
On Resilience to Computable Tampering

Maynard Marshall Ball Jr.

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2021

© 2020

Maynard Marshall Ball Jr.

All Rights Reserved

Abstract

On Resilience to Computable Tampering

Maynard Marshall Ball Jr.

Non-malleable codes, introduced by Dziembowski, Pietrzak, and Wichs (ICS 2010), provide a

means of encoding information such that if the encoding is tampered with, the result encodes

something either identical or completely unrelated. Unlike error-correcting codes (for which the

result of tampering must always be identical), non-malleable codes give guarantees even when

tampering functions are allowed to change every symbol of a codeword.

In this thesis, we will provide constructions of non-malleable codes secure against a variety

tampering classes with natural computational semantics:

• Bounded-Communication: Functions corresponding to 2-party protocols where each

party receives half the input (respectively) and then may communicate < =/4 bits before

returning their (respective) half of the tampered output.

• Local Functions (Juntas): each tampered output bit is only a function of =1−X inputs bits,

where X > 0 is any constant (the efficiency of our code depends on X). This class includes

NC0.

• Decision Trees: each tampered output bit is a function of =1/4−>(1) adaptively chosen bits.

• Small-Depth Circuits: each tampered output bit is produced by a

2 log(=)/log log(=)-depth circuit of polynomial size, for some constant 2. This class

includes AC0.

• Low Degree Polynomials: each tampered output field element is produced by a low-degree

(relative to the field size) polynomial.

• Polynomial-Size Circuit Tampering: each tampered codeword is produced by circuit of

size =2 where 2 is any constant (the efficiency of our code depends on 2). This result

assumes that E is hard for exponential size nondeterministic circuits (all other results are

unconditional).

We stress that our constructions are efficient (encoding and decoding can be performed in uniform

polynomial time) and (with the exception of the last result, which assumes strong circuit lower

bounds) enjoy unconditional, statistical security guarantees. We also illuminate some potential

barriers to constructing codes for more complex computational classes from simpler assumptions.

