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Abstract

Salience Estimation and Faithful Generation:

Modeling Methods for Text Summarization and Generation

Chris Kedzie

This thesis is focused on a particular text-to-text generation problem, automatic summarization,

where the goal is to map a large input text to a much shorter summary text. The research presented

aims to both understand and tame existing machine learning models, hopefully paving the way

for more reliable text-to-text generation algorithms. Somewhat against the prevailing trends, we

eschew end-to-end training of an abstractive summarization model, and instead break down the

text summarization problem into its constituent tasks. At a high level, we divide these tasks into

two categories: content selection, or “what to say” and content realization, or “how to say it”

(McKeown, 1985). Within these categories we propose models and learning algorithms for the

problems of salience estimation and faithful generation.

Salience estimation, that is, determining the importance of a piece of text relative to some

context, falls into a problem of the former category, determining what should be selected for a

summary. In particular, we experiment with a variety of popular or novel deep learning models for

salience estimation in a single document summarization setting, and design several ablation exper-

iments to gain some insight into which input signals are most important for making predictions.

Understanding these signals is critical for designing reliable summarization models.

We then consider a more difficult problem of estimating salience in a large document stream,

and propose two alternative approaches using classical machine learning techniques from both un-

supervised clustering and structured prediction. These models incorporate salience estimates into

larger text extraction algorithms that also consider redundancy and previous extraction decisions.

Overall, we find that when simple, position based heuristics are available, as in single doc-

ument news or research summarization, deep learning models of salience often exploit them to

make predictions, while ignoring the arguably more important content features of the input. In

more demanding environments, like stream summarization, where heuristics are unreliable, more



semantically relevant features become key to identifying salience content.

In part two, content realization, we assume content selection has already been performed and

focus on methods for faithful generation (i.e., ensuring that output text utterances respect the se-

mantics of the input content). Since they can generate very fluent and natural text, deep learning-

based natural language generation models are a popular approach to this problem. However, they

often omit, misconstrue, or otherwise generate text that is not semantically correct given the input

content. In this section, we develop a data augmentation and self-training technique to mitigate this

problem. Additionally, we propose a training method for making deep learning-based natural lan-

guage generation models capable of following a content plan, allowing for more control over the

output utterances generated by the model. Under a stress test evaluation protocol, we demonstrate

some empirical limits on several neural natural language generation models’ ability to encode and

properly realize a content plan.

Finally, we conclude with some remarks on future directions for abstractive summarization

outside of the end-to-end deep learning paradigm. Our aim here is to suggest avenues for con-

structing abstractive summarization systems with transparent, controllable, and reliable behavior

when it comes to text understanding, compression, and generation. Our hope is that this thesis

inspires more research in this direction, and, ultimately, real tools that are broadly useful outside

of the natural language processing community.



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problems in Text-to-Text Generation . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2: Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Natural Language Generation in Antiquity . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Natural Language Generation from 1980–2000 . . . . . . . . . . . . . . . . . . . 19

2.3 The Emergence of Data Driven Extractive Summarization (2000–2014) . . . . . . 21

2.4 Neural Natural Language Generation Models (2014–Present) . . . . . . . . . . . . 23

Chapter 3: Salience Estimation with Deep Learning Content Selection Models . . . . . . . 28

3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

i



3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Word Embedding Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Sentence Encoder Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Sentence Extraction Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.4 Inference and Summary Generation . . . . . . . . . . . . . . . . . . . . . 57

3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Ground Truth Extract Summaries . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Ablation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 4: Salience Estimation with Structured Content Selection Models . . . . . . . . . 74

4.1 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 The Salience-biased Affinity Propagation (SAP) Summarizer . . . . . . . . . . . . 82

4.3.1 Summarization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.2 Salience Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.3 Affinity Propagation Clustering . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.4 Redundancy Filtering and Update Selection . . . . . . . . . . . . . . . . . 91

ii



4.3.5 TREC 2014 Experiments and Results . . . . . . . . . . . . . . . . . . . . 91

4.3.6 Automatic Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.8 Feature Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Learning-to-Search (L2S) Summarizer . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.1 Stream Summarization as Sequential Decision Making . . . . . . . . . . . 102

4.4.2 Policy-based Stream Summarization . . . . . . . . . . . . . . . . . . . . . 103

4.4.3 The Locally-Optimal Learning-to-Search Algorithm . . . . . . . . . . . . 105

4.4.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.5 Expanding Relevance Judgments . . . . . . . . . . . . . . . . . . . . . . . 111

4.4.6 TREC 2015 Experiments and Results . . . . . . . . . . . . . . . . . . . . 112

4.4.7 Automatic Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 5: Faithful and Controllable Generation . . . . . . . . . . . . . . . . . . . . . . . 121

5.1 Meaning Representations for Task-Oriented Dialogue Generation . . . . . . . . . . 126

5.1.1 Meaning Representation Structure . . . . . . . . . . . . . . . . . . . . . . 126

5.1.2 Relating Between Meaning Representations and Utterances . . . . . . . . . 130

5.2 Modeling Meaning Representation-to-Text Generation with Sequence-to-Sequence Ar-
chitectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.1 Sequence-to-Sequence Modeling . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

iii



5.2.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.4 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3 Faithful Generation Through Data-Augmentation: Noise-Injection Sampling and
Self-Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.1 An Idealized Data-Augmentation Protocol . . . . . . . . . . . . . . . . . . 146

5.3.2 Conditional Utterance Sampling for Data-Augmentation . . . . . . . . . . 147

5.3.3 A Practical Data-Augmentation Protocol . . . . . . . . . . . . . . . . . . . 150

5.3.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3.5 Text Generation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3.6 Meaning Representation Parsing Models . . . . . . . . . . . . . . . . . . . 158

5.3.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.3.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.3.9 Experiment Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3.10 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.4 Alignment Training for Controllable Generation . . . . . . . . . . . . . . . . . . . 171

5.4.1 Alignment Training Linearization . . . . . . . . . . . . . . . . . . . . . . 171

5.4.2 Phrase-based Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . 176

5.4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.4.4 Generation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.4.5 Utterance Planner Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

iv



5.4.9 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Chapter 6: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.1 Limitations and Open Problems for Abstractive Summarization Beyond End-to-
End Neural Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.2 Why not an end-to-end neural abstractive summarization model? . . . . . . . . . . 199

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Appendix A: GRU-based Sequence-to-Sequence Architecture . . . . . . . . . . . . . . . . 230

Appendix B: Transformer-based Sequence-to-Sequence Architecture . . . . . . . . . . . . 236

B.1 Transformer Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

B.2 Transformer Processing Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

B.3 The Transformer Encoder and Decoder Layers . . . . . . . . . . . . . . . . . . . . 242

v



List of Tables

3.1 Sizes of the training, validation, test splits for each dataset and the average number
of test set human reference summaries per document. . . . . . . . . . . . . . . . . 59

3.2 News domain METEOR (M) and ROUGE-2 recall (R-2) results across all extrac-
tor/encoder pairs. Results that are statistically indistinguishable from the best sys-
tem are shown in bold face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Non-news domain METEOR (M) and ROUGE-2 recall (R-2) results across all ex-
tractor/encoder pairs. Results that are statistically indistinguishable from the best
system are shown in bold face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 ROUGE-2 recall across sentence extractors when using fixed pretrained embed-
dings or when embeddings are fine-tuned (F.-T.) during training. In both cases em-
beddings are initialized with pretrained GloVe embeddings. All extractors use the
averaging sentence encoder. When both fine-tuned and fixed settings are bolded,
there is no signifcant performance difference. Difference in scores shown in paren-
thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 ROUGE-2 recall after removing nouns, verbs, adjectives/adverbs, and function
words. Ablations are performed using the averaging sentence encoder and the
RNN extractor. Bold indicates best performing system. † indicates significant dif-
ference with the non-ablated system. Difference in score from all words shown in
parenthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 ROUGE-2 recall using models trained on in-order and shuffled documents. Extrac-
tor uses the averaging sentence encoder. When both in-order and shuffled settings
are bolded, there is no signifcant performance difference. Difference in scores
shown in parenthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Example output of Seq2Seq extractor (left) and Cheng & Lapata Extractor (right).
This is a typical example, where only one sentence is different between the two
(shown in bold). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



4.1 TREC Temporal Summarization shared-task query events for the years 2013-2015.
All times are UTC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Official TREC 2014 Temporal Summarization shared-task results using manual
update/nugget matches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Model ROUGE performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Feature ablation ROUGE performance. † indicates statistically significant differ-
ence from full model at the U = .05 level. †† indicates statistically significant
difference from full model at the U = .01 level. . . . . . . . . . . . . . . . . . . . 100

4.5 Official TREC 2015 Temporal Summarization Task 1 results using manual up-
date/nugget matches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6 Official TREC 2015 Temporal Summarization Task 2 results using manual up-
date/nugget matches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7 Average system performance. L2S-FS and L2S-COS-FS runs are trained and
evaluated on first sentences only (like the COS system). Ranking is consistent with
unpenalized results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Word selection probabilities when using ancestral sampling, top-: sampling (for
: ∈ {5, 25, 50, 75, 100}), nucleus samplling (for ? ∈ {0.95, 0.96, 0.97, 0.98, 0.99}),
and noise-injection sampling (f = 2.0). . . . . . . . . . . . . . . . . . . . . . . . 151

5.2 Dataset statistics for noise-injection and self-training experiments. . . . . . . . . . 154

5.3 The dialogue acts and attributes for the E2E Challenge, Laptops, and TVs datasets. 155

5.4 Automatic quality metrics on the E2E test set. Baseline methods all rely on at least
partial delexicalization, puting our lexicalized models at a relative disadvantage. . . 163

5.5 Attribute realization errors on the E2E test set. The Slug model and our delexi-
calized models delexicalize the NAME and NEAR slots, thus making 0 errors on
these attributes. DANGNT and TUDA models perform complete delexicalization. 163

5.6 BLEU and automatic attribute error on the Laptops and TVs datasets. . . . . . . . . 165

5.7 Human correctness and quality judgments (%). Comparisons are better than (>),
equal to (=), and worse than (<) the baseline Slug model. (g) and (b) indicate
greedy and beam decoding respectively. . . . . . . . . . . . . . . . . . . . . . . . 166

vii



5.8 Human correctness and quality judgments (%). Comparisons are better than (>),
equal to (=), and worse than (<) the test set references. . . . . . . . . . . . . . . . 166

5.9 Words/sentences per utterance and mean D-Level score of model outputs on the
E2E dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.10 Dataset sizes (including data augmentation) after correcting the training and vali-
dation instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.11 Hyperparameter search space for biGRU and transformer architectures. . . . . . . . 182

5.12 Winning hyperparameter settings for biGRU models. L, LS, and WD indicate num-
ber of layers, label smoothing, and weight decay respectively. All models use un-
tied embeddings. Drop. indicates dropout (i.e. drop probability). . . . . . . . . . . 182

5.13 Winning hyperparameter settings for transformer models (trained from scratch). L
and LS indicate number of layers and label smoothing respectively. Drop. indicates
dropout (i.e. drop probability). All models trained with the Adam optimizir with
the learning rate schedule from Rush (2018) (factor=1, warmup=8000). . . . . . . 183

5.14 Hyperparameter search space for the neural utterance planner (NUP). . . . . . . . . 184

5.15 Winning hyperparameter options for the neural utterance planner (NUP) model. . . 184

5.16 Validation and test set Kendall’s g for BGUP and NUP models. . . . . . . . . . . . 185

5.17 E2E Challenge test set (B) BLEU, (R) ROUGE-L, SER, and OA. All numbers are
percents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.18 ViGGO test set (B) BLEU, (R) ROUGE-L, SER, and OA. All numbers are percents. 189

5.19 Random permutation stress test of AT models. . . . . . . . . . . . . . . . . . . . . 190

5.20 Human Evaluation results. Table shows the percent of times each model was
ranked 1 (best), 2, 3 (worst) in terms of naturalness and average rank. . . . . . . . . 191

viii



List of Figures

2.1 A zā’irjah from a 15th century Turkish manuscript of the Muqaddimah (top left),
its English translation from Rosenthal et al. (1958) (top right), and its lookup table
(bottom). Images taken from Link (2010). . . . . . . . . . . . . . . . . . . . . . . 16

2.2 (Left) A volvelle from Llull’s Ars Magnus and (right) Alberti’s cipher disk. . . . . 17

2.3 An illustration of the German word generator volvelle, Fünffacher Denckring der
Teutschen Sprache (1651) by Georg Philipp Harsdörffer. . . . . . . . . . . . . . . 18

2.4 A 1630 woodcut depicting Roger Bacon’s talking bronze head, a mischievious
talking autamata allegedly capable of answering any question. Image taken from
Hyman (2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Schematics for the averaging, recurrent neural network, and convolutional neural
network sentence encoders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Examples of zero padding with bigram (: = 2) and trigram (: = 3) features for a
sequence of length ;8 = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Schematic for the Cheng & Lapata sentence extractor. . . . . . . . . . . . . . . . . 41

3.4 SummaRunner contextual sentence embedding and document embeddings. . . . . . 44

3.5 SummaRunner iterative summary embeddings. . . . . . . . . . . . . . . . . . . . 46

3.6 Schematic of salience estimation in the SummaRunner extractor. . . . . . . . . . . 48

3.7 Schematic for the RNN sentence extractor. . . . . . . . . . . . . . . . . . . . . . . 50

3.8 Schematic for the encoder contextual sentence embeddings as computed in the
Seq2Seq sentence extractor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Schematic for the decoder contextual sentence embeddings as computed by the
Seq2Seq sentence extractor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ix



3.10 Attention layer, contextual sentence embedding, and salience estimation layer for
the Seq2Seq extractor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 The first four sentences from a DUC 2002 article (id: d061j-AP880911-0016) un-
der the different word class ablations. . . . . . . . . . . . . . . . . . . . . . . . . 68

3.12 Outputs from the word class ablated models when given the document as input
from Figure 3.11. Original document positions of the extracted sentences are
shown in parenthesis; sentences that are selected by multiple systems are high-
lighted in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 SAP summary excerpts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 System ROUGE-1 performance over time. . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Expected Gain and Comprehensiveness performance. . . . . . . . . . . . . . . . . 99

4.4 Search space for a stream of 5 sentences. Left branches skip the current sentence.
Right branches indicate extracting the current sentence as an update. The path
in green corresponds to one trajectory through this space consisting of extracting
sentence B1, then skipping sentences B2, . . . , B4 and extracting sentence B5. . . . . . 103

4.5 Example of computing costs of actions at G3 using roll-out policy 5 (>) . . . . . . . . 106

4.6 Excerpt of the L2S summary for the query boston marathon bombing generated
from an input document stream. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.7 Average system performance and average number of updates per event. Super-
scripts indicate significant improvements (? < 0.05) between the run and compet-
ing algorithms using the paired randomization test with the Bonferroni correction
for multiple comparisons (B: APSAL, 2: COS, ;: LS, 5 : LS-COS). . . . . . . . . . 117

4.8 Percent of errors made and total errors on test set. . . . . . . . . . . . . . . . . . . 119

5.1 Example meaning representations (left) and their reference utterances (right) from
the restaurant, video game, tv, and laptop domains. . . . . . . . . . . . . . . . . . 122

5.2 Examples of controllable generation. (a) A meaning representation of an Inform
dialogue act. (b) Three hypothetical utterance plans and their realizations for the
example dialogue act. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Examples of various attribute-value types paired with an example realization. . . . 128

x



5.4 Example training set errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5 PMI between near=Burger King and meaning representation size on the E2E Chal-
lenge dataset. 0 on the H-axis indicates the two variables are independent. . . . . . 143

5.6 PMI between various attribute-values and meaning representation size on the E2E
Challenge dataset. 0 on the H-axis indicates the two variables are independent. . . . 144

5.7 A comparison of greedy decoding, ancestral sampling, and noise injection sampling.149

5.8 Example samples taken after conditioning on the following meaning representa-
tion: [[INFORM; name=The Eagle; food=Italian; family_friendly=yes]]. . . . 150

5.9 PMI between various attribute-values and meaning representation size on the E2E
Challenge dataset (blue), synthetic dataset (dashed green), and their union (or-
ange). 0 on the H-axis indicates the two variables are independent. . . . . . . . . . 169

5.10 PMI between E2E Challenge attribute-values on the original training data (left) and
the union of the training and synthetic data (right). PMI between (−.25, .25) are
colored white and suggest relative independence between the two attribute-value
pairs. Color blocks on the G and H axis labels correspond to groups of values for
the same attribute. E.g., orange are all the values for the name attribute. . . . . . . 170

5.11 Example meaning representation/utterance pairs (`, y) and their alignment training
linearization c(`). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.12 Example steps of the alignment training linearization algorithm for producing a
linearized meaning representation x. . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.13 Example meaning representation linearization strategies for an utterance (lower
right) from the ViGGO training set. . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.14 Example training instances produced from the phrase-based data augmentation
protocol. The constituent parse is shown above. Numbered phrase nodes corre-
spond to the phrase examples created in the table below. . . . . . . . . . . . . . . . 177

A.1 Schematic of the bi-directional GRU-based sequence-to-sequence model. . . . . . 231

B.1 A schematic diagram of a two layer transformer-based sequence-to-sequence model.
Dashed lines indicate skip-connections. . . . . . . . . . . . . . . . . . . . . . . . 237

xi



Acknowledgements

I have been so incredibly lucky to have been helped by many amazing mentors and colleagues

during my time at Columbia. In particular, my advisor Kathy McKeown took a chance on me and

gave me many more years than I deserved to explore and learn, for which I am eternally grateful.

Fernando Diaz has also been a great intern advisor, mentor, musical collaborator, and someone

who talked me off many a proverbial ledge. Sasha Rush, who was my TA in NLP, has been an

amazing friend and mentor as well, giving me encouragement and advice throughout my entire

time at Columbia. Hal Daumé was always more generous with his time and advice than he needed

to be. Umut Özertem was a great intern advisor and kept looking out for me even after the summer

had passed.

I’d also like to acknowledge my friends in the NLP lab, department, and various reading groups

for all the discussions we have had over the years (my apologies if I forgot anyone): Emily Allaway,

Or Biran, Tuhin Chakrabarty, Chad DeChant, Tom Effland, Katy Gero, Chris Hidey, Jeff Jacobs,

Giannis Karamanolakis, Faisal Ladhak, Fei-Tzin Lee, Wei-Yun Ma, Jessica Ouyang, Yves Petinot,

Jonathan Reeve, Sara Rosenthal, Victor Soto, Karl Stratos, Kapil Thadani, and Elsbeth Turcan.

Finally, I’d like to acknowledge my wife, Alix, who has been unwavering in her support of this

journey, and more than anyone has uplifted me through the lows and celebrated the highs.

xii



Dedication

For Alix, my best friend, and true believer that I could ever teach robots to love.



Chapter 1: Introduction

CALIBAN

You taught me language, and my profit on ’t

Is I know how to curse. The red plague rid you

For learning me your language!

William Shakespeare, The Tempest (I.ii.362-364)

[PROMPT] Q: How many eyes does a horse have?

[GPT-3] A: 4. It has two eyes on the outside and two eyes on the inside.

GPT-3 (Brown et al., 2020), responding to a prompt by Shane (2020)

Somewhere out of the inky-black terminals and unseeable valleys of high-dimensional loss-

surfaces, an unexpectedly expressive capacity to generate natural language has emerged in con-

temporary models of machine learning. In particular, deep learning-based language models have

dramatically improved the overall quality of computer generated text, opening the doors to many

exciting applications like creative writing tools (Hugging Face, 2019; Samuel, 2019; Seabrook,

2019) and interactive fiction (Robertson, 2019). While these new natural language generation

(NLG) methods are quite powerful, they are in practice very difficult to control or constrain. This

is unfortunate as it limits responsible application to domains with high fault tolerance, like the

those mentioned above and other, essentially low stakes, human guided creative exploration tools.

It is unclear if such tools are ready for real deployments in crisis informatics (Starbird and Palen,

2013) or medicine (Gatt et al., 2009).
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This thesis is focused on a particular text-to-text generation problem, automatic summarization,

where the goal is to map a large input text to a much shorter summary text, and the research

presented aims to both understand and tame these machine learning dæmons, hopefully paving the

way for more reliable text-to-text generation algorithms. Somewhat against the prevailing trends,

we eschew end-to-end training of an abstractive summarization model, and instead break down

the text summarization problem into its constituent tasks. At a high level, we divide these tasks

into two categories: content selection, or “what to say” and content realization, or “how to say

it” (McKeown, 1985). Within these categories we propose models and learning algorithms for the

following problems:

• Content Selection

– Salience Estimation with Deep Learning Content Selection Models

– Salience Estimation with Structured Content Selection Models

• Content Realization

– Data Augmentation and Self-Training for Faithful Neural NLG Models

– Meaning Representation Linearization Strategies for Content Planning and Control-

lable Neural NLG Models

The first part, content selection, explores various issues around salience estimation; that is, pre-

dicting the importance of an arbitrary unit of text given some surrounding context (e.g., the larger

document that contains that text or a user query). In particular, we experiment with a variety of

popular and novel deep learning models for salience estimation, and design several ablation exper-

iments to gain some insight into which input signals are most important for making predictions.

Understanding these signals is critical for designing reliable summarization models.

We then consider a more difficult problem of estimating salience in a large document stream,

and propose two alternative approaches using classical machine learning techniques from unsuper-
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vised clustering and structured prediction. These models incorporate salience estimates into larger

text extraction algorithms that also consider redundancy and previous extraction decisions.

In part two, content realization, we assume content selection has already been performed and

focus on methods for faithful generation, i.e., ensuring that output text utterances respect the se-

mantics of the input content. Since they can generate very fluent and natural text, deep learning-

based NLG models are a popular approach to this problem. However, they often omit, misconstrue,

or otherwise generate text that is not semantically correct given the input content. In this section,

we develop a data augmentation and self-training technique to mitigate this problem. Additionally,

we propose a training method for making deep learning-based NLG models capable of following a

content plan, allowing for more control over the output utterance generated by the model. Finally,

under a stress test evaluation protocol, we demonstrate some empirical limits on several neural

NLG models’ ability to encode and properly realized a content plan.

It is important to note that the approaches in part two are implemented not for summarization,

but for solving task-oriented dialogue generation (Mairesse et al., 2010), where the problem is

one of modeling the response of a dialogue agent interacting with a human user. The input in this

setting is a formal meaning representation of both the communicative goal that the dialogue agent

is trying to achieve and the content that is to be realized. While this is technically a data-to-text and

not a text-to-text generation problem, the aims of faithful and controllable generation are relevant

to both problem classes. With data-to-text generation, however, we get an explicit representation of

meaning that makes it easier to measure progress in model faithfulness and control. We therefore

consider task-oriented dialogue generation as an idealized form of text-to-text generation, where

a content selection module has mapped input text units to a discrete meaning representation for

realizing the content. We anticipate that the development of summarization models on discrete

semantic representations (Falke et al., 2017; Liao et al., 2018) will continue and that our findings

in neural generation methods will carry over to the task of generating summaries from semantic

representations (Hardy and Vlachos, 2018). Possible methods of transferring these approaches to

the text-to-text regime will be discussed in the final chapter of this thesis.
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1.1 Problems in Text-to-Text Generation

Amongst the natural language processing (NLP) research community, machine learning, and

especially deep learning, has become the de facto methodological framework for solving text-to-

text generation problems. One need only to obtain a large collection of input-output texts, and

under this paradigm, the details of the particular generation task can be abstracted away. It is

sufficient to re-pose the generation problem as a one of optimization, for which a general purpose

neural network model can be trained such that it minimizes the relevant loss function, and in so

doing, learns a mapping from the input text to the output text (Sutskever et al., 2014; Bahdanau

et al., 2015; Rush et al., 2015; Nallapati et al., 2016; See et al., 2017).

That is to say, the deep learning framework de-emphasizes possessing an algorithmic solution

to a problem, and prefers instead a hands off approach: the algorithmic solution is implicit in the

dataset, so let the neural network, whose inductive bias is very different from that of the human

researcher, learn directly from the data the representations that are most useful to its satisfaction of

the optimization criteria.

The logical extension of this central dogma is that the best data is more data (Halevy et al.,

2009), and indeed, that is precisely what has happened. Large language model pre-training, where

a language model, typically using a transformer architecture (Vaswani et al., 2017), is trained in a

self-supervised way on web-scale text, has dramatically expanded the quality of natural language

utterances that can be generated by a computational model (Radford et al., 2019; Brown et al.,

2020), while also capturing the attention of the popular press (Simonite, 2019; Vincent, 2019). In

the NLP research community, pretrained sequence-to-sequence models, the family of deep learning

model most commonly used for text-to-text generation, like PEGASUS (Zhang et al., 2019a), T5

(Raffel et al., 2020), or BART (Lewis et al., 2020), have led to impressive gains in the fluency and

coherence of modestly-sized paragraphs, as well as automatic task metrics like BLEU (Papineni

et al., 2002) and ROUGE (Lin, 2004).

There are downsides to this approach however. By learning only from surface level forms, it is
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possible for the models to appear like they contain knowledge, but in reality, they are only modeling

the probability of word sequences (Bender and Koller, 2020). This can cause them to hallucinate

information not present in the input or imply propositions contrary to what was given (Wiseman

et al., 2017; Kryscinski et al., 2019; Maynez et al., 2020; Kryscinski et al., 2020). Without an

understanding of pragmatics, they cannot know how an argument or chain of propositions holds

together, only that they are statistically likely. Moreover, they will learn many implicit and harmful

biases of the society that produced the corpora they are trained on, including but not limited to

negative stereotypical word associations (Bolukbasi et al., 2016; Nissim et al., 2020) and outright

hate speech (Lee, 2016).

With all of that in mind, we would like this thesis to emphasize the importance of articulating

understandable steps or sub-tasks on the way to solving the larger summarization or generation

problems. While we do not abandon machine learning and deep learning, we instead show how

they may be used parsimoniously to solve the actual problems at hand and not simply learn the

dataset. Where we do use machine learning models, we try to design experiments which reveal

which signals relevant to the actual problem are being used to make predictions, and to establish

some empirical limitations on their ability to represent the input data and perform successfully.

We now describe some of the central problems of summarization and text-to-text generation

that we are interested in solving. In most summarization tasks, we are generally interested in a

text’s salience, that is to say, the general importance or relevance of a given text unit with respect

to its context. Salience is usually the primary dimension of the input data that we wish to measure

or predict for determining summary content.

In Chapter 3, we study salience estimation in the sentence extractive, single document sum-

marization task, where the goal is to classify which sentences in an input document should be

included in an extract summary. In this case, the input document is the context, and the units of

text for which we are estimating salience are the document sentences. An extractive summary

is a subset of sentences that have maximum salience while satisfying a length budget constraint,

typically in the summary word or byte length. While the constrained subset selection problem is
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interesting and has been studied previously (Goldstein and Carbonell, 1998; McDonald, 2007; Lin

and Bilmes, 2010), we focus on modeling the salience estimation task specifically.

We study a variety of popular and novel deep learning architectures for implementing the

salience prediction task. Our key contributions here are not only a model architecture, but also

our systematic study of the combination of sentence and context (i.e. document) level encoders as

well as the manipulation of the input documents to ablate which surface features are available to

a given model. Through these input data ablations, we can gain a better understanding of how the

salience prediction mechanism is working.

But what about more difficult summarization tasks? In Chapter 4, we study salience esti-

mation for query focused, streaming, sentence extractive summarization. In this task, we add a

search query and time as additional elements to the summarization problem. As input we are

given a time-ordered stream of news articles and a query, typically a notable real-world event,

e.g., “hurricane sandy”. Our objective is to extract sentences that are relevant to the query

event while minimally redundant to previously extracted sentences. Unlike the previous problem,

the salience of a given sentence is not constant but monotonically decreases as time progresses.

Due to the large volume of input texts, in attempting to model the salience of a sentence we must

now also model the redundancy between sentences and previous extraction decisions to perform

competently.

We incorporate a salience estimation model into two possible approaches to extracting query-

relevant summary sentences from the news stream. The first method uses the salience estimates

to bias an affinity propagation clustering algorithm (Dueck, 2009) to identify exemplar sentences

which we extract for the summary. The clustering algorithm must trade off representativeness

versus the salience of individual sentences when selecting exemplars, i.e. an exemplar must be a

good representative of its cluster but also be important under the salience estimator. This approach

works in hourly batches, predicting the salience of sentences, clustering them, and then adding the

exemplars to a rolling update summary. The salience estimates also adaptively control the number

of clusters produced, allowing the model to adapt the number of updates to fit the volume of salient
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sentences found in the stream.

The first method has several drawbacks. The summary selection is not done to optimize the

final summary evaluation measure and the predictions of salience are static and cannot take into

account previous decisions the summarizer has made. Additionally, the use of clustering means

that there will always be some latency between when important information is known and when

we can extract it for the summary. In domains like crisis informatics, minimizing these delays are

critical (Starbird and Palen, 2013).

To address these limitations, we recast stream summarization as a sequential decision-making

problem (Littman, 1996), where we learn a policy for extracting a sentence based on its estimated

salience as well as its relation to previously extracted sentences. The sequential decision-making

view opens our model up to exposure bias as the learned policy will suffer from a train-test distri-

bution mismatch if our reference policies are overly optimistic or pessimistic. To mitigate this, we

employ a learning-to-search style training regime (Chang et al., 2015) to train a policy to make lo-

cally optimal decisions when following either a noisy learned policy or an oracle reference policy.

The result is a fully online summarization model whose local decisions positively correlate with

good overall summary evaluation measures. Additionally, because the model is greedy, it does not

suffer as much from the negative effects of latency as the clustering model does.

In our experiments with single-document extractive summarization, we found that neural mod-

els heavily exploited position-based heuristics (i.e., did the sentence occur in the lead paragraph)

to determine sentence salience, which arguably does not capture the essence of the summarization

problem. In our work on stream summarization, we show that with careful feature and model de-

sign, we can capture salience beyond such heuristics. In particular, we show that content, location,

and redundancy features can be used to predict salience in this more challenging scenario.

In Chapter 5, we move to problems of content realization, after the content selection process

has been performed. Here we focus on the related goals of faithful and controllable generation

using neural NLG models. A neural NLG model is faithful if it can generate utterances that are

semantically correct with respect to the information extracted in the content selection stage. One
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of the central tensions in a neural NLG model is that between the encoder, which creates a repre-

sentation of the input, and the decoder, which is functionally a language model conditioned on the

encoder representation. The decoder language model must simultaneously place high probability

on output word sequences that are likely given the training corpus, but also prefer output word

sequences that are correlated with the encoder representation of the input sequence. This conflict

can lead to hallucinations as the language model may occasionally put more probability mass on a

sequence of words that is frequently observed in the training data, but not necessarily licensed by

a particular input.

We hypothesize that this failure mode happens in part because the decoder, by predicting next

word continuations, is both implicitly planning the layout of the utterance but also trying to satisfy

the constraints given by the input, and that alleviating the decoder language model of the planning

task may improve the faithfulness. We propose developing controllable neural NLG models, i.e.

models that can follow an explicit plan determining the surface realization order of the intended

utterance. Controllable models learn to represent the layout of the intended utterance implicitly

in their encoder, and thus the decoder language model has less flexibility in selecting the next

words, which can lower the chances of hallucinating text and improve the overall faithfulness of

the generation model.

We also believe that controllable generation has additional benefits beyond increased faithful-

ness. For one, it will enable more integration of neural NLG models into large NLG pipelines,

(Castro Ferreira et al., 2019). Controllable generation at the level of shallow phrase chunk or-

dering like we are proposing may also lead to implementations of cognitively plausible discourse

ordering theories like Centering Theory (Grosz et al., 1995) or Accessibility Theory (Ariel, 2001),

which place constraints on the discourse ordering of entities.

Evaluating the faithfulness of a language generation model for open-world summary genera-

tion tasks is non-trivial (Kryscinski et al., 2020; Maynez et al., 2020). In order to simplify things,

we study faithful and controllable generation in the context of task-oriented dialogue generation,

where, given an explicit representation of a dialogue agent’s belief state and goals, we must gen-
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erate an appropriate natural language utterance. Because the input is an explicit, formalized rep-

resentation of the meaning of the intended utterance, manual and even automatic checking of the

faithfulness of an utterance/meaning representation pair becomes much simpler. Since the concerns

of faithful and controllable generation are still incredibly important to generating summaries, we

consider the explicit meaning representations as an idealized version of summarization system’s

content selection stage. Faithfulness is critical for any real summarization application; the reader

has to be able to trust that content is correct or it is functionally useless. Controllable generation

will further increase reliability and faithfulness, while also allowing the tailoring of the summary

to focus on particular user needs, for example targeting generation to focus on a particular set of

entities.

For our contribution to faithful generation, we propose a novel data augmentation method

for sequence-to-sequence models. We observe that a popular sequence-to-sequence NLG model

trained on a task-oriented dialogue generation dataset produces fluent and natural utterances that

are unfortunately frequently semantically incorrect with respect to the input meaning representa-

tion. We then present evidence that the reason for these errors are spurious correlations between

the inputs and outputs in the training data. We also note that by injecting random noise into the

unfaithful NLG model we can cause it behave in an uncontrolled but useful manner: it generates

utterances that are not faithful to the input but do not exhibit the spurious correlations or exhibit

them to a lesser degree. We generate a synthetic corpus of these utterances, and then use another

semantic parsing model to give them correct meaning representations. Remarkably, sequence-

to-sequence models trained on the union of original training data and the synthetically generated

training examples exhibit increased faithfulness without hurting their fluency. We also find that in

the union dataset, the problematic spurious correlations are diminished.

While this data augmentation method helps reduce semantic errors, it leaves the surface real-

ization of utterances up to the decoder language model. Our second contribution to neural NLG

models is an alignment training method that reliably produces a model capable of following a

discourse ordering plan when generating utterances. Our method works by aligning the individual
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components of a meaning representation to their reference utterances on the training set. Given this

alignment, we then map a meaning representation into a linear sequence of tokens, such that the

order of the individual components corresponds to the realization order in the training reference.

Training an arbitrary sequence-to-sequence model to map this linearized meaning representation

to its reference utterance induces the ability to control the model at test time (i.e., we can use a

planning model to propose an ordering of the meaning representation’s sub-components, and the

controllable sequence-to-sequence model will attempt to realize them in that order). To achieve a

different ordering, one need only permute the input sequence.

In our experiments, we also evaluate how well models are able to follow adversarially gener-

ated plans that do not have human, English language ordering preferences and show that models

struggle to realize utterances correctly in this setting. We finally propose another data augmenta-

tion scheme to generate constituent phrase data that gives explicit examples of how phrases can be

composed into larger units and how that systematically changes the meaning representation. We

find that this additional data improves the robustness of the control behavior on these more difficult

to follow plans.

1.2 Contributions

We now briefly overview the contributions of this thesis.

1. We propose a systematic evaluation of deep learning models for extractive single document

summarizations (Kedzie et al., 2018). Our evaluation of several popular neural architectures

shows that:

• Position features, even when not explicitly represented in the model architecture, are a

dominant feature exploited by the model in news and research article summarization.

This arguably makes neural models of summarization on these domains a computation-

ally expensive way to identify the lead paragraph of an article.

• Content features exist across a variety of word classes (e.g., nouns) but are not as strong
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of a signal as position.

• Word embedding averaging is about as effective as recurrent or convolutional sentence

encoders. This suggests that current neural summarizaton models are not able to effec-

tively exploit sentence content beyond the notion of a bag-of-words.

• Autoregressive sentence extraction models (i.e., where prior sentence extraction deci-

sions are fed back into the model before making subsequent decisions) are as effective

as non-autoregressive sentence extraction models. This finding implies that at the point

of identifying salience, the existing models are not effectively able to exploit the docu-

ment level context.

2. In the task of query focused, sentence extractive, streaming news summarization, we propose

two models for providing extractive update summaries. (Kedzie et al., 2015, 2016)

• We show that in a setting where position or frequency heuristics are less reliable, we can

construct a sentence salience estimation model that effectively uses domain knowledge

to identify important content. Additionally, we can embed this salience model in a

clustering algorithm, such that sentence selection is done in a way that considers a

sentence’s salience as well as its representativeness when making extraction decisions.

This model is able to identify salient content in a more timely fashion as news comes

in than competing approaches.

• We then show how to learn a greedy sentence extraction policy that optimizes the com-

plete summarization task (as opposed to the previous approach which only learned

salience estimation). This policy combines information about sentence salience and

redundancy, as well as previous extraction decisions and it yields a high quality extract

summary, even while operating in a greedy manner. This method further improves on

the clusering approach in terms of identifying salience content with minimal latency.

In the area of data-to-text generation, we make the following contributions to faithful and

controllable generation of text from a meaning representation (Kedzie and McKeown, 2019, 2020).
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1. We propose a novel data augmentation technique called noise injection and self-training,

which allows us to create additional synthetic training examples for the meaning represen-

tation to text generation task. We show that the synthetic corpus created by this method,

does not possess some of the spurious correlations and dataset creation artifacts present in

the human authored training data. Neural NLG models trained on the union of original and

synthetic data are more faithful, (i.e., they generate utterances with fewer semantic errors,

than more computationally expensive models that rely on discriminative reranking to ensure

correctness).

2. We propose an encoder input linearization strategy for sequence-to-sequence NLG models

called alignment training. This technique yields neural NLG models that are controllable,

i.e., capable of following a discourse ordering plan. We demonstrate that this technique

works for both recurrent and transformer based sequence-to-sequence models trained from

scratch as well as when fine-tuning a large, pretrained sequence-to-sequence model. We also

perform extensive stress testing of the plan following behavior under adversarial conditions,

and propose a phrase-based data augmentation method to improve performance in this more

challenging setting.

Finally, we conclude with a discussion of the limitations and future directions this work might

take. In particular, we focus on how faithful generation might be applied to text-to-text summa-

rization.

1.3 Organization

This thesis is organized as follows. Chapter 2 gives a brief history of the field of NLG and

as well as related work in text-to-text generation and summarization. Chapter 3 and Chapter 4

focus on various salience estimation and content selection problems for text summarization with

a focus single document summarization and stream summarization respectvely. In Chapter 5,

we then discuss our proposed methods for faithful and controllable neural NLG models. Finally,
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limitations, future work, and concluding thoughts are presented in Chapter 6. While each chapter is

working towards the larger narrative and themes of this thesis, they can be read in a self contained

manner. To that end, Notational conventions are specific to each chapter and are introduced on a

per chapter basis.
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Chapter 2: Related Work

In this chapter we attempt to briefly characterize the history of NLG, with a focus on text sum-

marization as well as the development of neural NLG models since these topics are central to the

contributions of this thesis. While many bibliographies of the field might start their history of NLG

with the beginning of modern computer hardware (i.e., after the development of silicon transistors

and the growth of mainframe computing in the 1950s), we briefly highlight instances of algorith-

mic language generation starting in the middle ages through the early modern period, and how

they connect to notable figures in the broader history of computation. We proceed chronologically,

starting in antiquity, and then moving to the formulation of modern NLG in the period between

1980 and 2000. We then discuss the growth of data-driven method for text summarization between

2000 and 2014. We conclude with a description of the neural network, a.k.a. deep learning, revo-

lution that arguably began in 2014, and which has had a significant impact on NLP, but especially

NLG.

2.1 Natural Language Generation in Antiquity

The desire to build algorithms and machines that generate natural language has an exten-

sive history in both art and science, as well as spiritual practice, and especially soothsaying and

prognostication. One early account of a language generation algorithm comes from 14th century

historian ‘Abd ar-Rahmān ibn Khaldūn (1332 – 1406), who writes in his universal history, the

Muqaddimah (1377), of a circular prognostication and divining tool used by Sufi mystics called a

zā’irjah.1 Its practice is

“a branch of the science of letter magic, practiced among the authorities on letter

1Franz Rosenthal in his English translation of the Muqaddimah suggests the name is derived from the Persian
words zā’icha meaning “horoscope” or “astronomical table” and dā’ira meaning “circle.”
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magic, is the technique of finding out answers from questions by means of connections

existing between the letters of the expressions used in the question.”

Ibn Khaldūn points to an earlier treatise by the Sufi scholar Abu al-Abbas as-Sabti (1129 –

1204) of Marrakesh as a source of instructions for the device’s use, suggesting the practice is at

least as old at the 12th century (Rosenthal et al., 1958).

The zā’irjah itself consists of a series of concentric circles divided into 12 sections by six

chords. The various segments of the diagram are annotated with letters and numerals. Additionally,

the zā’irjah is accompanied by a lookup table mapping letters to numbers. See Figure 2.1 for an

example. According to painstaking reconstructions done by Link (2010), a “key poem” was used

to pose a question to the zā’irjah and serve as a mnemonic device/mapping of letters to entries in

the lookup table. A combination of rules and astronomical observations (antiquity’s equivalent of

a random seed) were then applied to the key poem to read off series of characters from the zā’irjah.

The operator would then interpret those letters into an answer. “The fact that only consonants

are written down in Semitic languages permits the meaningful interpretation of many random

permutations of symbols,” (Link, 2010) suggesting that cherry-picking outputs and over-ascribing

intelligence, knowledge, and even wisdom, to a language generation algorithm are as old as the

practice of NLG itself.

In a secondary account from a manuscript found at the library of Rabat in Morroco, it is written

that a skeptical ibn Khaldūn asked of the device how old it was, “[Is the] zā’irjah [a] recent or [an]

ancient science?” Allegedly he received the answer, “The Holy Spirit will depart, its secret having

been brought forth / To Idrı̄s, and through it, he ascended the highest summit,” connecting the

practice to the sage Idrı̄s who is one of the eldest ancestors in the Quranic tradition (Rosenthal

et al., 1958; Link, 2010).

The teachings of Arabic mystics, including the practice of zā’irjah, as well as the Kabbalis-

tic tradition embodied in the Sefer Yetzirah are known to have strongly influenced the Majorcan

Christian mystic, Ramon Llull (1232-1315) (Kahn, 1980; Link, 2010; Priani, 2017). Llull, who is

regarded as an early philosopher of combinatorics, logic, and computation (Bonner, 2007; Knuth,
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Figure 2.1: A zā’irjah from a 15th century Turkish manuscript of the Muqaddimah (top left), its
English translation from Rosenthal et al. (1958) (top right), and its lookup table (bottom). Images
taken from Link (2010).
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Figure 2.2: (Left) A volvelle from Llull’s Ars Magnus and (right) Alberti’s cipher disk.

2006; Priani, 2017), developed a computational system based on moveable concentric circles made

of paper and connected by string. The workings of these volvelle2 are described in his master

work, Ars Magna (1305). According to his system, concepts were assigned letters which were

manipulated to generate new statements involving the concepts, and he claimed could be used to

determine the truth of any proposition (Crupi, 2019). Llull’s work is also thought to have influ-

enced the polyalphabetic substitution cipher developed by Leon Battista Alberti (1404 – 1472) (see

Figure 2.2), the same core cryptographic technology used in the Enigma machine (Kahn, 1980).

Llull’s use of the volvelle as generative device was influential throughout medieval Europe,

where volvelle were used in both art and science. Arguably they reached their zenith in the baroque

works of Georg Philipp Harsdörffer (1607 – 1658). His master work volvelle, Fünffacher Denck-

ring der Teutschen Sprache (1651), consisted of five paper discs (depicted in Figure 2.3), and was

designed to model German word formation. It was also advertised as an aid in the production of

poems and other literary forms (Schäfer, 2006).

While computational devices before modern computing were limited in complexity by their

2The name volvelle comes from the Latin, literally “to turn.”
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Figure 2.3: An illustration of the German word generator volvelle, Fünffacher Denckring der
Teutschen Sprache (1651) by Georg Philipp Harsdörffer.
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Figure 2.4: A 1630 woodcut depicting Roger Bacon’s talking bronze head, a mischievious talking
autamata allegedly capable of answering any question. Image taken from Hyman (2016).

construction materials, chiefly paper, the dream of speaking automata was also alive in myth. See

for example Figure 2.4, in which a 17th century woodcut print depicts a talking head capable of

answering any question. This “brazen head” was allegedly built by the monk Roger Bacon, who

in addition to being an early philosopher of science and linguist, might also be considered the first

NLP engineer if folklore is true (Hyman, 2016; Hackett, 2020).

2.2 Natural Language Generation from 1980–2000

Returning to the present day, computer aided production of human language closely follows

the beginning of modern computing, starting with work on machine translation (MT) systems

developed in the 1950s and ’60s (Ornstein, 1955; , ALPAC; Hutchins, 2006). Early work on

producing extract summaries of research articles also dates back to this period (Luhn, 1958) as

well as also notable experiments in generating text purely from syntactic structures (Yngve, 1961).

However, NLG did not begin to coalesce as a distinct subfield until the 1980s which saw the

first workshops devoted specifically to NLG and a convergence on the formalisms and problems

central to language generation (Reiter and Dale, 1997; McDonald, 2010). NLG researchers of this
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period were focused on at least four main research programs: (i) linguistically motivated grammars

for generation, (ii) frameworks for representing knowledge and concepts, (iii) models of the human

receiver of the generated text, and (iv) models of discourse and control for planning the realization

of utterances (Mann et al., 1981; McKeown, 1986).

A variety of grammatical formalism were proposed during this period to be the syntactic back-

bone of language generation algorithms, including Functional Grammar (Halliday, 1985), Trans-

formational Grammar (Chomsky, 1965), Generalized Phrase Structure Grammar (Gazdar et al.,

1985), and others. Many frameworks for generation proliferated at this time (often incorporating

one of those grammar formalisms), including Knowledge and Modalities Planner (KAMP) (Ap-

pelt, 1982), Penman (Hovy, 1993), MUMBLE (McDonald, 1981), TEXT (McKeown, 1982) and

others (Mann et al., 1981). While there appears to be a great diversity of approaches, over time the

community began converging on a fairly similar pipeline of modules when it came it implementa-

tion (Reiter, 1994).

Indeed, most NLG systems from this period could be understood as a pipeline of modules

for text planning, sentence planning, and linguistic realization (Reiter and Dale, 1997). In the

text planning stage, the concepts to be conveyed are selected, possibly discarding less essential

information, and arranged into a discourse plan or ordering. In the sentence planning stage, the

concepts from the previous stage are grouped into individual sentences, and lexicalizing concepts

and referring expression generation is performed. Finally, in linguistic realization, the intermediate

representation from the sentence planning stage is converted into a natural language utterance,

often by linearizing and inflecting some syntactic/morphological representation.

Since these systems primarily generated language by starting from non-linguistic and/or se-

mantic representations of concepts, they are often referred to as concept-to-text generation or, as

more commonly known today, data-to-text generation (Gatt and Krahmer, 2018). These systems

were applied to a variety of data-to-text problems including weather forecast generation (Goldberg

et al., 1994), statistical report generation (i.e. generating a report from numerical or statistical data

in a spreadsheet) (Iordanskaja et al., 1992), or as a writing aid to improve the productivity of human
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authors (Springer et al., 1991; McKeown et al., 1994; Paris et al., 1995). Data-to-text generation

came to prominence alongside expert systems (Todd, 1992), including as a means to explain them

(Swartout, 1983). As such, these NLG systems suffer from some of the same drawbacks as expert

systems, often requiring extensive domain knowledge and manual rule or grammar engineering

which became difficult to maintain or amend over time.

