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ABSTRACT

Variational Bayesian Methods for Inferring Spatial Statistics and

Nonlinear Dynamics

Antonio Khalil Moretti

This thesis discusses four novel statistical methods and approximate inference techniques

for analyzing structured neural and molecular sequence data. The main contributions are

new algorithms for approximate inference and learning in Bayesian latent variable models

involving spatial statistics and nonlinear dynamics. First, we propose an amortized varia-

tional inference method to separate a set of overlapping signals into spatially localized source

functions without knowledge of the original signals or the mixing process. In the second

part of this dissertation, we discuss two approaches for uncovering nonlinear, smooth latent

dynamics from sequential data. Both algorithms construct variational families on exten-

sions of nonlinear state space models where the underlying systems are described by hidden

stochastic differential equations. The first method proposes a structured approximate pos-

terior describing spatially-dependent linear dynamics, as well as an algorithm that relies on

the fixed-point iteration method to achieve convergence. The second method proposes a

variational backward simulation technique from an unbiased estimate of the marginal like-

lihood defined through a subsampling process. In the final chapter, we develop connections

between discrete and continuous variational sequential search for Bayesian phylogenetic

inference. We propose a technique that uses sequential search to construct a variational

objective defined on the composite space of non-clock phylogenetic trees. Each of these

techniques are motivated by real problems within computational biology and applied to

provide insights into the underlying structure of complex data.
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Chapter 1

Introduction

1.1 The Rise of Bayesian Inference

Bayesian statistical inference has seen a rapid growth in popularity over the past several

decades. This development is due to advancements in approximate inference techniques

coinciding with increases in computational resources. As transistor counts across micropro-

cessors have skyrocketed, what were once theoretically appealing methodologies applicable

only to textbook problems are now the predominant approach to modern machine learn-

ing. Computational statistics and Bayesian machine learning play a central role within the

natural sciences, however the life sciences and the field of biology is uniquely positioned to

undergo a historical period of discovery analogous to that of the early 20th century for the

physical sciences. Arguably, the driver of this progress is a host of new experimental tools

for collecting massive amounts of data, which in turn has elicited a demand for new com-

putational and statistical techniques to interpret this data. This thesis attempts to meet

this demand by proposing novel Bayesian statistical methods and approximate inference

techniques for analyzing structured neural and molecular sequence data.

1



CHAPTER 1. INTRODUCTION

1.1.1 Thesis Overview

In the first part of this thesis, we summarize preliminaries on approximate inference and

address the problem of nonlinear blind source separation. Chapter 2 proposes an amortized

variational inference method to separate a set of overlapping signals into spatially local-

ized source functions without knowledge of the original signals or the mixing process. We

show that under this setup, model parameters scale independently of dataset size making

it possible to perform inference on large temporal sequences of functional magnetic reso-

nance imaging data. In the second part of this dissertation, we discuss two approaches

for uncovering nonlinear, smooth latent dynamics from sequential data. Both algorithms

construct variational families on extensions of nonlinear state space models where the un-

derlying systems are described by hidden stochastic differential equations. The first method

in Chapter 3 utilizes a structured approximate posterior describing spatially-dependent lin-

ear dynamics, as well as an algorithm that relies on the fixed-point iteration method to

achieve convergence. The second method in Chapter 4 proposes a variational backward

simulation technique from an unbiased estimate of the marginal likelihood defined through

a subsampling process. In Chapter 5, we develop connections between discrete and con-

tinuous variational sequential search for Bayesian phylogenetic inference. We propose a

technique that uses sequential search to construct a variational objective defined on the

composite space of non-clock phylogenetic trees. Chapter 6 offers directions for future work

and concluding thoughts.

The remainder of the introduction is organized as follows. Section 1.2 provides a re-

view of recent advances in approximate Bayesian inference including variational inference,

Sequential Monte Carlo and Markov Chain Monte Carlo methods. Section 1.3 provides an

2



CHAPTER 1. INTRODUCTION

outline of this thesis and summarizes the contributions of each subsequent chapter.

1.2 Recent Advances in Approximate Bayesian Inference

Figure 1.1: Graphical model for the Hmm with transition and emission functions f and g

denoted. Closed-form inference is not possible when f and g are non-conjugate or nonlinear.

1.2.1 Inference in State Space Models

Let X ≡ {x1, . . .xT } denote a sequence of T observations of a Rdx-dependent random

variable. State space models (SSMs) posit a generating process for X through a sequence

Z ≡ {z1, . . . zT }, zt ∈ Rdz of unobserved latent variables, that transitions according to a

stochastic evolution law. The joint density then factorizes:

pθ(X,Z) = Fθ(Z) ·
T∏
t=1

gθ(xt|zt) , (1.1)

where gθ(x|z) is an observation model, and Fθ(Z) is a prior representing the evolution in

the latent space. Here we focus on the case of Markov evolution with Gaussian conditionals:

Fθ(Z) = f1(z1)

T∏
t=2

fθ(zt|zt−1) , (1.2)

f1 = N
(
ψ1,Q1

)
, zt ∼ N

(
ψθ(zt−1), Q

)
. (1.3)

3



CHAPTER 1. INTRODUCTION

Inference in SSMs requires marginalizing the joint distribution with respect to the hidden

variables Z,

log pθ(X) =

∫
log pθ(X,Z) dZ. (1.4)

Eq. (1.4) is intractable when ψθ(zt) is a nonlinear function or when gθ(xt|zt) is non-Gaussian.

1.2.2 Inference and Learning

We are often interested in two distinct tasks for nonlinear SSMs which we define below.

1. Inference (marginalization) requires sampling latent trajectories Z1:T to compute an

intractable marginal likelihood: pθ(X1:T ).

2. Learning (optimization) requires recovering transition f(·) and emission g(·) func-

tions by maximizing a lower bound to Eq. (1.4).

We define the filtering posterior pθ(Z1:t|X1:t) by the use of information only up to the current

time point to estimate the latent state. In contrast, the smoothing posterior pθ(Z1:t|X1:T )

uses information from the complete time-ordered sequence of observations to estimate the

latent state. A variety of methods have been proposed to address each of these tasks on the

premise that smoothing improves the quality of learned nonlinear dynamics.

1.2.3 The Monte Carlo Principle

One of the main challenges in Bayesian inference is numerical integration. Monte Carlo

simulation is a straightforward method for approximating integrals or intractable summa-

tions via tractable sums. The idea is to draw a set of i.i.d. samples {zi}Ni=1 to evaluate

a target density π(z) defined on a high dimensional space X . The target measure is then

4



CHAPTER 1. INTRODUCTION

approximated using the empirical mass function,

πN (z) =
1

N

N∑
i=1

δzi , (1.5)

where δzi denotes the Dirac delta. Convergence of the approximation IN to the integral I

is established by the Law of Large Numbers:

IN (f) =
1

N

N∑
i=1

f(zi)
a.s.−→

N→∞

∫
X
π(z)f(z)dz . (1.6)

The estimate IN (f) is unbiased and converges almost surely to I(f) by the Strong Law of

Large Numbers (Slln). If the variance of f(z) is finite and satisfies σ2f = E
π(z)

(f2(z)) −

I2(f) < ∞, the variance decrease as a function of N so that Var IN (f) = σ2(f)/N . The

Central Limit Theorem (Clt) then provides a convergence in distribution of the error:

√
N ((IN (f)− I(f))) =⇒

N→∞
N(0, σ2f ). (1.7)

1.2.4 Variational Bayesian Inference

VI describes a family of techniques for approximating log pθ(X) when marginalization is

analytically impossible. The idea is to define a tractable distribution qφ(Z|X) and then

optimize a lower bound to the log-likelihood:

log pθ(X) ≥ LELBO(θ, φ,X) = E
q

[
log

pθ(X,Z)

qφ(Z|X)

]
. (1.8)

Rewrite the likelihood by introducing a density over hidden variables qφ(Z) and marginal-

izing over Z:

log pθ(X) =

∫
qφ(Z)pθ(X)

qφ(Z)

qφ(Z)
dZ (1.9)

Replace pθ(X) with pθ(Z,X)/pθ(Z|X):

log pθ(X) =

∫
qφ(Z)

log pθ(Z,X)

qφ(Z)
dZ +

∫
qφ(Z)

pθ(Z|X)

qφ(Z)
dZ (1.10)

log pθ(X) = E
q

[log pθ(Z,X)] +H (qφ(Z)) +DKL (qφ(Z)||pθ(Z|X)) (1.11)

5



CHAPTER 1. INTRODUCTION

Maximizing the Elbo LELBO is equivalent to minimizing the KL divergence DKL:

argmin
θ,φ

DKL (qφ(Z)||pθ(Z|X)) ≡ argmax
θ,φ

LELBO (1.12)

In maximizing Eq. (1.8), VI simultaneously performs both inference and learning.

1.2.4.1 Coordinate Ascent Variational Inference

Tractability and expressiveness of the variational approximation qφ(Z|X) are contrasting

goals. A simple choice is to consider a variational family in which each variable is indepen-

dent:

qφ(z1, · · · , zK) =

K∏
j=1

qφ(zj). (1.13)

This formulation is referred to as the mean field variational family. The name mean field

originates within statistical mechanics in the analysis of phase transitions when relaxing

a problem by ignoring second order effects by averaging over degrees of freedom [51, 93].

Coordinate Ascent Variational Inference (Cavi) is a technique to update each factor qk(·)

while fixing the remaining K−1 factors by performing coordinate ascent to optimize LELBO

in Eq. (5.7). Factorizing the joint and entropy terms:

LELBO = log pθ(x1:n) +
K∑
j=1

E
[
log pθ(zj |z1:(j−1),x1:n)

]
− Ej [log qj(zj)] (1.14)

Writing the objective as a function of factor q(zk):

Lk =

∫
q(zk)E−k[log p(zk|z−k,x)]dzk −

∫
q(zk) log q(zk)dzk (1.15)

Each factor q(zk) is a functional. Making use of the Euler-Lagrange equation to write the

functional derivative with respect to q(zk):

dLj
dq(zk)

= E−k[log p(zk|z−k,x)]− log q(zk)− 1 = 0 (1.16)

6
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The coordinate ascent update is given by:

qk(zk) ∝ exp
(
Eq−k [log p(zj |z−j ,x)]

)
(1.17)

This simplifies given that the denominator of the conditional does not depend on zj :

qk(zk) ∝ exp
(
Eq−k [log p(zj , z−j ,x)]

)
(1.18)

Cavi requires analytically evaluating the expectation and renormalizing (1.18) with respect

to φk. This can be done when the complete conditional distribution belongs to a class of

exponential family distributions.

Definition 1.2.1. Let X be a random variable with sample space X ⊂ Rn and probability

Pθ. The class of models P = {Pθ, θ ∈ Θ} is an exponential family if the density can be

written as follows:

p(x|θ) = h(x) exp (η(θ)T (x)−B(θ)) (1.19)

where h : X → R, η : Θ→ R, and B : Θ→ R and T (X) is the natural sufficient statistic.

1.2.4.2 Stochastic Gradient Variational Inference

When either the model p(x, z) or the variational approximation q(z) do not meet the re-

quirements for Cavi, it is possible to use stochastic gradients to optimize the Elbo [94, 110].

Stochastic gradient descent iteratively solves for a parameter λ by performing the update

λn = λn−1 + γnĝ(λn−1) , (1.20)

where the step sizes γn ≥ 0,
∑

n γn =∞, γ2n <∞ [106]. Monte Carlo can be used to estimate

the gradient of the Elbo via its expectation. The Elbo gradient can be reformulated using

a log-derivative trick where,

∇λqλ(z) = qλ(z)∇λ log qλ(z) . (1.21)

7
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Given that the expectation of the score function ∇λ log qλ(z) is zero the Elbo gradient can

be estimated as follows:

∇λL ≈
1

N

N∑
i=1

(
log p(x, zi)− log q(zi)

)
· ∇λ log qλ(zi) (1.22)

Monte Carlo estimates of gradients have several advantages that follow from the law of

large numbers. These estimators are simple to simulate, unbiased and consistent. The

score function estimator however produces high variance gradient estimates [102].

1.2.4.3 Autoencoding Variational Bayes and Importance Weighted Autoen-

coders

Auto Encoding Variational Bayes [57] (Aevb) is a method to simultaneously train qφ(z|x)

and pθ(x, z). The expectation value in Eq. (5.7) is approximated by summing over samples

from the recognition distribution; which in turn are drawn by evaluating a deterministic

function of a φ-independent random variable (the reparameterization trick).

z = µ+ Σ1/2ε ε ∼ N (0, I) (1.23)

Importance Sampling (Is) is closely related to the Elbo in VI. Consider R = p(z,x)
q(z) where

z ∼ q(z). It is easy to see that E[R] = p(x). By Jensen’s inequality, log p(x) ≥ E[logR]. In

Aevb, Monte Carlo samples are used to approximate E[logR] analogous to IS estimates of

E[R]. When R is concentrated around its mean p(x), Jensen’s inequality produces a tighter

bound. It is possible to construct estimators with the same mean that are more concen-

trated, for example the sample average 1
M

M∑
m=1

Rm. It follows that log p(x) ≥ E[logRm].

Building upon this, the Importance Weighted Auto Encoder [11, 21] (Iwae) constructs

tighter bounds than the Aevb through mode averaging as opposed to mode matching.

The idea to achieve a better estimate of the log-likelihood is to draw K samples from the

8
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proposal and to average probability ratios.

log p(x) =

logEz∼qφ(zj)

 1

K

K∑
j=1

pθ(x, zj)

qφ(zj |x)

 ≥ Ezj∼qφ(z)

log
1

K

K∑
j=1

pθ(x, zj)

qφ(zj |x)


:= LK(θ, φ)

Weighting samples by the ratio p/q effectively corrects for the approximation by biasing

the proposal towards the true posterior. It can be shown that YK := log 1
K

K∑
j=1

pθ(x,z)
qφ(z|x) is a

biased estimator for log pθ(x) where the bias is O(K−1).

1.2.5 Structured Generative Models for Smooth Dynamics

A large body of state space models (Ssms) posit a set of time-evolving latent trajectories

zrt ∈ Rm governed by linear dynamics [48, 61, 62, 3, 27]:

z1 ∼ N (µ1,Q1) , (1.24)

zt+1|zt ∼ N (Azt,Q) , (1.25)

where A is an m×m linear dynamics matrix, and the matrices Q1 and Q are the covariances

of the initial states and Gaussian noise. Consider an observation model specified by a

deterministic rate function [f(zt)]i where the ith element of the rate function and Pλ(λ) is

a noise model with parameter λ; fψ : Rm −→ Rn:

xt|zt ∼ Pλ(λti = [f(zt)i]) . (1.26)

Under this setup, when Pλ is Gaussian with mean parameter λ and linear rate function f ,

the model reduces to the classical Kalman filter. When Pλ is non-Gaussian or f is nonlinear,

conjugacy is broken and inference is intractable.

9
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1.2.6 Linear Dynamical Systems with Nonlinear Observations

The idea of flds [27, 3] is to relax the assumption that fψ(·) is a linear function and

to parameterize fψ(·) using a feed forward neural network. Each observation now has a

separate nonlinear dependence on the latent variable through the function f(zrt)i:

xrti|zrt ∼ Pλ(λrti = [f(zrt)i]) . (1.27)

When the noise model is Poisson or Gaussian the setup is referred to as pflds and gflds

respectively. Model fitting is performed via Aevb with a temporally correlated Gaussian

approximate posterior:

qφ(zr|xr) = N (µφ(xr),Σφ(xr)) (1.28)

∝
T∏
t=1

qφ(zrt|zr(t−1))qφ(zrt|xrt)qφ(zr1) (1.29)

where the mean µr(xr) is an mT × 1 vector and Σφ(xr) is an mT ×mT covariance matrix.

In the above setup,

qφ(zr1) ∼ N (µ̃1, Q̃1), (1.30)

qφ(zrt|zr(t−1)) ∼ N (Ãzr(t−1, Q̃), (1.31)

qφ(zrt|xrt) ∼ N (mψ̃(xrt), cψ̃(xrt)) , (1.32)

where the matrices Ã, Q̃ and Q̃1 are m ×m trainable parameters with mψ̃(·) : Rn → Rm

and cψ̃(·) : Rm → Rm×m defined as nonlinear functions of the observations. Specifically,

the covariance matrix cψ̃(xrt) =
(
rψ̃(xrt)cψ̃(xrt)

T
)−1

is defined as the product as two

matrix valued functions. All factors in Eq. (3.7), Eq. (3.8) and Eq. (3.9) are Gaussian so

that qφ(zr(1:T )|xr(1:T )) retains Gaussian functional form. Deducing all terms needed for

10
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Eq. (3.3) via normalization yields:

Σφ(xr) =
(
D−1 + C−1φ (xr)

)−1
(1.33)

µφ(xr) =
(
D−1 + C−1φ (xr)

)−1
C−1φ (xr)Mφ(xr) . (1.34)

In the above, D = (I−A)−TQ(I−A)−1 with

Q = IT×T ⊗Q =


Q̃1

Q̃

. . .

Q̃

 , A =


0

Ã 0

. . .

Ã 0

 , (1.35)

Cψ̃(xr) =


cψ̃(xr1)

cψ̃(xr2)

. . .

cψ̃(xrT )

 , Mψ̃(x) =


cψ̃(xr1)

...

cψ̃(xrT )

 ∈ RmT (1.36)

Here Σ is a dense matrix whose inverse Σ−1 is parameterized as block tri-diagonal. Matrix

inversion and sampling is accomplished via Cholesky decomposition. The computation of

the lower-triangular factor r is linear in the length of the time series T [116].

1.2.7 Particle Filtering and Sequential Monte Carlo

1.2.7.1 Filtering and Autoencoding SMC

Smc is a family of techniques for inference applicable to SSMs with an intractable joint

distribution. The generative model defined in Eq. (1.1) and Eq. (1.2) imply that the

likelihood and the posterior satisfy the following recursions,

pθ(z0:t,x0:t) = pθ(z0:t−1|x0:t−1)×
fθ(zt|zt−1)gθ(xt|zt)

pθ(xt|x0:t−1)
, (1.37)

and

pθ(xt|x0:t−1) =

∫
fθ(zt|zt−1)gθ(xt|zt)pθ(zt−1|x0:t−1)dzt−1:t. (1.38)

11
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Given a proposal distribution qφ(z|x), these methods operate sequentially, approximating

pθ(z1:t,x1:t) (the target measure) and its normalization constant pθ(xt:t) for each t by per-

forming inference on a sequence of increasing probability spaces. K samples (particles) are

drawn from the proposal distribution and used to compute importance weights:

zkt ∼ qφ(zkt |zkt−1,xt) , wkt :=
fθ(z

k
t |zkt−1)gθ(xt|zkt )
qφ(zkt |zkt−1,xt)

. (1.39)

It is clear that the proposal should be chosen as close as possible to the optimal form,

qφ(zt|zt−1) ∝ fθ(zt|zt−1)gθ(xt|zt). While this presents challenges due to intractability, a

large body of techniques have been established for developing good approximations. Smc

methods make use of a resampling strategy to ensure that particles remain on regions of

high probability mass. Without resampling, the variance of the unnormalized importance

weights is independent across iterations and increases exponentially with the time index.

Smc exploits Markovian assumptions to mitigate sample degeneracy by resampling the

particle indices (ancestors) according to their weights at the previous time step:

akt−1 ∼ Categorical(·|w̄1
t−1, · · · , w̄Kt−1) , wkt :=

fθ(z
k
t |z

akt−1

t−1 )gθ(xt|z
akt−1

t )

qφ(zkt |z
akt−1

t−1 ,xt)
. (1.40)

The posterior can be evaluated at the final time step. The functional integral is approxi-

mated below where δzk1:T
(z1:T ) is the Dirac measure:

K∑
k=1

w̄kT δzk1:T
(z1:T ) where w̄kT = wkT /

K∑
j=1

wjT . (1.41)

Intuitively, it seems inefficient to re-sample particles at iteration t−1 without looking at

incoming observation xt. The Auxiliary Particle Filter (Apf) [99] aims to guide the proposal

into promising regions of state space by sampling an auxiliary variable that weights each

particle in terms of compatibility with the current observation. This is accomplished by

weighting p̂(xt|zt−1) as an approximation to p(xt|zt−1) =
∫
g(xt|zt)f(zt|zt−1)dzt. The use

12
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of the exact p(xt|zt−1) is referred to as a fully adapted Apf. Other approximations and

choices of the importance function qφ define many cases of particle algorithms including:

• The Bootstrap particle filter [32], in which the transition function is used to define

the proposal distribution:

qφ(zt|xt, zt−1) = fθ(zt|zt−1) (1.42)

• Sequential Importance Sampling-Resampling [22], in which resampling based on im-

portance samples at time t− 1 is used to remove particles with low weights.

