model p(Y |Z,X∗). Such perspective

motivates the use of modern statistical techniques for generalization of inference via valid

predictions of the outcomes in the population. Specifically, the classical regression models

in regression and post-stratification can be replaced by any regularized prediction methods

that achieve stable estimates while including high-dimensional covariates. Such models also

allows modeling the continuous X directly.

3.2.2 New Approach: Regularized Prediction

Tree-based methods are appealing techniques for handling high-dimensional problems. Sum-

of-trees ensembles achieve high prediction accuracy and better approximate the functional

forms of continuous variables, with each single tree regularized to obtain stable predictions

and achieve bias variance trade-off. Taking a model-based predictive perspective, we extend

the RP approach to high-dimensional setting by replacing parametric regression models

with regularized additive regression trees. We consider the Bayesian modeling framework,

as it is natural to implement predictive inference and straightforward for quantification of

uncertainty.
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3.2.2.1 BART and Soft BART Prediction

In the current setting, the conditional distribution of a continuous outcome given the high-

dimensional auxiliary variables p(Y |Z,X) can be modeled using Bayesian additive regression

trees (BART) or soft Bayesian additive regression trees (SBART) (Chipman, George, and

McCulloch, 2010; Linero and Yang, 2018).

For continuous outcomes, BART and SBART assume Gaussian noise and model the

location parameter using a non-parametric sum-of-trees structure, allowing both discrete

and continuous auxiliary variables

Y = G(Z,X) + ε =
M∑
m=1

g(Z,X;Tm,µm) + ε, ε
i.i.d.∼ N(0, σ2), (3.4)

where M is fixed number of trees in the sum-of-trees structure, Tm is the m-th binary

tree with µm being the parameters associated with the terminal nodes, and g(·) is the

function assigning µm according to (Z,X). The sum-of-trees structure naturally handles

high-dimensional auxiliary variables without specifying a parametric form, accounting for

categorical variables, continuous variables and possible interactions. In the Bayesian frame-

work, quantification of uncertainty is naturally characterized by the posterior and posterior

predictive distributions.

In BART, g(·) is a deterministic function and the potential effect of continuous pre-

dictors, either linear or nonlinear, is approximated by step functions generated by cutting

the continuous predictor at various splitting points in different trees. Regularization priors

are specified on p(Tm), p(µm|Tm), p(σ2) such that each single tree Tm is a weak learner.

Such specification aims at preventing the individual tree effects from unduly influential and

achieving stable predictions, with automatic default specifications facilitating easy imple-
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mentation. For p(Tm), the prior is specified by three aspects: (i) the probability that a node

is nonterminal, (ii) the distribution on the splitting variable assignments at each interior

node, and (iii) the distribution on the splitting rule assignment in each interior node, condi-

tional on the splitting variable. For p(µm|Tm) and p(σ2), conjugate normal distributions and

inverse chi-square distributions are specified. In practice, cross validation could be applied

to determine the number of trees M and the hyperparameters in the regularization priors.

Chipman et al. (2010) introduce default prior specification that puts most probability on tree

of sizes 2 and 3 but allows many more terminal nodes if the data demands. According to

their experience, as M increases, starting with M = 1, the predictive performance improves

dramatically until at some point it levels off and then begins to degrade very slowly for large

values of M . Therefore, it’s important to avoid M being too small.

In SBART, g(·) associates the values of covariates with a probabilistic (instead of deter-

ministic as in BART) path down the tree, with certain probability going left at each node.

With such modification, a particular set of values of (Z,X) is associated with a certain

terminal node with certain probability, obtained by averaging over all possible paths. Un-

like hard decision trees in BART where each terminal node is constrained to influence the

regression function locally, the soft decision trees in soft BART allow each terminal node

to impose a global effect on the function. This global effect of local terminal nodes enables

the soft decision trees to borrow information adaptively across different covariate regions.

Sparsity-inducing priors are specified to achieve a balance between sparse and non-sparse

settings. Linero and Yang (2018) develop default prior specification with M = 50 which

performs universally well in all the 10 benchmark datasets considered in the paper. Cross
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validation could be applied for parameter tuning, but it only substantially improves perfor-

mance in one dataset where tuning M is required to attain optimal performance. Therefore,

in practice, it is sufficient to only tune M to reduce computational burden.

The BART and SBART prediction estimators of finite population mean, Q̂BART and

Q̂SBART, are obtained with the following steps.

Step 1 Model p(Y |Z,X) using BART or soft BART, Y = G(Z,X) + ε, ε ∼ N(0, σ2) with

corresponding Bayesian priors.

Step 2 Obtain posterior distributions of Q(Y ) = 1
N

∑
i∈U yi using Markov chain Monte

Carlo (MCMC) simulations. Specifically, in MCMC iteration t,

1. draw G(t), σ(t)|Yi∈s,Zi∈U ,X i∈U

2. compute θ̃
(t)
i = G(t)(Zi,X i) for i ∈ U

3. obtain Q̂
(t)
(S)BART = 1

N

[∑
i∈U θ̃

(t)
i +

(∑
i∈s yi −

∑
i∈s θ̃

(t)
i

)]
, using the observed yi

in the sample and the predicted values for the population units that are not in

the sample.

Step 3 Obtain Q̂(S)BART: point estimates using (posterior) median of Q̂
(t)
(S)BART with credible

intervals constructed using quantiles splitting the tails of posterior distribution equally.

In some cases, inference on subpopulation means are also of interest, which can be

obtained via modification of item 3 in Step 2, restricting the average to predictions and

observed outcomes in the corresponding subpopulation Ω ⊂ U and subsamples s ∩ Ω,

Q̂
(t)
Ω,(S)BART = 1

NΩ

[∑
i∈Ω θ̃

(t)
i +

(∑
i∈s∩Ω yi −

∑
i∈s∩Ω θ̃

(t)
i

)]
.
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3.2.2.2 BART and Soft BART Propensity Prediction

In the missing data literature, Little and An (2004) proposed including logit-transformed

response propensity score as covariates using splines in the imputation models. This response

propensity prediction method yields robust estimates of sample means when the imputation

model is misspecified. Tan, Flannagan, and Elliott (2019) extended the method of Little and

An (2004) by using BART to fit both the imputation model and the response propensity

model. They show that adding BART-estimated propensity score in the BART imputation

model reduces bias and RMSE and improves confidence interval coverage rates in the mean

estimation.

Inspired by this, we extend the BART and SBART prediction with a two-step approach.

First, we estimate sample inclusion propensity using a propensity model. If the sample data

are linked to the population data, we code the sample inclusion indicators I = 1 for the units

in the sample and I = 0 for the rest of the units in the population. The propensity score

π̂ can then be estimated via modeling p(I|Z,X) using probit Bayesian additive regression

trees (Chipman et al., 2010). If the sample data is unlinked to the population data, we

round the continuous X to [X] at a certain precision level and identify K categories with

unique values of (Z, [X]). Within each category k = 1, . . . , K, the number of units in

the population Nk and that in the sample nk can be counted. Once the counts (Nk, nk)

are created for each category, the propensity score π̂ for the units to be included in the

sample, given (Z, [X]), can be obtained via models for binomial outcomes. Next, we model

p(Y |Z,X, π̂) by additionally including π̂ as a covariate in BART or SBART model with the

rest of the steps being the same as Section 3.2.2.1. The detailed steps of obtaining the BART
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propensity (BART-P) prediction estimator Q̂BART-P and the SBART propensity (SBART-P)

prediction estimator Q̂SBART-P are outlined as follows.

Step 1 Model p(I|Z,X) with probit BART and estimate π̂ using posterior mean

Step 2 Obtain the (S)BART-P prediction estimator for finite population mean

• model p(Y |Z,X, π̂) using (S)BART, Y = G(Z,X, π̂) + ε, ε ∼ N(0, σ2)

• estimate θ̃
(t)
i = G(t)(Zi,X i, π̂i)

• Q̂(t)
(S)BART-P = 1

N

[∑
i∈U θ̃

(t)
i +

(∑
i∈s yi −

∑
i∈s θ̃

(t)
i

)]
• Q̂(S)BART-P: point estimates using (posterior) median of Q̂

(t)
(S)BART-P with credible

intervals constructed using quantiles splitting the tails of posterior distribution

equally.

BART-P and SBART-P prediction methods are expected to be doubly robust. More specifi-

cally, as long as either of the mean model for the outcome or the propensity model is correctly

specified, a consistent estimator of the population mean is obtained.