In the late 1980s and into the 1990s, as larger text corpora became available and statistical

and/or machine learning techniques spread through the community, text-to-text generation (i.e.

methods of directly mapping unstructured text inputs to text outputs) increased in popularity. Text-

to-text generation is less defined by a specific generation task, method or unifying theory, but on

the use of large collections of example input/output text pairs.

Statistical machine translation (SMT) emerges from this period as the dominant success story

for machine learning applied to text-to-text generation problems. The availability of digitized

bilingual data made it possible to create parallel sentence translation corpora and apply statistical

word alignment and translation techniques (Gale and Church, 1993). The canonical IBM transla-

tion models were developed in this period (Brown et al., 1988, 1993). Statistical methods marked

a stark improvement over attempts at interlingua or semantics based translation systems which

often required significant manual effort in pre or post editing (Hutchins, 1994). There were even

some limited experiments using learned classifiers to predict sentence salience for summarization

(Kupiec et al., 1995).

2.3 The Emergence of Data Driven Extractive Summarization (2000–2014)

While the MT community could take advantage of large (for the time) parallel corpora, it was

not until the 2000s that there were readily available collections of documents and their summaries

for which to perform the kind of supervised machine learning that was being successfully applied

to MT. Beginning in 2001, the Document Understanding Conferences (DUC) began steadily pro-

ducing collections of documents with reference summaries, bringing together NLP researchers

particularly around multi-document summarization (Spärck Jones, 1999; Harman, 2001; Nenkova,
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2005).

Many significant summarization systems from this time still relied on unsupervised methods

to create extract summaries, usually exploiting document collection statistics to determine the

salience of input text units. The representation of text units as TF-IDF weighted bags-of-words

(Spärck Jones, 1972) is prevalent in this era. For example, Radev et al. (2000) identify salience

sentences in a document cluster by their similarity to the average TF-IDF vector of the document

cluster. In Erkan and Radev (2004), sentences are treated as vertices in a fully connected graph,

with edge weights determined by the cosine similarity between each sentence’s TF-IDF weighted

bag-of-words representation. The PageRank algorithm (Page et al., 1999) is then used to determine

the graph centrality of each sentence; the sentences most central in the graph are considered the

most salient and extracted for the summary.

Other methods used alternative formulations to exploit frequency for summarization, most no-

tably Lin and Hovy (2000) who identified topic signatures using a likelihood ratio test (Dunning,

1993) to identify terms that occurred unusually frequently in a document given a large generic

background corpus. After removing stopwords, word frequency on its own has also been shown to

be an effective signal for identifying salient sentences (Nenkova and Vanderwende, 2005).

Following on the initial research by Kupiec et al. (1995), other work using supervised learning

for summarization begins to emerge from this time (Conroy and O’Leary, 2001; Osborne, 2002;

Hirao et al., 2002; Sipos et al., 2012). Here, summarization is framed as a sentence classification

task (i.e., which sentences from the input document should be included in a summary).

Most of the text-to-text summarization approaches from the 2000s are primarily extractive

systems. While significantly constrained in their expressive quality (i.e. only sentences found in

the input can be used to construct the output) especially compared to earlier data-to-text methods,

designing data-driven features for unsupervised and supervised statistical machine learning proved

to be much more scalable and an easier path to improved summarization performance (Nenkova

and McKeown, 2011).

There are some notable works that attempted to perform limited abstractive summarization.
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Barzilay and McKeown (2005) developed an unsupervised method of sentence fusion (i.e., com-

bining sentences with the same or overlapping content using their syntactic parses as backbone

structure), that has been extended and refined by others (Marsi and Krahmer, 2005; Filippova and

Strube, 2008). Heuristically driven phrase deletions were also explored to reduce less salient infor-

mation in extractive summarization (Jing, 2000; Zajic et al., 2007). In the supervised case, there

were several works that attempted to learn to delete non-essential phrase constituents. This was

formulated as either a pipeline of learned compression and extraction models (Wang et al., 2013) or

as a joint model of extraction and compression (Martins and Smith, 2009; Berg-Kirkpatrick et al.,

2011). While sentence fusion was capable of some abstractive rewriting, the other approaches

mentioned here predominantly focused on compression, i.e. word or phrase deletion, to gener-

ate novel summary text, which is only one of the many ways that human abstractors perform the

summarization task (Jing and McKeown, 2000).

Streaming or temporal summarization was first explored in the context of topic detection and

tracking (Khandelwal et al., 2001; Allan et al., 2001) and more recently at the Text Retrieval

Conference (TREC) (Aslam et al., 2013). Approaches to this problem often perform filtering by

estimated salience before relying on multi-document summarization techniques to select text units

to construct rolling update summaries (Guo et al., 2013; McCreadie et al., 2014). These pipelines

while effective, do not attempt to jointly optimize the salience and selection.

2.4 Neural Natural Language Generation Models (2014–Present)

While feed-forward neural networks had been used previously as part of phrased-based SMT

systems (Schwenk et al., 2006), there was an increased interest in the early-mid 2010s around using

recurrent neural network (RNN) language models (Mikolov et al., 2010) as a rescoring method for

an SMT decoder (Auli et al., 2013; Cho et al., 2014). RNNs could exploit (in theory) unbounded

source and target prefix information that was difficult to capture in ngram or feed-forward models.

Cho et al. (2014) is particularly notable because they propose separate encoder/decoder RNNs, and

while intended for rescoring and not generation directly, this general architecture constitutes the
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“sequence-to-sequence” backbone of most neural MT (NMT) and neural NLG models.

Shortly thereafter, Sutskever et al. (2014) proposed the now ubiquitous sequence-to-sequence

model to perform translation directly. Bahdanau et al. (2015) also proposed a sequence-to-sequence

model with an attention mechanism, which both made optimization easier (error feedback, i.e.,

gradients, could now be routed directly from any decoder word prediction step to any arbitrarily

distant timesteps in the encoder) and allowed for visualization of the NMT decoder’s alignment

with the encoder. NMT models, while conceptually simpler than phrase-based SMT, were starting

to achieve state-of-the-art results (Bojar et al., 2016) and wide-spread industry adoption (Wu et al.,

2016; Gehring et al., 2017). It did not take long for researchers to adapt the sequence-to-sequence

model to other language generation problems, e.g. generating captions from images (Vinyals et al.,

2015), sports summaries for box scores Lebret et al. (2016); Wiseman et al. (2017), or from se-

mantic representations (Wen et al., 2015; Dušek and Jurčíček, 2016).

The introduction of the CNN-DailyMail corpus by Hermann et al. (2015) allowed for the ap-

plication of large-scale training of deep learning models for summarization. In sentence extractive

summarization, researchers proposed a variety of hierarchical models with distinct sentence and

document level encoder networks that enabled sequential prediction of which sentences or words

should be included in the summary (Cheng and Lapata, 2016; Nallapati et al., 2017).

Perhaps more exciting was the surge in abstractive summary generation. Rush et al. (2015)

developed an attention-based deep learning model capable of generating headlines from the lead

sentence of an article. Subsequently, Nallapati et al. (2016) showed that a sequence-to-sequence

model could encode a whole news article and then generate an abstractive summary word by word.

Additionally, the line between extractive and abstractive summarization was blurred by the addition

of learned copy-mechanisms which could selectively transfer named entities and other out-of-

vocabulary terms into the output summary, further improving summary quality (See et al., 2017).

Historically, the field of NLG has relied heavily on grammars and templates to generate text.

The fact that neural models could yield reasonably fluent and acceptable summaries given so little

pre-specified structure or features is truly impressive. Interestingly, term frequency, was not ex-
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plicitly represented in either the neural extractive or abstractive summarization models, begging

the question as to how they were learning to identify salient content.

Model architecture continued to evolve and in 2017, Vaswani et al. proposed a recurrence-free

neural sequence model, built around so-called transformer layers, which rely on multiple parallel

self- and context-attention mechanisms. This model was designed with optimization speed in mind,

and was subsequently used in large scale language model pretraining on web-scale text, spawning

the BERT-family of models (Devlin et al., 2019). Large language model pre-training with task-

specific fine-tuning became a dominant paradigm in NLP with BERT and its descendants setting

records on many downstream text prediction tasks (Ruder et al., 2019).

The transformer layer was also used in the generative pre-training (GPT)-family of models

(Radford et al., 2018), which was also trained on web-scale data, but with an auto-regressive lan-

guage modeling objective. The second generation of these models, GPT-2 (Radford et al., 2019),

received notoriety both amongst NLP researchers but also the wider public, as its release was ini-

tially delayed given “ethical concerns” about releasing such a powerful language generation model

(Vincent, 2019; Seabrook, 2019). GPT-2 exhibited impressive completions of prompt texts, and

could be used to generate natural looking paragraphs on arbitrary topics, with longer spans of fluent

text than previously thought possible.

GPT-2 could also be fine-tuned to perform task specific conditional generation (Ziegler et al.,

2019; Golovanov et al., 2019), however, its architecture was that of a neural language model with-

out distinct encoder/decoder networks; conditional generation was achieved by encoding prob-

lem instances as prompts to be continued. Proper sequence-to-sequence variants of the large,

transformer-based language model were subsequently developed using various sequence-level de-

noising autoencoder objectives (Zhang et al., 2019a; Raffel et al., 2020; Lewis et al., 2020). The

intention of such models was that they could be fine-tuned for more task-specific sequence-to-

sequence problems like summarization, translation, or even arbitrary data-to-text tasks like dia-

logue generation.

While these models were producing text at a level of quality that had not previously been
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realized with traditional NLG approaches, a closer examination of model outputs revealed glaring

flaws in the semantic correctness of the generated text (Kryscinski et al., 2019, 2020; Maynez et al.,

2020). Dušek et al. (2020) found that the quality of neural NLG models can vary significantly,

with relatively similar architectures yielding both poor and competitive performance with respect

to the semantic correctness of model outputs. In practice most competitive neural NLG models

use a variety of beam reranking techniques to improve output faithfulness to the inputs (Dušek and

Jurčíček, 2016; Juraska et al., 2018; Wen et al., 2015), as well as copy and coverage mechanisms

to improve the recall (See et al., 2017; Elder et al., 2018).

NLG researchers have also begun to explore the degree to which neural models can be con-

strained to follow discourse plans or other structured objects. Nayak et al. (2017) and Reed et al.

(2018) explore several ways of incorporating shallow sentence planning into dialogue generation

via the grouping of input sequences into distinct subsequences or by inserting discourse variable

tokens into the encoder input sequences to indicate contrasts, comparisons, or other groupings.

Balakrishnan et al. (2019) experiment both with tree structured input meaning representations and

encoders and compare them to linearized trees with standard sequence-to-sequence models. While

these papers find that neural NLG models can consistently follow these discourse ordering con-

straints, they do not systematically explore how other linearization strategies compare in terms

of faithfulness, and they do not evaluate the degree to which a sequence-to-sequence model can

follow realization orders not drawn from the training distribution.

Castro Ferreira et al. (2017) compare a neural NLG model using various linearizations of ab-

stract meaning representation (AMR) graphs, including a model-based alignment very similar to

the alignment-training linearization presented in this work. However, they evaluate only on au-

tomatic quality measures and do not explicitly measure the semantic correctness of the generated

text or the degree to which the model realizes the text in the order implied by the linearized input.

Works like Moryossef et al. (2019a,b) and Castro Ferreira et al. (2019) show that treating

various planning tasks as separate components in a pipeline, where the components themselves

are implemented with neural models, improves the overall quality and semantic correctness of
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generated utterances relative to a completely end-to-end neural NLG model. However, they do not

test the “systematicity” of the neural generation components, i.e. the ability to perform correctly

when given an arbitrary or random input from the preceding component, as we do here with the

random permutation stress test.

Many papers mention input linearization order anecdotally but do not quantify its impact. For

example, Juraska et al. (2018) experiment with random linearization orderings during develop-

ment, but do not use them in the final model or report results using them, and Gehrmann et al.

(2018) report that using a consistent linearization strategy worked best for their models but do

not specify the exact order. Juraska et al. (2018) also used sentence level data augmentation, i.e.

splitting a multi-sentence example in multiple single sentence examples, similar in spirit to our

proposed phrase based method, but they do not evaluate its effect independently. Wiseman et al.

(2018) uses an order invariant encoder to produce a latent plan which guides the decoder. Ignoring

the encoder and specifying a latent plan would allow for some control over realization order but

the degree to which arbitrary realization orders can be achieved is under explored. Additionally,

it is not guaranteed that latent plan states uniquely correspond to different meaning representation

components.
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Chapter 3: Salience Estimation with Deep Learning Content Selection

Models

Salience estimation, that is, the prediction of the importance or relevance of a unit of text, is

a critical step for any text summarization algorithm (Nenkova and McKeown, 2011). Since the

size of the desired output summary is constrained to be much smaller than the original document

or documents being summarized, it is necessary to prioritize some information over others when

deciding the content of the summary. Estimating the salience of various units of text (i.e., words,

phrases, sentences, etc.) enables summarization algorithms to perform this prioritization.

There is no universally agreed upon definition of salience, so its estimation starts on rather

shaky epistemological ground. What is most salient will vary significantly from reader to reader,

and depend largely on their particular information need and/or prior knowledge (Spärck Jones,

1999). In this chapter, we focus on a supervised learning scenario, where the training corpus

consists of a single document paired with a human reference abstract summary prepared by a

domain expert. In this setting, we can rely on a data-driven definition of salience; information

that the domain expert has put in the summary is most salient. By matching units of text in the

input document to corresponding text units in the summary, we label the document text units with

a binary judgement of salience (see §3.3.1 for details).

If we set the basic unit of text to be a single sentence and we obtain binary salience judgements

in the manner described above, we can model sentence extractive single document summarization

as a sequence labeling task (Conroy and O’Leary, 2001). In this formulation, a document is a se-

quence of sentences, and the task objective is to predict the salience judgment for each sentence. In

the simplest of settings, the actual extract summary can be formed by concatenating the sentences

labeled as salient.
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We refer to the probability of a sentence being labeled as salient as the salience estimate. His-

torically, most machine learning based methods for salience estimation have use feature-based rep-

resentations of text units to make salience estimates. Typically, these features make use of word

level frequency data (Nenkova and Vanderwende, 2005), information theoretic notions of surprise

or topicality (Lin and Hovy, 2000; Daumé III and Marcu, 2006; Louis and Nenkova, 2013; Louis,

2014), as well as position based features (e.g., is the unit of text in the beginning, middle, or end

of the document?) (Kupiec et al., 1995; Radev et al., 2000; Conroy and O’Leary, 2001), which are

often correlated with human judgements of salience (Nenkova, 2005).

The field of summarization has undergone a revolution driven by the recent popularization of

deep learning based models in NLP. Deep learning models have demonstrated empirical successes,

achieving state-of-the-art performance in both extractive (Cheng and Lapata, 2016; Nallapati et al.,

2017) and abstractive summarization settings (Nallapati et al., 2016; See et al., 2017; Zhang et al.,

2019a). Deep learning models also naturally allow for learning hierarchical representations of

word, sentence, and document level contexts when performing end-to-end training on the summa-

rization task. However, exactly what kind of information is captured in these representations and

how that information affects downstream salience estimation has not been experimentally verified.

In this chapter, we systematically compare several supervised deep learning models of sentence

extractive single document summarization. As in prior work, we model a document hierarchically:

a document is a sequence of sentences and a sentence is a sequence of words. Each summarization

model consists of three layers or modules:

1. The word embedding layer, which maps sequences of words to sequences of fixed dimen-

sional embeddings.

2. The sentence encoder layer, which maps sequences of word embeddings to a sentence em-

bedding.

3. The sentence extractor layer, which maps sequences of sentence embeddings to a sequence

of salience judgements.
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We systematically compare three different architectures for the sentence encoder and four dif-

ferent sentence extractor architectures. Additionally, we also measure the effect of using fixed

pretrained embeddings versus fine-tuning embeddings while training the rest the of model. Var-

ious configurations of encoder and extractor modules correspond to both prior work by Cheng

and Lapata (2016) or Nallapati et al. (2017) as well as novel summarization models. While prior

works have primarily used autoregressive sentence extractor architectures, we propose two non-

autoregressive sentence extractors. We evaluate these models across a range of domains including

large and small news domains, as well as personal stories, meetings, and medical research articles.

Additionally, we systematically ablate the inputs to models during training to better understand

what surface level features are being used to make predictions. Words are tagged with a part of

speech tagger and different word classes are replaced with special unknown tokens. We can then

compare performance of the summarization model with and without access to specific classes of

word features (e.g., nouns or verbs). To ablate the implicit effects of sentence position, we compare

models trained on the original document to the same model trained on documents with shuffled

sentence order. By removing content and position features, we can see their relative impact in

the decrease in ROUGE scores on the test set. Moreover, these ablations give us a more intuitive

understanding of how models will behave in novel environments. For example, if we know position

is an important feature for a model, using it on data that is not position biased will likely result in

poor performance.

Our main results reveal:

1. Sentence position bias dominates the learning signal for news summarization, though not for

other domains. Summary quality for news is only slightly degraded when content words are

omitted from sentence embeddings.

2. Word embedding averaging is as good or better than either recurrent or convolutional en-

coders for sentence embeddings across all domains.

3. Pre-trained word embeddings are as good, or better than, learned embeddings in five of six
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datasets.

4. Non auto-regressive sentence extraction performs as good or better than auto-regressive ex-

traction in all domains.

Taken together, these and other results in the paper suggest that we are over-estimating the abil-

ity of deep learning models to learn robust and meaningful content features for summarization. In

one sense, this might lessen the burden of applying neural network models of content to other do-

mains; one really just needs in-domain word embeddings. However, if we want to learn something

other than where the start of the article is, we will need to design other means of sentence rep-

resentation, and possibly external knowledge representations, better suited to the summarization

task.

3.1 Problem Definition

We now formally define the sentence extractive, single document summarization task as a

sequence tagging problem, following Conroy and O’Leary (2001). Let a document G ∈ X be a

sequence of = sentences,

G = [B1, B2, . . . , B=] .

Sentences are themselves sequences of words,

B8 =
[
F8,1, F8,2, . . . , F8,;8

]
,

where ;8 ∈ N is the length of sentence B8 in words. The words themselves are drawn from a finite

vocabularyV.

The binary salience of a sentence B8 is H8 ∈ {0, 1}. H8 = 1 indicates that sentence B8 is salient and

should be included in the extract summary while H8 = 0 is assigned to non-salient sentences that

should be excluded from the summary. We indicate the vector of salience judgements for the =

sentences in G as y = [H1, . . . , H=] ∈ Y. The objective of this sequence tagging problem is to learn
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a function 5 : X → Y which maps a document G to a sequence of salience labels y. In this work,

we learn a probabilistic mapping %(y |G; \) where % is a neural network with parameters \ and

%(·|G; \) : Y → (0, 1).

Prediction is achieved by finding ŷ = arg maxy∈Y %(y |G; \), either by approximation or when

the structure of % allows, exactly. Additionally, a typical constraint on summarization is that the

extract summary not exceed a word budget 2 ∈ N, that is,
∑=
8=1 Ĥ8 · ;8 ≤ 2. Since it is not trivial

to incorporate this constraint into the sequence labeling formulation, we instead rely on a greedy

heuristic to enforce the budget constraint in practice. More details on test time inference can be

found in §3.2.4.

3.2 Models

We implement our salience estimation model %(y |G; \) hierarchically following the analogous

structure of the documents we are modeling. Every model % proposed in this chapter consists of

three modules or layers: (i) the word embedding layer, (ii) the sentence encoder layer, and (iii) the

sentence extractor layer. The word embedding layer maps the words in a sentence to a sequence of

word embeddings. The sentence encoder layer similarly maps sequences of word embeddings to

a sentence embedding. Finally, the sentence extractor maps sequences of sentence embeddings to

sequence of salience labels.

Choosing an architecture for each of the modules defines the model. We define several archi-

tectures for the sentence encoder and extractor layers and show how particular settings of each

correspond to prior summarization models proposed by Cheng and Lapata (2016) and Nallapati

et al. (2017). Additionally, we propose two novel sentence extractor layers, and in experiments

consider all combinations of sentence encoder/extractor pairings. In the next subsections, we de-

scribe each layer in more detail, and conclude this section showing how certain configurations of

each layer maps to previously proposed or novel salience estimation models and how the models

generate an extract summary at test time (which we refer to as inference).
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3.2.1 Word Embedding Layer

The word embedding layer, Emb(· ;�) : V∗ → R∗×�F , maps a sequence of words

B8 =
[
F8,1, . . . , F8,;8

]
to a sequence of word embeddings

V8 =
[
v8,1, . . . , v8,;8

]
∈ R;8×�F

where the sole parameter � ∈ R|V|×�F is a �F-dimensional embedding matrix and v8, 9 = �F8, 9 is

the word embedding for word F8, 9 . � is initialized prior to training the full model with embeddings

obtained using the unsupervised Global Vector (GloVe) embedding method on a large collection

of text (Pennington et al., 2014). Additionally, � can be held fixed during training or updated with

other model parameters. We use �F = 200-dimensional embeddings in our models.

3.2.2 Sentence Encoder Layer

The sentence encoder layer, SentEnc(· ; b) : R∗×�F → R�B , maps a sequence of word embed-

dings

V8 =
[
v8,1, . . . , v8,;8

]
to a �B-dimensional embedding representation of sentence B8. The set of associated parameters,

b, depends on the exact architecture for implementing the encoder. We experiment with three

architectures for mapping sequences of word embeddings to a fixed length vector: averaging,

recurrent neural networks, and convolutional neural networks.

We describe each variant now, and also briefly discuss the trade-offs associated with each ar-

chitecture. The main distinction amongst the encoders is to how they can exploit the context and

structure of the words they are encoding. With the averaging encoder, the resulting sentence em-

bedding captures all words equally, but is insensitive to phrase structure phenomenon like negation.
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(a) Averaging Sentence Encoder

h8

v8,1 v8,2 v8,3 v8,4 v8,5 v8,6 v8,7 v8,8V8 = [ ]

(b) Recurrent Neural Network Sentence Encoder

v8,1 v8,2 v8,3 v8,4 v8,5 v8,6 v8,7 v8,8V8 = [ ]

←−h 8,1
←−h 8,2

←−h 8,3
←−h 8,4

←−h 8,5
←−h 8,6

←−h 8,7
←−h 8,8

−→h 8,1
−→h 8,2

−→h 8,3
−→h 8,4

−→h 8,5
−→h 8,6

−→h 8,7
−→h 8,8

h8

−→h 8,8 = GRU(v8,8,
−→h 8,7;−→i )←−h 8,1 = GRU(v8,1,

←−h 8,2;←−i )

(c) Convolutional Neural Network Sentence Encoder

Convolutional
Feature Detectors

v8,1
v8,2
v8,3
v8,4
v8,5
v8,6
v8,7
v8,8

V8
ReLU

(
V(1) + 4(1)ᵀv8,8

) max 9 ReLU
(
V (1) + 4 (1)ᵀv8, 9

)
Max Pooling

ReLU
(
V(2) + 4(2)ᵀ

[
v8,1
v8,2

] )
max 9 ReLU

(
V (2) + 4 (2)ᵀ

[
v8, 9
v8, 9+1

] )
h8

Figure 3.1: Schematics for the averaging, recurrent neural network, and convolutional neural net-
work sentence encoders.
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The convolutional encoder can capture local phrase structure but may not be able to capture long

range phrase structure. The recurrent encoder can capture long range phrase structure and context

but is computationally more expensive than the recurrent encoder. Schematics of each encoder

architecture can be found in Figure 3.1.

3.2.2.1 Averaging Sentence Encoder

Under the averaging encoder, a sentence embedding h8 ∈ R�B is simply the average of its word

embeddings,

h8 = SentEnc(V8; b) =
1
;8

;8∑
9=1

v8, 9 . (3.1)

The sentence representation here is effectively a bag of word embeddings. There are no parameters

associated with this encoder (i.e. b = ∅). The size of the sentence embedding is simply �B = �F =

200. Dropout with drop probability 0.25 is applied to each word embedding v8, 9 during training.

3.2.2.2 Recurrent Neural Network Sentence Encoder

When using the recurrent neural network encoder we apply both forward and backward re-

current neural networks over the word embedding sequences produced by the embedding layer.

To obtain the actual sentence embedding, we concatenate the final output step of the forward and

backward networks. For the actual recurrence function, we use the gated recurrent unit (GRU)
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(Cho et al., 2014). The GRU function, GRU(·, ·; i) : R�F × R�ℎ → R�ℎ , is defined as

GRU(v, h; i) = (1 − u) � o + u � h (3.2)

(Reset gate)

r = f
(
W(EA)v + b(EA) +W(ℎA)h + b(ℎA)

)
(3.3)

(Update gate)

u = f
(
W(ED)v + b(ED) +W(ℎD)h + b(ℎD)

)
(3.4)

(Candidate state)

o = tanh
(
W(E>)v + b(E>) + r �

(
W(ℎ>)h + b(ℎ>)

))
(3.5)

where i =

{
W(01) , b(01)

���0 ∈ {E, ℎ}, 1 ∈ {A, D, >}} is the set of GRU parameters with W(E·) ∈

R�ℎ×�F , W(ℎ·) ∈ R�ℎ×�ℎ , and b(·) ∈ R�ℎ , and f(G) = 1
1+4−G , tanh(G) = 4G−1

4G+1 , and � is the

Hadamard product.

Under the recurrent neural network encoder, a sentence embedding h8 is then defined as

h8 = SentEnc
(
V8; b

)
=


−→h 8,;8

←−h 8,1

 (3.6)

(Forward GRU)

−→h 8,0 = 0, (3.7)

−→h 8, 9 = GRU(v8, 9 ,
−→h 8, 9−1;−→i ) ∀ 9 ∈ {1, . . . , ;8} (3.8)

(Backward GRU)

←−h 8,;8+1 = 0, (3.9)

←−h 8, 9 = GRU(v8, 9 ,
←−h 8, 9+1;←−i ) ∀ 9 ∈ {;8, . . . , 1} (3.10)

where [· · · ] is the vector concatenation operator and −→i and ←−i are distinct parameters for the

forward and backward GRUs respectively. Collectively the set of parameters for the recurrent
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neural network sentence encoder is b =
{−→i ,←−i }

. We use �ℎ = 300 dimensional hidden layers

for each GRU, making the size of the sentence embedding �B = 2�ℎ = 600. Dropout with drop

probability 0.25 is applied to GRU outputs
−→h 8, 9 and

←−h 8, 9 for 9 ∈ {1, . . . , ;8} during training.

3.2.2.3 Convolutional Neural Network Sentence Encoder

The convolutional neural network sentence encoder uses a series of convolutional feature maps

to encode each sentence. This encoder is similar to the convolutional architecture of Kim (2014)

used for text classification tasks. It performs a series of “one-dimensional” convolutions over word

embeddings. The kernel width : ∈ N of a feature map determines the number of contiguous words

that a feature map is sensitive to. For : = 3, for example, the feature map would function as a

trigram feature detector essentially. We denote a single convolutional feature map of kernel width

: as 5: : R∗×�F → R with

5: (v8; h, V) = max
9∈{1−b :2 c ,...,;8+b :2 c−:+1}

ReLU

©­­­­­­­­«
V + 4 ·



v8, 9

v8, 9+1
...

v8, 9+:−1



ª®®®®®®®®¬
, (3.11)

where ReLU(G) = max(0, G) is the rectified linear unit (Nair and Hinton, 2010), b·c is the floor op-

erator, and 4 ∈ R:�F and V ∈ R are learned parameters. Note that we use a “zero-padded” convolu-

tion (Dumoulin and Visin, 2016). That is, the max operator ranges over 9 ∈
{
1 −

⌊
:
2
⌋
, . . . , ;8 +

⌊
:
2
⌋
− : + 1

}
instead of {1, . . . , ;8 − : + 1}, and v8, 9 = 0 for 9 < 1 and 9 > ;8. Padded convolutions help alleviate

the problem of reduced receptive fields on the boundaries of the sequence. See Figure 3.2 for a

visual example.

The final sentence embedding h8 is a concatenation of many convolutional feature maps ranging

over multiple kernel widths with each filter having its own distinct sets of parameters. Let K =

{:1, . . . , :<} ⊂ N be the set of the sentence encoder’s < kernel widths, and �: ∈ N be the number

of feature maps for kernel width : . The final sentence embedding produced by the convolutional
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Figure 3.2: Examples of zero padding with bigram (: = 2) and trigram (: = 3) features for a
sequence of length ;8 = 4.

neural network sentence encoder is defined as

h8 = SentEnc(v8; b) =
[
5
(1)
:1
, . . . , 5

(�:1)
:1

, 5
(1)
:2
, . . . , 5

(�:2)
:2

, . . . , 5
(1)
:<
, . . . , 5

(�:<)
:<

]
(3.12)

where 5
( 9)
:

= 5
( 9)
:
(V8; 4( 9 ,:) , V( 9 ,:)) and b =

{
4(:,;) , V(:,;)

���∀:, ; : : ∈ K, ; ∈ {1, . . . , �: }
}

are the

sentence encoder’s learned parameters. In our instantiation, we use kernel widths K = {1, . . . , 6}

with corresponding feature maps sizes �1 = 25, �2 = 25, �3 = 50, �4 = 50, �5 = 50, and

�6 = 50, making the resulting sentence embedding dimensionality �B = 250. Dropout with drop

probability 0.25 is also applied to h8 during training.

3.2.2.4 Sentence Encoder Trade-offs

The sentence encoder’s role is to obtain a vector representation of a finite sequence of word

embeddings that is useful for the sentence extraction stage. Therefore, it must aggregate features

in the word embedding space that are predictive of salience. Averaging embeddings is not an

unreasonable approach to this. Empirically there is evidence that word embedding averaging is a

fairly competitive sentence representation generally (Iyyer et al., 2015; Wieting et al., 2016; Arora
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et al., 2017; Wieting and Gimpel, 2017). In the context of summarization, averaging can be thought

of as a noisy OR; if any of the words in a sentence are indicative of salience, this representation

should capture them. Computationally, the averaging encoder is the fastest to compute and does

not require learning of parameters, reducing the memory and computation time during training.

The recurrent neural network sentence encoder can in theory capture some compositional fea-

tures of a word sequence that would be difficult or impossible to represent in the averaging encoder

(e.g. negation or co-reference). However, this comes at a much heavier computational cost, as re-

current neural networks cannot be fully parallelized due to the inherently sequential nature of their

computation.

The convolutional neural network encoder represents a middle ground between the averaging

and recurrent neural network encoders. When using modestly sized kernel widths (e.g., 1-5), the

receptive window should be sensitive short phrases and some locally scoped negation. It will not

be able to capture the longer ranged dependencies that the recurrent neural network encoder would.

However, it is much faster to compute than the recurrent neural network as the individual feature

maps can be computed completely in parallel.

3.2.3 Sentence Extraction Layer

The role of the sentence extractor, SentExt(·; j) : R∗×�B → Y, is to map a sequence of

sentence embeddings h1, . . . , h= produced by the sentence encoder layer to a sequence of salience

judgements

y = [H1, . . . , H=] .

The proposed sentence extractors do this by first implementing a probability distribution over

salience label sequences conditioned on h1, . . . , h=, %(y |h1, . . . , h=; j), and then inferring the (ap-

proximate) maximum likelihood sequence, i.e.,

SentExt(h1, . . . , h=; j) = ŷ ≈ arg max
y∈Y

%(y |h1, . . . , h=; j).
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Previous neural network approaches to sentence extraction have assumed an autoregressive model,

leading to the following factorization of the salience label distribution

%(H1, . . . , H= |h1, . . . , h=; j) =
=∏
8=1

%(H8 |H1, . . . , H8−1, h1, . . . , h=; j),

where each prediction H8 is dependent on all previous H 9 for all 9 < 8. We compare two such

models proposed by Cheng and Lapata (2016) and Nallapati et al. (2017).

While intuitively it makes sense that previous extraction decisions might affect the probability

of extracting subsequent sentences, (e.g., highly salient sentences might cluster together), it has

not been empirically investigated whether this dependence is necessary for deep learning models

in practice. For example, in the models of Cheng and Lapata (2016) and Nallapati et al. (2017),

individual predictions of H8 are made using information from some or all of the sentence embed-

dings h1, . . . , h=, such that information about neighboring sentences could be propagated through

sentence embedding interactions rather than on previous salience decisions. Additionally, from

an efficiency perspective, the autoregressive design prevents parallelization of individual H8 pre-

dictions, since they must now be sequentially computed. Motivated by these considerations, we

propose two non-autoregressive sentence extractor architectures where individual salience labels

H8 are independent of each other, that is,

%(H1, . . . , H= |h1, . . . , h=; j) =
=∏
8=1

%(H8 |h1, . . . , h=; j).

While the sentence extractor architectures are quite different in their details, under our unified

treatment of them here, we view them as producing in their intermediate computations a sequence

of contextual sentence embeddings z1, . . . , z=. Unlike the “context free” sentence embeddings h8

which are constructed only using words from sentence B8, each z8 is computed using information

information propagated from neighboring sentence embeddings h1, . . . , h8−1 and h8+1, . . . , h= and
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Figure 3.3: Schematic for the Cheng & Lapata sentence extractor.

in the case of the autoregressive models, salience estimates ?1, . . . , ?8−1 where

?8 = %(H8 = 1|H1, . . . , H8−1, h1, . . . , h=; j).

Additionally, the SummaRunner extractor produces an embedding representation of the document,

d, as well as iterative representations of the summary s1, . . . , s=−1 which also affect the creation of

the contextual sentence embeddings.

We now describe in detail how the autoregressive sentence extractors (the Cheng & Lapata ex-

tractor and the SummaRunner extractor) and our proposed non-autoregressive ones (the RNN ex-

tractor and the Seq2Seq extractor), produce the these various representations and make sentence

salience estimates.
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3.2.3.1 Cheng & Lapata Extractor

The Cheng & Lapata extractor (Cheng and Lapata, 2016) is built around a somewhat idiosyn-

cratic unidirectional sequence-to-sequence model. A schematic outlining the structure of the en-

coder and closely following the subsequent equations can be found in Figure 3.3.

The encoder is fairly standard. The initial state is initialized to a zero embedding, 0, and each

sentence embedding h8 is fed into the encoder, to obtain the final encoder hidden state (= ∈ R�j .

That is,

(Figure 3.3.a) Extractor – Encoder

(0 = 0 (3.13)

(8 = GRU(h8, (8−1; i[) ∀8 : 8 ∈ {1, . . . , =}. (3.14)

The initial decoder hidden state '0 ∈ R�j is initialized with the last encoder hidden state, (=.

The inputs to decoder step 8, for 8 > 1, are the salience gated (8 − 1)th sentence embeddings,

(Figure 3.3.b) Salience Gated Sentence Embeddings

h̄8−1 = ?8−1h8−1 ∀8 : 8 ∈ {2, . . . , =}, (3.15)

where the salience gate is ?8 = %(H8 |H1, . . . , H8−1, h1, . . . , h=; j), is the salience estimate computed

for sentence B8−1. For the first decoder step (i.e. 8 = 1), since there is no ?0, h̄0 is a special learned

parameter.

The extractor decoder outputs are then computed as,

(Figure 3.3.c) Extractor – Decoder

'0 = (= (3.16)

' 8 = GRU(h̄8−1, ' 8−1; iZ ) ∀8 : 8 ∈ {1, . . . , =} (3.17)
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Note in Equation 3.17 that the decoder side GRU input is the sentence embedding from the previous

time step, h8−1, weighted by its probability of extraction, ?8−1, from the previous step, inducing

dependence of each output H8 on all previous outputs H1, . . . , H8−1.

The contextual sentence embeddings z8 are then computed by concatenating the encoder and

decoder outputs (8 and ' 8 and running them through a feed-forward layer with ReLU activation,

(Figure 3.3.d) Contextual Sentence Embeddings

z8 = ReLU
©­­«U(1)


(8

' 8

 + u(1)
ª®®¬ ∀8 : 8 ∈ {1, . . . , =}. (3.18)

The actual salience estimate for sentence B8 is then computed by feeding z8 through another

feed-forward layer with logistic sigmoid activation,

(Figure 3.3.e) Salience Estimates

?8 = %(H8 = 1|H1, . . . , H8−1, h1, . . . , h=; j) = f
(
U(2)z8 + u(2)

)
∀8 : 8 ∈ {1, . . . , =}. (3.19)

The contextual embedding and salience estimate layers have parameters are U(1) ∈ R�I×2�j ,

u(1) ∈ R�I , U(2) ∈ R1×�I , and u(2) ∈ R. The entire set of learned parameters for the Cheng &

Lapata extractor are

j =

{
i[, iZ , h̄0,U(1) , u(1) ,U(2) , u(2)

}
.

The hidden layer dimensionality of the GRU and the contextual embedding layer is �j = 300 and

�I = 100, respectively. Dropout with drop probability 0.25 is applied to the GRU outputs ((8 and

' 8), and to z8.

3.2.3.2 SummaRunner Extractor

Nallapati et al. (2017) proposed a sentence extractor, which we refer to as the SummaRun-

ner Extractor, that factorizes the salience estimates for each sentence into contributions from five
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Figure 3.4: SummaRunner contextual sentence embedding and document embeddings.

different sources, which we refer to as salience factors. The salience factors take into account inter-

actions between contextual sentence embeddings and document embeddings or summary embed-

dings, as well as sentence position embeddings. Salience estimates are made sequentially, starting

with the first sentence B1 and preceding to the last B=. When computing the salience estimate of

sentence B8, the previous 8 − 1 salience estimates are used to update the summary representation.

In order to construct the contextual sentence embeddings, document embeddings, and sum-

mary embeddings, the SummaRunner extractor first runs a bidirectional GRU over the sentence

embeddings created by the sentence encoder (visually depicted in Figure 3.4),

(Figure 3.4.a) Forward and Backward GRU Outputs

−→z 0 = 0, (3.20)

−→z 8 = GRU(h8,−→z 8−1;−→i ) ∀8 : 8 ∈ {1, . . . , =}, (3.21)

←−z =+1 = 0, (3.22)

←−z 8 = GRU(h8,←−z 8+1;←−i ) ∀8 : 8 ∈ {1, . . . , =}, (3.23)

where −→z 8,
←−z 8 ∈ R�A and −→i and←−i are the forward and backward GRU parameters respectively.
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The GRU output is concatenated and run through a feed-forward layer to obtain a contextual

sentence embedding representation z8 ∈ R�I ,

(Figure 3.4.b) Contextual Sentence Embeddings

z8 = ReLU
©­­«u(I) + U(I)


−→z 8

←−z 8


ª®®¬ ∀8 : 8 ∈ {1, . . . , =}, (3.24)

where U(I) ∈ R�I×2�A and u(I) ∈ R�I are learned parameters.

To construct the document embedding d, the forward and backward GRU outputs are concate-

nated and averaged before running through a different feed-forward layer,

(Figure 3.4.c) Document Embedding

d = tanh
©­­«u(3) + U(3)

©­­«
1
=

=∑
8=1


−→z 8

←−z 8


ª®®¬
ª®®¬ (3.25)

where U(3) ∈ R�I×2�A and u(3) ∈ R�I are learned parameters.

Additionally, an iterative representation of the extract summary at step 8, s8, is constructed by

summing the 8 − 1 contextual sentence embeddings weighted by their salience estimates,

(Figure 3.5) Summary Embeddings

s1 = 0, (3.26)

s8 = tanh ©­«
8−1∑
9=1

? 9 · z 9
ª®¬ ∀8 : 8 ∈ {2, . . . , = − 1}, (3.27)

where ? 9 = %
(
H 9 = 1|H1, . . . , H 9−1, h1, . . . , h=; j

)
are previously computed salience estimates for

sentences B1, . . . , B8−1.

When computing the salience of a sentence ?8, the SummaRunner model uses the contextual
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Figure 3.5: SummaRunner iterative summary embeddings.

sentence embedding z8, the document embedding d, the summary embedding s8, and the document

position 8. These representations are used to compute five different factors, which are then summed

and run through a logistic sigmoid to the salience estimate. The five factors are named the content

factor (q(2)), the centrality factor (q(B)),1 the novelty factor (q(=)), the fine grained position factor

(q( 5 ?)), and the coarse grained position factor (q(2?)).

First, there is the content factor which is simply the dot product of the contextual sentence

embedding with a learned parameter vector,

(Figure 3.6.a) Content Factor

q
(2)
8
= u(2)

ᵀ
z8 ∀8 : 8 ∈ {1, . . . , =}, (3.28)

where u(2) ∈ R�I . This term is intended to represent contributions of the individual sentences to

their salience.

The centrality factor is intended to capture a sentence’s similarity to the document embedding.

This interaction computed as

(Figure 3.6.b) Centrality Factor

q
(B)
8
= zᵀ8 U(B)d ∀8 : 8 ∈ {1, . . . , =}, (3.29)

1Nallapati et al. (2017) refer to this as the salience factor, but we rename it here to avoid confusion with the model’s
final predictions which we call salience estimates.
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and is mediated by a learned parameter matrix, U(B) ∈ R�I×�I .

The third factor, novelty, is similarly an interaction between the contextual sentence embedding

and the 8-th summary embedding,

(Figure 3.6.c) Novelty Factor

q
(=)
8
= −zᵀ8 U(=)s8 ∀8 : 8 ∈ {1, . . . , =}, (3.30)

where U(=) ∈ R�I×�I is a learned parameter matrix. Note also this factor is multiplied by negative

to indicate that high levels of similarity between z8 and s8 should be discouraged.

Finally, there are two factors for the fine- and coarse-grained position,

(Figure 3.6.d) Fine-grained Position Factor

q( 5 ?) = u( 5 ?)
ᵀ

g( 5 ?)
8

∀8 : 8 ∈ {1, . . . , =}, (3.31)

(Figure 3.6.e) Coarse-grained Position Factor

q(2?) = u(2?)
ᵀ

g(2?)
8

∀8 : 8 ∈ {1, . . . , =}, (3.32)

where g( 5 ?)
8

and g(2?)
8

are embeddings associated with the sentence position and sentence position

quartile of the 8-th sentence (e.g., sentence B7 in a document with 12 sentences, would have em-

beddings g( 5 ?)7 and g(2?)2 corresponding to the seventh sentence position and 2nd sentence position

quartile respectively). Both u( 5 ?) , u(2?) ∈ R�6 , and g( 5 ?)1 , . . . , g( 5 ?)=<0G , g
(2?)
1 , . . . , g(2?)4 ∈ R�6 are

learned parameters of the SummaRunner extractor, and =<0G ∈ N is the maximum document size

in sentences (when handling unusually long documents, sentences with positions greater than =<0G

are all mapped to g( 5 ?)=<0G ).

Each salience estimate ?8 is calculated as the sum of those five factors run through a logistic

sigmoid function,
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Figure 3.6: Schematic of salience estimation in the SummaRunner extractor.
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(Figure 3.6.f) Salience Estimates

?8 = %(H8 = 1|H1, . . . , H8−1, h1, . . . , h=; j) = f
(
q
(2)
8
+ q(B)

8
+ q(=)

8
+ q( 5 ?)

8
+ q(2?)

8

)
∀8 : 8 ∈ {1, . . . , =}. (3.33)

We should give a bit of caution about interpreting the individual factors along the lines of their

given names as the learning procedure does not enforce that their actual values meaningfully cor-

respond to their names. For example, it could be that a sentence’s similarity to the summary

embedding is actually positively correlated with high salience. In such a case, the model could

learn to produce a large negative value for zᵀ
8

U(=)s8, such that the “novelty” factor q(=)
8

now has

large positive values when the 8-th sentence is not novel to the summary. In this sense, for a suffi-

ciently over-parameterized network, the negative in novelty term is superfluous as the model can

learn around it.

The complete set of parameters for the SummaRunner extractor is

j =

{−→i ,←−i ,U(I) , u(I) ,U(3) , u(3) , u(2) ,U(B) ,U(=) , u( 5 ?) , u(2?) , g( 5 ?)1 , . . . , g( 5 ?)=<0G , g
(2?)
1 , . . . , g(2?)4 ,

}
.

In our experiments, we set �A = 300, �A = 100, and �6 = 16. Dropout with drop probability of

0.25 is applied to the GRU outputs −→z 8 and←−z 8, as well as the contextual sentence embeddings z8

for all 8 ∈ {1, . . . , =}.

3.2.3.3 RNN Extractor

Our first proposed non-autoregressive model is a very simple bidirectional recurrent neural net-

work based tagging model (Graves and Schmidhuber, 2005; Wang et al., 2015), which we refer

to as the RNN extractor. See Figure 3.7 for a visual depiction of the extractor. As in the Sum-

maRunner extractor, the first step of the RNN extractor is to run a bidirectional recurrent neural

network over the sentence embeddings produced by the sentence encoder layer, which produces
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Figure 3.7: Schematic for the RNN sentence extractor.

left and right partial contextual embeddings −→( 8 and←−( 8 respectively,

(Figure 3.7.a) Left and Right Partial Contexual Sentence Embeddings

−→( 0 = 0, (3.34)

−→( 8 = GRU
(
h8,−→( 8−1;−→i

)
∀8 : 8 ∈ {1, . . . , =}, (3.35)

←−( =+1 = 0, (3.36)

←−( 8 = GRU
(
h8,←−( 8+1;←−i

)
∀8 : 8 ∈ {=, . . . , 1}, (3.37)

where −→( 8,
←−( 8 ∈ R�[ , and −→i and←−i are the forward and backward GRU parameters.

The left and right partial contextual embeddings of each sentence are then passed through a

feed-forward layer to produce contextual sentence embeddings z8,

(Figure 3.7.b) Contexual Sentence Embeddings
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z8 = ReLU
©­­«] (1)


−→( 8

←−( 8

 + b
(1)ª®®¬ ∀8 : 8 ∈ {1, . . . , =}, (3.38)

where ] (1) ∈ R�I×2�[ and b (1) ∈ R�I are learned parameters.

Another feed-forward layer with a logistic sigmoid activation computes the actual salience es-

timates ?1, . . . , ?= where ?8 = %(H8 = 1|h1, . . . , h=; j) and

(Figure 3.7.c) Salience Estimates

?8 = %(H8 = 1|h8, . . . , h=; j) = f
(
] (2)z8 + b (2)

)
∀8 : 8 ∈ {1, . . . , =}, (3.39)

where ] (2) ∈ R1×�I and b (2) ∈ R are learned parameters.

The complete set of parameters for the extractor is

j =

{−→i ,←−i ,] (1) , b (1) ,] (2) , b (2)} .
In our experiments, we set �[ = 300 and �I = 100. Dropout with drop probability of 0.25 is

applied to −→( 8,
←−( 8, and z8 for 8 ∈ {1, . . . , =}.