Table of Contents

Acknowledgements . v

Dedication . vii

Publication History . 1

Chapter 1: Introduction . 2

1.1 Hardness vs. Tamper-Resilience? . 2

1.2 Non-Malleable Codes . 5

1.3 Our Results: How to Construct Non-Malleable Codes 6

1.3.1 Relations between the tampering classes considered. 10

1.3.2 Related work . 12

Chapter 2: Preliminaries . 14

2.1 Notation . 14

2.2 Non-Malleable Codes . 15

2.3 Seedless Non-Malleable Extractors . 18

2.4 Split-State Tampering . 22

2.4.1 Split-State Tampering . 22

2.5 Elements of Complexity Theory . 23

i

2.5.1 Distributional Problems . 25

2.5.2 Hard Cores . 25

2.6 Pseudorandom Objects . 26

2.6.1 Extractors . 26

2.6.2 Binary Ramp Secret Sharing Encoding Schemes, or “Reconstructable Prob-
abilistic Encoding (RPE)” . 27

2.6.3 Bounded Independence . 30

2.6.4 Characters sums over finite fields . 30

2.6.5 Pseudorandom Generators for Space-Bounded Computation 32

2.6.6 The Pseudorandom Switching Lemma of Trevisan and Xue 32

2.7 Concentration Inequalities and Other Useful Lemmas 34

Chapter 3: Warming Up . 37

3.1 An Efficient One-Bit NMC for Small Tampering Families Exists 38

3.2 An Efficiently Enumerable Family Exists for Small Circuit Tampering (under strong
derandomization assumptions) . 41

3.3 Non-Malleability against circuits implies circuit lower bounds 43

3.4 Non-malleability is no better than error-correction for many arbitrary errors 44

3.4.1 Lower bound for encoding more than a bit 44

3.4.2 Protecting a single bit against = − 1 errors 46

Chapter 4: Bounded-Communication Tampering (Leakage-Resilient Split-State) 48

4.1 Technical Overview . 49

4.2 A Reduction from Leaky Split-State to Split-State 50

ii

Chapter 5: Local (Junta) Tampering . 57

5.1 Technical Overview . 59

5.1.1 Handling Local Functions . 59

5.1.2 Removing Input Locality . 62

5.1.3 On tampering functions where each output symbol depends on =−log(1/(4n))
input symbols . 63

5.1.4 On tampering functions where each input symbol affects at most one output
symbol . 64

5.1.5 Remark on deterministic vs. randomized decoding. 64

5.2 Non-malleable Codes for Localℓ8 (=)
ℓ> (=) . 65

5.2.1 Extending to Leaky Local . 74

5.3 Extending to Local<(=) . 75

5.4 Achieving Resilience against >(=/log =) Output Locality 79

5.5 Limits to Local-Tamper Resilience . 93

Chapter 6: Decision Tree Tampering . 98

6.1 Technical overview . 99

6.2 Decision Trees to Leaky Split-State Model . 100

Chapter 7: Small-Depth Circuit Tampering . 106

7.1 Technical Overview . 107

7.2 Reducing Small-Depth Circuits to Decision-Trees 109

7.2.1 Proof of Lemma 17 . 112

7.2.2 Proof of Lemma 16 . 115

iii

Chapter 8: Low-Degree Polynomial Tampering . 118

8.1 Technical Overview . 120

8.2 Non-malleable extractors against polynomials . 125

8.3 Efficient sampling . 130

Chapter 9: Small Circuit Tampering . 136

9.1 Technical Overview . 138

9.2 Relaxed seedless non-malleable extractor for small circuit tampering 144

9.3 Augmented Leakage-Resilient Split-State . 150

9.3.1 Augmenting the construction of Chapter 4 150

9.3.2 Augmenting alternate-non-malleability . 152

9.4 A Non-Malleable Code for Small Circuit Tampering 153

Chapter 10: Black-Box Barriers . 159

10.1 Technical Overview . 163

10.2 Preliminaries . 166

10.2.1 Black Box Reductions . 167

10.3 On NMC from Average-Case Hardness via BB Reductions 168

Conclusion . 179

References . 182

iv

Acknowledgements

I am deeply indebted to my advisor, Tal Malkin, whose unwaivering encouragement, friendship,

and advice has been invaluable over the years. Tal’s perspectives and insights on matters both

technical and non-technical have had a profound impact on me. My life has undergone a dramatic

transformation since Tal entered it, and I cannot imagine the past years without her support and

engagement.

Not so long after meeting Tal, she sent me off to the Simons Institute’s Cryptography Semester as

a ward of her brilliant former student, Dana Dachman-Soled. This semester had a tremendous

impact on me and I am grateful to the organizers and participants for this, but particularly Tal

Rabin. I entered knowing virtually nothing of cryptography, and three months later I left still

knowing nothing, but an incredible toolkit, perspective, and connections made there have had an

immeasurable impact on my life since.

It was there, with Dana and Tal and Dana’s former student Mukul Kulkarni, that I began exploring

the topic of this thesis after spirited talk by Yevgeniy Dodis. Since then, I have continued to have

the immense pleasure of working with the three of them on these topics. Almost all of the work in

this thesis is joint with Dana, an incredibly creative, thoughtful, and humble researcher who has

been a great role model and mentor to me.

Also at Simons I had the incredible fortune to prepare cocktails with Elette Boyle and meet with

Alon Rosen. The two of them, with Tal Moran, invited me to visit them in the FACT Center at

IDC Herzilya for eight months. I returned to the states two and half years later with my partner,

Hallel, and our son, Neta. Through and alongside each of them I have grown in different ways:

learning about new areas, navigating professional situations, and much much more. But I am

especially grateful for their shared dynamic (that also infected their many visitors): nearly every

day was exciting and hilarious. Their friendship has been integral to my development.

v

I would also like to thank my other incredible collaborators. Those who coauthored the work in

this thesis: Siyao Guo, Daniel Wichs, Eshan Chattopadhyay, Jyun-Jie , and Julian Loss. And

those who have collaboratored on other projects: Ran Cohen, Tianren Liu, Manuel Sabin, Pierre

Meyer, Tim Randolph, Apoorvaa Deshpande, Justin Holmgren, Brent Carmer, Nichole

Schimanski, Akshay Degwekar, and Vinod Vaikuntanthan.

I would like express my particular gratitude to Prashant Vasudevan and Lisa Kohl. I look forward

to our continued conversations.