3.3 Simulation Studies

3.3.1 Simulation Design

Artificial populations with size N = 3, 000 were simulated. For each unit i in the population,

a total number of p binary auxiliary variables and r continuous variables were generated. The

p binary variables {Zil}l=1,...p were obtained with Zil = I(Wil < Ul), where {Wil}
i.i.d∼ N(0, 1)

and Ul
i.i.d∼ U(−.4, .4), so that Pr(Zil = 1) falls in the range (.34, .66), l = 1, . . . , p. The r
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continuous {Xil}l=1,...r were generated independently from U(0, 1). Samples of size n = 600

were drawn from the populations with inclusion probability π = Pr(I = 1|Z,X) as a

function of the auxiliary variables X and Z. We considered the following four simulation

scenarios:

S1 Low-dimensional auxiliary variables (p = 3, r = 1) with higher inclusion propen-

sity at the lower tail of X1. The outcomes {Yi}i=1,...,N were generated using an

additive model: Y = 26.81−Z1−2Z2−3.5Z3−25(X1− .75)2 + ε, ε ∼ N(0, 32), and the

samples were selected with π ∝ logit−1[−13.66 + .5Z1 +Z2 + 1.75Z3 + 12.5(X1− .75)2].

Consequently, units with values of X1 falling between 0.5 and 1 were under-sampled.

S2 High-dimensional auxiliary variables (p = 30, r = 10) with higher inclusion

propensity at the lower tail of X1. Same Y and π models as S1, but add noise

auxiliary variables {Zl}l=4,...,30 and {Xl}l=2,...,10 that are not associated with Y or π.

S3 High-dimensional auxiliary variables (p = 30, r = 10) with lower inclusion

propensity at the lower tail of X1. Same as S2, but change the signs of the

coefficients in the model for π to introduce selection bias in the opposite direction:

π ∝ logit−1[4.01 − .5Z1 − Z2 − 1.75Z3 − 12.5(X1 − .75)2]. Consequently, units with

small values of X1 were under-sampled, especially among those with X1 ≤ 0.25.

S4 High-dimensional auxiliary variables (p = 30, r = 10) with interaction and

different relevant continuous predictors for Y and π. The outcomes {Yi}i=1,...,N

were generated using Y = 36.81−Z1−2Z2−3.5Z3−10Z1Z2−9(X1− .75)2−16Z3(X1−

.75)2+ε, ε ∼ N(0, 32), with samples selected using π ∝ logit−1[3.27−.5Z1−Z2−1.75Z3−
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2Z1Z2− 4(X3− .75)2− 3Z3(X3− .75)2− (X5− .75)2]. Units at the tails of X3 and X5

were under-sampled,but X3 and X5 were not associated with Y .

Figure 3.2(a)-(b) show the scatter plots of Y against X1, the continuous variable that is

associated with both Y and π, of the simulated population overlaid with a selected sample

in scenarios S1-S3. Population units with lower values of X1 were more likely to be selected

into samples in scenarios S1/S2 but less likely to be selected in scenario S3.

Scenario S4 was designed to assess whether tree-based methods handle interactions well

and how they perform when the continuous variables that are associated with undersampling

are not associated with outcome. Figure 3.2(c) visualizes population with a selected sample

in scenario S4, using scatter plots of Y against X1, the continuous variable related to Y but

not π, and of Y against X3, the continuous variables related to π but not Y . The plot on the

left shows a positive association between Y and X1 but units with different values of X1 are

equally likely to be included in the sample; while the plot on the right shows no association

between Y and X3 but units at the lower tail of X3 are less likely to be included in the

sample.

For each scenario, 500 replicates of simulation were conducted, with point and interval

estimates of finite population mean computed for each. The Bayesian tree-based methods

used all available auxiliary variables, as it is unknown which variables are involved in the

true data generating process in practice. For scenario S1 with low-dimensional auxiliary

variables, the tree-based methods were also compared to the PS and raking estimators using

all four available variables with X1 discretized using tertiles in PS and using quintiles in

raking. Raw estimates were also calculated using sample means.
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(c) Scenario S4

Figure 3.2: Scatterplots of outcomes Y versus continuous auxiliary variables of units in the

population (in black dots) and a selected sample (in red diamonds) for (a) Scenario S1/S2

(b) Scenario S3 (c) Scenario S4
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3.3.2 Simulation Results

The performance of point estimates are evaluated with empirical bias and empirical root

mean squared error (RMSE), summarised in Table 3.1. Scenarios S1-S3 share the same

outcome model, the same outcome values {Yi}i=1,...,N and the same ground truth for the

finite population mean defined as Q = 1
N

∑N
i=1 Yi. The empirical coverage rates and average

widths of 80% and 95% probability intervals are visualized in Figure 3.3. The raw estimates

ignoring selection bias are off the chart, leading to confidence intervals with 0% coverage

rates, therefore, not shown in Figure 3.3. For BART and BART-P, M = 50, 100, 200 trees

were explored, with M = 50 trees performing the best and reported. For SBART and

SBART-P, the default specification suggested by Linero and Yang (2018) was used with

M = 50.

In scenario S1, where the weighting methods are feasible, raking is less biased as well

as more efficient than post-stratification (PS). This is because raking maintains more in-

formation from the continuous variable X1 by discretizing X1 using quintiles as compared

to tertiles in PS, and raking implicitly assumes an additive propensity model while PS as-

sumes an interaction model. Both PS and raking generate confidence intervals with coverage

rates lower than the nominal levels, with raking yielding shorter intervals but higher cov-

erage rates. BART and SBART both outperform the weighting methods via utilizing the

continuous form of X1, generating credible intervals with coverage rates close to the nom-

inal levels. BART and SBART perform similarly as all auxiliary variables are relevant in

this low-dimensional setting. Including propensity score in BART and SBART leads to a

small bias reduction which is offset by efficiency loss, indicated by slightly higher RMSE and
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Table 3.1: Simulation results - empirical bias and RMSE of various methods in estimating

population means, from 500 simulation replicates, for each simulation setting

Method

S1 S2 S3 S4

Q = 19.88 Q = 27.74

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

raw −2.99 2.99 −2.99 2.99 2.43 2.43 3.13 3.14

PS* −0.37 0.43

raking** −0.16 0.22

BART −0.08 0.17 −0.17 0.22 0.37 0.43 0.07 0.17

BART-P −0.06 0.18 −0.12 0.20 0.30 0.38 0.06 0.17

SBART −0.08 0.17 −0.10 0.19 0.24 0.32 0.04 0.16

SBART-P −0.07 0.18 −0.10 0.19 0.24 0.32 0.04 0.16

Note 1: *PS is based on Z1, Z2, Z3 and X1 discretized using tertiles; **Raking is based on

Z1, Z2, Z3 and X1 discretized using quintiles.

Note 2: The standard errors of empirical bias from 500 simulation replicates are < 7.5×10−3

for all methods
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Figure 3.3: Simulation results - empirical coverage rates of 80% and 95% probability intervals

(with the horizontal dashed lines denoting the nominal levels) against average probability

interval widths, from 500 simulation replicates, for each simulation setting
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slightly wider credible intervals.

Scenario S2 differs from scenario S1 by adding irrelevant auxiliary variables. PS and

raking are not feasible due to high-dimensionality. Units with X1 falling between 0.5 and

1.0 have lower selection probabilities than those with X1 in between 0 and 0.5 as shown in

Figure 3.2(a). SBART outperforms BART with lower bias, lower RMSE and better credible

interval coverage. Including propensity score in BART reduces bias and RMSE and fixes

credible interval coverage. However, such improvement is not obvious for SBART. BART-P,

SBART and SBART-P all yields valid credible intervals but not BART, with SBART having

the shortest intervals.

Scenario S3 differs from scenario S2 in the direction of selection bias. Moreover, because

π was negatively associated with (X1− .75)2, the units in the lower tail of X1 (e.g. X1 < .25

in Figure 3.2(b)) have even smaller inclusion probabilities than the units in the upper tail

of X1 in scenario S2. Consequently, there are sparse data in the lower tail of X1. In

this setting, neither BART nor SBART performs well with large bias and RMSE, although

SBART yields smaller bias and RMSE than BART. The empirical coverage rates for both

BART and SBART are lower than the nominal levels due to bias in the estimation. By

including propensity score, BART-P improves credible interval coverage as well as bias and

RMSE than BART, but does not fix the undercoverage issue. Again, such improvement is

not obvious for SBART.