3.2.3.4 Seq2Seq Extractor

One shortcoming of the RNN extractor is that long range information from one end of the doc-

ument may not easily be able to affect extraction probabilities of sentences at the other end. Our

second proposed model, the Seq2Seq extractor mitigates this problem with an attention mecha-

nism commonly used for neural machine translation (Bahdanau et al., 2015; Luong et al., 2015)

and abstractive summarization (See et al., 2017). The Seq2Seq extractor has distinct encoder and

decoder bidirectional GRUs which create distinct sequences of encoder contextual embeddings and

decoder contextual embeddings (see Figure 3.8 and Figure 3.9 respectively). Using the attention
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Figure 3.8: Schematic for the encoder contextual sentence embeddings as computed in the
Seq2Seq sentence extractor.

mechanism, each decoder contextual embedding ' 8 attends to the encoder contextual embeddings,

(1, . . . , (=, to create the final contextual sentence embedding z8. The final contextual embedding,

z8, thus contains a representation of sentence B8 as well as its relation to the other contextual repre-

sentations of the remaining sentences. The salience estimate for B8 is then produces by running z8

through a feed-forward layer with logistic sigmoid output (see Figure 3.10). We now describe in

detail the encoder, decoder, and attention/salience estimation layers.

The sentence embeddings produced by the sentence encoder are first encoded by a bidirec-

tional GRU, which produces left and right partial contextual sentence embeddings,

(Figure 3.8.a) Encoder Left and Right Partial Contextual Sentence Embeddings

−→( 0 = 0, (3.40)

−→( 8 = GRU
(
h8,−→( 8−1;−→i [

)
∀8 : 8 ∈ {1, . . . , =}, (3.41)

←−( =+1 = 0, (3.42)

←−( 8 = GRU
(
h8,←−( 8+1;←−i [

)
∀8 : 8 ∈ {=, . . . , 1}, (3.43)
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Figure 3.9: Schematic for the decoder contextual sentence embeddings as computed by the
Seq2Seq sentence extractor.

where −→( 8,
←−( 8 ∈ R�j and −→i [ and←−i [ are the forward and backward encoder GRU parameters re-

spectively. The encoder contextual sentence embeddings are then formed by simply concatenating

the encoder left and right partial contextual embeddings,

(Figure 3.8.b) Encoder Contextual Sentence Embeddings

(8 =


−→( 8

←−( 8

 ∀8 : 8 ∈ {1, . . . , =}. (3.44)

The final output of each encoder GRU initializes a separate decoder GRU which is then run

over the sentence embeddings a second time,

(Figure 3.9.a) Decoder Left and Right Partial Contextual Sentence Embeddings
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−→
' 0 = GRU

(
h̃>,−→( =;

−→i Z
)
, (3.45)

−→
' 8 = GRU(h8,

−→
' 8−1;−→i Z ) ∀8 : 8 ∈ {1, . . . , =}, (3.46)

←−
' =+1 = GRU

(
h̃<,←−( 1;←−i Z

)
, (3.47)

←−
' 8 = GRU(h8,

←−
' 8+1;←−i Z ) ∀8 : 8 ∈ {1, . . . , =}, (3.48)

where h̃> and h̃< are special “begin decoding” input embeddings for the forward and backward

decoder respectively,
−→
' 8,
←−
' 8 ∈ R�j , and −→i Z and ←−i Z are the parameters for the forward and

backward decoder GRUs respectively.

The decoder left and right partial contextual sentence embeddings (
−→
' 8 and

←−
' 8) are then con-

catenated to form the decoder contextual sentence embeddings,

(Figure 3.9.b) Decoder Contextual Sentence Embeddings

' 8 =


−→
' 8
←−
' 8

 ∀8 : 8 ∈ {1, . . . , =}. (3.49)
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Figure 3.10: Attention layer, contextual sentence embedding, and salience estimation layer for the
Seq2Seq extractor.
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Each decoder contextual sentence embedding ' 8 then attends to the encoder contextual sen-

tence embeddings (1, . . . , (=, to produce an attention-weighted encoder sentence embedding (̄8,

(Figure 3.10.a) Attention Weights

U8, 9 =

exp
(
' 8 · ( 9

)
∑=
9 ′=1 exp

(
' 8 · ( 9 ′

) ∀8 : 8 ∈ {1, . . . , =}, (3.50)

(Figure 3.10.b) Attention-weighted Encoder Sentence Embeddings

(̄8 =
=∑
9=1
U8, 9


−→( 9

←−( 9

 ∀8 : 8 ∈ {1, . . . , =}. (3.51)

The attention-weighted encoder sentence embeddings and the decoder contextual sentence em-

bedding are then concatenated and fed through a feed-forward layer to produce the 8th contextual

sentence embedding z8, which is itself fed through a final feed-forward layer to compute the 8th

salience estimate ?8 = %(H8 = 1|h1, . . . , h=; j),

(Figure 3.10.c) Contextual Sentence Embeddings

z8 = ReLU
©­­«] (1)


(̄8

' 8

 + b
(1)ª®®¬ ∀8 : 8 ∈ {1, . . . , =}, (3.52)

(Figure 3.10.d) Salience Estimates

?8 = %(H8 = 1|h1, . . . , h=; j) = f
(
] (2)z8 + b (2)

)
∀8 : 8 ∈ {1, . . . , =}. (3.53)

where ] (1) ∈ R�I×3�j , b (1) ∈ R�I , ] (2) ∈ R1×�I , and b (2) ∈ R are model parameters. The
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complete set of Seq2Seq extractor parameters is

j =

{−→i [,←−i [,−→i Z ,←−i Z ,] (1) , b (1) ,] (2) , b (2) , } .
In our experiments, we set �j = 300, �I = 100. Dropout with drop probability of 0.25 is applied

to −→( 8,
←−( 8,
−→
' 8,
←−
' 8, and z8 for all 8 ∈ {1, . . . , =}.

3.2.3.5 Comparison of Sentence Extractors

All of the extractors rely on running at least one GRU over the sentence embeddings to propa-

gate contextual information of neighboring sentences to z8. However, only the Cheng & Lapata and

SummaRunner extractors rely on ?1, . . . , ?8−1 to compute ?8. After the GRU layers are computed

in the RNN and Seq2Seq extracts, all salience estimates can be computed in parallel; the Cheng

& Lapata and SummaRunner must make their salience predictions sequentially. Additionally, we

hypothesize that including this dependence is not necessary to achieve good performance, as simi-

lar information about the salience of neighboring sentences will already be captured in the left and

right partial contextual sentence embeddings used to construct z8.

3.2.4 Inference and Summary Generation

Given a setting of encoder and extractor architectures, and the appropriate embedding, encoder,

and extractor parameters (�, b, and j respectively), we can compute the probability of a salience

label sequence given a document, % (y |G; \), as

% (y |G; \) = %
(
y | SentEnc

(
Emb (B1;�) , . . . ,Emb (B=;�) ; b

)
; j

)
=

=∏
8=1

?
H8
8
(1 − ?8) (1−H8) .
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Since even in the autoregressive case discrete extraction decisions are never fed back into the

model2 we can easily find the most likely extractive sequence

ŷ = arg max
y∈Y

% (y |G; \) ,

where

Ĥ8 =


1 if ?8 > 0.5

0 otherwise.

This method of inference does not take into account the summary word budget 2 and the re-

sulting ŷ may imply an extract summary that is either too short or too long with respect to the

budget constraint. Overly long summaries are less of a problem because they can always be trun-

cated. Short summaries, however, will suffer more in evaluation as ROUGE-recall monotonically

increases with summary size until reaching the word budget. Additionally, for fair comparisons

between systems, summary lengths should always be the same size (Napoles et al., 2011).

To account for this and obtain a summary of length 2, we first compute ?1, . . . , ?=. Then

we sort the sentences in descending order Bc1 , . . . , Bc= where ?c8 ≥ ?c8+1 . We then construct the

extract summary by selecting the first : sentences such that
∑:−1
8=1 ;c8 < 2 ≤

∑:
8=1 ;c8 (i.e., the first

: sentences that meet or exceed the length budget). When evaluating or displaying summaries, we

show the extracted sentences in the original document order since this improves the coherence, and

we truncate the final sentence where it exceeds 2.

3.3 Datasets

We perform our experiments across six corpora from varying domains to understand how dif-

ferent biases within each domain can affect content selection. The corpora come from the news

domain (CNN-DailyMail, New York Times, DUC), personal narratives domain (Reddit), work-

2In the autoregressive extractors, the salience estimates ?8 are fed back into the model to compute ?8+1, . . . , ?=.
However, since these quantities are not determined by whether or not the model actually extracts sentence B8 , they do
not create a combinatorial search space.
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Dataset Train Valid Test Refs

CNN/DM 287,113 13,368 11,490 1
NYT 44,382 5,523 6,495 1.93
DUC 516 91 657 2

Reddit 404 24 48 2
AMI 98 19 20 1

PubMed 21,250 1,250 2,500 1

Table 3.1: Sizes of the training, validation, test splits for each dataset and the average number of
test set human reference summaries per document.

place meetings (AMI), and medical journal articles (PubMed). See Table 3.1 for dataset statistics.

CNN-DailyMail We use the preprocessing and training, validation, and test splits of See et al.

(2017). This corpus is a mix of news on different topics including politics, sports, and entertain-

ment.

New York Times The New York Times (NYT) corpus (Sandhaus, 2008) contains two types of

abstracts for a subset of its articles. The first summary is an archival abstract and the second is

a shorter online teaser meant to entice a viewer of the webpage to click to read more. From this

collection, we take all articles that have a concatenated summary length of at least 100 words.

We create training, validation, and test splits by partitioning on dates; we use the year 2005 as

the validation data, with training and test partitions including documents before and after 2005

respectively.

DUC We use the single document summarization data from the 2001 and 2002 Document Un-

derstanding Conferences (DUC) (Over and Liggett, 2002). We split the 2001 data into training and

validation splits and reserve the 2002 data for testing.

AMI The AMI corpus (Carletta et al., 2005) is a collection of real and staged office meetings

annotated with text transcriptions, along with abstractive summaries. We use the official train,

validation, and test splits as proposed by the dataset authors.
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Reddit Ouyang et al. (2017) collected a corpus of personal stories shared on Reddit3 along with

multiple extractive and abstractive summaries. We randomly split this data using roughly three and

five percent of the data for validation and testing respectively.

PubMed We created a corpus of 25,000 randomly sampled medical journal articles from the

PubMed Open Access Subset.4 We only included articles if they were at least 1,000 words long

and had an abstract of at least 50 words in length. We used the article abstracts as the ground truth

human summaries.

3.3.1 Ground Truth Extract Summaries

Since the datasets above typically only have reference abstract summaries, we do not explicitly

have document/salience judgement pairs (G, y) with which to train a model. In order to obtain

y, we first construct a “ground truth” reference extract summary Y ⊆ G by greedily selecting

sentences B8 ∈ G that maximize the ROUGE score (Lin, 2004) with respect to the reference abstract

summaries. We then construct the label vector, y = [H1, . . . , H=], by assigning positive salience

judgements to those sentences in the extract summary,

H8 =


1 if B8 ∈ Y

0 otherwise.

The algorithm for constructing the extract summary and salience judgements from a docu-

ment and reference abstractive summaries is presented in algorithm 1. It begins by initializing all

salience judgements to zero, y = 0, and the extract summary Y to an empty list (Alg. 1 lines 1-2).

It then repeatedly selects the next sentence B8̂ from the remaining sentences B 9 ∉ Y such that adding

B8̂ to Y maximally improves the marginal ROUGE score (Alg. 1 lines 3-9). If adding B8̂ yields im-

provement, Y is updated, and H8̂ is set to 1 (Alg. 1 lines 6-7). The algorithm terminates when the

3www.reddit.com
4https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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Algorithm 1: Salience Label Creation
Data: Input document G = B1, . . . , B=, reference abstracts ', summary word budget 2.

1 H8 ← 0 ∀8 ∈ 1, . . . , = // Initialize salience judgements to be 0.
2 Y ← [ ] // Initialize summary as empty list.
3 while

∑=
8=1 H8;8 ≤ 2 do // While summary word count ≤ word budget.

4 8̂ ← arg max8∈{1,...,=},
H8≠1

ROUGE(Y ⊕ [B8], ') // Find next best extract.

5 if ROUGE(Y ⊕ [B8̂], ') > ROUGE(Y, ') then
6 Y ← Y ⊕ [B8̂] // Update extract and salience judgements.
7 H8̂ ← 1
8 else
9 break // No further improvements possible, so end.

Result: Salience judgements y = [H1, . . . , H=]

size of extract summary,
∑=
8=1 H8;8, excedes the word budget 2 (Alg. 1 line 3) or adding an additional

sentence to Y does not improve the ROUGE score (Alg. 1 line 5). In our experiments, we choose to

specifically optimize for the ROUGE-1 recall (i.e. unigram recall) rather than ROUGE-2 recall sim-

ilarly to other optimization based approaches to summarization (Sipos et al., 2012; Durrett et al.,

2016) which found this to be the easier target to learn.

3.4 Experiments

For our main experiments, we train every possible pairing of sentence encoder and extractor

architecture (3 × 4 = 12) on each of dataset D =

{(
G (1) , y (1)

)
, . . . ,

(
G (#) , y (#)

)}
. We use the

trained models to produce extract summaries for the test set, and we then evaluate summary quality

with respect to the reference abstract summaries using ROUGE-2 recall.5 We use extract summary

word budgets of 2 = 100 words for news, and 2 = 75, 2 = 290, and 2 = 200 for Reddit, AMI,

and PubMed respectively. We also evaluate using METEOR (Banerjee and Lavie, 2005), which

measures precision and recall of reference words while allowing for more matchings on synonymy

or morphology. We use the default settings for METEOR. We compute ROUGE with stopwords

removed and without stemming, keeping defaults for all other parameters.

For each model configuration, we train five different versions using different random seeds and

5ROUGE-1 recall and ROUGE-LCS trend similarity in our experiments so we omit them for space.
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report the mean evaluation measure. We estimate statistical significance by first averaging each

document level ROUGE or METEOR score over the five random initializations. We then test the

difference between the best system on each dataset and all other systems using the approximate

randomization test with the Bonferroni correction for multiple comparisons (Riezler and Maxwell,

2005), testing for significance at the 0.05 level.

3.4.1 Training

We train all models to minimize the weighted negative log-likelihood

L(\) = −
∑
(G,y)∈D

=∑
8=1

l(H8) log % (H8 |H1, . . . , H8−1, G; \)

over the training data D using stochastic gradient descent with the ADAM optimizer (Kingma and

Ba, 2015). Since positive salience labels (i.e. H8 = 1) are much rarer than negative salience labels,

we reweight the negative log likelihood above, setting

l(0) = 1 and l(1) = =0/=1

where =0 and =1 are the number of training sentences labeled 0 and 1 respectively. We trained for

a maximum of 50 epochs and the best model was selected with early stopping on the validation

set according to ROUGE-2. Each epoch constitutes a full pass through the dataset. The average

stopping epoch was: CNN-DailyMail, 16.2; NYT, 21.36; DUC, 37.11; Reddit, 36.59; AMI, 19.58;

PubMed, 19.84. All experiments were repeated with five random initializations. Unless specified,

word embeddings were initialized using pretrained GloVe embeddings (Pennington et al., 2014)

and we did not update them during training. Unknown words were mapped to a zero embedding.

We use a learning rate of .0001 and a dropout rate of 0.25 for all dropout layers. We also

employ gradient clipping (−5 < ∇\ < 5). Weight matrix parameters are initialized using Xavier

initialization with the normal distribution (Glorot and Bengio, 2010) and bias terms are set to 0.

Hyperparameter settings were found using manual exploration and observing consistent improve-
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ments in ROUGE on the validation set. We use a batch size of 32 for all datasets except AMI and

PubMed, which are often longer and consume more memory, for which we use sizes two and four

respectively.

For Cheng & Lapata based models, we train for half of the maximum epochs with teacher

forcing, i.e. we set ?8 = 1 if H8 = 1 in the gold data and 0 otherwise when computing the decoder

input ?8h8. We revert to the predicted model probability during the second half training and during

test-time inference.

3.4.2 Baselines

Lead As a baseline we include the lead summary, i.e. taking the first 2 words of the document

as summary, where 2 is the summary word budget for each dataset (see the first paragraph of

§3.4). While incredibly simple, this method is still a competitive baseline for single document

summarization, especially on newswire.

Oracle To measure the performance ceiling, we show the ROUGE/METEOR scores using the ex-

tractive summary Y which was a bi-product of our algorithm for obtaining salience labels y (see

§3.3.1 for details). Essentially, this summary represents an approximate ceiling on ROUGE per-

formance, as it has clairvoyant knowledge of the human reference summaries for each document.

3.5 Results

The results of our main experiment comparing the different extractors/encoders on news and

non-news domains are shown in Table 3.2 and Table 3.3 respectively. Overall, we find no major

advantage when using the convolutional neural network and recurrent neural network sentence

encoders over the averaging encoder. The best performing encoder/extractor pair either uses the

averaging encoder (five out of six datasets) or the differences are not statistically significant.

When looking at extractors, the Seq2Seq extractor is either part of the best performing system
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Extractor Encoder
CNN/DM NYT DUC 2002
M R-2 M R-2 M R-2

Lead – 24.1 24.4 30.0 32.3 25.1 21.5

RNN
Avg. 25.2 25.4 29.8 34.7 26.8 22.7
RNN 25.1 25.4 29.6 34.9 26.8 22.6
CNN 25.0 25.1 29.0 33.7 26.7 22.7

Seq2Seq
Avg. 25.2 25.6 30.5 35.7 27.0 22.8
RNN 25.1 25.3 30.2 35.9 26.7 22.5
CNN 25.0 25.1 29.9 35.1 26.7 22.7

Cheng
&

Lapata

Avg. 25.0 25.3 30.4 35.6 27.1 23.1
RNN 25.0 25.0 30.3 35.8 27.0 23.0
CNN 25.2 25.1 29.9 35.0 26.9 23.0

Summa
Runner

Avg. 25.1 25.4 30.2 35.4 26.7 22.3
RNN 25.1 25.2 30.0 35.5 26.5 22.1
CNN 24.9 25.0 29.3 34.4 26.4 22.2

Oracle – 31.1 36.2 35.3 48.9 31.3 31.8

Table 3.2: News domain METEOR (M) and ROUGE-2 recall (R-2) results across all extrac-
tor/encoder pairs. Results that are statistically indistinguishable from the best system are shown in
bold face.

Extractor Encoder
Reddit AMI PubMed

M R-2 M R-2 M R-2

Lead – 20.1 10.9 12.3 2.0 15.9 9.3

RNN
Avg. 20.4 11.4 17.0 5.5 19.8 17.0
RNN 20.2 11.4 16.2 5.2 19.7 16.6
CNN 20.9 12.8 14.4 3.2 19.9 16.8

Seq2Seq
Avg. 20.9 13.6 17.0 5.5 20.1 17.7
RNN 20.5 12.0 16.1 5.3 19.7 16.7
CNN 20.7 13.2 14.2 2.9 19.8 16.9

Cheng & Lapata
Avg. 20.9 13.6 16.7 6.1 20.1 17.7
RNN 20.3 12.6 16.3 5.0 19.7 16.7
CNN 20.5 13.4 14.3 2.8 19.9 16.9

Summa Runner
Avg. 21.0 13.4 17.0 5.6 19.9 17.2
RNN 20.9 12.5 16.5 5.4 19.7 16.5
CNN 20.4 12.3 14.5 3.2 19.8 16.8

Oracle – 24.3 16.2 17.8 8.7 24.1 25.0

Table 3.3: Non-news domain METEOR (M) and ROUGE-2 recall (R-2) results across all extrac-
tor/encoder pairs. Results that are statistically indistinguishable from the best system are shown in
bold face.
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Ext. Emb. CNN/DM NYT DUC Reddit AMI PubMed

RNN
Fixed 25.4 34.7 22.7 11.4 5.5 17.0
F.-T. 25.2 (0.2) 34.3 (0.4) 22.6 (0.1) 11.3 (0.1) 5.3 (0.2) 16.4 (0.6)

Seq2Seq
Fixed 25.6 35.7 22.8 13.6 5.5 17.7
F.-T. 25.3 (0.3) 35.7 (0.0) 22.9 (-0.1) 13.8 (-0.2) 5.8 (-0.3) 16.9 (0.8)

C&L
Fixed 25.3 35.6 23.1 13.6 6.1 17.7
F.-T. 24.9 (0.4) 35.4 (0.2) 23.0 (0.1) 13.4 (0.2) 6.2 (-0.1) 16.4 (1.3)

Summa
Runner

Fixed 25.4 35.4 22.3 13.4 5.6 17.2
F.-T. 25.1 (0.3) 35.2 (0.2) 22.2 (0.1) 12.6 (0.8) 5.8 (-0.2) 16.8 (0.4)

Table 3.4: ROUGE-2 recall across sentence extractors when using fixed pretrained embeddings or
when embeddings are fine-tuned (F.-T.) during training. In both cases embeddings are initialized
with pretrained GloVe embeddings. All extractors use the averaging sentence encoder. When both
fine-tuned and fixed settings are bolded, there is no signifcant performance difference. Difference
in scores shown in parenthesis.

(three out of six datasets) or is not statistically distinguishable from the best extractor.

Overall, on the news and medical journal domains, the differences are quite small with the dif-

ferences between worst and best systems on the CNN/DM dataset spanning only .56 of a ROUGE

point. While there is more performance variability in the Reddit and AMI data, there is less distinc-

tion among systems: no differences are significant on Reddit and every extractor has at least one

configuration that is indistinguishable from the best system on the AMI corpus. This is probably

due to the small test size of these datasets.

3.5.1 Ablation Experiments

In addition to our main evaluation above, we also perform several ablation experiments to

further understand how the various summarization models perform when certain information is

witheld from the model. In particular, we evaluate the effect of fine-tuning word embeddings,

part-of-speech (POS) based ablations, and sentence-order shuffling.

Word Embedding Fine-tuning Given that learning a sentence encoder (averaging has no learned

parameters) does not yield significant improvement, it is natural to consider whether fine-tuning

word embeddings is also necessary. In Table 3.4 we compare the performance of different extrac-
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tors using the averaging encoder, when the word embeddings are held fixed or fine-tuned during

training. In both cases, word embeddings are initialized with GloVe embeddings trained on a com-

bination of Gigaword and Wikipedia. When fine-tuning embeddings, words occurring fewer than

three times in the training data are mapped to an unknown token (with learned embedding).

In all but one case, fixed embeddings are as good or better than the fine-tuned embeddings.

This is a somewhat surprising finding on the CNN/DM data since it is reasonably large, and learn-

ing embeddings should give the models more flexibility to identify important word features.6 This

suggests that we cannot extract much generalizable learning signal from the content other than

what is already present from initialization. Even on PubMed, where the language is quite differ-

ent from the news/Wikipedia articles the GloVe embeddings were trained on, fine-tuning leads to

significantly worse results.

Ablation CNN/DM NYT DUC Reddit AMI PubMed
all words 25.4 34.7 22.7 11.4 5.5 17.0
-nouns 25.3† (0.1) 34.3† (0.4) 22.3† (0.4) 10.3† (1.1) 3.8† (1.7) 15.7† (1.3)
-verbs 25.3† (0.1) 34.4† (0.3) 22.4† (0.3) 10.8 (0.6) 5.8 (-0.3) 16.6† (0.4)

-adj/adv 25.3† (0.1) 34.4† (0.3) 22.5 (0.2) 9.5† (1.9) 5.4 (0.1) 16.8† (0.2)
-function 25.2† (0.2) 34.5† (0.2) 22.9† (-0.2) 10.3† (1.1) 6.3† (-0.8) 16.6† (0.4)

Table 3.5: ROUGE-2 recall after removing nouns, verbs, adjectives/adverbs, and function words.
Ablations are performed using the averaging sentence encoder and the RNN extractor. Bold in-
dicates best performing system. † indicates significant difference with the non-ablated system.
Difference in score from all words shown in parenthesis.

POS Ablation It is also not well explored what word features are being used by the encoders.

To understand which classes of words were most important we ran an ablation study, selectively

removing nouns, verbs (including participles and auxiliaries), adjectives & adverbs, and function

words (adpositions, determiners, conjunctions). All datasets were automatically tagged using the

spaCy POS tagger7. The embeddings of removed words were replaced with a zero vector, pre-

serving the order and position of the non-ablated words in the sentence. Ablations were performed

6The AMI corpus is an exception here where learning does lead to small performance boosts, however, only in the
Seq2Seq extractor is this diference significant; it is quite possible that this is an artifact of the very small test set size.

7https://github.com/explosion/spaCy
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Ext. Order CNN/DM NYT DUC Reddit AMI PubMed

Seq2Seq
In-Order 25.6 35.7 22.8 13.6 5.5 17.7
Shuffled 21.7 (3.9) 25.6 (10.1) 21.2 (1.6) 13.5 (0.1) 6.0 (-0.5) 14.9 (2.8)

Table 3.6: ROUGE-2 recall using models trained on in-order and shuffled documents. Extractor
uses the averaging sentence encoder. When both in-order and shuffled settings are bolded, there is
no signifcant performance difference. Difference in scores shown in parenthesis.

on training, validation, and test partitions, using the RNN extractor with averaging encoder. Note

that while the input to the models has redacted word classes, the produced summaries are evaluated

with all words present. See Figure 3.11 for example inputs under the different word class ablations.

Table 3.5 shows the results of the POS tag ablation experiments. While removing any word

class from the representation generally hurts performance (with statistical significance), on the

news domains, the absolute values of the differences are quite small (.18 on CNN/DM, .41 on NYT,

.3 on DUC) suggesting that the model’s predictions are not overly dependent on any particular word

types.

Qualitatively, we see little difference in outputs produced under the redacted models. For

example, see Figure 3.12 where we show output summaries from the different word class redacted

models. All four variants identify the lead two sentences as most important, while also including

sentences five and six. Three of the summaries also selected sentence 13. The summarizers appear

to have selected most content from the front of the article suggesting the lead is identfiable even

when different content is ablated.

On the non-news datasets, the ablations have a larger effect (max differences are 1.89 on Reddit,

2.56 on AMI, and 1.3 on PubMed). Removing nouns leads to the largest drop on AMI and PubMed.

Removing adjectives and adverbs leads to the largest drop on Reddit, suggesting the intensifiers

and descriptive words are useful for identifying important content in personal narratives. Curiously,

removing the function word POS class yields a significant improvement on DUC 2002 and AMI.

Sentence Order Shuffling Sentence position is a well known and powerful feature for news

summarization (Hong and Nenkova, 2014), owing to the intentional lead bias in the news article
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Nouns Redacted

1. hurricane gilbert swept toward the

dominican republic sunday , and the

civil defense alerted its heavily pop-
ulated south coast to prepare for high
winds , heavy rains and high seas .

2. the storm was approaching from the
southeast with sustained winds of 75
mph gusting to 92 mph .

3. “There is no need for alarm ,” civil
defense director eugenio cabral said

in a television alert shortly before
midnight saturday .

4. cabral said residents of the province

of barahona should closely follow
gilbert ’s movement .

Verbs Redacted

1. Hurricane Gilbert swept toward the Do-
minican Republic Sunday, and the Civil
Defense alerted its heavily populated
south coast to prepare for high winds,
heavy rains and high seas.

2. The storm was approaching from the
southeast with sustained winds of 75 mph
gusting to 92 mph.

3. “There is no need for alarm,” Civil De-
fense Director Eugenio Cabral said in
a television alert shortly before midnight
Saturday.

4. Cabral said residents of the province of
Barahona should closely follow Gilbert
’s movement.

Adjectives/Adverbs Redacted

1. Hurricane Gilbert swept toward the Do-
minican Republic Sunday, and the Civil
Defense alerted its heavily populated

south coast to prepare for high winds,

heavy rains and high seas.

2. The storm was approaching from the
southeast with sustained winds of 75
mph gusting to 92 mph.

3. “ there is no need for alarm,” civil De-
fense Director Eugenio Cabral said in a
television alert shortly before midnight
Saturday.

4. Cabral said residents of the province
of Barahona should closely follow
Gilbert’s movement.

Function Words Redacted

1. Hurricane Gilbert swept toward the
Dominican Republic Sunday, and the
Civil Defense alerted its heavily popu-
lated south coast to prepare for high
winds, heavy rains and high seas.

2. the storm was approaching from the
southeast with sustained winds of 75
mph gusting to 92 mph .

3. “There is no need for alarm,” Civil De-
fense Director Eugenio Cabral said in a
television alert shortly before midnight
Saturday.

4. Cabral said residents of the province
of Barahona should closely follow

Gilbert’s movement.

Figure 3.11: The first four sentences from a DUC 2002 article (id: d061j-AP880911-0016) under
the different word class ablations.
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Nouns Redacted
(1) Hurricane Gilbert swept toward the Dominican Republic Sunday, and the Civil Defense alerted its heav-
ily populated south coast to prepare for high winds, heavy rains and high seas.
(2) The storm was approaching from the southeast with sustained winds of 75 mph gusting to 92 mph.
(5) An estimated 100,000 people live in the province, including 70,000 in the city of Barahona, about 125
miles west of Santo Domingo.
(6) Tropical Storm Gilbert formed in the eastern Caribbean and strengthened into a hurricane Saturday night.
(7) The National Hurricane Center in Miami reported its position at 2 a.m. Sunday at latitude 16.1 north, lon-
gitude 67.5 west, about 140 miles south of Ponce, Puerto Rico, and 200 miles southeast of Santo Domingo.

Verbs Redacted
(1) Hurricane Gilbert swept toward the Dominican Republic Sunday, and the Civil Defense alerted its heav-
ily populated south coast to prepare for high winds, heavy rains and high seas.
(2) The storm was approaching from the southeast with sustained winds of 75 mph gusting to 92 mph.
(13) On Saturday, Hurricane Florence was downgraded to a tropical storm and its remnants pushed inland
from the U.S. Gulf Coast.
(6) Tropical Storm Gilbert formed in the eastern Caribbean and strengthened into a hurricane Saturday night.
(12) San Juan, on the north coast, had heavy rains and gusts Saturday, but they subsided during the night.
(5) An estimated 100,000 people live in the province, including 70,000 in the city of Barahona, about 125
miles west of Santo Domingo.

Adjectives/Adverbs Redacted
(2) The storm was approaching from the southeast with sustained winds of 75 mph gusting to 92 mph.
(1) Hurricane Gilbert swept toward the Dominican Republic Sunday, and the Civil Defense alerted its heav-
ily populated south coast to prepare for high winds, heavy rains and high seas.
(5) An estimated 100,000 people live in the province, including 70,000 in the city of Barahona, about 125
miles west of Santo Domingo.
(13) On Saturday, Hurricane Florence was downgraded to a tropical storm and its remnants pushed inland
from the U.S. Gulf Coast.
(6) Tropical Storm Gilbert formed in the eastern Caribbean and strengthened into a hurricane Saturday night.
(14) Residents returned home, happy to find little damage from 80 mph winds and sheets of rain.

Function Words Redacted
(1) Hurricane Gilbert swept toward the Dominican Republic Sunday, and the Civil Defense alerted its heav-
ily populated south coast to prepare for high winds, heavy rains and high seas.
(2) The storm was approaching from the southeast with sustained winds of 75 mph gusting to 92 mph.
(13) On Saturday, Hurricane Florence was downgraded to a tropical storm and its remnants pushed inland
from the U.S. Gulf Coast.
(6) Tropical Storm Gilbert formed in the eastern Caribbean and strengthened into a hurricane Saturday night.
(10) Strong winds associated with the Gilbert brought coastal flooding, strong southeast winds and up to 12
feet feet to Puerto Rico’s south coast.
(5) An estimated 100,000 people live in the province, including 70,000 in the city of Barahona, about 125
miles west of Santo Domingo.

Figure 3.12: Outputs from the word class ablated models when given the document as input from
Figure 3.11. Original document positions of the extracted sentences are shown in parenthesis;
sentences that are selected by multiple systems are highlighted in color.
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· Hurricane Gilbert swept toward the Dominican Re-
public Sunday, and the Civil Defense alerted its heav-
ily populated south coast to prepare for high winds,
heavy rains and high seas. · The storm was approach-
ing from the southeast with sustained winds of 75 mph
gusting to 92 mph. · An estimated 100,000 people live
in the province, including 70,000 in the city of Bara-
hona, about 125 miles west of Santo Domingo. · On
Saturday, Hurricane Florence was downgraded to a
tropical storm and its remnants pushed inland from
the U.S. Gulf Coast. · Tropical Storm Gilbert formed
in the eastern Caribbean and strengthened into a hurri-
cane Saturday night.

· Hurricane Gilbert swept toward the Dominican Re-
public Sunday, and the Civil Defense alerted its heav-
ily populated south coast to prepare for high winds,
heavy rains and high seas. · The storm was approach-
ing from the southeast with sustained winds of 75 mph
gusting to 92 mph. · An estimated 100,000 people live
in the province, including 70,000 in the city of Bara-
hona, about 125 miles west of Santo Domingo. · Trop-
ical Storm Gilbert formed in the eastern Caribbean and
strengthened into a hurricane Saturday night. · Strong
winds associated with the Gilbert brought coastal
flooding, strong southeast winds and up to 12 feet
feet to Puerto Rico’s south coast.

Table 3.7: Example output of Seq2Seq extractor (left) and Cheng & Lapata Extractor (right). This
is a typical example, where only one sentence is different between the two (shown in bold).

writing8; it also explains the difficulty in beating the lead baseline for single-document summa-

rization (Nenkova, 2005; Brandow et al., 1995). In examining the generated summaries, we found

most of the selected sentences in the news domain came from the lead paragraph of the document.

This is despite the fact that there is a long tail of sentence extractions from later in the document in

the ground truth extract summaries (31%, 28.3%, and 11.4% of DUC, CNN/DM, and NYT train-

ing extract labels come from the second half of the document). Because this lead bias is so strong,

it is questionable whether the models are learning to identify important content or just find the start

of the document. We conduct a sentence order experiment where each document’s sentences are

randomly shuffled during training. We then evaluate each model performance on the unshuffled

test data, comparing to the model trained on unshuffled data; if the models trained on shuffled data

drop in performance, then this indicates the lead bias is the relevant factor.

Table 3.6 shows the results of the shuffling experiments. The news domains and PubMed suffer

a significant drop in performance when the document order is shuffled. By comparison, there is no

significant difference between the shuffled and in-order models on the Reddit domain, and shuffling

actually improves performance on AMI. This suggest that position is being learned by the models

in the news/journal article domain even when the model has no explicit position features, and that

this feature is more important than either content or function words.

8https://en.wikipedia.org/wiki/Inverted_pyramid_(journalism)
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3.6 Discussion

Learning content selection for summarization in the news domain is severely inhibited by the

lead bias. The summaries generated by all systems described here–the prior work and our pro-

posed simplified models–are highly similar to each other and to the lead baseline. The Cheng &

Lapata and Seq2Seq extractors (using the averaging encoder) share 87.8% of output sentences on

average on the CNN/DM data, with similar numbers for the other news domains (see Table 3.7 for

a typical example). Also on CNN/DM, 58% of the Seq2Seq selected sentences also occur in the

lead summary, with similar numbers for DUC, NYT, and Reddit. Shuffling reduces lead overlap to

35.2% but the overall system performance drops significantly; the models are not able to identify

important information without position.

The relative robustness of the news domain to part of speech ablation also suggests that models

are mostly learning to recognize the stylistic features unique to the beginning of the article, and not

the content. Additionally, the drop in performance when learning word embeddings on the news

domain suggests that word embeddings alone do not provide very generalizable content features

compared to recognizing the lead.

The picture is rosier for non-news summarization where part of speech ablation leads to larger

performance differences and shuffling either does not inhibit content selection significantly or leads

to modest gains. Learning better word-level representations on these domains will likely require

much larger corpora, something which might remain unlikely for personal stories and meetings.

The lack of distinction among sentence encoders is interesting because it echoes findings in the

generic sentence embedding literature where word embedding averaging is frustratingly difficult to

outperform (Iyyer et al., 2015; Wieting et al., 2016; Arora et al., 2017; Wieting and Gimpel, 2017).

The inability to learn useful sentence representations is also borne out in the SummaRunner model,

where there are explicit similarity computations between document or summary representations

and sentence embeddings; these computations do not seem to add much to the performance as

the Cheng & Lapata and Seq2Seq models which lack these features generally perform as well or
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better. Furthermore, the Cheng & Lapata and SummaRunner extractors both construct a history

of previous selection decisions to inform future choices but this does not seem to significantly

improve performance over the Seq2Seq extractor (which does not). This suggests that we need to

be cautious about the single document summarization task as a test bed for learning summarization

models. The input does not appear to be sufficiently rich enough or difficult enough that modeling

dependicies in the output needs to be done explicity.

A manual examination of the outputs revealed some interesting failure modes, although in

general it was hard to discern clear patterns of behaviour other than lead bias. On the news domain,

the models consistently learned to ignore quoted material in the lead, as often the quotes provide

color to the story but are unlikely to be included in the summary (e.g. “It was like somebody

slugging a punching bag.”). This behavior was most likely triggered by the presence of quotes,

as the quote attributions, which were often tokenized as separate sentences, would subsequently

be included in the summary despite also not containing much information (e.g. Gil Clark of the

National Hurricane Center said Thursday).

3.7 Conclusion

We have presented an empirical study of deep learning-based salience estimation models for

summarization. In particular, we examined three different sentence encoders for representing sen-

tences and four different extraction models for predicting sentence salience. Our findings suggest

that position heuristics are in many cases exploitable when performing sentence selection, and that

models are not making extensive use of content features. As a result, simple encoders like the

averaging encoder and simple extractors like the RNN extractor are fairly competitive with more

sophisticated models that explicitly model dependencies in the output.

Interestingly, the performance ceiling on extractive, single-document news summarization con-

tinues to be raised. When these experiments were carried out, large, pretrained models like BERT

(Devlin et al., 2019) were not yet in use. Subsequent work on fine-tuning BERT-based models has

shown a modest increase in ROUGE performance on the CNN-DailyMail dataset (Liu and Lapata,
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2019). Additionally, Liu and Lapata (2019) show that the BERT based models select from the

lead sentences less than the oracle, and draw more frequently from the long tail of the document

as well. Meanwhile, a comparable model trained from scratch selected lead sentences much more

frequently than the oracle would have (something we also observed). This suggests large, pre-

trained language models are better able to exploit features beyond position bias, although it would

be interesting to tease this out in more detail in future work.

In either case, it would seem advisable to revise the paradigm of training single document

summarization systems to do “generic summarization,” where there is no goal or prior instruction

on what is relavent or intended to be searched for. Since this generic task is underspecified, it is

relatively easy for models to exploit heuristics as opposed to learning to reason about the salience

of a text from features that are more semantically relavent to the task. In the next chapter, we

explore this idea further by attempting to summarize a large stream of documents where position

heuristics are less useful. Additionally, we develop more wholistic summarization algorithms that

can incorporate salience estimates (which could be produced either by a deep learning or classical

machine learning based salience estimator) while taking into account features of redundancy or

novelty.
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Chapter 4: Salience Estimation with Structured Content Selection Models

In many cases, estimating salience is not the entirety of the summarization system’s task. Ac-

counting for redundancy is also an important factor in many summarization systems (especially

multi-document summarization) since the same information can often be restated multiple times.

Additionally, in many situations, salience is dynamic, changing over time with the information

need of the summary receiver. In this chapter, we explore ways of incorporating salience predic-

tions into more holistic algorithms for constructing extract summaries using information about text

unit redundancy or the summarization system’s prior extraction decisions.

Since this approach to summarization is not totally necessary for single document summariza-

tion, we motivate the models in this chapter with a more difficult summarization challenge: query

focused, sentence extractive, streaming news summarization. In this problem, the summarization

system must monitor a stream of news articles and extract sentences, which we call updates, that

are relevant to a user query. Collectively, these updates constitute an update summary. As in the

last chapter, we rely on a data-driven assignment of update salience, where an update is salient if it

contains information that was found in a human authored summary of the query-document stream.

A notable aspect of the stream summarization task is the notion of system time – the summa-

rization system can consider all sentences that have entered the stream before the current system

time. Advancing the system time allows the summarizer to observe more sentences from the

stream. However, the salience of relevant information decreases monotonically from the earli-

est time that information was published to the final system time it was actually extracted for the

update summary. Because of this, we must extract sentences in an online fashion, attempting to

minimize the latency between the time that important information is first published and the time

the summarization system extracts that information.

Since there is little supervised data for this task, we rely on a feature-based regression model
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to provide our salience estimates. The time constraint makes this a particularly challenging task

as the typical features for summarization make use of static term frequency. In the streaming case,

these features are now constantly evolving with time, and at the start of the stream, estimates of

term frequency may not be very reliable. A second but important issue is that salience estimates do

not occur in isolation. As we add updates to the summary, the salience of our remaining inputs is

likely to change based on redundancy and other factors. Unfortunately, adding summary-sentence

interaction features introduces an element of exploration to training a salience estimation model

for now various summary configuration and candidate sentence pairs must be considered.

Our two proposed feature-based summarization models deal with these issues in slightly dif-

ferent ways. The first model, the salience-biased affinity propagation (SAP) summarizer (Kedzie

et al., 2015), combines independent, sentence-level salience estimates with the affinity propagation

clustering algorithm (Frey and Dueck, 2007). Affinity propagation forms clusters by identifying

a set of “exemplar” inputs and mapping the remaining inputs to one of the exemplars. Under our

modification of the clustering algorithm, we jointly select exemplars that are individually highly

salient but also representative of the inputs, adding the resulting exemplars to the update summary.

Our second model, the learning-to-search (L2S) summarizer (Kedzie et al., 2016), allows us to

freely incorporate summary/sentence interaction features, as we train the salience model using the

learning-to-search regime (Daumé III and Marcu, 2005; Chang et al., 2015) where learning takes

place using different exploration policies. Using this method we can learn a summarization policy

that makes greedy sentence extraction decisions that also correlate with a good final summary.

The L2S summarizer learns to optimize the entire summarization process, jointly estimating the

salience of sentences as well as when to extract them, taking into account previous extraction

decisions and the candidate update’s similarity to the current update summary. Additionally, the

L2S summarizer works in a greedy online manner, meaning that it can extract salient content

almost as soon as it is published, minimizing the affects of latency. In the next sections, we will

introduce the query focused, sentence extractive, streaming news summarization task and dataset,

before discussing our proposed SAP and L2S models.
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4.1 Task Definition

We now describe the query focused, sentence extractive, streaming news summarization prob-

lem in detail. We start with the query, @, which is a brief string describing an event of interest to be

summarized. See Table 4.1 for some example queries. All relevance judgements about a sentence

are made with respect to the query string. Additionally, the query is used to construct the news

stream which we now turn to.

The news stream is an ordered sequence of text approximately relevant to the query (i.e. the

results of an information retrieval system). It is useful to be able to talk about this stream from

two perspectives, as either a stream of documents, D, or a flat stream of sentences, S. From the

document perspective, the stream is an ordered sequence of < (D) documents

D (@) =
[
31, 32, . . . , 3< (D)

]
where each document 38 is itself an ordered sequence of =8 sentences,

38 =
[
B8,1, B8,2, . . . , B8,=8

]
.

Each document 38 also has a timestamp g(D)
8

which is also shared by all of its sentences B8, 9 ∈ 38.

The stream is ordered by timestamp, so we have g(D)
8

< g
(D)
8+1 for all 8 ∈ {1, . . . , < (D) − 1}. From

the sentence perspective, the news stream is an ordered sequence of < (S) sentences,

S =
[
B1, B2, . . . , B< (S)

]
,

where each sentence B8 has a timestamp g(S)
8

and g(S)
8
≤ g(S)

8+1 for all 8 ∈ {1, . . . , < (S) − 1}. The

two points of view are equivalent in the sense that the concatenation of D equals S,

31 ⊕ 32 ⊕ · · · ⊕ 3< (D) = S
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Period of Interest

TREC Year Wikipedia Page Title Start Time (g«s») Stop Time (g«e») Query String (@) Event Category (2)

2013 2012 Buenos Aires Rail Disaster 02/22/2012 11:33am 03/03/2012 11:33am buenos aires train crash accident
2013 2012 Pakistan garment factory fires 09/11/2012 1:00pm 09/21/2012 1:00pm pakistan factory fire accident
2013 2012 Aurora shooting 07/20/2012 6:38am 07/30/2012 6:38am colorado shooting shooting
2013 Wisconsin Sikh temple shooting 08/05/2012 3:25pm 08/15/2012 3:25pm sikh temple shooting shooting
2013 Hurricane Isaac (2012) 08/28/2012 4:20pm 09/07/2012 4:20pm hurricane isaac storm
2013 Hurricane Sandy 10/24/2012 3:00pm 11/03/2012 3:00pm hurricane sandy storm
2013 June 2012 North American derecho 06/29/2012 3:00pm 07/09/2012 3:00pm midwest derecho storm
2013 Typhoon Bopha 11/30/2012 2:45pm 12/10/2012 2:45pm typhoon bopha storm
2013 2012 Guatemala earthquake 11/07/2012 4:35pm 11/17/2012 4:35pm guatemala earthquake earthquake
2013 2012 Tel Aviv bus bombing 11/21/2012 10:00am 12/01/2012 10:00am tel aviv bus bombing bombing

2014 Costa Concordia disaster and recovery 01/13/2012 9:45pm 02/01/2012 12:00am costa concordia accident
2014 Early 2012 European cold wave 01/22/2012 12:00am 02/18/2012 12:00am european cold wave storm
2014 2013 Eastern Australia floods 01/17/2013 12:00am 01/30/2013 12:00am queensland floods storm
2014 Boston Marathon bombings 04/15/2013 6:49pm 04/20/2013 11:59pm boston marathon bombing bombing
2014 Port Said Stadium riot 02/01/2012 1:30pm 02/11/2012 1:30pm egyptian riots riot
2014 2012 Afghanistan Quran burning protests 02/20/2012 5:30pm 02/28/2012 12:00am quran burning protests protest
2014 In Amenas hostage crisis 01/16/2013 12:00am 01/20/2013 12:00am in amenas hostage crisis hostage
2014 2011-13 Russian protests 12/04/2011 12:00am 12/25/2011 12:00am russian protests protest
2014 2012 Romanian protests 01/12/2012 12:00am 01/26/2012 12:00am romanian protests protest
2014 2012-13 Egyptian protests 11/18/2012 12:00am 12/01/2012 12:00am egyptian protests protest
2014 Chelyabinsk meteor 02/15/2013 3:20am 02/25/2013 3:20am russia meteor impact event
2014 2013 Bulgarian protests against the Borisov cabinet 02/10/2013 12:00am 02/20/2013 11:59pm bulgarian protests protest
2014 2013 Shahbag protests 02/05/2013 12:00am 02/22/2013 11:59pm shahbag protests protest
2014 February 2013 nor’easter 02/07/2013 12:00am 02/18/2013 11:59pm nor’easter storm
2014 Christopher Dorner shootings and manhunt 02/03/2013 12:00am 02/13/2013 7:59am Southern California shooting shooting

2015 Vauxhall helicopter crash 01/16/2013 7:59am 01/31/2013 7:59am vauxhall helicopter crash accident
2015 Cyclone Nilam 10/27/2012 12:00am 11/02/2012 12:00am cyclone nilam storm
2015 2013 Dhaka garment factory collapse 04/24/2013 2:45am 05/04/2013 2:45am savar building collapse accident
2015 2013 Hyderabad blasts 02/21/2013 1:58pm 03/03/2013 1:58pm hyderabad explosion bombing
2015 Brazzaville arms dump blasts 03/04/2012 7:00am 03/14/2012 7:00am brazzaville explosion accident
2015 2012 India blackouts 07/29/2012 9:18pm 08/03/2012 9:18pm india power blackouts accident
2015 Reactions to Innocence of Muslims 09/11/2012 12:00am 09/30/2012 12:00am innocence of muslims protests protest
2015 Battle of Konna 01/10/2013 12:00am 01/19/2013 12:00am konna battle conflict
2015 February 2013 Quetta bombing 02/16/2013 12:00am 02/20/2013 12:00am quetta bombing bombing
2015 15 April 2013 Iraq attacks 04/15/2013 12:00am 04/20/2013 12:00am iraq bombing bombing
2015 19 March 2013 Iraq attacks 03/19/2013 12:00am 03/24/2013 12:00am iraq bombing bombing
2015 2011-12 Los Angeles arson attacks 12/29/2011 9:00am 01/05/2012 9:00am los angeles arson bombing
2015 2013 Thane building collapse 04/04/2013 12:00am 04/13/2013 12:00am thane building collapsed accident
2015 2013 United States embassy bombing in Ankara 02/01/2013 12:00am 02/05/2013 12:00am suicide bomber ankara bombing
2015 22 December 2011 Baghdad bombings 12/21/2011 9:00pm 12/26/2011 9:00pm baghdad bomb bombing
2015 Aleppo University bombings 01/15/2013 12:00am 01/25/2013 12:00am aleppo university explosion bombing
2015 Carnival Triumph 2013 Engine Room Fire 02/10/2013 12:00am 02/15/2013 12:00am carnival triumph fire accident
2015 USS Guardian (MCM-5) January 2013 Grounding 01/17/2013 12:00am 01/22/2013 12:00am uss guardian grounding accident
2015 2012 Indian Ocean earthquakes 04/11/2012 12:00am 04/16/2012 12:00am aceh earthquake earthquake
2015 2012 Haida Gwaii earthquake 10/28/2012 3:00am 11/07/2012 3:00am haida gwaii earthquake earthquake
2015 2012 Catalan independence demonstration 09/11/2012 12:00am 09/16/2012 12:00am catalan protest protest

Table 4.1: TREC Temporal Summarization shared-task query events for the years 2013-2015. All
times are UTC.
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and g(D)
8

= g
(S)
9

for all B 9 ∈ 38.