There are abundant connections between Smc and VI. The Smc algorithm is determinis-

tic conditioning on (z1:K1:T , a
1:K
1:T−1) [77, 66]. This implies that the proposal density can be

reparameterized to act as a variational distribution that can be encoded:

QSMC(Z1:K
1:T ,A

1:K
1:T−1) :=

(
K∏
k=1

q1,φ(zk1)

)
×

T∏
t=2

K∏
k=1

qt,φ(zkt |z
akt−1

1:t−1) ·Categorical(akt−1|w̄1:K
t−1).

The idea of variational and autoencoding Smc methods [77, 66, 90] is to simultaneously

train proposal and target distributions where Smc is used to construct the lower bound

to the likelihood via Jensen’s inequality. Smc is used to approximate the expectation in

Eq. (1.8) which is used to define an objective for learning. An unbiased estimate for the

marginal likelihood and the corresponding variational objective are defined below:

ẐSMC :=

T∏
t=1

[ 1

K

K∑
k=1

wkt

]
, LSMC := E

QSMC

[
log ẐSMC

]
. (1.43)

Smcs resampling step introduces challenges for standard Aevb-style reparameterization

due to the Categorical distribution. This results in gradient estimates which suffer from

high variance. One solution is to drop the discrete terms from the gradient estimates,

introducing bias to mitigate high variance of the gradient estimator. The trade-off between

13
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bias and variance of the Elbo gradients is explored both theoretically and empirically in

subsequent sections of this work.

1.2.7.2 Particle Smoothing with Backward Simulation

Forward Filtering Backward Simulation (Ffbsi) [31] is an approach to approximate the

smoothing posterior which admits the following factorization

p(z1:T |x1:T ) = p(zT |x1:T )
T−1∏
t=1

p(zt|zt+1:T ,x1:T ) , (1.44)

where, by Markovian assumptions, the conditional backward kernel can be written as:

p(zt|zt+1,x1:T ) = p(zt|zt+1,x1:t) (1.45)

=
p(zt|x1:t)f(zt+1|zt)

p(zt+1|xt)
(1.46)

∝ p(zt|x1:t)f(zt+1|zt). (1.47)

Ffbsi begins by performing filtering Smc to obtain {z1:K1:T , w
1:K
1:T } which provides a particu-

late approximation to the backward kernel:

p(zt|zt+1,x1:T ) ≈
K∑
i=1

wkt|t+1δzit(zt), (1.48)

where wit|t+1 =
witf(zt+1|zit)

K∑
j=1

wjt f(zt+1|zjt )
. (1.49)

Backward simulation generates states in the reverse-time direction conditioning on future

states by choosing z̃t = zit with probability wit|T . This corresponds to a discrete resam-

pling step in the backward pass. As a result the backward kernel is approximated from

particles that are drawn from the proposal q(zt|zt−1) in the forward pass. The Ffbsi can

only generate trajectories suppported by the forward filtering particles, thus limiting the

expressiveness of a variational distribution that might be defined using the algorithm.
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1.2.8 Markov Chain Monte Carlo

Markov-Chain Monte Carlo (Mcmc) describes an alternative family of approximate infer-

ence techniques for indirectly sampling from a target distribution Zn ∼ π(Z) ∝ h(Z) where

the normalization constant may be unknown. Mcmc constructs a Markov Chain {Zn}∞n=0

whose stationary distribution is π(Z). This is done by drawing a candidate state from a

proposal Z′ ∼ q(Z|Zn−1). The candidate state is then accepted, in which case Zn = Z′

or rejected, in which case Zn = Zn−1. The probability of accepting a new state Z′ given

current state Z is given by

α(Z,Z′) = min

(
1,
p(Z)q(Z|Z′)
p(Z)q(Z′|Z)

)
, (1.50)

which ensures that the chain has detailed balance with respect to π

π(Z′)KMH(Z′,Z) = π(Z)KMH(Z,Z′) , (1.51)

for the Metropolis-Hastings kernel KMH . The transition kernel is defined below

KMH(Zn+1|Zn) = q(Zn+1|Zn)α(Zn,Zn+1) + δZn(Zn+1)r(Zn) (1.52)

where r(Zn) is the term corresponding to the rejection of the proposed move,

r(Zn) =

∫
X
q(Z′|Zn)

(
1− α(Zn,Z

′)
)
dZ′. (1.53)

We summarize the Metropolis-Hastings Mcmc algorithm below.

1. Start with initial state Z0 for n = 0.

2. Generate state Z′ ∼ q(Z|Zn−1) and sample U ∼ Uniform(0, 1)

3. Check if U ≤ α(Z,Z′):
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(a) If U ≤ α(Z,Z′), set Zn+1 = Z′

(b) Else if U > α(Z,Z′), set Zn+1 = Zn.

4. Set n = n+ 1 and return to step 2.

Intuitively, for any starting state, the n-th run of K (denoted Kn) has a chance of π(Z)

being close to Z′ if n is large. This is formalized in the following Theorem.

Theorem 1. (Fundamental Theorem of Markov Chains) Let X be a finite set and let

K(Z,Z′) be a Markov Chain indexed by X . If there exists an n0 such that Kn(Z,Z′) ≥ n0

for all n > n0, then K has unique stationary distribution π, and as n→∞,

Kn(Z,Z′)→ π(Z′) for each (Z,Z′) ∈ X

Mcmc methods must be run for an infinite amount of time in order to guarantee con-

vergence of Kn → π. In practice, it is common to discard initial runs up until a burn-in

time. The rate of convergence of Kn(Z,Z′)→ π(Z′) can be studied via the total variation

distance between two probabilities,

‖Kn
x − π‖TV :=

1

2

∑
Z′

‖Kn(Z,Z′)− π(Z′)‖ ≡ max
A∈X
|Kn(X,A)− π(A)| (1.54)

where, given K,n, x and ε > 0, we seek to find n such that ‖Kn
x − π‖TV < ε. The answer

to this question is highly domain specific and has been studied in certain special cases, for

a review see [107, 111, 17]. While Mcmc is typically used for inference, it can also be used

for learning by sampling by generating parameters θ from the Markov chain.

1.2.8.1 Particle MCMC

It is often the case that a likelihood term in the Mcmc acceptance ratio is difficult to

evaluate. For example, when using Mcmc to sample from Eq. (1.1), the likelihood requires
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marginalizing Eq. (1.4). The idea of Particle Mcmc algorithms (Pmcmc) is to use Smc

as an unbiased estimate of the marginal likelihood as specified in Eq. (1.43) to define a

proposal for Mcmc [1]. We summarise Particle Marginal Metropolis Hastings below.

1. Propose a new set of parameters θ′ ∼ q(θ′|θ)

2. Compute approximation of marginal likelihood using Smc:

Z ′SMC =
T∏
t=1

1

K

K∑
k=1

wkt (1.55)

3. Form the acceptance ratio:

α =
p(θ′)

p(θ)
·
Z ′SMC

Zj−1SMC

· q(θ|θ
′)

q(θ′|θ)
(1.56)

4. Sample U ∼ Uniform(0, 1) and check if U ≤ α:

(a) If accepted, set (Zj , θj)← (Z ′, θ′).

(b) If rejected, set (Zj , θj)← (Zj−1, θj−1).

It is possible to show that Particle Marginal Metropolis Hastings (Pmmh) is equivalent to

a standard Metropolis-Hastings algorithm on an extended space [1].
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1.3 Thesis Outline and Summary of Contributions

The main contributions of this work are in presenting new techniques for approximate

inference and learning in Bayesian latent variable models. Each of these techniques are

motivated by real problems within computational biology and applied to provide insights

into the underlying structure of complex data.

• Chapter 2: Autoencoding Topographic Factors

Topographic factor methods separate a set of overlapping singals into spatially local-

ized source functions without knowledge of the original signals or the mixing process.

These methods require underlying structure of the generative model to be held fixed

implying parameters that scale linearly with dataset size. We propose Auto-Encoding

Topographic Factors (Aetf), an amortized variational inference method and struc-

tured approximate posterior that does not require sources to be held constant across

locations on the lattice. Model parameters scale independently of dataset size making

it possible to perform inference on temporal sequences of large 3D image matrices.

Aetf is evaluated on both simulations and on deep generative models of functional

magnetic resonance imaging data. Aetf significantly improves upon existing Topo-

graphic factor models in computational efficiency and in reconstruction error.

This work, which was published as [82] was done jointly with Andrew Stirn, Gabriel

Marks and Itsik Pe’er. An implementation can be found online at https://github.

com/amoretti86/AETF.

• Chapter 3: Nonlinear Evolution from Spatially Dependent Dynamics

State space models play a central role in the analysis of high frequency time series data

generated from experimental neuroscience techniques. A large collection of data from
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the Allen Brain Atlas involves voltage recordings from single cells that are thought

to be modeled by a set of nonlinear differential equations. The task of inferring

latent structure and learning the stochastic dynamics of these systems is an open

problem in statistical neuroscience motivating the development of novel techniques

in approximate inference. We develop Variational Inference for Nonlinear Dynamics

(Vind), a statistical model and variational inference technique that is able to recover

nonlinear, smooth hidden dynamics from sequential data. Vind builds upon fLDS by

proposing a generative model with nonlinear evolution in the latent space, as well as

an approximate posterior with spatially dependent locally linear dynamics. Efficient

inference is performed via an algorithm that leverages the fixed-point iteration method

to speed up convergence. We apply Vind to single cell voltage data with state-of-

the-art results in reconstruction error and explore the geometry of nonlinear spiking

dynamics. We quantify the performance of the latent dynamics Vind by predicting

future neural activity, substantially outperforming current methods.

Part of the work described in this chapter is published as part of a larger joint work [38]

which was done jointly with Daniel Hernandez, Ziqiang Wei, Shreya Saxena, John

Cunningham and Liam Paninski. A Python/Tensorflow implementation of our algo-

rithms can be found online at https://github.com/dhernandd/vind.

• Chapter 4: Particle Smoothing Variational Objectives

Sequential Monte Carlo (Smc) and Variational Inference (VI) are two families of ap-

proximate inference algorithms for Bayesian latent variable models. A body of recent

work uses Smc to construct a filtered estimate of the log marginal likelihood which

is used to specify a variational objective by forming a lower bound. We present a
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novel backward simulation technique and a variational objective constructed from a

smoothed approximate posterior. Our method sub-samples auxiliary random variables

to enhance the support of the proposal and increase particle diversity. Recent liter-

ature argues that increasing the number of samples K to obtain tighter variational

bounds may hurt the proposal learning, due to a signal-to-noise ratio (Snr) of gradi-

ent estimators decreasing at the rate O(
√

1/K). As a second contribution, we develop

theoretical and empirical analysis of the Snr in filtering Smc, which motivates our

choice of biased gradient estimators. We prove that introducing bias by dropping

Categorical terms from the gradient estimate or using Gumbel-Softmax mitigates

the adverse effect on the Snr. We demonstrate our approach on three benchmark la-

tent nonlinear dynamical systems tasks consistently outperforming filtered objectives

when given fewer Monte Carlo samples.

This work, which was published as [83, 85, 86] was done jointly with Zizhao Wang,

Luhuan Wu, Iddo Drori and Itsik Pe’er. An implementation can be found online at

https://github.com/amoretti86/PSVO.

• Chapter 5: Variational Combinatorial Sequential Monte Carlo

Bayesian phylogenetic inference is often conducted via local or sequential search algo-

rithms such as random-walk Markov chain Monte Carlo or Combinatorial Sequential

Monte Carlo. These methods sample tree topologies and branch lengths to compute

the marginal likelihood, however when leveraged to perform optimization or evo-

lutionary parameter learning, Mcmc requires long runs with inefficient state space

exploration. Here we introduce Variational Combinatorial Sequential Monte Carlo

(Vcsmc), a novel Variational Inference method that simultaneously performs both
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parameter inference and model learning. Vcsmc uses sequential search to construct

a variational objective defined on the composite space of phylogenetic trees. We show

that Vcsmc is computationally efficient and explores higher probability spaces when

compared with state-of-the-art Hamiltonian Monte Carlo methods.

This work, which was published as [84] was done jointly with Liyi Zhang and Itsik

Pe’er. An implementation can be found online at https://github.com/amoretti86/

phylo.

• Chapter 6: Summary and Future Work

We summarize the contributions of this thesis and discuss opportunity for extensions,

open questions and future work.
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Chapter 2

Autoencoding Topographic Factors

Topographic factor models separate a set of overlapping singals into spatially localized

source functions without knowledge of the original signals or the mixing process. These

methods require underlying structure of the generative model to be held fixed implying

parameters that scale linearly with dataset size. We propose Auto-Encoding Topographic

Factors (Aetf), an amortized variational inference method and structured approximate

posterior that does not require sources to be held constant across locations on the lattice.

Model parameters scale independently of dataset size making it possible to perform inference

on temporal sequences of large 3D image matrices. Aetf is evaluated on both simulations

and on deep generative models of functional magnetic resonance imaging data. Aetf

consistently outperforms existing Topographic factor models in reconstruction error.

This work, which is published as [82] was done jointly with Andrew Stirn, Gabriel

Marks and Itsik Pe’er. An implementation can be found online at https://github.com/

amoretti86/AETF.
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CHAPTER 2. AUTOENCODING TOPOGRAPHIC FACTORS

2.1 Introduction and Motivation

The analysis of biomedical images has accelerated in recent years due to domain specific

methodologies developed for multiple application areas. Calcium imaging in neurons [100],

transcriptome profiling from single cells [115] and functional imaging of various biomark-

ers [29, 79] are exciting examples. Latent variable models are the predominant method

for visualizing and extracting structure in spatial data. This data is characterized by

a location vector xi ∈ Ω ⊆ Rd parameterizing each observation y(xi). Given a tensor

Y ≡ {y(x1), · · · ,y(xm)}Nn=1 of N realizations, each a sequence of m correlated random

variables Y (x1), · · · , Y (xm), a fundamental challenge is to identify a subset of physical lo-

cations that define areas of interest. To this end, lattice based models formalize an encoding

of a latent probability distribution over Y (x1), · · · , Y (xm) to quantify statistical dependen-

cies based on distance. This representation is often used for Gaussian process regression

or Kriging methods to predict covariance structure between hidden variables and observed

features across physical location in an ensemble [115]. For example, extracting relevant

voxels from a collection of functional images to discover a latent hemodynamic response

enables comparing baseline vs pathological populations [121].

Techniques such as robust principal component analysis [12], independent components

analysis and dictionary learning are commonly applied to blind source separation problems;

however they require an inherently linear demixing or deconvolution and may fail if there

is no linear mixture that leads to independent outputs [88]. Notably these methods do not

learn a distribution on the lattice that can be used to quantify uncertainty or to generate

new data. Topographic factor models [30, 29, 79] are a family of Bayesian variational

techniques for images that require underlying structure on the set of random variables to
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Figure 2.1: Generative graphical model for Tfa (left); matrix factorization (right)

be held constant to produce a matrix factorization with spatially interpretable sources.

Here we develop Auto-Encoding Topographic Factors (Aetf), a novel Bayesian algo-

rithm to infer spatial dependencies by decomposing observations on a lattice into a weighted

set of low rank sources. We are particularly interested in a solution that generalizes to un-

seen data and that is robust to non-collocated regions of interest. The key insight of Aetf

is to leverage recent advances in variational inference [29, 103] and Stochastic Gradient Vari-

ational Bayes [57, 105] to learn a latent probability model that preserves group variability

in spatial structure. Our contributions are to combine two paradigms where convolutional

neural networks define the loading matrix and the factor matrix itself maps data to source

functions that transform across observations. This is achieved without hard coding hyper

parameters that control an a-priori generative model. In doing so, we remove the propen-

sity on initialization of domain specific priors. Experiments on two simulated datasets and

on functional imaging data show that our model returns a higher proportion of variance

explained than existing Topographic factor models.
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2.2 TFA and Standard Lattice Modeling

Following the convention of factor analysis, we assume that our data Y ∈ RN×V can be

decomposed into a set of unobserved weights and latent factors. We use N to denote the

number of observations (images), K the number of sources and V the number of lattice

positions (voxels). We will be discussing lattices in both 2D as well as 3D for our analysis.

Each latent source is defined using a function that assigns a value to each point on the

lattice (in voxel space) based on its location. For example, using the Mvn:

K(xi|µ,Σ) = exp
{
− 1

2
(xi − µ)TΣ−1(xi − µ)

}
(2.1)

We posit each observation yn ∈ R1×V has a low rank approximation that is a product of

factor loadings wn ∈ R1×K and a factor matrix F ∈ RK×V . The generative distribution of

our model factorizes using a Gaussian as follows:

P (Y) =

N∏
n=1

P (yn) (2.2)

P (yn) = N (yn|wnF, σ
2
y) (2.3)

where σ2y denotes the location or voxel noise. In Manning [80], radial basis source functions

fk ∈ RV are used to generate basis images and to define F, the source image matrix. In

general rows of F are computed by evaluating each of the K source functions at all V lattice

points of the voxel space.

While it is common to focus on Σ = σI or the Mvn case in which Σ is full, a larger class

of kernels are supported through the Matérn family of covariance functions. Here Kν(·) is

the modified Bessel function of the second-kind with order parameter ν, where ρ defines

correlation length and bνc describes the smoothness of the process. Γ(·) is the gamma
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function.

K(xi|µ, ν) =
1

Γ(ν)2ν−1

(√2ν

ρ
· ‖xi − µ‖

)ν
×Kν

(√2ν

ρ
‖xi − µ‖

)
(2.4)

The above simplifies for half-integer values of ν and reduces to the rational quadratic func-

tion with ν, ρ > 0 to express a scale mixture of squared exponentials:

K(xi|µ, ν, ρ) =

(
1 +
‖xi − µ‖2

2νρ2

)−ν
(2.5)

Samples from the Gaussian process are bν− 1c times differentiable producing the Rbf case

when ν → ∞. As with the above, the choice of distance metric can produce isotropy or

anisotropy.

We are interested in the posterior distribution which involves integrating over the set of

possible values for the latent variables:

P (W,F|Y) =
P (Y,W,F)

P (Y)
, (2.6)

where the normalization constant requires marginalizing

P (Y) =

∫ ∫
P (Y,W,F)dWdF (2.7)

The denominator is in general intractable to compute. To perform variational inference, a

mean field distribution is defined in which each variable is independent:

Q(W,M,Λ) =
N∏
n=1

K∏
k=1

N (wn,k|mwn,k ,Λwn,k)N (cn,k|mcn,k ,Λcn,k)N (sn,k|msn,k ,Λsn,k)

(2.8)

We introduce notation for the set φk ∈ φ to denote hyperparameters where c, s, w denote

centers, width scales and weights respectively:

φk = {mc,k,Λc,k,ms,k,Λs,k,mw,k,Λw,k} (2.9)
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These allow drawing corresponding latent random variables for centers, width scales and

weights for the kth latent source:

Zk = {zc,k, zs,k, zw,k} (2.10)

where zξ,k ∼ N (mξ,k,Λ
2
ξ,k) for ξ ∈ {c, s, w}. Note that in the isotropic case φ ∈ RK(D+5)

and Z ∈ RK(D+2) where D is the dimensionality of the lattice.

Across all ξ, k one can define mφ = (mξ,k)∀ξ,k and Σφ = ΛφΛ
T
φ for Λφ = (Λξ,k)∀ξ,k,

thus the parameters mφ,Σφ denote the means and covariances which are used to draw Z.

Z then defines F, by fk being a Gaussian function with parameters zc,k and zs,k.

2.3 Auto-Encoding Topographic Factors

The idea of Aetf is to replace the fixed latent sources by defining a function that pa-

rameterizes Z using the output of a probabilistic encoder. The encoder creates an implicit

mapping from each yn ∈ Y across the set of observations to a unique factor representation

while requiring that φ encodes the group variability in spatial structure.

Formally, the variational inference framework states the Elbo for the marginal log

likelihood L(Y) ≤ log p(Y) with respect to the variational approximation qφ(Z|Y):

L(Y) = Eq(z|y)[log pθ(Y,Z)]− Eq(z|y)[log qφ(Z|Y)]

= Eq(z|y)[log pθ(Y|Z)]−DKL(qφ(Z|Y)||p(Z))]

(2.11)

We wish to compute the expectation in (2.11) numerically and differentiate with respect to

φ.