I have had no shortage of great mentors. In addition to those above I would like to particularly

thank Hoetech Wee, Yuval Ishai, Mike Rosulek, Oded Goldreich, Yevgeniy Dodis, and Li-Yang

Tan.

I would also like to thank the Columbia Theory group. I had the best office mates: Clément

Canonne, Emmanouil Vasileios Vlatakis Gkaragkounis, and Chengyu Lin. I also would like to

thank those professors professors who always took the time to answer my questions: Xi Chen,

Omri Weinstein, Rocco Servedio, Alexandr Andoni, and Mihalis Yannakakis (whose class

encouraged me to pursue TCS in the first place).

I would like to thank my coworkers at Google: especially Mariana Raykova, Tancrède Lepoint,

Karn Seth, and Moti Yung. And my future mentors: Huijia Lin and Stefano Tessaro.

I am grateful for the support of my parents, my sisters, Adele and Claire, and my brother, David

during these past years. I would like to thank all my friends, but especially Susan Thomases and

Thomas Bettridge.

And finally and most significantly, I acknowledge Hallel and Neta. Neta, you light up every day

for me. And Hallel, I would not be who I am today without you.

This work was supported in part by an IBM PhD Fellowship and a grant from the Check Point

Institute for Information Security.

vi

Dedication

For Hallel and Neta.

vii

Publication History

The results of Section 3.4, Section 5.4, and Chapter 10 previously appeared in [1]. The

results of Chapter 5 (with the exception of Section 5.4) previously appeared in [2]. The results of

Chapters 4 and 6 previously appeared in [3]. The results of Chapter 7 previously appeared in [4].

The results of Chapter 8 appeared previously in [5]. The results of Chapter 9 are part of a larger

unpublished manuscript, [6].

1

Chapter 1: Introduction

In this thesis, we investigate the feasibility of protecting memory against efficiently computable

tampering attacks, for various notions of efficiency. Very roughly, memory is said to be tamper-

resilient if no attack can ’mal’ the memory contents into some related information. In particular,

any attack either (a) does nothing and the original memory can be recovered, or (b) completely

destroys the memory contents so that what remains bears no relation to the original contents.

Importantly, whether case (a) or (b) occurs should additionally be independent of the protected

information.

In particular, we show how to construct explicit non-malleable codes [7] against a variety of

“natural” tampering classes that correspond to simple models of computation. In contrast to other

domains of non-malleable cryptography [8], non-malleable codes must achieve their guarantees

without relying on secret keys. This is important when the secret keys themselves are what need

to be protected from tampering. [9, 10]

However, in this thesis our focus is not practical attacks, but theoretical feasibility. With this

in mind, let us take a step back to and briefly contextualize tamper-resilience in the theory of

computation, before describing non-malleable codes and our results.

1.1 Hardness vs. Tamper-Resilience?

The fundamental goal of the theory of computer science is to understand what is possible and

impossible for different computational devices. The negative thrust of this work, computational

lower bounds, seeks to find explicit tasks that these devices fail to carry out. An explicit worst-

case lower bound specifies a function that no machine of a given type, can correctly evaluate on

all inputs. A stronger form of such a result, an explicit average-case lower bound (or correlation

2

bound) specifies a function and a distribution such that no machine of a given type (from a given

computational class) can accurately predict the value of the function, when given an input drawn

from the distribution.

Explicit average-case circuit lower bounds. There exists an efficiently computable

function 6 and an efficiently samplable distribution - such that for all 5 in some

computational class F ,

5 (-) 0 6(-)

(We take ≈ to denote statistical closeness (small total variation distance between the

two distributions.))

Over the past half century, many remarkable results of this form have been proven. Unfortunately,

for many classes of interest we cannot prove such theorems, or even the weaker worst-case variants.

In many cases, there seem to be sharp barriers beyond which our current technical machinery fails

to say anything meaningful.1

In the present thesis, we do not try to expand the domains for which we know lower bounds, but

instead we attempt to sharpen our existing hardness techniques to yield stronger and more useful

guarantees. In particular, we focus on the task of tamper-resilience or non-malleability.2 Before

we rigorously introduce the central focus of our study, non-malleable codes, we instead what it

means for a function to be non-malleable with respect to a distribution which captures the core

difficulty in tamper-resilience with syntax similar to that of lower bounds.3 Roughly, a function,

6, is non-malleable for a tampering class, F , with respect to a distribution, - , if the output of

the function on a sample tampered by some machine in the class, is effectively uncorrelated with
1There are numerous examples in the literature, but one considered in this thesis is that of small-depth circuits.