A query focused, sentence extractive stream summarization model must process the stream

sequentially in time and determine for each sentence B 9 ∈ S whether to extract it or to skip it.

That is, the system must decide to add the sentence to a summary of the stream, or to ignore the

sentence. While there is no explicit length constraint in the number of updates for a summary,

the ideal update covers novel and salient information. A summarizer that extracts many sentences

that are not informative or are redundant given prior updates will receive lower scores under the

evaluation measures which we describe later in this section.

Crucial to the stream summarization problem is the notion of system time, which indicates what

information from the stream has been read and can be used to make extraction predictions. When

the system time is ĝC , the summarization model can in theory use any information collected from

all documents 38 ∈ D such that g(D)
8
≤ ĝC , although for more significant query-streams, it may

not be practical for a summarization model to store all previous documents. For any sentences not

yet extracted, it can similarly decide to extract any sentence B 9 ∈ S such that g(S)
9
≤ ĝC . Previous

extraction decisions, however, cannot be undone. The system time can be incremented by arbitrary

positive amounts to ĝC+1 (i.e. ĝC < ĝC+1) to allow the summarization model to observe and extract

more sentences. Given two timestamps g1, g2 with g1 < g2, we denote the sub-sequence of docu-

ments in the stream that fall between them as Dg1:g2 . Similarly, Sg1:g2 indicates the subsequence of

sentences with timestamps that fall between g1 and g2.

We refer to a sentence that has been extracted as an update. Let D: be the :-th update extracted

by the system. D: has a corresponding timestamp, g(U)
:

that is equal to the system time that it

was extracted by the summarizer. That is, if D: was extracted at ĝC , then g(U)
:

= ĝC . We refer to a

collection of  timestamped updates as an update summary,U =

[(
D1, g

(U)
1

)
, . . . ,

(
D , g

(U)
 

)]
.

For evaluation purposes we compare the update summary to a human reference abstract sum-

mary of the query event. The reference abstract summary, N =

[(
W1, g

(N)
1

)
, . . . ,

(
WA , g

(N)
A

)]
,

contains a series of A sentences describing important facts about the event. We refer to these facts

as nuggets. Each nugget W8 has a timestamp g(N)
8

, indicating the reference time that information
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was published.

We say an update D covers a nugget W, which we write ÈWÉ ∈ ÈDÉ, if the information in the

nugget W is described in the update D. Note that it is possible for an update to cover multiple

nuggets. For example if we have,

W1 = Hurricane Sandy was a category 5 hurricane.

W2 = Hurricane Sandy made landfall on Saturday.

D = Hurricane Sandy, which made landfall on Saturday, was upgraded to a category 5 storm.

then ÈW1É , ÈW2É ∈ ÈDÉ. Given an update summaryU and a nugget W, we define the earliest cover,

" (W,U) =


arg min(

D: ,g
(U)
:

)
∈U:ÈWÉ∈ÈD:É

g
(U)
:

if ∃
(
D: , g

(U)
:

)
∈ U : ÈWÉ ∈ ÈDÉ

∅ otherwise

as the earliest update that covers the nugget W, or the empty set if no update in the update summary

covers W. We also define the inverse mapping,

"−1(D,U,N) =
{(
W; , g

(N)
;

)
∈ N

���∃g : (D, g) = " (W; ,U)
}
,

which is the set of nuggets that have D as its earliest cover.

The objective of the summarization model is to produce an update summary U such that the

set of updates covers the information expressed by the nuggets without containing much repeated

information. Additionally, the summarization system should try to minimize the latency between

the time information in a nugget is available in the stream and the system time that information is

extracted.

We now formalize these evaluation criteria using the official Temporal Summarization evalua-

tion measures (Aslam et al., 2013). Given an update and reference summary,U andN respectively,
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we define the gain of an update as

� (D: , g(U):
,U,N) =

∑
(
W 9 ,g

(N)
9

)
∈"−1 (D: ,U,N)

1

which is essentially the number of nuggets covered by an update D. We also define a latency

penalized version of this function,

�! (D8,U,N) =
∑

(
W 9 ,g

(N)
9

)
∈"−1 (D: ,U,N)

!

(
g
(N)
9
, g
(U)
8

)

where ! (g∗, g) = 1 − 2
c

arctan
(
g−g∗

3600∗6

)
, ! (g∗, g) = 1 when g = g∗, and ! (g∗, g) gradually ap-

proaches 0 as g − g∗ increases. In real time, the latency weighting !
(
g
(N)
9
, g
(U)
8

)
aproaches 2 if

D8 covers W 9 over 50 hours before g(N)
9

; !
(
g
(N)
9
, g
(U)
8

)
approaches 0 if D8 covers W 9 over 50 hours

after g(N)
9

. Under the latency weighting, systems receive a gain bonus for covering a nugget W 9

before its reference time g(N)
9

and a penalty for covering it after this time.

The first metric we use to evaluate a summary is the normalized expected gain,

=E[�] (U) = 1
/ |U|

∑
(
D8 ,g

(U)
8

)
∈U

� (D8,U,N)

where / is maximum achievable expected gain (computed per query). This metric can be thought

of as roughly analogous to precision. We also report a recall focused metric, called comprehen-

siveness, which is defined as

� (U) = 1
|N |

∑
(
D8 ,g

(U)
8

)
∈U

� (D8,U,N)

which measures the percentage of nuggets covered by the update summary. We also report the
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harmonic mean of normalized expected gain and comprehensiveness,

H(U) = 2
=E[�] (U) × � (U)
=E[�] (U) + � (U) .

A latency-penalized version of normalized expected gain, comprehensiveness, and their harmonic

mean can be obtained by replacing � with �! in the above calculations.

4.2 Dataset

For all of our experiments in this chapter, we use data collected or prepared for the TREC 2013,

2014, and 2015 Temporal Summarization shared-tasks (Aslam et al., 2013, 2014, 2015). The task

organizers provided both a corpus with which to create the document stream as well as sets of

reference query events for training/evaluation.

The corpus for the document stream consisted of the 2014 TREC KBA Stream Corpus (Frank

et al., 2012) which contains a 16.1 terabyte set of 1.2 billion timestamped documents crawled from

the web between October, 2011 and February 2013.1 The crawl includes a variety of news articles,

forum data, and blog pages. We only use the news portion of this dataset in our experiments.

Because the documents in this dataset are timestamped, we can simulate a document stream of

online news for the 2011-2013 time period.

The reference query events were manually curated by the track organizers from world news

events that were significant enough to have their own Wikipedia page. See Table 4.1 for the com-

plete list of reference query events collected for the shared-task. The task organizers also created

the query string and determined a suitable time period of interest, i.e. the time duration of the

event, for all reference query events. For each event we create a stream of relevant documents

from the KBA Stream Corpus by selecting only those documents that contain the complete set of

query terms and whose timestamps fall within the period of interest.

Assessors at the National Institute of Standards and Technology (NIST) constructed a ground

1http://streamcorpus.org/
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truth set of nuggets for each reference event by extracting important snippets from the introduction

of the event’s associated Wikipedia page. Assessors used the revision history to identify important

nugget texts, and also used the revision timestamps to establish the reference timestamps g(N)
8

for

each nugget W8. More detail on this process can be found in the official shared-task description

(Aslam et al., 2013).

4.3 The Salience-biased Affinity Propagation (SAP) Summarizer

We now present our first streaming summarization model, the salience-biased affinity propaga-

tion (SAP) summarizer. The SAP summarizer predicts sentence salience with respect to a query @,

and integrates these predictions into a clustering based multi-document summarization system. We

demonstrate that combining salience with clustering produces more relevant summaries compared

to baselines using clustering or salience alone. Our experiments suggest that this is because our

system is better able to adapt to dynamic changes in input volume that adversely affect methods

that use redundancy as a proxy for salience.

In addition to the tight integration between clustering and salience prediction, our approach

also exploits knowledge about the event to determine salience. Thus, salience represents both how

typical a sentence is of the event category (e.g., industrial accident, hurricane, riot) and whether

it specifies information about this particular event. Our feature representation includes a set of

language models, one for each event category, to measure the typicality of the sentence with regard

to the current event, the physical distance of mentioned locations from the center of the event, and

the change in word frequencies over the time of the event. While we evaluate these features in the

domain of disasters, this approach is applicable to any streaming summarization task.

We evaluate the SAP summarizer with two main experiments. First, we present the results of

our model in the TREC 2014 Temporal Summarization shared-task (Aslam et al., 2014), where

the SAP summarizer achieved top performance on the main evaluation metric (H ), and was also

shown to have higher precision relative to other participant systems. Second, we perform our own

independent evaluation, and show our approach achieves a statistically significant improvement in
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Algorithm 2: Salience-biased Affinity Propagation (SAP) Summarizer
Input: query string @, query category 2, stream S, period of interest (g«s», g«e»)
Output: update summaryU

/* Initialize empty update summary and system start time.

*/
1 U ← []
2 C ← 1
3 ĝ0 ← g«s»
4 ĝ1 ← g«e» + Xℎ>DA
5 while ĝC < g«e» do
6 /* Predict salience (§4.3.2) */

7 ŷC ← []
8 for B8 ∈ SĝC−1:ĝC do
9 ŷC ← ŷ ⊕ [ 5 (q (B8, @, 2))]

10 /* Select exemplars with SAP clustering (§4.3.3) */

11 EC ← APCluster(SĝC−1:ĝC , ŷC)
12 /* Select next updates (§4.3.4) */

13 UC ← FilterRedundant(EC ,U)
14 for D ∈ UC do
15 U ←U ⊕ [(D, ĝC)]
16 ĝC+1 ← ĝC + Xℎ>DA
17 C ← C + 1

ROUGE scores compared to multiple baselines in addition to the expected gain and comprehen-

siveness metrics. We also perform a feature ablation experiment to see which features are most

important in our salience estimation component.

4.3.1 Summarization Model

The summarizer takes as input the query string @ and category 2, as well as the period of

interest, (g«s», g«e»), i.e., the time period of the stream on which to run the summarizer. The sum-

marizer works by incrementing the system time in hourly batches, processing the newly observed

sentences, and selecting some of them to be updates, which are then added to the update summary.

When the system time exceeds g«e», the summarizer terminates, returning the completed update
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summary.

Pseudo-code for the SAP summarizer is shown in algorithm 2. The algorithm starts with an

empty update summaryU and initial system time ĝ1 = g«s» + Xℎ>DA (Alg. 2 lines 1–4). System time

is incremented in hourly intervals, i.e. ĝC − ĝC−1 = Xℎ>DA . At each time ĝC , we process the sentences

that entered the stream in the last hour, SĝC−1:ĝC , by performing the following actions:

1. predict the salience Ĥ8 of sentences B8 ∈ SĝC−1:ĝC (Alg. 2 lines 7–9, §4.3.2),

2. select a set of exemplar sentences EC ⊂ SĝC−1:ĝC by combining affinity propagation clustering

with salience predictions (Alg. 2 line 11, §4.3.3),

3. add the most novel and salient exemplars, UĝC , to the update summary U (Alg. 2 lines

13–15, §4.3.4).

Once the system time ĝC exceeds the period of interest (i.e., ĝC > g«e»), the summarizer returns

collected set of updatesU as the summary of the event.

4.3.2 Salience Estimation

4.3.2.1 Model

Given a sentence B ∈ SĝC−1:ĝC from the current hourly batch, the salience estimation model

determines how important or relevant it’s content is with respect to the query. Since we do not have

manual assessments of query-sentence salience for the overwhelming majority of the sentences in

the KBA Stream Corpus, we rely on an automatic measure for determining the salience targets we

wish to predict.

Let N be a timestamped collection of reference nuggets for query @. We define the salience

of a sentence B with respect to @ to be the degree to which it reflects an event’s reference nuggets,

which we define as its maximum nugget similarity,

salience (B, @) = max(
W8 ,g

(N)
8

)
∈N

similarity (B, W8) . (4.1)
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We implement the similarity function using the cosine-similarity of latent-space vectors asso-

ciated with B and W 9 using weighted matrix factorization (WMF) (Srebro and Jaakkola, 2003; Guo

and Diab, 2012). Given a term-sentence matrix K ∈ R�F×�B where K8, 9 is the TF-IDF weight of

term 8 in sentence 9 , WMF finds a low-rank approximation PᵀQ ≈ K where P ∈ R�ℎ×�F and

Q ∈ R�ℎ×�B are projection matrices into the latent term and document spaces respectively. The

projection matrices are found by minimizing the weighted reconstruction error of K under a least

squares objective, i.e.,

L (P,Q) =
�F∑
8=1

�B∑
9=1

W8, 9

(
K8, 9 −

(
PᵀQ

)
8, 9

)2
+ reg.

Following Guo and Diab (2012), we set the weight W8, 9 to

W8, 9 =


0.01 if K8, 9 = 0,

1 otherwise

which focuses the reconstruction on non-zero entries in K. The intuition here is that K is sparse

so error in modeling the 0 entries, which we care least about, will dominate the loss. By down-

weighting those entries, the projection matrices must better represent how terms are positively

associated to the documents they occur in.2 Let k (B) , k (W) ∈ R�F be projections into TF-IDF

weighted bag-of-words space of B and W respectively. The similarity of B and W then is defined as,

similarity (B, W) = cosine-similarity (P · k (B) ,P · k (W)) . (4.2)

Since the summarizer will not have knowledge of the reference summary N at test time, we

must estimate Equation 4.1 without it. To that end, we fit a regression model 5 (·) to estimate the

2WMF is similar to latent semantic analysis (LSA) (Dumais et al., 1988) which uses a truncated singular-value
decomposition to obtain term and sentence projections but does not reweight non-zero entries. Interestingly, WMF is
also similar to the global vector (GloVe) embedding method (Pennington et al., 2014) which minimizes a weighted
least squares objective of a term-by-term log cooccurrence matrix.
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salience of a sentence with respect to the query, i.e.,

salience (B, @) ≈ 5 (q (B, @, 2)) (4.3)

using features, q (B, @, 2), of the sentence, query, and query category.

We opt to use a Gaussian process (GP) regression model (Rasmussen and Williams, 2005) with

a radial basis function (RBF) kernel for the salience prediction task. Our features fall naturally into

five groups (which we describe below) and we use a separate RBF kernel for each, using the sum

of each feature group RBF kernel as the final input to the GP model.

Given our feature representation of the input sentences, we need only target salience values

for model learning. For each query event in our training data, we sample a set of sentences and

each sentence’s salience is computed according to Equation 4.1. This results in a training set of

sentences with their feature representations and target salience values, to which we fit the salience

estimator.

4.3.2.2 Features

We want our model to be predictive of sentence salience across different event instances so we

avoid event-specific lexical features. Instead, we extract features such as language model scores,

geographic relevance, and temporal relevance from each sentence; these features in our initial

model development were consistently helpful across specific event instances and categories.

Basic Features We employ several basic features that have been used previously in supervised

models to rank sentence salience (Kupiec et al., 1995; Conroy and O’Leary, 2001). These include

sentence length, the number of capitalized words normalized by sentence length, document po-

sition, and number of named entities. The data stream comprises text extracted from raw html

documents; these features help to down-weight sentences that are not content (e.g. web page titles,

links to other content) or more heavily weight important sentences (e.g., that appear in prominent

positions such as paragraph initial or article initial).
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Query Features Query features measure the relationship between the sentence and the event

query and category. These include the number of query words present in the sentence in addition

to the number of event category synonyms, hypernyms, and hyponyms using WordNet (Miller,

1995). For example, for event category earthquake, we match sentence terms “quake”, “temblor”,

“seism”, and “aftershock”.

Language Model Features Language models allow us to measure the likelihood of producing

a sentence from a particular source. We consider two different language models to obtain features.

The first model is estimated from a corpus of generic news articles (we used the 1995-2010 As-

sociated Press section of the Gigaword corpus (Graff and Cieri, 2003)). This model is intended to

assess the general writing quality (grammaticality, word usage) of an input sentence and helps our

model to select sentences written in the newswire style.

The second model is estimated from text specific to our event categories. For each event cate-

gory we create a corpus of related documents using pages and subcategories listed under a related

Wikipedia category. For example, the language model for event category earthquake is estimated

from Wikipedia pages under Category:Earthquakes. Table 4.1 lists the event categories for each of

the events in our dataset. These models are intended to detect sentences similar to those appearing

in summaries of other events in the same category (e.g., most earthquake summaries are likely

to include higher probability for ngrams including the token ‘magnitude’). While we focus our

system on the language of news and disaster, we emphasize that the use of language modeling can

be an effective feature for multi-document summarization for other domains that have related text

corpora.

We use the SRILM toolkit (Stolcke, 2002) to implement a 5-gram Kneser-Ney model for both

the background language model and the event category specific language models. For each sen-

tence we use the average token log probability under each model as a feature.

Geographic Relevance Features The events in our corpus are all phenomena that affect some

part of the world. Where possible, we would like to capture a sentence’s proximity to the event,

i.e. when a sentence references a location, it should be close to the geographic area of the event.
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There are two particular challenges to using geographic features in our present setting. First, we

do not know where the event is, and second, most sentences do not contain references to a location.

We address the first issue by extracting all locations (using contiguous token spans tagged with a

location tag under a named-entity tagger) from documents relevant to the event at the current hour

(i.e. 38 ∈ DĝC−1:ĝC ) and looking up their latitude and longitude using a publicly available geo-

location service. Since the documents are at least somewhat relevant to the event, we assume in

aggregate the locations should give us a rough area of interest. The locations are clustered and we

treat the resulting cluster centers as the event locations for the current time.3

The second issue arises from the fact that the majority of sentences in our data do not contain

explicit references to locations. Our intuition is that geographic relevance is important in the disas-

ter domain, and we would like to take advantage of the sentences that do have location information

present. To make up for this imbalance, we instead compute an overall location for the document

and derive geographic features based on the document’s proximity to the event in question. These

features are assigned to all sentences in the document.

Our method of computing document-level geographic relevance features is as follows. Using

the locations in each document, we compute the median distance to the nearest event location.

Because document position is a good indicator of importance we also compute the distance of

the first mentioned location to the nearest event location. All sentences in the document take as

features these two distance calculations. Because some events can move, we also compute these

distances to event locations from the previous hour.

Temporal Relevance Features As we track events over time, it is likely that the coverage of

the event may die down, only to spike back up when there is a breaking development. Identifying

terms that are “bursty,” i.e. suddenly peaking in usage, can help to locate novel sentences that are

part of the most recent reportage and have yet to fall into the background.

We compute the IDFC for each hour sub-sequence, SĝC−1:ĝC . For each sentence B ∈ SĝC−1:ĝC ,

3The great-circle distance (https://en.wikipedia.org/wiki/Great-circle_distance), which is
the shortest arc between two points projected onto the surface of a sphere, is used as the distance metric for clustering.
Clustering is done with affinity propagation clustering.
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the average TF-IDFC is taken as a feature. Additionally, we use the difference between average

TF-IDFC and average TF-IDFC − 8 for 8 ∈ {1, . . . , 24} to measure how the TF-IDF scores for the

sentence have changed over the last 24 hours, i.e. we keep the sentence term frequencies fixed and

compute the difference in IDF. Large changes in IDF value indicate the sentence contains bursty

terms. We also use the time (in hours) since the event started as a feature.

4.3.3 Affinity Propagation Clustering

Once we have predicted the salience for a batch of sentences, we must now select a set of update

candidates, i.e. sentences that are both salient and representative of the current batch. To accom-

plish this, we combine the output of our salience prediction model with the affinity propagation

clustering algorithm (Frey and Dueck, 2007).

Affinity propagation (AP) identifies a subset of data points as exemplars and forms clusters by

assigning the remaining points to one of the exemplars. Let

X = {B1, . . . , B=}

be a set of = data points to be clustered and let

9 = [Y1, . . . , Y=]

be a vector of corresponding exemplar assignments, i.e. Y8 ∈ {1, . . . , =} and Y8 = : means that B:

is the exemplar for B8.

AP attempts to maximize the constrained net similarity objective,

L (9) = 4

(∑=
8=1 sim(B8 ,BY8 )+

∑=
:=1 log 6: (9)

)
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where sim
(
B8, BY8

)
∈ R measures the affinity of B8 for its exemplar BY8 and

6: (9) =


0 Y: ≠ : but ∃8 : Y8 = :

1 otherwise

expresses the constraint that if B: is some point’s exemplar, it must be its own exemplar, i.e. all

clusters must have one exemplar. The affinities can be interpreted as a log-probabilities of the

exemplar-assignments, i.e. ?(9) = L(9)∑
9′ L(9′)

. Frey and Dueck (2007) show the net similarity objec-

tive can be viewed as a factor graph and an optimal configuration can be found using max-product

message passing. For the affinity function sim, we use

sim
(
B8, BY8

)
=


5 (q (x8, @, 2)) if 8 = Y8

similarity
(
B8, BY8

)
otherwise

where 5 (q (B8, @, 2)) is the salience estimate of sentence B8 (Equation 4.3) and similarity
(
B8, BY8

)
is the WMF-based similarity method (Equation 4.2).

AP has several useful properties relevant to our stream summarization task. Chiefly, the number

of clusters : is not a model hyper-parameter. Given that our task requires clustering many batches

of data with potentially large variations in the volume of data per batch, searching for an optimal

: would be computationally prohibitive. With AP, : is determined by the self-affinity, sim(B8, B8),

of the data, with lower overall values of sim(B8, B8) yielding a smaller number of clusters. When

the volume of input is high but the salience predictions are low, the self-affinity term will guide

AP toward a solution with fewer clusters; vice-versa when input is very salient on average but the

volume of input is low. The adaptive nature of our model differentiates our method from most

other update summarization systems.

In the summarization pipeline, given a batch of sentences SĝC−1:ĝC and their salience estimates

ŷC , we run the AP clustering algorithm and obtain the set of exemplars EC = APCluster(SĝC−1:ĝC , ŷC).

The exemplars EC are then passed to a redundancy filtering stage which we describe next.
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4.3.4 Redundancy Filtering and Update Selection

The exemplar sentences from the exemplar selection stage are the most salient and representa-

tive of the input for the current hour. However, we need to reconcile these sentences with updates

from the previous hours to ensure that the most salient and least redundant updates are selected.

To ensure that only the most salient updates are selected we apply a minimum salience threshold;

after exemplar sentences have been identified, any exemplars whose salience is less than _B0; are

removed from consideration.

Next, to prevent adding updates that are redundant with previous output updates, we filter out

exemplars that are too similar to previous updates. The exemplars are examined sequentially in

order of decreasing salience and a similarity threshold is applied, where the exemplar is ignored

if its maximum semantic similarity to any previous updates in the summary is greater than _B8<.

Exemplars that pass these thresholds (indicated asUC in Alg. 2 line 13) are selected as updates and

added to the summary.

4.3.5 TREC 2014 Experiments and Results

We submitted three different model variations to the 2014 TREC Temporal Summarization

shared-task (Aslam et al., 2015). The models were submitted under the Team ID cunlp and given

the following Run IDs:

1. 1APSalRed — the SAP summarizer where salience predictions are penalized by similarity

to prior updates. Let Ĥ: = 5 (q (D: , @, 2)) for each update inU. The salience estimate for a

new sentence B8 is 5 (q (B8, @, 2)) −
∑(

D: ,g
(U)
:

)
∈U Ĥ: · similarity (B8, D: ).

2. 2APSal — the SAP summarizer.

3. 3AP — the summarizer with no salience estimation, all non-singleton exemplars are passed

on to the redundancy filter and update selection stage.

We use the 10 TREC 2013 events to train/tune our submitted models. Three of the events were

selected at random as a development set. All system salience and similarity threshold parameters
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TeamID RunID =E[�] (U) � (U) �! (U) H! (U)
cunlp 2APSal 0.0631 0.3220 1.2068 0.1162
BJUT Q1 0.0657 0.4088 1.1491 0.1110
BJUT Q2 0.0632 0.3979 1.1669 0.1091
BJUT Q0 0.0632 0.3979 1.1669 0.1091
uogTr uogTr2A 0.0467 0.4453 1.2322 0.0986
uogTr uogTr4AC 0.0347 0.4539 1.2751 0.0793
uogTr uogTr4ARas 0.0387 0.3691 1.2328 0.0772
IRIT KW30H5NW3600 0.0383 0.3521 1.2221 0.0723
IRIT KW30H5NW300 0.0378 0.3538 1.2208 0.0714
uogTr uogTr4A 0.0281 0.4733 1.2522 0.0677

average 0.0327 0.3615 1.2943 0.0620

IRIT KW80H5NW3600 0.0289 0.3764 1.2191 0.0604
IRIT KW30H10NW300 0.0298 0.3780 1.2617 0.0602
cunlp 1APSalRed 0.0325 0.3058 1.1507 0.0602
IRIT KW80H5NW300 0.0285 0.3806 1.2164 0.0596

ICTNET run3 0.0531 0.1081 0.7004 0.0530
BUPT_PRIS Cluster4 0.0155 0.2692 1.9140 0.0508

IRIT KW80H10NW300 0.0225 0.4012 1.2621 0.0503
BUPT_PRIS Cluster3 0.0115 0.3380 1.9165 0.0407

cunlp 3AP 0.0174 0.4265 1.3689 0.0403
ICTNET run2 0.0418 0.0934 0.6266 0.0311

BUPT_PRIS Cluster2 0.0059 0.3728 1.9170 0.0222
ICTNET run4 0.0079 0.4070 1.2364 0.0178
ICTNET run1 0.0070 0.4090 1.2314 0.0160

BUPT_PRIS Cluster1 0.0033 0.4369 1.9175 0.0127

Table 4.2: Official TREC 2014 Temporal Summarization shared-task results using manual up-
date/nugget matches.

are tuned on the development set to maximize ROUGE-2 F1 scores with respect to the reference

summariesN . We fit separate salience models using 1,000 sentences randomly sampled from each

of the seven remaining TREC 2013 query events using its associated document stream. When

predicting the salience for a new sentence at test time, we use the average prediction of all seven

models.

Participant systems were run on 15 query events and associated document streams curated

for the evaluation. Updates from the participant systems were pooled and manually matched to

reference nuggets by NIST assessors. These matches were used to compute the shared-task evalu-
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ation metrics (§4.3.1): normalized expected gain, =E[�] (U), comprehensiveness � (U), latency-

penalized comprehensiveness�! (U), and the overall track evaluation measure, the harmonic mean

H! (U) of the latency-penalized =E[�] (U) and � (U) variants.

To give a qualitative flavor of our produced summaries, we show excerpts of two summaries

produced by the 2APSal, i.e. SAP, model, in Figure 4.1. Results from the official TREC 2014

Temporal Summarization shared-task are shown in Table 4.2. We see that our 2APSal model had

the highest overall H! (U). It was also one of the most precise models along with BJUT runs

Q1, Q2, and Q0. The 2APSal and the BJUT runs return far fewer updates on average while still

managing to include updates that matched to nuggets. The 2APSal run returned 381.4 updates per

query on average while the overall track average was 8,528.55 updates per query on average.

When we look at 3AP, which had no salience component, it had higher recall (i.e. compre-

hensiveness) than 2APSal but was much less precise, returning 5,967 updates on average. This

suggests that the salience estimation was important for guiding the summarizer.

The performance of 1APSalRed was between 3AP and 2APSal. The redundancy penalty meant

that the average self-similarities were flatter than those of 2APSal yielding more diverse updates,

which were not as likely to be matched to ground-truth nuggets, and therefore hurting the expected

gain metrics.

All three of our proposed models had a latency-penalized comprehensiveness, �! (U), above

one (1.1507 − 1.3689). Values above one indicate the average update that matched a nugget was

selected before that information made it into Wikipedia (and confusingly getting a latency reward

for early returns). In this case our proposed model was finding nugget information around three to

five hours ahead of its publication in Wikipedia.

4.3.6 Automatic Experiments

Independent of the official TREC shared-task evaluation we also perform our own experiments

using automatically computed metrics. In particular, we compute ROUGE with respect to the

reference summaries N , and expected gain and comprehensiveness computed using automatically
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Hurricane Sandy

•
The forecast map shows Sandy reaching eastern Cuba by early Thursday before heading
to the Bahamas.

•
Jamaica’s government issued a hurricane warning on Tuesday morning and announced
schools would be closed on Wednesday.

•
Dangerous flash floods and mudslides set off by Sandy were a threat for the island of roughly 2.7
million inhabitants, Jamaica’s meteorological service said.

•
A few reliable forecast models bring Sandy close enough to the coast to produce heavy rains,
strong winds and beach erosion.

• Max winds are 65 mph with strengthening to a hurricane expected in the next 12 to 18 hours.

•
The two international airports, as well as schools and businesses, will remain closed today until
the hurricane warning, which is now in effect for the island, is lifted.

2012 Pakistan Garment Factory Fires

•
The fire broke out when people in the building were trying to start their generator after the elec-
tricity went out.

•
Pakistani television showed pictures of what appeared to be a three-story building with flames
leaping from the top-floor windows and smoke billowing into the night sky.

•
The people went to the back side of the building but there was no access, so we had to made
forceful entries and rescue the people, said Numan Noor, a firefighter on the scene.

•
“We have recovered 63 bodies, including three found when we reached the basement of the build-
ing,” Karachi fire chief Ehtesham Salim told AFP on Wednesday.

• Salim added that the blaze was Karachi’s “biggest fire in terms of deaths in decades.”
• The garment trade as a whole is vital to Pakistan’s shaky economy.

2012 Romanian Protests

•
Clashes between riot police and demonstrators have also erupted in the Romanian capital
Bucharest for a third day in a row.

• BOC urged Romanians to understand that tough austerity measures are needed to avoid a default.
• More than 1,000 protesters rallied in Bucharest’s main university square, blocking traffic.

•
Bucharest : a Romanian medical official says 59 people suffered injuries as days of protests against
the government and austerity measures turned violent.

•
Most Romanians agree that only fundamental reform can save the country’s ailing and corrupt
system.

•
Many Romanians feared this would only increase corruption and create a further divide between
the classes, leading to a two-tier system in which only the wealthy would be able to afford care.

Figure 4.1: SAP summary excerpts.
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matched update-nugget pairs.

We evaluate our system on two metrics: ROUGE and the unnormalized expected gain, E[�] (U),

and the comprehensiveness, � (U) using automatically matched updates/nuggets. We also perform

a feature ablation study and evaluate the resulting performance on ROUGE.

In this evaluation, we use the TREC 2013 and 2014 events, 25 events in total. One of the

events is not actually covered by the KBA Stream Corpus so we discard. From the remaining 24,

we set aside three events to use as a development set. All system salience and similarity threshold

parameters are tuned on the development set to maximize ROUGE-2 F1 scores. We train a salience

model for each event using 1000 sentences randomly sampled from the event’s document stream.

We perform a leave-one-out evaluation of each event. At test time, we predict a sentence’s salience

using the average predictions of the 23 other models.

ROUGE Evaluation Model summaries for each event were constructed by concatenating the

event’s nuggets. Generally, ROUGE evaluation assumes both model and system summaries are of a

bounded length. Since our systems are summarizing events over a span of two weeks time, the total

length of our system output is much longer than the model. To address this, for each system/event

pair, we sample with replacement 1,000 random summaries of length less than or equal to the

model summary (truncating the last sentence when neccessary). The final ROUGE scores for the

system are the average scores from these 1,000 samples.

Because we are interested in system performance over time, we also evaluate systems at 12 hour

intervals using the same regime as above. The reference summaries in this case are retrospective

(i.e., covering the entire period of interest), and this evaluation reveals how quickly systems can

cover information in the reference.

Expected Gain and Comprehensiveness In order to compute the expected gain and compre-

hensiveness, we need to know which updates cover which nuggets. While this was done man-

ually with an extensive pool of manual annotators for the TREC shared task, we determine the

covering automatically. A cover exists if the WMF-based similarity of the update/nugget pair is
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above a threshold. Determining an optimal threshold to count covers is difficult so we evaluate at

threshold values ranging from .5 to 1, where values closer to 1 are more conservative estimates of

performance. A manual inspection of matches suggests that similarity values around .7 produce

reasonable matches. The average similarity of manual matches performed by NIST assessors was

much lower at approximately .25, increasing our confidence in the automatic matches in the .5–1

range.

Note that we report expected gain here and not normalized expected gain. This allows us to

use the more intuitive interpretation of expected gain which is the average number of unique, non-

redundant nuggets each update covers. For example, E[�] (U) = 1 would indicate on average that

each update covered one novel nugget, while E[�] (U) = 0.5 would mean on average every two

updates covers a novel nugget.

4.3.6.1 Model Comparisons

We refer to our complete model as SAP. We compare this model against several variants and

baselines intended to measure the contribution of different components. All thresholds for all runs

are tuned on the development set.

Affinity Propagation only (AP) The purpose of this model is to directly measure the effect of

integrating salience and clustering by providing a baseline that uses the identical clustering com-

ponent, but without the salience information. In this model, input sentences are a priori equally

likely to be exemplars; the self-affinity values are uniformly set as the median value of the input

similarity scores, as is commonly used in the AP literature (Frey and Dueck, 2007). After cluster-

ing a sentence batch, the exemplars are examined in order of increasing time since event start and

selected as updates if their maximum similarity to the previous updates is less than _B8<, as in the

novelty filtering stage of SAP.

Hierarchical Agglomerative Clustering (HAC) We provide another clustering baseline, single-

linkage hierarchical agglomerative clustering. We include this baseline to show that SAP is not
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ROUGE-1 ROUGE-2

Model Recall Prec. F1 Recall Prec. F1

SAP 0.282 0.344 0.306 0.045 0.056 0.049
AP 0.245 0.285 0.263 0.033 0.038 0.035
RS 0.230 0.271 0.247 0.031 0.037 0.034
HAC 0.169 0.230 0.186 0.017 0.024 0.019

Table 4.3: Model ROUGE performance.

just an improvement over AP but centrality driven methods in general. HAC was chosen over

other clustering approaches because the number of clusters is not an explicit hyper-parameter. To

produce flat clusters from the hierarchical clustering, we flatten the HAC dendrogram using the

cophenetic distance criteria, i.e. observations in each flat cluster have no greater a cophenetic

distance than a threshold. Cluster centers are determined to be the sentence with highest cosine

similarity to the flat cluster mean. Cluster centers are examined in time order and are added to the

summary if their similarity to previous updates is below a similarity threshold _B8< as is done in

the AP model.

Rank by Salience (RS) We also isolate the impact of our salience model in order to demonstrate

that the fusion of clustering and salience prediction improves over predicting salience alone. In this

model we predict the salience of sentences as in step 1 for SAP. We omit the clustering phase (step

2). Updates are selected identically to step 3 of SAP, proceeding in order of decreasing salience,

selecting updates that are above a salience threshold _B0; and below a similarity threshold _B8< with

respect to the previously selected updates.

4.3.7 Results

ROUGE Table 4.3 shows our results for system output samples against the full summary of

nuggets using ROUGE. SAP improves over the individual component systems, i.e. affinity propa-

gation only (AP) or salience prediction only (RS), suggesting the combination of these two com-

ponents is beneficial. This improvement is statistically significant for ROUGE − 1 and ROUGE − 2
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Figure 4.2: System ROUGE-1 performance over time.

precision, recall, and F-measures at the U = .01 level using the Wilcoxon signed-rank test. The full

system or the individual components AP and RS also outperform the alternative clustering method

HAC.

SAP maintains its performance above the baselines over time as well. Figure 4.2 shows the

ROUGE-1 scores over time. We show the difference in unigram precision (bigram precision is not

shown but it follows similar curve). Within the initial days of the event, SAP is able to take the lead

over the other systems in ngram precision. The SAP model is better able to find salient updates

earlier on; for news and crisis informatics, this is an especially important quality of the model.

Moreover, the SAP’s recall is not diminished by the high precision and remains competitive with

AP. Over time SAP’s recall also begins to pull away, while the other models begin to plateau.

Expected Gain and Comprehensiveness Figure 4.3 shows the expected gain across a range of

similarity thresholds, where thresholds closer to 1 are more conservative estimates. The ranking of

the systems remains constant across the sweep with SAP beating all baseline systems. Predicting

salience in general is helpful for keeping a summary on topic as the RS approach outperforms the

clustering only approaches on expected gain.
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Figure 4.3: Expected Gain and Comprehensiveness performance.

When looking at the comprehensiveness of the summaries AP outperforms SAP. The com-

promise encoded in the SAP objective function, between being representative and being salient,

is seen clearly here where the performance of the SAP methods is lower bounded by the salience

focused RS system and upper bounded by the clustering only AP system. Overall, SAP achieves

the best balance of these two metrics.

4.3.8 Feature Ablation

Table 4.4 shows the results of our feature ablation tests. Removing the language models yields

a statistically significant drop in both ngram recall and F-measure.

Removing the language model and geographic relevance features leads to a statistically signif-

icant drop in ROUGE-1 F1 scores. Unfortunately, this is not the case for the temporal relevance
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ROUGE-1 ROUGE-2

Model Recall Prec. F1 Recall Prec. F1

Full System 0.282 0.344 0.306 0.045 0.056 0.049
No Basic 0.263 0.380† 0.294 0.046 0.068†† 0.051†
No LM 0.223† 0.361 0.254† 0.033† 0.056 0.038†
No Time 0.297† 0.367†† 0.322† 0.052†† 0.064†† 0.056††
No Geo 0.232†† 0.381 0.265† 0.037† 0.065 0.042
No Query 0.251 0.377 0.280 0.043 0.068† 0.048

Table 4.4: Feature ablation ROUGE performance. † indicates statistically significant difference
from full model at the U = .05 level. †† indicates statistically significant difference from full
model at the U = .01 level.

features. We surmise that these features are too strongly correlated with each other, i.e. the differ-

ences in TF-IDF between hours are definitely not i.i.d. variables.

Interestingly, removing the basic features leads to an increase in both unigram and bigram

precision; in the bigram case this is enough to cause a statistically significant increase in F-measure

over the full model. In other words, the generic features actually lead to an inferior model when we

can incorporate more appropriate domain specific features. This result perhaps echoes the claim of

Spärck Jones (1999) that generic approaches to summarization are unlikely to produce truly useful

summaries.

4.4 Learning-to-Search (L2S) Summarizer

While our previous summarization model proved reasonably capable of summarizing events

over time, by processing the stream in hourly batches it was limited in its ability to respond quickly

to unfolding events. One reason for this limitation is an implicit assumption in that model, and most

multi-document summarization models, that frequency of a unit of text is a proxy for its salience.

In retrospective summarization of static document collections, this is a reasonable assumption,

and has been exploited successfully in various ways: TF-IDF term weightings, document lan-

guage models derived from frequency, and random-walks on sentence-graphs whose edges are

determined by frequently co-occurrring terms (Lin and Hovy, 2000; Radev et al., 2000; Erkan and
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Radev, 2004; Mihalcea and Tarau, 2004; Nenkova and Vanderwende, 2005; Daumé III and Marcu,

2006).

In the streaming setting these proxy features are constantly evolving. There may be fallow

periods in an event where nothing happens and then sudden bursts of activity. The behavior of

SAP is unsuited for this, in that it is run every hour regardless. In the SAP model, by collecting

an hour’s worth of documents and performing a salience-biased clustering, we try to walk the line

between using clustering, where the frequency of like text units are effectively votes for the most

salient unit, and predictions about salience from our regression model, which makes more use of

the semantics of the query event and text unit under analysis. However, as we showed in the feature

ablation, incorporating time-based frequency features made the model worse. While we are able

to incorporate salience estimate successfully into the summarization model with SAP, we have yet

to successfully provide a learning-based of model the entire summarization process.

In this section, we attempt to overcome these limitations, removing the clustering component

from the update selection, and develop a fully online streaming summarization model, one that

learns to make extraction decisions immediately upon seeing the next sentence from S, using fea-

tures derived from the entire observed document stream, the state of the current update summary,

and the model’s prior extraction decisions. To that end, we present a novel streaming-document

summarization system based on sequential decision making. Specifically, we adopt the “learning

to search” approach, a technique which adapts methods from reinforcement learning for structured

prediction problems (Daumé III et al., 2009; Ross and Bagnell, 2010). In this framework, we cast

streaming summarization as a form of greedy search and train our system to imitate the behavior

of an oracle summarization system. Effectively, we train a linear classifier to predict when to ex-

tract a sentence B ∈ S using features of the sentence, query, previous summary updates, and other

aggregate statistics collected from the stream up to the current time ĝC .

As in the previous section, we report both the TREC 2015 Temporal Summarization shared-

task manual evaluation as well as our own independent automatic evaluation. In our evaluation

we demonstrate a 28.3% improvement in summary H! (U) and a 43.8% improvement in time-
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sensitiveH! (U) metrics against several state-of-the-art baselines. In shared-task evaluation of our

system at TREC 2015, where we were the second-best performing team in the main evaluation,

and top system for a secondary evaluation run on a pre-filtered, highly relevant document stream.

4.4.1 Stream Summarization as Sequential Decision Making

We could naïvely treat the stream summarization problem as classification and predict which

sentences to extract or skip. However, this would make it difficult to take advantage of many fea-

tures (e.g. sentence novelty with regard to previous updates). What is more concerning, however,

is that the classification objective for this task is somewhat ill-defined: successfully predicting ex-

tract on one sentence changes the true label (from extract to skip) for sentences that contain the

same information but occur later in the stream.

In this work, we pose stream summarization as a greedy search over a binary branching tree

where each level corresponds to a position in the stream (see Figure 4.4). The height of the tree

corresponds to the length of stream. A path through the tree is determined by the system extract

and skip decisions.

When treated as a sequential decision making problem, our task reduces to defining a policy

for selecting a sentence based on its features as well as the features of its ancestors (i.e., all of the

observed sentences and previous extraction decisions). The union of these features represents the

current state in the decision making process.

The feature representation provides state abstraction both within a given query’s search tree as

well as to states in other queries’ search trees, and also allows for complex interactions between

the current update summary, candidate sentences, and stream dynamics unlike the classification

approach.

In order to learn an effective policy for a query @, we can take one of several approaches. We

could use a simulator to provide feedback to a reinforcement learning algorithm. Alternatively,

if provided access to an evaluation algorithm at training time, we can simulate (approximately)

optimal decisions. That is, using the training data, we can define an oracle policy that is able to
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Figure 4.4: Search space for a stream of 5 sentences. Left branches skip the current sentence. Right
branches indicate extracting the current sentence as an update. The path in green corresponds to
one trajectory through this space consisting of extracting sentence B1, then skipping sentences
B2, . . . , B4 and extracting sentence B5.

omnisciently determine which sentences to extract and which to skip. Moreover, it can make these

determinations by starting at the root or at an arbitrary node in the tree, allowing us to observe

optimal performance in states unlikely to be reached by the oracle. We adopt locally optimal

learning to search to learn our model from the oracle policy (Chang et al., 2015).

4.4.2 Policy-based Stream Summarization

In the induced search problem, each search state GC ∈ X corresponds to observing the first C

sentences in the stream [B1, . . . , BC] ⊂ S and a sequence of C − 1 actions H1, . . . , HC−1. For each

state GC ∈ X, the set of actions is HC ∈ {0, 1} with HC = 1 indicating we extract the C-th sentence and

add it to our update summary, and HC = 0 indicating we skip it. For simplicity of exposition, we

assume a fixed length stream of size ) but this is not strictly necessary.

A policy, 5 : X → {0, 1}, is a mapping from states to an extraction decision. Given a policy,

the policy-based stream summarization algorithm (algorithm 3) is trivial, iterating sequentially

over sentences in the stream, and adding each sentence to the update summary if it is the current
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Algorithm 3: Policy-based Stream Summarization
Input: query string @, query category 2, stream S, period of interest (g«s», g«e»),

summarization policy 5

Output: update summaryU
1 U ← {}
2 for BC ∈ Sg«s»:g«e» do
3 GC ← (B1, . . . , BC , H1, . . . , HC−1, @, 2)
4 HC ← 5 (GC)
5 if HC = 1 then
6 U ←U ∪

{(
BC , g

(S)
C

)}

action determined by 5 . In practice, we use a linear cost-sensitive classifier to implement 5\ , with

HC = 5\ (GC) = arg min
H∈{0,1}

q(GC , H) · \H

where we encode each state-potential action pair (GC , H) as a 3-dimensional feature vector q(GC , H) ∈

R3 and \0, \1 ∈ R3 are learned parameters. Note that q(GC , H) · \H is a linear regression to predict

the cost, which we define shortly, associated with taking action H in state GC . Given estimates of

our two available actions, extracting a sentence or ignoring it, our policy 5 5 selects the action with

minimum cost.