We now rewrite Equation (2.3) as

P (yn) = N (yn|wn(yn)F(yn), σ2y) (2.12)
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and decompose F as

F(yn) =


f1
(
yn
)

...

fK
(
yn
)
 , (2.13)

where fk
(
yn
)

is the lattice values of a Gaussian function parameterized by zc,k
(
yn
)

and

zs,k
(
yn
)
. zξ,k

(
yn
)

itself is a Gaussian latent variable zξ,k
(
yn
)
∼ N

(
mk,ξ,φ(yn),Λk,ξ,φ(yn)

)
whose parameters are the encoder output.

Employing the “reparameterization trick” [57, 105],samples are drawn from ε ∼ N (0, I)

and transformed:

Zc = µc + ε� σc (2.14)

Zs = µs + ε� σs (2.15)

One is now free to choose the weights Zw ∈ φ as variational parameters of the recognition

model or parameters with the generative model: Zw ∈ θ. Including the weights in φ gives:

Zw = µw + ε� σw (2.16)

When Zw 6∈ φ, we learn the weights as point estimates using the update rule:

Wi+1 ←Wi �YF(yn)T �WiF(yn)F(yn)T (2.17)

Note that the problem is hard due to the non-convexity in the source image matrix. With

the parameters φ of the recognition model in hand, we have the full model specification.

In contrast to standard autoencoder formalization, where the generative model involves a

decoder whose parameters need to be inferred, Aetf specifies the generative model. We

thus compute the approximation ŷn = W(yn) · F(yn).

Standard autoencoders learn the respective encoder/decoder parameters θ, φ by max-

imizing the conditional log likelihood Eq(z|yi)[log pθ(yi|z)] by differentiating through g ←
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∇θ,φLM (θ, φ; YM , ε) [57, 105]. Aetf only needs to learn the encoder parameters φ, which

is achieved by analogous maximization of the conditional log likelihood Eq(z|yi)[log p(yi|z)],

differentiating through g ← ∇φLM (φ; YM , ε).

2.4 Implementation Details

The encoder takes as input an observation and outputs the parameters of the distributions

over latent variables. Two recognition models are implemented, one with isotropic and

another with full covariance source functions. The isotropic decoder receives as input the

sampled latent space vector Z ∈ Rk(d+2) including Zc, Zs, and Zw. Note that in the second

case of a full covariance matrix ZsΣk = ΛΛT , we learn parameters ZsΣ ∈ Rkd(d+1)/2. The

spatial factorization constraints of our probability model are imposed within the decoder.

Thus unlike traditional variational autoencoders where both the encoder and decoder are

neural networks, Aetf uses a neural network only for the encoder. The decoder uses the

sampled latent space to reconstitute the input according to our imposed factorization and

therefore is not parameterized by a neural network.

The encoder network can be comprised of any number of convolutional layers followed

by any number of fully-connected layers before the output layer. The convolutional layer

executes a L(1)⊗· · ·⊗L(D) convolution along the number of lattice dimensions D (where L

is specified for each layer) with k (the number of sources) output channels, a bias addition, a

tanh non-linearity, and max pooling with a 3(1)⊗· · ·⊗3(D) kernel and a stride of 1. Our fully-

connected layers begin operating on the flattened output of the last convolutional layer or the

flattened image if a convolution layer is not employed. Their output dimensions are specified

ratiometrically according their output-to-input dimensions. Like most autoencoders, our

encoder seeks to compress information. Thus, we only consider output-to-input ratios for
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our fully-connected layers that are all less than or equal to 1. These fully-connected layers

invoke an affine transformation followed by a tanh non-linearity.

Our final output layer varies according to the latent space parameter class. Those

parameters that are means (µc, µs, and µe) have no restrictions on their values except the

last one, which must be positive. We handle this exception in the decoder. Therefore,

we are free to use a vanilla affine transform as the output layers for these parameters.

Conversely, those parameters that are standard deviations (σc, σs, and σw) must be greater

than or equal to zero. Thus for those standard deviations that parameterize our latent space,

we employ an affine transformation followed by a custom non-linearity we call PostReAct

(Positive Real Activation in equation 2.18). This non-linearity is a piece-wise combination

of a shifted ReLU and a decaying exponential. In this manner, we benefit from ReLU’s

positive regime that avoids vanishing gradients that are common with double-saturating

activations while avoiding the potential of neuron death associated with ReLU’s negative

regime.

Ψ(λ) =


exp(λ) , λ < 0

λ+ 1 , λ ≥ 0

(2.18)

Our decoder has two responsibilities. First, it constructs the spatial factors using the

Zc and Zs latent space. However and as aforementioned, Zs arrives at the encoder on the

incorrect support. The Rbf function assumes this number is positive. We convert Zs to the

correct support in two ways. First, we pass it through a PostReAct non-linearity. Second,

we square it in our isotropic implementation. Equation (2.19) captures this process that

we use for each of our basis image calculations. Here, fk(v) represents the value of the

kth Rbf source at voxel position v. Unlike traditional Rbf functions, we add a 1 to the

denominator to clamp the source’s width in a continuously differentiable fashion. Prior
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to this modification, sampled Zs that resulted in small source widths produced exploding

gradients for our optimizer. Once, the decoder constructs the k basis images it recombines

them into a single image via a weighted summation that uses Zw.

fk(v) = exp

(
−
||Zc,k − v||22

2 ·Ψ(Zs,k)2 + 1

)
(2.19)

We present two encoder network architectures. Our first, uses only a 7×7 convolutional layer

followed by the output layer. Our second uses–in order of appearance–a 7×7 convolutional

layer, a 5× 5 convolutional layer, a 1 : 1 output-to-input fully-connected layer, and a 4 : 3

output-to-input fully-connected layer followed by the output layer. We then permute these

two architectures for differing numbers of latent sources. We note that k modifies the size

of the network as it determines the number of output channels for each convolutional layer.

Our implementation supports imposing a non-negative factorization in addition to one in

which the weights are permitted to take negative values.

We modify the loss from equation (2.11). Specifically, we introduce a β term in front of

the regularizer as suggested in [69]. Furthermore, they suggest β values less than 1 improve

quality. The utilized per-sample loss function for Aetf appears in equation (2.20). In our

experiments we set β to zero such that our loss reduces to just the reconstruction error.

Here, n represents the nth sample and V is the cardinality of our voxel space such that

subscript n, i corresponds to the ith voxel of the nth sample.

L(Yn) =
1

V

V∑
i=1

[
(Ŷn,i −Yn,i)

2
]

+ βDKL(qφ(Zi|Yi) || p(Zi)) (2.20)

2.5 Experiments

Three results are presented, each of which illustrates a strength of the Aetf model. We dis-

cuss i) fitting in-model synthetic data, ii) fitting non-collocated source functions to smooth,
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unmix and localize spatial dependencies in random fields, and iii) decomposing thousands

of functional images into latent source functions and evaluating our ability to generalize on

unseen data.
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Figure 2.2: Description of the first simulation: (a) Schematic illustrating two source func-

tions located near the vertices of the lattice. Each source transforms across observations

drifting between one of two states (denoted with colors red and black); (b) variance ex-

plained for different models using two components. Aetf outperforms Tfa on the train

set; (c) Tfa, Pca and Ica underperform on the test set.

2.5.1 In-Model Data

We generate a synthetic dataset using k = 2 source functions over 1000 observations on a

20× 20×20 lattice. In our experiments, Topographic Factor Analysis (Tfa) was unable to

run on larger lattice dimensions in R3. Unlike the generative process specified in Tfa [79],

the position of each source function may shift across observations and is not restricted to

be collocated on the lattice. This design choice is relevant given that the blood oxygen level

dependency (BOLD) response is not static and often transforms dynamically as a time

series. Figure (2.2a) provides a schematic illustrating the position of two sources located

near the vertices of the cube. Each source function is permitted to drift between one of

two possible states which are represented using the red and black colors. Figures (2.2b)

and (2.2c) provide the variance explained on the training and testing sets respectively using

k = 2 components. Tfa, Ica and Pca underperform relative to Dictionary Learning (DL)

and Aetf. Unlike DL, Aetf is able to parameterize the transforming source functions

while maintaining nearly all of the variance explained.
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Figure 2.3: Summary of the Aetf fit to the Grf simulation: (a) the cross section of a single

observation and (b) the cross section of the Aetf topographic reconstruction. The surface

is shifted above the plane to illustrate the smoothness of the field along with contours

presenting the location of the inferred spatial factors; (c) variance explained across models.

Aetf provides the highest R2.

2.5.2 Gaussian Random Fields

Gaussian random fields (Grfs) are often used in image analysis to model stochastic pro-

cesses on a lattice and to introduce noise. We illustrate how Auto-Encoding Topographic

Factors recovers autocorrelation structure by filtering a sequence of textscGrfs simulated

using spectral methods [2]. The spectral density of a fixed covariance kernel is multiplied

with a Fourier transformed white noise field before applying an inverse transform. This

process introduces a non-smooth signal in which spatial autocorrelations are not explicitly

colocated across observations.

Figure (2.3a) provides a representative sample along with the inferred reconstruction in

Figure (2.3b). We fit 10 source functions to 1000 observations on a cubic lattice. As a visual-

ization, the planar cross-section is provided in Figure (2.3). The surface is shifted above the

image to illustrate the smoothness of the field along with contours presenting the location of

the inferred spatial factors. Figure (2.3c) provides the variance explained across models and

fits. Auto-Encoding Topographic Factors outperforms Topographic Factor Analysis both
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without and with initialization (denoted Tfa and TfaI), Ica, Dictionary Learning (DL),

and Pca; the canonical method for Gaussian data. It is clear that Topographic Factor

Analysis underperforms when the correlation structure is not held fixed.

2.5.2.1 Image Noise

Spatial factor models learn a smooth statistical map in the presence of noise in which the

desired signal extends over several lattice points. A good fit should be robust to variation

between observations while preserving correlation structure within the data. To achieve

this, Auto Encoding Topographic Factors learns a unique decomposition by simultaneously

factorizing the observation matrix, inferring the position of spatial dependencies and intro-

ducing flexibility for the location of factors across the lattice. This process is analogous

to blurring residual differences in location between comparable areas of activation. When

two observations are similar, this is captured in their latent spatial representations. For

heterogenous data, Aetf parameterizes spatial dynamics.

2.5.2.2 Initializing TFA and HTFA

Heuristics are often suggested to initialize hyper-parameters for Topographic Factor Anal-

ysis so that local optima in the source image matrix do not serve as an impediment for

non-convex optimization. There exist multiple values of parameters for the location and

width of the sources that are equally likely to have generated an observation yn, due to the

rotational invariance of F. One proposed approach is to place hyperparameters a-priori in

locations corresponding to high and low activation. Hotspot initialization [79] refers to an

iterative process in which the mean image is computed, the mean activation is subtracted

and the absolute value is taken of all of the remaining activations. The result is an energy
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Figure 2.4: Summary of the Sagittal Cross-Section NYU Data: (a) variance explained for

various models as a function of number of sources on the training data; (b) two source

weights plotted across time frames illustrating strong subject-specific similarities. Dashed

vertical lines denote unique subjects; (c) variance explained as a function of number of

sources for test data.

landscape in which peaks correspond to extremum. These peaks are iteratively flattened as

source centers are placed on these extremum. Values for msn,k the mean of the distribution

for source k′s width scale are then solved for via Newton’s method. Once pre-initialized,

the source centers and width scales frequently remain fixed. In our experiments, sources

for Tfa initialized using both hotspot initialization and k-means outperformed experiments

with no initialization. Auto-Encoding Topographic Factors outperformed both methods

without being contingent upon any such initialization to perform inference successfully.

2.5.3 NYU Dataset

We consider the problem of modeling functional images using the NYU Test-Retest dataset [113].

The data was obtained using a Siemens Allegra 3.0 Tesla scanner. The data consists of

twenty six participants each with 3 resting-state scans of 197 continuous EPI functional

volumes. Each scan consists of 39 slices of a matrix 64 × 64 with an acquisition voxel size

of 3×3×3 mm. Scans 2 and 3 were conducted 45 minutes apart roughly 5-16 months after

Scan 1.
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Slice timing correction, spatial normalization, smoothing and noise stripping were per-

formed using the Nipype interface to the FSL software library. The sequential dependency

of the time series was not accommodated and each time frame was treated independently.

An Aetf model was trained using all three sessions reserving 20% for the testing set as a

performance criteria to evaluate our fit. To test the significance of the lattice dimensions,

models were fit to both sagittal cross-section data and full cubic volumes.

2.5.3.1 Sagittal Cross-Sections in 2D

Sagittal cross-section data was fit to the 13 subjects using the first session. Figure (2.4a)

provides the variance explained for Aetf, Pca, Ica and DL as a function of number of

sources on training data. Tfa and Htfa implementations are not supported on the 2D

lattice. The R2 approaches 1 the number of sources K increases. Figure (2.4b) plots the

weight values for two randomly selected source functions across a subset of time frames.

Dashed vertical lines distinguish subjects. Strong per-subject similarities are visible. Figure

(2.4c) provides the variance explained by Aetf as K increases on the test data. Using

k = 50 source functions 99% of variance is explained. We find that K = 25 anisotropic

sources are sufficient for high quality reconstruction. Interestingly, Aetf is able to converge

without any preprocessing to preserve 89% of total variance on the raw NYU data. On the

preprocessed dataset 25 source functions preserve 98% of total variance.

2.5.3.2 Functional Imaging with 3D Volumes

The three-session NYU data on the cubic lattice was modeled using Aetf, Tfa and Htfa.

The 64× 64× 40 lattice was divided into eight 20× 20× 20 cubic volumes. Tfa and Htfa

were unable to handle larger lattice dimensions on the full set of 7683 frames. We fit k = 10
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Figure 2.5: Results for the cubic volume NYU data: (a) a cross section of a frame and the

surface highlighting source intensities; R2 values for training (b) and testing (c) for various

models averaged across eight cubic volumes using k = 10 source functions. Aetf consis-

tently outperforms both Topographic Factor Analysis (Tfa) and Hierarchical Topographic

Factor Analysis (Htfa).

source functions to each cubic volume and average the cost across the total area. For Tfa,

one model was fit across subjects whereas 39 subjects were fit using Htfa. Figure (2.5a)

displays a new frame evaluated using the trained model to illustrate the effect of applying

the trained model on unseen data. The surface is plotted above the image to highlight

the areas of activation above the corresponding factors on the mesh. Figure (2.5a) and

(2.5b) provide the train and test R2 respectively. It is clear that AETF outperforms both

methods. Unlike Htfa, the hierarchical covariance structure is inferred from the data and

not specified a-priori.

2.6 Discussion

In the context of functional imaging, a spatial model should be able to extract both global

and individual characteristics. In examining how the model parameters for centers, widths

and weights varied across testing data, we find source centers are not only similar at the

per-subject micro-scale but also marginally similar at the global macro-scale. However, we
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see much more global variability with weight values. Compared to a similar factorization

in [80] that constricts learning to globally shared sources and individual per-frame weights,

our model naturally learns a similar representation. Namely, through a shared encoder

mapping, source variability is less pronounced than weight variability.

Auto-Encoding Topographic Factors offers several advantages over unstructured blind

source separation techniques. Tfa, Htfa, Dictionary Learning, Pca and Ica explicitly

learn factor weights (loadings) for each observation. The number of trainable parameters

is therefore linear with respect to N , the number of observations. Aetf’s parameters φ

are constant with respect to N . This paradigm reduces memory footprint for large N and

allows Aetf to handle unseen data. By design, the factor images learned by Aetf possess

lower complexity than the observed images.

Aetf can accommodate any priors but is not contingent upon an a-priori choice of

generative model hyper-parameters to converge. This is mitigated by choosing uniform

priors for the generative model. In this way, Aetf is not sensitive to preinitialization

issues that plague Tfa and Htfa. It is also possible to parameterize the priors of the

generative model using a trainable decoder network. Unlike Tfa and Htfa, source functions

are allowed to transform across individual frames. This is advantageous for time series

modeling. In our experiments, Dictionary Learning sometimes provided a comparable R2.

Aetf however returns a factorization along with spatially parameterized functions. Aetf

was written in TensorFlow. The source code and several visualizations are available online.

2.7 Conclusions

We have presented Auto-Encoding Topographic Factors, a novel variational inference scheme

for lattice-based measurements in which each observation is given a unique spatial decom-
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position. The proposed method is robust to high dimensional data in which sources are

not rigidly colocated, introduces non-linearity, supports a family of kernels and the abil-

ity to enforce a constrained or non-negative matrix factorization. Aetf preserves a large

proportion of variance even when factor positions shift dynamically across observations.

Highlights include the ability to identify autocorrelation structure in a collection of ran-

dom fields and the ability to scale to thousands of 3D functional images with a number of

training parameters independent of dataset size.

The resultsmotivate an explicitly-hierarchical Aetf across individuals, as well as a tem-

porally correlated Aetf. A natural extension is to explore the method of normalizing flows

[104, 56] as an alternative to defining factors by specifying kernels for source functions. We

expect that the approximate posterior would remain simple to compute while each source is

permitted to undergo a sequence of transformations giving rise to complex and expressive

spatial dependencies.
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Chapter 3

Spatially Dependent Locally Linear

Dynamics for Single Cell

Electrophysiology Data

State space models play a central role in the analysis of high frequency time series data

generated from experimental neuroscience techniques. A large collection of data from the

Allen Brain Atlas involves voltage recordings from single cells that are thought to be mod-

eled by a set of nonlinear differential equations. The task of inferring latent structure and

learning the stochastic dynamics of these systems is an open problem in statistical neu-

roscience motivating the development of novel techniques in approximate inference. We

develop Variational Inference for Nonlinear Dynamics (Vind), a statistical model and vari-

ational inference technique that is able to recover nonlinear, smooth hidden dynamics from

sequential data. Vind builds upon fLDS by proposing a generative model with nonlinear

evolution in the latent space, as well as an approximate posterior with spatially dependent

locally linear dynamics. Efficient inference is performed via an algorithm that leverages

the fixed-point iteration method to speed up convergence. We apply Vind to single cell
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voltage data with state-of-the-art results in reconstruction error and explore the geometry

of nonlinear spiking dynamics. We quantify the performance of the latent dynamics Vind

by predicting future neural activity, substantially outperforming current methods.

Part of the work described in this chapter is published as part of a larger joint work [38]

which was done jointly with Daniel Hernandez, Ziqiang Wei, Shreya Saxena, John Cun-

ningham and Liam Paninski. A Python/Tensorflow implementation of our algorithms can

be found online at https://github.com/dhernandd/vind.

3.1 Introduction

Conductance based models of excitable cells are widely used in computational neuroscience

to describe the spiking activity of individual neurons. One attempt to develop a theory

of neural computation is the dynamical systems hypothesis, which conjectures that neu-

ral computation is explained by dynamics, a branch of mathematics that describes how

physical systems change over time [44]. Neuroscientists have long aspired to record from

tens of thousands of neurons simoultaneously. Recently, large scale multineuronal neuronal

recording technologies such as multielectrode arrays and calcium imaging have opened up

avenues for exploration where neural populations as opposed to individual neurons can be

studied as the essential units of computation. A fundamental line of research thus involves

characterizing the representation and transmission of information recorded from ensembles

of neurons. At the other end of the spectrum, there is a collection of high frequency electro-

physiological time series data coming from voltage measurements inside single neurons [49].

Here, it is acknowledged that the dynamics are highly nonlinear and multidimensional, al-

though the experimenter only has access to a one-dimensional (1D) voltage measurement.

The task, given a 1D or partially observable recording, is thus to approximately recover the
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complete latent space paths and dynamics. In each of these situations, the open computa-

tional or statistical challenges are how to design algorithms that perform tractable inference

on intractable state space models where the underlying dynamics are nonlinear.

We develop Variational Inference for Nonlinear Dynamics (Vind), a statistical model

and variational inference technique that is able to recover nonlinear, smooth hidden dy-

namics from sequential data. Vind builds upon fLDS by proposing a generative model

with nonlinear evolution in the latent space, as well as an approximate posterior with spa-

tially dependent locally linear dynamics. Efficient inference is performed via an algorithm

that leverages the fixed-point iteration method to speed up convergence. We apply Vind

to single cell voltage data with state-of-the-art results in reconstruction error and explore

the geometry of nonlinear spiking dynamics. We quantify the performance of the latent

dynamics Vind by predicting future neural activity, substantially outperforming current

methods.