We can prove very strong average-case lower bounds against super-polynomial size circuits of depth 2 log =/log log =
with unbounded fan-in for some specific constant 2. If we could prove such lower bounds for arbitrary 2 we could
prove lower bounds against NC1, the class of bounded fan-in polynomial size circuits with depth $ (log =). This class
is remarkably rich, corresponding to very efficient parallel computation. Determining the limitations of this class is a
long standing open problem.

2This is by no-means the only “harder” dimension to consider. To name just a few alternative dimensions (for which
we know some connection to lower bounds): learning a class, fooling a class with a pseudorandomness, hardness of
compression for a class.

3A more stronger variant of the notion we are describing was defined in [11].

3

the output of the function on the untampered sample. In this simplified presentation, we ensure

feasibility by requiring the tampering function to always change something about - (otherwise the

tampered output of 6 will be identical to the untampered output and clearly correlated). To make

this task non-trivial, we additionally require 6(-) to have some entropy (otherwise, any constant

function 6 would be non-malleable).

Explicit non-malleability. There exists an efficiently computable function 6 and an

efficiently samplable distribution - such that for all 5 in some computational class F

such that 5 has no fixed points (∀G, 5 (G) ≠ G)

6(-), 6(5 (-)) ≈ 6(-′), 6(5 (-)),

where -′ is identically distributed to and independent of - , and 5 (-) = 5 (-′) with

probability bounded away from 1.

To illustrate why we believe this task is more difficult, consider the example of Parity and

the class of constant depth circuits of polynomial size. Now classic work shows that it is hard

for any polynomial size circuit of constant depth to predict the Parity of a uniform random string

with reasonable advantage. [12] However, if we take 6 to be Parity and - to be uniform, we have

not achieved non-malleability. Consider the =-bit input, =-bit output circuit, 5 , that flips the first

bit. Obviously this circuit has constant depth and polynomial size. It also clearly violates non-

malleability. For any string G, 6(G) = 6(5 (G)) ⊕ 1. On the other hand, 6(-′), 6(5 (-)) is simply

two uniform independent bits. So, intuitively it seems non-malleability is at the very least distinct

from average-case hardness. Looking ahead, in Section 5.5 we will show classes for which non-

malleability is strictly impossible, but average-case hardness is trivial.

To complement this observation, we also observe that for many natural classes explicit non-

malleability implies explicit average-case lower bounds. In particular, if 6 is non-malleable for F

with respect to - , then 6 must be hard-on-average for F with respect to - . To see this suppose

not, then there is some 5 ∈ F which on input - can predict 6(-) with some advantage. Define 5 ′

4

to simply take 5 ’s guess for 6(-), 1, and output some G̃ such that 6(G) = 1 − 1. If 5 can predict 6

well, then 6(-) = 1 − 6(5 (-)) with reasonably high probability. Whereas, 6(-′) is independent

of 6(5 (-)), and required to have some entropy of its own. We go through this argument in more

detail in Section 3.3 for the case of non-malleable codes.

In particular, this tells us that if we want to prove non-malleability against a class, we have

to prove average-case circuit lower bounds against the class. Given that we only know how to

prove such lower bounds for specific classes, this gives us some guidelines as to where we might

reasonably hope to prove non-malleability. Alternatively, in the absence of proving a circuit lower

bound unconditionally, we must assume such lower bounds. In this thesis, we pursue both paths.

Ultimately, our investigations leave the impression that proving non-malleability is, in general,

strictly harder than proving circuit lower bounds, though this is by no means conclusive. Whether

there is an alternative (natural) notional that indeed minimally captures non-malleability remains

elusive.

That said, our methods often rely heavily on those used to prove circuit lower bounds (See

Chapter 7 in particular). We interpret this as attesting to the strength of these tools, and not evidence

of an equivalence.