Before we can define cost more concretely, we must first introduce some additional notation

and concepts. For a given sequence of states G1, . . . , G) explored by a policy 5 , let y = [H1, . . . , H) ]

be the associated sequence of actions taken by 5 , i.e. HC = 5 (GC). A loss function, ℓ : {0, 1}) → R,

measures the quality of an action sequence y. In our present case this might be the negative ROUGE

score of the update summary that results from y or some other relevant measure of performance.

Let 5 be a policy, G1, . . . , G) a sequence of states explored by 5 , and the corresponding action

sequence y. We also define a second policy, 5 (>) , which we call the roll-out policy and which may

or may not be distinct from 5 . For any state GC we can then define two additional action sequences,

ŷ(C,Ĥ, 5 (>)) =
[
H1, . . . , HC−1, ĤC , H

(C,Ĥ, 5 (>))
C+1 , . . . , H

(C,Ĥ, 5 (>))
)

,

]
∀ĤC ∈ {0, 1}
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where ŷ(C,Ĥ, 5 (>)) is the sequence of actions that result from following 5 on the first C − 1 states,

taking action ĤC at state GC and then following 5 (>) on the remaining ) − C states. That is, for : > C,

H( ,:, 5 (>)) = 5 (>) (G′
:
), where G′

:
is the state that results from taking action ĤC in GC and following 5 (>)

on a sequence of states G′
C+1, . . . , G

′
:
. The loss, ℓ

(
ŷ(C,0, 5 (>))

)
, then reflects the evaluation measure

for an update summary where sentence BC was not extracted, and 5 (>) completed the summary of

the stream. Similarly, ℓ
(
ŷ(C,1, 5 (>))

)
reflects the evaluation measure for an update summary where

sentence BC was extracted, and 5 (>) completed the summary of the stream.

We can now define the cost of an action H in state GC as

2(GC , H) = ℓ
(
ŷ(C,H, 5 (>))

)
− min
H′∈{0,1}

ℓ

(
ŷ(C,H′, 5 (>))

)
.

Note that the cost is also a function of 5 (>) , which determines how the action sequence is completed

after GC . The costs connect the overall summary loss ℓ
(
ŷ(C,Ĥ, 5 (>))

)
to a particular action in GC that

builds the summary. We depict an example of the cost computation in Figure 4.5. We discuss how

to collect costs and learn \0 and \1 such that they are good estimators of cost in the next section.

4.4.3 The Locally-Optimal Learning-to-Search Algorithm

In a perfect world, we would have a training set of state-action pairs, (GC , HC), and their associ-

ated costs 2(GC , HC), drawn from a distribution of states similar to the one our final learned policy

would produce. With these states, actions, and costs in hand we could fit two linear regressions,

one for estimating the cost of extract actions and one for skip actions from a given state’s feature

representation; we would immediately have a suitable stream summarization policy. Unfortunately,

we do not have a reasonable distribution of state-action pairs let alone the associated costs. Instead

we turn to the locally-optimal learning-to-search (LOLS) algorithm (Chang et al., 2015), presented

in algorithm 4, to iteratively refine our learned policy as it attempts to follow an oracle policy.

At a high level, we begin with an initially random learned policy. We leverage a heuristic

oracle stream summarizer and our learned policy to collect state-action pairs and their costs from
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Sentence Stream Search Space Roll-out Action Sequences
Sg«s»:g«e»

B1

B2

B3

B4

B5

extract

skip

G1

G2

G3

extract

sk
ip

sk
ip

sk
ip

ŷ(3,0, 5 (>)) ŷ(3,1, 5 (>))

H1 = 1 H1 = 1

H2 = 0 H2 = 0

Ĥ3 = 0 Ĥ3 = 1

H
(3,0, 5 (>))
4 = 1 H

(3,1, 5 (>))
4 = 0

H
(3,0, 5 (>))
5 = 0 H

(3,1, 5 (>))
5 = 0

H1 = 1 H1 = 1

H2 = 0 H2 = 0

Ĥ3 = 0 Ĥ3 = 1

H
(3,0, 5 (>))
4 = 1 H

(3,1, 5 (>))
4 = 0

H
(3,0, 5 (>))
5 = 0 H

(3,1, 5 (>))
5 = 0

Computing Costs 2(G3, 0) and 2(G3, 1)

Step 1. Roll-in to G3 with policy 5 .
Use policy 5 to explore to state G3, shown in green in the search space above.

Step 2. Roll-out with 5 (>) to create action sequences ŷ(3,0, 5 (>)) and ŷ(3,1, 5 (>)) .
For each action Ĥ3 ∈ {0, 1}, use 5 (>) to complete the roll-outs after having made action Ĥ3
in state G3 (shown in purple and orange respectively) and create alternative action sequences
ŷ(3,0, 5 (>)) and ŷ(3,1, 5 (>)) (shown on the right).

Step 3. Compute losses.
After completing the roll-outs, compute losses ℓ

(
ŷ(3,0, 5 (>))

)
and ℓ

(
ŷ(3,1, 5 (>))

)
.

Step 4. Compute costs.
Compute

2(G3, 0) = ℓ
(
ŷ(3,0, 5 (>))

)
− min
H′∈{0,1}

ℓ

(
ŷ(3,H′, 5 (>))

)
and

2(G3, 1) = ℓ
(
ŷ(3,1, 5 (>))

)
− min
H′∈{0,1}

ℓ

(
ŷ(3,H′, 5 (>))

)
.

Figure 4.5: Example of computing costs of actions at G3 using roll-out policy 5 (>) .
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the training set query-streams, with our learned policy gradually learning to imitate the heuristic

oracle. Using both the oracle and learned policy to sample state-action-cost triples is beneficial

as it exposes the learned policy to a mix of states it is likely to encounter when following its own

actions, but also state-actions of the better performing reference summarizer. Exploring with the

learned policy alone may be less optimal because it may overestimate the costs of good decisions

since its roll-outs at the beginning of training are likely to be quite bad. Exploring with only the

oracle would also be harmful as the distribution of states it produces will reflect an optimistic level

of performance from learned policy that it will not be able to match in practice.

4.4.3.1 Oracle Policy

For a given policy 5 , training query @, stream S, and reference summary N , we construct

a greedy heuristic oracle policy 5 ∗@ . Let UC be the update summary at state GC reached by 5 .

Additionally, let

NÈUCÉ =
{
W8

����� (W8, g(N)8

)
∈ N , ∃

(
D 9 , g

(U)
9

)
∈ UC : ÈW8É ∈

�
D 9
�}

be the set of nuggets covered by the updates in the update summary at GC , and let

NÈBCÉ =
{
W8

����� (W8, g(N)8

)
∈ N , ÈW8É ∈ ÈBCÉ

}
be the set of nuggets covered by BC . The oracle 5 ∗@ , which has clairvoyant knowledge of these sets,

performs the following actions given a state GC ,

5 ∗@ (GC) =


1 if ∃W : W ∈ NÈBCÉ ∧ W ∉ NÈUCÉ

0 otherwise.

In other words, the oracle policy will extract BC at state GC if BC covers any nuggets not yet covered

by updates in the update summaryUC . We describe how we obtain comprehensive nugget/sentence
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covers, i.e. the sets NÈBCÉ in §4.4.5.

4.4.3.2 Loss Function

We design our loss function to penalize policies that over- or under-generate. Let G1, . . . , G) be

the sequence of states associated with the action sequence y. We define the loss of a sequence as

ℓ(y) = 1 − 2 × y
ᵀ
y∗∑)

8=1 H8 +
∑)
9=1 H

∗
9

where y∗ =
[
H∗1, . . . , H

∗
)

]
is a reference sequence of consisting of the one-step optimal deviations

under the oracle policy, i.e. H∗C = 5 ∗@ (GC).

Note that ℓ is the complement of the Dice coefficient. This encourages not only local agreement

between policies (the numerator of the second term) but that the learned and oracle policy should

generate roughly the same number of updates (the denominator in the second term).

4.4.3.3 Learning with LOLS

We now step through the LOLS algorithm in detail. Our initial policy parameters \0 and \1

are randomly initialized (Algorithm 4 line 1). The LOLS algorithm works by iteratively using

the current learned policy 5\ to explore state sequences from a training stream S (@) (Algorithm 4

line 6). At each state GC , a roll-out policy 5 (>) is selected at random from 5\ and the oracle 5 ∗@

(Algorithm 4 line 8). Losses are then computed for each continuation sequence ŷ(C,0, 5 (>)) and

ŷ(C,1, 5 (>)) (Algorithm 4 line 9). Costs for each action are then computed and state features and

costs are cached in Γ (Algorithm 4 lines 11–12). After the roll-in has explored all ) states, we

update the policy parameters \ by performing gradient descent on the squared error of the linear

regressor on the cached feature-cost pairs in Γ (Algorithm 4 lines 13–14).
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Algorithm 4: Locally Optimal Learning-to-Search for Stream Summarization
Input: training dataset of query-relevant streams and oracle policies {S@, 5 ∗@ }@∈Q , number

of training epochs # , learning rate _, and a mixture parameter V ∈ (0, 1) for
selecting a roll-out policy.

Output: learned summarization policy 5\
1 Initialize \
2 for =← 1, 2, . . . , # do
3 for @ ∈ Q do
4 Γ← {}
5 for C ∈ {1, . . . , )} do
6 Roll-in by executing 5\ on S@ for C − 1 rounds and reach state BC .
7 for H ∈ {0, 1} do

8 Pick roll-out policy 5 (>) ←
{
5 ∗@ with probability V
5\ with probability 1 − V.

.

9 Compute roll-out action sequence y (C,H, 5
(>) ) .

10 for H ∈ {0, 1} do
11 2(GC , H) ← ℓ

(
y(C,H, 5 (>))

)
−minH′∈{0,1} ℓ

(
y(C,H′, 5 (>))

)
12 Γ← Γ ∪ {(q(GC , H), 2(GC , H), H)}

13 for (q(G, H), 2(G, H), H) ∈ Γ do
14 \H ← \H − _∇\H (2(G, H) − q(G, H) · \H)2

Result: 5\

4.4.4 Features

As mentioned in the previous section, we represent each state as a feature vector. In general, at

state GC , these features are functions of the current sentence BC , the stream history B1, . . . , BC−1, the

query string @ and category 2, and/or the decision history H1, . . . , HC−1. We refer to features only

determined by BC , @, and 2 as static features and all others as dynamic features.

4.4.4.1 Static Features

Basic Features Our most basic features look at the length in words of a sentence, its position

in the document, and the ratio of specific named entity tags to non-named entity tokens. We also

compute the average number of sentence tokens that match the event query words and synonyms

using WordNet.
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Language Model Features Similar to §4.3, we compute the average token log probability of

the sentence on two language models: i) an event category specific language model and ii) a general

newswire language model. The first language model is built from Wikipedia articles relevant to

the event-type domain. The second model is built from the New York Times and Associate Press

sections of the Gigaword-5 corpus (Graff and Cieri, 2003).

Single Document Summarization Features These features are computed using the current

sentence’s document as a context and are also commonly used as ranking features in other doc-

ument summarization systems. Where a sentence representation is needed, we use both TF-IDF

bag-of-words representation as well as the latent vector representation under the WMF method

described in §4.3.2.

We compute SumBasic features (Nenkova and Vanderwende, 2005): the average and sum of

unigram probabilities in a sentence. We compute the arithmetic and geometric means of the sen-

tence’s cosine distance to the other sentences of the document (Guo et al., 2013). We refer to this

quantity as novelty and compute it with both vector representations. We also compute the centroid

rank (Radev et al., 2000) and LexRank of each sentence (Erkan and Radev, 2004), again using

both vector representations.

Summary Content Probability For a subset of the stream sentences, we have manual judge-

ments as to whether they match to reference summary nuggets or not. We use this data (restricted

to sentences from the training query streams), to train a decision tree classifier, using the sentences’

term ngrams as the classifier features. As this data is aggregated across the training queries, the

purpose of this classifier is to capture the importance of general ngrams predictive of summary

worthy content. Using this classifier, we obtain the probability that the current sentence xC con-

tains summary content and use this as a model feature.

4.4.4.2 Dynamic Features

Stream Language Models We maintain several unigram language models that are updated

with each new document in the stream. Using these counts, we compute the sum, average, and
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maximum token probability of the non-stop words in the sentence. We compute similar quantities

restricted to person, location, and organization named entities as well.

Update Similarity The average and maximum cosine similarity of the current sentence to all

previous updates is computed under both the TF-IDF bag-of-words and latent vector representa-

tion. We also include indicator features for when the set of updates is empty (i.e. at the beginning

of a run) and when either similarity is 0.

Document Frequency We also compute the hour-to-hour percent change in document fre-

quency of the stream. This feature helps gauge breaking developments in an unfolding event. As

this feature is also heavily affected by the daily news cycle (larger average document frequencies

in the morning and evening) we compute the 0-mean/unit-variance of this feature using the training

streams to find the mean and variance for each hour of the day.

Feature Interactions Many of our features are helpful for determining the importance of a sen-

tence with respect to its document. However, they are more ambiguous for determining importance

to the event as a whole. For example, it is not clear how to compare the document level PageRank

of sentences from different documents. To compensate for this, we leverage two features which we

believe to be good global indicators of update selection: the summary content probability and the

document frequency. These two features are proxies for detecting (1) a good summary sentences

(regardless of novelty with respect to other previous decisions) and (2) when an event is likely to

be producing novel content. We compute the conjunctions of all previously mentioned features

with the summary content probability and document frequency separately and together.

4.4.5 Expanding Relevance Judgments

Because of the large size of the corpus, less than 1% of the sentences received manual review

by NIST assessors during the 2013-15 shared-task evaluations. In order to increase the amount of

data for training and evaluation of our system, we augmented the manual sentence-nugget match

judgements with automatic matches. Sentence-nugget matches are critical for our experiments

because they enable us to compute evaluation metrics, but also the oracle summarization policy
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used in the LOLS algorithm.

In order to automatically tag sentences in the corpus with additional nugget matches, we trained

a separate decision-tree classifier for each nugget with more than 10 manual sentence matches.

Manually matched sentences were used as positive training data and an equal number of manually

judged non-matching sentences were used as negative examples. Sentence n-grams (1-5), percent-

age of nugget terms covered by the sentence, semantic similarity of the sentence to nugget were

used as features, along with an interaction term between the semantic similarity and coverage. Af-

ter training the classifiers we used them to automatically tag corpus sentences with nugget matches.

When augmenting the relevance judgments with these nugget match labels, we only include those

that have a probability greater than 90% under the classifier. For evaluation, the summarization

system only has access to the query and the document stream, without knowledge of any nugget

matches (manual or automatic).

4.4.6 TREC 2015 Experiments and Results

There were three tasks at the TREC 2015 Temporal Summarization shared-task evaluation

(Aslam et al., 2015):

1. Full Filtering and Summarization Participants must summarize a very high volume stream

of documents where very few documents are likely to be similar to the query.

2. Partial Filtering and Summarization Participants must summarize a high volume stream

of documents that has been pre-filtered for query relevance by an IR component developed

by the task organizers.

3. Summarization Only Participants must summarize a low-volume stream of on-topic docu-

ments.

We participated in tasks 1 and 2, submitting, with Team ID cunlp, the following Run IDs:

• Task 1. Full Filtering and Summarization
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– 2LtoSnofltr20 – The L2S summarizer, where documents were truncated to there first

20 sentences.

• Task 2. Partial Filtering and Summarization

– 1LtoSfltr20 – The L2S summarizer, where documents were truncated to the first 20

sentences.

– 3LtoSfltr5 – The L2S summarizer, where documents were truncated to their first 5

sentences.

– 4APSAL – Our SAP summarizer that was the overall best system at TREC 2014. We

updated the salience predictions with additional training data from the TREC 2014

Temporal Summarization query events.

To train the L2S summarizer we randomly selected 3 events to be a development set and used

the remaining 21 events from the 2013-2014 Temporal Summarization query events as our training

set. The document streams for the events are unfortunately too large to be used directly with

algorithm 4. In order to make training time reasonable yet representative, we downsample each

stream to a length of 100 sentences. The downsampling is done uniformly over the entire stream.

This is repeated 10 times for each training event to create a total of 210 training streams. In the

event that a downsample contains no nuggets (either human or automatically labeled) we resample

until at least one exists in the sample. We select the best model iteration based on the automatically

computed H(U) on the development set. We show an example summary produced by the L2S

system in Figure 4.6.

Table 4.5 shows the official results for task 1, the full filtering and summarization task. Our

L2S run, 2LtoSnofltr20, was the top run in this track, although only one other team submitted runs

due to the high computational cost of running on the large document stream. 2LtoSnofltr20 had

the lowest precision (i.e., =E[�] (U)) of the submitted runs, and only achieved average recall (i.e.,

� (U)). However, it had lower latency, yielding the highest latency weighted comprehensiveness,

�! (U); on the task’s overall summary measureH! (U), 2LtoSnofltr20 is ranked first, largely due
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4:19 p.m. Two explosions shattered the euphoria of the Boston Marathon finish line on
Monday, sending authorities out on the course to carry off the injured while
the stragglers were rerouted away...

4:31 p.m. Police in New York City and London are stepping up security following
explosions at the Boston Marathon.

4:31 p.m. A senior U.S. intelligence official says two more explosive devices have
been found near the scene of the Boston marathon where two bombs deto-
nated earlier.

5:10 p.m. Several candidates for Massachusetts’ Senate special election have sus-
pended campaign activity in response to the explosions...

Figure 4.6: Excerpt of the L2S summary for the query boston marathon bombing generated from
an input document stream.

Team ID Run ID =E[�] (U) � (U) �! (U) H! (U)
cunlp 2LtoSnofltr20 0.1224 0.4691 0.8086 0.1531
CWI IGnPrecision 0.1894 0.4678 0.6273 0.1396

average 0.1533 0.4575 0.6507 0.1279

CWI IGn 0.1620 0.5137 0.6538 0.1248
CWI docs 0.1242 0.4680 0.6658 0.1222
CWI titles 0.1915 0.3107 0.5171 0.1150

Table 4.5: Official TREC 2015 Temporal Summarization Task 1 results using manual up-
date/nugget matches.

to its low latency. Here we can see that fully online/greedy nature of L2S summarizer pays off in

terms of latency, as salient content is identified relativey quickly once it has entered the stream.

Table 4.6 shows the official results for Task 2, the partial filtering and summarization task. The

top runs by WaterlooClarke examined only the titles or first sentences of the documents, while

our systems did not use titles, and used the first five or twenty sentences of documents (3LtoSfltr5

and 3LtoSfltr20 respectively). The WaterlooClarke runs had significantly higher =E[�] (U) than

the other systems but lower than average � (U). Our L2S runs, 3LtoSfltr5 and 3LtoSfltr20, had

higher � (U), although not the highest overall. The fourth and five place overall performance (i.e.,

H! (U)) by 3LtoSfltr5 and 3LtoSfltr20 are due both to the high � (U) but also low-latency at

which it added important information to the summary.

114



Team ID Run ID =E[�] (U) � (U) �! (U) H! (U)
WaterlooClarke UWCTSRun1 0.2350 0.3520 0.6612 0.1762
WaterlooClarke UWCTSRun3 0.2252 0.3421 0.6643 0.1718
WaterlooClarke UWCTSRun2 0.2872 0.2584 0.6551 0.1710

cunlp 3LtoSfltr5 0.1371 0.4870 0.6392 0.1282
cunlp 1LtoSfltr20 0.1203 0.5372 0.6287 0.1100
IRIT FS1A 0.0849 0.4959 0.6051 0.0719
cunlp 4APSAL 0.1011 0.4584 0.5108 0.0674

average 0.0666 0.4342 0.4697 0.0499

IRIT FS2A 0.0518 0.5899 0.6285 0.0476
BJUT DMSL1NMF2 0.0445 0.6123 0.4539 0.0354
BJUT DMSL1AP1 0.0413 0.6155 0.4701 0.0338

l3sattrec15 l3sattrec15run1 0.0408 0.3612 0.3743 0.0268
l3sattrec15 l3sattrec15run3 0.0400 0.3669 0.3712 0.0262

IRIT FS1B 0.0422 0.2939 0.3913 0.0259
IRIT FS2B 0.0306 0.3391 0.4491 0.0239
USI InL2DecrQE1ID1 0.0182 0.5713 0.5806 0.0196
USI InL2DecrQE2ID2 0.0169 0.5758 0.5836 0.0184

udel_fang WikiOnlyFS2 0.0206 0.5819 0.4600 0.0176
udel_fang ProfOnlyFS3 0.0258 0.5294 0.4122 0.0174

USI InL2StabQE2ID3 0.0171 0.6133 0.5238 0.0170
udel_fang WikiProfMixFS1 0.0189 0.5965 0.4660 0.0166
l3sattrec15 l3sattrec15run2 0.0283 0.2276 0.2560 0.0164

USI InL2IncrQE2ID4 0.0179 0.5837 0.2888 0.0108

Table 4.6: Official TREC 2015 Temporal Summarization Task 2 results using manual up-
date/nugget matches.
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The SAP run, 4APSAL, was also above the track average for all evaluation measures. It is,

however, dominated by both L2S runs on all measures. This suggests that our L2S is an overall

improvement over the SAP model in both precision, recall, and latency.

4.4.7 Automatic Experiments

We evaluate our method on the publicly available TREC Temporal Summarization Track data

using the data from the 2013, 2014, and 2015 years of the shared task. This collection contains 44

unique query events. To evaluate our model, we randomly select five events to use as a development

set and then perform a leave-one-out style evaluation on the remaining 39 events.

As we did in the official Temporal Summarization submission, we downsample each training

stream to a length of 100 sentences. The downsampling is done uniformly over the entire stream.

This is repeated 10 times for each training event to create a total of 380 training streams. In the

event that a downsample contains no nuggets (either human or automatically labeled) we resample

until at least one exists in the sample. We select the best model iteration for each training fold

based on the automatically computedH(U) on the development set.

4.4.7.1 Baselines and Model Variants

We refer to our “learning to search” model in the results as L2S. We compare our proposed

model against several baselines and extensions.

Cosine Similarity Threshold WaterlooClarke, the top performing team at TREC 2015 used

a heuristic method that only examined article first sentences, selecting those that were below a

cosine similarity threshold to any of the previously selected updates. We implemented a variant of

that approach using the latent-vector representation used throughout this work. The development

set was used to set the threshold. We refer to this model as COS.

SAP We also compare to the SAP model described in §4.3. In this evaluation.

Learning2Search+Cosine Similarity Threshold In this model, which we refer to as L2S-

COS, we run L2S as before, but filter the resulting updates using the same cosine similarity thresh-
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unpenalized latency-penalized

=E[�] (U) � (U) H (U) =E[�!] (U) �! (U) H! (U) |U|
SAP 0.1192 0.09 0.094 0.105 0.088 0.088 8.333
COS 0.075 0.176B 0.099 0.095 0.236B 0.128B 145.615B, 5
L2S 0.097 0.207B, 5 0.112 0.1362 0.306B,2, 5 0.162B 89.872B, 5
L2S-COS 0.1152,; 0.189B 0.127B,2,; 0.162B,2,; 0.276B 0.184B,2,; 29.231B,2

Figure 4.7: Average system performance and average number of updates per event. Superscripts
indicate significant improvements (? < 0.05) between the run and competing algorithms using the
paired randomization test with the Bonferroni correction for multiple comparisons (B: APSAL, 2:
COS, ;: LS, 5 : LS-COS).

old method as in COS. The threshold was also tuned on the development set.

4.4.8 Results

Results for system runs are shown in Figure 4.7. On average, L2S and L2S-COS achieve

higher H(U) scores than the baseline systems in both latency penalized and unpenalized evalu-

ations. For L2S-COS, the difference in mean H(U) score was significant compared to all other

systems (for both latency settings). Intuitively, L2S has higher comprehensiveness than L2S-COS;

adding the the cosine similairt filter to L2S reduces the comprehensiveness, but increases the av-

erage gain of the updates by a larger amount, yielding an improved harmonic mean of the two

metrics (H(U)).

SAP achieved the overall highest expected gain, partially because it was the tersest system we

evaluated (at 8 updates per query on average). However, only COS was statistically significantly

worse than it on this measure. We also see that SAP suffers from the latency-weighted evalua-

tion, receiving latency penalties for retrieving updates after that information had been added to

Wikipedia. By comparison, all other systems are actually rewarded in the latency-weighted eval-

uation, as they consistently retrieve information before it is published in Wikipedia. While SAP

had previously beaten Wikiepdia in previous evaluations, the added events for the 2015 Temporal

Summarization had less media coverage, suggesting the clustering based approach is less suited

for lower-volume news streams.
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latency-penalized

=E[�!] (U) �! (U) H! (U)
COS 0.095 0.236 0.128
L2S-FS 0.164 0.220 0.157
L2S-COS-FS 0.207 0.18 0.163

Table 4.7: Average system performance. L2S-FS and L2S-COS-FS runs are trained and evaluated
on first sentences only (like the COS system). Ranking is consistent with unpenalized results.

In comprehensiveness, L2S recalls on average a fifth of the nuggets for each event. This is

even more impressive when compared to the average number of updates produced by each system;

while COS achieves similar comprehensiveness, it takes on average about 1.6 times more updates

than L2S and almost 5 times more updates than L2S-COS. The output size of COS stretches the

limit of the term “summary,” which is typically far shorter than 145 sentences in length. This

is especially important if the intended application is negatively affected by verbosity (e.g. crisis

monitoring).

4.4.9 Discussion

Since COS only considers the first sentence of each document, it may miss relevant sentences

below the article’s lead. In order to confirm the importance of modeling the oracle, we also trained

and evaluated the L2S based approaches on first sentence only streams. Table 4.7 shows the

latency penalized results of the first sentence only runs. The L2S approaches still dominate COS

and receive larger positive effects from the latency penalty despite also being restricted to the first

sentence. Clearly having a model (beyond similarity) of what to select is helpful. Ultimately we

do much better when we can look at the whole document.

We also performed an error analysis to further understand how each system operates. Figure 4.8

shows the errors made by each system on the test streams. Errors were broken down into four

categories. Miss lead and miss body errors occur when a system skips a sentence containing a

novel nugget in the lead or article body respectively. An empty error indicates an update was

selected that contained no nugget. Duplicate errors occur when an update contains nuggets but

118



Miss (Lead) Miss (Body) Empty Duplicates Total

SAP 29.6% 68.7% 1.6% 0.1% 15,986
COS 17.8% 39.4% 41.1% 1.7% 12,873
L2S-FS 25.4% 71.7% 2.0% 0.9% 13,088
L2S-COS-FS 27.9% 70.8% 1.0% 0.2% 15,756
L2S 19.6% 55.3% 19.9% 5.1% 13,380
L2S-COS 24.6% 66.7% 7.5% 1.2% 11,613

Figure 4.8: Percent of errors made and total errors on test set.

none are novel.

Overall, errors of the miss type are most common and suggest future development effort should

focus on summary content identification. About a fifth to a third of all system error comes from

missing content in the lead sentence alone.

After misses, empty errors (false positives) are the next largest source of error. COS was

especially prone to empty errors (41% of its total errors). L2S is also vulnerable to empties (19.9%)

but after applying the similarity filter and restriting to first sentences, these errors can be reduced

dramatically (to 1%).

Surprisingly, duplicate errors are a minor issue in our evaluation. This is not to suggest we

should ignore this component, however, as efforts to increase recall (reduce miss errors) are likely

to require more robust redundancy detection.

4.5 Conclusion

In this chapter we introduced two stream summarization algorithms, where we focused on in-

corporating salience predictions into the update selection stage. In the first model, SAP, we were

able to incorporate these predictions into the affinity propagation clustering algorithm, thereby bal-

ancing the twin objectives of selecting representative updates while ensuring the updates contained

essential information that was relevant to the query event. In the second method, L2S, we were

able to train a stream summarization policy which predicts the salience of potential updates using

a feature representation of the current update summary and stream state. This method improves
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over SAP in that it can make predictions using dynamically updated features based on previous

behavior and can make decisions on updates immediately without needing to collect a sizeable

cache of sentences for clustering.

Future work could focus on a number of improvements. One of the most important ones would

be to improve the understanding of novelty. Currently, we do not have any explicit handling of

information that is refined or updated over time. For example, the number of reported casualities

in a disaster typically changes over time as more cases are reported and nubmers are refined. Under

our current models these statements might all look very similar since they have a fairly boilerplate

text, e.g. for we have the following nuggets for a train crash event presented in chronological order,

• 55 dead

• 50 confirmed dead

• 51 confirmed dead.

As this information is textually similar, after a system selects one of these updates, it may not

extract others.

Also as issues of trust and veracity in reporting in online sources have become more important,

it might also be necessary to model the reliability of an information source. In this case some

numbers are reported and some are also confirmed. Our model currently has no distinction between

official and unofficial sourcing, which would be necessary in any real implemenation of these

models.

We also clearly have room to improve salience predictions. The expected gain of our systems

hovered around 0.1, meaning it would take on average ten updates to produce a novel piece of

information. As our error analysis showed, misses were the most prevalent error. All implemented

systems have the highest error rates when trying to find information in the body of an article.

This echoes the findings of our previous chapter, where position bias is predominant feature being

exploited. More efforts on modeling the salience of sub-events and knock-on effects of a query

event might be beneficial here.
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Chapter 5: Faithful and Controllable Generation

Up to this point, we have focused on content selection in a text-to-text generation system while

relying on a trivial text generation algorithm, copying or extracting text units verbatim from the in-

put, to perform the actual generation task. In this chapter, we move to modeling the actual language

generation process after the content selection stages (i.e. Chapters 3 and 4) have been performed.

We focus in particular on the sequence-to-sequence model as a means of mapping a representation

of selected content to an appropriate natural language utterance. Sequence-to-sequence models are

a family of deep learning models with bi-partite structure, possessing an encoder network which

represents the input and a decoder which generates output from encoder’s state (Sutskever et al.,

2014). We tackle two issues, faithfulness and control, which are necessary prerequisites for any

practically useful sequence-to-sequence-based model of natural language generation. These con-

cepts, which we define in more detail later in this chapter, can be broadly construed as ensuring

the decoder (i.e., the language model) in a sequence-to-sequence model is constrained to generate

utterances that respect the semantics of the input (i.e. ensuring model faithfulness) while following

a proscribed discourse structure for the selected content (i.e. ensuring model control).

When data is plentiful, the sequence-to-sequence paradigm has proven to be incredibly adapt-

able to a variety of problem domains, and in the research literature it has become the standard

method for a host of language generation tasks (Xu et al., 2015; Dušek and Jurčíček, 2016; Vaswani

et al., 2017; Fan et al., 2018). Recent evaluations of end-to-end trained sequence-to-sequence mod-

els for dialogue generation have shown that they are capable of learning very natural text realiza-

tions of formal meaning representation. In many cases, they beat rule and template based systems

on human and automatic measures of quality and naturalness (Dušek et al., 2020).

However, this powerful generation capability comes with a cost; deep learning-based language

models are notoriously difficult to control, often producing quite fluent but semantically misleading
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



INFORM

name=Aromi
eat_type=coffee shop
customer_rating=5 out of 5
food=English
area=city centre
family_friendly=yes




(a) Inform dialog act.

• Aromi coffee shop serves English food in a family-
friendly atmosphere near the city center and has a
customer rating of 5 out of 5.

• The Aromi coffee shop is family-friendly and
serves English food. It has a customer rating of
5 out of 5 and is located near the center of the city.

(b) Natural language utterances.





GIVE OPINION

name=Little Nightmares
rating=good
genres=[

adventure,
platformer,
puzzle

]
player_perspective=side view




(c) Give Opinion dialog act.

• Adventure games that combine platforming and
puzzles can be frustrating to play, but the side view
perspective is perfect for them. That’s why I en-
joyed playing Little Nightmares.

• Little Nightmares is a pretty cool game that has
kept me entertained. It’s an adventure side-
scrolling platformer with some puzzle elements to
give me a bit of a challenge.

(d) Natural language utterances.





COMPARE

name1=Erebus 92
resolution1=720p
family1=W2

name2=Helios 96
resolution2=1080p
family2=L5




(e) Compare dialog act.

• Tthe Helios 96 tv has a 1080p resolution in the L5
family while the Erebus 92 has a 720p resolution
in the W2 family.

• Compared to Erebus 92 which has 720p resolution
and is in the W2 product family, Helios 96 has
1080p resolution and is in the L5 product family.
Which one do you prefer?

(f) Natural language utterances.




CONFIRM

type=laptop
drive_range=medium




(g) Confirm dialog act.

• Just to verify. The laptop needs to have a medium
drive range, correct?

• Let me confirm, a laptop in the medium drive range
right?

(h) Natural language utterances.

Figure 5.1: Example meaning representations (left) and their reference utterances (right) from the
restaurant, video game, tv, and laptop domains.
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outputs. For instance, Dušek et al. (2020) note that in the E2E Generation Challenge shared-task,

sequence-to-sequence models were both some of the best and worst performers. One submission,

a vanilla sequence-to-sequence model, scored first in human evaluations of naturalness but last in

quality (which they define as semantic completeness and grammaticality). In order for such mod-

els to truly be useful, they must be capable of correctly generating utterances for novel meaning

representations at test time. In practice, even with delexicalization (Dušek and Jurčíček, 2016;

Juraska et al., 2018), copy and coverage mechanisms (Elder et al., 2018), and over-generation plus

reranking (Dušek and Jurčíček, 2016; Juraska et al., 2018), deep learning-based language genera-

tion models still produce errors (Dušek et al., 2020).

We study sequence-to-sequence model faithfulness on the task-oriented dialog generation

problem (Mairesse et al., 2010; Wen et al., 2015; Dušek et al., 2018), where a natural language

generation model must map a meaning representation (i.e., a dialogue act with an associated set of

attribute-value pairs1) to an appropriate natural language utterance (see Figure 5.1 for examples).

In the context of our broader work on text-to-text generation, we think of the meaning representa-

tion input as an idealized representation of the content selection stage in a text-to-text generation

model. Studying faithfulness and control in the closed-world domains of task-oriented dialog gen-

eration allows us to make meaningful progress while minimizing unnecessary complexity.

For instance, natural language summaries often contain information not explicitly represented

in the input. The source of this content is either from common sense knowledge, generic or domain

specific knowledge, or new facts deduced from any combination of the input and prior knowledge

(Wiseman et al., 2017; Wang, 2019). Evaluating the faithfulness of a neural language generation

model in this context is extremely difficult because it is not clear if a generated utterance is due to

the decoder language model or the encoder’s representation of the input.

Instead, the task-oriented dialogue generation problems we study are developed to be closed-

world, narrow domain settings, where the totality of the information needed to generate an utter-

ance is represented by the meaning representation. Additionally, the semantics of the meaning

1In the literature and in industry, dialogue acts are sometimes called “intents,” and attribute-value pairs as “slots”
and “slot-fillers” or “entities.”
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representation are explicit; there is no information that needs to be realized by the language gener-

ation component that requires additional inferences from the input.

We call a natural language generation model that generates utterances that are semantically

correct with respect to the input meaning representation, a faithful generation model. We posit that

sequence-to-sequence models do not learn representations of the input meaning representation that

correspond to basic features of the nature of utterance data, chiefly that phrases denote fragments

of meaning representation which can be recombined with other fragments to systematically create

new meanings/utterances. Instead, the learned representations are highly idiosyncratic, and often

reflect spurious correlations and artifacts of the dataset that do not generalize well outside the

training data. This issue is symptomatic of neural models’ lack of systematicity, which in turn

leads to unfaithful language generation models (Lake and Baroni, 2018).

To overcome these issues, we propose a novel data augmentation scheme, called noise-injection

sampling and self-training, to create synthetic meaning representation/utterance pairs which break

spurious correlations in the training dataset. Our method makes use of a vanilla sequence-to-

sequence natural language generation model, i.e. the kind described by Dušek et al. (2020) that

produces natural but semantically incorrect utterances, and a meaning representation parser, both

of which can be trained on the same parallel data. We then use a noise-injection sampling method

(Cho, 2016) that allows us to generate semantically diverse yet syntactically well formed utterances

from the natural language generation model. We obtain corrected meaning representations for

these sampled utterances using the meaning representation parser. Using this procedure we can

generate a large collection of synthetic data points which show a reduction in spurious correlations

between the size of a meaning representation and its content or between different pairs of attribute-

values. Training a new sequence-to-sequence model on the union of the original training and novel

synthetic data yields a more faithful generation model with substantially reduced semantic errors.

While a faithful sequence-to-sequence model produces semantically correct output, in general

it is free to let the surface realization order of the attribute-values be determined by its language

model. We show that we can actually control the realization order by properly “linearizing” the
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


INFORM

name=Aromi
area=city centre
eat_type=coffee shop




(a) Inform dialog act.

Plan A: name → eat_type → area

Realization: Aromi is a coffee shop in the city centre.

Plan B: eat_type → name → area

Realization: There is a coffee shop called Aromi in the city centre.

Plan C: eat_type → area → name

Realization: For coffee in the centre of the city, try Aromi.

(b) Three different utterance plans with example realizations for the
Inform dialogue act (left).

Figure 5.2: Examples of controllable generation. (a) A meaning representation of an Inform dia-
logue act. (b) Three hypothetical utterance plans and their realizations for the example dialogue
act.

meaning representation, that is, converting the meaning representation into a linear sequence of

discrete tokens, before feeding it into the encoder. Our proposed alignment training lineariza-

tion strategy for converting a meaning representation to an encoder input sequence yields a highly

controllable generation model, effectively moving implicit utterance planning from the decoder

to the encoder. We consider controllable generation models to be a subset of faithful genera-

tion models that can follow an externally provided discourse ordering plan. See Figure 5.2 for

examples of such plans in the context of task-oriented dialogue generation. We find that align-

ment training endows both recurrent and transformer-based sequence-to-sequence architectures

with the controllable generation property as well as when fine tuning a large, pretrained sequence-

to-sequence model.

While most contemporary research practice prefers end-to-end solutions that leave planning

implicit, we argue that such fine grained control in a sequence-to-sequence model is highly desir-

able. Not only would it enable drawing deeper connections between sequence-to-sequence models

and the extensive literature on sentence or utterance level planning for language generation (Reiter

and Dale, 2000; Walker et al., 2001; Stone et al., 2003), it would also allow for neural imple-

mentations of various psycho-linguistic theories of discourse (e.g., Centering Theory (Grosz et al.,
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1995), or Accessibility Theory (Ariel, 2001)). This could, in turn, encourage the validation and/or

refinement of additional psychologically plausible models of language production.

Ensuring robustness of the control behavior is also necessary to reliably incorporate neural

language generation models into larger language generation pipelines (Moryossef et al., 2019a,b;

Castro Ferreira et al., 2019). However, as previously mentioned, neural models do not learn sys-

tematic representations of the input, which can lead to errors in faithfulness or plan following when

generating from ordering plans not well represented in the training data. To mitigate this, we pro-

pose a phrase-based data augmentation scheme to collect additional examples that give explicit

supervision of how constituent phrases compose, and how that composition can systematically

change the meaning (e.g. prepending “not” to a phrase systematically negates its meaning). We

show under extensive stress testing with randomly generated plans that this data-augmentation

improves the robustness of control.

In what follows, we introduce the meaning representations used for task-oriented dialogue

generation in more detail (§5.1) and provide some background on sequence-to-sequence modeling

for meaning representation-to-text generation (§5.2). We then turn to our main contributions, our

noise-injection sampling and self-training data-augmentation method for faithful generation (§5.3),

and alignment training linearization for controllable generation (§5.4), before concluding.

5.1 Meaning Representations for Task-Oriented Dialogue Generation

5.1.1 Meaning Representation Structure

In this chapter, we use several domain specific meaning representations to formally represent

the input to the surface realization model. While specifics of the meaning representation can vary

from domain to domain, the overall structure of the meaning representation is fairly straightfor-

ward, borrowing from a common format used frequently in the natural language generation liter-

ature (Mairesse et al., 2010; Gašić et al., 2014; Wen et al., 2015; Novikova et al., 2017; Juraska

et al., 2019). Each meaning representation has a dialogue act, which expresses the communicative

goal or intent, and zero or more attribute-value pairs which further define the semantics of the
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desired utterance.

See Figure 5.1a for an example meaning representation from the restaurant domain. The dia-

logue act, in this case to inform a user, is the first item and is written in SMALLCAPS style. The

attributes are “name,” “eat_type,” “customer_rating,” “food,” “area,” and “family_friendly.” Their

associated values are “Aromi,” “coffee shop,” “5 out of 5,” “English,” “city centre,” and “yes”

respectively. In this case the attributes are referring to the restaurant about which a hypothetical

dialogue agent is trying to inform a user.

In our setting, dialogue acts are predominantly declarative (e.g., Figure 5.1a or Figure 5.1c), but

also include interrogatives (e.g., Figure 5.1g), and some that may be a mix of both (e.g., Figure 5.1e

where the second reference ends in a question about user preference). Additionally, we also have

semantically vacuous “chit-chat” dialogue acts like GREETING and GOODBYE which are expected

to begin and end, respectively, a series of exchanges with the dialogue agent.

The kinds of values that can fill an attribute are typically categorical variables. For example, in

the restaurant domain, the attribute “food” may take values from a closed list of food types such as

the set

{“Chinese”, “English”, “French”, “Fast food”, “Indian”, “Italian”, “Japanese”}.

Other value types include list-valued attributes, numerical values, or free text (see Figure 5.3 for

examples of each). For list-valued attributes, the value is a list of items drawn from a closed set.

For example, in the video game domain, a video game can belong to several genres simultaneously.

For our purposes, we treat each value in the list as a distinct attribute-value pair. So in the case of

Figure 5.3a, we treat it is if it had the following meaning representation,
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

INFORM

name=Portal 2
esrb=E 10+ (for Everyone 10 and Older)
genres=[platformer, puzzle, shooter]
player_perspective=[first person]
has_multiplayer=yes


Portal 2 was rated E 10+ (for Everyone 10 and
Older). It is a puzzle platformer FPS with multi-
player.

(a) An example of list-valued attributes (genres and player_perspective) from the video game domain. Note
that the acronym FPS means “first person shooter” which realizes both the player_perspective attribute-
valueand a genre attribute-value.


REQUEST

specifier=“dull”
has_multiplayer=yes

 What’s the most dull multiplayer game you’ve
ever played?

(b) An example of a free-text valued attribute (specifier) from the video game domain. The specifier value
can be any adjective.



INFORM COUNT

count=58
type=laptop
is_for_business_computing=true
weight_range=don’t care
drive_range=don’t care


There are 58 laptops used for business comput-
ing if you do not care what weight range or drive
range they have.

(c) An example of a numeric-valued attribute (count) from the laptop domain.

Figure 5.3: Examples of various attribute-value types paired with an example realization.
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



INFORM

name=Portal 2
esrb=E 10+ (for Everyone 10 and Older)
genres=platformer
genres=puzzle
genres=shooter
player_perspective=first person
has_multiplayer=yes




Additionally, not all attributes need to be specified. In which case, the utterance should not mention

them.

The term “meaning representation” is somewhat of a misnomer as the representations might

better be characterized as a pragmatic construct (i.e. a representation of the dialogue agent’s in-

tentional state). The attribute-values, on the other hand, are a semantic construct, representing the

semantic value or propositional content of the sentences in the utterance. In other words, from the

perspective of formal semantics,

• The Aromi is a coffee shop in the city centre.

• Just to confirm, the coffee shop in the city centre is called Aromi?

• What about Aromi, the coffee shop in the city centre?

all share the same semantic value. The “meaning” of the above utterances as a statement of first-

order logic might look something like,

∃G : isCoffeeShop(G) ∧ namedAromi(G) ∧ inCityCentre(G).

We could represent this statement in our present setting as a “meaning representation without a

dialogue act,” i.e.,




—
name=Aromi
eat_type=coffee shop
area=city centre



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which, when combined with one of the dialogue acts INFORM, CONFIRM, or RECOMMEND, yields

the pragmatic sense of the respective utterances above.

5.1.2 Relating Between Meaning Representations and Utterances

Let ` ∈ M be a meaning representation, and let y = [H1, . . . , H=] ∈ Y be an utterance, i.e.

sequence of = tokens from a vocabulary VY and Y = V∗Y . We say that an utterance y denotes a

meaning representation `, which we write ÈyÉ = ` if the propositional content of the utterance

and the meaning representation are the same, i.e. the attribute-values implied by y and explicitly

listed by ` are the same. We can make similar statements about a sub-sequence of an utterance.

Let y8:8+ 9 =
[
H8, H8+1, . . . , H8+ 9

]
be a sub-sequence of 9 + 1 tokens starting at token 8. We then have�

y8:8+ 9
�
= `′ for some `′ ∈ M∪∅. When an utterance or sub-sequence y contains no propositional

content or is otherwise not a meaningful statement, we have ÈyÉ = ∅.

As an example, consider the following meaning representation,

` =




INFORM

name=The Vaults
eat_type=pub
near=Café Adriatic
family_friendly=no




and the utterance,

y = [The, Vaults, pub, is, near, Café, Adriatic, ., It, is, not, a, good, place, for, families, .] .

Clearly, ÈyÉ = `. But we can also look at the meanings of individual phrases,
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Èy1:2É = [[[The,Vaults]]] =
[[

—
name=The Vaults

]]
Èy3:3É = [[[pub]]] =

[[
—
eat_type=pub

]]
Èy5:7É = [[[near,Café,Adriatic]]] =

[[
—
near=Café Adriatic

]]
Èy11:16É = [[[not, a, good, place, for, families]]] =

[[
—
family_friendly=no

]]
.

Note that it is not the case that ÈyÉ = ` ⇒
�
y8:8+ 9

�
⊆ `. Consider in the example above y11:16

its sub-sequence y12:16 = [a, good, place, for, families] which have the following denotations,

Èy11:16É =
[[

—
family_friendly=yes

]]
≠ Èy12:16É =

[[
—
family_friendly=no

]]
It is also important to note that the attribute-values are unordered and do not necessarily reflect the

realization order of the utterance.

In the datasets used for this chapter, ` are provided with one or more reference utterances,

y(1) , . . . y(:) and that for each reference y(8) , we have that each attribute-value in ` can be mapped

to an utterance sub-sequence that denotes it. Occasionally this is not the case in the available

training data. For example, some attribute-values may have several possible groundings (see Fig-

ure 5.4a) or be realized using inferential knowledge not explicitly represented in the meaning

representation (see Figure 5.4b).

While such examples may exist in the training data, we consider model generation of such

phenomena to constitute a failure to faithfully generate an utterance. In the overwhelming majority

of cases, each attribute-value is explicitly and uniquely grounded in the target utterances, this

makes surface realization from meaning representations a useful task to study faithful generation.

The baseline task of correctly generating all attribute-values appropriately for the dialogue act is

hard enough, and it in this setting we do not have to worry about ungrounded information or

information that is not explicitly represented in the meaning representations but is deducible from

the meaning representation (Wiseman et al., 2017).
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(a) The attribute-value eat_type=pub occurs in multiple locations of the utterance.





INFORM

name=Wildwood
food=Italian
eat_type=pub
price_range=£20-25
customer_rating=high




Wildwood is an Italian pub with a price range
of £20-25. The pub has a very high customer
rating.

