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Abstract 

Integration of Functional Genomic Data in Genetic Analysis 

Siying Chen 

 

 Identifying disease risk genes is a central topic of human genetics. Cost-effective exome 

and whole genome sequencing enabled large-scale discovery of genetic variations. However, the 

statistical power of finding new risk genes through rare genetic variation is fundamentally 

limited by sample sizes. As a result, we have an incomplete understanding of genetic architecture 

and molecular etiology of most of human conditions and diseases. In this thesis, I developed new 

computational methods that integrate functional genomics data sets, such as epigenomic profiles 

and single-cell transcriptomics, to improve power for identifying genetic risks and gain more 

insights on etiology of developmental disorders. The overall hypothesis that disease risk genes 

contributing to developmental disorders are bottleneck genes under normal development and 

subject to precise transcriptional regulations to maintain spatiotemporal specific expression 

during development. In this thesis I describe two major research projects. The first project, 

Episcore, predicts haploinsufficient genes based on a large integrated epigenomic profiles from 

multiple tissues and cell lines by supervised machine learning methods. The second one, A-risk, 

predicts plausibility of being risk genes of autism spectrum disorder based on single-cell RNA-

seq data collected in human fetal midbrain and prefrontal cortex.  Both methods were shown to 

be able to improve gene discovery in analysis of de novo mutations in developmental disorders. 



 
 

Overall, my thesis represents an effort to integrate functional genomics data by machine learning 

to facilitate both discovery and interpretation of genetic studies of human diseases. We believe 

that such integrative analysis can help us better understand genetic variants and disease etiology.  
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Figure 2.3 Property of mutation intolerance and selection of known haploinsufficient 

genes used in training. The known genes are divided into two groups based on ExAC pLI 

scores: above (red) and below (blue) 0.9.   (A) The number of expected loss of function 

(exp_LoF)(Lek et al., 2016) distribution of genes with pLI >0.9 or pLI<0.9. The exp_LoF 

value is proportional to background mutation rate, which in turn is largely determined by 

transcript size. Known HIS genes with pLI < 0.9 have significantly smaller exp_LoF than an 

average gene, and the ones with pLI > 0.9 have much larger exp_LoF.  (B) The Shet (average 

select coefficient of heterozygous loss of function variants in a gene) distribution of genes 

with pLI>0.9 or pLI<0.9. Shet values. Known HIS genes with pLI < 0.9 have intermediate Shet: 

larger than than an average gene but smaller than the ones with pLI > 0.9. ................................. 23 

Figure 2.4 A Random Forest model to predict haploinsufficiency. (A) A flowchart of the 

method. (B) ROC curve from 10-fold cross-validation. The red curve is the average of 100 

randomized cross-validation runs, with error bar showing standard deviation. The mean and 

median AUC of the 100 runs are 0.88 and 0.89, respectively. ..................................................... 24 

Figure 2.5 Performance of various machine learning approaches and concordance of 

Episcore with pLI. (A-B) ROC curve of 10-fold cross-validation from applying SVM (A) or 

SVM with Lasso feature selection (B) to the same epigenetic data as used in the Random 

Forest model. The red curve is the average of 100 randomized cross-validation runs, with 

error bar showing standard deviation. (C) pLI distribution of Episcore < 0.4 and Episcore >0.6 

genes. The genes with Episcore > 0.6 are much more likely to have pLI values close to 1 than 

the genes with Episcore < 0.4, and less likely to have pLI values close to 0 than the genes 

with Episcore <0.4. (D) The distribution of background LGD mutation rate (log10). The 

genes with Episcore>0.6 and pLI < 0.5 have similar background mutation rate as an average 
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gene, whereas the genes with pLI > 0.5 have higher background mutation rate, and the ones 

with pLI > 0.9 have even higher background rate. (E) The distribution of Shet: genes with 

Episcore >0.6 and pLI < 0.5 have intermediate Shet values that are larger than an average 

gene and smaller than the genes with pLI>0.5. The genes with Episcore < 0.4 on average have 

reduced Shet compared to other genes. ......................................................................................... 27 

Figure 2.6 Assessment of the performance of Episcore in variant prioritization using de 

novo mutation data. (A-B) Comparison of Episcore, pLI, Shet and heart expression level 

(HE) in variant prioritization using CHD exome sequencing data. In (A), burden refers to the 

ratio between the number of de novo LGD variants observed in top genes ranked by each 

metric and the number of expected de novo LGD variants due to background mutation. 

Episcore has higher enrichment in top 1000-2500 genes and similar enrichment afterwards. 

The grey dash line indicates the burden of de novo LGD variants in all genes. (B) Precision-

recall-like curves. True positive is the difference between the observed and expected de novo 

LGD variants. Precision is calculated by dividing the number of true positives by the number 

of observed de novo LGD variants. The blue curve for Episcore shifts upright than pLI and 

Shet, showing Episcore has better recall with precision and vice versa. (C-D) Episcore has 

less bias towards genes with longer CDS length (C) or larger background mutation rate (D) 

than pLI. Grey histogram in the background represents CDS length or mutation rate of all 

genes in the genome. The blue curve for pLI shifts right, while the curves for Episcore and 

HE are similar to the distribution of all genes and known HIS genes. (E-F) A combination of 

Episcore and pLI, the meta-score, has better performance in variant prioritization when 

benchmarked using DDD exome sequencing data. Meta-score is the output from a logistic 
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regression model, using Episcore and pLI as input. Enrichment, true positive and precision 

were calculated similarly to (A-B). ............................................................................................... 29 

Figure 2.7 Using empirical data to benchmark the performance of Episcore in variant 

prioritization. (A) Comparison of enrichment burden between Episcore and pLI, shown with 

95% confidence intervals calculated based on Poisson distribution. (B) Enrichment of CHD 

silent de novo variants is close to 1 regardless of Episcore rank. (C-D) Comparing Episcore to 

prediction of haploinsufficient genes from two previous studies based on protein interaction 

networks (Huang et al., 2010; Steinberg et al., 2015), using CHD exome sequencing data. The 

grey dash line indicates the burden of de novo LGD variants acorss the genome. (E-F) 

Comparison of Episcore, pLI, Shet and heart expression level excluding known HIS genes 

used in training. Episcore achieves better performance than mutation intolerance based 

metrics. (G) The distribution of Shet (log10) of genes that have LGD de novo mutations in 

DDD ID and CHD cases. Overall a larger fraction of genes with mutations in DDD ID cases 

have high Shet values, indicating the disease-causing genes are under more severe selection on 
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Figure 2.8 Episcore distribution of genes with de novo LGD variants in DDD CHD 

cohort and PCGC CHD cohort. Data in an earlier version of PCGC CHD cohort is depleted 

from DDD CHD data due to duplication. The distribution of genes with single LGD variant in 

PCGC cohort and at least one LGD or D-mis variant in DDD CHD cohort are close to the 

distribution of genes with multiple LGD variants in PCGC cohort, suggesting that Episcore 

facilitates discovery of de novo risk genes with only one LGD variant. For comparison, genes 

with de novo single LGD variant detected from an SSC control cohort have lower Episcore 
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Figure 2.9 Contribution of epigenomic features to Episcore prediction. (A) Spearman 

correlation between epigenomic feature and Episcore. Features used in the Random Forest 

model, including H2A.Z, H3K27me3, H3K4me3, H3K9ac and the number of interacting 

enhancers, all have positive correlation with Episcore. Spearman correlation coefficients 

between gene expression level, measured in RPKM (reads per kilobase per million reads), and 

Episcore were also plotted for comparison. (B) The importance of each tissue in generating 

Episcore is measured by average Z-score, which is converted from Spearman correlation 

coefficients between epigenomic feature and Episcore. Each dot represents one cell line or 

tissue type indicated by colors. Stem cells and neural and fetal tissues are the most important 

tissue and cell types in Episcore prediction. (C) The epigenomic profile of an example HIS 

gene, RBFOX2, and a house-keeping gene, CWC22. Each small box represents 100bp region 

around TSS and the shade of the color reflects averaged fold change of reads between ChIP-

seq library and control samples. RBFOX2 has a broad expansion of epigenomic marks while 

CWC22 is not, and RBFOX2 shows more tissue-specific regulation but CWC22 has narrow 

peaks in active marks across all the tissues. ................................................................................. 36 

Figure 2.10 The importance (mean decrease of Gini index) of each feature to Episcore 

prediction.  We obtained the importance values from the randomForest R package. Features 

are grouped by epigenomic molecular entities. For each group, we summarize the distribution 

of importance metric across cell and tissue types. Active promoter and enhancer features 

(H3K4me3, H3K9ac, H2A.Z, Enhancer) show higher importance than repressive promoter 
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Figure 3.1 Quality of single cell RNA-seq data. The number of log10 based UMIs in each 

cell from the two data sets against the number of genes detected. The detected genes are 
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novel candidate genes by expression level in cell types from adult cortex middle temporal 

gyrus (MTG) with laminar information. Genes (shown in rows) form 4 major clusters, labeled 

from 1 to 4 on the left. The dash line marks the height cutting the hierarchical tree. Cell types 

are clustered as well and are labels in the format as “major cell type.located layers.marker 

genes”. Exc, excitatory neurons. Inh, inhibitory neurons. Astro, astrocytes. OPC, 

oligodendrocyte precursor cells. Oligo, oligodendrocytes. Micro, microglia. Endo, endothelial 

cells.  The color (blue to red) of the heatmap indicates expression level of a gene in the cell 

type, calculated as the fraction of cells that have ≥1 UMI mapped to the gene in the cell type. 

Almost all genes in cluster 1 have low expression in all cell types. Most genes in cluster 2 are 

specifically expressed in excitatory neurons in deep layers (layer 4 to 6). Cluster 3 genes are 

highly expressed in deep excitatory neurons and have expression in most of neuronal cell 

types.  Cluster 4 genes are highly expressed in almost all neuronal cell types.  Quadrant gene 

groups stratified by Frisk and pLI are labeled by the color bar on the right side with A, B, C 

and D represented by orange, purple, yellow and green. (B) Number of known or candidate 

risk genes from quadrant gene groups in each expression clusters. Cluster 1 is enriched with 

quadrant B genes (high pLI and low A-risk); cluster 2 is enriched with quadrant C genes (low 

pLI and high A-risk); cluster 3 and 4 are enriched with quadrant A genes (high pLI and high 

A-risk).  (C) The distribution of observed over expected (O/E) number of loss of function 

variants in gnomAD database in the 4 expression clusters. Cluster 2 genes have a broad 

distribution of O/E. Genes in other clusters have generally small O/E. ....................................... 66 

Figure 3.11 Heatmap of expression level of known and candidate risk genes in fetal 

midbrain (A) and prefrontal cortex (B). Row orders are arranged as same as Figure 3.8.  

Cell types in midbrain are labeled as “h(human)cell type names_week” and cell types in 
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prefrontal cortex are labeled as “major cell type name_sub clusters_gestational weeks”, in 

concordance with original data. DA, dopaminergic neurons. NbM, medial neuroblast. OMTN, 

oculomotor and trochlear nucleus. NbGaba, neuroblast GABAergic. Gaba, GABAergic 

neurons. NbML, mediolateral neuroblasts. ProgFPL, progenitor lateral floorplate. ProgM, 

progenitor midline. RN, red nucleus. Rgl, radial glia-like cells. OPC, oligodendrocyte 

precursor cells. NProg, neuronal progenitor. Endo, endothelial cells. Peric, pericytes. ProgBP, 

progenitor basal plate. ProgFPM, progenitor medial floorplate. NPCs, neural progenitor cells. 

Exneurons, excitatory neurons. ..................................................................................................... 67 
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Chapter 1: Introduction 
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1.1 Overview 

Whole genome/exome sequencing (WGS/WES) has been developed to study genetic 

variations, especially effective in detecting mutation associated to genetic disorders. The 

experiments often collected samples in a trio design so mutations only present in child patients 

but not in parents can be identified and further studied on implicated risk genes. Those mutations 

are commonly called as “de novo” mutations. Studies on developmental disorders heavily 

impacted by genetic risk factors found that de novo Loss-of-function (LoF) mutations are indeed 

significant genetic contributions to diseases, such as autism spectrum disorder (ASD) (Iossifov et 

al., 2014) and congenital heart disease (CHD) (Jin et al., 2017). A WES study on de novo 

mutations in autism identified significant contribution from de novo likely-gene disrupting 

mutaitons (LGDs), or commonly called as LoF mutations (Figure 1.1). The enrichment rate of 

LGDs comparing cases and controls is 1.75 (0.21/0.12), which means about 43% LGDs are 

pathogenic variants. While the enrichment rate for missense variants is 1.15 (0.94/0.82), 

Figure 1.1 De novo variants comparison between affected patients and unaffected siblings. The 
event counts for likely-gene disrupting mutations (LGDs) are in the largest discrepancy between cases 
(ASD) and controls (Sib), indicating the contribution of de novo LGD mutations to autism. The figure is 
adapted from Iossifov et al., 2014. 
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indicating only 13% de novo missense variants are pathogenic. However, current statistic power 

has not been sufficient to distinguish the risk variants from the random ones because of limited 

recurrency of those variants (Figure 1.2). A previous study on de novo LGD mutations from 

CHD showed that only a small proportion of LGD variants located in the same gene which is the 

great hurdle to identify risk genes and study disease etiology (Jin et al., 2017). I am going to 

review in section 1.2 on some typical statistic methods developed for risk gene discovery.  

 The work in this thesis took a different perspective from functional genomic data to 

identify disease risk genes rather than utilizing genomic data solely. In the meantime, by 

integrating functional data such as epigenome or single-cell transcriptome, we can impart 

vulnerable cell types or developmental stages specific to a disease altogether. In section 1.3, gene 

dosage sensitivity is reviewed and the most implicated disease mechanism by genetic variants, 

haploinsufficiency has also been illustrated. In the following sections 1.4 and 1.5, I reviewed 

Figure 1.2 Risk gene discovery by recurrence is limited. The number of de novo LGD variants 
contained in each gene shows that only a small proportion of risk genes have recurrent mutations. 
Most risk variants only occur once, which makes it harder to identify. The figure is adapted from Jin 
et al., 2017. 
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how epigenomic modification regulates on transcription, what specific epigenomic patterns in 

haploinsufficient genes have and how important spatiotemporal expression is to development.  

 

1.2 Statistical genetics for risk gene discovery by de novo variants 

 To better utilize WES data and reveal more disease risk genes, an integrated empirical 

Bayesian model, TADA (Transmission And De novo Association), has been developed to 

borrow information across all genes to infer parameters that would be difficult to estimate for 

individual genes. Based on a Hierarchical Bayesian framework, false discovery rate (FDR) for 

each gene can be calculated and the confidence for association between genes and a particular 

disease can be measure by FDR (X. He et al., 2013). 

 In TADA, two major parameters, relative risk of a gene causing a disease γ and the 

proportion of disease risk genes across whole genome π, are estimated by the connection to 

variant fold enrichment (FE), which is calculated as the number of observed variants divided by 

the number of expected. Assuming the background mutation rate for each gene is µ, total number 

of genes in the genome is m and total number of sequenced samples is N, then 

the observed variants, X = πm×2γµN + (1-π)m×2µN 

the expected variants, Xe = πm×2µN + (1-π)m×2µN 

FE = 
𝑿𝑿
𝐗𝐗𝐞𝐞

 = π (γ - 1) + 1, γ ~ Gamma (γ̅ β, β) 

Since FE can be calculated from the data, β was fixed to 1 and estimate γ and π accordingly.  