1.2 Non-Malleable Codes

Motivated by applications in tamper-resilient cryptography, non-malleable codes were first in-

troduced by Dziembowski, Pietrzak, and Wichs [7] as an extension of error-correcting codes that

give meaningful guarantees even when every bit of a codeword may be altered. To define the

non-malleability of an encoding scheme (Enc,Dec) for a class of tampering functions F , consider

the following experiment for any 5 ∈ F : (1) encode a message G via Enc, (2) tamper the result-

ing codeword with 5 , and (3) decode the tampered codeword with Dec. Roughly, (Enc,Dec) is

non-malleable if G̃ = Dec(5 (Enc(G))) is either completely unrelated to the original message G or

identical to G, for any G. In particular, the outcome of the experiment should be simulatable without

any knowledge of G. Of course if the adversary does nothing the experiment will output G, which

5

the simulator does not know. This is handled by allowing the simulator to output a special symbol

“same” to indicate that the message was left unchanged.

Non-Malleable Codes. (See Def. 2) A pair of (randomized) algorithms (Enc,Dec) is

said to be non-malleable against a tampering class F if for every message G and every

tampering function 5 ∈ F there exists a distribution over messages and the special

symbol same, � 5 (the simulator for 5), such that

1. (Correctness) Dec(Enc(G)) = G.

2. (Tamper-resilience)

Dec(5 (Enc(G))) ≈

H ← � 5

if H = same, output G; otherwise, output H}

The initial work of Dziembowski et al. [7] observed that achieving non-malleability against

arbitrary tampering is strictly impossible.4 On the other hand, they showed that relatively mild

restrictions on the size of class of tampering attacks rendered non-malleability feasible. The goal,

as in many coding tasks, is to construct an explicit code against as large a class of tampering

functions (channels) as possible with best information rate and strongest security guarantees.

Since 2010, a flurry of work has done just that, giving explicit constructions of statistically

secure non-malleable codes for specific families of tampering functions and the efficiency of these

constructions (in both information rate and computational complexity).

1.3 Our Results: How to Construct Non-Malleable Codes

In this thesis, we will focus on tampering attacks that can be performed in simple computational

models. In particular, we construct efficient non-malleable codes for a variety of classes5.

4Consider the generic attack that decodes, tampers, and re-encodes the tampered message.
5As these classes are typically defined with respect to a single output, we say a tampering attack, f : 2 ↦→ 2̃, is

computable in a class, F , if each tampered symbol, 2̃8 is computable by some 68 ∈ F (namely, 2̃8 = 68 (2) for all
8 ∈ [=]).

6

We begin with a number of observations that give greater context to our task. We give a simple

argument that efficient codes exist for small tampering families and show that non-malleability for

polynomial size tampering can be decided in AM. We also flesh out the necessity of circuit lower

bounds and observe that for the specific case of tampering functions that are only restricted by

the number of bits they can change, there is no benefit to non-malleability over error correction,

provided one wants to encode more than one bit.

Bounded communication tampering. This class, also known as leakage resilient split-state,

consists of functions that can be represented by two party protocols of the following form. One

party, Alice, has left half the codeword, and another, Bob, has the right half. Alice and Bob, upon

receiving their inputs, follow a deterministic protocol where they communicate a bounded number

of bits. After communicating, Alice outputs a tampered left half-codeword and Bob outputs a right

half-codeword.

In Chapter 4, we construct show how to compile any split-state code into a code for bounded-

communication tampering where Alice and Bob can communicate up to 1/4th of the length of

their inputs, with just a constant factor loss in rate (codewords grow by a constant factor), and

small (additive inverse exponential) loss in security.

Prior to our work, constructions for this tampering class were known [13, 14], but they could

not handle as much communication. Additionally, our construction is simpler, generic, and yields

better rate and security.

Local tampering A function is said to have locality ℓ if each output bit can be written as a

function of at most ℓ input variables.

In Chapter 5, we construct explicit non-malleable codes for tampering functions with locality

=X, where X is any constant strictly less than 1. Our methods additionally yield inefficiently com-

putable non-malleable codes for any locality locality >(=/log =). (The sets of relevant variables

and the function evaluated on them can be distinct for each output.)