3.2 Background

3.2.1 Structured Generative Models for Smooth Dynamics

A large body of state space models (Ssms) posit a set of time-evolving latent trajectories

zrt ∈ Rm governed by linear dynamics [48, 61, 62, 3, 27]:

z1 ∼ N (µ1,Q1) , (3.1)

zt+1|zt ∼ N (Azt,Q) , (3.2)

where A is an m×m linear dynamics matrix, and the matrices Q1 and Q are the covariances

of the initial states and Gaussian noise. Consider an observation model specified by a

deterministic rate function [f(zt)]i where the ith element of the rate function and Pλ(λ) is
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a noise model with parameter λ; fψ : Rm −→ Rn:

xt|zt ∼ Pλ(λti = [f(zt)i]) . (3.3)

Under this setup, when Pλ is Gaussian with mean parameter λ and linear rate function f ,

the model reduces to the classical Kalman filter. When Pλ is non-Gaussian or f is nonlinear,

conjugacy is broken and inference is intractable.

3.2.2 Linear Dynamical Systems with Nonlinear Observations

The idea of flds [27] is to relax the assumption that fψ(·) is a linear function and to pa-

rameterize fψ(·) using a feed forward neural network. Each observation now has a separate

nonlinear dependence on the latent variable through the function f(zrt)i:

xrti|zrt ∼ Pλ(λrti = [f(zrt)i]) . (3.4)

When the noise model is Poisson or Gaussian the setup is referred to as pflds and gflds

respectively. Model fitting is performed via Aevb with a temporally correlated Gaussian

approximate posterior:

qφ(zr|xr) = N (µφ(xr),Σφ(xr)) (3.5)

∝
T∏
t=1

qφ(zrt|zr(t−1))qφ(zrt|xrt)qφ(zr1) (3.6)

where the mean µr(xr) is an mT × 1 vector and Σφ(xr) is an mT ×mT covariance matrix.

In the above setup,

qφ(zr1) ∼ N (µ̃1, Q̃1), (3.7)

qφ(zrt|zr(t−1)) ∼ N (Ãzr(t−1, Q̃), (3.8)

qφ(zrt|xrt) ∼ N (mψ̃(xrt), cψ̃(xrt)) , (3.9)
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where the matrices Ã, Q̃ and Q̃1 are m ×m trainable parameters with mψ̃(·) : Rn → Rm

and cψ̃(·) : Rm → Rm×m defined as nonlinear functions of the observations. Specifically,

the covariance matrix cψ̃(xrt) =
(
rψ̃(xrt)cψ̃(xrt)

T
)−1

is defined as the product as two

matrix valued functions. All factors in Eq. (3.7), Eq. (3.8) and Eq. (3.9) are Gaussian so

that qφ(zr(1:T )|xr(1:T )) retains Gaussian functional form. Deducing all terms needed for

Eq. (3.3) via normalization yields:

Σφ(xr) =
(
D−1 + C−1φ (xr)

)−1
(3.10)

µφ(xr) =
(
D−1 + C−1φ (xr)

)−1
C−1φ (xr)Mφ(xr) . (3.11)

In the above, D = (I−A)−TQ(I−A)−1 with

Q = IT×T ⊗Q =


Q̃1

Q̃

. . .

Q̃

 , A =


0

Ã 0

. . .

Ã 0

 , (3.12)

Cψ̃(xr) =


cψ̃(xr1)

cψ̃(xr2)

. . .

cψ̃(xrT )

 , Mψ̃(x) =


cψ̃(xr1)

...

cψ̃(xrT )

 ∈ RmT (3.13)

Here Σ is a dense matrix whose inverse Σ−1 is parameterized as block tri-diagonal. Matrix

inversion and sampling is accomplished via Cholesky decomposition. The computation of

the lower-triangular factor r is linear in the length of the time series T [116].

3.3 Nonlinear Latent Dynamics with Nonlinear Observations

An extension of fLds involves a joint density p(X,Z) which factorizes as follows:

p(X,Z) ≡ pφ,θ(X,Z) = cφ,θ ·Hφ(Z)

T∏
t=0

gθ(xt|zt) , (3.14)
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with distribution parameters φ, θ denoted explicitly and unnormalized observation model

gθ. As in fLds, gθ can be either Gaussian, xt|zt ∼ N
(
mθ(zt),Σ

)
, or Poisson, xt|zt ∼

Poisson
(
λθ(zt)

)
with mean mθ(zt) and rate λθ(zt) parameterized as nonlinear functions of

latent state zt represented as neural networks. cφ,θ is a normalization constant, Σ is a zt

independent covariance matrix and Hφ is a Markovian latent evolution term [48, 61, 62, 3,

27]:

Hφ(Z) = h0(z0)

T∏
t=1

hφ(zt|zt−1) , (3.15)

z0 ∼ N
(
a0,Γ0

)
, (3.16)

zt|zt−1 ∼ N
(
aφ(zt−1), Γ

)
. (3.17)

We wish to represent aφ(z) as a nonlinear function parameterized by a neural network with

Γ as a trainable parameter. Combining Eq. (3.14) and the posterior distribution of the

Generative Model (GM) can be factorized as

pφ,θ(Z|X) =
cφ,θ

∏
gθ(xt|zt) ·Hφ(Z)

pφ,θ(X)
. (3.18)

Marginalizing (3.18) to compute the evidence is intractable due to the nonlinearity inHφ(Z).

Variational Inference. VI is a technique for approximating the posterior p(Z|X) when

marginalization of latent variables is not analytically feasible. The idea is to introduce a

tractable distribution q and to form a lower bound to the log-likelihood:

log p(X) ≥ LELBO(X) = E
q
[log p(X,Z)]− E

q
[log q(Z)] . (3.19)

Autoencoding Variational Bayes (Aevb) simultaneously trains q and p. The expectation in

Eq. (3.19) is approximated by averaging Monte Carlo samples from q which are reparame-

terized by evaluating a deterministic function of a φ-independent random variable.
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3.4 Variational Inference for Nonlinear Dynamics

Approximate Posterior. In designing a variational approximation, there exists a trade-

off between tractabiliy and expressiveness of the approximate posterior. An expressive

variational approximation would represent the nonlinear evolution in latent space by in-

cluding the prior term Hφ in Eq. (3.18). Consider a recognition model that shares the

nonlinear evolution term with the generative model:

Qφ,ϕ(Z|X) = κφ,ϕ(X)Gϕ(X,Z)Hφ(Z) , (3.20)

where κφ,ϕ is a normalization constant and where Gϕ factorizes as follows,

Gϕ(X,Z) =
T∏
t=0

gϕ(zt|xt) , zt|xt ∼ N (µϕ(xt), σϕ(xt)) , (3.21)

with µϕ(x) and σϕ(x) defined by nonlinear functions. In this setup however, regardless of

the choice of the encoding function Gϕ, it is not possible to compute the normalization

constant κφ,ϕ in closed form. After integration with respect to zT , the non-Gaussian term

h(zT |zT−1) produces an intractable zT−1-dependent factor, see App. A. Therefore, due to

the Hφ term, (3.20) cannot be used to directly define a variational approximation.

Parent-Child Approximations. The recognition model of Aevb is responsible for two

tasks which we delineate as inference and learning. The inference task is to evaluate the

expectation in Eq. (3.19) by marginalizing with respect to Z1:T . This is accomplished by

sampling latent states Z1:T ∼ qφ,ϕ(Z|X) and evaluating the ratio of p to q. The learning task

is to train the parameters Θ := (θ, φ, ϕ) for qφ,ϕ and pφ,θ by differentiating the variational

objective LELBO. Vind offers a solution to the problem of marginilization when using

the Hφ term to define the recognition model. This effectively allows for an intractable,
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unnormalizedQφ,ϕ, which we refer to as the parent distribution, to be used as the recognition

model for VI. The trick is to use two related approximations for inference and learning.

Consider a Gaussian approximation qφ,ϕ to the parent Qφ,ϕ, which we refer to as the

child distribution. Define qφ,ϕ to be a Laplace approximation to Qφ,ϕ,

qφ,ϕ(Z|X) = N
(
Pφ,ϕ(X),C−1φ,ϕ(X)

)
. (3.22)

By definition, the mean Pφ,ϕ in Eq. (3.22) is the solution to the following equation in Z,

∂

∂Z
logQφ,ϕ(Z|X) = 0 , (3.23)

and the precision is defined by

[Cφ,ϕ(X)]mn =
∂2

∂Zm∂Zn
logQφ,ϕ(Z|X)

∣∣∣∣
Z=Pφ,ϕ(X)

≡
[
sφ,ϕ

(
Pφ,ϕ(X),X

)]
mn

, (3.24)

where Eq. (3.24) defines sφ,ϕ. The samples used to compute Eq. (3.19) can then be taken

with respect to qφ,ϕ in Eq. (3.22). The inference problem becomes tractable since the child

distribution qφ,ϕ is normal, however, by design, the variational parameters in qφ,ϕ to be

optimized are inherited from the parent distribution, Qφ,ϕ and are used within the objective

LELBO. After training, the Hφ term can be replaced back into Qφ,ϕ. This setup defines an

expressive variational family parameterizing nonlinear dynamics aφ(z) in the latent space.

Fixed-point iteration. In general, Eq. (3.22) does not admit a closed form solution.

For any distribution Qφ,ϕ such that logQφ,ϕ includes terms quadratic in Z, it is always

possible to rewrite Eq. (3.23) in the form

Z = rφ,ϕ(Z,X) , (3.25)

where rφ,ϕ is a nonlinear function that depends on the trainable parameters in Q, the

observation sequence X1:T and the choice of the nonlinearities in H. Eq. (3.25) can now
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be solved numerically by applying FPI method. That is, a root for Eq. (3.25) is found by

choosing an initial point P(0) and iterating

P(n) = rφ,ϕ(P(n−1),X) , (3.26)

The FPI convergence can be guaranteed via the Picard-Banach-Cacciopoli theorem by en-

suring that the eigenvalues of the Jacobian of the map in Eq.(3.26) are bounded. For a

discussion, see B.

Spatially Dependent Locally Linear Dynamics. In order to define the recognition

model, functions for the G and H terms in Qφ,ϕ must be specified. The mean µϕ and the

standard deviation σϕ in Eq. (3.21) are parameterized using deep neural networks:

µϕ = NNϕµ(xt) , σϕ = NNϕσ(xt) . (3.27)

The nonlinear dynamics are specified as aφ(z) = Aφ(z)z, where Aφ(z) is a state-space

dependent dZ × dZ matrix. The latent evolution law Hφ is then specified as follows

hϕ(zt+1|zt) = exp

{
−1

2

(
zt+1 −Aϕ(zt)zt

)T
Γ
(
zt+1 −Aϕ(zt)zt

)}
, (3.28)

where Γ is a constant precision matrix, and Aφ(zt) is defined as follows

Aφ(zt) = A + α ·Bφ(zt) . (3.29)

A is initialized to the identity, Bφ(zt) = NNφB (zt), and α is a tunable hyperparameter of

the model. We refer to this choice of H as a Locally Linear Dynamical System (Llds).

When α = 0, both the statistical model and the algorithm of Llds/Vind reduces to

GfLDS/PfLDS, [3, 27]. The parameter α controls the degree of relaxation of the FPI cost

from the quadratic form in the variables Z. This plays an important role in convergence

analysis.
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With terms from Eqs. (3.15) and (3.21), we can now write the log-likelihood of the

parent explicitly

logQφ,ϕ = logCφ,ϕ −
1

2

[
(Z−Mϕ)TΛϕ(Z−Mϕ) + ZTSφ(Z)Z

]
(3.30)

where the parameter Mϕ = {µϕ(x1), . . . ,µϕ(xT )}, Λϕ is a block-diagonal precision matrix,

Λϕ = diag{σ(x1), . . . , σϕ(xT )} , (3.31)

and Sφ(Z) is a state-space-dependent, block-tridiagonal covariance whose dZ × dZ blocks

are given by:

[
Sφ(Z)

]
t,τ

=



ATt ΓAt for τ = t

−ΓAt for τ = t+ 1

−ATt Γ for τ = t− 1

0 otherwise

(3.32)

Here At ≡ Aφ(zt). Writing the block-tridiagonal form explicitly:

=


Aφ(zt)

TΓAφ(zt) −ΓAφ(zt)

−Aφ(zt)
TΓ Aφ(zt)

TΓAφ(zt) −ΓAφ(zt)

. . .

−Aφ(zt)
TΓ Aφ(zt)

TΓAφ(zt)

 .

(3.33)

We can now derive the FPI equation for the posterior mean, Eq. (3.25), by differentiating

Eq. (3.23),

rφ,ϕ(Z,X) =
[
Λϕ + Sφ(Z)

]−1 ·Y(Z) (3.34)

Y(Z) = ΛϕMϕ −
1

2
ZT

∂Sφ(Z)

∂Z
Z . (3.35)

In the above, the normalization constant Cφ,ϕ is not required for the FPI step nor for the

gradient descent step, thus intractability is evaded. As in fLDS, the time complexity of

Vind is O(T ). In particular the matrix Λϕ+Sφ(Z) is block-tridiagonal and can be inverted

in linear time [116].
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3.5 VIND Algorithm

The Vind algorithm involves two computations within each epoch to perform both inference

and learning. We summarize the procedure in Algorithm 1. The inference step is involves

freezing the current values of the parameters φ, ϕ and computing a FPI to obtain the mean

and variance of a Laplace approximation to the parent. The learning step is an ADAM

gradient descent update [55] of LELBO with respect to φ, ϕ, θ. Gradients are estimated via

the “reparameterization trick”, [53, 47]. Samples are taken from child distribution via:

Zi = Pφ,ϕ(Xi) + [Cφ,ϕ(Xi)]
−1/2 ε, ε ∼ N (0, I) . (3.36)

Note that the FPI produces a closed form expression for P
(n)
φ,ϕ so that derivatives can be

taken with respect to the variational parameters. The normalization constant for the child

distribution qφ,ϕ(Z|X) involves the determinant of the precision matrix which can be com-

puted in closed form given that the precision is block-tridiagonal [117]. In practice, we find

that n = 2 FPI iterations is enough for good convergence results.

Smoothing Dynamics. One desirable property of Algorithm 1 is that the FPI update

(Step 9) mixes all the components of the mean Pφ,ϕ. Note that the t-th component of P
(n)
φ,ϕ

depends on all the time steps Z1:T , both past and future, in P
(n−1)
φ,ϕ via the inverse covariance

in Eq. (C.2). The VIND algorithm is thus a smoother. After training, the parameters φ, ϕ, θ

that maximize LELBO can be used to obtain aφ(z), the dynamical law that propagates the

latent trajectories inferred from the data.
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Algorithm 2: Variational Inference for Nonlinear Dynamics

Data: At every epoch P
(ep)
i is the numerical estimate of the hidden path for

observation i while P
(ep)
φ,ϕ (Xi) is the φ, ϕ-dependent posterior mean.

1. for i = 1 to N :

P
(ep)
i ← P

(0)
i

2. ep← 1, n← 0

3. P
(ep)
φ,ϕ (Xi)← P

(ep−1)
i

4. C
(ep)
φ,ϕ (Xi)← sφ,ϕ(P (ep−1),Xi)

5. while not converged:

6. Sample from Child qφ,ϕ(Z|X) via reparameterization:

ε ∼ N (0, I) Zi := P
(ep)
φ,ϕ (Xi) +

[
C

(ep)
φ,ϕ (Xi)

]−1/2
ε

7. Form Elbo LV IND and Adam update θ, φ, ϕ

LV IND :=
1

M

M∑
i=1

(log pθ,φ(Zi,Xi)− log qφ,ϕ(Zi|Xi))

LV IND ← ∇θ,φ,ϕ LV IND

8. Update P and carry the Fpi:

P
(ep)
i ← P

(ep)
φ,ϕ (Xi)

∣∣∣
φ,ϕ

9. while n ≤ Nfpis:

10. P
(ep)
i ← rφ,ϕ(P

(ep)
i ,X)

11. n← n− 1

12. Initialize next epoch ep← ep+ 1; n← 0

13. P
(ep)
i ← P

(ep−1)
i

14. C
(ep)
φ,ϕ (Xi)← sφ,ϕ(P (ep−1),Xi)

15. return latent trajectories Z1:T and parameters θ, φ, ϕ
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3.6 Evaluation Metric

In order to quantify the performance of the trained dynamics, we compute the k-step mean

squared error (MSE) and its normalized version, the R2
k. To do so, the trained transition

function is applied to the latent state without any input data over a rolling window of k

steps into the future. The emission function is then used to obtain a prediction x̂t+k which

we compare with the observation xt+k.

MSEk =

T−k∑
t=1

(xt+k − x̂t+k)
2 , R2

k = 1− MSEk∑T−k
t=1 (xt+k − x̄k)

2
, (3.37)

where x̄k is the average of xk+1:T . We note that LELBO is not a performance statistic that

generalizes across models. In contrast, the R2
k provides a metric to quantify the inferred

dynamics. When examining latent trajectories, there is no interpretability constraint im-

posed on how the model chooses to represent the latent trajectories. Thus, in principle,

any smooth 1-to-1 mappings of a physical trajectory results in an equivalent representation.

This would be analogous to replacing variables by some smooth functions of them, which

would satisfy a different set of equations and lose interpretability; while still describing the

same physics. For this reason, we argue that the focus should be on topological or quali-

tative features of the inferred trajectories (such as whether there are limit cycles or fixed

points) rather than their exact numerical values.
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Figure 3.1: Comparison of results for the Lorenz dataset (dz = 3) between GfLDS and

VIND: (left) R2
k comparison; (center) R2

10 as a function of dimension of the latent space;

(right) VIND’s inferred validation trajectories for this dataset.

3.7 Simulations and Real Data Analysis

Before integrating stochastic differential equations, we will utilize the Lorenz system to

study Vind’s capabilities for inferring chaotic nonlinear dynamics with no input noise in

the latent space.

3.7.1 Lorenz Attractor

The Lorenz attractor is a classical system of three coupled nonlinear differential equations:

ż1 = σ(z2 − z1) ,

ż2 = z1(ρ− z3)− z2 , (3.38)

ż3 = z1z2 − βz3 .

Numerical solutions of the Lorenz system with σ = 10, ρ = 28, β = 8/3 were produced by

integrating over 250 time steps from randomly generated initial conditions without noise.

A z-dependent neural network was used to map the latent state onto 10D Gaussian ob-

servations. The complete synthetic dataset consisted of 100 trials, each comprising 250
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time-steps, of which 66% was used for training and the remaining were evenly split for test

and validation.

Fig. 3.1 provides the results of the Lorenz experiment. The left panel provide the R2
k

comparison for Vind and GfLDS fits, with dZ = 3. Remarkably Vind’s performance is

near perfect over a 30-step forward interpolation. The left panel compares Vind with our

implementation of the GfLDS and Aesmc algorithms. The center panel illustrates Vind’s

capability to infer properties of the underlying dynamics: Vind hits peak performance at

dZ = 3, the true dimensionality of this system. In the right panel we show the complete set

of inferred latent trajectories illustrating the two cycles.

We note that while the latent trajectories are topologically similar to the Lorenz at-

tractor, they do not reproduce it exactly. Vind’s decoder can, in principle, learn to undo

any smooth transformation applied to the true Lorenz trajectories. As a result, the same

set of observations can be described by different sets of latent paths connected by smooth

transformations.

3.7.2 Real Data Analysis: Single Cell Voltage Traces

We use Vind to analyze electrophysiology data recorded from single cells. Under this setup,

the system is partially observable. The aim is to recover the latent phase space and latent

variable trajectories from a single variable. We note that dimensionality expansion is more

challenging than dimensionality reduction due to a loss of information. We begin by forming

a benchmark dataset from the Allen Brain Atlas [49]

Intracellular voltage recordings from cells from the Primary Visual Cortex of the mouse,

area layer 4 were selected. Trials with no spikes were removed, resulting in 44 trials from

7 different cells. The input for each of the remaining trials consists of a step-function with
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Figure 3.2: The complete set of 30 trials collected from the Allen brain atlas. Neurons

respond to an input current. The dataset exhibits a large amount of variability in spiking

dynamics.
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Figure 3.3: Summary of the Llds/Vind fit to the Allen dataset: (left) The dataset, neurons

respond to an input current; (center) Vind vs GfLDS comparison for the best 5D fits; (right)

R2
10 for different dimensions. The performance increases up to dZ = 5 possibly indicating

the hidden dimensionality of the system.