Bayes factor can be estimated as following: 

B = 
𝑷𝑷(𝑿𝑿|𝑯𝑯𝑯𝑯)
𝑷𝑷(𝑿𝑿|𝑯𝑯𝑯𝑯)

 ~ 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝟐𝟐γµ𝑵𝑵)
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝟐𝟐µ𝑵𝑵)

 

H1 is alternative hypothesis and H0 is null, where γ = 1. 
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 From Bayes’ theorem, the posterior odds are equal to the Bayes factor times the prior 

odds: 

𝑷𝑷(𝑯𝑯𝑯𝑯|𝑿𝑿)
𝑷𝑷(𝑯𝑯𝑯𝑯|𝑿𝑿)

 = 𝑷𝑷(𝑿𝑿|𝑯𝑯𝑯𝑯)
𝑷𝑷(𝑿𝑿|𝑯𝑯𝑯𝑯)

 × 𝑷𝑷(𝑯𝑯𝑯𝑯)
𝑷𝑷(𝑯𝑯𝑯𝑯)

 

where 𝑷𝑷(𝑯𝑯𝑯𝑯) is estimated π, 𝑷𝑷(𝑯𝑯𝑯𝑯) is (1-π).  

 Assuming 𝑷𝑷(𝑯𝑯𝑯𝑯|𝑿𝑿) is q, 𝑷𝑷(𝑯𝑯𝑯𝑯|𝑿𝑿) is (1- q), the posterior probability of the null model is 

q0 = 1- q,  

q = 
𝑩𝑩π

𝑯𝑯−π +𝑩𝑩π
 

then per-gene based FDR can be calculated from q0, which is the sum of total q0 smaller than the 

current rank divided by the total number of genes with smaller q0.   

 Another Bayesian method, extTADA developed based on the previous TADA and 

enabled estimation of parameters from local gene groups using Markov Chain Monte Carlo 

(MCMC) (Nguyen et al., 2017), which allow stratification of the genome based on prior 

knowledge and parameter estimation can be closer to the true story. We adapted this approach in 

our A-risk project discussed in Chapter 3, for identification of autism risk genes.  

  

1.3 Gene dosage sensitivity 

Dosage-sensitive genes are a subset of genes in our genome that can cause a phenotypic 

effect by a change in gene dosage, either in the way of duplication or deletion (Rice & 

McLysaght, 2017). There are 4 major mechanism of dosage sensitivity of a gene, 

haploinsufficiency, promiscuous off-target interactions at high concentration, dosage balance and 

concentration dependency (Figure 1.3). I am going to discuss each of them in the following.  
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Haploinsufficiency describes a phenomenon where a hemizygous state does not produce 

sufficient gene product for wildtype phenotypes, proposed by Wright as a source of dominant 

negative effects(S. Wright, 1934). This is the most intuitive form of dosage sensitivity, which is 

also the main etiology of de novo loss-of-function (LoF) variants identified through whole 

exome sequencing (WES) and whole genome sequencing (WGS) since most of the variants 

occur in one allele due to extremely low frequency. One well-studied example of 

haploinsufficiency is the 22q11 deletion syndrome, causing serious neural abnormalities such as 

schizophrenia or schizoaffective disorders (Karayiorgou, Simon, & Gogos, 2010). A study on 

protein-coding variation in 60,706 humans measured the depletion of LoF mutations in this 

relatively healthy population and grouped the constraint genes by how much less the observed 

LoF variants compared to the expected (Lek et al., 2016). They defined haploinsufficient genes 

by that the number of observed LoF variants within the gene is less than 10% of the expected and 

they derived a pLI score measuring haploinsufficiency with about 3000 genes in pLI >= 0.9.  

By contrast, the presence of a surplus copy of a wild-type gene can also be deleterious 

(Figure 1.3b). For example, extra copies of the alpha-synuclein gene (SNCA) are associated with 

early-onset Parkinson’s disease, possibly owing to greater protein concentration increasing the 

likelihood of protein aggregation and further precipitating as insoluble amyloid fibrils (Irvine, 

El-Agnaf, Shankar, & Walsh, 2008).  
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Figure 1.3 A general introduction to gene dosage sensitivity. There are 4 main types 
of dosage sensitivity functional through different mechanisms. Adapted from 
Rice&McLysaght, 2017.  
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  On the other hand, some genes are sensitive to both situation and functioning within a 

concentration balance, which means they cause phenotypes when the copy number either 

increases or decreases. Protein components of large complexes can be particularly dosage-

balanced because incorrect ratios of subunits can devastate the biochemistry of the complex 

assembly, leading to a disfunction of the protein complex. Sometimes a large increase of a 

subunit can result in a decrease in productions of the protein complex, such as the phage HK97 

connector complex assembly (Cardarelli, Maxwell, & Davidson, 2011).  

 While the concentration balance can sometimes become an indicator for gene functions. 

For example, the pyruvate kinase M (PKM) is present in two isoforms during embryonic or adult 

stages. The spliced isoform is dependent on the concentration of hnRNP (heterogeneous nuclear 

ribonucleoproteins) proteins, where the concentration of the splicing regulator determines its 

location of binding and further determines which isoform is produced. A deleterious case is 

found in cancer cells with high concentrations of hnRNP proteins leading to the ectopic 

production of embryonic form (M. Chen, David, & Manley, 2012).  

The study described in Chapter 2 mainly focused on characterization of disease risk 

genes less tolerant to heterozygous mutations, in other words haploinsufficient genes. We found 

specific connections between transcriptional regulation of haploinsufficient genes and 

epigenomic modification, based on which we further predict on additional haploinsufficient 

genes that have been understudied. Discovery on risk genes implicated in other dosage 

sensitivity mechanism is very important, but will definitely require more complicated models, 

which will not be the main topic of the thesis. 
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1.4 Epigenomic regulation 

Epigenomic markers and features have been profiled and studied widely because of 

technical development. They can be generally grouped into six categories: 1. DNA level 

modifications usually occurring at position C5 or N3 on cytosines and N6 on adenines; 2. 

Histone level modifications occurring at more than 130 post-transcriptional modification (PTM) 

sites at the tails of the four core histones (H2A, H2B, H3 and H4); 3. The structurally different 

features such as nucleosome occupancy; 4. The chromatin interactions based on enhancers, 

promotors or insulators interactions; 5. The chromatin domain features profiled by Hi-C allowing 

studies on segmentation of the epigenome; 6.  Non-coding RNA modifications regulating gene 

expression (Stricker, Koferle, & Beck, 2017).  Among the six categories, histone level 

modifications have been the most well-studied (Figure 1.4). Active promotors are commonly 

demarcated by histone H3 lysine 4 dimethylation (H3K4me2), H3K4me3, acetylation (ac) and 

H2A.Z. Transcribed regions are enriched with H3K36me3 and H3K79me2. Repressed genes 

Figure 1.4 Histone modifications and their functions in genomic and transcriptomic 
regulation. Different histone modifications located in various functional genomic regions and 
distinguished functional elements. The figure is adapted from Zhou, Goren, & Bernstein, 2011.  
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may locate within large domains of H3K9me2 or H3K9me3 or H3K27me3. H3K4me1, 

H3K4me2, H3K27ac and the histone acetyltransferase p300 are usually enriched in enhancers. 

CCCTC-binding factors (CTCFs) bind to sites that function as boundary elements, insulators or 

structural scaffolds (Zhou, Goren, & Bernstein, 2011).  

 Histone modifications play an important role in sculping cell-type specific transcription. 

A recent study conducted a proximity ligation-assisted chromatin immunoprecipitation 

sequencing (PLAC-seq) (Fang et al., 2016) to identify chromatin interactions at active promoters 

marked by H3K4me3 in several major neuronal cell types, such as radial glia (RG), intermediate 

progenitor cells (IPCs), excitatory neurons (eNs) and interneurons (iNs) (Song et al., 2020). They 

mapped some key lineage-specific transcription factors’ binding motif to the detected interaction 

regions and found that the motif enrichment aligned in accordance with the role of transcription 

factors in cell-type developmental trajectory. For example, the motifs for DLX1, DLX2, DLX6, 

GSX2 and LHX6 are enriched in interneurons, reflecting their roles in maturation and function 

of interneurons. The broad domains of H3K4me3 markers has also been identified association to 

transcriptional consistency, revealing interplays between histone modifications and 

transcriptional regulation. A previous study measured transcriptional consistency (lower 

transcriptional variability, or “transcriptional noise”) in single cells by calculating the variance in 

expression relative to expression level for each gene in single-cell RNA-seq data sets (Benayoun 

et al., 2014). They found that genes marked by top 5% broadest H3K4me3 domains had reduced 

transcriptional variability across many different cell types, which indicates that H3K4me3 are 

critical for transcriptional precision by ensuring the robustness of transcriptional outputs.   

Haploinsufficient genes are sensitive to expression level change, based on which derived 

a reasonable hypothesis that expression of haploinsufficient genes is under precise transcriptional 
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regulation. A previous study analyzed thousands of genome-wide epigenetic profiles and found 

that tumor suppressor genes have broad H3K4me3 domains in normal cells (K. Chen et al., 

2015a). Tumor suppressors are often implicated with germline risk in developmental disorders 

through haploinsufficiency (Qi, Dong, Chung, Wang, & Shen, 2016). Previous observations 

suggest that haploinsufficient genes may have specific pattern in epigenomic modifications in 

their functional genomic region, such as broader H3K4me3 peaks, to maintain a highly regulated 

and consistent transcriptomic expression.  

 

1.5 Spatiotemporal gene expression 

During the development of organisms, gene expression programs change over time, 

across differentiation and development, and in response to stimuli as well. A systematic study on 

mRNA microarray profiling of human prefrontal cortex collected the tissue from samples during 

a wide range of development, from fetus to late adulthood (Colantuoni et al., 2011). They 

measured the rate of expression changes in different developmental stages across the lifespan 

using a linear-spine model. The rate of expression change during fetal stages is much higher than 

at adulthood, even compared to the infant stage. However, after a steady platform throughout 

teenage years to the 40s, the rates rise again through several decades. This study vividly depicts 

the dynamics of gene expression on the time scale.  

 Cell-type specific gene expression is nowadays a critical topic in biological studies, 

especially when it comes to human diseases. For example, spatiotemporal expression of 

transcription factors (TFs) can precisely regulate organ development and physiology. A previous 

study on two homeobox transcription factors NKX2-5 and MEIS1 illustrates how spatiotemporal 

expression of TFs precisely regulates cardiogenesis (Dupays et al., 2015). NKX2-5 is also a 
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haploinsufficient gene, mutations in which result in a spectrum of congenital heart disease of 

varying phenotypic penetrance (Akazawa & Komuro, 2005). During cardiac differentiation, the 

two transcription factors have partially overlapping expression patterns, with the result that as 

cardiac progenitors from the anterior heart field differentiate and migrate into the cardiac outflow 

tract, they sequentially experience high levels of MEIS1 and then increasing levels of NKX2-5 

(Figure 1.5). The sequential binding provides a simple regulatory mechanism for a common pool 

of targets of these 2 TFs to regulate cardia development. 
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With the development of Next-generation Sequencing (NGS) technology, people 

nowadays can capture a snapshot of gene expression or transcriptomic profiles in single cells.  

A 

B 

Figure 1.5 Spatial expression of two transcription factors NKX2-5 and MEIS1 in developing 
heart. (A) A graphic illustration of the distribution of two TFs expression. (B) 
Immunohistochemistry of NKX2-5 and MEIS1 on an E8.5 mouse embryo showing their 
colocalization in the distal outflow tract (OFT). The figures are adapted from Dupays et al., 2015. 
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Single-cell RNA sequencing is a powerful innovation that people can identify cell types with an 

unprecedented resolution in tissue heterogeneity (Klein & Treutlein, 2019) and gain insight on 

transcriptomic dynamic in a time scale of hours (La Manno et al., 2018).  Besides, people can 

also study cell lineage construction with single-cell RNA-seq data, enabling better understanding 

of cellular differentiation and tissue development. Nowadays, there are in total of more than 500 

single-cell transcriptomics studies available (Svensson, da Veiga Beltrame, & Pachter, 2019) 

(Figure 1.6). In the effort to better utilize so many data sets, large consortium projects have been 

launched to integrate them or generate single-cell data sets in a standard way. For example, The 

Human Cell Atlas portal aims to provide uniformly processed single-cell genomics data from all 

of the human body (Regev et al., 2017). Allen Brain Atlas collects functional genomic data of 

Figure 1.6 Single-cell transcriptomics studies over time. The lower panel stratified studies by 
different single-cell techniques. Single-cell studies are explosively increasing in recent years. 
The figures are adapted from Svensson, da Veiga Beltrame, & Pachter, 2019. 
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brains in human and mouse through a wide range of developmental stages to facilitate 

neuroscience studies (Miller et al., 2014).  

 Autism spectrum disorder (ASD) is a neurodevelopmental disorder mostly with very 

early onsets. With rapidly dynamic expression profiles in human fetal brain, we can hypothesize 

that autism risk genes affect specific neuronal cells or pathways during neuron differentiation 

and development. Gene expression level may provide a molecular basis for the pathogenic effect 

of dosage-sensitive risk genes. Learning from autism risk genes’ expression pattern in fetal 

brains not only helps us identify implicated cell types and disease etiology, but also discover 

novel genetic risk in autism. In Chapter 3, we will discuss in detail how we use single-cell 

expression patterns of known autism risk genes to predict novel risk genes and infer affected 

neuronal cell types or brain structures. 
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Chapter 2: Distinct Epigenomic Patterns Are Associated with 

Haploinsufficiency and Predict Risk Genes of Developmental 

Disorders 
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2.1 Introduction 

Haploinsufficiency (HIS) due to hemizygous deletions or heterozygous likely-gene-

disrupting (LGD) variants plays a central role in the pathogenesis of various diseases. Recent 

large-scale exome and genome sequencing studies of developmental disorders, including autism, 

intellectual disability, developmental delay, and congenital heart disease (De Rubeis et al., 2014; 

Deciphering Developmental Disorders, 2015; Hamdan et al., 2014; Jason Homsy et al., 2015; 

Iossifov et al., 2014), have estimated that de novo LGD mutations explain the cause of a 

significant portion of patients with these developmental disorders, and the enrichment rate of de 

novo LGD variants indicates about half of these variants are associated with disease risk. 

However, relatively few genes have multiple LGD variants (“recurrence”) in a cohort (De Rubeis 

et al.; Iossifov et al.; McRae et al.), lacking of which provides insufficient statistical evidence to 

distinguish individual risk genes from the ones with random mutations (X. He et al.). On the 

other hand, most of the enrichment of LGD variants can be explained by HIS genes (McRae et 

al.). Therefore, a comprehensive catalog of HIS genes can greatly help interpreting and 

prioritizing mutations in genetic studies. 

 Currently, there are two main approaches of predicting HIS genes based on high-

throughput data. Huang et al. uses a combination of genetic, transcriptional and protein-protein 

interaction features from various sources to estimate haploinsufficient probabilities for 12,443 

genes (Huang, Lee, Marcotte, & Hurles, 2010). Using similar input information, Steinberg et al. 

generated the probabilities for more (over 19,700) human genes by a Support Vector Machine 

(SVM) model (Steinberg, Honti, Meader, & Webber, 2015). The other approach is based on 

mutation intolerance (Cassa et al.; Lek et al., 2016; Petrovski, Wang, Heinzen, Allen, & 

Goldstein, 2013) in populations that do not have early onset developmental disorders. Lek et al 
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2016 (Lek et al.) estimated each gene’s probability of haploinsufficiency (pLI: Probability of 

being Loss-of-function Intolerant) based on the depletion of rare LGD variants in over 60,000 

exome sequencing samples. Although effective, ExAC pLI is biased towards genes with longer 

transcripts or higher background mutation rates, since the statistical power of assessing the 

significance depends on a relatively large expected number of rare LGD variants from 

background mutations. 