In scenario S4, both BART and SBART performs well with small bias and RMSE and

close to nominal level coverage rate. SBART yields slightly smaller bias, smaller RMSE,

and better coverage rate than BART. Including propensity score slightly reduces bias and
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improves coverage rate in BART. Although there are sparse data in the lower tails of X3

and X5, these two X variables are not associated with Y and thus such biased selection did

not yield poor performance of the tree-based methods like in Scenario S3.

In all the scenarios considered here, SBART outperforms other competing methods and

is, therefore, recommended. However, it should be used with caution, as it still does not

perform well when selection bias results in sparse data at the tails of continuous auxiliary

variables associated with the outcome.

3.3.3 Comparison of BART and SBART Prediction

We took a further investigation to compare the performance of BART and SBART in scenario

S3, where neither BART nor SBART performs well with BART performing worse than

SBART. We consider two random samples from the population. For sample I, data is sparse

at the lower tail of X1, while, for sample II, no data is available at the lower tail, X1 < .2.

The top panels I(a) and II(a) of Figure 3.4 shows the population in block dots, with sample

I and II in red, respectively. For a closer examination of the data at the lower tail of X1,

we restrict to a subset with Z2 = Z3 = 0 and focus on the lower tail with X1 < 0.3. The

middle panels I(b) and II(b) show the population and corresponding sample data in this

restricted subgroup. Finally, the bottom panels I(c) and II(c) plot the population units of

Y in this subgroup (gray points) overlaid by the posterior means of the location parameters,

G(Z,X), of each population units estimated using BART and SBART as shown using red

pluses and blue crosses, respectively. Panel I(c) shows that both BART and SBART fit the

data well within the region X1 > .2 where sample data are available. However, the SBART

fit the data much better than BART when X1 < 0.2 where very sparse data are available.
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Figure 3.4: Two selected samples I and II from the population in Scenario S3: (a) Scatter

plots of Y versus X1 with the population in gray dots and a selected sample in red diamonds

(b) Scatter plots of Y versus X1, restricted to Z2 = Z3 = 0 and X1 < .3 (c) Scatter plots of

Y versus X1 in the subpopulation, overlapped with posterior means of G(Z,X) estimated

from the BART and SBART models based on the whole sample.
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The estimated posterior means of the location parameters based on SBART are also less

noisy, due to the sparsity-induced priors that tend to exclude the noise auxiliary variables

in model fitting. Panel II(c) shows that both models fail to produce valid predictions in the

region X1 < .2 where there is no sample data available. In the simulation study, about 5%

of the 500 simulated samples do not include units with X1 < .1 and one third include fewer

than 10 units with X1 < .2.

3.4 Applied Examples

We demonstrate the application of the proposed methods using real data from two different

studies. The first application example deals with a mental health survey assessing psychiatric

disorders among the Ohio Army National Guard (OHARNG) service members. The second

application is in a clinic setting where it is of interest to generalize inference on COVID-19

patients when clinical outcomes are only available in a subset of patients.

3.4.1 Ohio Army National Guard Survey of Mental Health

The Ohio Army National Guard (OHARNG) Mental Health Initiative is a population-based

observational survey study for estimating the prevalence and identifying correlates of mental

illness and health service utilization among the OHARNG service members. The study

population of the baseline survey is defined as all N = 12570 soldiers who served in the

OHARNG between June 2008 and February 2009. A survey sample with n = 2562 service

members was selected. In this analysis, we are interested in estimating the mean trauma score

among the OHARNG service members using the selected sample, with potential selection
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bias due to under-coverage of sampling frame and non-response. Auxiliary information is

available at individual level for the entire study population, including age (17-24 yr, 25-34 yr,

35+ yr), sex, race (Whites, Black, Other), rank (enlisted, officer), marital status (married,

non-married), and years of service (in years). We apply the proposed trees-based methods

to correct the discrepancy between the sample and population utilizing the five categorical

and one continuous auxiliary variables. For BART-P and SBART-P, the propensity models

were built using probit BART.

Before modeling, log(y + 1) transformation was applied to trauma scores to reduce right

skewness such that the normality assumption in BART and SBART is reasonable. Distri-

butions of the only continuous variable, years of service, in the sample and population were

checked to avoid prediction failure due to sparse data at the tails (see Figure S1 in Ap-

pendix B). After fitting the models, we performed model checking using posterior predictive

graphics checking (Gelman et al., 2014, chapter 6) based on the following test quantities, in-

cluding (a) T1(y) = ȳ, (b) T2(y) = 1
n−1

∑n
i=1(yi− ȳ)2, and (c) T3(y, G, σ) = 1

n

∑n
i=1

(
yi−θi
σ

)2
,

where θi = G(zi,xi). The test quantities catch different aspects of the data, with T1(·) and

T2(·) measuring the location and variability of the survey outcome while T3(·) measuring the

discrepancy between the survey outcome and fitted distribution. In each MCMC iteration

t, the realized test quantities Ti(y, G
(t), σ(t)) under the observed data and predictive test

quantities Ti(ỹ
(t), G(t), σ(t)) under the simulated data were computed and compared, with

ỹ(t) drawn from the posterior predictive distribution. For each quantity Ti(·), a Bayesian

posterior predictive p-value can also be computed, which is defined as the probability that

the predictive test quantity is greater than the realized test quantity, evaluated over the
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posterior distribution. The Bayesian p-value measures the discrepancy between the observed

data and the posterior predictive distribution in the aspect characterized by T (·). A Bayesian

p-value close to 0.5 indicates good fit while a Bayesian p-value near 0 or 1 indicates that the

observed pattern would be unlikely to happen if the model were true and, therefore, lack

of fit. Figure S2 in Appendix B shows the posterior predictive graphics checking and cor-

responding p-values for SBART. All four Bayesian methods, BART, BART-P, SBART and

SBART-P, yielded fitted models with posterior predictive p-values close to 0.5, indicating

adequate model fit.

We compare the results of proposed Bayesian methods with the raw estimates in esti-

mating the mean trauma score on the log scale, with point estimates and 95% probability

intervals visualized in Figure 3.5(a). The Bayesian methods yields lower estimates for mean

trauma score compared to raw estimates without adjustment. BART and SBART yields

similar results, as this is a low-dimensional setting with one continuous auxiliary variable

and the benefit of soft decision trees is not so obvious. Including propensity scores do not

lead to much change in the estimates. We recommend reporting the estimates using SBART

in this analysis.

3.4.2 New York City COVID-19 Study

The COVID-19 is a global pandemic caused by severe acute respiratory syndrome coron-

avirus 2 (SARS-Cov-2). The first positive case was confirmed in New York City on March

1, 2020. The city had more cases than any country other than the United States by May

2020. The urgent need for therapeutic agents has resulted in repurposing and redeployment

of experimental agents. Hydroxychloroquine, combined with azithromycin, was widely ad-
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Figure 3.5: (a) Point estimates and 95% probability intervals of mean log(trauma score +

1) among soldiers who served in the OHARNG between June 2008 and February 2009 (b)

Point estimates and 95% probability intervals of mean prolongation among all patients and

patients with age ≥ 80 years old, comparing raw sample means, SBART with baseline QTc

and treatment (SBART-subset), and SBART with all auxiliary variables (SBART-all).
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ministered to patients with COVID-19 without robust evidence supporting its use, with the

U.S. Food and Drug Administration (FDA) issuing an emergency use authorization (EUA)

to allow doctors to begin treating patients with hydroxychloroquine in hospitalized settings

outside clinical trials on March 28, 2020. Such EUA was later revoked as of June 15, 2020,

with a randomized clinical trial in hospitalized patients showing no benefits and reports of

serious heart rhythm problems along with other safety issues. Both hydroxychloroquine and

azithromycin are characterized as definite QTc prolongers that increase risk of sudden cardiac

deaths. Between March 1st, 2020 through May 1st, 2020, there were 470 patients admitted

to Columbia University Irving Medical Center, treated with hydroxychloroquine (H+) or

hydroxychloroquine combined with azithromycin (A+H+). All patients have baseline ECG

measurements of QTc while, due to lack of personal protective equipment, only 244 of them

have ECG QTc measurements on Day 2 of medication. We are interested in estimating the

mean QTc prolongation, defined as difference in QTc measures between day 2 and day 0, of

all the 470 COVID-19 patients who received H+ or A+H+ treatments. However, the QTc

prolongation was only measured among the 244 patients who had QTc measurements at

day 2. To improve the estimation, we also collected the data of these 470 patients on their

demographic characteristics and relevant biomarkers from electronic medical records.