Figure 3.4: Inferred sample paths: (left) Original data (green) versus the 10-step (2ms)

forward interpolation given by Vind and by GfLDS; (center) Latent trajectories for a 5D

Vind fit of this data, showing behavior similar to the Hodgkin-Huxley gating variables;

(right) A 3D cross-section of the latent space showing the representation of the spikes as

big cycles (red) and the transient periods (blue).
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an amplitude between 80 and 151pA. Observations were split into training (30 trials) and

validation sets (14 trials). The data was then down-sampled from 50, 000 time bins (sample

rate of 50 kHz) to 5, 000 in equal-time intervals, and subsequently normalized by dividing

each trial by its maximal value. Figure 3.2 displays all 30 trials from the training set

after preprocessing. The dataset exhibits rich spiking dynamics, some trials spike one time

whereas other trials spike between 47 and 52 times.

Llds/Vind was fit to this data for dZ = 2, . . . , 8, repeated across 10 runs for a total

of 70 full experiments. The top three fits were averaged and the results are summarized in

Fig. 3.3. The center panel displays the R2
10 values for each choice of latent dimensionality.

The fits consistently improve up to dZ = 5, after which there are diminishing returns.

We note that single cell voltage data has traditionally been modeled using variants of the

classical Hodgkin-Huxley neuron model ([41]), a set of nonlinear differential equations in 4

independent variables, plus an optional independent input current. It is noteworthy that

5 is exactly the minimal number of latent dimensions that provide a good Vind fit for

this data. The right panel displays R2
k with dZ = 5 for Vind, Aesmc and for GfLDS. v

outperforms GfLDS by an order of magnitude.

The forward-interpolated observations and sample paths for selected runs of Vind and

GfLDS are shown in Fig. 3.4. The left panel represents the observations over a rolling

window, k = 10 time-points in advance for both Vind and GfLDS. The dynamics inferred

by GfLDS is unable to capture the nonlinear behavior in both the hyperpolarization and

depolarization epochs, a task at which Vind succeeds. The Vind latent trajectories are

plotted in the center panel, with the latent dimensions exhibiting similar behavior to that

of Hodgkin-Huxley gating variables. In state-space, spikes are represented by big cycles

(red), while interspiking fluctuations correspond to separate regions of phase space (blue).
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Figure 3.5: Data (green) versus simulation of the observations (red) from the smoothed

path: 10 steps ahead (left), 20 steps ahead (center), and 30 steps ahead (right). Some signs

of deterioration of the prediction start to appear for the latter (failed spikes, late spiking

times).

This is shown in the right panel.

Fig. 3.5 shows simulated paths (forward interpolation with noise) versus the correspond-

ing real data. The expected, progressive deterioration of the Vind prediction as k increases

is of note. Fig. 3.6 shows several views of the same two latent paths corresponding to two

different input currents showing Vind’s different placement of the paths for two different

input currents.
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Figure 3.6: Different views of a 3D cross section of 5D latent paths for two different trials,

showing how the paths occupy different regions of state-space depending on the value of

the constant input current.
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3.8 Discussion

A body of work has addressed the problem of inference for sequential data. Deep Kalman

Filters (DKF) [61] also describes latent nonlinear evolution with nonlinear observations.

One key difference between DKF and Vind is that DKF is a filter whereas Vind is a

smoother. That is, DKF uses information only up to the current time point X1:t to esti-

mate the current latent state zt, whereas Vind uses information from the complete time

ordered observation sequence X1:T to infer the latent state zt. The approximate posterior

proposed in DKF analogous to Eq. (3.20) is plugged directly into the ELBO, forcing their

recognition model to be Gaussian conditioned on observations. Vind is able to perform

inference on factorizations of the parent distribution that are unnormalizable. The trick is

to compute a second approximation which makes inference tractable because the child dis-

tribution that is strictly normal. An extension of DKF was proposed in which parameters

between the generative and recognition model are shared. Vind also shares the evolution

parameters between the generative model and the inference network. Aesmc [66], Fivo [77]

and Vsmc [89] are methods for model inference and learning where maximize a lower bound

to the marginal log likelihood, where Sequential Monte Carlo is used as the likelihood es-

timator. These three methods also can be implemented to share terms between proposal

and target distribution, however, like DKF, they are filters. We propose a novel approach

to smooth these methods in Chapter 4.

We have presented a structured approximate posterior describing spatially-dependent

linear dynamics to handle intractable distributions, as well as an algorithm that relies on

the fixed-point iteration method to achieve convergence. We have introduced a benchmark

dataset of single-cell voltage data and demonstrated variational inference in partially observ-
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able nonlinear dynamical systems. Vind’s fits to electrophysiology data behave qualitatively

like Hodgkin Huxley variables and outperform. Vind is implemented for the specific case

of Locally Linear Dynamical Systems, which allows for efficient inference with complexity

linear in the length of the time series.
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Chapter 4

Particle Smoothing Variational

Objectives

Sequential Monte Carlo (Smc) and Variational Inference (VI) are two families of approxi-

mate inference algorithms for Bayesian latent variable models. A body of recent work uses

Smc to construct a filtered estimate of the log marginal likelihood which is used to specify

a variational objective by forming a lower bound. We present a novel backward simulation

technique and a variational objective constructed from a smoothed approximate posterior.

Our method sub-samples auxiliary random variables to enhance the support of the pro-

posal and increase particle diversity. Recent literature argues that increasing the number

of samples K to obtain tighter variational bounds may hurt the proposal learning, due to

a signal-to-noise ratio (Snr) of gradient estimators decreasing at the rate O(
√

1/K). As

a second contribution, we develop theoretical and empirical analysis of the Snr in filtering

Smc, which motivates our choice of biased gradient estimators. We prove that introduc-

ing bias by dropping Categorical terms from the gradient estimate or using Gumbel-

Softmax mitigates the adverse effect on the Snr. We demonstrate our approach on three

benchmark latent nonlinear dynamical systems tasks consistently outperforming filtered
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objectives when given fewer Monte Carlo samples.

This work, which is published as [83, 85, 86] was done jointly with Zizhao Wang, Luhuan

Wu, Iddo Drori and Itsik Pe’er. An implementation can be found online at https://

github.com/amoretti86/PSVO.

4.1 Introduction and Motivation

Latent variable models for time series are often formalized as a set of ordered, discrete-

time measurements taken on a hidden dynamical system. A collection of recent work is

concerned with inferring both the latent trajectories and latent dynamics of these systems

when transition and emission functions are nonlinear [3, 13, 37, 61, 83, 85, 95]. Variational

Inference (VI) and Sequential Monte Carlo (SMC) are two families of approximate inference

algorithms for non-linear or non-conjugate Bayesian models. Recently, connections have

been established between VI and SMC by using the latter to define a flexible variational

family for hidden Markov models [66, 77, 89].

Standard variational SMC methods construct a filtered estimate of the log marginal

likelihood which is used to specify a variational objective by forming a lower bound to the

evidence [66, 77, 89, 92, 130]. This enables model learning and inference at the same time.

In this approach, however, both the state-sequence and the objective are estimated using

information only up to the current time point. This results in degraded posterior estima-

tions when there exists significant observation noise or the system is partially observable.

In contrast, particle smoothing methods generate a state-sequence conditioned on future

observations [1, 7, 31, 59, 98]. This leads to improved inferred trajectories when the hidden

dynamical system is described by a highly nonlinear or chaotic differential equation [37, 95].

For example, neurobiologists measuring a single-dimensional voltage trace are often inter-
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ested in recovering nonlinear latent dynamics and trajectories that can be characterized

using systems of coupled differential equations such as the Hodgkin Huxley [40]. However,

two limitations of the existing particle smoothing literature are as follows:

i) Learning the model parameters that define the transition and emission functions is a

distinct task typically handled using an EM algorithm.

ii) The majority of particle smoothing methods do not directly provide an unbiased esti-

mate of the marginal likelihood [7, 59], thus making the construction of a smoothing-

based variational objective a challenge.

We highlight the contributions of this section as follows:

• Particle Smoothing Variational Objective: We propose Smoothing Variational

Objectives (SVO), a framework for performing VI on nonlinear hidden Markov models.

SVO jointly estimates the model parameters and the marginal likelihood from the

smoothed state-sequence, analogous to the approach of the variational auto-encoder.

SVO is a novel recursive backward-sampling algorithm and approximate smoothing

posterior defined through a subsampling process. This augments the support of the

proposal and boosts particle diversity.

• SNR Guarantees: Recent literature argues that increasing the number of samples

K to obtain tighter variational bounds may hurt the proposal learning, due to a

signal-to-noise ratio (SNR) of gradient estimators decreasing at the rate O(
√

1/K)

[101]. In [66] it was speculated that a result similar to [101] holds for filtering SMC,

motivating the design of distinct variational bounds for generative and proposal net-

works. SMCs resampling step introduces challenges for standard reparameterization
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due to the Categorical distribution. As a second contribution, we analyze the SNR

for filtering SMC. We prove that SNR degradation does not apply to the inference

network of filtering SMC due to the resampling step. We present theoretical and em-

pirical evidence pointing to an increasing SNR dependent on the choice of the gradient

estimator.

• Unbiased Likelihood Estimator: We prove that SVO generates an unbiased es-

timate of the marginal likelihood from the backward state-sequence. We explore the

ability of SVO to recover nonlinear embeddings, transition and emission functions

from only the observations. To quantify the learned dynamics, we repeatedly apply

the trained transition function in the target to propagate the system forwards without

input data and then use the emission function to make observation predictions. We

show that our smoothed objective generates an improved estimate of the latent state

as measured by the ability of the target to more accurately predict observations using

the dynamics learned.

• Applications: We demonstrate our approach on to three benchmark latent nonlinear

dynamical systems tasks, including single cell voltage trace data. SVO outperforms

filtered objectives when given fewer Monte Carlo samples on all three tasks.

4.2 Preliminaries

Inference in State Space Models Let X ≡ {x1, . . .xT } denote a sequence of T obser-

vations of a Rdx-dependent random variable. State space models (SSMs) posit a generating

process for X through a sequence Z ≡ {z1, . . . zT }, zt ∈ Rdz of unobserved latent variables,
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that transitions according to a stochastic evolution law. The joint density then factorizes:

pθ(X,Z) = Fθ(Z) ·
T∏
t=1

gθ(xt|zt) , (4.1)

where gθ(x|z) is an observation model, and Fθ(Z) is a prior representing the evolution in

the latent space. In this work, we focus on the case of Markov evolution with Gaussian

conditionals:

Fθ(Z) = f1(z1)

T∏
t=2

fθ(zt|zt−1) ,

f1 = N
(
ψ1,Q1

)
, zt ∼ N

(
ψθ(zt−1), Q

)
. (4.2)

Inference in SSMs requires marginalizing the joint distribution with respect to the hidden

variables Z,

log pθ(X) =

∫
log pθ(X,Z) dZ. (4.3)

This procedure is intractable when ψθ(zt) is a nonlinear function or when gθ(xt|zt) is non-

Gaussian.

Variational Inference VI describes a family of techniques for approximating log pθ(X)

when marginalization is analytically impossible. The idea is to define a tractable distribution

qφ(Z|X) and then optimize a lower bound to the log-likelihood:

log pθ(X) ≥ LELBO(θ, φ,X) = E
q

[
log

pθ(X,Z)

qφ(Z|X)

]
. (4.4)

Tractability and expressiveness of the variational approximation qφ(Z|X) are contrasting

goals. Auto Encoding Variational Bayes [57] (Aevb) is a method to simultaneously train

qφ(Z|X) and pθ(X,Z). The expectation value in Eq. (5.7) is approximated by summing

over samples from the recognition distribution; which in turn are drawn by evaluating a

deterministic function of a φ-independent random variable (the reparameterization trick).
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Figure 4.1: Smc terms for the Hmm with transition f(·) and emission g(·) functions de-

noted. Closed-form inference is not possible when f and g are non-conjugate or nonlinear.

Parameter estimation is performed via Aevb with nonlinear proposal terms for encoding

q1 and transition q2 denoted.

Building upon this, the Importance Weighted Auto Encoder [11, 21] (IWAE) constructs

tighter bounds than the Aevb through mode averaging as opposed to mode matching.

The idea to achieve a better estimate of the log-likelihood is to draw K samples from the

proposal and to average probability ratios.

Filtering SMC SMC is a family of techniques for inference in SSMs with an intractable

joint. Given a proposal distribution qφ(Z|X), these methods operate sequentially, approxi-

mating pθ(z1:t|x1:t) (the target) for each t by performing inference on a sequence of increasing

probability spaces. K samples (particles) are drawn from a proposal distribution and used

to compute importance weights:

zkt ∼ qφ(zkt |zkt−1,xt) , wkt :=
fθ(z

k
t |zkt−1)gθ(xt|zkt )
qφ(zkt |zkt−1,xt)

. (4.5)

A resampling strategy ensures that particles remain on regions of high probability mass.

SMC accomplishes this goal by resampling the particle indices (ancestors) according to
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their weights at the previous time step:

akt−1 ∼ Categorical(·|w̄1
t−1, · · · , w̄Kt−1) , wkt :=

fθ(z
k
t |z

akt−1

t−1 )gθ(xt|z
akt−1

t )

qφ(zkt |z
akt−1

t−1 ,xt)
. (4.6)

The posterior can be evaluated at the final time step. The functional integral is approxi-

mated below where δzk1:T
(z1:T ) is the Dirac measure:

K∑
k=1

w̄kT δzk1:T
(z1:T ) where w̄kT = wkT /

K∑
j=1

wjT . (4.7)

The SMC algorithm is deterministic conditioning on (z1:K1:T , a
1:K
1:T−1) [77, 66]. This implies

that the proposal density can be reparameterized to act as a variational distribution that

can be encoded:

QSMC(Z1:K
1:T ,A

1:K
1:T−1) :=

(
K∏
k=1

q1,φ(zk1)

)
×

T∏
t=2

K∏
k=1

qt,φ(zkt |z
akt−1

1:t−1) ·Categorical(akt−1|w̄1:K
t−1).

(4.8)

An unbiased estimate for the marginal likelihood and the corresponding objective are defined

below:

ẐSMC :=
T∏
t=1

[ 1

K

K∑
k=1

wkt

]
, LSMC := E

QSMC

[
log ẐSMC

]
. (4.9)
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Particle Smoothing with Backward Simulation Forward Filtering Backward Simu-

lation (FFBSi) [31] is an approach to approximate the smoothing posterior which admits

the following factorization

p(z1:T |x1:T ) = p(zT |x1:T )

T−1∏
t=1

p(zt|zt+1:T ,x1:T ) , (4.10)

where, by Markovian assumptions, the conditional backward kernel can be written as:

p(zt|zt+1,x1:T ) ∝ p(zt|x1:t)f(zt+1|zt). (4.11)

FFBSi begins with filtering to obtain {z1:K1:T , w
1:K
1:T } which provides a particulate approxima-

tion to the backward kernel:

p(zt|zt+1,x1:T ) ≈
K∑
i=1

wkt|t+1δzit(zt), (4.12)

where wit|t+1 =
witf(zt+1|zit)

K∑
j=1

wjt f(zt+1|zjt )
.

Backward simulation generates states in the reverse-time direction conditioning on future

states by choosing z̃t = zit with probability wit|T . This corresponds to a discrete resam-

pling step in the backward pass. As a result the backward kernel is approximated from

particles that are drawn from the proposal q(zt|zt−1) in the forward pass. The FFBSi can

only generate trajectories suppported by the forward filtering particles, thus limiting the

expressiveness of the variational distribution.

4.3 Particle Smoothing Variational Objectives

We will utilize the smoothing posterior in Eq. (4.10) to define a backward proposal dis-

tribution and sample trajectories to construct a variational objective. We propose a novel

approximate posterior to overcome the limitation of the FFBSi by augmenting the support

of the backward kernel through the subsampling of auxiliary random variables.
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Overview We provide an overview of Particle Smoothing Variational Objectives (SVO)

before presenting a detailed derivation and description in Algorithm 3 (we have annotated

the overview with steps from the algorithm). Smoothing is based on filtering SMC which

provides the forward weights and particles {z1:K1:T , w
1:K
1:T } (step 1 ). With outputs from filter-

ing SMC, SVO proceeds to generate backward trajectories. This is done by approximating a

sequence of backward posteriors through a process of self-normalized importance sampling.

At time T , for each trajectory we will draw M subparticles from a continuous-domain con-

ditional kernel (step 3 ). While the final time step requires some care, these subparticles will

be used to initialize subweights relative to the conditional kernel (step 4 ). The subweights

in turn, are used to update the corresponding particle by drawing a backward index from

a resampling process (step 5 ). The trajectory is initialized with the selected particle and

extended sequentially (step 6 ). SVO iterates by drawing M subparticles from a continuous-

domain backward proposal for each of the K trajectories at the current time step (step 9 ).

SVO then computes subweights for each subparticle (step 10 ) in order to select a single

backward particle from the set of M candidates (step 11 ). Finally the backward kernel is

evaluated using the chosen resampled particle (step 13 ). The output of this procedure is

a collection of particle trajectories from the smoothing posterior that are used to define a

variational objective.

4.4 Approximate Posterior

We introduce a continuous reverse-dynamics proposal q(zt|zt+1,x1:T ) that is used to sample

M subparticles for each k ∈ {1, · · · ,K}, z̃k,1:Mt ∼ q(zt|z̃kt+1,x1:T ). These samples are used
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Algorithm 3: Particle Smoothing Variational Objectives

1. Perform forward filtering to obtain {z1:K1:T , w
1:K
1:T }

2. Initialization. For k = 1, · · · ,K :

3. Sample M subparticles: {z̃k,mT }Mm=1 ∼ q(·|x1:T )

4. Initialize subweight for each subparticle:

ωk,mT |T ∝
[∑

j

w̄jT−1f(z̃k,mT |z
j
T−1)

] g(xT |z̃m,kT )

q(z̃k,mT |x1:T )

5. Sample index: bkT ∼ Categorical(·|ωk,1T |T , · · · , ω
k,M
T |T )

6. Set backward particle: z̃kT ← z̃
k,bmt
T , ωkT |T ← ω

k,bkT
T |T

7. Evaluate the backward proposal: Ωk
T := M · ωkT |T · q(z̃

k
T |x1:T ),

8. Backward Simulation.

For t = T − 1, · · · , 1 and k = 1, · · · ,K:

9. Sample M subparticles from reverse-dynamics proposal:

{z̃k,mt }Mm=1 ∼ q(·|z̃kt+1,x1:T )

10. Compute subweights:

ωk,mt|T ∝
∑
j

w̄jt−1f(z̃k,mt |z
j
t−1)×

f(z̃kt+1|z̃
k,m
t )g(xt|z̃k,mt )

q(z̃k,mt |z̃kt+1,x1:T )

11. Sample index. bkt ∼ Categorical(·|ωk,1t|T , · · · , ω
k,M
t|T )

12. Set backward particle: z̃kt ← z̃
k,bmt
t , ωkt|T ← ω

k,bkt
t|T

13. Evaluate the backward proposal: Ωk
t = M · ωkt|T · q(z̃

k
t |z̃kt+1,x1:T )

14. return

z̃1:K1:T , L̂SV O(x1:T ) := log

(
1

K

K∑
k=1

p(z̃k1:T ,x1:T )∏T
t=1 Ωk

t

)
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to define subweights through a process of self normalized importance sampling

p(z̃k,mt |z̃
k,m
t+1 ,x1:T )/q(z̃k,mt |z̃kt+1,x1:T )

∝
∫
p(zt−1, z̃

k,m
t |x1:t−1)dzt−1

f(z̃kt+1|z̃
k,m
t )g(xt|z̃k,mt )

q(z̃k,mt |z̃kt+1,x1:T )

≈

 K∑
j=1

w̄jt−1f(z̃k,mt |z
j
t−1)

 f(z̃kt+1|z̃
k,m
t )g(xt|z̃k,mt )

q(z̃k,mt |z̃kt+1,x1:T )

:= ωk,mt|T . (4.13)

A single particle is selected by sampling an index with probability proportional to the

subweight ωt|T : bkt ∼ Categorical(bkt |ω
k,1
t|T , · · · , ω

k,M
t|T ), z̃kt ← z̃

k,bkt
t . This modified partic-

ulate distribution now generates hidden states from a continuous domain given the future

state and all observations. Repeating this process sequentially in the reverse-time direction

produces K i.i.d. sample trajectories, {z̃1:K1:T } (see Algorithm 3).

The approximate posterior and variational objective are defined below via Algorithm 3.

Note again that the following expectations are also conditioned on the forward filtering

system.