 We sought to predict HIS using epigenomic data that are orthogonal to genetic variants 

and generally independent of gene size. Our method is motivated by recent studies indicating 

that specific epigenomic patterns are associated with genes that are likely haploinsufficient. 

Specifically, genes with increased breadth of H3K4me3, typically associated with actively 

transcribing promoters, are enriched with tumor suppressor genes (K. Chen et al., 2015b), which 

are predominantly haploinsufficient based on somatic mutation patterns (Davoli et al., 2013). 

Another study reported H3K4me3 breadth regulates transcriptional precision (Benayoun et al., 

2014), which is critical for dosage sensitivity. These observations led us to hypothesize that 

haploinsufficient genes are tightly regulated by a combination of transcription factors and 

epigenomic modifications to achieve spatiotemporal precision of gene expression, and such 

regulation can be detected by distinct patterns of epigenomic marks in relevant tissues and cell 

types. Based on this model, we developed a Random Forest–based method (“Episcore”) using 

epigenomic data from the Epigenomic Roadmap (Roadmap Epigenomics et al., 2015) and 

ENCODE Projects (Consortium et al., 2012) as input features and a few hundreds of curated HIS 

genes as positive training data. To assess the performance of prioritizing candidate risk variants 

in real-world genetic studies, we used large data sets of de novo mutations from recent studies of 

birth defects and neurodevelopmental disorders and showed that Episcore had better 
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performance than existing methods. Additionally, Episcore is less biased by gene length or 

background mutation rate and complementary to mutation-based metrics in HIS-based gene 

prioritization. Our analysis indicates that epigenomic features in stem cells, brain tissues, and 

fetal tissues contribute more to Episcore than others. 

 

2.2 Results 

2.2.1 Haploinsufficient (HIS) and Haplosufficient (HS) genes show distinct distributions of 

epigenomic features 

To examine the correlation of gene haploinsufficiency and epigenomic patterns, we 

analyzed ChIP-seq data from Roadmap and ENCODE projects, including active (H3K4me3, 

H3K9ac, and H2A.Z) and repressive (H3K27me3) promoter modifications, and marks associated 

with enhancers (H3K4me1, H3K27ac, DNase I hypersensitivity sites). We used the width of 

called ChIP-seq peaks for promoter features and counted the interacting number of promoters 

and enhancers within pre-defined topologically-associated domains (TADs) for enhancer 

features. As each histone modification is characterized in multiple cell types, we refer to the 

combination of an epigenomic modification and a cell type as one epigenomic feature.  

Figure 2.1A shows the correlation among epigenomic features, and the correlation of epigenomic 

features and ExAC pLI score. As expected, active promoter or enhancer marks are highly 

correlated with each other and with ExAC pLI score, and they are anti-correlated with repressor 

marks in general. The repressor marks from stem cells or fetal tissues have positive correlations 

with active marks and ExAC pLI scores, suggesting many genes with bivalent marks in stem 

cells are likely haploinsufficient. 
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Figure 2.1 Epigenomic profiles are associated with gene haploinsufficiency. (A) Heatmap showing 
Spearman correlation between epigenomic features. Three groups of epigenomic features are included: 
active promoter, repressive promoter and enhancer features. Epigenomic features inside each group 
strongly correlate with each other. Different feature types, including various histone modifications, 
histone variant, and DNase I hypersensitivity sites, are color-coded. Above the heatmap, a bar denoting 
Spearman correction between epigenomic features and pLI shows many epigenomic features relate to HIS 
with varying degree. Data from stem cells or fetal tissues are also marked by color lines. (B-C) Known 
HIS and HS genes have different distributions of peak length of promoter features (B, H3K4me3; C, 
H3K27me3). For each gene, peak length was averaged across tissues. (D) HIS and HS genes have 
different distributions of number of interacting enhancers inferred by Epitensor. For each gene, the 
number of interacting enhancers was averaged across tissues.  
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To further investigate the association of haploinsufficiency and patterns of epigenomic 

modifications, we compiled a list of 287 known HIS genes (Supplementary Table 2.1) involved 

in a wide range of human diseases (Supplementary Table 2.2) from a recent study (Dang, 

Kassahn, Marcos, & Ragan, 2008; Huang et al., 2010) and human-curated ClinGen dosage 

sensitivity map. We also collected a list of 717 HS genes, of which one copy of each gene had 

been deleted in two or more subjects based on a CNV study in 2,026 healthy individuals (Shaikh 

et al., 2009). For promoter features, HIS and HS genes clearly have distinct distributions of peak 

length (Figure 2.1B-D). HIS genes on average have wider peaks of both the active marker 

H3K4me3 (Figure 2.1B) and the repressive marker H3K27me3 (Figure 2.1C), suggesting the 

difference between HIS and HS genes is not only on the level of expression but also on distinct 

mechanisms of regulation. Furthermore, other epigenomic modifications associated with active 

promoters, including H2A.Z and H3K9ac, also display wider peaks upstream of HIS genes 

(Figure 2.2 A and B). In addition, HIS and HS genes also differ in the number of interacting 

enhancers. We adopted a recently published method EpiTensor (Zhu et al., 2016), which 

decomposes a 3D tensor representation of histone modifications, DNase-Seq, and RNA-Seq data 

to find associations between distant genomic regions. When restricted to pre-defined 

topologically-associated domains (TADs), associated regions identified by EpiTensor correspond 

well to enhancer-promoter interactions found by Hi-C20. EpiTensor revealed that HIS genes have 

a median of 9 interacting enhancers, while HS genes have a median of 0 (p < 10-4, permutation 

test, Figure 2.2C).  When averaged across tissues, HIS genes shift towards a larger number of 

mean interacting enhancers, as compared to HS genes (Figure 2.1D), supporting the notion that 

HIS genes have more regulatory complexity.  
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Figure 2.2 The disparity of HIS and HS genes in the distribution of epigenetic 
features. (A-B) HIS and HS genes have different distributions of peak length from 
promoter features (A, H3K9ac; B, H2A.Z). (C) HIS genes have larger numbers of 
interacting enhancers than HS genes. When interacting enhancers were measured as the 
number of peaks in +/- 20kb of TSS (C, the left 3 panels), little difference between HIS 
and HS genes were observed. When interacting enhancers were inferred by EpiTensor (C, 
the rightmost panel), there is significant difference between HIS and HS genes (p < 10-4, 
permutation test of difference between medians). 



23 
 

Among these 287 known HIS genes, 129 genes (45%) have pLI smaller than 0.9 or 

missing value. Some of these genes are well-known disease risk genes under dominant genetic 

models, such as TGFB1(Kinoshita et al., 2000), RUNX1(Taketani et al., 2002), SOX2(Fantes et 

al., 2003), SUMO1(Alkuraya et al., 2006), NKX2-5(Benson et al., 1999), EYA4(Wayne et al., 

2001), CAV1(Cao, Alston, Ruschman, & Hegele, 2008), PAX2(Sanyanusin et al., 1995), 

GATA6(Kodo et al., 2009), ZIC2(Brown et al., 1998), and WT1(Hastie, 1992). These known HIS 

genes with pLI < 0.9 have significantly smaller number of expected loss of function variants(Lek 

et al., 2016) than an average gene (Figure 2.3A), and intermediate selection coefficient (Shet) 

(Cassa et al., 2017) (Figure 2.3B), pointing to two particular areas (genes that are either short or 

under intermediate negative selection) in which HIS prediction can be improved.  

Figure 2.3 Property of mutation intolerance and selection of known haploinsufficient genes used in 
training. The known genes are divided into two groups based on ExAC pLI scores: above (red) and below (blue) 
0.9.   (A) The number of expected loss of function (exp_LoF)(Lek et al., 2016) distribution of genes with pLI 
>0.9 or pLI<0.9. The exp_LoF value is proportional to background mutation rate, which in turn is largely 
determined by transcript size. Known HIS genes with pLI < 0.9 have significantly smaller exp_LoF than an 
average gene, and the ones with pLI > 0.9 have much larger exp_LoF.  (B) The Shet (average select coefficient of 
heterozygous loss of function variants in a gene) distribution of genes with pLI>0.9 or pLI<0.9. Shet values. 
Known HIS genes with pLI < 0.9 have intermediate Shet: larger than than an average gene but smaller than the 
ones with pLI > 0.9.   
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2.2.2 Predicting haploinsufficiency with epigenomic features 

To leverage the strong association between epigenomic patterns and gene 

haploinsufficiency, we developed a computational method to predict haploinsufficiency using 

Random Forest (Figure 2.4A) and other supervised learning models (Figure 2.5 A and B). The 

input features included peak length of four promoter marks (H3K4me3, H3K9ac, H2A.Z and 

H3K27me3) and the number of EpiTensor-inferred interacting enhancers in various tissues. 

Performance evaluation by 10-fold cross validation and AUC (Area Under Curve) in ROC 

(Receiver Operating Characteristic) curves showed that all of these methods achieved high AUC 

values of 0.86~0.88 (Figure 2.4B and Figure 2.5 A and B). As Random Forest performs the best, 

Figure 2.4 A Random Forest model to predict haploinsufficiency. (A) A flowchart of the method. 
(B) ROC curve from 10-fold cross-validation. The red curve is the average of 100 randomized cross-
validation runs, with error bar showing standard deviation. The mean and median AUC of the 100 
runs are 0.88 and 0.89, respectively.  
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results from Random Forest are chosen as final metrics measuring the probability of being 

haploinsufficient, termed “Episcore” (Supplementary Table 2.3). Despite completely different 

input data are used, Episcore and ExAC pLI score displayed overall concordance. The 

distribution of pLI is generally bi-modal, with modes at 1 and 0 (Lek et al.). The genes with 

Episocre >0.6 are much more likely to have pLI values close to 1 than genes with Episocre < 0.4, 

and the opposite trend at pLI close to 0 (Figure 2.5C). Among 3463 genes with Episcore > 0.6, 

1518 have pLI scores < 0.5. Some of these genes have been implicated in human diseases under 

a dominant model, such as HEY2(Reamon-Buettner & Borlak, 2006), ASF1A(Giannakou et al., 

2017) and HAND2(Sun et al., 2016) (Supplementary Table 2.4). Similarly to the ones with low 

pLI values in the positive training set, these genes have lower background mutation rate (which 

is primarily determined by transcript size) than the ones with large pLI values (Figure 2.5D), and 

are generally under less severe selection measured by Shet (Cassa et al., 2017) (Figure 2.5E).  
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2.2.3 Episcore better prioritizes of de novo LGD variants in developmental disorders 

 A major goal of predicting haploinsufficiency is to facilitate prioritization of variants 

identified in genetic studies of developmental disorders. We compared Episcore with pLI scores 

from ExAC (Lek et al., 2016), Shet values (selection coefficient of heterozygous LGD variants) 

(Cassa et al., 2017), and ranks of mouse heart expression level (Zaidi et al., 2013), using de novo 

LGD variants identified in a recently published whole exome sequencing study DDD 

(Deciphering Developmental Disorders consortium) of 1,365 trio families with congenital heart 

disease (CHD) (Sifrim et al., 2016). LGD variants include frameshift, nonsense and canonical 

splice site mutations. We only included genes with all 4 metrics for comparison, although we 

note Episcore (19,430 genes) made predictions for more genes than pLI (18,225 genes), Shet 

(17,200 genes) and ranks of mouse heart expression level (17,624 genes, due to loss in 

orthologue matching). Different predictions are compared by the enrichment rate  

of variants. For the same number of top-ranked genes by each metric, we calculated the number 

of LGD variants located in these genes and estimated the number of LGD variants based on  

background mutation rate (Samocha et al., 2014). Across a wide range of top-ranked genes, 

Episcore showed larger enrichment than ExAC pLI, Shet, or heart expression level (Figure 2.6A 

and Figure 2.7A). We also applied the same approach to de novo synonymous variants identified 

Figure 2.5 Performance of various machine learning approaches and concordance of Episcore with 
pLI. (A-B) ROC curve of 10-fold cross-validation from applying SVM (A) or SVM with Lasso feature 
selection (B) to the same epigenetic data as used in the Random Forest model. The red curve is the 
average of 100 randomized cross-validation runs, with error bar showing standard deviation. (C) pLI 
distribution of Episcore < 0.4 and Episcore >0.6 genes. The genes with Episcore > 0.6 are much more 
likely to have pLI values close to 1 than the genes with Episcore < 0.4, and less likely to have pLI values 
close to 0 than the genes with Episcore <0.4. (D) The distribution of background LGD mutation rate 
(log10). The genes with Episcore>0.6 and pLI < 0.5 have similar background mutation rate as an average 
gene, whereas the genes with pLI > 0.5 have higher background mutation rate, and the ones with pLI > 
0.9 have even higher background rate. (E) The distribution of Shet: genes with Episcore >0.6 and pLI < 
0.5 have intermediate Shet values that are larger than an average gene and smaller than the genes with 
pLI>0.5. The genes with Episcore < 0.4 on average have reduced Shet compared to other genes. 
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in the CHD dataset and observed no enrichment (Figure 2.7B). Additionally, we compared these 

predictions by precision-recall-like curve (PR-like) based on enrichment. Since the total number 

of positive variants (true disease-causing variants) is unknown, we used estimated number of 

“true positives” instead of “true positive rate (recall)” in this comparison. For top-ranked genes 

from each method, the number of true positives were estimated by subtracting expected number 

of LGD variants based on background mutation rate from the observed in these genes. We 

measured precision by dividing the estimated number of true positives by the total number of 

observed LGD variants in these genes. Across a wide range of precision, Episcore consistently 

showed superior recall compared to pLI, Shet and heart expression level (Figure 2.6B) and to 

earlier methods based on combination of genetic and protein interaction network data (Huang et 

al., 2010; Steinberg et al., 2015) (Figure 2.7C and D). The performance advantage over other 

HIS-related score does not change after excluding the genes used in training (Figure 2.7E and F).    
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Figure 2.6 Assessment of the performance of Episcore in variant prioritization using de novo mutation 
data. (A-B) Comparison of Episcore, pLI, Shet and heart expression level (HE) in variant prioritization using 
CHD exome sequencing data. In (A), burden refers to the ratio between the number of de novo LGD variants 
observed in top genes ranked by each metric and the number of expected de novo LGD variants due to 
background mutation. Episcore has higher enrichment in top 1000-2500 genes and similar enrichment 
afterwards. The grey dash line indicates the burden of de novo LGD variants in all genes. (B) Precision-recall-
like curves. True positive is the difference between the observed and expected de novo LGD variants. 
Precision is calculated by dividing the number of true positives by the number of observed de novo LGD 
variants. The blue curve for Episcore shifts upright than pLI and Shet, showing Episcore has better recall with 
precision and vice versa. (C-D) Episcore has less bias towards genes with longer CDS length (C) or larger 
background mutation rate (D) than pLI. Grey histogram in the background represents CDS length or mutation 
rate of all genes in the genome. The blue curve for pLI shifts right, while the curves for Episcore and HE are 
similar to the distribution of all genes and known HIS genes. (E-F) A combination of Episcore and pLI, the 
meta-score, has better performance in variant prioritization when benchmarked using DDD exome sequencing 
data. Meta-score is the output from a logistic regression model, using Episcore and pLI as input. Enrichment, 
true positive and precision were calculated similarly to (A-B).  
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Figure 2.7 Using empirical data to benchmark the performance of Episcore in variant 
prioritization. (A) Comparison of enrichment burden between Episcore and pLI, shown with 95% 
confidence intervals calculated based on Poisson distribution. (B) Enrichment of CHD silent de novo 
variants is close to 1 regardless of Episcore rank. (C-D) Comparing Episcore to prediction of 
haploinsufficient genes from two previous studies based on protein interaction networks (Huang et al., 
2010; Steinberg et al., 2015), using CHD exome sequencing data. The grey dash line indicates the burden 
of de novo LGD variants acorss the genome. (E-F) Comparison of Episcore, pLI, Shet and heart expression 
level excluding known HIS genes used in training. Episcore achieves better performance than mutation 
intolerance based metrics. (G) The distribution of Shet (log10) of genes that have LGD de novo mutations 
in DDD ID and CHD cases. Overall a larger fraction of genes with mutations in DDD ID cases have high 
Shet values, indicating the disease-causing genes are under more severe selection on average.  