(b) The utterance claims the restaurant serves sushi even though this is not stated in the mean-
ing representation. Not all Japanese restaurants serve sushi so this inference is not justified.




INFORM

name=The Waterman
food=Japanese
price_range=high
area=riverside




Near the river there is an expensive sushi
place called The Waterman.

Figure 5.4: Example training set errors.

5.2 Modeling Meaning Representation-to-Text Generation with Sequence-to-Sequence Ar-

chitectures

5.2.1 Sequence-to-Sequence Modeling

We approach the problem of mapping a meaning representation to a natural language utterance

with a variety of popular sequence-to-sequence architectures. A sequence-to-sequence model is a

neural network with parameters \ that implements a probabilistic mapping, ?(·|·; \) : X × Y →

(0, 1), from input sequences

x = [G1, . . . , G<] ∈ X

to output sequences

y = [H1, . . . , H=] ∈ Y.

Tokens from the input sequence are drawn from a finite vocabulary VX and input sequences its

Kleene closureV∗X = X. Analogously, tokens from the output sequence are drawn from a distinct,
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finite vocabularyVY and output sequences its Kleene closureV∗Y = Y. For clarity we occasionally

omit \ in subsequent equations.

Typically, ? is implemented as a bipartite network consisting of distinct encoder and decoder

networks Enc and Dec respectively. The encoder Enc : X → R∗×�E is a mapping of an input

sequence x of < tokens to < corresponding vectors h1, . . . h< ∈ R�E and

?(y|x) = ?(y| Enc(x)) = ?(y|h1, . . . , h<).

The decoder Dec : V+Y × R
∗×�E → (0, 1) then is a mapping of previously generated tokens

y1:8−1 = [H1, . . . , H8−1] and encoder states h1, . . . , h< to a probability distribution over the output

vocabularyVY , where

?(H8 |y1:8−1, x) = Dec (y1:8,Enc(x)) and
∑
H∈VY

? (H |y1:8−1,Enc(x)) = 1.

Hence, ?(·|x) is a conditional language model over utterance tokens that factorizes in a left-to-right

fashion, i.e.,

? (y|x) =
=∏
8=1

? (H8 |y1:8−1, x) .

Notice that the “inputs” and “outputs” to the sequence-to-sequence model are sequences of

tokens, x and y respectively. In order to use a sequence-to-sequence model for natural language

generation from a meaning representation we need only map our desired inputs and outputs to se-

quences of discrete tokens. In English, the desired output is relatively straightforward to represent

as a sequence as an English language utterance can naturally be represented as a sequence of word

tokens. In practice, we also indicate full sentence stops with a special token «�»2 and prepend and

append distinguished tokens «s» and «e», respectively, to indicate the start and end of the utterance,

2We add an explicit sentence stop symbol because occasionally utterances have non-sentence final periods and we
want there to be no ambiguity about sentence stops produced by the model.
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as well as lower-case all tokens. As an example, the utterance

The Vaults pub is near Café Adriatic. It is not a good place for families.

would be represented as

y = [«s», the, vaults, pub, is, near, café, adriatic, ., «�», it, is, not, a, good, place, for, families, ., «e»] .

The meaning representation is not itself a sequence, however, so we cannot apply it to a

sequence-to-sequence model directly. Instead it must first be “linearized,” or mapped to a linear

sequence of tokens. We refer to a function c :M → X, as a linearization strategy. We experiment

with several linearization strategies in this chapter, however, all of them operate over the same

domain, V+X , where VX consists of distinct tokens for each dialogue act and attribute-value pairs.

As an example consider the following meaning representation,

` =




INFORM

name=Aromi
area=city centre
eat_type=coffee shop




and some possible linearizations,

c1(`) = x = [inform, name=Aromi, eat_type=coffee shop, area=city centre]

c2(`) = x = [inform, eat_type=coffee shop, name=Aromi, area=city centre]

c3(`) = x = [inform, eat_type=coffee shop, area=city centre, name=Aromi] .

In practice, regardless of the choice of linearization strategy, we prepend a start token, «s», and

append and a stop token, «e», to all input token sequences, e.g.

x = [«s», inform, name=Aromi, eat_type=coffee shop, area=city centre, «e»] .

The encoder and decoder networks of the sequence-to-sequence model can be implemented
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with a variety of architectures. We use two such architectures, the gated recurrent unit (GRU)

(Cho et al., 2014) and the transformer (Vaswani et al., 2017). Since we use standard variants,

we defer explicit model definitions to Appendix A and Appendix B for GRU- and transformer-

based sequence-to-sequence architectures respectively. While the GRU must be given an explicit

linearization to process any input, the transformer variant does not have to be sensitive to lin-

earization order. However, when the transformer uses position embeddings, which is the standard

configuration, it is sensitive to linearization order. We always use position embeddings in this work

as Vaswani et al. (2017) found the model did not work as well without them.

5.2.2 Learning

Given a dataset of meaning representation/utterance pairs,D =

{(
`(1) , y(1)

)
, . . . ,

(
`(#) , y(#)

)}
,

and a linearization strategy, c, the parameters, \, of ? can be learned by approximately minimizing

the negative log-likelihood of the data,

\̂ ≈ arg min
\∈Θ

− 1
#

∑
(`,y)∈D

log ? (y|c (`) ; \) .

In practice, this is done with some variant of mini-batch stochastic gradient descent, e.g., Adam

(Kingma and Ba, 2015). Additionaly, label smoothing (Szegedy et al., 2016) and non-linear

learning rates are often necessary in practice for optimizing the transformer-based sequence-to-

sequence model. Dropout is also typically applied to both the GRU and transformer models during

training.

5.2.3 Inference

As stated above, ? (·|c (`)) is a conditional language model. Given some meaning representa-

tion `, a natural utterance one might want to infer is the maximum a posteriori (MAP) utterance

ŷ = arg max
y∈=

log ? (y|c (`))
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Algorithm 5: Beam Search
Data:

x : input sequence
: : beam size
) : maximum utterance length
? : generation model for scoring candidates.
rerank-score : reranking hypothesis scoring function.

1 H ← {[«s»]}
2 H2><?;4C4 ← {}
3 for 8 = 1, . . . , ) do
4 H=4F ← {}
5 for y = [H1, . . . , H8] ∈ H do
6 if H8 = «e» then
7 H2><?;4C4 ←H2><?;4C4 ∪ {y}
8 H ← H \ {y}
9 for H′ ∈ VY do

10 H=4F ←H=4F ∪ {[H1, . . . , H8, H
′]}

11 H ← Top: (H=4F, ?(·|x))
Result: Top1(H2><?;4C4, rerank-score(·|x))

under the model.3 Unfortunately, the search implied by the arg max is intractable. Instead an

approximate search is performed. The most commonly used search is called beam search (Reddy,

1977) or beam decoding. Under beam search, a setH of :-best candidate utterances is maintained

throughout the search. : is referred to as the beam size or beam width. At each step 8 of the search,

the next word continuations are computed for each candidate utterance prefix, yielding : × |VY |

utterances, from which the top-: under some search criterion are selected, and H is updated the

with the : utterances of length 8 + 1. When a completed utterance enters H (i.e., H8+1 = «e»), it

is added to a set of completed utterances, H2><?;4C4, and removed from H . After exploring the

maximum number of steps ) (or some other heuristic stopping criterion), H2><?;4C4 is reranked

according some heuristic reranking criteria, and the top-ranked utterance is returned. When the

beam size is 1, we refer to the algorithm as greedy search or greedy decoding. See algorithm 5 for

a formal description of the algorithm.

3Technically, we are only considering valid finite utterances y = [H1, . . . , H=] ∈ Y with H1 = «s» and H= = «e».
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Common reranking criteria include the length-normalized log likelihood,

rerank-score(y, `) =
∑|y|
8=1 log ?(H8 |y1:8−1, c(`))

|y|

or a mixture of model likelihood and an auxiliary language model, ?!" ,

rerank-score(y, `) = log ?(y|c(`)) + _ log ?!" (y).

The latter method is popular in machine translation where it is easier to obtain a large monolingual

corpus with which to train a language model than it is to obtain a large parallel corpus for training

the translation model (Xie, 2017). When using sequence-to-sequence models for the meaning

representation-to-text generation problem, practitioners often incorporate a discriminative meaning

representation parser, @(·|·) :M ×Y → (0, 1), in the reranker,

rerank-score(y, `) = log @(` |y),

which can help to select the most semantically correct utterances from the beam candidates. Under

this setting, for a candidate utterance ŷ ∈ Hcomplete obtained with ? (·|c(`)) using beam search,

@ (` |ŷ) gives the probability that ÈŷÉ = ` under the model @.

Despite its wide adoption and empirical success, however, there are many known issues with

beam search. The output may repeat phrases or words (Holtzman et al., 2019), or may never even

terminate (Welleck et al., 2020). While these issues are often linked to differences in the maximum

likelihood learning objective and test-time search procedure (Lafferty et al., 2001; Andor et al.,

2016), the problems are possibly deeper as increasing the beam size often leads to worse empirical

performance (Koehn and Knowles, 2017). In fact, the biases present in beam search are actually

beneficial when compared to exact search (Stahlberg and Byrne, 2019). Additionally, it is well

known that the set of output beam candidates may lack diversity and only differ by a small number

of words (Sordoni et al., 2015; Galley et al., 2015; Li et al., 2016; Vinyals and Le, 2015; Serban
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et al., 2016).

5.2.4 Sampling

As an alternative to deterministic decoding, one may sample from the conditional distribu-

tion, ? (·|c(`)). The typical method for doing this is called ancestral sampling. Ancestral sam-

pling is very similar to greedy decoding, and works by sequentially sampling the next word

H8+1 ∼ ? (·|y1:8, c(`)), and terminating when H8+1 = «e». There are several modifications one

might make to ancestral sampling in practice. To encourage more diversity in the sampled outputs,

a temperature parameter g is sometimes added to the final softmax layer,

? (H8+1 |y1:8, c(`); g)) = softmax
(
W(>)g8 + b(>)

g

)
H8+1

.

As g tends toward +∞, the conditional distribution becomes less peaked and the differences in

probability between any two words diminish, making it easier to sample an unusual continuation

of the utterance sequence. In the positive limit, each word becomes equally likely,

lim
g→+∞

? (H |y1:8, c(`); g)) =
1
|VY |

.

As g approaches zero, the distribution becomes a “one-hot” distribution,

lim
g→+0

? (H |y1:8, c(`); g)) = 1{H = arg max
H′

? (H′|y1:8, c(`))}

where the probability is zero for every word except the most likely next word in the original distri-

bution, which now has probability one.

While ancestral sampling can lead to more diverse outputs, the next word distributions are of-

ten quite peaked meaning most of the vocabulary accounts for less than 0.05 of the cumulative

distribution function. For a 20 word sentence, this means that on average at least one word will

be sampled from the long-tail, effectively choosing a word uniformly at random from the vocabu-
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lary. To avoid this issue, two heuristic modifications are often made to ancestral sampling, top-:

sampling (Fan et al., 2018; Holtzman et al., 2018; Radford et al., 2019) and nucleus sampling

(Holtzman et al., 2019).

In top-: sampling, ?(H |y1:8, c(`)) is restricted to the top : most likely words. Let T (:)
8
⊂ VY

be the set of : most likely next words at sampling step 8, i.e.,

T (:)
8

= arg max
(⊂VY ,|( |=:

∑
H∈(

log ?(H |y1:8, c(`)).

The next word H8+1 is then sampled from the following distribution,

?

(
H8+1 |y1:8, c(`);T (:)8

)
=


?(H8+1 |y1:8 ,c(`))∑

H′∈T (:)
8

?(H′ |y1:8 ,c(`)) H8+1 ∈ T (:)8

0 otherwise.

Holtzman et al. (2019) show that picking the right : for top-: sampling is difficult because

the next word distribution can alternate from very flat (which would suggest a large :) to very

peaked (which would suggest a small :). Instead they propose restricting the subset of vocabulary

to sample from to the smallest set of words such that their cumulative probability is greater than a

threshold ?,

N (?)
8

= arg min
(⊂VY∑

H∈( ?(H |y1:8 ,c(`))≥?

|( |.

The sampling distribution for this method which they call nucleus sampling, is computed similarly

to top-: sampling,

?

(
H8+1 |y1:8, c(`);N (?)8

)
=


?(H8+1 |y1:8 ,c(`))∑

H′∈N(?)
8

?(H′ |y1:8 ,c(`)) H8+1 ∈ N (?)8

0 otherwise.

Nucleus sampling helps avoid sampling from the long tail of the distribution while still producing

diverse samples.
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5.3 Faithful Generation Through Data-Augmentation: Noise-Injection Sampling and Self-

Training

We now formally define faithfulness as it relates to the meaning representation to text gen-

eration problem. Let � : M → Y be an arbitrary mapping from meaning representations to

utterances. We say that a mapping � is faithful if

È� (`)É = ` ∀` : ` ∈ M .

In words, � is faithful if the propositional content of ` (i.e., the semantics of the attribute-

value pairs in `) is correctly expressed by the generated utterance ŷ = � (`) for any well-formed

meaning representation `.

If � is implemented with templates as in Puzikov and Gurevych (2018), it is possible to design

a faithful mapping. However, it is possible that faithfulness and naturalness are in tension, as

the method of Puzikov and Gurevych (2018) did not perform as highly on human judgements of

naturalness.

It is well known that implementing � with a neural model ? and an inference procedure such

as beam search are not sufficient to obtain a faithful model. Beam search, which only expands

candidates whose next word continuations are highly probable, tends to produce low-perplexity

utterances (Serban et al., 2016). Low-perplexity utterances may satisfy perceived notions of quality

(Meister et al., 2020), but this is not a sufficient condition for semantic correctness. As mentioned

in §5.2.3, a common approach to make ? more faithful is to perform overgeneration with reranking

(Dušek and Jurčíček, 2016; Juraska et al., 2018; Dušek et al., 2019; Dušek et al., 2020). The :-

best list of utterancesH2><?;4C4 =
{
y(1) , . . . , y(:)

}
is produced using beam search with ? (·|c(`)) .

Then a discriminative meaning representation parser, @(·|·) : M × Y → (0, 1), is used to rerank

H2><?;4C4 such that the final output utterance is

ŷ = arg max
y∈H2><?;4C4

@ (` |y) .
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In this setting the inference procedure selects the utterance that most likely denotes the input `

under @. While this reduces the risk of generating an incorrect utterance with respect to `, it can

still fail when either @ is not accurate or when H2><?;4C4 does not contain a completely correct

utterance.

The critical issue here is that the final beam search hypothesis set may not contain any com-

pletely semantically correct utterances. This in part happens because neural models on natural

language data4 do not naïvely exhibit the quality of systematicity (Fodor and Pylyshyn, 1988;

Phillips, 1998; Marcus, 2003; Lake and Baroni, 2018; McCoy et al., 2019; Gardner et al., 2020).

A model displays systematicity if the capability of the model to perform a task implies that it can

perform other structurally related tasks successfully. On natural language data, a model with sys-

tematicity should be able to exploit the algebraic and compositional nature of natural language to

make correct inferences. Lake and Baroni (2018) give the example of a human speaker that under-

stands the concept of “twice” or “again,” who, upon learning a novel verb, “to dax,” immediately

understands the meaning of “daxed twice” or “to dax again” even though they have never seen

examples of these compositions before. Empirically, they demonstrate that a recurrent neural net-

work based text-to-meaning representation model does not possess this ability and frequently fails

to generalize to novel compositions even where the individual constituents of the compositions are

well represented in the training data. Bastings et al. (2018) show that this also holds going the

other direction, from meaning representation to text, the more relevant direction for our present

discussion.

In our case, this lack of systematicity manifests itself as a failure to realize individual attribute-

values that are well represented in the training data when those attribute-values occur in novel

combinations in a meaning representation at test time. We use as a case-study, the attribute-

value near=Burger King. which in our restaurant domain dataset, the E2E Challenge dataset

(Dušek et al., 2018), denotes that a restaurant G is near Burger King.

The attribute-value near=Burger King appears frequently in the training data in longer meaning

4Here we are referring to both sequence-to-sequence models but also sequence classification (Kim, 2014; McCoy
et al., 2019) and sequence-pair classification (He et al., 2019).
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representation/utterance pairs. In fact near=Burger King is positively associated with meaning

representations where seven or eight attributes are specified (there are eight total unique attributes

on this dataset). See Figure 5.5 where we plot the point-wise mutual information (PMI) (Church

and Hanks, 1990) of the occurrence of the near=Burger King and the occurrence of a meaning

representation of a particular size on the training set, where the size of a meaning representation |` |

is the number of attribute-value pairs in `. The PMI is computed as

PMI(near=Burger King, |` | = :) = log
?(near=Burger King, |` | = :)
?(near=Burger King)?( |` | = :) ∀: : : ∈ {3, . . . , 8},

with

?(near=Burger King) =
∑
(`,y)∈D 1 {near=Burger King ∈ `}

|D|

?( |` | = :) =
∑
(`,y)∈D 1 {|` | = :}

|D|

?(near=Burger King, |` | = :) =
∑
(`,y)∈D 1 {near=Burger King ∈ ` ∧ |` | = :}

|D| .

From Figure 5.5 we can see that near=Burger King is negatively associated with smaller meaning

representations, suggesting a neural model will struggle to generate utterances for it in the smaller

meaning representation regime.

To demonstrate this, we trained a uni-directional GRU generation model on the training corpus

and then tried to generate an utterance for the following meaning representation,

` =




INFORM

name=Alimentum
near=Burger King
area=city centre
family_friendly=no



,

using beam search. Notice that in this case |` | = 4, indicating that the occurrence of near=Burger

King is a relatively novel situation given the training set. We generated some beam search candi-

dates we show below, underlining the phrases that are not semantically correct given the meaning
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Figure 5.5: PMI between near=Burger King and meaning representation size on the E2E Challenge
dataset. 0 on the H-axis indicates the two variables are independent.

representation,

1. Alimentum is located in the city centre near the Express by Holiday Inn. It is not family-

friendly.

2. Alimentum is located in the city centre near the Yippee Noodle Bar. It is not family-friendly.

3. Alimentum is located in the city centre near the Raja Indian Cuisine. It is not family-friendly.

4. Alimentum is not family-friendly. It is located in the city centre near the Yippee Noodle Bar.

5. The Alimentum is located in the city centre near the Express by Holiday Inn. It is not family-

friendly.

Right away we are confronted by their homogeneity; utterances 1,2,3 and 5 have the same syntactic

structure, varying only in the phrase “near X.” Utterances 1 and 5 differ only by a single word (the

initial article The in 5). Most importantly, none of them correctly specify that the Alimentum is

near Burger King. Even with a beam size of 128, the name “Burger King” is never generated by

the model!5

5A beam size of 128 would be impractical for most applications. Beam sizes are typically from 4-10 in most works.
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Figure 5.6: PMI between various attribute-values and meaning representation size on the E2E
Challenge dataset. 0 on the H-axis indicates the two variables are independent.
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This is more frustrating because there are plenty of training examples where even a coarse

understanding of phrase structure would allow construction of a correct utterance for this case. For

instance, we observe utterances containing “near Burger King” like this,

The Eagle is a low rated coffee shop near Burger King and the riverside that is family

friendly and is less than £20 for Japanese food.

while also seeing

Alimentum is located in the city centre near Yippee Noodle Bar. . . .

where a correct utterance could be created by substituting “Burger King” in the latter instance, e.g.,

Alimentum is located in the city centre near Burger King.

Unfortunately, the GRU model does not learn to substitute the correct prepositional phrase.

Given that correct examples seem constructable from constituent phrases, it suggests that a data-

augmentation approach might help to generate additional training examples that do not possess

some of the spurious correlations between attribute-values and input size.

Indeed, the compositional data-augmentation scheme proposed by Andreas (2020) demon-

strates improved model systematicity. Unfortunately, a rule based system of recombination risks

creating disfluencies in the utterances that could potentially reduce the fluency of the learned

model. Additionally, the number of spurious associations in the dataset are numerous; see Fig-

ure 5.6 for 35 of the total 79 attribute-value pairs for the E2E dataset. They all have some spurious

association with meaning representation size. And we haven’t even explored other associations

that might exist (e.g. between two attribute-value pairs6). In the following subsections, we explore

what an ideal data-augmentation policy might look like and then give a practical implementation

of it.
6One might argue that it is OK for there to be correlations between the attribute-values, e.g., maybe there are fewer

family friendly restaurants in the city centre. However, we often expect an NLG system to respond systematically
– given an arbitrary set of attribute-values, the NLG component should realize them all correctly, and under this
constraint it is desirable that any particular pairing of attribute values is independent in the NLG model.
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5.3.1 An Idealized Data-Augmentation Protocol

We now introduce an idealized data-augmentation protocol and discuss some potential pitfalls

and bottlenecks before proposing our implementation of it. Let DM and DY be the empirical

distributions (i.e. training dataset distributions) over the meaning representations and utterances

respectively. The empirical distributions exhibit various dataset creation/annotation artifacts. For

example, we have that some attributes are correlated with length (i.e., DM (0 ∈ `, |` | = :) ≠

DM (0 ∈ `)DM ( |` | = :)) or certain attributes with each other (i.e., DM (01, 02 ∈ `) ≠ DM (01 ∈

`)DM (02 ∈ `)).

Ideally, we could construct novel meaning representation examples such that their distributions

did not display these correlations. Let us assume we have such a distribution,D−1
` , from which we

can sample novel utterances. Given a sample D−1
` , we would then need a conditional distribution

. ( ˜̀) from which to draw the appropriate companion utterance ỹ such that ÈỹÉ = ˜̀ while the

naturalness/grammaticality of ỹ was consistent with the empirical distribution, i.e. ((. ) ≈ ((DY)

where ( is a projection of utterances into a syntactic space that is independent of the content. Hav-

ing these two distributions, we could follow the simple data-augmentation protocol in algorithm 6

to obtain a more systematic language generation model ?∗.

Coming up with a meaning representation distribution, D−1
` , is fairly straightforward. For

example we could just sample the size of the meaning representation, : , uniformly at random, then

sample the : attributes uniformly at random without replacement. This would ensure that attributes

and meaning representation size are independent and ensure that attributes are not correlated with

each other. To make up for the fact that some attribute-values are over-represented in the training

set, we could sample values inversely proportional to their empirical frequency. This results in the

following data generation process for

˜̀ =



X

01=E1
...

0:=E:



∼ D−1

` ,
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Algorithm 6: Idealized Data-Augmentation and Training
1 A ← {}
2 while |A| < # do
3 ˜̀ ∼ D−1

`

4 ỹ ∼ . ( -̃)
5 A ← A ∪ {( ˜̀, ỹ)}
6 ?∗ ← Train(D ∪ A)

Result: ?∗

(1) Draw a dialogue act.
X ∼ Uniform({X1, X2, . . .})

(2) Draw a meaning representation size : .

: ∼ Uniform({:<8=, . . . , :<0G})

(3) Sample : attributes without replacement.

08 ∼ Uniform({=0<4, . . . , =40A, 40C_CH?4} \ {01, . . . , 08−1}) ∀8 : 8 ∈ {1, . . . , :}

(4) Sample a value E8 for each attribute 08.

E8 ∼ Categorical
(
count(E1)−1, count(E2)−1, . . .

)
∀8 : 8 ∈ {1, . . . , :}.

Unfortunately, it is not clear how we implement utterance distribution . ( ˜̀) since if we had

an utterance generation method that could respond systematically to non-training data distributed

meaning representations, we wouldn’t need to perform data augmentation in the first place. As

a starting point, we consider ways of generating samples from a base model ?0 trained on the

available training data, i.e. ?0 = Train(D).

5.3.2 Conditional Utterance Sampling for Data-Augmentation

We cannot use ?0 with beam search as we saw previously; there are some meaning represen-

tations that ?0 won’t be able to create utterances for (as we saw with near=Burger King). We

could try a variant of ancestral sampling, but it is difficult for ancestral sampling schemes to pro-

duce extremely different outputs that break from spurious associations learned from the training
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distribution without hurting fluency.

The fundamental issue with ancestral sampling is that the randomness of the model is located

at the word selection stage. This means that in the middle of generating a phrase it is possible for a

disfluent word to be selected, which can disrupt the current phrase but also destabilize subsequent

generation steps as the model tries to recover from the unusual selection. Ideally, randomness in

a model would occur earlier in determining the “topicality” or “aboutness” (you might even say

content selection) of the generated utterance.

Beyond the conditioning input c(`), the content that is to be generated is implicitly represented

by inner hidden states of the model. In Cho (2016), they argue that the hidden states, g8, of the

sequence-to-sequence decoder lie on a manifold, as a requirement of learning the next word predic-

tion, i.e. Ĥ = arg maxH ?(H |y1:8, c(`)) = arg maxH
(
W(>)g8 + b(>)

)
H

implies that Ĥ must be linearly

separable from other words H′ ∈ VY along the hidden state manifold. The implication is that

moving about the manifold will change the “topicality” of the distribution ?(H |y1:8, c(`)). They

further suggest adding Gaussian noise to g8 as a way to obtain random samples from ?, which we

refer to as noise-injection sampling. While Cho (2016) used noise-injection sampling as a means

to generate semantically correct but syntactically diverse outputs, one of our contributions is to use

this scheme as a means to generate semantically divergent outputs (that maintain grammaticality),

for use as a data-augmentation tool.

We show the noise-injection sampling algorithm in Figure 5.7 along with greedy decoding and

ancestral sampling to emphasize the how the location of the stochasticity moves from the next

word selection (Alg. 8 line 8) to a perturbation of the hidden state (Alg. 9 line 7). Note that in line

7 of the noise injection sampling algorithm, the standard deviation of the normal distribution, f
8
,

is scaled by the decoder step 8 and in the limit turns to zero, i.e. lim8→+∞ g + & 8 = g. The inuition

behind this scaling is that we add the most noise at the first steps of decoding, which encourages

the decoder to start from a topically novel region of the hidden state manifold. As the decoding

proceeds, the noise reduces along with the chances of sending the decoder off the manifold and

destabilizing the decoding, and gradually we converge on the behavior of greedy decoding.
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Deterministic operation Stochastic operation

Alg. 7: Greedy Decod-
ing

1 h1:< ← enc(c(`))
2 Ĥ1 ← «s»
3 ŷ← [ Ĥ1]
4 8 ← 1
5 while Ĥ8 ≠ «e» do
6 g8 ← dec(ŷ, h1:<)
7

8 Ĥ8+1 ← arg maxH ?(H |g8)
9 ŷ← ŷ ⊕ [ Ĥ8+1]

10 8 ← 8 + 1
Result: ŷ

Alg. 8: Ancestral Sam-
pling

1 h1:< ← enc(c(`))
2 Ĥ1 ← «s»
3 ŷ← [ Ĥ1]
4 8 ← 1
5 while Ĥ8 ≠ «e» do
6 g8 ← dec(ŷ, h1:<)
7

8 Ĥ8+1 ∼ ?(·|g8)
9 ŷ← ŷ ⊕ [ Ĥ8+1]

10 8 ← 8 + 1
Result: ŷ

Alg. 9: Noise Injection Sam-
pling

1 h1:< ← enc(c(`))
2 Ĥ1 ← «s»
3 ŷ← [ Ĥ1]
4 8 ← 1
5 while Ĥ8 ≠ «e» do
6 g8 ← dec(ŷ, h1:<)
7 &i ∼ Normal(0, f

8
)

8 Ĥ8+1 ← arg maxH ?(H |g8 + &i)
9 ŷ← ŷ ⊕ [ Ĥ8+1]

10 8 ← 8 + 1
Result: ŷ

Figure 5.7: A comparison of greedy decoding, ancestral sampling, and noise injection sampling.

We can understand noise-injection sampling as a compromise between greedy decoding and

ancestral sampling; rather than draw a sequence of utterance tokens stochasticity, we instead draw

a sequence of hidden state spaces. Given the sequence of hidden state spaces, the corresponding

sequence of utterance tokens is deterministically decided by the most likely next token given the

last hidden state. This next word selection strategy helps to avoid disfluent continuations.

In Figure 5.8 we show examples of samples obtained with noise-injection sampling as well as

some ancestral sampling schemes. We can see that the ancestral sampling examples are not very

diverse. The noise-injection sampling example, however, semantically diverges from the input

while maintaining fluency. It was even able to generate an utterance containing the phrase “near

Burger King” which is was practically impossible to generate with beam search.

In Table 5.1, we show the probability of generating the example

«s» the waterman is not family friendly and is located near burger king . «e»

under the various sampling schemes. In our present case, top-: and nucleus sampling have very

similar distributions to the ancestral sampling distribution (?(H8+1 |g8)). All three of these tech-

niques assign a very low probability to generating the example utterance, and in the case of nucleus

sampling, it only gives non-zero probability when using a nucleus of 0.99 cumulative probability
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Ancestral Sampling
«s» the eagle is a non family - friendly italian food establishment . «e»
«s» the eagle is a italian food place and is not family - friendly . «e»
«s» some italian food can be found at the eagle . «�» it ’s not family - friendly . «e»
«s» the eagle serves italian food . «�» it has a «?» «?» and is not family friendly . «e»
«s» the eagle is a family friendly place for italian food . «e»

Top-K Sampling (: = 100)
«s» the eagle serves italian food . «�» it is not family - friendly . «e»
«s» the eagle serves italian cuisine . «�» it is not family - friendly . «e»
«s» the eagle has italian food and is not family - friendly «e»
«s» the eagle is italian place . «�» it is not family - friendly . «e»
«s» the eagle provides fast food . «�» it is not family - friendly . «e»

Nucleus Sampling (? = 0.95)
«s» the eagle serves italian food and is not family - friendly . «e»
«s» the eagle is not family - friendly and serves italian food . «e»
«s» the eagle is not family - friendly . «�» they serve italian food . «e»
«s» italian food is served at the eagle . «�» not family - friendly . «e»
«s» the eagle is a good place to eat italian food . «�» it is not family - friendly . «e»

Noise-Injection Sampling (f = 2.0)
«s» the eagle in the city centre . «�» it is not family - friendly . «�» it is located near the burger king . «e»
«s» the eagle serves italian food . «e»
«s» the waterman is not family friendly and is located near burger king . «e»
«s» the eagle is located near the burger king . «e»
«s» the eagle is a non family - friendly italian food place . «e»

Figure 5.8: Example samples taken after conditioning on the following meaning representation:
[[INFORM; name=The Eagle; food=Italian; family_friendly=yes]].

(i.e. N (.99)
8

)! In particular, noise-injection sampling puts much more probability mass on gener-

ating relatively rare attribute-value realizations (8 = 2, “waterman” and 8 = 11, “burger”). This

aspect of noise-injection sampling makes it very attractive for data-augmentation as we can use it

to create semantically novel utterances that are not represented in the training dataset, while still

producing fluent outputs.

5.3.3 A Practical Data-Augmentation Protocol

Because of its ability to generate semantically divergent and novel outputs while maintaining

fluency, we adopt this noise-injection sampling as our method of sampling utterances, . , for data-
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8 1 2 3 4 5 6 7
H8+1 the waterman is not family friendly and

?

(
H8+1 |g8;T (5)8

)
0.874 0.004 0.380 0.397 0.915 0.147 0.338

?

(
H8+1 |g8;T (25)

8

)
0.792 0.004 0.344 0.371 0.877 0.147 0.327

?

(
H8+1 |g8;T (50)

8

)
0.778 0.004 0.339 0.366 0.872 0.147 0.326

?

(
H8+1 |g8;T (75)

8

)
0.772 0.004 0.338 0.364 0.870 0.147 0.326

?

(
H8+1 |g8;T (100)

8

)
0.768 0.004 0.337 0.363 0.869 0.147 0.326

?

(
H8+1 |g8;N (.95)

8

)
0.796 0.000 0.352 0.377 0.909 0.148 0.342

?

(
H8+1 |g8;N (.96)

8

)
0.789 0.000 0.349 0.374 0.898 0.148 0.338

?

(
H8+1 |g8;N (.97)

8

)
0.781 0.000 0.345 0.370 0.892 0.148 0.333

?

(
H8+1 |g8;N (.98)

8

)
0.773 0.000 0.342 0.367 0.882 0.148 0.332

?

(
H8+1 |g8;N (.99)

8

)
0.765 0.004 0.338 0.363 0.874 0.148 0.329

? (H8+1 |g8) 0.758 0.004 0.335 0.359 0.865 0.147 0.326
? (H8+1 |g8 + & 8) 0.321 0.170 0.408 0.489 0.785 0.514 0.459

8 8 9 10 11 12 13 14
H8+1 is located near burger king . «e»

?

(
H8+1 |g8;T (5)8

)
0.111 0.147 0.168 0.000 0.954 0.931 0.810

?

(
H8+1 |g8;T (25)

8

)
0.101 0.111 0.148 0.001 0.935 0.911 0.810

?

(
H8+1 |g8;T (50)

8

)
0.100 0.105 0.146 0.001 0.930 0.910 0.810

?

(
H8+1 |g8;T (75)

8

)
0.100 0.103 0.145 0.001 0.928 0.909 0.810

?

(
H8+1 |g8;T (100)

8

)
0.100 0.102 0.144 0.001 0.926 0.909 0.810

?

(
H8+1 |g8;N (.95)

8

)
0.104 0.103 0.150 0.000 0.964 0.950 0.810

?

(
H8+1 |g8;N (.96)

8

)
0.103 0.102 0.149 0.000 0.954 0.939 0.810

?

(
H8+1 |g8;N (.97)

8

)
0.102 0.101 0.148 0.000 0.947 0.931 0.810

?

(
H8+1 |g8;N (.98)

8

)
0.101 0.100 0.146 0.000 0.937 0.924 0.810

?

(
H8+1 |g8;N (.99)

8

)
0.100 0.099 0.145 0.001 0.928 0.917 0.810

? (H8+1 |g8) 0.099 0.098 0.143 0.001 0.919 0.908 0.810
? (H8+1 |g8 + & 8) 0.562 0.440 0.731 0.599 0.972 0.903 0.984

Table 5.1: Word selection probabilities when using ancestral sampling, top-: sampling (for : ∈
{5, 25, 50, 75, 100}), nucleus samplling (for ? ∈ {0.95, 0.96, 0.97, 0.98, 0.99}), and noise-injection
sampling (f = 2.0).
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Alg. 10: Data Augmentation with Noise-Injection Sampling and Self-Training
Data: training dataset D, number of synthetic datapoints to generate #

1 ?0 ← Trainy (D)
2 @ ← Train` (D)
3 A ← {}
4 while |A| < # do
5 ˜̀ ∼ D−1

`

6 Ỹ200 ←
{
ỹ(8) ∼ ?0

(
·|c( ˜̀), & (8)

)
∀8 : 8 ∈ {1, . . . , 200}

}
7 Ỹ20 ← Top20

(
Ỹ200, _y : log ?0 (y|c( ˜̀),&)

|y|

)
8 for ŷ ∈ Ỹ20 do
9 ˆ̀ ← @ (ŷ)

10 if ¬Filter ( ˆ̀, ŷ) then
11 A ← A ∪ {( ˆ̀, ŷ)}

12 ?∗ ← Trainy(D ∪ A)
Result: ?∗

augmentation. We show our actual data-augmentation scheme in algorithm 10 and now walk

through some of the implementation details.

Train base generator ?0 and meaning representation parser @. The algorithm begins by train-

ing the base generator (i.e., naïve sequence-to-sequence model) and meaning representation parser

@. Both models are trained on the same data, with the only real change to the Train sub-routine be-

ing which part of a training example is the output and which is the input. Alternatively, @ can also

be implemented using regular-expression-based rules. We defer detailed explanation of @ until the

experiments; it suffices to understand @ as a mapping from utterances to meaning representations.

Sampling a meaning representation, ˜̀ We use the meaning representation sampling scheme

described in §5.3.1 to implement the distribution D−1
` .

Generating a novel utterance from ?0 with noise-injection sampling. In line 6 we take 200

noise-injection samples from ?0 to construct a candidate set of utterances, Ỹ200. We use f = 2.0

after manually experimenting with a range of values from 0.1-3.0 since it gave reasonably fluent
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outputs while also generating semantically divergent outputs.. phrases with no realized attributes.

From these we use only the top 20 utterances, Ỹ20 by average log-likelihood, log ?(ỹ(8) |c( ˜̀),& (8) )
|ỹ(8) |

(line 7). We do this selection step so as to be extra cautious and avoid adding any potentially

disfluent utterances to A.

Predict meaning representation ˆ̀ from ŷ. Because the noise-injection sampling produces highly

semantically divergent utterances, it is unlikely that ÈŷÉ = ˜̀. Instead we use the meaning repre-

sentation parser, @, to recover the most likely meaning representation, ˆ̀ = @ (ŷ). More details

about @ will be provided in §5.3.6.

Check synthetic datapoint ( ˆ̀, ŷ). We do one last quality check on the synthetic example ( ˆ̀, ŷ)

before adding it to the augmented dataset, A. We make sure that the probability of ˆ̀ under @

is above 0.5 when using a model-based meaning representation parser. When using a rule-based

meaning representation parser, we check to make sure that there are no repeated attribute-value-

pairs in ŷ, e.g., “Aromi is a coffee shop and it is a coffee shop,” by discarding any utterances

that trigger multiple rules for any attribute. Meaning representation/utterances that have been

previously generated are also discarded. If the meaning representation/utterance pair passes these

final quality checks, we add it to A.

Train an augmented generator ?∗ onD ∪A. After generating a synthetic dataset,A, we train

a new generation model, ?∗, on the union of the original training data and the newly generated

synthetic data. We refer to this model as the augmented generator and, as we will show empirically,

the augmented generator is more faithful than the base generator, ?0. We call this process self-

training because ?∗ and ?0 share the same architecture, and ?∗ is trained on data produced by ?0.

In theory, we could repeat this process similar to iterative back-translation (Hoang et al., 2018),

using ?0 to produce a ?1 which could then produce a ?2 and so on. However, we did not experiment

with this because we found that ?∗ improved in faithfulness significantly over ?0 after one pass

through algorithm 10.
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Dataset Train Valid Test Unique Dialogue Acts Unique Attribute Values

E2E Chal. 42,061 4,672 4,693 1 8
Laptops 15,888 5,298 5,297 14 19

TVs 8,442 2,814 2,812 14 15

Table 5.2: Dataset statistics for noise-injection and self-training experiments.

5.3.4 Datasets

We experimentally validate the noise-injection sampling and self-training data-augmentation

scheme on three recent dialogue generation datasets, the E2E Challenge dataset (Novikova et al.,

2017) and the Laptops and TVs datasets (Wen et al., 2016). Each dataset consists of meaning

representations paired with one or more reference utterances. All attribute values come from a

closed vocabulary.

The three datasets also represent different training size conditions; with the E2E Challenge

dataset representing the “large data” training condition and the Laptops and TVs dataset represent-

ing “small data” conditions. See Table 5.2 for dataset size statistics. The E2E Challenge dataset

has only one dialogue act, INFORM, and its training meaning representations contain three to eight

unique attributes. The Laptops and TVs datasets contain a more diverse set of meaning represen-

tation/utterance pairs. There are 14 unique dialogue acts. The number of minimum and maximum

attributes varies according to the dialogue act. See Table 5.3 for a list of the unique dialogue acts

and attributes for the three training sets.

Delexicalization Prior work using neural natural language generation models often relies on

delexicalization, that is, replacing realizations of named-entity or numeric values in an utterance

with a placeholder token, in order to alleviate data sparsity issues and yield better generalization

when a generating utterances about named-entities not seen in the training dataset. For example,

on the E2E Challenge dataset, the name and near attributes are often delexicalized because they

are proper names of establishments that are simple to find and replace in the utterance. When

delexicalizing the name and near attributes, the fully lexicalized utterance
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Dataset Dialog Acts Attributes

E2E Challenge

INFORM name
near
eat_type
food
area
price_range
customer_rating
family_friendly

Laptops

INFORM family weight
INFORMONLYMATCH price_range platform
INFORMONMATCH battery_rating memory
INFORMALL drive_range drive
INFORMCOUNT weight_range processor
INFORMNOINFO is_for_business_computing
RECOMMEND name
COMPARE type
SELECT price
SUGGEST warranty
CONFIRM battery
REQUEST design
REQUESTMORE dimension
GOODBYE utility

TVs

INFORM family audio
INFORMONLYMATCH price_range
INFORMONMATCH screen_size_range
INFORMALL eco-rating
INFORMCOUNT hdmi-port
INFORMNOINFO has_usb-port
RECOMMEND name
COMPARE type
SELECT price
SUGGEST resolution
CONFIRM power_consumption
REQUEST accessories
REQUESTMORE color
GOODBYE screen_size

Table 5.3: The dialogue acts and attributes for the E2E Challenge, Laptops, and TVs datasets.
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Near The Six Bells is a venue that is children friendly named The Golden Curry.

can be delexicalized as

Near «near» is a venue that is children friendly named «name».

Delexicalized utterances can be re-lexicalized as a post-processing step, where the placeholder

token is replaced with the correct value text.

On the E2E Challenge dataset, we experiment with delexicalization of the Name and Near

attributes since they have a relatively large vocabulary of valid slot fillers, some of which are only

seen infrequently in the training data; it can be difficult for fully lexicalized models to produce

some of the rarer location names for these attributes. However, since delexicalization might be

difficult or impossible in other domains, we implement both delexicalized and lexicalized versions

of the generation models on the E2E dataset to more fully evaluate the self-training method.

The evaluation script for the Laptops and TVs datasets uses delexicalization to evaluate at-

tribute realization error, and so we use it here to be consistent with prior work, delexicalizing all

possible attributes.

While delexicalization effectively solves some problems in faithful generation (e.g., the diffi-

culty in generating the phrase “near Burger King”), it is difficult to apply to attributes that are

not realized by a small vocabulary of names or phrases. Even in those cases it introduces extra

complexity if the surrounding context will depend on the particular value in any way (e.g., “near

an «name»” would not be grammatical if replacing the «name» placeholder with “Burger King”).

5.3.5 Text Generation Models

We use a two-layer, unidirectional GRU architecture with Bahdanau style attention for our

sequence-to-sequence meaning representation-to-text model. We set �F = �ℎ = �E = �D =

512, that is, we use 512-dimensional embedding and hidden states as described in Appendix A.
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We fit model parameters, \, by minimizing the negative log-likelihood of the training set, D, i.e.

L(\) = −
∑
(`,y)∈D

log ? (y|c(`); \) .

Our choice of linearization strategy, c, differs slightly for the E2E Challenge and ViGGO

corpora. For the former, we arbitrarily and consistently order the eight attribues, explicitly repre-

senting absent attribute-values with a N/A token.7 For example, for the meaning representation

` =




INFORM

name=The Mill
near=Avalon
food=Italian


 ,

we would have the following linearization,

c(`) =



«s»,
eat_type=N/A,
near=Avalon,
area=N/A,
family_friendly=N/A,
customer_rating=N/A,
price_range=N/A,
food=Italian,
name=The Mill
«e»



.

We omit the dialogue act since the E2E Challenge dataset only has one, INFORM. When using

the delexicalized model variant, we omit the name attribute since it is always present, and only

indicate that the near attribute is present with a placeholder token, yielding

7In our initial experiments, including absent attributes in the input this way performed slightly better than omitting
them.
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c(`) =



«s»,
eat_type=N/A,
near=«present»,
area=N/A,
family_friendly=N/A,
customer_rating=N/A,
price_range=N/A,
food=Italian,
«e»


.

For the Laptops and TVs corpus, we similarly determine an arbitrary ordering but omit any

absent attribute-values since there are too many to represent all of them explicitly. Additionally,

since there are multiple dialogue acts we prepend a token representing the dialogue act to the start

of the sequence. As an example, for the following meaning representation

` =




INFORMCOUNT

count=40
family=don’t care
battery_rating=excellent




we would have the following linearization,

c(`) = [«s», inform_count, count=«NUM», family=don’t care, battery_rating=excellent, «e»] .

When generating utterances for evaluation (i.e. not for use in noise-injection sampling) we use

either greedy decoding or beam decoding with a beam size of eight. The beam search terminates

after eight candidates have been generated; the candidates are reranked by average token log-

likelihood, log ?(y|c(`))
|y| . In these experiments, we do not use a discriminative reranker to ensure the

faithfulness of the selected beam candidate.

5.3.6 Meaning Representation Parsing Models

Given a novel utterance ŷ sampled from ?0, we need to reliably parse the implied meaning

representation ˆ̀ = @(ŷ), where @ is our parsing model. We have two things going for us in
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our experimental setting. First, even with noise-injection sampling, model outputs are fairly pat-

terned, reducing the variability of the utterances we need to parse in practice; a meaning represen-

tation parser on real human data would need to be much more robust.

Second, the meaning representation in this study are flat lists of attributes that are somewhat

independent of each other. We only need to detect the presence of each attribute and its value. For

the Laptops and TVs datasets we also need to recover the dialog act but these also are signaled by a

fairly limited repertoire of cues, e.g. “we recommend.” Given this, we experiment with both hand

crafted regular expression rules and learned classifiers to predict the value of an attribute if present

or that it is missing.

Rule-based parser (@ℜ) We design hand-crafted regular expression based rules to match for

the presence of key phrases for each of the attributes and dialouge acts in the datasets while also

checking to make sure that there is only one match per attribute.

To construct the rules, we look through both the training data references as well as the gener-

ation model outputs as this is what the rules will be operating on in practice. For each lexicalized

attribute (and dialogue act) we develop a list of regular expressions such as,

/is (family|kid|child) friendly/⇒ family_friendly=yes.

For the delexicalized attributes, we simply check for the presence of the placeholder token.

We design these rules to be high precision, as it is safer to miss out on more obscure varieties

of utterance to avoid adding incorrectly parsed data points. However, in many cases the rules are

also high recall as well. The average F-score on the E2E validation set is 0.93.

Classifier-based parser (@q) It is perhaps too optimistic to believe we can construct reasonable

rules in all cases. Rule creation quickly becomes tedious and for more complex meaning represen-

tations, this would become a bottleneck. To address these concerns, we also study the feasibility

of using learned classifiers to predict the presence and value of the attributes. For each attribute in
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the E2E dataset, we trained a separate convolutional neural network classifier to predict the correct

attribute value (or n/a if the attribute is not present) from an utterance.

The architecture largely follows that of Kim (2014). Let W ∈ R|VY |×�F be an embedding

matrix for the utterance token vocabulary, W, with each token H ∈ VY associated with a row in

W, which we indicate with WH ∈ R�F . For each attribute 0, the set of possible values (including

n/a) is denotedV0.

Given an utterance y = [H1, . . . , H=] , we first embed the utterance tokens to obtain a sequence

of word embeddings,

w1, . . . ,w= = WH1 , . . . ,WH= .