LSV O := E
q

[
log ẐSV O

]
, ẐSV O :=

1

K

K∑
k=1

p(z̃k1:T ,x1:T )

q(z̃k1:T |x1:T )
, (4.14)

where q(z̃k1:T |x1:T ) is defined below,

q(z̃k1:T |x1:T ) := MT · ωkT |T · q(z̃
k
T |x1:T )

T−1∏
t=1

[
ωkt|T · q(z̃

k
t |z̃kt+1,x1:T )

]
. (4.15)

We note that while the sequence of target distributions is filtered, our objective is con-

structed using samples from a smoothing posterior. This heuristic facilitates smoothing

the target when performing VI to simultaneously train p(Z|X) and q(Z|X) by pulling

p(Z|X) → q(Z|X). This functional dependence motivates sharing the transition function

between proposal and target.
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4.5 Analysis of Unbiasedness

Theorem 2. ẐSV O is an unbiased estimate of p(x1:T ).

E
Q(ẑ1:K,1:M1:T )

[
1

K

K∑
k=1

p(ẑk1:T ,x1:T )∏T
t=1 ΩK

t

]
= p(x1:T ),

where Q(ẑ1:K,1:M1:T ) denotes the sampling distribution of ẑ1:M1:T according to Algorithm 1.

Proof. We will define auxiliary variables λ and distributions q(λ|x), q(z|λ, x), and r(λ|z, x)

such that

ẐSV O ≡ p̂(x) =
p(x, z)r(λ|z, x)

q(z, λ|x)
=
p(x, z)r(λ|z, x)

q(z|λ, x)q(λ|x)
,

where z, λ ∼ q(z, λ|x). For a treatment of auxiliary random variables see [21, 64]. Here the

auxiliary latent variables are the unselected subparticles,

λ = {z̃¬b
1:K
1:T

1:T }.

For convenience, we omit the conditioning on the forward system. To further simplify

notation, we will rearrange particles to omit the backward ancestor indices by defining

ẑk,1t ← z̃
k,bkt
t , ω̂kt|T ← ω

k,bkt
t|T and ẑk,2:Mt ← z̃

k,¬bkt
t , ω̂k,2:Mt|T ← ω

k,¬bkt
t|T . By the linearity of

expectation, it suffices to show the case of K = 1 (as a result, for clarity, we will omit k, in

the superscripts):

Eẑ1:M1:T

[
p(ẑ11:T ,x1:T )∏T

t=1 Ωt

]
= p(x1:T )

We begin by expressing the generative distribution of the sampling process for the rear-

ranged particles ẑ1:M1:T as factorizing:

Q(ẑ1:M1:T |x1:T ) = Q(ẑ1:MT |x1:T )

T−1∏
t=1

Q(ẑ1:Mt |ẑ1t+1,x1:T ).

Consider the sampling process last time step,
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1. Sample {z̃mT }Mm=1 ∼ q(·|x1:T ), and compute the associated weights ω̃1:M
T |T as outlined in

Algorithm 1

2. Sample bT ∼ Categorical(·|ω̃1
T |T , · · · , ω̃

M
T |T )

3. Set ẑ1T ← z̃bTT , ẑ
2:M
T ← z̃¬bTT , and ω̂1

T |T ← ω̃bTT |T , ω̂
2:M
T |T ← ω̃¬bTT |T

The marginal distribution of ẑ1:MT is obtained as follows:

Q(ẑ1:MT |x1:T )

=

∫  M∏
m=1

q(z̃mT |x1:T )︸ ︷︷ ︸
Step 1

 ·
 M∑
bT=1

p(bT |z̃1:MT )︸ ︷︷ ︸
Step 2

· p(ẑ1:MT |z̃1:MT , bT )︸ ︷︷ ︸
Step 3

 dz̃1:MT

=

M∑
bT=1

∫ ( M∏
m=1

q(z̃mT |x1:T )

)
·

ω̃bTT |T

ω̃bTT |T +
∑

i∈¬bT ω̃
i
T |T

δ(ẑ1T − z̃bTT )δ(ẑ2:MT − z̃¬bTT )dz̃1:MT

= M

∫ ( M∏
m=1

q(z̃mT |x1:T )

)
·

ω̃1
T |T

ω̃1
T |T +

∑
i=2:M ω̃iT |T

δ(ẑ1T − z̃1T )δ(ẑ2:MT − z̃2:MT )dz̃1:MT

= M

(
M∏
m=1

q(ẑmT |x1:T )

)
ω̂1
T |T∑M

i=1 ω̂
i
T |T

,

where the third equality follows from collapsing all possible cases to bT = 1 by symmetry,

and the last equality follows from integrating over the dirac measures.

Similarly, we have the following for t = 1, . . . , T − 1,

Q(ẑ1:Mt |ẑ1t+1,x1:T ) =

(
M∏
m=1

q(ẑmt |ẑ1t+1,x1:T )

)
·M ·

ω̂1
t|T∑M

m=1 ω̂
m
t|T
.

Therefore,

Q(ẑ1:M1:T |x1:T ) =

(
T∏
t=1

Ωt

)
︸ ︷︷ ︸
q(z|λ,x)

·
M∏
m=2

(
q(ẑmT |x1:T )

T−1∏
t=1

q(ẑmt |ẑ1t+1,x1:T )

)
︸ ︷︷ ︸

q(λ|x)

.

Now, define the target distribution to be:

P (ẑ1:M1:T ,x1:T ) = p(ẑ11:T ,x1:T )r(λ|x1:T , z1:T )
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where

r(λ|x1:T , z
1:M
1:T ) = q(λ|x1:T )

=
M∏
m=2

[
q(ẑmT |x1:T )

T−1∏
t=1

q(ẑmt |ẑ1t+1,x1:T )

]
.

Overall,

EQ(ẑ1:M1:T )[ẐSV O] = EQ(ẑ1:M1:T )

[
p(ẑ11:T ,x1:T )∏T

t=1 Ωt

]
Writing the augmented target and proposal explicitly:

= E
Q


p(ẑ11:T ,x1:T )×

M∏
m=2

q(ẑmT |x1:T )
T−1∏
t=1

q(ẑmt |ẑ1t+1,x1:T )

T∏
t=1

Ωt ×
M∏
m=2

q(ẑmT |x1:T )
T−1∏
t=1

q(ẑmt |ẑ1t+1,x1:T )


Combining the selected and unselected subparticles:

= E
Q

[
P (ẑ1:M1:T ,x1:T )

Q(ẑ1:M1:T )

]
=

∫
P (ẑ1:M1:T ,x1:T )dẑ1:M1:T

Split the integral over selected and unselected subparticles to evaluate:

=

∫
p(ẑ11:T ,x1:T )×

(∫ M∏
m=2

q(ẑmT |x1:T )
T−1∏
t=1

q(ẑmt |ẑ1t+1,x1:T )dẑ2:M1:T

)
dẑ11:T

=

∫
p(ẑ11:T ,x1:T )dẑ11:T

= p(x1:T ).

4.6 Implemention Details

In the forward filtering pass, we define the proposal distribution as follows:

qφ,ϕ(zk1:T |x1:T ) ∝ fϕ(zk1)︸ ︷︷ ︸
initial state

T∏
t=1

hφ(zkt |xt)︸ ︷︷ ︸
encoding

T∏
t=2

Categorical(akt−1|w̄1:K
t−1)︸ ︷︷ ︸

resampling

fϕ(zkt |z
akt−1

t−1 )︸ ︷︷ ︸
transition

,
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Proposition 4.5.1. Assume that the first four moments of w1
t and ∇w1

t are all finite and

their variances are non-zero for t ∈ 1 : T , then the signal-to-noise ratio converges at the

following rate:

SNRK(θ, ϕ, φ) =

∣∣∣∣∣∣∣∣∣∣∣∣
∇ logZ +

∑T
t=2

∑T
t′≥t+1 E

[
∇w1

t−1

Zt−1
· (w

1
t′−Zt′ )

2

2Z2
t′

∣∣∣ [a1t−1 = 1
]]

+O(1/K)√√√√1/K

{
T∑
t=1

E
[
(∇w1

t
Zt

)2
]

+
T∑

t′ 6=t,t′=1

T∑
t=1

√
Var

[
∇w1

t
Zt

]
Var

[
∇w1

t′
Zt′

]}
+O(T 2/K2)

∣∣∣∣∣∣∣∣∣∣∣∣
(4.16)

where Z = pθ(x1:T ) and Zt = pθ(xt|x1:t−1) for t ∈ {1, · · · , T}. Further assuming the resam-

pling bias
∑T

t=2

∑T
t′≥t+1 E

[
∇w1

t−1

Zt−1
· (w

1
t′−Zt′ )

2

2Z2
t′

∣∣∣ [a1t−1 = 1
]]

= O(1) leads to SNRK(θ, φ, ϕ) =

O(
√
K).

Proof. See Section 4.9.

where the proposal density factorizes into evolution and encoding functions,

fϕ(zt|zt−1) = N (ψ(zt−1),Σ), hφ(zt|xt) = N (γ(xt),Λ). (4.17)

We define ψ : Rdz → Rdz and γ : Rdx → Rdz as nonlinear time invariant functions repre-

sented with deep neural networks. The covariances Σ and Λ are taken as time invariant

trainable parameters or nonlinear functions of the latent space. This proposal choice allows

the transition term of the inference network fϕ(zt|zt−1) to share the parameters ϕ defining

{ψ,Σ} with the transition term fϕ(zt|zt−1) of the target defined in Eq. (4.1) [66, 77, 89].

The evolution term of the variational posterior is exact, retaining both tractability and

expressiveness.

The transition and emission densities are specified as follows:

fϕ(zt|zt−1) = N (ψ(zt−1),Σ), gθ(xt|zt) = N (υ(zt),Γ) . (4.18)
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The decoding term is defined using a deterministic nonlinear rate function υ : Rdz → Rdx

represented with a deep network and a noise model that need not be conjugate. Without

loss of generality we consider a Gaussian emission density. The backward proposal defining

the smoothing distribution below

q(zt|zt+1,x1:T ) ∝ r(zt|ζ(zt+1))e(zt|χ(x1:T )), (4.19)

is specified using nonlinear time invariant functions ζ : Rdz → Rdz and χ : RdX → Rdz

which we take as deep networks.

4.7 SNR of Gradient Estimators in Filtering SMC

LSMC is a consistent estimator of the log marginal likelihood under some mild conditions [77].

Intuition suggests increasing the number of particlesK provides a better surrogate objective.

However, [101] points out that the SNR of the inference network gradient estimator decreases

to 0 as K increases in the IWAE setting. [66] extends the result to the filtering SMC without

providing theoretical evidence. Here, we argue that the result does not generalize to SMC

due to the resampling step. Formally, for a gradient estimator of LSMC (denoted ∆K),

constructed by K particles, the SNR is defined as:

SNRK =

∣∣∣∣∣ E[∆K ]√
Var[∆K ]

∣∣∣∣∣. (4.20)

For the SNR of ∇LK , we have the following Proposition 1. We add empirical evidence to

this result in Section 6. We consider three types of stochastic gradient estimators. A full

definition is given in the Appendix.

1. The biased estimator without resampling gradient, ∇LK .

2. The unbiased estimator, ∇LK + Categorical.
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3. The relaxed estimator, ∇LK + Concrete(λ) [46, 78].

4.8 Experimental Results

In order to quantify the performance of the trained dynamics, we compute the k-step mean

squared error (MSE) and its normalized version, the R2
k. To do so, the trained transition

function is applied to the latent state without any input data over a rolling window of k

steps into the future. The emission function is then used to obtain a prediction x̂t+k which

we compare with the observation xt+k.

MSEk =
T−k∑
t=1

(xt+k − x̂t+k)
2 , R2

k = 1− MSEk∑T−k
t=1 (xt+k − x̄k)

2
, (4.21)

where x̄k is the average of xk+1:T . We note that the ELBO is not a performance statistic

that generalizes across models. In contrast, the R2
k provides a metric to quantify the inferred

dynamics. This procedure is defined in [37]. In all experiments, SVO is only given access

to the observation sequence, and not the equations that govern the nonlinear systems.

The latent trajectories and dynamics, transition, emission and encoding functions are all

inferred.
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Figure 4.2: Summary of the Fitzhugh-Nagumo results: the observation is one-dimensonal

while the phase space and latent variables are two-dimensional; (left) ground truth dynamics

and trajectories for the original system; (center) latent dynamics and trajectories inferred

by SVO; Initial points (denoted by markers) located both inside and outside the limit cycle

are topologically invariant in the SVO reconstruction; (right) R2
k for various models on the

dimensionality expansion task. Results are averaged over 3 random seeds.

4.8.1 Fitzhugh-Nagumo

The Fitzhugh-Nagumo (FN) system is a two dimensional simplification of the Hodgkin-

Huxley model. The FN provides a geometric interpretation of the dynamics of spiking

neurons and is described by two independent variables Vt and Wt with cubic and linear

functions,

V̇ = V − V 3/3−W + Iext

Ẇ = a(bV − cW ). (4.22)

Eq. (4.22) was integrated over 200 time points with Iext = 1 held constant and a = 0.7, b =

0.8, c = 0.08. The initial state was sampled uniformly over [−3, 3]2 to generate 100 trials

using 66 for training, 17 for validation and 17 for testing. We emphasize that dimensionality

expansion is intrinsically harder than dimensionality reduction due to a loss of information.

A one-dimensional Gaussian observation is defined on Vt with xt = N (Vt, 0.01). SVO is

80



CHAPTER 4. PARTICLE SMOOTHING VARIATIONAL OBJECTIVES

used to recover the two dimensional phase space and latent trajectories zt = (Vt,Wt) of the

original system. This task requires using information from future observations to correctly

infer the initial state. Fig. 4.2 shows the results of the FN experiment. The left panel

displays the original system. The center panel displays the learned dynamics and inferred

trajectories on the test set using SVO to perform dimensionality expansion. Initial points

(denoted with markers) located both inside and outside of the limit cycle in the original

system are topologically invariant in the reconstruction. The right panel shows the R2
k

comparison across models. Aesmc with K = 1024 gives an R2
30 = 0.954 in contrast to SVO

with K = 32,M = 32 which gives an R2
30 = 0.993. SVO outperforms Aesmc and gflds.
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Figure 4.3: ELBO convergence across epochs for SVO using exclusive parameters θ, φ and

shared parameters θ, ϕ, φ; (left) log ẐSV O across epochs as K increases using shared evolu-

tion network; (center) log ẐSV O across epochs as K increases using independent evolution

networks; (right) log ẐSV O convergence for shared vs independent evolution networks with

K = 16 highlighting faster convergence to a higher ELBO.

4.8.2 Sharing Transition Terms

We study the effect of sharing the transition function between the proposal and target

distribution. Fig. 4.3 illustrates the ELBO convergence as the number of particles K is

increased. The left panel plots ELBO for SVO with network parameters shared between

proposal and target. Increasing K produces a faster convergence and lower stochastic

gradient noise. The center panel illustrates separate evolution networks for the proposal

and the target. In contrast to sharing the transition function, separate evolution networks

require a larger number of epochs for corresponding value of K. The ELBO obtains a lower

value with larger stochastic gradient noise. The right panel juxtaposes shared and separate

transition functions for K = 16 particles.
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Figure 4.4: Summary of the Lorenz results: (left) latent trajectories inferred from nonlinear

10D observations; (center) log ẐSV O as K, M increase (legend on the right). Larger K,M

produce higher ELBO values; (right) R2
k on the dimensionality reduction task illustrating

near-perfect reconstruction at 20 steps ahead on the validation set. Results averaged over

3 random seeds.

4.8.3 Lorenz Attractor

The Lorenz attractor is a chaotic nonlinear dynamical system defined by 3 independent

variables,

ż1 = σ(z2 − z1) ,

ż2 = z1(ρ− z3)− z2 , (4.23)

ż3 = z1z2 − βz3 .

Eq. (4.23) is integrated over 250 time points with σ = 10, ρ = 28, β = 8/3 by generating

randomized initial states in [−10, 10]3. A z-dependent neural network is used to produce

ten dimensional nonlinear Gaussian observations with 100 trials, 66 for training, 17 for

validation and 17 for testing. Fig. 4.4 provides the results of the Lorenz experiment. The

left panel provides the inferred latent paths illustrating the attractor. The center plot

provides log ẐSV O as K, M increase (legend on the right). Larger K,M produce higher

ELBO values. The right panel displays the R2
k comparison with dz = 3. Results are averaged
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over 3 random seeds. Increasing K,M produces R2
k improvements. SVO with K,M = 2

gives a higher R2
k than both gflds and AESMC using K = 256.
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Figure 4.5: Summary of the Allen results: (left) two trials from the dataset; (center) the data

against the predicted observation value using the dynamics learned over a rolling window ten

steps ahead on the validation set. Hyperpolarization and depolarization nonlinearities are

predicted by the inferred dynamics; (right) R2
k with K,M = 8 particles. SVO outperforms

gflds and AESMC with K = 64. Results are averaged across 3 random seeds.

4.8.4 Electrophysiology Data

Neuronal electrophysiology data was downloaded from the Allen Brain Atlas [49]. Intracel-

lular voltage recordings from primary Visual Cortex of mouse, area layer 4 were collected.

A step-function input current with an amplitude between 80 and 151pA was applied to each

cell. A total of 40 trials from 5 different cells were split into 30 trials for training and 10 for

validation. Each trial was divided into five parts and down-sampled from 10,000 time bins to

1,000 time bins in equal intervals. Each trial was normalized by its maximal value. Fig. 4.5

summarizes the Allen experiment. The left panel provides two trials of the 1D observations

from the training set. The center panel illustrates the predicted observation using the dy-

namics learned over a rolling window ten steps ahead on the validation set. SVO captures

hyperpolarization and depolarization nonlinearities when appying the inferred dynamics.

The right panel displays the R2
k comparison with dz = 3. SVO outperforms AESMC and

gflds.
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Figure 4.6: Convergence of SNRs of gradient estimators in the encoder network (left),

transition network (center) and decoder network (right) with increasing K. Distinct solid

lines correspond to empirical SNRs of the four gradient estimators, averaging over 6 random

seeds. The black dashed line with slope 1 illustrates a signal-to-noise-ratio of convergence

rate O(
√
K).

4.8.5 SNR Gradient Estimators

We report the l2 norm of empirical SNRs for the encoder network (φ), evolution network

(ϕ) and decoder network (θ), where the gradient is taken with respect to φ, ϕ and θ corre-

spondingly. Fig. 4.6 presents four gradient estimators where the expectation and variance

are calculated using N = 100 gradient samples collected in the middle training stage of

running filtering SMC on Fitzhugh-Nagumo data. The gradient estimator that ignores

the resampling step possesses an SNR of convergence rate O(
√
K), which aligns with the

theoretical result. Similarly this holds for the relaxed Concrete gradient estimator with

a constant temperature (λ = 0.2). The unbiased Categorical resampling gradient and

the relaxed Concrete gradient with decreasing temperature (λ = K−1) suffer from large

variance, leading to a relatively low and even vanishing SNR for increasing K. Moreover,

the level of relaxation λ in the Concrete gradient estimator leads to different behaviors

of SNR. These observations imply that introducing bias reduces the variance and mitigates
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the degradation of the SNR with increasing K.

4.9 Discussion

Aesmc [66], Fivo [77] and Vsmc [89] are three closely related methods that form a lower

bound to the log marginal likelihood which is estimated using filtering SMC, however with-

out conditioning the latent state on future observations they may fail to capture long-term

dependencies. Vsmc draws a single sample at the final time step to produce a trajectory

from the corresponding ancestral path. While this heuristic produces one sample condi-

tioned on all observations, the resulting path is not used to construct the surrogate ELBO

which is filtered.

Particle smoothing methods include the previously discussed Ffbsi [31] and the Two

Filter Smoother (TFS) [98]. The Ffbsi defines a posterior over an entire trajectory and gives

a way to sample the trajectory backward in time. In contrast, TFS defines a posterior only at

a single time step. Additionally they differ in their methods. For TFS, the backward filtering

is independent of the forward filtering. However, our backward simulation is conditional

on forward filtering, where the subweight depends on the forward system. Unlike standard

particle smoothing methods, Svo is a framework for performing VI on state-space models,

jointly for the states and the model itself, analogous to the approach of the variational auto-

encoder [57]. The proposal and the target distribution are trained from the observation

sequence.

Particle smoothing methods incur a cost that is quadratic in the number of particles

due to the pairwise interactions in the summation of Eq (13). For Svo, smoothing incurs

a cost of O(TK2Mdz) operations in contrast to O(TGdz) in Aesmc (where G denotes

the number of particles). For a fair comparison we give Aesmc the corresponding extra
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particles. Empirically, Svo with small K and M (4 or 8) can provide a more accurate

posterior approximation than Aesmc with a much larger value of G. For the FHN task,

SVO with K = M = 32 outperforms Aesmc with G = 1024 (see Fig 1); For the Lorenz task

Svo with K = M = 2 also outperforms Aesmc with G = 256 (see Fig 3). Svo also works

with larger T , K, and M (with T = 1000 on the Allen data). All the experiments were run

on 16 core CPU machines. Despite the summation in Eq. 4.13 being O(TK2M), the main

cost is evaluating the neural network ψ(·) and its gradients for f(·|zjt−1) = N (·|ψ(zjt−1),Σ).