  

We obtained a second CHD WES cohort of 2,645 parent-offspring trios from the 

Pediatric Cardiac Genomics Consortium (PCGC) (Jin et al., 2017) to emulate a replication 

design. We used the larger data (PCGC CHD) as discovery and the DDD data as replication. We 

found that the genes with a single LGD variant in PCGC data and “replicated” with at least one 

LGD variant in the DDD data have much higher Episcore, than the genes with a singleton LGD 

in PCGC data or genes with LGD variants in controls (unaffected siblings in Simons Simplex 

Collection autism study (Krumm et al., 2015))(Figure 2.8). 

 

2.2.4 Episcore provides complementary information to mutation intolerance metrics 

Haploinsufficiency predicted by mutation intolerance in a general population (such as 

ExAC pLI metric) is intrinsically biased towards genes with longer CDS (coding sequence) 

lengths or higher background mutation rates. Figure 2.6C and D show the distribution of genes 

with pLI scores > 0.9 shifts towards longer CDS length or higher background mutation rate, as 

 compared to the distribution of known HIS disease risk genes, while top 20% genes ranked by  

Episcore have similar distribution to known HIS disease risk genes or genes with expression 

level ranked in top 20% in developing heart (Zaidi et al.).   
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Since Episcore and pLI use distinct types of input data, a combination of these two scores 

might achieve better performance. We obtained de novo mutation data of 4,293 trio families 

affected by developmental disorders, mostly with intellectual disabilities (DDD ID), from a 

recent study(McRae et al., 2016). Genes with de novo LGD mutations in DDD ID cases are 

notably under more severe selection than the ones in CHD (Figure 2.7G). We used a logistic 

regression to integrate Episcore and pLI in this data set. Specifically, we used a total of 45 genes 

with de novo LGD variants in 3 or more probands as positives, and randomly sampled 45 genes 

from genes with no observed de novo LGD variant as negatives to estimate coefficients in the 

logistic model.  Both Episcore and pLI have significant coefficients (P < 10-3), supporting these 

two methods convey complementary information. We found that the resulting meta-score 

Figure 2.8 Episcore distribution of genes with de novo LGD variants in DDD CHD cohort and 
PCGC CHD cohort. Data in an earlier version of PCGC CHD cohort is depleted from DDD CHD 
data due to duplication. The distribution of genes with single LGD variant in PCGC cohort and at 
least one LGD or D-mis variant in DDD CHD cohort are close to the distribution of genes with 
multiple LGD variants in PCGC cohort, suggesting that Episcore facilitates discovery of de novo risk 
genes with only one LGD variant. For comparison, genes with de novo single LGD variant detected 
from an SSC control cohort have lower Episcore distribution. 
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achieved overall better precision and true positives than Episcore or pLI alone (Figure 2.6 E and 

F), while maintaining similar enrichment burden as good as any method alone in a broad range 

of gene ranks.   

 

2.2.5 Brain tissues, fetal tissues, and stem cells highly associate with the predicted 

haploinsufficiency 

To evaluate the association of each epigenomic feature to haploinsufficiency, we 

calculated Spearman correlation coefficients between each feature and Episcore. These 

correlation coefficients were analyzed in two ways. We first grouped them based on the 

molecular entities they represent, such that the same epigenomic modification from different 

tissues would be in one group. Each of the 5 resulting categories has distinct distributions of 

Spearman correlation coefficients, suggesting different contributions to Episcore (Figure 2.9A). 

Except for the repressive mark H3K27me3, most of them have larger correlation coefficients 

than gene expression values, suggesting these features and the model do not merely reflect 

expression abundance but also epigenomic regulation specific to HIS genes. Measured by mean 

decrease of Gini index, these groups of features have similar trend in contribution to Episcore 

prediction (Figure 2.10). 

We then grouped correlation coefficients based on tissue and cell types, converted 

correlation coefficient of each epigenomic modification to a Z-score using the mean and standard 

deviation across the tissue or cell type, and finally averaged the Z-score of all epigenomic 

modification for each tissue or cell type. The averaged Z-score represents the importance of this 

tissue or cell type to haploinsufficiency prediction. In general, stem cells and neural tissues have 
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large average Z-scores (Figure 2.9B). Interestingly, for tissues in the same category, fetal tissues 

usually have larger average Z-scores than postnatal tissues.  
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Finally, to illustrate the contribution of different tissues to HIS, we examined in detail the 

histone modifications around TSS of several known HIS genes. Figure 2.9C show RBFOX2 and 

CWC22. RBFOX2 is a CHD risk gene recently discovered through de novo LGD variants (Jason 

Homsy et al.), and it has expansive H3K4me3 and H3K9ac peaks in stem/fetal cells and heart 

and brain tissues, but not in blood cells. Consistently, it has a reverse pattern in H3K27me3, 

extensive in blood cells but limited in other tissues. On the contrary, CWC22, a known house-

keeping gene, shows consistent but narrow peaks of active marks across tissues. 

Figure 2.9 Contribution of epigenomic features to Episcore prediction. (A) Spearman correlation 
between epigenomic feature and Episcore. Features used in the Random Forest model, including H2A.Z, 
H3K27me3, H3K4me3, H3K9ac and the number of interacting enhancers, all have positive correlation 
with Episcore. Spearman correlation coefficients between gene expression level, measured in RPKM 
(reads per kilobase per million reads), and Episcore were also plotted for comparison. (B) The importance 
of each tissue in generating Episcore is measured by average Z-score, which is converted from Spearman 
correlation coefficients between epigenomic feature and Episcore. Each dot represents one cell line or 
tissue type indicated by colors. Stem cells and neural and fetal tissues are the most important tissue and 
cell types in Episcore prediction. (C) The epigenomic profile of an example HIS gene, RBFOX2, and a 
house-keeping gene, CWC22. Each small box represents 100bp region around TSS and the shade of the 
color reflects averaged fold change of reads between ChIP-seq library and control samples. RBFOX2 has 
a broad expansion of epigenomic marks while CWC22 is not, and RBFOX2 shows more tissue-specific 
regulation but CWC22 has narrow peaks in active marks across all the tissues.  
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2.3 Discussion 

 In this study we showed there is a strong correlation between epigenomics patterns and 

gene haploinsufficiency, and developed a computational method (Episcore) to predict HIS using 

epigenomic features. Episcore had superior yet complementary performance in prioritization of 

de novo LGD variants in congenital heart disease and neurodevelopmental disorders, compared 

to mutation intolerance metrics such as ExAC pLI (Lek et al.).    

Figure 2.10 The importance (mean decrease of Gini index) of each feature to Episcore prediction.  
We obtained the importance values from the randomForest R package. Features are grouped by 
epigenomic molecular entities. For each group, we summarize the distribution of importance metric 
across cell and tissue types. Active promoter and enhancer features (H3K4me3, H3K9ac, H2A.Z, 
Enhancer) show higher importance than repressive promoter features (H3K27me3). 
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 Existing HIS prediction methods based on intolerance of mutations have limited 

statistical power in genes with small transcript size or under less severe negative selection. 

Network-based methods(Huang et al., 2010) are often biased towards well-studied genes 

(Steinberg et al., 2015) and pathways. Epigenomic data have several advantages to address these 

issues: (a) they are orthogonal to genetic mutations, and therefore provide additional information 

that could improve power; (b) they are much less biased by transcript size, and will be most 

helpful to predict HIS of genes with short transcripts; (c) the bias with selection coefficient is a 

reflection of the training data, which empirically is much smaller than mutation intolerance 

metrics; (d) the ability to generate large amount of data without bias towards well-studied genes. 

These advantages contribute to the superior performance of Episcore in prioritizing de novo 

LGD variants from exome sequencing studies.  

There are likely a variety of mechanisms underlining the correlation of epigenomics 

patterns and haploinsufficiency. First, broad H3K4me3 peaks contributed most to Episcore 

prediction of HIS. Broad H3K4me3 peaks are associated with reduced transcriptional noise at 

cell population and single cell levels (Benayoun et al.), which is likely required to maintain 

precise expression levels of HIS genes in specific cell types and developmental stages. Second, a 

previous study found regulatory complexity is required to achieve cell-type specific expression 

patterns of the lineage-defining genes in hematopoietic differentiation (Gonzalez, Setty, & 

Leslie). Consistently, we found the number of enhancers interacting with the promotor of a gene 

is highly correlated with predicted HIS score. Third, many HIS genes are regulators that define 

cell lineages during differentiation. Bivalent chromatin domains in embryonic stem cells, in 

which both active marker H3K4me3 and repressor marker H3K27me3 are present, are generally 

associated with lineage control genes (Vastenhouw & Schier). We observed that H3K27me3 are 
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positively correlated with H3K4me3 in stem cells, and both are correlated with mutation 

intolerance (Figure 2.1A and C) and Episcore (Figure 2.9A). Finally, we found epigenomic 

features from stem cells and fetal tissues contribute most to prediction, highlighting the 

importance of developmental role in determining gene haploinsufficiency. 

Our data suggests Episcore is generally better for prioritizing genes with a broader range 

of selection coefficient or genes with smaller transcript size, whereas pLI performs better for 

genes under most severe negative selection. Episcore is currently limited by availability and 

resolution of epigenomic data, especially cell-type specific data from complex tissues or organs 

such as the brain, and data at various developmental stages. Complex developmental disorders, 

such as autism, involve a large number of cell types during a broad range of developmental 

stages. It is critical to generate and integrate more fine-grained epigenomic data from cells of 

specific types at specific time points in order to improve genetic discoveries in studies of such 

diseases. We expect such data sets will become available in near future from ongoing projects 

(Dekker et al.; Psych et al.; Stunnenberg, International Human Epigenome, & Hirst, 2016), and 

will enable us to improve prediction of HIS and facilitate novel discoveries in genetic studies. 

 

2.4 Material and methods 

2.4.1 Collection and Preprocessing of Training Genes 

In this study, we used Ensembl release 75 for gene annotation and TSS (transcription 

start site) locations. All genomic coordinates are based on hg19 human genome assembly. Any 

non-hg19 coordinates were lifted over to hg19 using UCSC LiftOver tool ( 

https://genome.ucsc.edu/cgi-bin/hgLiftOver ). Conversion of gene symbols to Ensembl IDs were 

based on annotation tables downloaded from Ensembl BioMart. 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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Positive training set data (curated haploinsufficient genes) were collected from these two 

sources: (1) haploinsufficent training genes used in previous studies (Dang et al., 2008; Huang et 

al., 2010)  and (2) genes with haploinsufficient score of 3 in ClinGen Dosage Sensitivity Map ( 

http://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/ ). For the negative training set (curated 

haplosufficient genes), we used genes deleted in two or more healthy people, based on CNVs 

detected in 2,026 normal individuals (Shaikh et al., 2009). Only genes with half or more of its 

length covered by any deletion were considered “deleted” in an individual.  

 The raw training set may have some false positives and false negatives, as it contained 

results from automated literature mining that is known to give noisy output. To optimize the 

performance, we did the following pruning of the raw training set: (1) we only kept protein-

coding genes in autosomes, as non-protein-coding genes or genes on sex chromosomes may be 

under different mechanism of epigenomic regulation; (2) from the positive training set, we 

removed genes with sufficient contradictory evidence (ExAC pLI ≤ 0.1 and expected loss-of-

function variants > 10 (Lek et al.)); and (3) from the negative training set, we removed genes 

with sufficient contradictory evidence (pLI  ≥  0.9 and expected loss-of-function variants > 10). 

After pruning, the positive training set has 287 genes and the negative training set has 717 genes. 

The full list of training genes is available in Supplementary Table 2.1. 

 

2.4.2 Preprocessing of Epigenomic Feature Data 

The uniformly processed peak calling results of Roadmap and ENCODE projects were 

downloaded from http://egg2.wustl.edu/roadmap/web_portal/processed_data.html. For promoter 

features (H2A.Z, H3K27me3, H3K4me3, and H3K9ac), “GappedPeaks” were used to allow for 

broad domains of ChIP-seq signal. The assignment of a GapppedPeak to a gene follows these 

http://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/
http://egg2.wustl.edu/roadmap/web_portal/processed_data.html
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steps in order: (1) for each gene, only TSS of Ensembl canonical transcripts were used. (2) 

assigned a GappedPeak to a TSS if the GappedPeak overlaps with the upstream 5kb to 

downstream 1kb region around the TSS. This definition of basal cis-regulatory region around 

promoter follows GREAT tool (McLean et al., 2010). Assigning one GappedPeak to multiple 

TSS was allowed. (3) For TSS having more than 1 GappedPeak assigned, kept the closest one. 

(4) For genes with multiple TSS and hence multiple assigned GappedPeaks, kept the longest 

GappedPeak. After these four steps, if one gene had been associated with a GappedPeak, then we 

used the width of the peak as an epigenomic feature in the following machine learning models. If 

a gene had no associated GappedPeak, then the peak width is 0. 

To calculate the number of interacting enhancers of a gene, we used two approaches. In a 

naïve approach, we counted peaks of ChIP-seq signals that are associated with enhancers. The 

ChIP-seq signals we used include H3K4me1, H3K27ac and DNase I hypersensitivity site, and 

each ChIP signal was counted and recorded separately. We used “NarrowPeak” instead of 

“GappedPeak” in the counting to better estimate the number of interacting enhancers, as 

enhancer regions are not long and GappedPeak has the risk of merging nearby ChIP-seq signals. 

For each gene, we counted peaks in (a) the surrounding TAD (Topologically Associated 

Domain), based on TADs reported in (Dixon et al., 2012); or (b) +/- 20kb of each TSS (Only 

TSSs of Ensembl canonical transcripts were used. For genes with multiple TSS and thus several 

numbers of interacting enhancers, we kept the largest one). In a more advanced approach, we 

adapted EpiTensor (Zhu et al., 2016) to infer gene-enhancer relationship. We made a few 

changes when using EpiTensor: (a) we used normalized coverage of ChIP-seq signal instead of 

raw coverage in Zhu et al. 2016 (Zhu et al.);  (b) we used the coverage of H3K27ac, H3K27me3, 

H3K36me3, H3K4me1, H3K4me3, H3K9me3, DNase I and RNA-seq as input for EpiTensor to 
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balance between more input data types and more cell types included, as not every cell type has 

all these histone modifications characterized. The number of data types included are fewer than 

the ones used in Zhu et al. 2016 (Zhu et al.), but it could still achieve desirable performance 

(personal communications); (c) we used enhancer annotation from 15-state chromHMM ( 

http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state ), while the 

original EpiTensor paper (Zhu et al.) used results of an earlier version. Based on the output of 

EpiTensor, which predicts enhancer-promoter pairs, we counted the number of interacting 

enhancers for each gene in various tissues. 

Finally, the results of peak width and number of interacting enhancers were consolidated 

into a matrix, with each row being a gene and each column representing a combination of a 

tissue and a data type, e.g. “H3K4me3 peak width in fetal heart”. One combination of a tissue 

and a data type was referred to as one epigenomic feature. This matrix was used as input for 

machine learning models described in the following section. 