Exploratory analysis indicates a strong negative association between prolongation and

baseline QTc measurement and that patients with higher baseline QTc are less likely to have

ECG QTc measurement on Day 2, demonstrated in Figure S3 in the Appendix B. Other

auxiliary variables include treatment (H+, A+H+), demographic characteristics, including

gender, age (in years), race (white, black, other), BMI (log scale), along with 7 biomarkers.
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We used the recommended method SBART for two estimands of interest: (i) the mean QTc

prolongation among all 470 patients, and (ii) the mean QTc prolongation among the 87 (out

of 470) patients who were over 80 years old. We compared two SBART models, with the first

model only including baseline QTc and treatment (SBART-subset) and the second model

including all covariates (SBART-all).

As is visualized in Figure 3.5(b), SBART yields lower estimates of mean QTc prolongation

compared to the raw estimates ignoring selection bias, for both estimands of interest. For

estimand (i), including baseline QTc and treatment in SBART leads to obvious drop in the

mean prolongation estimates from a raw estimate of 18.9 (95% CI : 14.8, 23.0) milliseconds

to 16.7 (95% CI : 13.7, 19.7) milliseconds. Additionally adding other auxiliary variables does

not lead to further obvious change in the estimates. As is visualized in Figure 3.5(b), SBART

yields lower estimates of mean QTc prolongation compared to the raw estimates ignoring

selection bias, for both estimands of interest. For estimand (i), including baseline QTc and

treatment in SBART leads to obvious drop in the mean prolongation estimates from a raw

estimate of 18.9 (95% CI : 14.8, 23.0) milliseconds to 16.7 (95% CI : 13.7, 19.7) milliseconds.

Additionally adding other auxiliary variables does not lead to further obvious change in the

estimates.

3.5 Discussion

We consider generalization of inference on a descriptive estimand from a non-random sample

to a target population in data-rich settings where high dimensional auxiliary information is

available in both the sample and population, with survey inference being a special case.
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Existing methods such as post-stratification and raking are challenging or infeasible to be

performed due to high-dimensionality and the need to discretize continuous auxiliary vari-

ables before applying such methods leads to loss of information. To address such issues,

we propose a regularized prediction approach by modeling the conditional distribution of

the outcomes given the high-dimensional auxiliary variables using Bayesian machine learn-

ing techniques. In this paper, we specifically consider Bayesian additive regression trees

(BART) and soft BART which handles both discrete and continuous auxiliary variables as

well as potential interactions. Besides the auxiliary variables, we also consider modified

methods that estimates the propensity score for a unit to be included in the sample and also

include the estimated propensity score as a covariate in the BART and soft BART model.

Artificial data simulation studies demonstrate that the Bayesian additive-trees-based

methods outperform post-stratification (PS) and raking in low-dimensional settings where

PS and raking are feasible, as the regularized additive trees better utilize information in the

continuous auxiliary variables and avoid model overspecification. The Bayesian additive-

trees-based methods also yield valid inference in high-dimensional settings when PS and

raking are not feasible, as long as selection bias does not result in sparse data points at

the tails of relevant continuous auxiliary variables. In high-dimensional setting with sparse

signals, SBART, with soft decision trees and sparsity-inducing priors, is less biased and

more efficient than BART. In challenging settings where the additive-trees-based methods

underperform, including propensity score in BART could reduce bias and improve credible

interval coverage while such benefit is not obvious for SBART. Therefore, the soft BART

prediction method is recommended for generalization of inference with high-dimensional
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auxiliary variables. The soft BART better utilizes information in the continuous auxiliary

variables and more effectively regularize the effect of irrelevant noise auxiliary variable. As is

demonstrated in the OHARNG mental health study and the COVID-19 study, the proposed

methods could be applied in both survey and more general settings, with estimands being

overall population as well as subpopulation quantities.

The Bayesian additive-trees-based methods need to be used with caution. More specifi-

cally, both BART and SBART prediction fail when selection bias results in very sparse data

point at the tails of the continuous covariates. Such prediction failure cannot be fixed via

robust methods involving propensity scores. Therefore, for important continuous variables

associated with the outcomes, the range and distribution in the sample and population needs

to be checked before using the methods. In some cases, transformation on such auxiliary

variables could be applied to reduce sparsity at the tails.

Although BART and SBART are considered in this paper, the regularized prediction

approach is general and any Bayesian machine learning techniques that achieve valid predic-

tions could be applied.

In real world applications, missing data could arise in high-dimensional data-rich settings.

Depending on the missing proportion, single or multiple imputation could be used to impute

the missing values before applying the proposed methods. Imputation can be performed

using machine learning techniques such as random forests or (soft) BART, depending on

the available computational resource. In future work, it would be interesting to assess the

impact of missing auxiliary information under various missing data mechanism, including

potential bias and imputation uncertainty.
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Chapter 4

Survey Design for Multilevel

Regression and Post-Stratification

4.1 Introduction

Multilevel regression and post-stratification (MRP) has been widely applied in survey anal-

ysis, for both probability and non-probability samples. The technique was originally de-

veloped by Gelman and Little (1997) and subsequently expanded by Park, Gelman, and

Bafumi (2004, 2006) to estimate state-level public opinions. Wang, Rothschild, Goel, and

Gelman (2015) demonstrates, through 2012 US presidential election forecast with non-

representative voter intention polls on the Xbox gaming platform, that multilevel regression

and post-stratification (MRP) can be used to generate accurate survey estimates from non-

representative samples. Besides political science, MRP has also been used in the field of

epidemiology by Downes et al. (2018).

In spite of the rich literature on survey analysis using MRP, literature on survey design

78



CHAPTER 4. SURVEY DESIGN FOR MULTILEVEL REGRESSION AND
POST-STRATIFICATION

for MRP is scarce. Empirical studies using simulation could be considered in the design

stage, but it is computationally intensive. Therefore, it is of interest to develop theoretical

results.

In this chapter, we consider survey design for MRP. We propose a close form formula to

calculate margin of errors given the design parameters and validate the theoretical results

using simulation studies. We demonstrate the use of the formula in two survey design

scenarios, online panels using quota sampling and telephone surveys with fixed total sample

sizes.

4.2 Methods

4.2.1 An Overview of Multilevel Regression and Post-Stratification

When there is discrepancy between a survey sample and the target population of interest,

post-stratification corrects for the known differences by partitioning the population into a

series of disjoint subpopulations (post-strata) such that the subsamples in the corresponding

post-strata are representative. Consider a finite population of size N with R categorical aux-

iliary variables {Zr}r=1,...,R, with Zr having Jr levels. The joint distribution of the auxiliary

variables generates a total number of J =
∏R

r=1 Jr cells, labeled as j = 1, . . . , J . Therefore,

the finite population U can be partitioned into J disjoint post-strata U =
⋃J
j=1 Uj of size

Nj such that N =
∑J

j=1 Nj. Without loss of generality, we consider a continuous survey

variable of interest Y with the estimand of interest being the the finite population mean

Q(Y ) = 1
N

∑
i∈U Yi. With respect to the post-strata, the finite population mean can be
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rewritten as

Q(Y ) =
1

N

J∑
j=1

∑
i∈Uj

Yi =
1

N

J∑
j=1

Njθj,

where θj = 1
Nj

∑
i∈Uj

Yi is subpopulation mean of post-stratum Uj. With valid estimators θ̂j

for the post-stratum means, the post-stratification estimator takes the form

Q̂PS =
1

N

J∑
j=1

Nj θ̂j.

Multilevel regression and post-stratification specifies a multilevel regression model to

model the conditional distribution of the survey outcome given the auxiliary variables p(Y |Z)

and predicts the post-stratum means based on the model fitted with sample survey data.

For a continuous outcome, with a sample of size n, a normal model with multilevel varying

intercept can be specified and fitted y ∼ N(Xβ, σ2
yI), where Xn×k is a design matrix of

binary indicators created from the auxiliary variables, with prior N(0,Σβ) on the regression

coefficients βk×1.