The computation is O(TK) here and O(TKM) in the emission term. The O(TK2M) is

fast relative to the evaluation of the neural network.

Two variational smoothing methods for inference in non-conjugate SSMs are gflds [27,

3] and Vind [37]. These methods simultaneously train recognition and generative models

using Aevb analogous to proposal and target distributions in Svo. gflds is a generative

model and approximation for linear latent dynamics together with nonlinear emission den-

sities. Building upon this, Vind is governed by nonlinear latent dynamics and emissions.

gflds and Vind both require inverting a block-tridiagonal matrix which mixes components

of state space through the inverse covariance. This incurs a complexity of O(Td3z) where T

is the length of the time series and dz is the state dimension. An alternative approach is

to directly modify the target distribution in Smc to achieve smoothing [36]. Tvsmc [65]

and Smc-Twist [72] augment the intermediate target distribution with a twisting function,

which in turn is approximated with deterministic algorithms such as temporal difference

learning and Laplace approximation. When applied to nonlinear time series it was reported

that Tvsmc underperforms relative to filtering using VSMC [65].

We have introduced Svo, a framework for performing VI on state-space models jointly

for hidden state inference and model parameter learning. Svo produces an unbiased esti-
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mate of the marginal likelihood constructed using a sample from the smoothed, and not

only filtered, state sequence. We have defined a novel backward simulation algorithm and

approximate posterior obtained by sub-samping auxiliary random variables. This augments

the support of the proposal and boosts particle diversity. Unlike standard particle smooth-

ing methods, Svo simultaneously trains both the proposal and the target distribution from

the observation sequence. Svo provides an estimate of nonlinear transition and emission

functions in addition to latent states. Highlights include the ability to produce accurate

long-range forecasts given smooth initial conditions from noisy, nonlinear differential equa-

tions using the trained latent dynamics. Svo consistently outperforms filtered objectives

on all three experiments given fewer Monte Carlo samples. Svo is written in TensorFlow.

An implementation is publicly available online.

Proof of Proposition 4.5.1

Proof. It suffices to show the convergence rate of expectation and variance of gradient

estimate with respect to K. Throughout the analysis, we will extensively apply the result

from [101], and exploit the factorization of the filtering SMC objective: Ẑ := ẐSMC =∏T
t=1 Ẑt where Ẑt = 1

K

∑K
k=1w

k
t . Assume that z1:K1:T are obtained by passing the Guassian

noise ε1:K1:T through the reparameterization function.

1. Expectation.

E
[
∇ log Ẑ

]
= ∇E

[
log Ẑ

]
− E

[
∇ log

T∏
t=2

K∏
k=1

Categorical(akt−1|w1:K
t−1) · log Ẑ

]
(4.24)

The expectation decomposes into two terms, where the convergence rate for the first
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directly follows the result from [101]:

∇E
[
log Ẑ

]
= ∇

T∑
t=1

E
[
log Ẑt

]
(4.25)

= ∇ logZ − 1

2K

[ T∑
t=1

∇
(

Var[w1
t ]

Z2
t

)]
+O

(
T

K2

)
(4.26)

For the remaining term that includes the resampling gradient, we apply a thorough

analysis as follows.

E
[
∇ log

T∏
t=2

K∏
k=1

Categorical(akt−1|w1:K
t−1) · log Ẑ

]
=

T∑
t=2

K∑
k=1

E
[
∇ logCategorical(akt−1|w1:K

t−1) log Ẑ
]

(4.27)

= K
T∑
t=2

T∑
t′=1

E
[
∇ logCategorical(a1t−1|w1:K

t−1) log Ẑt′
]

(4.28)

Taylor expand log Ẑt′ about Zt′ :

= K

T∑
t=2

T∑
t′=2

E

{
∇ logCategorical(a1t−1|w1:K

t−1)

·
(

logZt′ +
Ẑt′ − Zt′
Zt′

− (Ẑt′ − Zt′)2

2Z2
t′

+R3(Ẑt′)
)}

(4.29)

where R3(Ẑt′) denotes the remainder in the Taylor expansion of log Ẑt′ about Zt′ .

For t′ ≤ t− 1, we have:

E

[
∇ logCategorical(a1t−1|w1:K

t−1) · (Ẑt′ − Zt′)
Zt′

]

= Eε1:K1:t−1,a
1:K
1:t−2

{
Ẑt′ − Zt′
Zt′

× Ea1t−1

[
∇ logCategorical(a1t−1|w1:K

t−1)
]}

= Eε1:K1:t−1,a
1:K
1:t−2

[
Ẑt′ − Zt′
Zt′

· 0

]
= 0.

(4.30)
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For t′ ≥ t, we have:

E

[
∇ logCategorical(a1t−1|w1:K

t−1) · (Ẑt′ − Zt′)
Zt′

]

= Eε1:K1:t−1,a
1:K
1:t−1

{
∇ logCategorical(a1t−1|w1:K

t−1)× Eε1:K
t:t′ ,a

1:K
t:t′−1

[
Ẑt′ − Zt′
Zt′

]}
= Eε1:K1:t−1,a

1:K
1:t−1

[
∇ logCategorical(a1t−1|w1:K

t−1) · 0
]

= 0

(4.31)

Hence, it suffices to compute the convergence rate of the following:

K
T∑
t=2

T∑
t′=2

E

{
∇ logCategorical(a1t−1|w1:K

t−1) · (Ẑt′ − Zt′)2

2Z2
t′

}

Note that when t′ ≤ t− 1, we obtain similar results as Eq. (4.30). Thus, we turn to

the case when t′ ≥ t. For t′ ≥ t+ 1, each wkt′ has dependence on a1t−1, hence:

K · E

[
∇ logCategorial(a1t−1|w1:K

t−1) · (Ẑt′ − Zt′)2

2Z2
t′

]

= K · E

{
∇ logCategorical(a1t−1|w1:K

t−1)×

(
1/K

∑K
k=1(w

k
t′ − Zt′)

)2
2Z2

t′

}
(4.32)

= E

[
∇ logCategorical(a1t−1|w1:K

t−1) ·
(w1

t′ − Zt′)2

2Z2
t′

]

Applying the score function derivative trick to the distribution of a1t−1:

=
K∑
i=1

Eε1:K1:t−1a
1:K
1:t−2

{
Eε1t

[
∇

w1
t−1

KẐt−1
· (w1

t − Zt)2

2Z2
t

∣∣∣∣∣ [a1t−1 = i
]]}

= K · Eε1:K1:t−1a
1:K
1:t−2

{
Eε1t

[
∇

w1
t−1

KẐt−1
· (w1

t − Zt)2

2Z2
t

∣∣∣∣∣ [a1t−1 = 1
]]}

Applying the Taylor expansion of 1
Ẑt−1

around Zt−1:
1

Ẑt−1
= 1

Zt−1
+R2(Ẑt−1):

= Eε1:K1:t−1a
1:K
1:t−2

{
Eε1t

[
∇
w1
t−1

Zt−1
·

(w1
t′ − Zt′)2

2Z2
t′

∣∣∣∣∣ [a1t−1 = 1
]]}

+ Eε1:K1:t−1a
1:K
1:t−2

{
Eε1t

[
∇(w1

t−1R2(Ẑt−1)) ·
(w1

t′ − Zt′)2

2Z2
t′

∣∣∣ [a1t−1 = 1
]]}

(4.33)
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For t′ = t, only w1
t depends on a1t−1, only one term that conditions on a1t−1 = 1 in

(4.33) is not zero. Consequently we have:

K · E

[
∇ logCategorical(a1t−1|w1:K

t−1) · (Ẑt′ − Zt′)2

2Z2
t′

]

=
1

K
· Eε1:K1:t−1a

1:K
1:t−2

{
Eε1t

[
∇
w1
t−1

Zt−1
·

(w1
t′ − Zt′)2

2Z2
t′

∣∣∣ [a1t−1 = 1
]]}

+
1

K
· Eε1:K1:t−1a

1:K
1:t−2

{
Eε1t

[
∇(w1

t−1R2(Ẑt−1)) ·
(w1

t′ − Zt′)2

2Z2
t′

∣∣∣ [a1t−1 = 1
]]}

(4.34)

2. Variance.

Var
[
∇ log Ẑ

]
= Var

[ T∑
t=1

∇ log Ẑt

]
=

T∑
t=1

Var
[
∇ log Ẑt

]
+ 2

T∑
t=1

T∑
t′ 6=t,t′=1

Cov
(
∇ log Ẑt,∇ log Ẑt′

)
(4.35)

Decomposing the variance into the sum of variance at each time points, and the

pairwise covariance across different time point, we will show that both terms are

O(1/K).

(a) Variance at each time step. ∀t = 1 : T ,

Var
[
∇ log Ẑt

]
=

1

K
· E

[(
Zt∇w1

t − w1
t∇Zt

Z2
t

)2
]

+O
(

1

K2

)
(4.36)

=
1

K
· E

[(
∇w1

t

Zt

)2
]

+O
(

1

K2

)
(4.37)

(b) Covariance between different time steps.

For t 6= t′ ∈ 1 : T , we first apply Taylor theorem to log Ẑt around Zt, and then

exploit the fact that Ẑt is an unbiased estimation of Zt, and exploit the definition
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of covariance to expand and collapse terms, as follows:

Cov
(
∇ log Ẑt,∇ log Ẑt′

)
= Cov

(
∇

(
logZt +

Ẑt − Zt
Zt

+R1(Ẑt)

)
,∇

(
logZt′ +

Ẑt′ − Zt′
Zt′

+R1(Ẑt′)

))

= Cov

(
∇

(
Ẑt − Zt
Zt

+R1(Ẑt)

)
,∇

(
Ẑt′ − Zt′
Zt′

+R1(Ẑt′)

))
(4.38)

= E

[
∇

(
Ẑt
Zt

)
· ∇

(
Ẑt′

Zt′

)]
+ E

[
∇

(
Ẑt′

Zt′

)
∇R1(Zt)

]

+ E

[
∇

(
Ẑt
Zt

)
· ∇R1(Zt′)

]
+ Cov

(
∇R1(Ẑt),∇R1(Ẑt′)

)
(4.39)

i. For the first term in Eq. (4.39), since zkt are i.i.d. for fixed t, we have:

E

[
∇

(
Ẑt
Zt

)
· ∇

(
Ẑt′

Zt′

)]
= E

[
1

K

K∑
k=1

∇
(
wkt
Zt

)
· 1

K

K∑
k′=1

∇

(
wk
′
t′

Zt′

)]
(4.40)

=
1

K2
·
K∑
k=1

K∑
k′=1

E

[
∇
(
wkt
Zt

)
· ∇

(
wk
′
t′

Zt′

)]

= E
[
∇w

1
t

Zt
· ∇

w1
t′

Zt′

]
(4.41)

= Cov

(
∇w

1
t

Zt
,∇

w1
t′

Zt′

)
(4.42)

Without loss of generality, we assume t′ > t. First, when t′ = t+ 1,

Pr
(
z1t+1 depends on z1t

)
= E

[
w1
t∑K

k=1w
k
t

]
=

1

K
(4.43)

When t′ > t+ 1, using chain rule and by induction we also have,

Pr(z1t′ depends on z1t ) =
1

K
(4.44)

Hence,
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Cov
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1
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)
(4.45)

=
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(
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,∇
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t′
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∣∣∣∣∣ [z1t′ depends on z1t
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K

√
Var

[
∇w

1
t

Zt

]
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∇
w1
t′

Zt′

]
(4.46)

ii. For the second and third term in Eq. (4.39), without loss of generality, we

analyze the second term E
[
∇
(
Ẑt′/Zt′

)
· ∇R1(Zt)

]
, and assume t′ > t.

Using the i.i.d. property of particles at fixed time step, we have:

E

[
∇

(
Ẑt′

Zt′

)
· ∇R1(Zt)

]
(4.47)

=
1
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· E

[
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Zt′
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(
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(wkt − Zt)2
)]

=
1

K
· E

[
∇
w1
t′

Zt′
O
(
(w1

t − Zt)2
)]

(4.48)

Similar to the previous analysis on covariance, we can show that

E
[
∇
w1
t′

Zt′
· O
(
(w1

t − Zt)2
)]

= O
(

1

K

)
(4.49)

Hence,

E

[
∇

(
Ẑt′ − Zt′
Zt′

)
· ∇R1(Zt)

]
= O

(
1

K2

)
(4.50)

iii. For the last term in Eq. (4.39), note that |Cov(A,B)| ≤
√

Var(A)Var(B),

and Var[∇R1(Ẑt)] = O (1/K2), hence we obtain:

Cov
(
∇R1(Ẑt),∇R1(Ẑt′)

)
= O

(
1

K2

)
(4.51)
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Substituting Eq. (4.37), Eq. (4.39) and Eq. (4.42) into Eq. (4.35), we arrive at

the final expression for the variance of gradient estimate:

Var
[
∇ log Ẑ

]
=

1

K

{
T∑
t=1

E

[(
∇w

1
t

Zt

)2
]

+
T∑
t=1

T∑
t′ 6=t,t′=1

√
Var

[
∇w

1
t

Zt

]
Var

[
∇
w1
t′

Zt′

]}
+O

(
T 2

K2

)
(4.52)
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Chapter 5

Variational Combinatorial

Sequential Monte Carlo for

Bayesian Phylogenetic Inference

Bayesian phylogenetic inference is often conducted via local or sequential search algorithms

such as random-walk Markov chain Monte Carlo or Combinatorial Sequential Monte Carlo.

These methods perform inference by sampling tree topologies and branch lengths, how-

ever when used to perform optimization or evolutionary parameter learning, MCMC often

requires long runs with inefficient state space exploration. Here we introduce Variational

Combinatorial Sequential Monte Carlo (Vcsmc), a novel Variational Inference method that

simultaneously performs both parameter inference and model learning. Vcsmc uses sequen-

tial search to construct a variational objective defined on the composite space of phylogenetic

trees. We show that Vcsmc is computationally efficient and explores higher probability

spaces when compared with state-of-the-art Hamiltonian Monte Carlo methods.

This work, which was published as [84] was done jointly with Liyi Zhang and Itsik Pe’er.

An implementation can be found online at https://github.com/amoretti86/phylo.
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CHAPTER 5. VARIATIONAL COMBINATORIAL SMC

5.1 Introduction

Bayesian phylogenetic inference plays a central role in molecular evolutionary biology due

to its ability to represent evolutionary uncertainty and incorporate prior information. In-

ference often involves three distinct tasks: (i) sampling from a discrete distribution to

approximate an intractable summation over tree topologies, (ii) for each tree, integrating

over the continuous parameters and branch lengths that govern the evolutionary model of

interest, and (iii) performing parameter estimation or model learning. The sampling of tree

topologies and branch lengths is typically accomplished via local search algorithms such as

random-walk Markov chain Monte Carlo [42] or sequential search algorithms such as Combi-

natorial Sequential Monte Carlo [6]. Sophisticated proposal methods based on Hamiltonian

Monte Carlo or particle MCMC have been suggested to sample from composite spaces and

infer evolutionary parameters [20, 23, 118], however these methods are often difficult to

implement, slow to converge and heavily dependent upon heuristics.

Variational Inference (VI) is a computationally efficient alternative to MCMC that si-

multaneously performs both inference and model learning. VI posits an approximate distri-

bution and then recovers parameters of both the model and approximation by maximizing

a lower bound to the log marginal likelihood. One approach to learning variational distri-

butions on phylogenetic trees is to parameterize a tree as a sequence of subsplits, or ordered

partitions on clades [128] and to recast the problem as a Bayesian network. One drawback

of this setup is that the support of the conditional probability tables scales exponentially

with the number of taxa [127]. A body of recent work has established connections be-

tween VI and sequential search by defining a variational family of distributions on hidden

Markov models, where Sequential Monte Carlo is used as the marginal likelihood estima-
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tor [66, 89, 85, 86]. Here we introduce Variational Combinatorial Sequential Monte Carlo

(Vcsmc), a novel variational objective and structured approximate posterior defined on

the composite space of phylogenetic trees. Unlike standard variational SMC methods, our

objective is constructed from partial states where the likelihood is not directly available

and where states are formed by sampling from a large combinatorial set. Vcsmc provides

suitable estimates of the posterior when applied to a benchmark dataset of primate mi-

tochondrial DNA and performs favorably when compared with the state of the art HMC

methods.

5.2 Background

Phylogenetic Trees We wish to infer a latent bifurcating tree that describes the evolu-

tionary relationships among a set of observed molecular sequences. A phylogeny is defined

by a tree topology τ and a set of branch lengths B. A tree topology is defined as a connected

acyclic graph (V,E) where V is a set of vertices and E is a set of edges. Leaf nodes denote

vertices of degree 1 and correspond to observed taxa. Internal nodes designate vertices of

degree 3 (one parent and two children) and represent unobserved taxa (e.g. DNA bases of

ancestral species). A special vertex called the root node of degree 2 (two children) represents

the common evolutionary ancestor of all taxa.

For each edge e ∈ E, we associate a branch length, denoted b(e) ∈ R>0, b(e) ∈ B.

The branch length captures the intensity of the evolutionary changes between two vertices.

An ultrametric tree is one with constant evolutionary rate along all paths from v to its

descendants. More formally we define an ultrametric tree as one which satisfies the following:

for all v ∈ V and descendants of v denoted x, x′, we have that b(v, x) = b(v, x′). Nonclock

trees are general trees that do not require ultrametric assumptions. In this work we focus on
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phylogenetic inference methods for nonclock trees as these are most pertinent to biologists.

Bayesian Phylogenetic Inference Let Y = {Y1, · · · , YM} ∈ ΩNxM denote the observed

molecular sequences with characters in Ω of length M over N species. Bayesian inference

requires specifying the prior density and likelihood function over tree topology τ , branch

length set B and generative model parameters θ to write the joint posterior,

P (B, τ, θ|Y) =
P (Y|τ,B, θ)P (τ,B|θ)P (θ)

P (Y)
. (5.1)

The prior is uniform over topologies and a product of independent exponential distributions

over branch lengths with rate λbl. The evolution of each site is modeled independently using

a continuous time Markov chain with rate matrix Q. Let ζv,m denote the state of genome

for species v at site m and define the evolutionary model along branch b(v → v′):

P (ζv′,s = j|ζv,s = i) = exp (b(e)Qi,j) . (5.2)

The likelihood of a given phylogeny P (Y|τ,B, θ) =
M∏
i=1

P (Yi|τ,B, θ) can be evaluated in

linear time using the sum-product or Felsenstein’s pruning algorithm [25] via the formula:

P (Y|τ,B, θ) :=
M∏
i=1

∑
ai

η(aiρ)
∏

(u,v)∈E(τ)

exp
(
−bu,vQaiu,a

i
v

)
, (5.3)

where ρ is the root node, aiu is the assigned character of node u, E(τ) represents the

set of edges in τ and η is the prior or stationary distribution of the Markov chain. The

normalization constant P (Y) requires marginalizing the (2N − 3)!! distinct topologies [112]

which is intractable.

Combinatorial Sequential Monte Carlo CSMC is a method to sample from a proba-

bility measure π̄ by performing inference on a sequence of increasing probability spaces [23].