 

2.4.3 Machine learning approaches to predict haploinsufficiency 

We applied several machine learning approaches, including Random Forest, Support 

Vector Machine (SVM) and SVM with LASSO feature selection. Random Forest was 

implemented using R package “randomForest”. SVM was implemented using R package 

“e1071”. LASSO was implemented using R package “glmnet”, with alpha value equal to 1. For 

each machine learning method, we assessed the performance based on 100 runs of 10-fold cross-

validation. In each run, 10% of the training genes were randomly selected and left out to form a 

test set for validation. The remaining data were used to train the model, after which the test set 

http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state
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was used to calculate model sensitivity and specificity. We used R package “ROCR” to make a 

ROC curve based on the 100 runs and calculated AUC values. 

Finally, we used all training genes used to train the model, and then estimate the 

probabilities of being positive (i.e. probabilities of being HIS) for all genes. The whole process 

was repeated 30 times and we took the arithmetic mean of the 30 sets of probabilities as the final 

results. 

 

2.4.4 Comparing Episcore and other metrics in variant prioritization 

We used two approaches to compare Episcore and other metrics in variant prioritization, 

based on “enrichment of de novo LGD variants”, estimated “number of true-positives” and 

“precision”. The formula to calculate these three statistics are as follows.  

 For any gene i, the number of expected de novo LGD variants in each gene, Ei, was 

calculated as: 

     Ei = 𝟐𝟐 ×  𝑵𝑵 × ri 

where N is the number of cases in the sequencing cohort and ri is gene-specific LGD mutation 

rate. LGD variants include nonsense, frameshift and canonical splice site mutations. The 

background mutation rate per gene of each mutation type was obtained from Samocha et al. 2014 

(Samocha et al.). For each gene, ri  is the sum of background mutation rate of nonsense, 

frameshift and canonical splice site mutations. 

 For a set of genes, the enrichment of de novo LGD variants, D, was calculated as: 

      𝑫𝑫 =  𝑴𝑴
∑ 𝑬𝑬𝒊𝒊𝒊𝒊

 

where M is the total number of observed de novo LGD variants in this gene set.  In this study, we 

used results from two whole exome sequencing studies on congenital heart disease (Jason 
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Homsy et al., 2015; Sifrim et al., 2016) and another whole exome sequencing study on various 

developmental disorders (McRae et al., 2016).  

           For any gene set, the number of true positives, TP, was calculated as: 

             𝑻𝑻𝑻𝑻 = 𝑴𝑴 −  ∑ 𝑬𝑬𝒊𝒊𝒊𝒊  

           For any gene set, the precision (positive predictive value), PPV, was calculated as: 

                PPV= M - ∑ Eii
M

 

For each metric (Episcore, pLI, etc.), a series of top-ranked genes were selected, such as 

top 500 genes, top 2000 genes, etc. In the first approach, enrichment of de novo LGD variants, 

D, was calculated for any set of top-ranked genes, and then enrichment values were plotted and 

compared, as shown in Figure 2.6A.  In the second approach, the number of true positives, TP, 

and the precision (true discovery rate), PPV, were calculated for any set of top-ranked genes. TP 

and PPV were plotted and compared, as shown in Figure 2.6B. If the number of all true positives 

(N) in a study is known, we can calculate recall as R = TP/N. Although N is generally unknown, 

it is a constant; therefore, TP is proportional to R. In this study, we use TP as a proxy of recall.      

To examine the utility of Episcore in prioritizing genes with only one LGD mutation, we 

utilized two independent Congenital Heart Disease (CHD) cohorts: DDD (Deciphering 

Developmental Disorders consortium) CHD (Sifrim et al., 2016) and PCGC (Pediatric Cardiac 

Genomics Consortium) CHD (Jin et al., 2017). Both these studies included trios from an earlier 

CHD study (Zaidi et al., 2013) to increase detection power. To avoid duplication, we removed 

these earlier trios from DDD CHD data.   
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2.4.5 Epigenomic features critical in the prediction 

We calculated a Spearman correlation coefficient between each epigenomic feature and 

Episcore. One epigenomic feature here corresponds to a data type (like H3K4me3 peak width) in 

certain tissue/cell type (e.g. fetal heart). To examine which data types are more important, we 

plotted these Spearman correlation coefficients by data type, e.g. correlation coefficients from 

H3K4me3 peak width were plotted in one section. To examine what tissue/cell types are more 

important, we calculated averaged z-score for each tissue/cell type. The average z-score is 

calculated following these two steps: (1) we converted every Spearman correlation coefficient to 

a Z-score using mean and standard deviation specific to each data type and (2) for each 

tissue/cell type, we averaged the Z-scores from various data types.    
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Chapter 3: Dissecting Autism Genetic Risk Using Single-cell RNA-

seq Data 
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3.1 Introduction 

Autism spectrum disorder (autism) is a phenotypically heterogeneous developmental 

disorder, affecting 1 in 59 children in the United States (Baio et al., 2018).  Earlier studies have 

shown a strong genetic basis for autism with up to 90% concordance between monozygotic twins 

(Bailey et al., 1995; Rosenberg et al., 2009) and 10-fold higher chance for younger sibling to be 

diagnosed with autism if there is an older affected sibling (Constantino, Zhang, Frazier, 

Abbacchi, & Law, 2010; Ronemus, Iossifov, Levy, & Wigler, 2014). Simulations estimate one 

thousand autism risk genes with large effect (Iossifov et al., 2014); however, currently only 

about 100 known risk genes (Abrahams et al., 2013) have robust evidence from recent studies 

(De Rubeis et al., 2014; Iossifov et al., 2014; Turner et al., 2016). These known risk genes only 

account for less than 5% of autism cases (Krumm, O'Roak, Shendure, & Eichler, 2014). 

Therefore, it is critically important to identify new risk genes. However, the identification of new 

risk genes based on statistical evidence is limited by lack of power due to sample sizes.  

 A general approach to improve the power for detecting risk genes is to use prior 

knowledge and functional genomic data to predict plausibility of candidate risk genes. Previous 

studies have implemented network-based methods utilizing genotype-phenotype associations 

(Baio et al., 2018; Chang, Gilman, Chiang, Sanders, & Vitkup, 2015; Gilman et al., 2011), 

protein-protein physical interactions (O'Roak et al., 2012), brain-specific functional interactions 

(Krishnan et al., 2016) and gene coexpression networks (Parikshak et al., 2013; Willsey et al., 

2013). We previously developed a semi-supervised method using cell-type specific expression 

profiles from mouse bulk microarray data based on Principle Component Analysis (PCA) (C. 

Zhang & Shen, 2017). One advantage of using cell-type specific expression is the ability to 

jointly infer plausible risk genes and cell types that are correlated with risk plausibility, 
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potentially improving the understanding of the disease mechanism. Our method was limited by 

the lack of spatiotemporal cell-type information from developing brains and the species 

difference between mouse and human. Recent studies have developed machine learning 

approaches to classify autism risk genes with human brain expression data (Brueggeman, 

Koomar, & Michaelson, 2018; Lin, Rajadhyaksha, Potash, & Han, 2018), but are still limited by 

the resolution of data in cell types or developmental stages pertinent to the disease.  

With the motivation to identify new risk genes for autism, here we developed a 

supervised machine learning method based on gradient boosting trees, "A-risk" (Autism risk), 

that can learn known risk genes' expression patterns in single-cell transcriptomics of human fetal 

midbrain and prefrontal cortex, to then predict the plausibility of any gene being an autism risk 

gene. We hypothesize that autism risk genes have distinct spatiotemporal expression signatures 

in developing human brain in neurotypicals. When comparing A-risk to other metrices or 

methods in prioritizing risk variants, we observed better performance of A-risk in prioritizing 

candidate risk variants using de novo variant data of 8838 trios from recent publications(R. Chen 

et al., 2017; Feliciano et al., 2019; Iossifov et al., 2014; Satterstrom et al., 2020; Takata et al., 

2018; Yuen et al., 2017). Furthermore, we showed that A-risk and gene mutation intolerance 

metrics(Lek et al., 2016) can be combined to improve prior estimation in an empirical Bayesian 

model and enables identification of additional novel risk genes. Finally, we investigated the cell 

type specific expression patterns in adult brain of known and novel autism risk genes and found 

that they are highly expressed in deep-layer excitatory neurons in adult human cortex, suggesting 

the association of deep excitatory neurons in cortex to the etiology of autism. 
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3.2 Results 

3.2.1 Single-cell expression pattern is correlated with autism risk  

We obtained two single-cell RNA-seq data sets from human fetal midbrain and prefrontal 

cortex. The midbrain data are mostly from the first trimester (La Manno et al., 2016), while the 

prefrontal cortex data are mostly from the second trimester (Zhong et al., 2018).  Previous 

studies have suggested the role of prefrontal cortex (Amaral, Schumann, & Nordahl, 2008; 

Geschwind, 2011; Rubenstein, 2011; Voineagu et al., 2011) and midbrain dopamine system 

(D'Ardenne et al., 2012; Ott & Nieder, 2019; Ranganath & Jacob, 2016). On average, 2302 and 

4503 genes per cell are detected in the midbrain and the prefrontal cortex data, respectively 

(Figure 3.1). We obtained the cell type labels from original publications, and then define the 

Figure 3.1 Quality of single cell RNA-seq data. The number of log10 based UMIs in each cell 
from the two data sets against the number of genes detected. The detected genes are defined as 
genes with larger or equal to 1 UMI. The midbrain data has more genes detected than the prefrontal 
cortex data given the same number of UMIs. 
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expression level of a gene in a cell type as the fraction of cells with ≥1 UMIs (Unique Molecular 

Identifiers) in the cell type at a certain developmental time point. The feature set of our data is 

the combination of cell types and developmental time points (Supplementary Table 3.1).  

To investigate temporal and cell type specific expression pattern of autism risk genes, we 

collected 88 known autism risk genes from the SFARI (Simons Foundation Autism Research 

Initiative) Gene database (Abrahams et al., 2013) (released version on 08/29/2019, score 1 or 2), 

which are genes strongly implicated in autism based on expert curation from the literature. We 

also obtained 154 genes with at least 1 de novo LGD (likely-gene disrupting) variant in 

unaffected siblings from an exome-sequencing study(Iossifov et al., 2014) (Supplementary Table 

3.2), representing non-risk genes with random de novo mutations. Known risk genes tend to have 

a wide range of average expression level in both data sets, while non-risk genes have lower 

average expression (Figure 3.2A). We performed PCA (Principle Component Analysis) of these 

two groups of genes using expression level from the single cell data sets. The first component 

partially separates known risk genes and non-risk genes (Figure 3.2B). This is consistent with 

previous findings using bulk RNA microarray data from mouse brain (C. Zhang & Shen, 2017).  
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A B 

Figure 3.2. Different expression pattern of known autism risk genes and random genes in fetal 
midbrain and prefrontal cortex. (A) The expression distribution of known autism risk genes and 
random genes in fetal midbrain and prefrontal cortex. (B) PCA analysis of fraction expression of known 
autism risk genes and random genes. The density plots along axes shows the difference of known risk 
genes and random genes in expression level or PCA scores.  
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To leverage the temporal and cell type specific expression pattern of known autism risk 

genes, we developed a supervised machine learning method, “A-risk”, to predict plausibility of 

being an autism risk gene for all protein-coding genes (Supplementary Table 3.3). A-risk is 

based on gradient boosting. We train the model using 88 known autism risk genes as positives 

and the 154 non-risk genes as negatives. Figure 3.3A shows the overall workflow of A-risk. 

Figure 3.3 A-risk, a gradient boosting tree model to estimate plausibility of being risk genes of autism 
from single-cell RNA-seq data.  (A) A flowchart of the method. (B) A-risk score distribution. A-risk of all 
genes in the genome are shown in the histogram in gray. The distribution of A-risk of known autism risk genes 
and randomly mutated genes, which are positive and negative training sets in A-risk model respectively, are 
shown as orange and purple density curves. A-risk score 0.4 is where the positives and negatives show 
separation. (C) “Feature importance” derived from the gradient boosting trees model showing cell types from 
both midbrain late first trimester and prefrontal cortex second trimester make substantial contribution to the 
prediction. The y-axis is the relative important of each feature against the max, which is GABAergic neurons 
in midbrain at week 9.  W, week. Gaba, GABAergic neurons. Exc, excitatory neurons. Dopa, Dopaminergic 
neurons. NbGaba, neuroblast GABAergic. Nb, neuroblast. GabaInter, GABAergic interneurons. OMTN, 
oculomotor and trochlear nucleus. 
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Five-fold cross-validation during training achieves an average AUC (Area Under Curve) of ROC 

(Receiver Operating Characteristic) curves at 0.77 (Figure 3.4). A-risk score distribution shows a 

large separation of known risk genes and non-risk genes (Figure 3.3B). We chose A-risk 0.4, 

corresponding to top 2642 ranked genes, as a recommended cutoff for analysis where a binary 

stratification of genes is needed.  

We quantify the contribution of cell types to A-risk prediction by feature importance, a 

score for each feature measuring how valuable it is in constructing the model. The top ranked 

cell types are GABAergic neurons in midbrain at week 9, dopaminergic neurons in midbrain at 

week 10 and prefrontal cortex excitatory neurons at week 12 (Figure 3.3C). Overall, cell types 

from both midbrain late first trimester and prefrontal cortex second trimester made substantial 

contribution to the prediction. The full list of feature importance from the model is available in 

Supplementary Table 3.4. 

Figure 3.4 Training of A-risk: performance in cross-validation and importance of cell types and 
time points to the model. ROC curves of 5-fold cross validation using training data, where the 
training samples are divided as 80% for training and 20% for validation. The blue curve is the average 
of the 5 curves and the grey band in the background marks the interval between the left and right first 
standard deviation.  
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3.2.2 A-risk improves prioritization of de novo variants in autism cases 

To investigate if A-risk can prioritize de novo risk variants detected from exome or 

genome sequencing studies, we compiled de novo likely gene-disrupting (LGD) variants of 8838 

trios from recent published studies (R. Chen et al., 2017; Feliciano et al., 2019; Iossifov et al., 

2014; Satterstrom et al., 2020; Takata et al., 2018; Yuen et al., 2017) (Table 3.1). We calculated 

enrichment rate of LGD de novo variants in a gene set by the observed number of variants 

divided by the expected number estimated from background mutation rate models (Carlson et al., 

2018; Samocha et al., 2014) (Table 3.2). The enrichment rate for all genes excluding known risk 

genes is 1.4, suggesting there are additional risk genes that harbor de novo LGD variants. When 

further selecting genes by A-risk ≥0.4, the enrichment rate reaches 2.1 (p-value=1.3e-32, Poisson 

test), showing that A-risk can increase the signal-to-noise ratio in prioritized candidate risk 

genes.  

  Table 3.1 Summary of publication sources of de novo variants data. 
 