4.2.2 An Illustration Example Using OHARNG

As a illustration example, we consider a study population defined as all N = 12570 soldiers

who served in the Ohio Army National Guard (OHARNG) between June 2008 and February

2009, with two auxiliary variables gender and age. Table 4.1 lists the J = 2 × 4 = 8

post-stratification cells defined by gender with 2 levels and age with 4 levels. Most service

members are male and most are less than 55 years old. Independent estimation of the mean

response of a survey outcome of interest in post-stratum j = 8 could be difficult, if a sample

do not include enough females who are ≥ 55 years old.
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Table 4.1: Definition of post-strata and corresponding post-strata sizes for OHARNG

Gender Age, in years label j Nj

Male 17− 24 1 3269

25− 34 2 3292

35− 44 3 1949

≥ 55 4 783

Female 17− 24 5 774

25− 34 6 454

35− 44 7 194

≥ 55 8 63

A multilevel model with the following term could be specified to partially pool information

across post-strata:

• A constant term µ0

• An indicator for female µ1

• 4 indicators for age categories α1, . . . , α4

• 8 indicators for gender × age interactions γ1, . . . , γ8.

The model has k = 1+1+4+8 = 14 coefficients β = (µ,α,γ)′, and a prior precision matrix

could have the form Σ−1
β = Diag(0, 0, σ−2

α , . . . , σ−2
α , σ−2

γ , . . . , σ−2
γ ), with the parameters σα and

σγ estimated from the data. A fully Bayesian approach would also involve prior specification

for π(µ), π(σα), π(σγ) and π(σy). To set up the design matrix, a vector xj can be defined

correspondingly to represent each post-stratum j, with a matrix Xpop presenting all cells in
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the population as follows:

Xpop =



µ0 µ1 α1 α2 α3 α4 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

x1 1 1 1

x2 1 1 1

x3 1 1 1

x4 1 1 1

x5 1 1 1 1

x6 1 1 1 1

x7 1 1 1 1

x8 1 1 1 1



.

The ith row of the design matrix X takes value xj if unit i in the sample belongs to post-

stratum j. Based on the fitted model, the post-strata means can be obtained θ̂ = Xpopβ̂,

and the multilevel regression and post-stratification estimator can be generally written

Q̂MRP =

(
N1

N
, . . . ,

NJ

N

)
Xpopβ̂.

Subgroup estimators are readily available by restricting the weighted average to the corre-

sponding subgroup. In the OHARNG example, the finite subpopulation mean among female

service members is estimated as

Q̂Female
MRP =

(
0, 0, 0, 0,

N5∑8
j=5 Nj

,
N6∑8
j=5 Nj

,
N7∑8
j=5 Nj

,
N8∑8
j=5Nj

)
Xpopβ̂.
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4.2.3 Calculating Margin of Error (MOE)

Conditional on the variance parameters Σ−1
β , σy, the posterior distribution of regression

coefficients β is multivariate normal with the following closed form

π(β|y,Σ−1
β , σy) ∝ exp

{
−1

2
(y −Xβ)′(σ2

yIn×n)−1(y −Xβ)− 1

2
β′Σ−1

β β

}
∼ N

((
1

σ2
y

X ′X + Σ−1
β

)−1
1

σ2
y

X ′y,

(
1

σ2
y

X ′X + Σ−1
β

)−1
)
,

with Var(β|y,Σ−1
β , σy) =

(
1
σ2
y
X ′X + Σ−1

β

)−1

. Note that the design matrix X is a n × k

matrix with nj rows (out of n) taking values xj and knowing the cell counts nj in the J

post-strata is sufficient to compute X ′X.

In the survey design stage, margin of errors can be calculated based on a specific multilevel

model, with information on the design parameters σy,Σ
−1
β , {nj}Jj=1, using the following steps:

Step 1 Calculate posterior variances of the J post-strata means:

Var(θ|y,Σ−1
β , σy) = XpopVar(β|y,Σ−1

β , σy)X
pop′

.

Step 2 Calculate posterior variance of the population mean:

Var(Q|y,Σ−1
β , σy) = CVar(θ|y,Σ−1

β , σy)C
′, where C =

(
N1

N
, . . . , NJ

N

)
. As is demon-

strated in Section 4.2.2, other estimands such as subgroup means can be calculated by

modifying C accordingly.

Step 3 Obtain corresponding margin of error: MOE = 2
√

Var(Q|y,Σ−1
β , σy)
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4.3 Validation Using Simulation Studies

Simulation studies were conducted as a validation procedure, comparing the margins of errors

(MOE) calculated using the procedure in Section 4.2.3 with empirical results.

4.3.1 Simulation Design

The simulation studies are designed with the OHARNG population introduced in Section

4.2.2. We consider two discrete auxiliary variables, gender (male, female) and age group

with 4 levels, resulting in J = 2 × 4 = 8 post-strata, with definition and distribution listed

in Table 4.1. We generate survey outcomes Y based on the following multilevel model

Y =µ0 + µ1I(female) +
4∑
l=1

αlI(age group l) +
8∑
j=1

γjI(post-stratum j) + ε, (4.1)

where αl
i.i.d∼ N(0, σ2

α), γj
i.i.d∼ N(0, σ2

γ), ε ∼ N(0, σ2
y). In the simulation, we use µ0 = 40,

µ1 = 5, σα = 10, σγ = 2.5, σy = 10. To obtain empirical margin of errors (MOE), we

repeatedly draw samples from the population and compute 95% credible intervals for various

estimands of interests. Samples of various sample sizes were considered, with various sample

allocation plans, (a) equal sample sizes for all post-strata, (b) sample sizes proportionate to

post-strata sizes, (c) equal sample sizes for post-strata within gender, and (d) sample sizes

proportionate to post-strata sizes within gender. The total sample sizes and sample sizes by

post-stratification cells are summarized in Table 4.2.

For each scenario, 500 samples were drawn and 95% credible intervals were computed

for post-strata means, the overall population mean and subpopulation means by gender

(8 + 1 + 2 = 11 estimands). For each estimand, empirical MOE is obtained as half of
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Table 4.2: Total sample sizes and sample sizes by post-stratification cells for all simulation

scenarios

sampling plan n {nj}8
j=1

(a) 200 {25, 25, 25, 25, 25, 25, 25, 25}

300 {38, 38, 38, 38, 38, 38, 38, 38}

400 {50, 50, 50, 50, 50, 50, 50, 50}

(b) 205 {61, 62, 37, 15, 15, 9, 4, 2}

303 {91, 92, 55, 22, 22, 13, 6, 2}

405 {122, 123, 73, 30, 29, 17, 8, 3}

804 {243, 245, 145, 59, 58, 34, 15, 5}

(c) 300 {50, 50, 50, 50, 25, 25, 25, 25}

400 {75, 75, 75, 75, 25, 25, 25, 25}

500 {100, 100, 100, 100, 25, 25, 25, 25}

800 {175, 175, 175, 175, 25, 25, 25, 25}

200 {10, 10, 10, 10, 40, 40, 40, 40}

(d) 205 {8, 8, 5, 2, 94, 56, 24, 8}

205 {36, 36, 21, 9, 53, 31, 14, 5}

305 {36, 36, 21, 9, 105, 62, 27, 9}
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the average lengths of the 500 credible intervals. The credible intervals were generated using

MRP with the model defined in Equation 4.1. The models were fitted using the brms package

in R 3.6.0, the default option of which specifies non-central t-distributions for π(µ) and half

t-distributions for π(σα), π(σγ) and π(σy), with hyperparameters adaptive to data.

Correspondingly, theoretical MOEs were calculated for all 11 estimands using the pro-

cedure in Section 4.2.3. Naive MOEs ignoring partial pooling were also calculated for the 8

post-strata means using 2 σy√
nj

, for comparison purpose.

4.3.2 Simulation Results

The theoretical margin of errors (MOE) were compared with the empirical MOEs from the

simulation studies. Figure 4.1(a) displays the theoretical MOEs against the empirical MOEs

with a scatterplot. The MOEs calculated with the naive approach are plotted in circles while

the MOEs accounting for partial pooling are plotted in crosses. For post-strata with small

cell counts nj in the sample (reflected via large values of 2 σy√
nj

), the naive approach leads

to overestimation while the approach accounting for partial pooling yields results similar

to empirical MOEs. The theoretical MOEs using approach accounting for partial pooling

also align with empirical results for overall and subpopulation means, as is shown in Figure

4.1(b).