The target measure π̄ and its normalization constant ‖π‖ corresponding to the numerator
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A B C D A B C D A B D C

Figure 5.1: An example of the partial state s = {A,B} for four taxa {A,B,C,D} illustrated

using its dual representation D(s). The dual state D(s) ⊆ T corresponds to the three

complete tree topologies. (left): {{A,B}, {C,D}} (center): {{A,B}, {A,B,C}} and (right):

{{A,B}, {A,B,D}}.

and denominator in Eq. (5.1) are approximated by sequential importance resampling in

R steps. Unlike standard SMC methods, the target is defined on a combinatorial set (the

space of tree topologies T ). K sampled partial states (or particles) {sr,k}Kk=1 ∈ Sr are drawn

at each rank r and used to form a discrete positive measure,

πr,k = ‖πr−1,k‖
1

K

K∑
k=1

wr,kδs,k(s) ∀s ∈ S, (5.4)

where δs is the Kronecker delta and wr,k are the importance weights. Resampling ensures

that particles remain on areas of high probability mass. Each resampled state s̃r−1,k of

rank r − 1 is then extended to a state of rank r by drawing from a proposal distribution

sr,l ∼ ν+sr,k : S → [0, 1]. The importance weights are computed as follows:

wr,k = w(s̃r−1,k, sr,k) =
π(sr,k)

π(s̃r−1,k)
·
ν−sr,k(s̃r−1,k)

ν+s̃r,k(sr,k)
, (5.5)

where ν−sr,k is a probability density over S correcting an over-counting problem [23]. The

procedure is summarized in Algorithm 1. An unbiased estimate for the marginal likelihood

can be constructed from the weights which converges in L2 norm,

ẐCSMC := ‖πR,K‖ =
R∏
r=1

(
1

K

K∑
k=1

wr,k

)
→ ‖π‖. (5.6)
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Algorithm 1 Combinatorial Sequential Monte Carlo

0. Initalization. ∀ k, s0,k ← ⊥, w0,k ← 1/K;

1. for r = 0 to |X| − 1 do

2. for k=1 to K do

a. Resample partial states

s̃r−1,1, · · · , s̃r−1,k ∼ π̄r−1,k

b. Extend partial states

sr,k ∼ ν+s̃r−1,k

c. Compute weights for new particles

wr,k = w(s̃r−1,k, sr,k) =
π(sr,k)

π(s̃r−1,k)
·
ν−sr,k(s̃r−1,k)

ν+s̃r,k(sr,k)

end

end

Variational Inference VI is a technique for approximating the posterior logPθ(B, τ |Y)

when marginalization of latent variables is not analytically feasible. By introducing a

tractable distribution Qφ(B, τ |Y) it is possible to form a lower bound to the log-likelihood:

logPθ(Y) ≥ LELBO(θ, φ,Y) := E
Q

[
log

Pθ(Y,B, τ)

Qφ(B, τ |Y)

]
. (5.7)

Auto Encoding Variational Bayes [58] (Aevb) simultaneously trainsQφ(B, τ |Y) and Pθ(Y,Z).

The expectation in Eq. (5.7) is approximated by averaging Monte Carlo samples from

Qφ(B, τ |Y) which are reparameterized by evaluating a deterministic function of a φ-independent

random variable. When the ratio Pθ(Y,B, τ)/Qφ(B, τ |Y) is concentrated around its mean,

Jensen’s inequality produces a tighter bound. The Importance Weighted Auto Encoder [10]

(Iwae) leverages this observation by using estimators with the same mean that are more

concentrated. K samples are drawn from the proposal and averaged over probability ratios
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to form multi-sample objectives.

5.3 Variational Combinatorial Sequential Monte Carlo

Variational Objective. The idea of Vcsmc is to simultaneously train the target and

proposal distribution by maximizing a lower bound to the data log-likelihood, while using

Csmc as the marginal likelihood estimator. We begin by defining a structured approximate

posterior which factorizes over rank events. To do so, we will change notation from Csmc

writing the resampled state s̃r−1,k as s
akr−1

r−1 to make explicit the dependency of s̃r−1 on its

resampled index akr−1. Let qφ(sr,k|s
akr−1

r−1 ) denote conditional the probability of state sr,k

given the resampled state at the previous rank s
akr−1

r−1 . Subscripts φ and ψ denote discrete

and continuous proposal parameters respectively:

Qφ,ψ
(
S1:K1:R

)
:=

(
K∏
k=1

qφ(s1,k) · qψ(B1,k)

)
(5.8)

×

(
K∏
k=1

N−1∏
r=1

qφ

(
sr,k|s

akr−1

r−1

)
· qψ

(
Br,k|B

akr−1

r−1

)
·Categorical

(
akr−1|w̄1:K

r−1

))
.

At the final rank event, an unbiased approximation to the likelihood is formed by aver-

aging over importance weights, which, in turn represent the sample phylogenies that are

constructed iterativly. A multi-sample variational objective formed is via the lower bound:

LV CSMC := E
Q

[
log ẐV CSMC

]
, ẐV CSMC := ‖πR,K‖ =

R∏
r=1

(
1

K

K∑
k=1

wr,k

)
(5.9)

The presence of the Discrete densities over partial states presents a challenge for vari-

ational reparameterization. Unlike standard variational SMC methods, states are formed

by sampling from a large combinatorial set. We take two approaches, the first is to drop

discrete terms from the gradient estimates. The second is to reparameterize these terms as

Gumbel-Softmax random variables forming a differentiable approximation through a con-

102



CHAPTER 5. VARIATIONAL COMBINATORIAL SMC

vex relaxation over the simplex. Continuous proposal terms are drawn by evaluating a

deterministic function of a ψ-independent random variable.

Implementation Details. Constructing the objective LV CSMC is done iteratively in

three steps. The ExtendPartialState procedure requires selecting two partial states

to coalesce by sampling without replacement. This is accomplished by defining Gumbel-

Softmax random variables. The uniform log-probability for each index is perturbed by

adding independent Gumbel distributed noise, after which the largest two elements are

returned. For example let U ∼ Uniform(0, 1), we then form G = γ − log(− logU) so

that G can be reparameterized as G′ = G + γ. The Resample procedure can also be

reparameterized similarly by defining Gumbel-Softmax random variables.

The ComputeWeights step requires some care. In order to compute importance

weights, the likelihood of a partial state must be computed using the sum-product algorithm,

however the probability measure π is only defined on the target space of trees T , and

not the larger sample space of partial states S := ∪r Sr. Intuitively, the sum-product

or pruning algorithm yields a maximum likelihood estimate for an evolutionary tree, but

partial states contain disjoint subtrees or disjoint leaf nodes. To illustrate this, consider

the jump chain for the partial state {A,B} defined on the four taxa {A,B,C,D} written

as s1 = {{A,B}, {C}, {D}}. This partial state admits three possible evolutionary trees

(depicted in Fig 5.1 of the Appendix). The likelihood for each of these phylogenies contains

a factor corresponding to the message passed from {A,B} to the parent node Pa(A,B). At

the root node, in order to form the likelihood from a distribution over discrete characters,

the pruning algorithm evaluates the inner product of Pa and the prior η (the stationary

state of Q). One extension of the target measure π into a measure on S suggested by [23]
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Figure 5.2: Illustration of the Csmc procedure to sample topologies. (Top): The

graphical model showing dependencies between the observed taxa (DNA bases) O :=

{A}, {B}, {C}, {D} and the hidden state (DNA bases of the ancestral species) Sr|Sr−1.

(Bottom): Illustration of the topology sampled for a single particle. At each rank event,

two posets are selected uniformly to coalesce. The sum-product algorithm is then applied

to marginalize over ancestral nodes. A probability is assigned to each disjoint set of clades

by multiplying the distribution over characters with η. The probability of he sampled state

is the product of all of the connected components in the forest.

is to treat all elements of the jump chain as trees (in this case, the subtree consisting of

{A,B} or Pa(A,B) and non-coalescing singletons {C} and {D}). The contribution of each

of the elements in the jump chain to the likelihood is multiplied by taking the inner product

of each distribution over characters with η. This extension has the advantage of passing

information from the non-coalescing elements to the local weight update. We explore other

extensions in future work.
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(a) Log likelihood across epochs

S8S10S9
S11S7 S2 S3 S4 S5 S6

S0 S1

(b) Phylogeny sampled from the posterior

Figure 5.3: (Left): Log likelihood values for K = {4, 8, 16, 32, 64, 128} samples of Vcsmc

on the primates data averaged across 3 random seeds. Higher values of K produce tighter

ELBO / larger log likelihood values with lower stochastic gadient noise. Vcsmc with

K ≥ 16 outperforms probabilistic path Hamiltonain Monte Carlo (ppHMC) which is shown

(yellow) for comparison. (Right): A single nonclock phylogeny sampled from the posterior

with probability proportional to the importance weights at the final step. From left to

right: M Mulatta, M Sylvanus, M Fascicularis, Saimiri Sciureus, Macaca Fuscata, Homo

Sapiens, Pan, Gorilla, Pongo, Hylobates, Tarsius Syrichta, Lemur Catta. The leftmost clade

partitions monkeys whereas the central and right clades partition hominids and prosimians

respectively.

5.4 Results

Primate Mitochondrial DNA. We evaluate Vcsmc on a benchmark dataset of nu-

cleotide sequences of homologous fragments of primate mitochondrial DNA [35]. The

dataset consists of 12 taxa {S0, · · · , S11} over 898 sites admitting 13,749,310,575 distinct

tree topologies. The set of taxa includes five species of homonoids, four species of old world

monkeys, one species of new world monkey and two species of prosimians. Vcsmc is run

with K = {4, 8, 16, 32, 64, 128} particles, averaged over 3 random seeds. Fig 5.3 (left) shows

higher values of K produce larger log likelihood values (tighter ELBO values) with lower
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stochastic gradient noise. Vcsmc with K ≥ 16 outperforms probabilistic path Hamiltonain

Monte Carlo (ppHMC) shown (yellow trace) for comparison. Fig 5.3 (right) illustrates a

single phylogeny sampled from the posterior with probability proportional to the impor-

tance weights at the final step. From left to right: M Mulatta, M Sylvanus, M Fascicularis,

Saimiri Sciureus, Macaca Fuscata, Homo Sapiens, Pan, Gorilla, Pongo, Hylobates, Tarsius

Syrichta, Lemur Catta. The leftmost clade partitions monkeys whereas the central and

right clades partition hominids and prosimians respectively.

5.5 Conclusion

We have sketched Vcsmc, a method for model inference and parameter learning in Bayesian

phylogenetics. To our knowledge, Vcsmc is the first method to define a variational objective

on the composite space of phylogenetic trees using Sequential Monte Carlo. Vcsmc is

written in Tensorflow. An implementation is available online at https://github.com/

amoretti86/phylo.
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Chapter 6

Summary and Future Work

This thesis has developed four statistical models and algorithms for approximate inference

of spatial statistics and nonlinear dynamics. We summarize the main contributions below

and discuss open questions as well as opportunities for future work.

• Autoencoding Topographic Factors.

– We have extended Topographic Factor Analysis by proposing Aetf, an amor-

tized variational inference method that separates a set of overlapping signals into

spatially localized source functions without knowledge of the original signals or

the mixing process. We show that under this setup, model parameters scale in-

dependently of dataset size. Aetf produces significant improvements over Tfa

in reconstruction error.

• Nonlinear Evolution via Spatially Dependent Linear Dynamics.

– We have developed Vind, a variational inference framework that extends fLDS

by modeling nonlinear evolution in the latent space. Vind uses a structured ap-

proximate posterior describing spatially-dependent linear dynamics and leverages
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the fixed-point iteration method to speed up convergence.

– We have demonstrated Vind on single cell voltage data with state-of-the-art

results in reconstruction error and explored the geometry of nonlinear spiking

dynamics. We quantified the performance of the latent dynamics Vind by pre-

dicting future neural activity, substantially outperforming current methods.

• Particle Smoothing Variational Objectives.

– We have presented Svo, the first variational inference method based on particle

smoothing. In doing so, we have designed a novel backward simulation technique

and a variational objective constructed from a smoothed approximate posterior.

Svo sub-samples auxiliary random variables to enhance the support of the pro-

posal and increase particle diversity.

– We have developed a theoretical and empirical analysis of the signal to noise

ratio (Snr) in filtering Smc, which motivates our choice of biased gradient esti-

mators. We prove that introducing bias by dropping Categorical terms from

the gradient estimate or using Gumbel-Softmax mitigates the adverse effect on

the Snr.

– We demonstrated our approach on three benchmark latent nonlinear dynamical

systems tasks using a quantitative metric, rigorously showing that our algorithm

consistently outperforms filtered objectives when given fewer Monte Carlo sam-

ples.

• Variational Combinatorial Sequential Monte Carlo.

– We have sketched Vcsmc, a method for simultaneous model inference and pa-
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rameter learning in Bayesian phylogenetics. We established connections between

discrete and continuous variational sequential search. To our knowledge, Vcsmc

is the first method to define a variational objective on the composite space of

phylogenetic trees using Sequential Monte Carlo.

– We have shown that Vcsmc provides suitable estimates of the posterior when

applied to a benchmark dataset of primate mitochondrial DNA and performs

favorably when compared with the state of the art HMC methods.

An alternative interpretation of Svo involves twisting, or changing the sequence of

intermediate target distributions to maximize the accuracy of the estimate ẐSV O. For a

review of twisting, see [92]. The Svo algorithm can be thought of as performing twisting by

using information from future observations to change the target density [91]. One direction

for future work is to develop auxiliary or twisted backwards variational SMC methods

without costly subsampling.

Twisting can also be used in developing extensions to Vcsmc. The Csmc algorithm

samples vertices to coalesce uniformly from the proposal defined in Eq. (5.8). Another direc-

tion for future work thus involves twisting the target density in Vcsmc by using information

from future iterations to guide sampling from the proposal distribution. It would also be

useful to develop alternative extensions of the probability measure π defined in Eq. (5.4)

from the space of partial states to the space of complete phylogenies. We find that one

limitation of the natural forest extension introduced by [23] is that the likelihood estimate

increases across rank events. Twisting may also play a role in designing novel methods of

assigning probabilities to partial states that yield unbiased likelihood estimates.

As a variational autoencoder, Vcsmc has the ability to accomodate expressive genera-
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tive models of evolution. Another direction for future work involves pararameterizing the

components of the transition rate matrix with a deep generative model or with the output

of a neural network. In this setup, the evolution of each site is modeled as a nonlinear func-

tion of spatial position on the genome and learning can be sped up via stochastic gradient

descent with minibatch iteration. There also exist exciting opportunities for applications

to betacoronavirus and spike glycoprotein data.
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Appendix A

Intractability of VIND

Consider a parent distribution that factorizes across two time steps. Using Eq. (3.20),

Qφ,ϕ(Z|X) can be written as:

Qφ,ϕ(Z|X) = κφ,ϕ(X)Q̃φ,ϕ(Z|X) , (A.1)

where X = {x1,x2} and

Q̃(Z|X) = g(z0|x0)g(z1|x1) · h0(z0)h(z1|z0) , (A.2)

with the normalization constant:

κ−1φ,ϕ(X) =

∫
Q̃(Z|X) dZ . (A.3)

We illustrate that direct integration of Q̃, as in Eq. (A.3), is intractable. For simplicity,

set the variance parameters to the identity:

Γ0 = Γ = σϕ = IdZ . (A.4)

Then, marginalizing first with respect to z1:∫
Q̃ dz1 = h(z0)g(z0|x0) · I(z0|x1) (A.5)

where I(z0|x1) is given by

I(z0|x1) =

∫
exp

{
−1

2
∆(z1|z0)T∆(z1|z0) −

1

2
∆(z1|x1)

T∆(z1|x1)

}
dz1 , (A.6)
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with

∆(z1|z0) = z1 − aφ(z0) , (A.7)

∆(z1|x1) = z1 − µϕ(x1) . (A.8)

Evaluating the integral,

I(z0|x1) =
1

(2π)dZ
exp

{
−1

4

(
aφ(z0)− µϕ(x1)

)2}
. (A.9)

The desired normalizing constant is then

κ−1 =

∫
h(z0)g(z0|x0)I(z0|x1) dz0 . (A.10)

The exponential in the integrand includes terms in aφ(z0) and aφ(z0)
2 which are non-

quadratic in z0. These terms ensure that marginalization is intractable. However, these are

required by Vind’s factorization of the approximate posterior inherited from the Generative

Model.
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Appendix B

FPI Convergence

The Fixed-Point Iteration method. The Fixed-Point Iteration (Fpi) is a general

method for numerically approximating solution of k nonlinear equations in k independent

variables:

Fi(x) = 0 . i = 1, . . . , k (B.1)

where x ∈ Rk. Rewriting the equation in the form

x = T (x) (B.2)

is always possible for some T : Rk → Rk. An initial estimate x0 is chosen and the Fpi

algorithm produces the sequence xn by repeatedly applying T :

xn = T (xn−1) . (B.3)

If this sequence converges, then it is Cauchy and its limit is the solution of Eq. (B.2).

Theorem 3. (PBC) Let T be Lipschitz-continuous in U ⊂ X. That is

dX
(
T (x), T (y)

)
≤ K · dX(x, y) , for x, y ∈ U (B.4)

for some real number K. If K ∈ [0, 1) then T has a unique fixed point x∗ ∈ U and the

Picard sequence {xn} for n = 0, . . . ,∞ where

xn = T (xn−1) = Tn(x0) (B.5)

converges to x∗ for any initial guess x0 ∈ U .
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It can be further shown that the rate of convergence is exponential in the iteration number

dX(xn, x
∗) ≤ Kn · dX(x0, x

∗) . (B.6)

When the PBC theorem holds, we say the map T is a K-contraction.

Let Jij(x) be the Jacobian of the map T , i, j = 1, . . . , k. Let {λi(x0)} be the eigenvalues

of Jij evaluated at x0. A common way to show that a mapping T : Rk → Rk is a contraction

under the Euclidean distance in a neighborhood of x0 ∈ Rk, is to show that maxλi < 1.

In turn this can be proven using the Gershgorin Circle Theorem that gives a bound to the

spectrum of a square matrix A:

Theorem 4. (Gershgorin) Let A be an n× n matrix with entries in C. For each i, let Di

be the disc,

Di =

z ∈ C : |z −Aii| ≤
∑
j 6=i
|Aij |

 , (B.7)

then the eigenvalues of A lie in D1 ∪D2 ∪ · · · ∪Dn.

It follows that an upper bound on the maximum absolute value for the eigenvalues of A

is given by:

max
i
λi ≤ max

i

∑
j

|aij | . (B.8)

The FPI iteration convergence is satisfied if the following holds:

max
i

∑
j

|Jij | = max
i

∑
j

∣∣∣∣∂Ti∂xj

∣∣∣∣ < 1 . (B.9)
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Appendix C

Implementation Details for VIND’s

FPI Convergence

The results of Chapter 3 were obtained by setting α = 10−2. We find that for Llds/Vind

to converge, the FPI map rφ,ϕ:

P = rφ,ϕ(P,X) (C.1)

rφ,ϕ(P,X) = Λ̃−1 ·Y(P) (C.2)

Λ̃ = Λ + S(Z) (C.3)

Y(P) = ΛϕMϕ −
1

2
PT ∂Sφ(P)

∂P
P . (C.4)

must be in the contractive regime within a domain D, D ⊂ RT×dZ . As discussed in App. B,

a necessary condition for this to occur is that the Jacobian J of the map rφ,ϕ:

Jij(Z) =
∂ri
∂Zj

, for i, j ∈ 1, . . . , T × dZ . (C.5)

satisfies Eq. (B.9).

We note that when α = 0, logQφ,ϕ(Z|X) is a quadratic form in Z. In this case, Vind

reduces to fLDS and the FPI is a convex optimization problem. Eq.(3.23) is linear with

a closed form solution. As a result, deviations from convergence and convexity are always

O(α).

To guarantee that the FPI is in a contractive regime, the entries Jij should be suppressed

both by the small hyperparameter α and by the gradients of the deep neural network Bφ(zt),
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Eq. (3.29). Dropping the subleading terms in Eq. (C.4) proportional to the gradient of S(Z):

∂ri
∂Zj

' Λ̃−1
∂Λ̃

∂Zj
Λ̃−1 ·ΛMϕ ' Λ̃−1ik

∂Λ̃kl

∂Zj
· rl . (C.6)

Let L be the linear dimension of a bounding box in the phase space subsuming the latent

paths,

r ∼ L . (C.7)

Let σ2 be the typical scale of the entries of the diagonal recognition covariance matrix Λ,

and let σ2ev = Γ−1 represent the typical scale of the evolution covariance. We consider the

case in which Λ & S(Z) for simplicty, so that in magnitude,

Λ̃−1 ∼ σ2 · I (C.8)

Let ∆ be the typical rate of variation of the entries of the matrix B(zt). Then

∂Λ̃kl

∂Zj
∼ α∆

σ2ev
Vklj (C.9)

where Vklj is a sparse tensor and only the (j, j), (j, j + 1) and (j + 1, j) blocks in Λ̃kl can

depend on Zj . Substituting terms into Eq. (B.9) produces a simple rule that suggests when

the FPI is in the contractive regime

max
i

∑
j

∣∣∣∣ ∂ri∂Zj

∣∣∣∣ ∼ c σ2σ2ev α∆L . (C.10)

where c is an O(1) constant.

In the experiments, the hyperparameters and architecture of the evolution network are

chosen so that

α∆� σ2ev
Lσ2

(C.11)

at initialization with good results.
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