We then apply a series of unigram, bigram, and trigram convolutional filters (i.e., convolutional

feature widths : of 1, 2, and 3 respectively) each with � 5 output features, which are computed as,

ℎ:,8 = max
9∈{1−b :2 c ,...,=+b :2 c−:+1}

ReLU

©­­­­­­­­«
1 (:,8) + u(:,8) ·



w 9

w 9+1
...

w 9+:−1



ª®®®®®®®®¬
∀:, 8 : : ∈ {1, 2, 3},

8 ∈ {1, . . . , � 5 }

where 1 (:,8) ∈ R and u(:,8) ∈ R:�F are learned parameters and we use the same zero-padded

convolution described in §3.2.2.3 with w8 = 0 for 8 < 1 and 8 > =. The individual convolutional

features are collected in a hidden state encoding of the utterance, h ∈ R:� 5 , with

h =
[
ℎ1,1, . . . , ℎ1,� 5

, ℎ2,1, . . . , ℎ2,� 5
, ℎ3,1, . . . , ℎ3,� 5

]
.

The hidden state is then fed through a two layer feed-forward network to compute the probability

of a particular attribute value,

@0 (E |y) = softmax
(
U(0,2)

(
U(0,1)h + b(0,1)

)
+ b(0,2)

)
E
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where U(0,1) ∈ R�F×:�F , b(0,1) ∈ R�F , U(0,2) ∈ R|V0 |×�F , and b(0,2) ∈ R|V0 | are learned param-

eters. If ` contains a < attribute-value pairs, 01 = E1, . . . , 0< = E<, the probability of ` under the

parsing model is @(` |y) = ∏<
8=1 @08 (E8 |y).

Each attribute classifier has distinct parameters and is trained on the training set but minimizing

the negative log-likelihood,

L(q) = −
∑

(0=E,y)∈D
log @0 (E |y; q),

using minibatch stochastic gradient descent on the training set, D.

During training we apply dropout (with drop rate of 0.25) to the embedding layer, convolutional

filter outputs, and hidden layers. We train for 30 epochs with gradient descent using a learning rate

of 0.25 and weight decay penalty of 0.0001, using validation set F1 as our model selection criterion.

The average E2E validation F-score is 0.94.

5.3.7 Experiments

5.3.7.1 E2E Challenge

We train base generators ?0 on the original training data D, with and without delexicalizing

the name and near attributes. We train for 500 epochs with gradient descent. We use a batch size

of 128, with a learning rate of 0.25, weight decay penalty of 0.0001, and a dropout probability of

0.25. We select the best model iteration using validation set BLEU score.8

Using the self-training method outlined in §5.3.3, we create augmented datasets using either

@ℜ or @q, which we refer to asA@ℜ andA@q respectively We only use the model parser, @q, in the

delexicalized setting. We repeat the while loop in the data-augmentation algorithm 25,000 times

for each valid MR size 3, . . . , 8, yielding 1,591,788 additional samples for the lexicalized ?0/@ℜ

pairing, and 501,909 for ?0/@ℜ and 384,436 for ?0/@q delexicalized pairings.9

8We use the official shared task script to compute automatic quality metrics on the E2E dataset.
9The number of additional examples generated by the delexicalized approaches is an order of magnitude smaller

than the lexicalized case because we discard duplicate generated utterances. With delexicalization, duplicates are more
frequently generated by the model.
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For both D ∪A@ℜ and D ∪A@q we train new generators ?∗ using the same training setting as

above (although we terminate training after 50 epochs because the models converge much faster

with the additional data). We report BLEU, ROUGE-L, and METEOR on the E2E Challenge test

set, using the official shared-task evaluation script. We show results for both greedy decoding

and beam decoding with beam size 8 under ?0 and ?∗ models. We compare our models to the

best sequence-to-sequence model, Slug (Juraska et al., 2018), the best grammar-rule based model,

DANGNT (Nguyen and Tran, 2018), and the best template based model, TUDA (Puzikov and

Gurevych, 2018), as determined during the shared task evaluation (Dušek et al., 2019).

5.3.7.2 Laptops and TVs

We perform similar experiments on the Laptops and TVs datasets. We train a separate ?0 model

for each dataset for 300 epochs with a learning rate of 0.1 for Laptops and 0.25 for TVs. The

weight decay penalty is 0.0001 and dropout probability is 0.25. Best model iteration is determined

by validation set BLEU score. As in the E2E experiments, we create an augmented dataset for both

the Laptops and TVs dataset using the method outlined in §5.3.3. We then train new generators

?∗ on the union of original training data and the augmented dataset.

We repeat the while loop in the noise-injection sampling algorithm 25,000 times for each dia-

logue act and legal dialogue act size.10 We obtain 373,468 and 33,478 additional samples for the

Laptops and TVs datasets respectively.

We automatically evaluate our models using the evaluation script of (Wen et al., 2016), which

computes BLEU scores, as well as slot alignment error rate (since this dataset is almost fully

delexicalized, it simply checks for the presence of the correct attribute placeholders according to

the MR). We compare again to the Slug model as well as the Semantically Conditioned LSTM

(SCLSTM) (Wen et al., 2015) which report state-of-the-art results on these datasets.

10A number of attributes ( is “legal” if we observe a training instance with that dialogue act instance with ( attributes
in the original training data.
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Model BLEU ROUGE-L METEOR

Slug 66.19 67.72 44.54
DANGNT 59.90 66.34 43.46

TUDA 56.57 66.14 45.29

Delex. Base Gen. (?0) greedy 66.91 68.27 44.95
beam 67.13 68.91 45.15

Aug. Gen. (?∗) Rule Parser (@ℜ) greedy 65.57 67.71 45.56
beam 66.28 68.08 45.78

Model Parser (@q) greedy 63.76 67.31 44.94
beam 64.23 67.54 45.17

Lex. Base Gen. (?0) greedy 60.35 64.51 41.82
beam 61.81 65.83 42.69

Aug. Gen. (?∗) Rule Parser (@ℜ) greedy 64.74 68.21 44.46
beam 64.81 67.83 44.39

Table 5.4: Automatic quality metrics on the E2E test set. Baseline methods all rely on at least
partial delexicalization, puting our lexicalized models at a relative disadvantage.

Model Name Near
Family

Area
Customer

Food
Price Eat

All
Friendly Rating Range Type

Slug 0 0 6 1 6 10 35 9 67
DANGNT 0 0 18 0 0 0 0 58 76

TUDA 0 0 0 0 0 0 0 0 0

delex. ?0 greedy 0 0 23 23 16 26 27 0 115
beam 0 0 60 3 9 3 8 0 83

?∗ @ℜ greedy 0 0 0 0 0 0 0 0 0
beam 0 0 0 0 0 0 0 0 0

@q greedy 0 0 1 0 8 1 9 0 19
beam 0 0 0 0 3 0 0 0 3

lex. ?0 greedy 145 141 14 15 2 14 2 0 333
beam 155 124 62 0 0 0 0 0 341

?∗ @ℜ greedy 0 0 2 0 0 125 0 0 127
beam 0 2 0 0 0 119 0 0 121

Table 5.5: Attribute realization errors on the E2E test set. The Slug model and our delexical-
ized models delexicalize the NAME and NEAR slots, thus making 0 errors on these attributes.
DANGNT and TUDA models perform complete delexicalization.
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5.3.8 Results

5.3.8.1 E2E Challenge

Automatic evaluation metrics are shown in Table 5.4. Surprisingly, ?0 using greedy decoding

surpasses all of the baseline systems on all three automatic metrics. This is quite shocking as the

Slug baseline ensembles three different sequence-to-sequence models producing 10 outputs each

using beam search and reranking based on slot alignment to select the final generation output. The

?∗/@ℜ model remains competitive with Slug, again even using greedy decoding. The ?∗/@q starts

under-performing Slug on BLEU score but remains competitive on ROUGE-L and METEOR again

when using greedy decoding. Overall the augmented training data tends to hurt generation with

respect to automatic quality measures. In this regard, the added noise of the model-based parser,

@q, exacerbates things as it reduces quality more than the rule-based parser, @ℜ.

In the lexicalized setting, ?0 produces lower quality output than the Slug system. However, the

augmented training procedure increases the quality of the lexicalized ?∗ model which beats Slug

on ROUGE-L.

The automatic quality evaluations are somewhat misleading, however. To gain more insight

into model performance we apply our rule based parser to estimate attribute realization error

for all system outputs on the test set, similarly to Dušek et al. (2019) (e.g., if the MR specifies

food=French, we check to make sure the generated utterance says so). The results of this eval-

uation are shown in Table 5.5. Immediately, it is revealed that ?0 is far worse than the baseline

methods making 115 and 83 errors using greedy and beam decoding respectively.

It is here that we see the benefits of the data-augmentation. The ?∗/@ℜ model achieves zero

test set errors even when using the greedy decoding. The ?∗/@q model is slightly worse (in agree-

ment with the automatic quality measurements), but its greedy search is still superior to the more

sophisticated Slug decoder, achieving 19 total test set errors compared to Slug’s 67 errors.

The lexicalized ?0 model has especially high error rates, particularly on the name and near

attributes. With augmented data training, the ?∗ model reduces these errors to zero when using
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Laptops TVs
Model BLEU Err. BLEU Err.

SCLSTM 51.16 0.79% 52.65 2.31%
Slug 52.38 1.55% 52.26 1.67%
Base Gen. (?0) beam 37.13 0.72% 32.63 0.72%
Aug. Gen. (?∗) Rule Parser (@ℜ) greedy 37.21 0.13% 32.43 0.28%

beam 37.19 0.14% 32.59 0.20%

Table 5.6: BLEU and automatic attribute error on the Laptops and TVs datasets.

greedy search and 2 with beam search. Unfortunately, the augmented training is more unstable in

the lexicalized setting, as it produces a large spike in food attribute errors, although the ?∗ models

still have lower overall error than ?0.

5.3.8.2 Laptops and TVs

The results are more mixed here. Our BLEU scores are about 15 points below the baselines

on the Laptops dataset and 20 points below the baselines on the TVs dataset. Upon examining

the evaluation script in detail we see that BLEU score is calculated using 5 model outputs which

Juraska et al. (2018) and Wen et al. (2016) do. We only produce the 1-best output at test time,

perhaps explaining the difference.

Looking through our model outputs we see mostly good utterances, often nearly exactly match-

ing the references. Our models outperform the state of the art models on errors. The best state of

the art models make errors by generating sentences that do not match the input representation

0.79% and 1.67% of the time on the Laptops and TVs datasets respectively. Our ?∗ model reduces

that error to only 0.13% and 0.20%.

5.3.9 Experiment Human Evaluation

E2E Dataset We had two undergraduate students not involved with the research look at 100

random test set utterances for six of our model variants. They were shown both the Slug output

and one of our model outputs and asked to select which output was of better linguistic quality and

correctness or indicate that they were equally good. We resolved disagreements in favor of the
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Correct. Quality
Model > = < > = <

delex. ?0 b 7 89 4 1 96 3
delex. ?∗ @ℜ g 7 93 0 0 100 0
delex. ?∗ @ℜ b 7 93 0 0 100 0
delex. ?∗ @q g 5 95 0 0 100 0
delex. ?∗ @q b 8 92 0 0 100 0

lex. ?∗ @ℜ g 8 90 2 0 100 0

Table 5.7: Human correctness and quality judgments (%). Comparisons are better than (>), equal
to (=), and worse than (<) the baseline Slug model. (g) and (b) indicate greedy and beam decoding
respectively.

Correct. Quality
Model > = < > = <

delex. ?∗ @ℜ g 0 100 0 2 91 7

Table 5.8: Human correctness and quality judgments (%). Comparisons are better than (>), equal
to (=), and worse than (<) the test set references.

baseline, i.e. if any annotator thought the baseline was better we considered it so. If an annotator

marked one of our systems as better and the other marked it as equal, we considered it equal to

the baseline. Inter-annotator agreement was high, with 92% agreement on correctness and 88%

agreement on quality.

Table 5.7 shows the results of the evaluation. We find that the ?∗ model outputs are indistin-

guishable from the Slug model in terms of linguistic quality, regardless of the setting. In terms

of correctness, the lexicalized ?∗ model is as good as or better than the Slug model 98% of the

time. When using the delexicalized models, we don’t even need beam search. The delexicalized

?∗ greedy decoder is as good as or better than Slug 100% of the time.

Laptops Dataset We had the same annotators look at 100 random Inform DAs from the Laptops

test set since they are the majority DA type and we could use the same annotator guidelines from

the E2E experiment. We do not have access to the Slug or SCLSTM outputs on this dataset, so

we compared to one of the two test set reference sentences (picking at random) vs. the ?∗/@ℜ with

greedy decoding. Table 5.8 shows the results. Despite the low BLEU scores, we find our outputs to

166



be of comparable quality to references 91% of the time. Moreover, they are equally as correct as the

human references 100% of the time. Annotators agreed 99% and 87% of the time on correctness

and quality respectively.

5.3.10 Analysis

We hypothesize that self-training improves the correctness of outputs by sacrificing some ex-

pressiveness of the model. For example, ?∗ BLEU scores on the E2E dataset drop by at least 0.8

as compared to ?0 with beam search. We see a similar pattern on the TVs dataset. Self-training

increases automatic metrics in the lexicalized setting, but this could be attributable to reductions in

name and near realization errors, which are orthogonal to the syntactic diversity of generation.

To better quantify these effects we report the average length in words, average number of

sentences, and average revised Developmental Level (D-Level) score according to the D-Level

analyser (Lu, 2009) on the E2E Challenge test set outputs. The D-Level analyser automatically

categorizes the syntactic complexities of an utterance into one of eight categories, with eight being

the most complex, based on the revised Developmental Level scale (Rosenberg and Abbeduto,

1987; Covington et al., 2006).

Table 5.9 shows the statistics for the E2E test set outputs. In the lexicalized setting, the mean

D-Level results support our hypothesis; syntactic complexity of test set outputs decreases from

?0 to ?∗. In the delexicalized setting this is somewhat true; three of the ?∗ models have lower

mean D-Level scores than ?0 with greedy decoding. Curiously, ?∗/@q with beam search has the

highest overall syntactic complexity of any our model variants, at odds with our hypothesis. No

models are as syntactically complex as the human references, but our models come closest, with a

mean D-Level category of 1.87 using the delex. ?∗/@q model with beam decoder.

We also see that ?∗/@ℜ models are over two sentences in length on average while the human

references are under two sentences, suggesting they are more often falling back to simple but

reliable ways to realize attributes (e.g., appending “It is a family-friendly venue.”).

One curious observation about the self-training procedure is that it leads to a convergence in
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Model Words Sents Mean D-Level

Human Refs. 24.06 1.76 2.25
Slug 24.20 1.86 1.39

lex. ?0 greedy 25.73 2.18 1.84
lex. ?0 beam 26.00 2.20 1.50
lex. ?∗ @ℜ greedy 26.01 2.20 1.39
lex. ?∗ @ℜ beam 26.04 2.17 1.45

delex. ?0 greedy 24.83 2.10 1.79
delex. ?0 beam 24.51 2.03 1.48
delex. ?∗ @ℜ greedy 26.50 2.29 1.74
delex. ?∗ @ℜ beam 26.46 2.28 1.74
delex. ?∗ @q greedy 25.33 1.76 1.77
delex. ?∗ @q beam 25.49 1.75 1.87

Table 5.9: Words/sentences per utterance and mean D-Level score of model outputs on the E2E
dataset.

output complexity of greedy and beam decoding. The differences between mean D-Level score

on the ?0 models is 0.34 and 0.31 in the lexicalized and delexicalized settings respectively. This

shrinks to 0.0 and 0.1 in the delexicalized ?∗ settings and 0.06 for lexicalized ?∗, suggesting that

the model probability distributions are sharpening around a smaller set of output structures.

That our simple models with greedy search and no semantic control mechanisms can perform

as reliably as more sophisticated models suggests that in standard training regimes we are often

not fully learning from all information available in the training data. Via sampling we can uncover

novel recombinations of utterances that are only implied by the provided references.

These recombinations are helpful. When we compare the PMI of various attribute-values to

meaning representation size when using the original training data (i.e., the plots we showed in

Figure 5.5 and Figure 5.6) against the union of original and synthetic data produced by noise-

injection sampling (show in Figure 5.9), we see that most plots are much closer to 0 with the union

of datasets, indicative of greater independence between length and a particular attribute-value, and

that this spurious association has been lessened considerably if not removed.

Length is not the only spurious correlation present in the original training dataset that can be

mitigated by the synthetic datasets. In Figure 5.10 we plot the PMI between the occurrence of any
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Figure 5.9: PMI between various attribute-values and meaning representation size on the E2E
Challenge dataset (blue), synthetic dataset (dashed green), and their union (orange). 0 on the
H-axis indicates the two variables are independent.
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Figure 5.10: PMI between E2E Challenge attribute-values on the original training data (left) and
the union of the training and synthetic data (right). PMI between (−.25, .25) are colored white and
suggest relative independence between the two attribute-value pairs. Color blocks on the G and H
axis labels correspond to groups of values for the same attribute. E.g., orange are all the values for
the name attribute.

two attribute-values, e.g. PMI(name=The Eagle,near=Burger King), on the original training data

and union of original and synthetic data. Anti-correlation, i.e. extremely negative PMI values,

along the diagonal are expected as attribute-values in the E2E Challenge dataset are mutually ex-

clusive and don’t usually co-occur (modulo human annotator error). We show PMI in the range of

(−.25, .25) as white indicating roughly no strong association. In the ideal dataset, aside from anti-

correlation among values for the same attribute, we would like most the PMI values to be close to

0. When comparing the PMI from the original dataset (left) the union of original and synthetic, we

see much more whitespace in the latter suggesting there are fewer spurious associations between

attribute-values on the union dataset.

Producing training datasets with fewer spurious associations appears to be highly beneficial

when training sequence-to-sequence models for text generation as we observe reduced semantic

errors, and improved performance of greedy decoding compared to more computationally intensive

inference procedures.
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5.4 Alignment Training for Controllable Generation

In the previous section, we showed how to make an arbitrary sequence-to-sequence model more

likely to generate semantically correct utterances using data-augmentation. While the resultant

generation model is more faithful, it still lacks even coarse-grained control over the organization

of the generated utterance. What’s more, there’s no guarantee that small changes to the input don’t

lead to dramatically different outputs. For example, changing a boolean attribute, e.g. changing

family_friendly=yes to family_friendly=no, may lead to dramatically different syntactic structure

in the output. This is because the structure or plan of the utterance is only determined implicitly

by the sequence-to-sequence decoder’s language model.

In this section, we show how to make a sequence-to-sequence controllable, which we achieve

through a particular linearization of the input meaning representation, a linearization strategy we

call alignment training. That is, we can specify the order in which the attribute-values of an input

meaning representation are to be realized in the utterance. See Figure 5.2 for example realizations

from a controllable generation model that follow three different permutations of name, eat_type,

and area attributes. Through evaluation on two dialogue generation benchmarks we show that

alignment training yields high levels of control in both GRU and Transformer models. This holds

when models follow either a separate planning model or a human provided plan.

We also propose using a phrase-based data augmentation method to further improve the robust-

ness of control. We further evaluate the control mechanism on randomly generated plans which

are much harder to follow than human or model provided plans. We find that phrase-based data

augmentation helps sequence-to-sequence models follow these more difficult plans.

5.4.1 Alignment Training Linearization

Unlike the arbitrary linearization used in §5.3.5, alignment training linearization is not solely

a function of `, but is determined by both ` and a reference utterance y. Given a (`, y) pair, the

alignment training linearization finds a linearization c such that the order of the attribute-values in
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c(`) corresponds to the order in which they are realized in y.

Figure 5.11 shows some examples of the alignment training linearization, including some spe-

cial cases. When linearizing list-valued attributes, for instance, we treat them as distinct attribute-

value pairs (Figure 5.11.a). Occasionally, we encounter repeated attribute-values in the training

set, and in that case we include extra attribute-value pairs in the corresponding location in the lin-

earization (Figure 5.11.b). We also ignore any instances of ungrounded information, as in example

Figure 5.11.c where food=Japanese is not mentioned in the reference utterance. has no explicit

representation.

In Figure 5.12 we show the steps of our procedure for obtaining the alignment training lin-

earization, given a reference utterance y. The first step is to tag the utterance tokens y = [H1, . . . , H=]

with a corresponding tag sequence t = [C1, . . . , C=] where each tag C8 is equal to an attribute-

value G 9 ∈ ` or the null tag ∅. We assume that we have access to such a tagger ) : Y → X (see

§5.4.3.1 for implementation details). After producing the tag sequence t(1) = ) (y) (Figure 5.12b),

we then group contiguous sequences of tags sharing the same tag value, discarding any null tag se-

quences to obtain the sequence of subsequences t(2) =
[
t(1)
81: 91 , . . . , t

(1)
8<: 9< ,

]
(Figure 5.12c). Finally,

x is constructed by by prepending the dialogue act G0 of ` to the ordered sequence of attribute-

value pairs G1, . . . , G< implied by t(1)
81
, . . . , t(1)

8<
(Figure 5.12d).

At test time, the generation model is only presented with a meaning representation ` and we

don’t have a reference utterance y with which to apply the alignment training linearization. In this

case, we can use an utterance planning model* :M → X to map a meaning representation ` to a

linear sequence x. Alternatively, we can use the test set reference to obtain the alignment training

linearization; this represents an unrealistically optimistic case where the model has clairvoyant

known of the discourse ordering preferred by a human. In either case, we refer to a linearization

x obtained either from * or a human reference as an utterance plan since a generation model

trained with alignment training linearizations will attempt to follow it during the generation of the

utterance.
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(a) Example of an alignment training linearization for a meaning representation with a list-valued attribute,
genres. Note also that the rating attribute for ViGGO examples is not aligned but always appended after
the dialogue act (see §5.4.3.1 for details).

` =





GIVE OPINION

name=Little Nightmares
rating=good
genres=[

adventure,
platformer,
puzzle

]
player_perspective=side view




c(`) =



«s»,
give_opinion,
rating=good,
name=Little Nightmares,
genres=adventure,
player_perspective=side view,
genres=platformer,
genres=puzzle,
«e»


y = Little Nightmares is a pretty cool game that has kept me entertained. It’s an adventure
side-scrolling platformer with some puzzle elements to give me a bit of a challenge.

(b) Example of an alignment training linearization with repeated attribute-values. In this case, the name
attribute is realized twice and so it appears twice in the linearization.

` =





INFORM

name=Aromi
eat_type=coffee shop
customer_rating=5 out of 5
food=English
area=city centre
family_friendly=yes




c(`) =



«s»,
inform,
name=Aromi,
eat_type=coffee shop,
family_friendly=yes,
food=English,
name=Aromi,
customer_rating=5 out of 5,
area=city centre,
«e»


y = The Aromi coffee shop is family-friendly and serves English food. Aromi has a customer
rating of 5 out of 5 and is located near the center of the city.

(c) Example alignment training linearization where an attribute-value is not grounded in the reference
utterance. In this case, food=Japanese is not present in the linearization.

` =




INFORM

name=The Waterman
food=Japanese
price_range=high
area=riverside




c(`) =



«s»,
inform,
area=riverside,
price_range=high,
name=The Waterman,
«e»


y = Near the river there is an expensive sushi place called the Waterman.

Figure 5.11: Example meaning representation/utterance pairs (`, y) and their alignment training
linearization c(`). 173
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(c) MR Segmented Tags

t(2) =
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(d) Alignment Training Linearization

x =

[
G0, G1, G2, G3

]
inform, eat_type=coffee shop, area=city centre, name=Aromi

Figure 5.12: Example steps of the alignment training linearization algorithm for producing a lin-
earized meaning representation x.
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5.4.1.1 Alternative Linearization Strategies

In our experiments, we compare alignment training to three other linearization strategies, which

we describe below. These linearizations, while sensible methods of mapping a meaning represen-

tation to a linear sequence of tokens, have no correspondence between the meaning representa-

tion linearization and surface realization order. Because of this, sequence-to-sequence models

trained using these linearization strategies are not controllable. These linearization strategies may

have some effect on the faithfulness when compared to each other and alignemnt training, so eval-

uation of this modelling choice has additional benefits beyond benchmarking alignment training.

See Figure 5.13 for examples of the different linearization strategies on the same meaning repre-

sentation/utterance pair.

Random (RND) In the RANDOM linearization (RND), we randomly order the attribute-value

pairs for a given meaning representation. This strategy serves as a baseline for determining if

linearization ordering matters at all for faithfulness. RND is similar to token level noise used

in sequential denoising autoencoders (Wang et al., 2019) and might even improve faithfulness.

During training, we resample the ordering for each example at every epoch so as not to over fit to a

particular random ordering. We do not resample the validation set in order to obtain stable results

from which to pick the best model.

Increasing Frequency (IF) In the INCREASING FREQUENCY linearization (IF), we order the

attribute-value pairs by increasing frequency of occurrence in the training data i.e. count(08 =

E8) ≤ count(08+1 = E8+1). We hypothesize that placing frequently occurring items in a consistent

location may make it easier for the generation model to realize those items correctly, possibly at

the expense of rarer items.

Fixed Position (FP) We take consistency one step further and create a fixed ordering of all at-

tributes, n.b. not attribute-values, ordering them in increasing frequency of occurrence on the train-

ing set (i.e. every instance has the same order of attributes in the encoder input). In this FIXED
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Increasing Freq. (IF) Utterance
NAME is a bird view
real-time strategy game that
was released for PlayStation
and PC. It isn’t available on
Steam and doesn’t have a
Linux release, but it does
have a Mac version.

Figure 5.13: Example meaning representation linearization strategies for an utterance (lower right)
from the ViGGO training set.

POSITION linearization (FP), attributes that are not present in an meaning representation are ex-

plicitly represented with an N/A value. For list-valued slots, we determine the maximum length list

in the training data and create that many repeated slots in the input sequence. This linearization

is feasible for datasets with a modest number of unique attributes (in our case ViGGO has 14 at-

tributes and the E2E Challenge corpus has eight) but would not easily scale to 10s, 100s, or larger

attribute vocabularies.

5.4.2 Phrase-based Data Augmentation

While the alignment training linearization induces control in a sequence-to-sequence model,

the resulting model will still likely have trouble following utterance plans that are not well repre-

sented in the training data. As we discussed in §5.3, sequence-to-sequence models do not seem

understand the compositional nature of phrase structure in language data. With this problem in

mind, we propose a phrase-based data-augmentation method for creating additional training ex-

amples from constituent phrases of the training data. In doing so, we directly expose the model to
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Aromi is not a family-friendly establishment

S
4

NP
3

NNP

VP
2

NP
1

DET JJ NN

VB RB

Meaning Representation (`) Utterance (y)

1©
[[

INFORM

family_friendly=yes

]]
[«s», a, family-friendly, establishment, «e»]

2©
[[

INFORM

family_friendly=no

]]
[«s», is, not, a, family-friendly, establishment, «e»]

3©
[[

INFORM

name=Aromi

]]
[«s», aromi, «e»]

4©



INFORM

name=Aromi
family_friendly=no


 [«s», aromi, is, not, a, family-friendly, establishment, «e»]

Figure 5.14: Example training instances produced from the phrase-based data augmentation pro-
tocol. The constituent parse is shown above. Numbered phrase nodes correspond to the phrase
examples created in the table below.
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instances of syntactic composition, and how that composition systematically changes the semantics

of the utterance.

We parse all training utterances and create additional training utterances from constituent

phrases governed by NP, VP, ADJP, ADVP, PP, S, Sbar non-terminals.11 Because a phrase may

mean something different than the larger utterance it is embedded in, we apply the utterance tag-

ger used for alignment training (see §5.4.3.1) to obtain the correct attribute-values denoted by the

phrase. Since the tagger does not predict the dialogue act, we assign the dialogue act of the original

training utterance to the new phrase’s meaning representation. If a new phrase example obtained

by this process does not have any attribute predicted by the tagger, we discard it.

Because we reclassify the meaning representation of phrases using the utterance tagger, the

augmented data includes examples of how to negate binary attributes. See for example in Fig-

ure 5.14 where we extract the noun phrase “a family-friendly establishment” which implies fam-

ily_friendly=yes and its composition with a verb phrase “is not”, which changes the meaning to

family_friendly=no.

When presenting the linearized meaning representationof phrase examples to the model en-

coder we prepend and append phrase specific start and stop tokens respectively (e.g., «s-NP» and

«e-NP») to prevent the model from ever producing an incomplete sentence when generating for a

complete meaning representation.

5.4.3 Datasets

We run our alignment training experiments on the E2E Challenge dataset as well as the more

recently released ViGGO corpus (Juraska et al., 2019) another English language, task-oriented

dialogue dataset.12 The ViGGO corpus comes from the video game domain (i.e., conversations

with a video game recommendation agent) and contains 14 attribute types and nine dialogue acts.

In addition to binary and categorical valued attributes, the corpus also features list-valued attributes

which can have a variable number of values, and an open-class specifier attribute.

11We used the Stanford CoreNLP parser v3.9.2.
12https://nlds.soe.ucsc.edu/viggo
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Dataset Train Augmented Valid Test

E2E Challenge 33,523 443,192 4,299 4,693
ViGGO 5,103 67,445 714 1,083

Table 5.10: Dataset sizes (including data augmentation) after correcting the training and validation
instances.

5.4.3.1 Meaning Representation/Utterance Alignments

The original datasets do not have alignments between individual attribute-value pairs and the

subsequences of the utterances they occur in, which we need for the alignment training lineariza-

tion strategy. We manually developed a list of heuristic pattern matching rules (e.g., “not kid-

friendly”→ family_friendly=no) which we use to tag the utterance tokens. For ViGGO, we started

from scratch, but for the E2E Challenge dataset we greatly expanded the rule-set created by Dušek

et al. (2019). To ensure the correctness of the rules, we iteratively added new matching rules,

ran them on the training and validation sets, and verified that they produced the same meaning

representation as was provided in the dataset. This process took the author roughly two weeks

to produce approximately 25,000 and 1,500 rules for the E2E and ViGGO datasets respectively.

Note that the large number of rules is obtained programmatically, i.e. creating template rules and

inserting matching keywords or phrases (e.g., enumerating variants such as not kid-friendly, not

child-friendly, not family-friendly, etc.).

In cases where the matching rules produced different meaning representations than provided

in the original dataset, we manually checked them. If the rule was incorrect, we added a new rule

to account for the exception. In many cases in the E2E Challenge dataset and several times in

the ViGGO corpus, we found the rule to be correct and the meaning representation to be incorrect

for the given utterance. In those cases, we used the corrected meaning representations for train-

ing and validation. We do not modify the test sets in any way. We follow Dušek et al. (2019)

and remove from the training and validation sets any modified examples that share a meaning

representation also found in the test set. This creates slightly different training and validation set

numbers for the E2E Challenge dataset than in the faithful generation experiments. See Table 5.10
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for statistics. We use the matching rules to develop a rule-based utterance tagger to implement the

alignment training linearization, phrase-based data augmentation protocol, and as a reranker when

generating utterances in our experiments.

For most cases, the attribute-values uniquely correspond to a non-overlapping subsequences of

the utterance. The rating attribute in the ViGGO dataset, however, could have multiple reasonable

mappings to the utterance, so we treat it in practice like an addendum to the dialogue act, occurring

directly after the dialogue act as part of a “header” section in any meaning representation lineariza-

tion strategy (see Figure 5.13 where rating=N/A occurs after the dialogue act regardless of choice

of linearization strategy).

Delexicalization The ViGGO corpus is relatively small and the attributes name, developer, re-

lease_year, expected_release_date, and specifier can have values that are only seen several times

during training. Neural models often struggle to learn good representations for infrequent inputs,

which can, in turn, lead to poor test-set generalization. To alleviate this, we delexicalize these

values in the utterance. That is, we replace them with an attribute specific placeholder token.

Additionally, for specifier whose values come from the open class of adjectives, we represent

the specified adjective with a placeholder which marks two features, whether it is consonant (C) or

vowel initial (V) (e.g. “dull” vs. “old”) and whether it is in regular (R) or superlative (S) form (e.g.

“dull” vs. “dullest”) since these features can effect the surrounding context in which the adjective

is realized. See the following lexicalized/delexicalized examples:

• specifier=oldest – vowel initial, superlative

– What is the oldest game you’ve played?

– What is the SPECIFIER_V_S game you’ve played?

• specifier=old – vowel initial, regular

– What is an old game you’ve played?

– What is an SPECIFIER_V_R game you’ve played?
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• specifier=new – consonant initial, regular

– What is a new game you’ve played?

– What is a SPECIFIER_C_R game you’ve played?

Under this delexicalization scheme, models can learn the appropriate articles (if any) to use before

realizing a particular specifier value.

All generated delexicalized utterances are post-processed with the corresponding attribute-

values before computing evaluation metrics (i.e., they are re-lexicalized with the appropriate value

strings from the input meaning representation). Unlike in the faithful generation experiments, we

do not perform any delexicalization of the E2E Challenge corpus.

5.4.4 Generation Models

We examine the effects of linearization strategy and data augmentation on biGRU (see Ap-

pendix A) and transformer (see Appendix B) based sequence-to-sequence models. See Table 5.11

for the set of hyper-parameters that we explored for each model and Table 5.12 and Table 5.13 for

the winning hyper-parameter settings for the biGRU and transformer models respectively. Hyper-

parameters were found using grid-search, selecting the model with best validation BLEU score.

We performed a separate grid-search for each architecture-linearization strategy pairing in case

there was no one best hyper-parameter setting. We used a batch size of 128 for all biGRU and

Transformer models and trained for at most 700 epochs.

Additionally, we fine-tune BART Lewis et al. (2020), a large, pretrained transformer-based

sequence-to-sequence model. We stop fine-tuning after validation set cross-entropy stops decreas-

ing. We use the same settings as the fine-tuning for the CNN-DailyMail summarization task,

although we modify the maximum number of updates to be roughly to be equivalent to 10 epochs

on the training set when using a 500 token batch size, since the number of updates effects the

learning rate scheduler. We selected the model iterate with lowest validation set cross-entropy.

While BART is unlikely to have seen any linearized MR in its pretraining data, its use of
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Hyperparameter biGRU Transformer

Layers 1, 2 1, 2
Label Smoothing 0.0, 0.1 0.0, 0.1

Weight Decay 0, 10−5 —
Optimizer/Learning Rate Adam/10−3, Adam/10−4,

Adam/10−5, SGD/0.5,
SGD/0.25, SGD/0.1

Adam with the learn-
ing rate schedule from
Rush (2018) (factor=1,
warmup=8000)

Tied Decoder Embeddings tied, untied tied, untied
Attention Bahdanau, General —

Table 5.11: Hyperparameter search space for biGRU and transformer architectures.

Model L LS WD Optim. LR Attn �F �ℎ �E �D Drop. Params

E
2E

RND 2 0.1 10−5 Adam 10−5 Bahd. 512 512 1024 512 0.1 14,820,419
FP 2 0.1 10−5 SGD 0.1 Bahd. 512 512 1024 512 0.1 14,820,003
IF 2 0.1 0.0 SGD 0.5 Gen. 512 512 1024 512 0.1 14,557,763
IF+P 2 0.1 0.0 SGD 0.5 Gen. 512 512 1024 512 0.1 14,557,763
AT 2 0.1 10−5 Adam 10−5 Bahd. 512 512 1024 512 0.1 14,820,419
AT+P 2 0.1 10−5 Adam 10−5 Bahd. 512 512 1024 512 0.1 14,820,419

V
iG

G
O

RND 2 0.1 10−5 SGD 0.25 Gen. 512 512 1024 512 0.1 14,274,865
FP 1 0.1 10−5 Adam 10−5 Bahd. 512 512 1024 512 0.1 7,718,193
IF 1 0.0 0.0 SGD 0.5 Bahd. 512 512 1024 512 0.1 7,712,049
IF+ 1 0.0 0.0 SGD 0.5 Bahd. 512 512 1024 512 0.1 7,712,049
AT 2 0.1 0.0 Adam 10−5 Bahd. 512 512 1024 512 0.1 14,537,521
AT+P 2 0.1 0.0 Adam 10−5 Bahd. 512 512 1024 512 0.1 14,537,521

Table 5.12: Winning hyperparameter settings for biGRU models. L, LS, and WD indicate number
of layers, label smoothing, and weight decay respectively. All models use untied embeddings.
Drop. indicates dropout (i.e. drop probability).
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Model Layers LS Emb. Params �F �ℎ �E �D Dropout

E
2E

RND 1 0.1 tied 7,966,787 512 2048 512 512 0.1
FP 1 0.1 tied 7,970,371 512 2048 512 512 0.1
IF 1 0.1 untied 8,525,379 512 2048 512 512 0.1
IF+P 1 0.1 untied 8,525,379 512 2048 512 512 0.1
AT 2 0.1 untied 15,881,795 512 2048 512 512 0.1
AT+P 2 0.1 untied 15,881,795 512 2048 512 512 0.1

V
iG

G
O

RND 2 0.0 untied 15,598,897 512 2048 512 512 0.1
FP 2 0.1 untied 15,605,041 512 2048 512 512 0.1
IF 2 0.1 untied 15,598,897 512 2048 512 512 0.1
IF+P 2 0.1 untied 15,598,897 512 2048 512 512 0.1
AT 2 0.1 untied 15,598,897 512 2048 512 512 0.1
AT+P 2 0.1 untied 15,598,897 512 2048 512 512 0.1

Table 5.13: Winning hyperparameter settings for transformer models (trained from scratch). L and
LS indicate number of layers and label smoothing respectively. Drop. indicates dropout (i.e. drop
probability). All models trained with the Adam optimizir with the learning rate schedule from
Rush (2018) (factor=1, warmup=8000).

sub-word encoding allows it to encode arbitrary strings. Rather than extending it’s encoder input

vocabulary to add the MR tokens, we simply format the input MR as a string (in the corresponding

linearization order), e.g. “inform rating=good name=NAME platforms=PC platforms=Xbox”.

5.4.5 Utterance Planner Model

We experiment with three approaches to creating a test-time utterance plan for the alignment

training models. The first is a bigram language model (BGUP) over attribute-value sequences.

Attribute-value bigram counts are estimated from the training data (using Lidstone smoothing

(Chen and Goodman, 1996) with U = 10−6) according to the ordering determined by the matching

rules (i.e. the alignment-training ordering).

The second model is a recurrent neural network based sequence-to-sequence model, which we

refer to as the neural utterance planner (NUP). We train the NUP to map IF ordered attribute-

values to the alignment training ordering. We grid-search model hyperparameters, selecting the

model with highest average Kendall’s g (Kendall, 1938) on the validation set alignment training

orderings. See Table 5.14 for the hyperparameter search space and Table 5.15 to see the chosen
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Hyperparameter Search Space

Layers 1, 2
Learning Rate 10−3, 10−4, 10−5

RNN Cell GRU, LSTM
Encoder direction uni-, bi-
Label Smoothing 0.0, 0.1

Table 5.14: Hyperparameter search space for the neural utterance planner (NUP).

Dataset L Enc. Dir. RNN Cell LR LS Attn. �F �ℎ �E �D Dropout

E2E 1 bi- LSTM 10−5 0.1 Bahd. 512 512 1024 512 0.1
ViGGO 1 uni- LSTM 10−4 0.1 Bahd. 512 512 1024 512 0.1

Table 5.15: Winning hyperparameter options for the neural utterance planner (NUP) model.

hyperparameter setting. We used a batch size of 128, the Adam optimizer, and trained for at most

50 epochs. Unlike the BGUP model, the NUP model also conditions on the dialogue act, so it can

learn ordering preferences that differ across dialogue acts.

For both BGUP and NUP, we use beam search (with beam size 32) to generate candidate

utterance plans. The beam search is constrained to only generate attribute-value pairs that are given

in the supplied meaning representation, and to avoid generating repeated attributes. The search is

not allowed to terminate until all attribute-values in the meaning representation are generated.

Beam candidates are ranked by log likelihood. We show validation and test set Kendall’s g to the

reference utterance for both planning models in Table 5.16. A Kendall’s g of 1.0 indicates that

the planner exactly follows the human reference order while 0.0 indicates a random order relative

to the human reference. g = −1 indicates the model produces the reverse order of the human

reference plan. We see that the NUP produces utterance plans that are closer in order to the human

reference on both the E2E Challenge and ViGGO datasets.

The final ordering we propose is the ORACLE ordering, i.e. the utterance plan implied by the

human-authored test-set reference utterances. This plan represents the model performance if it had

a priori knowledge of the reference utterance plan. When a test example has multiple references,

we select the most frequent ordering in the references, breaking ties according to BGUP log-

184



Dataset Model Valid Test

ViGGO BGUP 0.417 0.347
NUP 0.739 0.651

E2E BGUP 0.433 0.432
NUP 0.502 0.447

Table 5.16: Validation and test set Kendall’s g for BGUP and NUP models.

likelihood.

5.4.6 Experiments

5.4.6.1 Test-Set Evaluation

In our first experiment, we compare performance of the proposed models and linearization

strategies on the E2E Challenge and ViGGO test sets. We refer to models using the alignment

training linearization strategy as AT+BGUP, AT+NUP, or AT+ORACLE depending on whether

the model is following the bigram planner, neural planner, or human reference plan respectively.

For the IF and AT+NUP models we also include variants trained on the union of original training

data and phrase-augmented data (see §5.4.2), which we denote +P.

Evaluation Measures For automatic quality measures, we report BLEU and ROUGE-Lscores

using the official E2E Challenge evaluation script.13 Additionally, we use the rule-based utter-

ance tagger to automatically annotate the attribute-value spans of the model generated utterances,

and then manually verify/correct them. With the attribute-value annotations in hand we compute

the number of missing, wrong, or added attribute-values for each model. From these counts, we

compute the semantic error rate (SER) (Dušek et al., 2020) where

SER =
#<8BB8=6 + #FA>=6 + #03343

#0CCA81DC4B
.

13https://github.com/tuetschek/e2e-metrics
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On ViGGO, we do not include the rating attribute in this evaluation since we consider it part of the

dialogue act. Additionally, for AT variants, we report the order accuracy (OA) as the percentage of

generated utterances that correctly follow the provided utterance plan. Utterances with wrong or

added attribute values are counted as not following the utterance plan.

All models are trained five times with different random seeds; we report the mean of all five

runs. We report statistical significance using Welch’s C-test (Welch, 1947), comparing the score

distribution of the five runs from the best linearization strategy against all other strategies at the

0.05 level.

Baselines On the ViGGO dataset we compare to the transformer baseline of Juraska et al. (2019),

which used a beam search of size 10 and heuristic attribute reranker (similar to our attribute-value

matching rules). On the E2E Challenge dataset, we report the results of TGen+ (Dušek et al., 2019),

an LSTM-based sequence-to-sequence model, which also uses beam search with a matching rule

based reranker to select the most semantically correct utterance and is trained on a cleaned version

of the corpus (similar to our approach).

5.4.6.2 Random Permutation Stress Test

Differences between an AT model following an utterance planner model and the human oracle

are often small so we do not learn much about the limits of controllability of such models, or

how they behave in extreme conditions (i.e. on an arbitrary, random utterance plan, not drawn

from the training data distribution). In order to perform such an experiment we generate random

utterance plans (i.e. permutations of attribute-values) and have the AT models generate utterances

for them, which we evaluate with respect to SER and OA (we lack ground truth references with

which to evaluate BLEU or ROUGE-L). We generate random permutations of size 3, 4, . . . , 8 on

the E2E dataset, since there are 8 unique attributes on the E2E dataset. For ViGGO we generate

permutations of size 3, 4, . . . , 10 (96% of the ViGGO training examples fall within this range). For

each size we generated 100 random permutations and all generated plans were given the INFORM
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dialogue act. In addition to running the AT models on these random permutations, we also compare

them to the same model after using the NUP to reorder them into an easier14 ordering.

5.4.6.3 Human Evaluation

In our final experiment, we had human evaluators rank the 100 outputs of the size 5 random per-

mutations for three BART models on both datasets: (i) AT+P model with NUP, (ii) AT+P model,

and (iii) AT model. The first model, which uses an utterance planner, is likely to be more natural

since it doesn’t have to follow the random order, so it serves as a ceiling. The second and third

models will try to follow the random permutation ordering, and are more likely to produce unnatu-

ral transitions between awkward sequences of attribute-values. Differences between these models

will allow us to understand how the phrase-augmented data affects the fluency of the models. The

annotators were asked to rank outputs by their naturalness/fluency. Each set was annotated twice

by different annotators so we can compute agreement.

5.4.7 Results

AT models accurately follow utterance plans. See Table 5.17 and Table 5.18 for results on

E2E Challenge and ViGGO test sets respectively. The best non-ORACLE results are show in bold

for each model and results that are not different with statistical significance to the best results are

underlined. We see that the AT+NUP strategy consistently receives the lowest semantic error rate

and highest order accuracy, regardless of architecture or dataset, suggesting that alleviating the

model’s decoder of content planning is highly beneficial to avoiding errors. The Transformer AT

model is able to consistently achieve virtually zero semantic error on the E2E Challenge dataset

using either the bigram or neural planner model.

We also see that fine-tuned BART is able to learn to follow an utterance plan as well. When

following the neural utterance planner, BART is highly competitive with the trained from scratch

Transformer on the E2E Challenge dataset and surpassing it on the ViGGO dataset in terms of

14Easier in the sense that the NUP re-ordering is closer to the training set distribution of AT utterance plans.
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semantic error rate.

Generally, the AT models had a smaller variance in test-set evaluation measures over the five

random initializations as compared to the other strategies. This is reflected in some unusual equiva-

lency classes by statistical significance. For example, on the E2E Challenge dataset biGRU models,

the AT+NUP+P strategy achieves 0% semantic error and is significantly different than all other lin-

earization strategies except the FP strategy even though the absolute difference in score is 6.54%.

This is unusual because the AT+NUP+P strategy is significantly different from AT+NUP but the

absolute difference is only 0.26%. This happens because the variance in test-set results is higher

for FP making it harder to show significance with only five samples.

Transformer-based models are more faithful than biGRU on RND, FP, and IF linearizations.

On the ViGGO dataset, BART and Transformer IF achieve 1.86% and 7.50% semantic error rate

respectively, while the biGRU IF model has 19.20% semantic error rate. These trends hold for

FP and RND, and on the E2E dataset as well. Because there is no sequential correspondence in

the input, it is possible that the recurrence in the biGRU makes it difficult to ignore spurious input

ordering effects. Additionally, we see that RND does offer some benefits of denoising; RND models

have lower semantic error rate than IF models in 3 of 6 cases and FP models in 5 out of 6 cases.

Model based plans are easier to follow than human reference plans. On E2E, there is very

little difference in semantic error rate when following either the bigram-based utterance planner,

BGUP, or neural utterance planner, NUP. This is also true of the ViGGO BART models as well. In

the small data (i.e. ViGGO) setting, biGRU and Transformer models achieve better semantic error

rate when following the neural utterance planner. In most cases, neural utterance planner models

have slightly higher BLEU and ROUGE-L than the bigram utterance planner, suggesting the neural

planner produces utterance plans closer to the reference orderings. The neural and bigram planner

models have slightly lower semantic error rate than when following the ORACLE utterance plans.