4.4 Application Scenarios

We consider survey design with MRP for two different application scenarios, online panels

that utilize quota sampling and telephone surveys with a fixed budget. For both scenarios,
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Figure 4.1: Simulation results for all scenarios - scatter plots of (a) theoretical MOEs using

naive method (in circles) and approach accounting for partial pooling (in crosses) vs empirical

MOEs from simulations for all post-strata (b) theoretical MOEs using approach accounting

for partial pooling vs empirical MOEs from simulations by estimands
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we use the illustration example of OHARNG population in Section 4.2.2 and demonstrate

how to calculate MOE if we plan to use the multilevel regression model defined by Equation

4.1 for analysis. We assume that information on the variance parameters is available at the

design stage, with σα = 10, σγ = 2.5.

4.4.1 Online Panels Using Quota Sampling

Survey data collection using online panels is increasingly popular due to its cost-effectiveness.

online panels enables access to large and diverse samples in a short time period, take less

time to get the data ready for analysis and are easy to replicate with the standardized

data collection process. In spite of the advantages, online panels tend to have low response

rate. As a result, many users of online panels utilize a quota sampling approach by targeting

respondents with certain demographic and other characteristics to mitigate non-coverage and

non-response. Similar to stratified sampling, quota sampling first partitions the population

into mutually exclusive subgroups and enables including a pre-specified number of units in

each subgroup.

Suppose we need to design a survey using online panels for the OHARNG population

in Section 4.2.2. Quota sampling enables including a pre-specified number of solders in

all the cells defined by the combinations of gender and age categories. We consider four

different sample allocation plans, (a) equal sample sizes for all post-strata, (b) sample sizes

proportionate to post-strata sizes, (c) fixed total sample size for females at 200 and equal

sample sizes for post-strata within gender, and (d) fixed total sample size for females at 200

and sample sizes proportionate to post-strata sizes within gender. We calculate theoretical

MOEs for overall mean and mean among females. The MOEs for both estimands are plotted
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Figure 4.2: Quota sampling - theoretical MOEs accounting for partial pooling as total sample

size increases for different sample allocation plan: (a) equal sample sizes for all post-strata,

(b) sample sizes proportionate to post-strata sizes, (c) fixed total sample size for females at

200 and equal sample sizes for post-strata within gender, and (d) fixed total sample size for

females at 200 and sample sizes proportionate to post-strata sizes within gender

in Figure 4.2.

Sample allocation plan (a) with sample sizes proportional to post-strata sizes yields lowest

MOE for overall population mean but highest MOE for subgroup mean for females. Total

sample size for plan (b) with equal sample sizes is bounded by the smallest post-strata size,

as there are only 63 people in post-stratum j = 8 and it might not be even feasible to exhaust

the post-stratum in practice. Plans (c)(d) fix total sample size for females at 200 and allow

sample size increase while maintaining the allocation ratios within both genders. MOEs for
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overall mean decreases as total sample size increases for all allocation plans while MOEs

for subgroup mean among females remains similar for plans (c)(d), as total sample sizes for

females are fixed and effect of partial pooling is not obvious when the subgroup sample size

is fixed at 200. In practice, the survey could be designed with a upper bound of MOE for

the estimand within females which determines the fixed total sample sizes among females∑8
j=5 nj before the total sample size n is set with a target MOE for the overall estimand.

4.4.2 Telephone Surveys with Fixed Total Sample Sizes

Telephone surveys are typically designed with a certain budget limit which often results in a

fixed total sample size. Different from online panels using quota sampling, telephone surveys

typically do not enables including a pre-specified number of respondents from subgroups

defined by demographics and certain characteristics. Therefore, assumptions on inclusion

probabilities in the subgroups are needed in order to calculate expected cell counts in the

design stage.

Suppose we need to design a telephone survey for the OHARNG population in Sec-

tion 4.2.2. The service members are selected using equal probability of selection method

(EPSEM). With assumptions on response rate in the post-stratification cells pj, the sam-

ple sizes in each cell nj follow a multinomial distribution with cell probabilities πj =

Njpj/
∑

lNlpl, with E(nj) = nπj, for j = 1, . . . , J . As a numerical example, we assume p =

(.3, .4, .5, .6, .55, .6, .65, .7), resulting in π = (0.213, 0.286, 0.211, 0.102, 0.092, 0.059, 0.027, 0.010).

The theoretical MOEs can be calculated for various total sample sizes by plugging in nπj

as the cell counts nj. Figure 4.3 display the theoretical MOE for subgroup mean among

females and overall mean for various total sample sizes. Due to the small cell probabilities
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πj for female cells (j = 5, . . . , 8), a small increase in total sample size does not necessarily

results in increase in total sample size of females, leading to slightly non-smoothness in the

curve.

female overall

0 200 400 600 0 200 400 600

0

1

2

3

4

total sample size

M
O

E

Figure 4.3: Telephone survey - theoretical MOEs accounting for partial pooling, calculated

with expected cell counts as total sample increases, for subgroup mean among females and

overall mean

In practice, the actual sample sizes could differ from the expected cell counts. For the

cells with small πj, the actual cell count could be very small, regardless of the total sample

size. Therefore, we investigate the robustness of the results when small cell counts occurs by

setting the smallest cell n8 = 3 for all total sample sizes considered. Also, the information

on the variance parameters used in the design stage could differ from the actual values in

the population. As sensitivity analysis, we explore the following scenarios where σα and σγ
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are overestimated or underestimated in the design stage.

Table 4.3: Value sets of the variance parameters for sensitivity analysis

scenario variance parameters note

(a) σα = 10, σγ = 2.5 assumed as true values

(b) σα = 15, σγ = 5 overestimate both

(c) σα = 15, σγ = 2.5 overestimate σα

(d) σα = 10, σγ = 5 overestimate σγ

(e) σα = 5, σγ = 1 underestimate both

(f) σα = 5, σγ = 2.5 underestimate σα

(g) σα = 10, σγ = 1 underestimate σγ

Figure 4.4 display the MOE for the post-stratum mean with the smallest cell probability

π8 = .010, calculated by setting the cell count n8 = 3 as total sample size increases, using

various parameter sets, faceted by σα. Overestimation of variance parameters leads to un-

derestimation of effect of partial pooling and overestimation of MOE for the cell mean. The

value of MOE is sensitive to the specification of σγ but less sensitive to σα. MOEs for the

subgroup mean of female and overall mean are not sensitive to n8 or the specification of the

variance parameters and, therefore, results are not shown here. In practice, value sets (b)(e)

could be used to provide upper and lower bound for the MOEs.

4.5 Discussion

We consider survey design for multilevel regression and post-stratification (MRP). Existing

literature mainly focus on analysis of survey data using MRP. This is the among the first

papers from a design perspective.
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Figure 4.4: Sensitivity analysis setting n8 = 3 - theoretical MOE for post-stratum 8 as total

sample size increases, using various value sets of variance parameters listed in Table 4.3,

faceted by overestimated, true, underestimated σα, with various types of line for overesti-

mated, true, underestimated σγ

We propose a closed form formula to calculate theoretical margin of errors for various

estimands based on the variance parameters in the multilevel regression model and sample

sizes in the post-strata. We validate the theoretical MOEs via comparisons with the empir-

ical MOEs in simulations studies covering various sample allocation plans. The validation

procedure indicates that the theoretical MOEs based on the formula aligns with the empirical

results for various estimands.

We demonstrate the application of the formula in two different survey design scenarios,

online panels that utilize quota sampling and telephone surveys with a fixed budget.

The method could be potentially extended to binary outcome Y via introducing a nor-

mally distributed latent variable Y ∗ such that Y = 1{Y > 0}.
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Chapter 5

Conclusion

This dissertation addresses three problems in Bayesian design and analysis for sampling.

Flexible Bayesian models are utilized to incorporate auxiliary information about the target

population of interest, resulting in robust and more efficient inference.

In Chapter 2, we consider quantile estimation for skewed survey data in PPS sampling,

where the values of a size variable is available for all population units. While the design-based

weighted method only utilizes information in the survey sample, the proposed model-based

methods incorporate probabilities of selection for all population units. Combined with trans-

formation, the skew-normal distribution, with location and scale parameters modeled with

penalized spline functions, is flexible enough to handle skewed data from various distributions

and robust against model misspecification. By incorporating more information in the anal-

ysis, the model-based methods are more efficient than the design-based weighted method.

The Bayesian model-based methods also demonstrate advantages in small sample scenarios,

as the design-based methods typically are based on asymptotic properties.