Cohort label Number of unique cases Publication 
ASC 3625 (Satterstrom et al., 2020) 
De Rubies 421 (De Rubeis et al., 2014) 
SSC 2501 (Iossifov et al., 2014) 
SPARK pilot 465 (Feliciano et al., 2019) 
MSSNG 1529 (Yuen et al., 2017) 
JPASD 232 (Takata et al., 2018) 
ACE 65 (R. Chen et al., 2017) 

Total 8838 
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To further assess the utility of A-risk in prioritizing novel risk genes, we compute 

enrichment and precision-recall like curves and compare with other methods. The precision-

recall like curves compare the utility of each method in prioritizing true risk variants(Carlson et 

al., 2018; Samocha et al., 2014). With each method, we rank all genes. In all genes above a 

certain rank threshold, we estimate the number of detected true risk variants (“positives”) by the 

difference of observed number of variants (“detected positives”) and expected number. The total 

number of true positives is unknown, but it is a constant independent of methods. Therefore, the 

estimated number of true positives is a proxy of recall. The estimated precision is the number of 

detected true positives divided by the total number of detected positives. Besides the de novo 

LGD variants we used for Table 3.1, we included deleterious missense (D-mis) variants defined 

by REVEL score (Ioannidis et al., 2016) ≥0.5 in the following analysis. In addition, all known 

risk genes used in model training are excluded from analysis. We compared A-risk with mouse 

brain bulk expression ranks at E9.5 (J. Homsy et al., 2015), ExAC pLI (Lek et al., 2016), and the 

baseline where the corresponding estimates are calculated in all protein-coding genes (excluding 

known risk genes). A-risk achieves consistently higher enrichment from the top 2000 to top 4000 

 
 
 
 
Table 3.2 A-risk improves prioritization of de novo LGD variant in autism cases 
(n=8836). 

  
Observed number 

of variants 

Expected  Enrichment 

Rate 

P-value 

All genes (N=18663) 1341 784 1.7 3e-73 

Excluding known risk genes 

(N=18575) 

1114 774 1.4 9e-31 

A-risk≥0.4, excluding known risk 

genes (N=2566) 

313 148 2.1 1e-32 
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ranked genes compared to others and significantly higher than the genome baseline (Figure 

3.5A). At the 2500 top rank, roughly corresponding to A-risk score 0.4, A-risk achieves better 

precision than other metrices and prioritizes almost half of total de novo variants with a relatively 

high precision (0.46), a 64% improvement from the genome-wide baseline (precision=0.28) 

(Figure 3.5B). Furthermore, in non-constrained genes (pLI<0.9), A-risk shows significantly 

higher enrichment and better precision compared to mouse brain expression levels (Figure 3.5C 

and D), indicating A-risk is complementary to pLI with the potential to optimize risk gene 

discovery, especially among non-constraint genes. We also compared A-risk with other recent 

methods aimed to find novel autism risk genes, such as D-score (C. Zhang & Shen, 2017) and 

Krishnan 2016 (Krishnan et al., 2016) (Figure 3.6). A-risk again shows superior performance in 

enrichment, precision and true positives from top 1500 to top 4000 ranks of the three methods 

(Figure 3.6A and B), and particularly in non-constrained genes (Figure 3.6C and D). 
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Figure 3.5 Superior performance of A-risk in prioritization of de novo variants at top 2500 
ranks, especially in non-constraint genes. A-B, comparison of A-risk to mouse brain expression 
level, pLI and genome baseline in prioritization of de novo LGD and D-mis variants among top genes 
ranked by each individual metrics, excluding known risk genes used in A-risk training. D-mis is 
defined by REVEL score ≥ 0.5. The de novo variant data is compiled from 8838 published trios of 
exome sequencing studies. (A) Enrichment is the ratio of observed number of de novo variants to the 
expected number of de novo variants estimated by background mutation rate in top ranks, ranging 
from top 1000 to top 4000 genes. (B) Precision and true positives compared in top ranks. True 
positives, which are the difference value between observed number of de novo variants and the 
expected number, represent the recall since the true number of total causal variants is unknown. 
Precision is computed as dividing true positives by the observed number. Genome baseline is the grey 
star in the plot. C-D, comparison of A-risk to mouse brain expression level and genome baseline in 
prioritizing de novo variants in non-constraint genes with pLI<0.9, excluding known risk genes. pLI is 
excluded from the comparison because it is used in stratifying non-constraint genes. (C) Enrichment 
compared in top ranks by each metric. (D) Precision and true positives comparison. 
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A B 

C D 

Figure 3.6 A-risk has better performance than other two methods in prioritizing de novo 
variants. A-B, Compare A-risk to Krishnan 2016(Krishnan et al., 2016) and D-score(C. Zhang & 
Shen, 2017) in enrichment, precision and true positives of de novo LGD and D-mis variants 
prioritized in top ranks by each method, excluding all known risk genes. C-D, Compare the three 
methods in non-constraint genes stratified by pLI < 0.9, excluding all known genes.  
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 3.2.3 A-risk informs prior estimation in autism risk gene discovery 

TADA and extTADA (X. He et al., 2013; Nguyen et al., 2017) are empirical Bayesian 

methods used in previous genetic studies of autism(De Rubeis et al., 2014; Satterstrom et al., 

2020) to identify candidate risk genes based on burden of de novo variants. A key feature of such 

empirical Bayesian method is that it estimates parameters of priors, including mean relative risk 

(R) and prior probability (π) of being a risk gene, from the data. We reasoned that metrics 

associated with plausibility of autism risk, such as A-risk and gene constraint (pLI), could be 

used to improve prior estimation in an empirical Bayesian framework. To this end, we stratified 

a total of 18663 protein-coding genes by A-risk score 0.4 and pLI cutoff 0.9, resulting in 4 

quadrants of genes (Figure 3.7A): 1195 constrained genes with high A-risk score (quadrant A), 

1842 constrained genes with low A-risk score (quadrant B), 1444 non-constrained genes with 

high A-risk score (quadrant C) and 14182 non-constrained genes with low A-risk score (quadrant 

Table 3.3 Notable candidate risk genes by stratified extTADA analysis. 
 

 

Gene 
Symbol pLI A-risk Gene 

quadrant 

# of 
LoF, 
Dmis 

FDR 

NDD 
significant 

genes 
(Kaplanis et 

al., 2020) 

Additional support 

NR2F1 1 0.68 A 1, 1 0.07 TRUE 

Bosch-Boonstra-Schaaf 
Optic Atrophy Syndrome 
with autistic manifestation 
(C. A. Chen et al.) 

NR4A2 1 0.43 A 1, 1 0.09 TRUE Levy 2018 (Levy et al.) 

CLCN4 1 0.59 A 0, 3 0.015 TRUE 
Raynaud-Claes syndrome 
(OMIM 300114) with 
autistic features 

PRKAR1B 0.18 0.43 C 1, 2 0.06 TRUE 
Additional damaging 
variants in Ruzzo 2019 
(Ruzzo et al.) 

GIGYF1 0 0.56 C 5, 0 1e-5 TRUE  

HNRNPU 1 0.48 A 1, 1 0.09 TRUE Mosaic mutations (Lim et 
al.) 
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D); then we estimated prior parameters by extTADA in each quadrant of genes, using previously 

reported de novo LGD and D-mis variant data from 8838 trios(R. Chen et al., 2017; Feliciano et 

al., 2019; Iossifov et al., 2014; Satterstrom et al., 2020; Takata et al., 2018; Yuen et al., 2017). 

Consistent with previous simulation(Iossifov et al., 2014), in unstratified analysis, π is about 

0.04, corresponding to 750 risk genes in total. In stratified analysis, π decreases from quadrant A 

to quadrant D (Figure 3.7B). Constrained genes stratified by A-risk ≥0.4 in quadrant A have 

Figure 3.7. Prior estimation in stratified extTADA analysis. (A). gene groups defined by pLI and 
A-risk: A: pLI≥0.9 and A-risk≥ 0.4; B: pLI≥0.9 and A-risk <0.4; C: pLI<0.9 and A-risk≥0.4; D: 
pLI<0.9 and A-risk<0.4. (B). Risk gene proportions (π) in stratified gene groups estimated from 
MCMC. Modes are indicated by small boxes in the middle and the upper and lower bars indicate 95% 
confidence intervals. (C). Relative risks (γ) of genes in each stratified group estimated from MCMC. 
Relative risks estimated separately from LGD and D-mis variant data, labeled by purple and orange 
respectively.  

 

A 

B C 
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greater π and R than genes with low A-risk scores in quadrant 

B (Figure 3.7C). Genes in quadrant C and D have similar π, 

but quadrant C genes have a substantially greater R that D 

genes. Overall, A-risk informs the estimation of those priors in 

both constrained and non-constrained genes. 

The extTADA methods calculates a Bayes factor (BF) 

and posterior probability of association (PPA) for each gene, 

and then converts PPA to FDR (false discovery rate) to 

identify candidate risk genes. Common FDR procedures are 

designed to control the proportion of false positives among discoveries. However, with a large 

number of known risk genes ranked among the top by PPA, the estimated FDR of novel genes 

will be smaller than their true values, considering the true FDR of known genes is 0. This will 

lead to inflation of the support for novel candidate genes (Kaplanis et al., 2020). To address this 

issue, we excluded 90 known genes with SFARI gene score 1 or 2 in FDR estimation 

(Supplementary Table 3.5). The stratified analysis yielded 71 candidate genes passing FDR ≤0.1, 

whereas unstratified analysis yielded 44 genes. Among these genes, 38 were identified 

exclusively by the stratified approach, 11 were exclusively found by the unstratified approach, 

and 33 were shared (Figure 3.8). Previous studies have shown that autism risk genes are often 

pleiotropic and implicated in other neurodevelopmental disorders (NDD) (Coe et al., 2019; 

Cross-Disorder Group of the Psychiatric Genomics Consortium. Electronic address & Cross-

Disorder Group of the Psychiatric Genomics, 2019; Myers et al., 2020; Satterstrom et al., 2020). 

We obtained candidate NDD genes from a recent study(Kaplanis et al., 2020) to seek support of 

the candidate autism genes. Among the 38 genes identified only in stratified approach, 13 are 

Figure 3.8 Stratified extTADA 
analysis by A-risk and pLI 
identifies more candidate risk 
genes of autism. The numbers in 
the Venn diagram show the number 
of genes identified by stratified 
analysis exclusively (38), by un-
stratified analysis exclusively (11), 
and by both approaches (33). 
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significantly implicated with NDD. In contrast, only 1 out of the 11 unstratified-exclusive genes 

is implicated with NDD (Figure 3.9 and Supplementary table 3.6). Among the candidate genes 

that are also implicated with NDD, several are notable with additional support from other studies 

on autism or syndromes with autistic features, such as NR2F2, NR4A2, HNRNPU, CLCN4, and 

PRKAR1B (Table 3.3). Candidate risk genes located in quadrant C, such as GIGYF1 and 

PRKAR1B, are among the small number of candidate genes that are not constrained (pLI ~ 0).  

 

3.2.4 Autism risk genes are highly expressed in deep-layer excitatory neurons in cortex  

Previous studies have investigated autism risk by cortex laminar architecture. However, 

studies based on co-expression analysis (Parikshak et al., 2013; Willsey et al., 2013) or 

neurochemical experiments (Stoner et al., 2014; Trutzer, Garcia-Cabezas, & Zikopoulos, 2019) 

Figure 3.9 Additional support of candidate novel autism risk genes identified by stratified 
or unstratified extTADA analysis with significant genes in neurodevelopmental disorders 
(NDD) identified by Kaplanis et al 2020. Among 33 genes identified by both stratified and 
unstratified extTADA, 23 (70%) are implicated with NDD; 14 genes out of 38 (37%) identified 
exclusively by stratified extTADA are implicated with NDD, whereas only 1 out of 11 (9%) 
exclusively identified by unstratified extTADA is associated with NDD. 
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reported conflicting conclusions, that either deep or superficial layers of cortex are associated 

with autism. These early studies were based on a small number of high-confidence autism risk 

genes. Here we revisit the question with a much larger list of high-confidence candidate genes 

and single cell RNA-seq data. We obtained a single-nucleus RNA-seq data set of the middle 

temporal gyrus (MTG) of adult human cortex with clear laminar layer information (Hodge et al., 

2019).  The expression level of those 90 SFARI score 1 or 2 genes and 71 novel candidate risk 

genes is shown in the heatmap in Figure 3.10A. Hierarchical clustering based on the expression 

data forms four major clusters of genes. Genes in cluster 1 show very little expression in most 

cell types, except that TBR1, RORB, MEIS2, PTCHD1, FEZF2 and NR4A2 are sparsely 

expressed in subtypes excitatory neurons and RELN and PCDH19 are highly expressed in 

subtypes of inhibitory neurons. Cluster 2 genes have more specific expression in deep-layer 

excitatory neurons. Genes in cluster 3 are expressed more widely in neuronal cell types with 

even higher expression in excitatory neurons at deep layers of MTG. Genes in cluster 4 have 

high expression in almost all the neuronal cell types in MTG. Mapping quadrant gene groups 

defined by A-risk and pLI into those 4 distinct expression clusters reveals that both cluster 3 and 

4 are dominated by quadrant A genes (33 out of 47 genes and 29 out of 32 genes, respectively). 

Cluster 2 contains the largest portion of quadrant C genes (10 out of 16 genes, Figure 3.10B). 

Consistent with pLI value distribution, a larger fraction of genes in cluster 2 have higher 

observed to expected (O/E) ratio of LoF mutations in gnomAD (genome aggregation 

database)(Karczewski et al., 2020) compared to genes in other clusters (Figure 3.10C). Overall, 

excitatory neurons project from or to deep layers have high expression of the largest subset of 

known and candidate risk genes.  
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The heatmap of expression fraction in the same order of genes using the two fetal data 

sets in our model are shown in Figure 3.11. There is no layer information with the fetal data. 

Nevertheless, the expression patterns of candidate risk genes in the two fetal data sets generally 

follows the organization in the adult cortex data, especially for fetal prefrontal cortex. 

Additionally, 14 out of 24 cluster 1 genes with little expression in adult cortex neuronal cells 

have fraction expression ≥0.5 in at least one cell type in fetal prefrontal cortex, suggesting a 

dynamic temporal specific expression of those candidate risk genes. 
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3.3 Discussion 

In this study, we developed a new method, "A-risk", to predict plausibility of autism risk 

genes based on single-cell expression patterns in human fetal midbrain and prefrontal cortex. A-

risk was trained using known autism genes. A-risk score reflects the similarity of the cell-type-

specific expression pattern of a gene to known autism genes in aggregation. It achieves superior 

performance in prioritizing de novo risk variants, especially in genes that are less intolerant of 

Figure 3.10 Most autism risk genes have high expression in deep-layer excitatory neurons in 
prefrontal cortex. (A) Hierarchical clustering 90 known autism risk genes and 71 novel candidate 
genes by expression level in cell types from adult cortex middle temporal gyrus (MTG) with laminar 
information. Genes (shown in rows) form 4 major clusters, labeled from 1 to 4 on the left. The dash 
line marks the height cutting the hierarchical tree. Cell types are clustered as well and are labels in the 
format as “major cell type.located layers.marker genes”. Exc, excitatory neurons. Inh, inhibitory 
neurons. Astro, astrocytes. OPC, oligodendrocyte precursor cells. Oligo, oligodendrocytes. Micro, 
microglia. Endo, endothelial cells.  The color (blue to red) of the heatmap indicates expression level of 
a gene in the cell type, calculated as the fraction of cells that have ≥1 UMI mapped to the gene in the 
cell type. Almost all genes in cluster 1 have low expression in all cell types. Most genes in cluster 2 
are specifically expressed in excitatory neurons in deep layers (layer 4 to 6). Cluster 3 genes are highly 
expressed in deep excitatory neurons and have expression in most of neuronal cell types.  Cluster 4 
genes are highly expressed in almost all neuronal cell types.  Quadrant gene groups stratified by Frisk 
and pLI are labeled by the color bar on the right side with A, B, C and D represented by orange, 
purple, yellow and green. (B) Number of known or candidate risk genes from quadrant gene groups in 
each expression clusters. Cluster 1 is enriched with quadrant B genes (high pLI and low A-risk); 
cluster 2 is enriched with quadrant C genes (low pLI and high A-risk); cluster 3 and 4 are enriched 
with quadrant A genes (high pLI and high A-risk).  (C) The distribution of observed over expected 
(O/E) number of loss of function variants in gnomAD database in the 4 expression clusters. Cluster 2 
genes have a broad distribution of O/E. Genes in other clusters have generally small O/E. 