15Since their model does not realize specifier attributes, we do not include them in SER calculation. When including
them, their model achieves 2.6% SER.
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Model B↑ R↑ SER↓ OA↑
TGen+

66.0 67.6 0.03 —
Dušek et al. (2019)

bi
G

R
U

RND 66.8 68.3 2.64 —
FP 63.4 65.6 6.54 —
IF 59.2 62.7 12.64 —
IF+P 65.8 68.1 0.24 —
AT+BGUP 66.4 68.3 0.26 98.2
AT+NUP 66.3 68.9 0.26 98.3
AT+NUP+P 66.5 69.1 0.00 100.0
AT ORACLE 69.8 77.3 0.84 94.3

Tr
an

sf
or

m
er

RND 67.4 68.2 1.06 —
FP 67.4 68.7 3.10 —
IF 67.1 68.1 0.66 —
IF+P 66.8 68.3 0.28 —
AT+BGUP 66.8 68.4 0.00 99.9
AT+NUP 67.0 69.0 0.00 100.0
AT+NUP+P 66.7 69.1 0.00 100.0
AT ORACLE 69.3 77.0 0.76 95.0

B
A

R
T

RND 66.5 68.3 0.14 —
FP 65.5 67.2 0.16 —
IF 65.6 67.4 0.18 —
IF+P 65.9 68.2 0.30 —
AT+BGUP 66.2 68.7 0.20 98.6
AT+NUP 66.6 69.2 0.20 98.6
AT+NUP+P 66.3 69.3 0.00 100.0
AT ORACLE 68.3 77.1 0.70 95.3

Table 5.17: E2E Challenge test set (B)
BLEU, (R) ROUGE-L, SER, and OA. All
numbers are percents.

Model B↑ R↑ SER↓ OA↑
Transformer

52.1 63.8 1.6015 —
Juraska et al. (2019)

bi
G

R
U

RND 50.2 61.6 12.56 —
FP 50.2 61.0 17.12 —
IF 50.2 61.3 19.20 —
IF+P 49.5 61.6 12.46 —
AT+BGUP 48.5 58.5 3.40 89.8
AT+NUP 51.8 62.6 1.58 93.7
AT+NUP+P 52.4 62.7 1.62 94.3
AT ORACLE 54.1 65.5 2.42 92.2

Tr
an

sf
or

m
er

RND 52.0 62.9 9.62 —
FP 52.6 63.0 8.70 —
IF 52.3 62.6 7.50 —
IF+P 52.3 63.1 4.24 —
AT+BGUP 48.7 59.2 4.68 79.1
AT+NUP 51.6 62.4 2.70 88.3
AT+NUP+P 51.1 62.0 2.28 89.8
AT ORACLE 53.2 65.0 4.08 83.0

B
A

R
T

RND 43.7 55.1 1.50 —
FP 47.0 58.9 1.68 —
IF 43.1 54.4 1.86 —
IF+P 49.1 59.7 1.78 —
AT+BGUP 43.8 54.0 0.52 98.3
AT+NUP 45.5 57.6 0.54 98.2
AT+NUP+P 48.5 59.2 0.46 98.1
AT ORACLE 47.1 60.4 0.82 97.2

Table 5.18: ViGGO test set (B) BLEU, (R)
ROUGE-L, SER, and OA. All numbers are
percents.
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E2E ViGGo

Model SER↓ OA↑ SER↓ OA↑
biGRU 1.14 94.44 13.58 46.72

+P 0.54 97.34 14.46 49.26
+NUP 0.22 98.72 9.62 62.04
+NUP+P 0.02 99.86 8.98 64.50

Transformer 0.78 95.20 28.34 18.70
+P 0.40 98.10 25.72 18.10
+NUP 0.08 99.64 24.18 31.34
+NUP+P 0.02 99.86 21.64 31.86

BART 0.42 97.78 2.30 82.00
+P 0.22 98.78 1.82 87.98
+NUP 0.64 96.52 1.34 91.40
+NUP+P 0.20 99.02 0.76 95.32

Table 5.19: Random permutation stress test of AT models.

This suggests that the model-based planners are producing orders more commonly seen in the

training data, similar to how neural language generators frequently learn the least interesting, low-

est entropy responses (Serban et al., 2016). On the other hand, when given the ORACLE orderings,

models achieve much higher word overlap with the reference, e.g. achieving an E2E ROUGE-L

≥ 77.

Phrase-training reduces SER. We see that phrase data improves semantic error rate in 8 out of

12 cases, with the largest gains coming from the biGRU IF model. Where the base semantic error

rate was higher, phrase training has a more noticeable effect. After phrase training, all E2E models

are operating at near zero semantic error rate and almost perfectly following the neural utterance

planner. Model performance on ViGGO is more varied, with phrase training slighting hurting the

biGRU AT+NUP model, but otherwise helping performance.

Random Permutation Stress Test Results of the random permutation experiment are shown

in Table 5.19. Overall, all models have an easier time following the neural utterance planner’s

reordering of the random permutations. Phrase training also generally improved semantic error
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Model 1 2 3 Avg.

E
2E

AT+NUP+P 61.5 16.5 22.0 1.61
AT+P 30.0 44.0 26.0 1.96
AT 25.0 49.5 25.5 2.01

V
iG

G
O AT+NUP+P 57.5 27.5 15.0 1.58

AT+P 10.0 29.5 60.5 2.51
AT 43.0 46.0 11.0 1.68

Table 5.20: Human Evaluation results. Table shows the percent of times each model was ranked 1
(best), 2, 3 (worst) in terms of naturalness and average rank.

rate. All models perform quite well on the E2E permutations. With phrase-training, all E2E

models achieve less than 0.6% semantic error rate following random utterance plans. Starker

differences emerge on the ViGGO dataset. The biGRU+NUP+P model achieves a 8.98% semantic

error rate and only correctly follows the given order 64.5% of the time, which is a large decrease

in performance compared to the ViGGO test set.

Human Evaluation Results of the human evaluation are shown in Table 5.20. We show the

number of times each system was ranked 1 (most natural), 2, or 3 (least natural) and the average

rank overall. Overall, we see that BART with the neural utterance planner and phrase-augmentation

training is preferred on both datasets, suggesting that the utterance planner is producing natural

orderings of the attribute-values, and the model can generate reasonable output for it. On the E2E

dataset, we also see small differences in between the AT+P and AT models suggesting that when

following an arbitrary ordering, the phrase-augmented model is about as natural as the non-phrase

trained model. This is encouraging as the phrase trained model has lower semantic error rates.

On the ViGGO dataset we do find that the phrase trained model is less natural, suggesting that in

the small data setting, phrase-training may hurt fluency when trying to follow a difficult utterance

plan.

For agreement we compute average Kendall’s g between each pair of annotators for each

dataset. On E2E, we have g = .853 and ViGGO we have g = .932 suggesting very strong agree-

ment.
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5.4.8 Discussion

One consistently worrying sign throughout the first two experiments is that the automatic met-

rics are not good indicators of semantic correctness. For example the ROUGE-L score of the E2E

AT ORACLE models is about 8 points higher than the AT+NUP models, but the AT+NUP models

make fewer semantic errors. Other similar examples can be found where the automatic metric

would suggest picking the more error prone model over another. As generating fluent text be-

comes less of a difficult a problem, these shallow ngram overlap methods will cease to suffice as

distinguishing criteria.

The second experiments also reveal limitations in the controllable model’s ability to follow

arbitrary orderings. The biGRU and Transformer models in the small-data ViGGO setting are not

able to generalize effectively on non-training distribution utterance plans. BART performance is

much better here, but is still hovering around 2% semantic error rate and only roughly 88% of

outputs conform to the intended utterance plan. Thankfully, if an exact ordering is not required,

using the neural utterance planner to propose an order leads to more semantically correct outputs.

5.4.9 Limitations

While we are able to achieve very low test-set SER for both corpora, we should caution that

this required extensive manual development of matching rules to produce meaning representa-

tion/utterance alignments, which in turn resulted in significant cleaning of the training datasets. We

chose to do this over pursuing a model based strategy of aligning utterance subspans to attribute-

values because we wanted to better understand how systematically S2S models can represent ar-

bitrary order permutations independent of alignment model error. Also we should note that data

cleaning can yield more substantial decreases in semantic errors (Dušek et al., 2019; Wang, 2019)

and is an important consideration in any practical neural NLG.
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5.5 Conclusion

In this chapter we focused on two problems in natural language generation from a meaning

representation using sequence-to-sequence models: faithful generation and controllable genera-

tion. For the former we proposed a data-augmentation protocol called noise-injection sampling

and self-training, which enabled us to use an unfaithful sequence-to-sequence based language gen-

eration model and a meaning representation parser to generate fluent but semantically divergent

synthetic training instances, which when added to the original training data, improved the faithful-

ness of subsequent models.

For the former problem of controllable generation, we showed that alignment of the input

meaning representation to the reference utterance realization order yields high degrees of con-

trol in several popular sequence-to-sequence model variates. Additionally, we also see that data-

augmentation is useful in making the model more robust when following difficult utterance plans.

In future work, we hope to focus more on changes to the models themselves to make them

more explicitly aware of the compositional nature of the language they are modeling and how that

can effect faithfulness and control. We are currently achieving this through data-augmentation.

However, we worry that data-augmentation will be difficult to scale to more complex meaning

representations, and that it will be difficult to adequately represent more combinatorially complex

semantic formalisms explicitly.
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Chapter 6: Conclusion

In this thesis we presented a variety of contributions to two open problems in automatic text

summarization, salience estimation for content selection and reliable text generation from for-

malized representations of content with neural NLG models. In the first two chapters we stud-

ied salience estimation from two perspectives, single document summarization and query focused

stream summarization. In the first case, we evaluated several deep learning architectures for es-

timating sentence salience. In addition to proposing a hierarchical modeling framework (i.e., as

word embedding, sentence encoder, and sentence extraction layers) which included prior summa-

rization models as well as some novel ones, we were also interested in a thorough exploration of

model behavior on the sentence salience estimation task.

Our evaluation considered both aspects of the model architecture as well as ablations of the

dataset. We find that the models studied, regardless of architecture, are likely exploiting artifacts

of the dataset or other shallow heuristics to make predictions rather than any deep content under-

standing. We summarize our evidence for this briefly. First at the level of sentence encoder, we find

that differences between different sentence encoder architectures are small and that the averaging

encoder is frequently the best performing encoder when keeping the extractor fixed. That aver-

aging works well implies that the mere presence of a word is more important than its long range

context (detectable by the recurrent encoder) or its local context (detectable by the convolutional

encoder) and for the summarization models studied, it is sufficient to represent a sentence as a bag

of embeddings.

At the sentence extractor level we find limited evidence that the models are able to make use

of document level context or prior actions effectively. We compared two extractors that made

sequential predictions of sentence salience where previous extractive decisions were fed as inputs

back into the model to make subsequent predictions, i.e., two autoregressive extractors, against
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two extractors that made independent predictions, i.e., two non-autoregressive models. What we

saw was that previous extraction decisions were not decisive in ROUGE performance, with both

autoregressive and non-autoregressive models achieving similar ROUGE scores. This suggests

that representing what has been previously selected for the summary does not affect subsequent

decisions much, and that the models struggle to exploit long range context effectively.

Finally, when we ablate different word types, we see very small differences in ROUGE scores

on news data, suggesting that the model is not overly dependent on entities or events (i.e., nouns

or verbs) being available in the sentence to make predictions. When removing position as a viable

feature by shuffling sentence order, we finally see large decreases in ROUGE. At least for news

and to slightly less degree medical documents, we see that position is implicitly detectable by the

models and that it is driving much of the ROUGE performance.

On datasets where position is less reliable, we see that the order shuffling experiments have

less of an effect. On the Reddit personal narratives, there is no significant difference between

the shuffled and non-shuffled model and on the AMI work place meeting corpus, we see that

performance actually improves significantly. On these datasets, removing different content types

yields slightly larger differences in performance, also giving credence to the idea that these models

are focusing more content.

In our second chapter, which introduces a more complex news summarization task, we see

that modeling content as well as prior extraction decisions becomes more important as position

becomes unreliable, especially if you can exploit event specific prior knowledge. Our SAP sum-

marization model, which estimates salience using a mix of general purpose and domain specific

features improves over clustering or predicting salience alone. Through feature ablation we see that

newswire and domain language model scores are the most important feature group for predicting

salience. The basic features which make use of sentence position are least important.

We find in both our own evaluation as well as the TREC Temporal Summarization official

evaluation that the SAP model leads to higher expected gain (i.e., precision) than a similar sum-

marization system with only the clustering component. While the SAP model does have less
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comprehensiveness than a clustering only approach, in the harmonic mean of the two metrics it

achieves higher results. Additionally, when taking latency into account, we find that the salience

estimation model helps the clustering component quickly identify the most important sentences.

While the SAP model integrates a salience estimate component into a clustering algorithm,

it does not optimize the update selection stage with the overall quality of the summary in mind.

Effectively, each round of update selections are independent of each other. Our second model pro-

posed for the stream summarization task embeds the salience estimation component into a greedy

sentence extraction policy, which learns from exploration and takes into account previous actions

and other dynamic features of the summarization system, while optimizing an overall measure

of summary quality. We again find in both TREC Temporal Summarization evaluations and our

own independent evaluations that the L2S summarizer is able to identify salience content more

quickly than other models while maintaining sufficient recall to be competitive with other models.

Being able to identify information in a timely manner is a key aspect of stream summarization as

information becomes less useful to users as time goes on (Yom-Tov and Diaz, 2011).

We next turn our attention to text generation. Rather than pursue an end-to-end neural strategy,

we instead focus on NLG from discrete meaning representations, which we consider to be an

idealized form of the content selection stage of an extractive summarization system. Having an

explicit representation of semantics allows us to more easily study issues of faithfulness and control

in neural NLG models. To that end, we show that naïve sequence-to-sequence models produce

fluent but semantically incorrect utterances and that this is possibly due to spurious correlations and

artifacts of the training data. We then propose a noise-injection and self-training scheme for data

augmentation. Using the initial naïve sequence-to-sequence model (and a meaning representation

parser) we create synthetic training examples which do not possess these artifacts, or do so to

a lesser degree. A subsequent sequence-to-sequence model trained on the union of the original

and synthetic data produces a more faithful NLG model. Additionally, we observe that greedy

decoding converges on beam decoding in terms of semantic correctness suggesting the resulting

model would be more efficient to run in practice.
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We also introduce the alignment training procedure for making a neural NLG model control-

lable at the level of shallow phrase/discourse entity ordering. We find controllable neural NLG

models are able to follow discourse plans produced by discourse ordering models, and to a slightly

lesser degree, human discourse ordering plans. Additionally, we find that BART, a large, pre-

trained sequence-to-sequence language model, when fine-tuned with alignment training, produces

highly controllable NLG models on both large and small data settings. We also find that alignment

training has positive benefits in terms of model faithfulness with alignment trained models more

frequently producing fewest semantic errors.

We further stress test our models on difficult, random permutation plans to test how models

follow a truly arbitrary plan absent of English language ordering biases. We find that there are

some gaps in our models’ ability to represent and follow arbitrary plans, especially for trained

from scratch models in the small data condition. BART performs relatively well in either large or

small data condition but does see some performance decrease in semantic correctness and order

accuracy. We also find that phrase-based data augmentation can help reduce the semantic error rate

in this more adversarial setting.

6.1 Limitations and Open Problems for Abstractive Summarization Beyond End-to-End

Neural Models

One glaring omission from this thesis is that we never develop a fully abstractive summarization

system. That is, we have not presented a bipartite model such that the first component takes as input

a set of text units and selects the contents for a summary, and the second component then generates

the summary from the selected contents. We have consciously avoided bridging this gap as it is a

difficult one. Instead we have focused on the content selection and faithful generation problems

in isolation, which are areas where we could make immediate contributions. We prefer pursuing

these sub-problems directly where errors can be isolated and the effects of interventions accurately

measured.

We do believe that pursuing a summarization system that works by first mapping input text
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units to a logical meaning representation, and then uses a separate NLG model to convert that

meaning representation to a natural language summary is a worthwhile goal. What’s more, all of

the components exist to build this system with the caveat that they currently have relatively high

error rates. We now describe some of these components and their current limitations, some of

which we highlight again in future works as promising avenues to explore.

Semantic Parsing We will need a reliable way of mapping text units to a semantic representa-

tion, like abstract meaning representation (AMR) (Banarescu et al., 2013), discourse representation

theory (DRT) (Basile et al., 2012), or concept maps (Yang et al., 2020). Work on semantic parsing

is an active area which continues to improve, but the current state-of-the-art of such systems is still

currently lacking. At the current levels of accuracy, errors in semantic parsing would dominate any

downstream results (Zhang et al., 2019b).

Summaries of Meaning Representations Even with high accuracy semantic parsing, we would

still need a method of mapping an input meaning representation to a summary meaning represen-

tation. While there is some initial work on this task (Falke et al., 2017; Liao et al., 2018; Falke

and Gurevych, 2019), it is far from a solved problem. Existing collections of summary meaning

representations are relatively small, and it remains difficult to plausibly use such collections to

build models for generic news summarization let alone other domains.

Faithful Generation of Complex Meaning Representations There has been a growing number

of works that focus on generating text from more complicated structures than our relatively simple

meaning representations used in this thesis. In particular, generating from AMR (Castro Ferreira

et al., 2017; Wang et al., 2020b) or tree structures (Balakrishnan et al., 2019), have shown increased

progress, in keeping with our suggestion at the start of the thesis that generating text conditioned on

arbitrary inputs has gotten easier with neural models. There has even been work looking generating

summaries from their AMR graphs with neural models (Hardy and Vlachos, 2018).

However, with increased complexity of the meaning representation, it becomes difficult to
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evaluate the faithfulness of generated outputs. In the datasets studied in this thesis, most of the re-

alizations of any individual attribute-values were relatively independent of other attribute-values.

Presumably, accurate meaning representations of real summaries would be much more complex.

Validating the faithfulness of complex news events or rhetorical arguments might require repre-

senting contingency, uncertainty, or counter-factual conditions, as well as the plausibility of argu-

ments. To solve these issues we might benefit from borrowing ideas from argumentation mining

(e.g., Chakrabarty et al. (2019)) to better understand how multiple pieces of evidence are used to

bolster claims and make larger points.

6.2 Why not an end-to-end neural abstractive summarization model?

While unusual for summarization research in 2020, we have not advocated for an end-to-end

neural abstractive summarization model. We argue that learning an end-to-end summarization

model (while possibly delivering flashy and impressive short term results) is unlikely to result in

summarization reliable enough for use outside of the NLP research community.

First, it has been shown repeatedly, that while large neural language models might deliver

impressive test set results they often exploit shallow heuristics and frequently fail to generalize in

ways that suggest they are learning hidden syntactic or semantic representations that are cognitively

plausible (Fodor and Pylyshyn, 1988; Marcus, 2003; Lake and Baroni, 2018; McCoy et al., 2019;

Linzen, 2020).

Second, the summarization task as often studied in NLP (i.e., learning to map input texts to

summary text from a large parallel corpus) is underspecified. Real summaries are grounded in

an extrinsic task and serve a particular human informational need or goal (Spärck Jones, 1999;

McKeown et al., 2005). Without explicitly specifying these goals both as model inputs and in

evaluation, you can’t say whether a summarization system that exploits position bias over a deeper

semantic understanding of the text is good or bad. For example, if the goal is, “help me get the

gist of the morning newspaper faster,” then perhaps showing the user the lead paragraphs of each

article in the paper is actually a quite good summary. If the intended goal is “a summary of my

199



doctor’s appointment with an emphasis on the evidence for my having contracted COVID-19,”

then it is unlikely that the semantic understanding necessary to complete that task can be learned

simply from amassing a collection of parallel input/summary texts (Bender and Koller, 2020; Bisk

et al., 2020).

While automatic methods of evaluating summary faithfulness are currently being explored

through question-answering (Wang et al., 2020a; Durmus et al., 2020) or estimation of ROUGE or

BLEU scores (Zhang et al., 2020; Sellam et al., 2020), they suffer from the same drawbacks just

mentioned. Underlying them is same paradigm of training large neural models on parallel corpora,

which because of the two points mentioned will often fail to generalize correctly on the long-tail

input instances. Additionally, these methods serve as post-hoc correctives, and do not help to at-

tribute errors in an abstractive generation models outputs to its decoder or encoder representations.

6.3 Future Work

Given our discussion of limitations, we believe the following research directions would yield

meaningful future contributions to the automatic summarization literature.

Semantic Representations for Summarization Our work assumes that research on broad cov-

erage semantic parsing will improve to a point such that high accuracy logical representations will

be automatically producible for arbitrary newswire text. However, a variety of open problems re-

main around appropriate meaning representations for the summarization problem. The formalisms

for semantics in NLP have realistically only been annotated at the level of sentences and aggre-

gating these representations into document or multi-document level representations is challenging,

even for humans (O’Gorman et al., 2018).

When performing content selection, we could perform salience estimation and selection di-

rectly from the text (as we currently do in this thesis) but then pass on the automatically parsed

meaning representations of the extracted text units to the NLG component. A more interesting

alternative is that salience estimation and content selection could be done in the meaning rep-
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resentation space; a small but growing subset of the summarization literature has explored this

variant of the content selection problem (Falke et al., 2017; Liao et al., 2018; Falke and Gurevych,

2019). These works largely frame summarization from a semantic or concept graph as one of

graph compression, selectively deleting unimportant nodes from the graph representation of the

input. However, compression through deletion is only one of many abstraction methods employed

by human summarizers (Jing and McKeown, 2000). Expansion of existing semantic formalisms

with a catalogue of representation transformations that capture not only deletion but also aggre-

gation, metonymy, synecdoche, generalization, or other forms of abstraction would be of great

benefit to the development of summarization from semantic graphs/meaning representations.

Psychological/Motivational Factors in Summarization We showed that existing models strug-

gle to find all the salient information in the input, especially when the document structure or po-

sition cues are relatively weak. Arguably, simply learning a salient content model from a large

collection of document-summary pairs (a practice that is presently de rigueur for end-to-end neu-

ral summarization models) is likely not sufficient since the goal of the reader or the intended use

of the summary remains underspecified in most contemporary research.

For instance, a clinician’s notes are not simply a truncated list of the : most frequently men-

tioned symptoms by the patient. Instead, they are a summary of both the dialogue between the

doctor and patient, but focused by doctor’s deductive procedure for determining the specific mal-

ady afflicting the patient. That is, during the appointment the doctor maintains a set of possible

hypothesis diagnoses, and gradually rules out some while increasing confidence in others through

their questioning of the patient (Pivovarov and Elhadad, 2015). Having a clinical notes summariza-

tion model with an explicit representation of this deductive procedure would possibly improve the

ability to contextually identify salient questions and answers. One could imagine similar scenarios

in other domains. In financial news summarization, for example, the salience of particular events

depends heavily on an individual’s particular investment position.

In any case, we expect that incorporating an explicit model of the summary reader’s beliefs and
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world knowledge into the salience estimation component of a summarization system seems likely

to improve the accuracy of content selection. Additionally, it may also improve model scrutability.

We believe work on concept modeling (Bosselut et al., 2019) might be a fruitful way to explore

this idea in summarization.

Better Inductive Biases in Generation Models Our generation models improved when we

could reliably create synthetic examples through data augmentation. In practice, data augmenta-

tion is difficult to get right as any errors (e.g., disfluencies or bad meaning representation/utterance

pairings) risk hurting the model more than they benefit. Additionally, they have the flavor of a brute

force solution, where we attempt to systematically generate all gaps in the training data. While this

can work for simple datasets it is unlikely to scale to generation from more complex combinatorial

objects (i.e., meaning representations with recursive structure like graphs and trees).

In future work, we would like to explore ways of building in better inductive biases into the

model. In particular we would like to adapt some forms of contrastive learning popular in the vision

community (Chen et al., 2020) to the NLG setting. Under the contrastive learning framework,

constraints are put on the model representation via auxiliary discrimination tasks. In the image

domain, this might mean imposing a constraint that semantics preserving transformations (e.g.,

rotation) of the same image have similar hidden representations under the model, with the intuition

being that an image classifier should produce the same classification probabilities even if the image

is arbitrarily rotated.

In NLP, these kinds of semantics preserving transformations are somewhat harder to obtain,

but we can begin to imagine some feasible ones that might work for the NLG problem as we have

posed it. In our controllable generation model, the encoder input sequence is actually serving

double duty as both a representation of the meaning representation but also the utterance plan.

That is,

c1(`) = [inform, name=Aromi, eat_type=coffee shop, area=city centre]
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and

c2(`) = [inform, eat_type=coffee shop, area=city centre, name=Aromi]

both correspond to two different utterances plans for the same meaning representation,

` =




INFORM

name=Aromi
area=city centre
eat_type=coffee shop


 .

As we currently have it, the encoders of our neural NLG models would produce different repre-

sentations, i.e., enc (c1(`)) ≠ enc (c2(`)). In the spirit of contrastive learning, however, it might

be useful to differentiate the part of the hidden state that corresponds to the propositional con-

tents of the meaning representation and the part that corresponds to the plan. We might specify

that the encoder produce two hidden states, one representing the meaning representation and the

other representing the plan: enc (c1(`)) =
(
h`, hc

)
. For two different plans for the same meaning

representation,

enc (c1(`)) =
(
h(1)` , h(1)c

)
enc (c2(`)) =

(
h(2)` , h(2)c

)

we would enforce the constraint during training that

h(1)` = h(2)` and h(1)c ≠ h(2)c .

For another meaning representation that has the same attributes, but different values,

`′ =




INFORM

name=Bar Central
area=riverside
eat_type=pub


 with enc (c1(`′)) =

(
h(3)` , h(3)c

)
,

203



we would have

h(3)` ≠ h(1)` = h(2)` and h(3)c = h(1)c ≠ h(2)c .

The intuition here is that by creating distinct representations of the content and the plan, the

encoder can amortize learning how to represent specific attribute orderings independent of the

values of the attributes, while the values themselves can reside in h`.

Additionally, it would useful to explore how contrastive learning and other semantics preserv-

ing transformations can be represented in the encoding of more complex meaning representations.

Work on generating text from trees (Balakrishnan et al., 2019) or arbitrary graph structures like

AMR (Wang et al., 2020b) might benefit from imposing such constraints on the encoder represen-

tation.

6.4 Final Remarks

We have studied in this thesis several problems related to text-to-text generation generally, and

the summarization problem specifically. Our hope is that by breaking down the summarization

into sub-tasks we have revealed important but tractable problems on the way to more reliable text-

to-text generation and summarization.

We also hope that we have given some useful experimental setups for revealing how deep

learning models perform content selection. We think this level of investigation should be carried

out whenever deep learning based summarization models are proposed. In general, we think that

knowing how a model produces an answer to a question is just as important as the model getting

the correct answer. For instance, if we know that the model is exploiting position heuristics to

identify important information, we should not expect it to perform well when those signals are not

present.

On the generation side, we hope we have emphasized the importance of semantic correct-

ness and control when considering a neural NLG model. While ngram overlap based metrics

ROUGE and BLEU were relatively reliable metrics of summary quality when summarization mod-
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els were primarily extractive, with the move to powerful neural NLG models that can generate

fluent and natural text, these kinds of metrics become less discriminating. We think over time they

should be de-emphasized in favor of some kind of semantic evaluation, preferably a manual one.

We are still not in a world where neural NLG models can be be used reliably in industrial text

generation settings. We hope that work continues in the area of faithfulness and control so that this

situation changes.

Code and data for many of the experiments presented in this thesis can be found at http://

cs.columbia.edu/~kedzie/. Additionally, conference papers corresponding to individual

chapter contents can also be found there. Questions with regard to this thesis or any of the linked

materials should be directed to the author.
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Appendix A: GRU-based Sequence-to-Sequence Architecture

The GRU is a form of reccurent neural network (Elman, 1990) that operates over discrete

sequences, which upon receiving a new input token, updates a “hidden state” or internal represen-

tation using the current input and the previous hidden state. In the sequence-to-sequence paradigm,

both the encoder and decoder are built upon distinct GRU layers.

The encoder consists of an embedding layer which maps the discrete input sequence to a se-

quence embeddings. The encoder input embedding sequence is then fed through one or more GRU

layers. Optionally, the encoder GRUs can be run uni-directionally (i.e., proceeding left-to-right),

or bi-directionally (i.e. distinct left-to-right and right-to-left GRUs process the input sequence and

concatenate the output). We describe both cases below. After encoding the input, the final state

of the encoder is optionally run through a bridge layer to project it to a compatible size for the

decoder.

The decoder also has an embedding layer which it uses to map previously generated output

tokens to embeddings which are then fed into the one or more uni-directional decoder GRUs. The

decoder hidden state at each step attends to the encoder hidden states, producing an “attention

vector,” i.e. a weighted sum of the encoder hidden states. The decoder state and the attention

vector are concatenated and fed through a feed-forward layer with softmax output to produce a

probability distribution over the next token.

See Figure A.1 for a schematic example of the GRU-based sequence-to-sequence model. We

now describe the individual components in detail.

Encoder Embedding Layer Let x = [G1, . . . , G<] be a linearized meaning representation to-

ken sequence. Before feeding x into the encoder GRU layer, we first embed each token. Let

M ∈ R|VX |×�F be the encoder input embedding matrix, where each row, m8, is a �F-dimensional
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Figure A.1: Schematic of the bi-directional GRU-based sequence-to-sequence model.

embedding for a token in H ∈ VX , i.e.,

M =


m1
...

m|VX |


.

We assume each element G ∈ VX is uniquely identified with a row 8 ∈ {1, . . . , |VX |}. We indicate

the embedding of G as MG = m8. The input to the encoder GRU layer then is

[
h(0)1 , . . . , h(0)<

]
=

[
MG1 , . . . ,MG<

]
.
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Encoder Uni-directional GRU Layers We then compute the GRU hidden states. The encoder

can have an arbitray number of layers !. For each layer ; ∈ {1, . . . , !} we compute,

h(;)0 = 0

h(;)
8
= GRU(h(;−1)

8
, h(;)
8−1; \ (;)E ) ∀8 : 8 ∈ {1, . . . , <}

where \ (;)E are the GRU encoder parameters1 for the ;-th layer and h(;)
8
∈ R�ℎ . The encoder GRU

layers output the sequence of hidden states, h1, . . . , h<, used by the decoder to represent the input;

in the uni-directional case, these are simply the last GRU layer outputs, i.e. h8 = h(!)
8
∈ R�E (in

the uni-directional case, �ℎ = �E).

Encoder Bi-directional GRU Layers The uni-directional encoder may suffer from a recency

bias when creating the initial state for the decoder and for longer input sequences the encoder may

“forget” information encoded in the early hidden states. In practice to alleviate this another GRU

is run in the opposite direction and its outputs are concatenated. For the first layer, we have,

(Encoder Forward GRU)

−→h
(1)
0 = 0,

−→h
(1)
8 = GRU

(
h(0)
8
,
−→h
(1)
8−1; \−→E

(;)
)
, ∀8 : 8 ∈ {1, . . . , <}

(Encoder Backward GRU)

←−h
(1)
0 = 0,

←−h
(1)
8 = GRU

(
h(0)
8
,
←−h
(1)
8+1; \←−E

(;)
)

∀8 : 8 ∈ {1, . . . , <}

h(1)
8
=


−→h
(1)
8

←−h
(1)
8

 ∀8 : 8 ∈ {1, . . . , <}

1See Equation 3.2 for the definition of the GRU function.
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where \−→E and \←−E are forward and backward GRU parameters respectively,
−→h
(1)
8 ,
←−h
(1)
8 ∈ R�ℎ ,

and first layer hidden state, h(1)
8
∈ R2�ℎ , is a concatenation of the forward and backward hidden

states at step 8. The subsequent layers are computed similarly, but the input to the GRUs are

2�ℎ-dimensional. Like before, the encoder outputs are the hidden state outputs of the last layer,

h8 = h(!)
8
∈ R�E where �E = 2�ℎ.

Decoder Embedding Layer We then embed the utterance token sequence, y = [H1, . . . , H=],

before feeding it to the decoder GRU layers.. Let W ∈ R|VY |×�F be an embedding matrix of the

utterance tokens H ∈ VY defined analogously to the encoder embedding matrix M. The input to

the decoder then is [
g(0)1 , . . . , g(0)

=−1

]
=

[
WH1 , . . . ,WH=−1

]
.2

Bridge Layer We initialize the decoder hidden state with the final (i.e. <-th) state of the encoder

GRU. In the case where �E ≠ �ℎ, we need to project h(;)< to �ℎ dimensions,

g(;)0 =


tanh

(
W(1A)

;
h(;)< + b(1A)

;

)
�E ≠ �ℎ

h(;)< otherwise
,

where W(1A)
;
∈ R�ℎ×�E and b(1A)

;
∈ R�ℎ for ; ∈ {1, . . . , !} are the weight and bias parameters for

the “bridge layer” between the encoder and decoder networks.

Decoder GRU Layers The decoder GRU is then computed analogously to the uni-directional

encoder GRU,

g(;)
8
= GRU

(
g(;−1)
8

, g(;)
8−1; \ (;)D

)
∀8 : 8 ∈ {1, . . . , = − 1},

2The decoder input sequences have length =− 1 since the =th token is always the stop token «e», which is never fed
into the decoder input.
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where \ (;)D are the decoder GRU parameters and g(;)
8
∈ R�ℎ for 8 ∈ {1, . . . , = − 1} and ; ∈

{1, . . . , !}. The decoder outputs, g1, . . . , g=−1, are the decoder hidden states of the last decoder

layer, i.e. g8 = g(!)
8
∈ R�D where �D = �ℎ.

Attention Layer As mentioned before, one drawback of the recurrent neural network design is

that information from earlier states my not be preserved in later states. To ameliorate this, the

attention mechanism was proposed to allow an arbitrary decoder state to retrieve information from

an arbitrary encoder state (Bahdanau et al., 2015). This works by taking a weighted average of the

encoder states,

h̄8 =
<∑
9=1
U8, 9h 9 ∀8 : 8 ∈ {1, . . . , = − 1}

where U8, 9 ∈ (0, 1) is proportional to a score function B(g8, h 9 ) which measures some notion of

“relevance” for decoder state 8 to encoder start 9 ,

U8, 9 =
exp B(g8, h 9 )∑<
9 ′=1 exp B(g8, h 9 ′)

∀8, 9 : 9 ∈ {1, . . . , <}, 8 ∈ {1, . . . , = − 1}.

There are several popular ways to implement B which we consider; we refer to three of them

using the names given in Luong et al. (2015). When the encoder and decoder hidden states are of

the same dimension, the simplest function is just the dot product, which we refer to as “dot-style”

attention,

(Dot-Style Attention)

B(g8, h 9 ) = g8 · h 9 .

If they are not the same dimension, one can insert a parameter matrix in place of the dot product,

(General-Style Attention)

B(g8, h 9 ) = g8Kh 9

where K ∈ R�D×�E is a learned parameter of the model.
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The third method called “concat” by Luong et al. (2015) but also commonly referred to as

“Bahdanau,” since it was introduced in the Bahdanau et al. (2015), uses a feed-forward layer to

project the pair of states down to a scalar,

(Concat-Style Attention)

B(g8, h 9 ) = k · tanh
©­­«K


g8

h 9


ª®®¬ ,

where K ∈ R�ℎ×(�D+�E ) and k ∈ R�ℎ are learned parameters.

Prediction Layer Finally, the attention output h̄8 and decoder state g8 are run through a two layer

feed-forward network to produce a distribution over the utterance token vocabularyVY ,

? (H8+1 |y1:8, c(`); \) = softmax
©­­«W(2) · tanh

©­­«W(1)


g8

h 9

 + b(1)
ª®®¬ + b(2)

ª®®¬H8+1 ∀8 : 8 ∈ {1, . . . , =−1}

where W(1) ∈ R�ℎ×(�D+�E ) , b(1) ∈ R�ℎ , W(2) ∈ R|VY |×�ℎ , and b(2) ∈ R|VY | are learned parame-

ters and we associate each utterance token H with a unique element in the final softmax distribution

(similar to how we indexed into the embeddings matrices M and W).
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Appendix B: Transformer-based Sequence-to-Sequence Architecture

The transformer sequence-to-sequence model eschews the recurrence as a mechanism for prop-

agating information, and instead leans solely on several attention mechanisms to learn representa-

tions of the input sequence x as well as the decoder input prefix y1:8. Like the GRU, each encoder

and decoder consist of ! distinct layers which are applied to x and y1:8 respectively. Ultimately,

the decoder outputs are used to compute the next word probability, ?(H8+1 |y1:8, x).

A schematic diagram of the transformer-based sequence-to-sequence model is shown in Fig-

ure B.1. Like the GRU schematic, the model diagram is color-coded to correspond with the text

descriptions of each component. While the transformer looks significantly more complex than the

GRU architecture, it is fundamentally built around only three different kinds of neural network

layers, (i) multi-head attention, (ii) feed-forwardlayers, and (iii) layer normalization. Before de-

scribing the encoder and decoder layers in detail, we first describe these basic components and

how they form the various “block” structures which are employed throughout the model.

B.1 Transformer Components

Multi-Head Attention The first basic layer to be defined is the multi-head attention layer. We

begin by describing “single-head” attention from the point of view of a soft key-value store and

then generalize to the “multi-head” case. In this view, we assume we want to attend to a sequence

of < items. Each item has two representations, a key representation and a value representation,

which are written collectively as rows in a key and value matrix, K ∈ R<×�F and V ∈ R<×�F

respectively. We then have = query items that will each individually attend to the < items; we

similarly represent the query items as rows in a matrix Q ∈ R=×�F . An attention layer, denoted

Attn : R=×�F ×R<×�F ×R<×�F → R=×�F , then computes an attention weighted read of the value
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Ǧ(1)

Layer Normalization

Feed-Forward Layer

G(1)

Transform
erD

ecoderL
ayer2

M
asked

Self-A
ttention

B
lock

E
ncoder

A
ttention
B

lock

Feed-Forw
ard

B
lock

Layer Normalization

Masked Self-Attention Layer
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Figure B.1: A schematic diagram of a two layer transformer-based sequence-to-sequence model.
Dashed lines indicate skip-connections.
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matrix as,

Attn (Q,K,V) = softmax
(

QK)

√
�F

)
V,

where

softmax
(

QK)

√
�F

)
8, 9

=

exp
(
�
− 1

2
F q8 · k 9

)
∑<
9 ′=1 exp

(
�
− 1

2
F q8 · k 9 ′

) ∀8, 9 : 8 ∈ {1, . . . , =}, 9 ∈ {1, . . . , <}.

Because the < items have distinct key and value matrices, representation of similarity between a

query and a key can be different than the value that is produced in the output, unlike the attention

mechanisms discussed in the GRU decoder, where essentially, the key and values were identical

representations.

The idea behind multi-head attention is to compute �0 distinct attention operations by first

projecting the query, keys, and values down to a smaller representation. That is, given projection

matrices, W(&8=,:) ,W( 8=,:) ,W(+8=,:) ∈ R�F×
�F
�0 for : ∈ {1, . . . , �0}, and W(+>DC ) ∈ R�F×�F , the

multi-headed attention layer computes

MultiHeadAttn(Q,K,V) =

©­­­­­­­­­«

Attn
(
QW(&8=,1) ,KW( 8=,1) ,VW(+8=,1)

)
⊕ Attn

(
QW(&8=,2) ,KW( 8=,2) ,VW(+8=,2)

)
...

⊕ Attn
(
QW(&8=,�0) ,KW( 8=,�0) ,VW(+8=,�0)

)
ª®®®®®®®®®¬

W(+>DC )

where ⊕ indicates column-wise concatenation. Each use of a multi-head attention layer uses dis-

tinct projection matrices and are learned parameters of the model.

Additionally, there is a masked variant of attention, MaskedMultiHeadAttn where the individ-

ual attention layers are computed as

Attn (Q,K,V) = softmax
(
QK) �M
√
�F

)
V
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where M ∈ R=×< is a lower triangular matrix, i.e. values on or below the diagonal are 1 and all

other values are −∞. The masked multi-head attention is used for the decoder self-attention and

prevents the 8-th decoder step from attending to future steps, i.e. giving it clairvoyant knowledge

of future tokens.

Feed-Forward Layer The next bulding block is a single hidden layer feed-forward network, FF :

R∗×�F → R∗×�F , with ReLU activation in its hidden layer and no activation in its output. Let the

input to the layer be a sequence of < vectors, represented as rows in a matrix H = [h1, . . . , h<] ∈

R<×�F . The output of the FF layer is then computed

FF
(
H; W(8) ,W( 9) , b(8) , b( 9)

)
= ReLU

(
HW(8) + b(8)

)
W( 9) + b( 9) .

where W(8) ∈ R�F×�ℎ , b(8) ∈ R�ℎ , W( 9) ∈ R�ℎ×�F , b( 9) ∈ R�F are learned parameters and

matrix-vector additions are broadcast across the matrix rows (i.e. H + b = [h1 + b; · · · h< + b])

Layer Normalization The final component is layer normalization (Ba et al., 2016). Let h =[
ℎ1, . . . , ℎ�F

]
∈ R�F be a vector, representing an embedding of an item with �F features, and

with mean and standard deviation

ℎ̄ =
1
�F

�F∑
8=1

ℎ8 and ℎf =

(
1

�F − 1

�F∑
:=1

(
ℎ: − ℎ̄

)2 + n
) 1

2

,

respectively (the n term is a small constant for numerical stability, set to 10−5). Layer normaliza-

tion, LN : R�F → R�F , normalizes the input have zero mean/unit variance before scaling each

element and adding a bias,

LN(h; a, b) = a �
(
h − ℎ̄

)
· ℎ−1

f + b

where a, b ∈ R�F are learned parameters and � is the element-wise product. When applying layer

normalization to a matrix H = [h1, . . . , h<] ∈ R<×�F , where H is a sequence < embeddings with
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�F features, layer normalization is applied independently to each row,

LN(H; a, b) = LN

©­­­­­«


h1
...

h<


; a, b

ª®®®®®¬
=


LN (h1; a, b)

...

LN (h<; a, b)


.

B.2 Transformer Processing Blocks

Each encoder and decoder transformer layer consists of several “processing blocks” which we

define now. Each processing block uses some of the basic components defined in the previous

subsection. There are fourt distinct block types, a FEEDFORWARDBLOCK, a SELFATTENTION-

BLOCK, a MASKEDSELFATTENTIONBLOCK, and an ENCODERATTENTIONBLOCK. Each block

consists of three layers

1. Layer Normalization

2. Processing Layer

3. Skip-Connections

where the processing layer is determined by the block type. For instance, let H ∈ R<×�F be a

matrix with its rows representing a sequence of < vectors; the FEEDFORWARDBLOCK is defined

as

Feed-Forward Block

(Layer Normalization) Ȟ = LN (H)

(Processing Layer) H̄ = FF
(
Ȟ

)
(Skip-Connection) Ĥ = H + H̄

FEEDFORWARDBLOCK(H) = Ĥ.
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The SELFATTENTIONBLOCK and MASKEDSELFATTENTIONBLOCKs are similarly defined as,

Self-Attention Block

(Layer Normalization) Ȟ = LN (H)

(Processing Layer) H̄ = MultiHeadAttn
(
Ȟ, Ȟ

)
(Skip-Connection) Ĥ = H + H̄

SELFATTENTIONBLOCK(H) = Ĥ

and

Masked Self-Attention Block

(Layer Normalization) Ȟ = LN (H)

(Processing Layer) H̄ = MaskedMultiHeadAttn
(
Ȟ, Ȟ

)
(Skip-Connection) Ĥ = H + H̄

MASKEDSELFATTENTIONBLOCK(H) = Ĥ.

Finally, let G ∈ R=×�F be a sequence of = embeddings. The ENCODERATTENTIONBLOCK is

defined as,

241



Encoder Attention Block

(Layer Normalization) Ǧ = LN (G)

(Processing Layer) Ḡ = MultiHeadAttn
(
Ǧ,H

)
(Skip-Connection) Ĝ = G + Ḡ

ENCODERATTENTIONBLOCK(G,H) = Ĝ.

B.3 The Transformer Encoder and Decoder Layers

We now describe the actual transformer-based sequence-to-sequence model using the blocks

defined previously. We start first with the encoder and decoder input layers.

Encoder Embedding Layer and Decoder Embedding Layer Let x = [G1, . . . , G<] and y =

[H1, . . . , H=−1] be input and output sequences, with elements G8 and H8 drawn from vocabularies

VX andVY respectively. With each vocabulary we associate an embedding matrix, M ∈ R|VX |×�F

and W ∈ R|VY |×�F respectively. Let MG ∈ R�F denote the �F-dimensional embedding for each

G ∈ VX; similarly, let WH ∈ R�F denote the �F-dimensional embedding for each H ∈ VY .

Additionally let P ∈ R<<0G×�F be a sinusoidal position embedding matrix defined elementwise

with

P8, 9 = sin

(
8

10, 000
2( 9−1)
�F

)
∀8, 9 : 8 ∈ {1, . . . , <<0G}, 9 ∈ {1, 3, . . . , �F − 1}

P8, 9 = cos

(
8

10, 000
2( 9−1)
�F

)
∀8, 9 : 8 ∈ {1, . . . , <<0G}, 9 ∈ {2, 4, . . . , �F}.

P is not updated during training and its rows function as an encoding of the relative position of

token in the encoder/decoder inputs. The number of total positions <<0G is a hyperparameter and

represented the longest sequence the encoder/decoder can take as input.
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Before being fed into the transformer encoder/decoder, each sequence is embedded in its re-

spective embedding space and the corresponding position embeddings are added,

H(0) =


MG1 + P1

...

MG< + P<


and G(0) =


WH1 + P1

...

WH=−1 + P=−1


.

Transformer Encoder A transformer encoder layer consists of a SELFATTENTIONBLOCK fol-

lowed by a FEEDFORWARDBLOCK. A transformer encoder with ! layers then computes

H̄(;) = SELFATTENTIONBLOCK(;)
(
H(;−1)

)
H(;) = FEEDFORWARDBLOCK(;)

(
H̄(;)

)
for ; ∈ {1, . . . , !}. We indicate the final encoder output as H = H(!) .

Transformer Decoder A transformer deccoder layer consists of a MASKEDSELFATTENTION-

BLOCK followed by an ENCODERATTENTIONBLOCK and a FEEDFORWARDBLOCK. Note that

the MASKEDSELFATTENTIONBLOCK means that though we can compute all decoder states in

parallel during training, it is equivalent to computing each decoder state sequentially (which we

must do at test time). A transformer deccoder with ! layers is computed as

Ǧ(;) = MASKEDSELFATTENTIONBLOCK(;)
(
G(;−1)

)
Ḡ(;) = ENCODERATTENTIONBLOCK(;)

(
Ǧ(;) ,H

)
G(;) = FEEDFORWARDBLOCK(;)

(
Ḡ(;)

)
for ; ∈ {1, . . . , !}. We indicate the final decoder output as G = G(!) .
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Prediction Layer Let g8 be the 8-th row of G corresponding to the decoder representation of the

8-th decoder state. The probability of the next word is

? (H8+1 |y1:8, x) = softmax
(
W(>)g8 + b(>)

)
H8+1

∀8 : 8 ∈ {1, . . . , = − 1}

where W(>) ∈ R|VY |×�F and b(>) ∈ R�F are learned parameters. Each block from each encoder

and decoder layer has separate learned parameters. Because each operation in the transformer is

built around matrix multiplication, its computation can be parallelized more heavily than recurrent

neural network models like the GRU architecture.
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