In Chapter 3, we consider inference from non-random samples in data-rich settings where
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high-dimensional auxiliary information is available both in the sample and the target pop-

ulation, with survey inference being a special case. The proposed regularized prediction

approach using Bayesian machine learning predicts the outcomes in the population using a

large number of auxiliary variables such that the ignorability assumption is reasonable. The

machine learning models naturally accommodate discrete variables, nonlinear effect of con-

tinuous variables and possible interactions. In terms of model fitting, regularization handles

noise variables and achieves stable predictions while the Bayesian approach is straightfor-

ward for quantification of uncertainty. The method using soft Bayesian additive regression

trees outperforms existing methods even in low dimensional settings, as it better utilize

information in the continuous auxiliary variables.

In Chapter 4, we consider survey design for multilevel regression and post-stratification

(MRP). When there is discrepancy between a survey sample and the target population of

interest, post-stratification corrects for the known differences by partitioning the population

into a series of disjoint subpopulations (post-strata) such that the subsamples in the cor-

responding post-strata are representative. However, post-stratification could yield unstable

estimates in the presence of sparse cells in some post-strata. MRP specifies a multilevel

regression model to partially pool information across post-strata and achieves stable esti-

mates. MRP can also be viewed from a regularized prediction perspective. Regularization

is imposed via multilevel varying intercepts to achieve stable predictions for the outcomes

in the post-strata. If a hierarchical Bayesian approach is used, with hyper priors specified,

the amount the regularization is determined by the data in the model fitting procedure,

without parameter tuning. We propose a closed form formula to calculate margin of er-
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rors (MOEs) accounting for partial pooling and regularization when naive methods ignoring

partial pooling and regularization overestimates uncertainty of estimates in small cells.

Classical statistical methods are mainly design-based, where quantification of uncertainty

relies on the distribution of sample inclusion indicator and asymptotic properties. The sur-

vey outcomes are treated as fixed, therefore, limiting the potential to borrow strength from

the recent development of modern statistical models. Model-based survey inference spec-

ifies statistical distributions on the survey outcomes, which handles both probability and

non-probability samples and naturally allows improving survey inference with modern sta-

tistical techniques via incorporating auxiliary information in data-rich settings. Model-based

methods are subject to violation of model assumptions and model misspecification. How-

ever, modern statistical models are flexible enough to yield robust inference. In Chapter 2,

when the size variable or the selection probability is the only auxiliary variable available

for conditional modeling, the normality assumption could be violated. However, the skew-

normal penalized spline regression models are flexible enough to adequately model various

skewed distributions. In Chapter 3, the regularized prediction approach accommodate high-

dimensional auxiliary variables such that the ignorability assumption is reasonable and the

sum-of-tree ensembles allow flexible functional forms of the predictors. In Chapter 4, multi-

level models are able to capture intrinsic structures of multilevel data. Considering sample

designs from a model-based perspective is important. In terms of statistical inference and

model fitting, the Bayesian approach allows fitting complex statistical models and is straight-

forward for generating probability intervals. And the hierarchical Bayesian approach avoids

parameter tuning in imposing regularization, seen in Chapter 2 and Chapter 4. In terms
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of implementation, recent advancement in the probabilistic programming languages such as

Stan and related user-friendly software has enables practitioners to easily fit a variety of

Bayesian models, making Bayesian modeling accessible to wider user community. In con-

clusion, flexible Bayesian models are powerful tools in design and analysis for sampling,

straightforward for quantification of uncertainty and yielding efficient inference.
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Appendix A

Appendices to Chapter 2

A.1 Proof of Proposition

Proposition 1. If W ∼ N(0, 1)1{w > 0} and Y |W = w ∼ N(ξ + ασw, σ2), then Y ∼

SkewNorm(ξ, ω2, α) with probability density function

f(y|ξ, ω2, α) =
2

ω
φ

(
y − ξ
ω

)
Φ

(
α

(
y − ξ
ω

))
,

where ω2 = (α2 + 1)σ2. In other words, the skew-normal distribution SkewNorm(ξ, ω2, α)

can be simulated using the algorithm Y = ασ|Z1| + (ξ + σZ2), with Z1, Z2
i.i.d.∼ N(0, 1) and

ω2 = (α2 + 1)σ2.
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Proof. Let W ∼ N(0, 1)1{w > 0} and Y |W = w ∼ N(ξ + ασw, σ2).

f(y|ξ, σ2, α) =

∫
R
f(y, w|ξ, σ2, α) dw =

∫
R
f(y|w, ξ, σ2, α)f(w) dw

=

∫
R

1

σ
φ

(
y − (ξ + ασw)

σ

)
× 2φ(w)1{w > 0} dw

=

∫ +∞

0

1

σ
(2π)−

1
2 exp

{
− [(y − ξ)− ασw]2

2σ2

}
2(2π)−

1
2 exp

{
−w

2

2

}
dw

=
2

σ
(2π)−

1
2 exp

{
−(y − ξ)2

2σ2

}
∫ +∞

0

(2π)−
1
2 exp

{
−(α2 + 1)σ2w2 − 2ασw(y − ξ)

2σ2

}
dw

=
2

σ
(2π)−

1
2 exp

{
− (y − ξ)2

2(α2 + 1)σ2

}∫ +∞

0

(2π)−
1
2 exp

{
−

[w − α
α2+1

(y−ξ)
σ

]2

2(α2 + 1)−1

}
dw

=
2

ω
φ

(
y − ξ
ω

)
Pr(W > 0), where W ∼ N

(
α

α2 + 1

(y − ξ)
σ

,
1

α2 + 1

)
=

2

ω
φ

(
y − ξ
ω

)
Pr(Z > −α(y − ξ)

ω
), where Z ∼ N(0, 1)

=
2

ω
φ

(
y − ξ
ω

)
Φ

(
α

(
y − ξ
ω

))

A.2 Posterior Simulation Scheme

A.2.1 SN-BPSP

Here we present detailed posterior simulation steps for the skew-normal Bayesian penalized

spline predictive approach (SN-BPSP) defined in (2.2). Using the hierarchical representation
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in Proposition 1, model (2.2) can be rewritten as

Yi|πi,β, b, σ2, α, γ,Wi
ind.∼ N(SPL(πi,m) + ασπγiWi, σ

2π2γ
i ),

Wi
i.i.d.∼ N(0, 1)1{wi > 0},

SPL(πi,m) = β0 +

p∑
l=1

βlπ
l
i +

K∑
k=1

bk(πi −mk)
p
+,

b = (b1, . . . , bK)T |τ 2
b ∼ N(0, τ 2

b IK),

Assume the following prior distributions for derivation purpose

β ∼ N(0, ϕ2Ip+1 = (103)2Ip+1)

τb, σ ∼ U(0,+∞), γ ∼ U(−2, 2)

α ∼ N(0, ψ2 = 102)1{α > 0}.

Denote by

Π =


π2γ

1 0
. . .

0 π2γ
n


n×n

X =


1 π1 . . . πp1
...

. . .
...

1 πn . . . πpn


n×(p+1)

Z =


(π1 −m1)p+ · · · (π1 −mK)p+

...
. . .

...

(πn −m1)p+ · · · (πn −mK)p+


n×K

and define e = y−Xβ−Zb, the full conditionals of the posteriors for (2.2) are detailed as

belows:

1. [β] ∼ Np+1(ΣβX
T (σ2Π)−1(y−Zb−ασΠ

1
2w,Σβ), where Σβ =

[
XT (σ2Π)−1X + (ϕ2Ip+1)−1

]−1

2. [b] ∼ NK(ΣbZ
T (σ2Π)−1(y−Xβ−ασΠ

1
2w),Σb), where Σb =

[
ZT (σ2Π)−1Z + (τ 2

b IK)−1
]−1
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3. [w] ∼ Nn(Σwα(σ2Π)−
1
2e,Σw)

∏n
i=1 1{wi > 0}, where Σw =

[
α2In + I−1

n

]−1

4. [α] ∼ N(σ2
αw

T (σ2Π)−
1
2e, σ2

α)1{α > 0}, where σ2
α =

[
wTw + (ψ2)−1

]−1

5. [τ 2
b ] ∼ IG(K−1

2
, 1

2
bTI−1

K b)

6. [γ] ∝ (
∏

i πi)
−γ exp

{
−1

2

[
eT (σ2Π)−1e− 2αwT (σ2Π)−

1
2e
]}

I(−2,+2)(γ)

7. [σ] ∝ (σ2)−n/2 exp
{
−1

2

[
eT (σ2Π)−1e− 2αwT (σ2Π)−

1
2e
]}

I(0,+∞)(σ)

All the above full conditionals have an explicit form except for 6 and 7. For 6 and 7, the

Metropolis-Hastings algorithm is used with a normal proposal distribution centered at the

current value and a small variance.