Our code deviates from the original definition of non-malleability in that we allow D to be ran-

7

domized. It is not known if the two notions are equivalent. Subsequent to our work, Cheraghchi

and Li [15] constructed non-malleable codes with deterministic decoding that are resilient to tam-

pering with locality >(
√
=). Another code with deterministic decoding for locality >(3√=) is given

in the published version of this Chapter [2, 4].

Another follow up work by Gupta, Maji, and Wang [16] showed how to compile our codes to

get explicit rate 16 non-malleable codes for locality W log =, for any constant W < 1.

Decision tree tampering. We say a tampering attack is computable by depth 3 decision trees if

each tampered output bit is a function of at most 3, adaptively-made, bit probes to the input. (The

adaptive probe sequences and output decisions corresponding to each output bit can be distinct.)

In Chapter 6, we construct explicit non-malleable codes for tampering by decision trees of

depth =1/4−>(1) .

Small-depth circuit tampering. We say a tampering attack is computed by a depth 3 circuit of

size B if each tampered output bit is produced by a standard basis (unbounded fan-in AND/OR/NOT)

circuit of depth 3 and size B. (The circuits corresponding to each output can be distinct.)

In Chapter 7, we construct explicit non-malleable codes for tampering by circuits of depth

3 ≤ 21 log =/log log = and size exp(=22/3) where 21, 22 ∈ (0, 1) are constants. Constructing an

explicit non-malleable code for circuits of even just depth 3 = $ (log =/log log =) would imply a

separation of P and NC1, a long standing open problem.

Prior to our work, Cheraghchi and Li [15] constructed non-malleable codes for circuits of

constant depth and polynomial size, but their code yielded codewords were subexponentially long

in the message length (i.e. = = 2Ω(
√
:) , where : is the message length and = is codeword length).

Low-degree polynomial tampering (in large fields). In contrast to prior classes which consid-

ered a binary alphabet, here we assume our alphabet corresponds to some large prime field F@.

An attack over such an alphabet is computable by degree-3 polynomials if each tampered output

6A code has rate 1, lim=→∞ :/=(:) = 1 where : is the message length and =(:) is the length of codewords for
messages of length : .

8

symbol is the output of some polynomial of degree 3. (The polynomials corresponding to each

output can be distinct.)

In Chapter 8, we construct explicit non-malleable codes for tampering by polynomials of de-

gree 3 = @1/4−>(1) . Our result immediately implies a non-malleable code against tampering by

very small arithmetic circuits. Along the way we show how to construct seedless non-malleable

extractor (See Section 2.3) for these tampering classes.

Prior to our work, Cheraghchi and Li [15] constructed non-malleable codes for degree 1 (affine)

tampering. Additionally, in the published version of this Chapter [5] it additionally shown how to

combine our extractor with a technique of Lin et al. [17] to construct a non-malleable secret sharing

scheme resilient to low-degree tampering. Very roughly, a non-malleable secret sharing scheme

is a threshold secret sharing scheme with the guarantee that if the shares are (jointly) tampered

by functions in the class, then any reconstruction recovers either the original secret or something

independent of the secret.

Polynomial-size circuit tampering. For any constant 2, we say a tampering attack is computed

by a size =2 circuit, if the tampered output is produced by some circuit with = inputs and = outputs

and at most =2 fan-in 2 gates from the standard basis (AND/OR/NOT).

In Chapter 9, we show that for any constant 2, there exists an explicit non-malleable code for

tampering by =2 circuits that is secure assuming lower bounds on nondeterminsitic circuits. Our

assumption is taken from the derandomization literature.

Prior to our work, no fully explicit codes for these classes were known. Constructions were

known assuming a common random string. [18, 19] Additionally, computationally-secure con-

structions were known under strong cryptographic assumptions [20, 21]. Both of these latter works

required assumptions that we currently can only provably instantiate with a random oracle. Thus,

they only yield explicit constructions under heuristic assumptions about concrete hash functions.

We conclude this thesis by making the general intuition that non-malleability is harder than

circuit lower bounds a bit more formal: we rule out the possibility of constructing non-malleable

9

codes from minimal average-case hardness bounds in a black-box manner. We also give an un-

conditional separation between the two notions: ruling out the possibility of non-malleable codes

against (= − 1)-local functions (which gives an explicit separation between lower bounds and non-

malleability because these functions fail to compute parities with any advantage). However, we

note that under cryptographic assumptions a class of such implications is known in the computa-

tional security regime.7 [22, 20]

1.3.1 Relations between the tampering classes considered.

As far as we know, the classes considered above are incomparable for the parameter regimes in

which we can prove security. However, relationships are known between other parameter regimes

(which we will exploit). We briefly discuss what is known about the relations between these

classes.