B C 
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  A B 

Figure 3.11 Heatmap of expression level of known and candidate risk genes in fetal midbrain (A) and 
prefrontal cortex (B). Row orders are arranged as same as Figure 3.8.  Cell types in midbrain are labeled as 
“h(human)cell type names_week” and cell types in prefrontal cortex are labeled as “major cell type 
name_sub clusters_gestational weeks”, in concordance with original data. DA, dopaminergic neurons. NbM, 
medial neuroblast. OMTN, oculomotor and trochlear nucleus. NbGaba, neuroblast GABAergic. Gaba, 
GABAergic neurons. NbML, mediolateral neuroblasts. ProgFPL, progenitor lateral floorplate. ProgM, 
progenitor midline. RN, red nucleus. Rgl, radial glia-like cells. OPC, oligodendrocyte precursor cells. NProg, 
neuronal progenitor. Endo, endothelial cells. Peric, pericytes. ProgBP, progenitor basal plate. ProgFPM, 
progenitor medial floorplate. NPCs, neural progenitor cells. Exneurons, excitatory neurons. 
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 loss of function variants. Furthermore, A-risk is complementary with gene constraint metric 

(pLI) for improving estimation of priors using an empirical Bayesian association method. 

Applying it to published de novo variant data, we identified 71 novel candidate risk genes, an 

increase of 27 genes over the results using the same statistical method without stratification of 

genes by either A-risk or pLI.  

 Both inhibitory and excitatory neurons in the prefrontal cortex strongly contribute to A-

risk prediction during fetal stages, consistent with previous theory of excitatory and inhibitory 

imbalance in the prefrontal cortex disrupting neural communication(Rubenstein, 2011; 

Zikopoulos & Barbas, 2013). GABAergic inhibitory neurons in midbrain have been identified as 

the most significant contributing feature to A-risk prediction, implicating a potential role of 

midbrain in autism pathogenesis that has been understudied.  

Early functional and co-expression network studies (Chang et al., 2015; Willsey et al., 

2013) based on a small number of high-confidence autism risk genes have revealed convergence 

on excitatory neurons in deep-cortical layers, however, another co-expression network analysis 

(Parikshak et al., 2013) found significance in excitatory neurons in superficial cortical layers. 

With a much larger number of high-confidence risk genes, we revisited the role of neuronal cell 

types in six different cortical layers. Based on a large single nuclei RNA-seq data set from adult 

cortex, we observed that deep-layer excitatory neurons have high expression of the vast majority 

of known and candidate autism risk genes, while other neuronal types or neurons in superficial 

layers have high expression of a much smaller subset of these genes. Since the excitatory 

neurons residing in layer 5 or 6 of cortex extend their axons into other regions of brain and 

communicate between cortex and other critical regions (Molyneaux, Arlotta, Menezes, & 

Macklis, 2007; Rubenstein, 2011), disruption of deep-layer excitatory neurons more likely 
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affects signal transmission and communication across different brain regions. Taking account of 

gene mutation intolerance (pLI) and expression similarity to known autism genes (A-risk), the 

candidate risk genes with high A-risk but low pLI (i.e. quadrant C), such as GIGYF1 and 

MBOAT7, are much more likely to have specific expression in deep-layer excitatory neurons. 

Interestingly, a recent study (Satterstrom et al.) showed GIGYF1 was the most autism-specific 

gene among all candidate autism risk genes based on frequency of disruptive de novo variants in 

either autistic or severe NDD cohorts. This suggests an association of deep-layer excitatory 

neurons and autistic conditions that do not involve severe NDD conditions such as intellectual 

disabilities. We expect that this hypothesis will be tested in future studies with independent high-

resolution single cells or neural circuit expression data, larger set of high-confidence risk genes, 

and autism cohorts with comprehensive NDD phenotyping.  

The majority of genes in quadrant C are located in expression cluster 2, where a higher 

proportion of genes shows increased observed to expected (O/E) ratio of LoF mutations, 

suggesting quadrant C genes are less intolerant to LoF mutations or may be incompletely 

penetrant. The genes that have high A-risk and high pLI (quadrant A) are more likely to have 

high expression in a wide range of cell types. Candidate risk genes in cluster 1, among which 16 

genes out of 33 in total have high pLI but low A-risk (quadrant B), have sparse expression in 

adult cortex but more expression in fetal prefrontal cortex, indicating those autism risk genes can 

take effect at limited time points and places. 

 A-risk directly utilized single-cell transcriptomic data as the input of the machine 

learning model to learn expression patterns from known risk genes. Expression patterns inferred 

from single-cell RNA-seq data have better resolution than bulk sequencing data with fine-

grained cell-type heterogeneity and developmental temporal information. To integrate 
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transcriptomic information in risk gene discovery in a principled way, we used A-risk in an 

empirical Bayesian framework to improve prior estimation based on genetic data. This approach 

yielded 27 more candidate risk genes than the original Bayesian approach using only genetic 

data. With increased sample sizes in the future, A-risk can also be used as informative covariates 

to improve FDR estimation (Ignatiadis, Klaus, Zaugg, & Huber; M. J. Zhang, Xia, & Zou) in 

frequentist approaches for risk gene discovery. 

A-risk is currently limited by the availability of comprehensive single-cell expression 

profiles across all critical human brain regions and developmental stages. Profiling neuron cells 

is uniquely challenging since the information in extended projections and axons can be lost 

during sample preparation in single-cell RNA-seq. Even though the data we used in the A-risk 

model is from fetal stages, when extended axons of neurons have not been prolonged, we should 

still interpret with consideration that there could be some genes missed in the data. New single-

nucleus RNA-seq and subcellular transcriptomic profiling techniques and data sets from ongoing 

projects such as Allen Brain Institutes (Miller et al., 2014) and Human Cell Atlas (Han et al., 

2020) will help to address this issue (Fazal et al., 2019; Kebschull et al., 2016). Additionally, A-

risk is a supervised learning approach, and inevitably it biases towards genes with similar 

expression patterns to known risk genes in the training. Unsupervised approaches could assist in 

addressing the problem. Finally, abundant and specific expression is not sufficient to define a 

gene as a risk gene. Other factors such as functional redundancy (Kafri, Levy, & Pilpel, 2006) 

and protein complex formation (Marianayagam, Sunde, & Matthews, 2004) that determine 

whether a high-expression gene is a bottleneck in a system, also play a role in the genetic impact. 

Future studies can consider those factors with single-cell expression profiles to improve accuracy 

of prediction. 
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3.4 Material and methods 

3.4.1 Data collection and preprocessing 

 In this study, we integrated human fetal brain single-cell RNA-seq data from two 

publications: (1) midbrains from 6 to 11 weeks (La Manno et al., 2016) and (2) prefrontal 

cortexes from gestational weeks 8 to 26(Zhong et al., 2018). To integrate these two data sets, 

first, we obtained the UMI counts of single cells from their published data. Second, we directly 

utilized the cell type clusters and time points documented in the publications and calculated the 

expression fraction of each gene in each cell type at a particular time point. We combined each 

individual cell type and time point together to generalize one feature in the integrated data. The 

expression fraction is defined as, for a particular gene in a cell type at a developmental time 

point, the number of cells having the gene expressed (UMI >= 1) divided by the total number of 

cells grouped in the cell type. La Manno et al., 2016(La Manno et al., 2016)  reported 26 cell 

types across 6 developmental time points, including an unknown cell type ("Unk") where those 

cells cannot be assigned to any known clusters. We excluded Unk cells in the analysis. Zhong et 

al., 2018 reported clustered 35 cell types through 9 time points. Furthermore, we also excluded 

cell types with fewer than or equal to 10 cells. In total, we compiled 95 features in the combined 

data set, including 47 from La Manno et al., 2016 and 48 features from Zhong et al., 2018. 

 We obtained known autism risk genes with score of 1 or 2 in the SFARI 

database(Abrahams et al., 2013) (https://gene.sfari.org/database/human-gene/, version released 

on 08/29/2019) as the positives for model training. There are 3 genes BAZ2B, MSNP1AS and 

TBR1 not present in the single-cell expression data, so we excluded them in the positive training 

set. For the negatives for model training, we collected genes harboring at least 1 de novo LGD 

https://gene.sfari.org/database/human-gene/
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variant in controls from an exome-sequencing study on autism(Iossifov et al., 2014). Two genes 

(KDM5B and CACNA1H) are present in both the initial positive and negative sets. We removed 

these 2 genes from the negative set. In total, we compiled 88 genes in the positive training data 

set and 154 genes in the negative training data set. The full list of training genes is available in 

Supplementary table 3.1.  

 

3.4.2 Machine learning approaches to predict autism risk genes 

 A-risk (“Autism risk”) is based on a supervised machine-learning method, gradient 

boosting tree (GBT) (Friedman, 2002). The goal of the model is to find a function F*(x) mapping 

"input" x to "output" y, such that the expected value of some specified loss function Ψ(y, F(x)) is 

minimized, 

F*(x) = arg min
𝐹𝐹(𝑥𝑥)

𝐸𝐸𝐸𝐸, 𝑥𝑥Ψ(𝐸𝐸,𝐹𝐹(𝑥𝑥)). 

GBT is estimating F*(x) by an additive update to the form 

F(x) = ∑ 𝛽𝛽𝑚𝑚ℎ(𝑥𝑥)𝑀𝑀
𝑚𝑚=0 , 

and specifically updating the previous model with the error estimated in the previous step 

Fm(x) = Fm-1(x) + 𝛽𝛽𝑚𝑚ℎ(𝑥𝑥), 

where the functions ℎ(𝑥𝑥) are base learner functions and m = 1,2,...,M is iteration of the model. 

𝛽𝛽𝑚𝑚 is the current "pseudo"-residual, where 

𝛽𝛽𝑖𝑖𝑚𝑚  =  −
𝜕𝜕Ψ�𝐸𝐸,𝐹𝐹𝑚𝑚−1(𝑥𝑥)�

𝜕𝜕𝐹𝐹𝑚𝑚−1(𝑥𝑥) |𝑥𝑥 = 𝑥𝑥𝑖𝑖, 𝐸𝐸 =  𝐸𝐸𝑖𝑖 , 

for all i = 1,2,...,N, which is the number of training data points. Then we can estimate the optimal 

𝛽𝛽𝑚𝑚 and base learner ℎ(𝑥𝑥) by fitting 

𝛽𝛽𝑚𝑚 = arg min
𝛽𝛽

∑ Ψ(𝐸𝐸𝑖𝑖 ,  𝐹𝐹𝑚𝑚−1(𝑥𝑥𝑖𝑖)  +  𝛽𝛽ℎ(𝑥𝑥)𝑁𝑁
𝑖𝑖=1 ). 
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 We train the model using the training gene set and features derived from single cell data 

sets. To implement the gradient boosting tree machine, we used the python package 

"sklearn.ensemble.GradientBoostingClassifier" with parameters of "n_estimators" as 300, 

"learning_rate" as 0.05 and "max_depth" as 1. We assessed the performance of the model by 5-

fold cross validation. In each cross validation, the model randomly selected 20% of the training 

gene set to serve as a test set for validation and the rest of the genes were used to train the model. 

We implemented the python package "sklearn.metrics.roc_curve" to calculate the true positive 

rate, false positive rate, and to plot the ROC curve and calculate AUC values. After training, we 

predicted the probability for each protein-coding gene in the genome being a positive gene (i.e. 

plausibility for being an autism risk gene) by the trained model. The final A-risk score is the 

average probability from the 5-fold training and prediction. The complete A-risk score is 

available in Supplementary table 2.  

 "Feature importance" is derived from the gradient boosting tree model using the function 

"feature_importances_". In the GBT model, parameters of base learner functions are the splitting 

variables and corresponding split points defining the tree. The "feature_importances_" is a 

normalized estimate of the predictive power of a particular feature by combining the fraction of 

samples the feature contributes to and the decrease in impurity from splitting them (Louppe, 

2014). The final feature importance value for each selected feature is the average from the 5-fold 

training and prediction. All selected features with non-zero feature importance are listed in 

Supplementary table 2. 
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3.4.3 Comparison of A-risk to other metrices in prioritizing de novo LGD variants 

 We tool two approaches to compare the ability of A-risk and other metrics in 

prioritization of de novo variants. With each metric, we first rank all genes; then in all genes 

above a certain rank threshold (e.g. 1000, 1500, 2000, etc), we estimated the "enrichment of de 

novo variants", "precision", and "true positives". The formulae to compute these estimates are as 

following: 

 For any gene i, the number of expected de novo variants in each gene, Ei, was calculated 

as: 

     Ei = 𝟐𝟐 ×  𝑵𝑵 × ri 

where N is the number of trios in the compiled data sets and ri is gene-specific background 

mutation rate. Here we tested on de novo gene-likely disrupting (LGD) variants and deleterious 

missense (D-mis) variants (Figure 3.4). LGD variants include nonsense, frameshift and canonical 

splice site mutations and D-mis variants are defined as variants with REVEL (the Rare Exome 

Variant Ensemble Learner) score >= 0.5 (Ioannidis et al., 2016). For each gene, ri  is the sum of 

background mutation rate of LGD mutations plus D-mis mutations. 

 The background mutation rate per gene of each mutation type was obtained from a 

previous described mutation model (Carlson et al., 2018; Samocha et al., 2014). Briefly, the 

seven-nucleotide sequence context was used to determine the probability of each base in 

mutating to each other possible base. Then, the mutation rate of each functional class in each 

gene was calculated by adding up point mutation rates in the longest transcript. The rate of 

frameshift indels was presumed to be 1.25 times the nonsense mutation rate and the rate of genes 

located on chromosome X is further adjusted according to female-to-male ratio in the de novo 

data set (C. F. Wright et al., 2015).  
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 For a set of genes, the enrichment of de novo variants, D, was calculated as: 

      𝑫𝑫 =  𝑴𝑴
∑ 𝑬𝑬𝒊𝒊𝒊𝒊

 

where M is the total number of observed de novo LGD or D-mis variants in this gene set.  In this 

study, we compiled results from multiple whole exome studies on autism spectrum disorders, 

including total of 8838 trios from Simons Simplex Collection (SSC) (Iossifov et al., 2014), 

Autism Sequencing Consortium (ASC) (Satterstrom et al., 2020), SPARK Pilot (Feliciano et al., 

2019), MSSNG (Yuen et al., 2017), Takata et al., 2018 (Takata et al., 2018) and Chen et al., 

2017 (R. Chen et al., 2017) cohorts.  

           For any gene set, the number of detected true positives, TP, was calculated as: 

             𝑻𝑻𝑻𝑻 = 𝑴𝑴 −  ∑ 𝑬𝑬𝒊𝒊𝒊𝒊  

           For any gene set, the precision (positive predictive value), PPV, was calculated as: 

                PPV= M - ∑ Eii
M

 

 For each metric (A-risk, pLI etc.), a set of genes were selected based on the rank of genes 

by each individual metric, such as top 1000 genes or top 2000 genes, etc. The genome baseline is 

defined by all the genes in the genome. For the first estimate, enrichment of de novo variants, D, 

was calculated for any set of top-ranked genes, and then enrichment values were plotted and 

compared, as shown in Figure 3.4A. For the second estimate, the number of detected true 

positives, TP, and the precision (true discovery rate), PPV, were calculated for any set of top-

ranked genes. TP and PPV were plotted and compared, as shown in Figure 3.4B. Recall would 

be calculated as R = TP/N, where N is the total number of true positives (N). Since N is unknown 

but a constant, TP is proportional to R. Therefore, we use TP as a proxy of recall. To avoid 

inflation of A-risk performance, we excluded all the known autism risk genes used in A-risk 

training during calculation of all above estimates. Although there are different numbers of genes 
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predicted by each method, we compared all the methods with 18663 protein-coding genes, 

replacing missing scores with the median of each corresponding metrices.  