A.2.2 SN-B2PSP

Here we present detailed posterior simulation steps for the skew-normal Bayesian two-

moment penalized spline predictive approach (SN-B2PSP) defined in (2.3). Using the hier-

archical representation in Proposition 1, model (2.3) can be rewritten as

Yi|πi,β, b, σ2
i , α,Wi

ind.∼ N(SPL1(πi,m) + ασiWi, σ
2
i ),

Wi
i.i.d.∼ N(0, 1)1{wi > 0},

σ2
i |πi,λ,ν, σ2

A
ind.∼ LogNorm(SPL2(πi,m), σ2

A),

SPL1(πi,m) = β0 +

p∑
l=1

βlπ
l
i +

K∑
k=1

bk(πi −mk)
p
+,

SPL2(πi,m) = λ0 +

q∑
l=1

λlπ
l
i +

K∑
k=1

νk(πi −mk)
q
+,

b|τ 2
b ∼ N(0, τ 2

b IK),ν|τ 2
ν ∼ N(0, τ 2

ν IK).
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Assume the following prior distributions for derivation purpose

β ∼ N(0, ϕ2Ip+1 = (103)2Ip+1),λ ∼ N(0, ϕ2Iq+1 = (103)2Iq+1)

τb, τν ∼ U(0,+∞)

α ∼ N(0, ψ2 = 102)1{α > 0}.

Denote by

Σ =


σ2

1

. . .

σ2
n


n×n

L = (log σ2
1, . . . , log σ2

n)T

X(1) =


1 π1 . . . πp1
...

. . .
...

1 πn . . . πpn


n×(p+1)

Z(1) =


(π1 −m1)p+ · · · (π1 −mK)p+

...
. . .

...

(πn −m1)p+ · · · (πn −mK)p+


n×K

X(2) =


1 π1 . . . πq1
...

. . .
...

1 πn . . . πqn


n×(q+1)

Z(2) =


(π1 −m1)q+ · · · (π1 −mK)q+

...
. . .

...

(πn −m1)q+ · · · (πn −mK)q+


n×K

,

and define e = y −X(1)β − Z(1)b, r = L −X(2)λ − Z(2)ν, the full conditionals of the

posteriors for model (2.3) are detailed as below:

1. [β] ∼ Np+1(ΣβX
(1)TΣ−1(y − Z(1)b − αΣ

1
2w),Σβ), where Σβ = [X(1)TΣ−1X(1) +

(ϕ2Ip+1)−1]−1

2. [b] ∼ NK(ΣbZ
(1)TΣ−1(y−X(1)β−αΣ

1
2w),Σb), where Σb = [Z(1)TΣ−1Z(1)+(τ 2

b IK)−1]−1

3. [λ] ∼ Nq+1(ΣλX
(2)T (σ2

AIn)−1(L − Z(2)ν),Σλ), where Σλ = [X(2)T (σ2
AIn)−1X(2) +

(ϕ2Iq+1)−1]−1
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4. [ν] ∼ NK(ΣνZ
(2)T (σ2

AIn)−1(L − X(2)λ),Σν), where Σν = [Z(2)T (σ2
AIn)−1Z(2) +

(τ 2
ν IK)−1]−1

5. [α] ∼ N(σ2
αw

TΣ−
1
2e, σ2

α)1{α > 0}, where σ2
α = (wTw + 1

ψ2 )−1

6. [w] ∼ Nn(ΣwαΣ−
1
2e,Σw)

∏n
i=1 1{wi > 0}, where Σw = (α2In + I−1

n )−1

7. [τ 2
b ] ∼ IG(K−1

2
, 1

2
bTI−1

K b)

8. [τ 2
ν ] ∼ IG(K−1

2
, 1

2
νTI−1

K ν)

9. [σi] ∝ exp
{
− 1

2σ2
i
(e− αΣ

1
2w)T (e− αΣ

1
2w)

}
1
σ3
i

exp
{
− 1

2σ2
A
rTr

}∏n
i=1 I(0,+∞)(σi)

A.3 Stan Scripts

A.3.1 SN-BPSP

data {

int<lower=1> n1; // # of sampled units

int<lower=1> n2; // # of non-sample units

int<lower=1> p;

int<lower=1> K; // # of truncated polynomial bases

vector[n1] y; // survey variable of units in the sample

row_vector[p] X[n1];

row_vector[K] Z[n1]; // truncated polynomials
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row_vector[p] predX[n2];

row_vector[K] predZ[n2]; // truncated polynomials

real<lower=0> Pi[n1];

real<lower=0> predPi[n2];

}

parameters {

vector[p] beta;

vector[K] b;

real alpha;

real<lower=0> sigma;

real gamma;

real<lower=0> sigmab;

}

transformed parameters {

real xi[n1];

real<lower=0> omega[n1];

for (i in 1:n1) {

xi[i] = X[i] * beta + Z[i] * b;

omega[i] = sqrt( (pow(alpha, 2) + 1) ) * pow(Pi[i], gamma) * sigma;

}

}
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model {

for (i in 1:n1) {

y[i] ~ skew_normal(xi[i], omega[i], alpha);

}

for (l in 1:p) {

beta[l] ~ normal(0, 1e3);

}

for (l in 1:K) {

b[l] ~ normal(0, sigmab);

}

sigmab ~ cauchy(0, 1);

sigma ~ cauchy(0, 1);

alpha ~ normal(0, 10) T[0, ];

}

A.3.2 SN-B2PSP

data {

int<lower=1> n1; // # of sampled units

int<lower=1> n2; // # of non-sample units

int<lower=1> p;
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int<lower=1> K; // # of truncated polynomial bases

vector[n1] y; // survey variable of units in the sample

row_vector[p] X[n1];

row_vector[K] Z[n1]; // truncated polynomials

row_vector[p] predX[n2];

row_vector[K] predZ[n2]; // truncated polynomials

}

parameters {

vector[p] beta;

vector[K] b;

real alpha;

vector[p] lambda;

vector[K] nu;

real<lower=0> sigma[n1];

real<lower=0> sigmab;

real<lower=0> sigmanu;

}

transformed parameters {

real xi[n1];

real<lower=0> omega[n1];

real SPL2[n1];
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for (i in 1:n1) {

xi[i] = X[i] * beta + Z[i] * b;

omega[i] = sqrt( (pow(alpha, 2) + 1) ) * sigma[i];

SPL2[i] = X[i] * lambda + Z[i] * nu;

}

}

model {

for (i in 1:n1) {

y[i] ~ skew_normal(xi[i], omega[i], alpha);

sigma[i] ~ lognormal(SPL2[i], 0.1);

}

for (l in 1:p) {

beta[l] ~ normal(0, 1e3);

lambda[l] ~ normal(0, 1e3);

}

for (l in 1:K) {

b[l] ~ normal(0, sigmab);

nu[l] ~ normal(0, sigmanu);

}

sigmab ~ cauchy(0, 1);

sigmanu ~ cauchy(0, 1);
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alpha ~ normal(0, 10) T[0, ];

}
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Appendix B

Appendices to Chapter 3

B.1 Figures
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Figure S1: (a) Density plots of years of service among the OHARNG soldiers in the sample

and population (b) Scatterplot of log(trauma score + 1) vs years of service among OHARNG

soldiers in the sample from with a locally estimated scatterplot smoothing (LOESS) surve
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Figure S2: Realized versus posterior predictive distributions for the test quantities (a)

(T1(y), T2(y)) = (mean, sd) = (ȳ, 1
n−1

∑n
i=1(yi − ȳ)2) and (b) T3(y, G, σ) = 1

n

∑n
i=1

(
yi−θi
σ

)2

with θi = G(zi,xi). The observed quantity (T1(y), T2(y)) is at the center of the cloud of

the predictive quantities and the observed quantity T3(y, G, σ) has about half the chance to

be below the 45 degree line. The Bayesian posterior predictive p-values for T1(·), T2(·) and

T3(·) are p1 = .50, p2 = .51 and p3 = .50, respectively.
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Figure S3: (a) Scatterplot of prolongation vs baseline QTc with a LOESS curve (b) Inclusion

propensity vs baseline QTC using LEOSS among COVID patients admitted at CUIMC
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