Bounded-communication vs local functions. Bounded-communication tampering is capable of

arbitrary attacks that are independent on the left and the right. Such an attack can have locality up

to =/2, which is beyond what our results can handle. The locality 1 attack that simply copies the left

hand codeword to the right hand side and the right hand side to the left requires = communication.

For similar reasons bounded-communication tampering is incomparable to all other classes we

consider.

Local functions vs decision trees. Both local functions and decision trees (or rather, forests)

have outputs that depend on only a few input variables. However, for local functions these vari-

ables are chosen statically, independent of the actual input, whereas decision trees may choose the

variables they query adaptively based on the values returned. As such, every C-local function is

a C-depth decision tree. On the other hand, by considering all possible queries in advance, every

C-depth decision tree is a 2C-local function. However, since C ≤ = (the input length), this is only

7Computational security means real tampering experiment can be simulated in a manner that is indistinguishable
to polynomial time distinguishers, but not necessarily indistinguishable to arbitrary (inefficient) statistical tests.

10

meaningful for C ≤ log =.

We can efficiently handle locality =X for any constant X < 1 and decision tree depth =1/4−>(1) .

These classes are incomparable for X ≥ 1/4.

Small-depth circuits vs decision trees. Next, we note that every depth C decision tree can be

expressed as disjunction of clauses, each containing at most C variables (corresponding to each

accepting path). So, every decision tree can be expressed as depth-2 circuit of size at most C2
(=
C

)
≤

C2(4=/C)C (for C ≤ =/2).

On the other hand, decision trees of depth 3 < = fail to compute even a single conjunction of all

variables. However, in some sense, Håstad’s switching lemma tells us that, on average, small-depth

circuits exhibit local behavior like that of low-depth decision trees. [12]

Low-degree polynomials vs small-depth circuits. There is a syntactic mismatch due to the dif-

ferent alphabets of these classes. That said, Razborov and Smolensky showed that small-depth

circuits, while they can be approximated by low-degree polynomials, fail to perform even elemen-

tary arithmetic. [23, 24, 25] Conversely, even a single conjunction has too many 0s to be computed

by a low-degree polynomial. [26]

Polynomial size circuit tampering vs everything else. The parity function is hard for all the

classes above, with the exception of bounded-communication tampering. Yet parity can be com-

puted by linear size circuits. Bounded communication fails to compute inner products, which can

in turn be computed by linear size circuits.

On the other hand, the class of =2 circuits contains at most 232=2 log =) functions. On the other

hand, our other tampering classes are doubly exponential in size (22=Ω(1)). So by counting argu-

ments, this class fails to compute certain functions in these classes, regardless of the choice of

2.

11

1.3.2 Related work

We discuss a variety of related work on non-malleable codes and their relatives. Our discussion

of work on non-malleable codes is broken into two parts: the first focuses on fully explicit codes

with statistical security guarantees, the second focuses on relaxed definitions.

Non-malleable codes. Non-malleable codes were introduced by Dziembowski, Pietrzak and

Wichs [7] Various subsequent works re-formulated the definition [13], or considered extensions

of the notion [27, 28, 29, 30]. The original work of [7] presented a construction of non-malleable

codes against bit-wise tampering, and used the probabilistic method to prove the existence of non-

malleable codes against tampering classes F of bounded size (this result gives rise to construc-

tions for the same tampering classes F in the random oracle model). A sequence of works starting

from the work of Liu and Lysyanskaya [31] presented constructions of non-malleable codes secure

against split-state tampering. The original work and some subsequent works [32, 33] required an

untamperable common reference string (CRS) and/or computational assumptions. Other works

removed these restrictions and achieved information-theoretic non-malleable codes against split-

state tampering with no CRS [34, 13, 35]. Recently, Aggarwal and Obremski [36] constructed a

code rate of Ω(1) for two states. Constructions requiring more than two split-states, and which

achieve constant rate, were also given in [37, 38].