 To exam the potential of A-risk in prioritizing de novo variants in non-constrained genes, 

we limit the estimates on genes with pLI score <= 0.9 in each top rank of genes (Figure 3.5C and 

D). We excluded pLI as a metric for comparison in those figures since pLI was used to stratify 

constraint and non-constraint genes. Furthermore, we also compare A-risk with the other two 

metrices D-score and Krishnan 2016 (Figure 3.6).  

 

3.4.4 Application of A-risk in stratified risk-gene discovery analysis 

 In this analysis, we used an empirical Bayesian model of rare-variant genetic architecture, 

extTADA (Extended Transmission and de novo Association) (Nguyen et al., 2017), which can 

estimate mean effect sizes and risk-gene proportions from the genetic data to identify autism 

candidate risk genes. The extTADA model is developed based on a previous integrated empirical 

Bayesian model TADA (Transmission and de novo Association) (X. He et al., 2013), but it 

advanced the framework by estimating parameters using MCMC (Markov Chain Monte Carlo) 

process so that more accurate estimation on local gene groups can be achieved and confidence 

intervals can be provided.  

 Two major parameters, relative risk of a gene causing a disease γ and the proportion of 

disease risk genes across the local gene groups π, are estimated by the connection to variant fold 

enrichment (FE), which is calculated as the number of observed variants divided by the number 

of expected. Assuming the background mutation rate for each gene is µ, total number of genes in 

the gene set is m and total number of sequenced samples is N, then 

the observed variants, X = πm×2γµN + (1-π)m×2µN 



77 
 

the expected variants, Xe = πm×2µN + (1-π)m×2µN 

FE = 𝑿𝑿
𝐗𝐗𝐞𝐞

 = π (γ - 1) + 1, γ ~ Gamma (γ̅ β, β) 

FE can be calculated from the data, parameters  γ , π and β are estimated accordingly using a 

Hamiltonian Monte Carlo (HMC) MCMC method implemented in the "rstan" package 

(Carpenter et al., 2017).  

Bayes factors can be estimated as following: 

B = 𝑻𝑻(𝑿𝑿|𝑯𝑯𝑯𝑯)
𝑻𝑻(𝑿𝑿|𝑯𝑯𝑯𝑯)

 ~ 𝑻𝑻𝑷𝑷𝒊𝒊𝑷𝑷(𝟐𝟐γµ𝑵𝑵)
𝑻𝑻𝑷𝑷𝒊𝒊𝑷𝑷(𝟐𝟐µ𝑵𝑵)

 

H1 is alternative hypothesis and H0 is null, where γ = 1. 

 From Bayes’ theorem, the posterior odds are equal to the Bayes factor times the prior 

odds: 

𝑻𝑻(𝑯𝑯𝑯𝑯|𝑿𝑿)
𝑻𝑻(𝑯𝑯𝑯𝑯|𝑿𝑿)

 = 𝑻𝑻(𝑿𝑿|𝑯𝑯𝑯𝑯)
𝑻𝑻(𝑿𝑿|𝑯𝑯𝑯𝑯)

 × 𝑻𝑻(𝑯𝑯𝑯𝑯)
𝑻𝑻(𝑯𝑯𝑯𝑯)

 

where 𝑻𝑻(𝑯𝑯𝑯𝑯) is estimated π, 𝑻𝑻(𝑯𝑯𝑯𝑯) is (1-π ).  

 Assuming the posterior probability of association (PPA), 𝑻𝑻(𝑯𝑯𝑯𝑯|𝑿𝑿) is q, so the posterior 

probability of the null model 𝑻𝑻(𝑯𝑯𝑯𝑯|𝑿𝑿) is q0 = (1- q), 

q = 𝑩𝑩π
𝑯𝑯−π +𝑩𝑩π

 

then per-gene based FDR can be calculated from q0. First, q0 is ranked in an increasing order for 

all the genes, then FDR is the sum of total q0 smaller than the current rank @k divided by the 

total number of genes k with smaller q0: 

𝐹𝐹𝐹𝐹𝐹𝐹@𝑘𝑘 =  
∑ 𝒒𝒒0i𝑖𝑖 = 1
𝑘𝑘

𝑘𝑘
 

 To inform the parameter estimation with prior knowledge, we stratify the whole genome 

into 4 quadrants by A-risk score 0.4 and pLI score 0.9, so extTADA can estimate local 
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parameters in each 4 groups and better characterize properties for individual groups. Specifically, 

quadrant A consists of genes with A-risk >=0.4 and pLI >=0.9. Genes in quadrant B are in A-risk 

<0.4 but pLI >=0.9. Genes in quadrant C have A-risk >=0.4 but pLI <0.9, and the rest of the 

genes are assigned to quadrant D. We applied the extTADA model to each quadrant of genes to 

estimate the parameters and calculate PPAs. Then we combined the PPAs of 4 quadrants 

together to calculate a final genome-wide FDR (false discovery rate). To make FDR estimation 

of novel risk genes more accurate, we excluded known autism risk genes used in training A-risk 

model in FDR calculation, as most of these genes are ranked in top by PPA and including them 

in FDR calculation with deflate FDR values of novel risk genes. In parallel, we also inputted all 

genes into extTADA without stratification by A-risk or pLI to obtain an unstratified version of 

the same analysis, so that we can show the advantage of integration of biological information in 

genetic association studies. We used the same de novo variant data from 8838 trios and 

background mutation rate data as described above. 

 

3.4.5 Expression pattern clustering of known and candidate autism risk genes  

 We compiled the 71 novel candidate risk genes that pass FDR <=0.1 in stratified 

extTADA analysis together with 90 known risk genes (The gene MSNP1AS is missing in the 

input data for extTADA, because it is a non-coding gene.) and investigated the expression 

pattern of all those risk genes in a single-cell RNA-seq data of adult human cortex (Hodge et al., 

2019). The data was pre-processed as described above and the expression fraction for each cell 

type was pre-computed from read-count data downloaded from the publication. Hierarchical 

clustering was performed using "ComplexHeatmap" package in R based on "Euclidean distance" 

and the heatmap (Figure 3.10A) was drawn by the "heatmap" function built in the package.  
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Chapter 4: Conclusion and Discussion 
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4.1 Conclusion 

 This thesis discussed about two methods, Episcore and A-risk. The methods are built on 

data mining on functional genomics using machine learning approaches. Episcore has 

successfully predicted haploinsufficient genes by learning on analogous epigenomic patterns 

present in known haploinsufficient genes, such as broader peaks of H3K4me3 epigenomic 

modification and more frequent interactions between promoters and enhancers. We compiled 

about 360 features from various epigenomic modification in multiple human tissues or cell lines. 

By using Episcore, we can identify disease risk genes that take action through 

haploinsufficiency, which is the major mechanism when mutations occurred in risk genes. A-risk 

is a method developed specific to autism, where we learned from the single-cell expression 

patterns of known autism risk genes, and predicted on other genes vulnerable to autism genetic 

risks. We integrated two single-cell RNA-seq data sets from human fetal midbrain and prefrontal 

cortex, consisting about 4000 cells in a wide range of developmental stages. A-risk prioritized 

about 2500 genes and there is a significant enrichment of de novo LGD and deleterious missense 

mutations from autism patients among the top 2500 genes.  

 The two methods developed from functional genomics provide additional and orthogonal 

information for traditional genetic analysis, combining which gained improved power to identify 

and better interpret genetic risks. The most-adapted pLI metric is developed by measuring 

depletion of LoF mutations in healthy populations and only utilized WES data. By combining 

Episcore and pLI, the meta score can improve the precision and true positives to much higher 

levels, indicating the two methods are complementary and providing diverse biological 

information. The advantage of plugging A-risk into discovery of autism risk genes is even more 
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prominent. After inputting A-risk as prior information for parameter estimation in extTADA 

analysis, we identified 27 more risk genes resulting in total of 71 novel risk genes except for all 

known risk genes, with current limited sample size.  

 Data mining on functional genomics can directing infer disease etiology. The common 

obstacles of genetic analysis lie in lack of linkage to functional interpretation, so when we found 

a risk gene with strong statistic evidence, it is hard to find mode of action and implicated cell 

types, tissue or developmental time point. In both Episcore and A-risk, we predict on risk genes 

directly from their regulatory or transcriptomic landscapes, therefore we can interpret disease 

mechanism altogether. In Episcore, the importance directly derived from the random forest 

model shows that active promoters and enhancers have more contribution to haploinsufficiency 

than repressive promoter features, indicating regulations for haploinsufficient genes may come 

from active promoters and enhancers more. Similarly, we also inferred from the A-risk model 

that GABAergic neurons at week 9 in midbrain and excitatory neurons at week 12 in prefrontal 

cortex are the most contributing cell types to autism risk prediction, which means that those may 

be the most vulnerable cell types in autism etiology providing directions for future functional 

studies. In summary, we found that integrating functional genomic data with genetic analysis is 

effective and tantalizing in facilitating genetic discoveries in era of computational biology.  

 In the following section, I am going to talk about future steps to improve our prediction 

models and methods. In addition, I am going to propose other directions to integrate functional 

data into genetic studies. 
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4.2 Discussion 

4.2.1 Transmission risk analysis in A-risk gene discovery 

Even though A-risk autism genes are predicted by training on risk genes identified by de 

novo variants, we still interested in how A-risk risk genes can characterize autism genetic 

architecture. A current ongoing analysis working on the SPARK (Simons Powering Autism 

Research) project, which consist of WES data from more than 10,000 autism cases from about 

9,000 families, analyzed the over-transmission rare LoF variants in multiple functional gene sets 

to compare for the most efficient metrics to prioritize rare inherited variants. They have 

compared between the number of transmitted and un-transmitted rare LoF variants from parents 

to affected offspring. The background gene set is composed of genes with pLI score > 0.5 as 

preliminary filtering and they selected several functional gene groups beyond it. A-risk candidate 

genes are selected by predicted score > 0.4 and are compared to the following gene sets: (1) 

Brain enriched genes are a specific group based on a transcriptome analysis, that expressed in 

brain tissues with larger than 5 times median expression in other tissues (Fagerberg et al., 2014). 

(2) SynaptomeDB is a database collecting proteome comprising the synaptome  (Pirooznia et al., 

2012), a critical implicated regulome in autism. (3) FMRP interacts with transcripts encoding 

pre- and postsynaptic proteins implicated in autism, so target genes of FMRP are potential 

convergent regulome for autism risks (Darnell et al., 2011). (4) Target genes of the autism-

associated chromatin modifier CHD8 are also enriched for other ASD risk genes and converge in 

ASD-associated co-expression networks in human midfetal cortex (Cotney et al., 2015). (5) 

Targets of CELF4 are also enriched in the processes regulating synaptic plasticity and 

transmission (Wagnon et al., 2012). (6) The LOEUF metric stands for the “loss-of-function 
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observed/expected upper bound fraction”, which also measures the intolerance of a gene to 

variants but provides better significance measure than pLI (Karczewski et al., 2020). In this 

analysis, they found that A-risk explains the highest proportion (~60%) of over-transmitted 

events across all other 6 gene groups and achieves the highest precision as well, indicating A-risk 

candidate gene set performs best in prioritizing rare inherited LoF variants.   

Following the same logic, we can also investigate the enrichment of common risk 

variants in A-risk candidate genes. Since A-risk genes are predicted on expression patterns of 

genes identified by de novo variants, higher enrichment of over transmission in A-risk predicted 

autism genes suggests inherited and de novo genetic risks can converge on common 

transcriptomic network or pathways in affected cell types. To further modify A-risk model to 

investigate the role of rare inherited variants, we can exclude positive training genes with nearly 

complete penetrance to train the machine learning model and find more risk genes vulnerable to 

inherited variants and identify implicated cell types.  

 

4.2.2 The integration of more comprehensive data sets 

The capacity of Episcore can be definitely improved by the availability of cell-type 

specific epigenomic data. A recent study using single-cell ATAC-seq (Assay for Transposase-

Accessible Chromatin using sequencing) technique has profiled chromatin accessibility 

of >75,000 single cells from eight distinct arears of developing human forebrain (Ziffra et al., 

2020), and the data can be adapted in Episcore model to gain more insights on regulatory 

mechanism on gene expression in the resolution of cell types of developing human brain. Their 

finding also showed the important contribution of specific and dynamic chromatin state to 

emerging cell-type diversity and cell fate specification, indicating additional cell-type 
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epigenomic information can be leveraged by Episcore model. Furthermore, cell-type 

epigenomics of mouse cerebrum have been profiled as well (Li et al., 2020), which we can also 

integrate in the model to better understand mammalian brain regulation.  

In the meantime, another straight forward direction to improve A-risk method is to 

compile and integrate more single-cell transcriptomic data. First, data from other tissues or areas 

of human brain can be combined to investigate genetic risk impact in other brain structures, for 

example, spatial and single-cell data from striatum (Martin et al., 2019) and cerebellum 

(Aldinger et al., 2020). Second, we can collect data from other important developmental stages. 

In our original A-risk model, we didn’t include a considerable number of neuronal cells during 

early second trimester stage, but a recent study has sequenced on 40,000 cells in human 

neocortex during mi-gestation (Polioudakis et al., 2019), with which can help complete the time-

point gap in the previous A-risk model. We also believe that with more data collected in 

consortium projects like Allen Brain Map (Miller et al., 2014), the whole picture of human brain 

transcriptomics can be accessible in the near future.  

Besides to improve the two methods we have developed, the machine-learning approach 

to predict on genetic risks can be applied to other diseases. There are aggregative studies 

profiling comprehensive transcriptomics across all major human organs to build a human cell 

landscape at single-cell level (Han et al., 2020; S. He et al., 2020). Consortiums like Human Cell 

Atlas (HCA, https://www.humancellatlas.org) has also been working on constructing systematic, 

high-resolution and comprehensive reference maps for all human cells. With more accessible 

data, the framework of Episcore or A-risk can be applied to facilitate risk gene discovery and 

extend our understanding in other diseases.  
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4.2.3 Single-cell RNA velocity Analysis on transcriptional regulation of disease risk genes 

 A recent study brought up a concept, RNA velocity γ  in single cells, to measure cellular 

dynamics using single-cell RNA-seq data (La Manno et al., 2018)(La Manno, 2018). Assuming a 

steady-state abundance of spliced (mature) s and unspliced (nascent) u mRNA molecules 

captured by single-cell RNA-seq technique, this method estimates RNA velocity of a particular 

gene from the snap-shot of expression (t indicates time): 

𝑑𝑑𝒔𝒔
𝑑𝑑𝑑𝑑

= 𝒖𝒖 −  γ 𝒔𝒔  

Where γ is a composite value combining degradation and splicing rates and capturing gene and 

cell-type specific regulatory properties, which can be used as transcriptional dynamic 

measurements and cellular lineage indicators.  

 In Episcore and A-risk, we analyzed the epigenomic and expression pattern of risk genes. 

Higher level of expression or more sophisticated epigenomic regulation that a gene possesses is 

indeed an indicator of functional importance of the gene, but the regulatory dynamics is not 

inferred or leveraged in the model. By combining RNA velocity data in our machine learning 

approach, we can take advantage of the cellular dynamic information to understand the trajectory 

of disease risk genes in cellular differentiation process and identify more informative cell types 

shaping the disease etiology. By analyzing the enrichment of disease risk genes among those 

“driver genes” inferred by RNA velocity, we can also find relevant cell types involved in the 

pathology of the disease and gain more insights into disease genes’ functional regulation.   
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