Agrawal et al. [39] presented constructions of non-malleable codes against tampering functions

that are permutations.

Chattopadhyay and Li [15] gave constructions of information-theoretic, non-malleable codes

against affine functions over F2 and (separately) AC0 tampering functions. However in contrast to

the present work, their AC0 non-malleable code results in a codeword that is super-polynomial in

the message length and so is inefficient.

Finally, Ball et al. [22] constructed non-malleable codes secure against small-space streaming

tampering attacks.

12

Non-malleable codes in other models. A variety of non-malleable codes against complexity-

based tampering classes have been constructed in other models. These constructions require either

common randomness (CRS), access to a public random oracle (RO), and/or computational/cryptographic

assumptions.

In addition to those already mentioned, Faust et.al [19] presented an efficient non-malleable

code, in the CRS model, against tampering function families F of bounded size, improving upon

the original work of [7]. Since the size of the CRS grows with the size of the function family, this

approach cannot be used to obtain efficient constructions of non-malleable codes against tampering

classes that contain circuits of unbounded polynomial size (e.g., AC0).

Cheraghchi and Guruswami [40] in an independent work showed the existence of information

theoretically secure non-malleable codes (with no CRS) against tampering families F of bounded

size (via a randomized construction). However their construction is inefficient for negligible error.

The work of [22] constructs a generic framework for converting correlation bounds into non-

malleable codes. They instantiate their framework to construct non-malleable codes both for de-

cision trees and large small-depth circuits. However, this work (a) requires a Common Reference

String, and (b) is secure in a game-based model against efficient adversaries, assuming unproven

cryptographic assumptions. In fact, one of the assumptions, public key encryption with decryption

in AC0, necessarily limits their error term to be at most exp(− log$ (1) (=)).

A follow-up work, [20], improves upon [22] showing how to remove the Common Reference

String, but still does not achieve unconditional or statistical guarantees. A very recent follow up to

the follow up improves upon this, but still falls short of statistical guarantees [21]. Both of these

works make also rely on assumptions that we only know how to provably instantiate from random

oracles.

Faust et.al [41] gave constructions of (a weaker notion of) non-malleable codes against space

bounded tampering in the random oracle model.

13

Chapter 2: Preliminaries

In this chapter, we present a series of definitions and lemmas that will be useful in later chapters.

We advise the reader treat to initially skip this chapter and use it as a reference for later chapters,

looking up the relevant definitions and propositions as needed.

2.1 Notation

Define 4(G) = 42c8G , where 8 =
√
−1.

For = ∈ N, we use [=] to denote the set {1, 2, . . . , =}. For non-negative integer : , we use([=]
:

)
denote the set of all subsets of [=] of size : . Let Σ be a set of symbols. For sequence

- = (G1, . . . , G=) ∈ Σ= and (= {81, . . . , 8: } ⊆ [=] such that 81 < 82 < . . . < 8: , we use -(to denote

the sequence (G81 , G82 , . . . , G8:). For the particular case of G, H ∈ {0, 1}=, if they disagree on at least

Y · = indices, we say they are Y-far, otherwise, they are Y-close to each other.

For non-negative integers _1, . . . , _= that sum to 1, and arbitrary distributions �1, . . . , �=, we

use
∑
8 _8�8 to denote the distribution that places weight

∑
8 _8�8 (G) at the point G.

For any distribution �, let � (G) denote Pr[� = G], and let Supp(�) denote the support of �.

For a set Σ, we use ΣΣ to denote the set of all functions from Σ to Σ. Given a distribution

D, I ← D denotes sample I according to D. For a set (, we take I
D← (to denote sampling I

uniformly from (.

For two distributions D1,D2 over Σ, their statistical distance is defined as Δ(D1;D2) :=
1
2
∑
I∈Σ |D1(I)−D2(I) |. We sometimes writeD1 ≈n D2 to denoteΔ(D1;D2) ≤ n . IfΔ(D1;D2) ≤

n (resp. Δ(D1;D2) > n), we say D1 and D2 are n-close (resp. n-far).

It will be convenient to use the following notation for Boolean function restrictions.

Definition 1 (Restriction). For a vector E ∈ {0, 1, ∗}= and a Boolean function 5 : {0, 1}= → {0, 1}=

14

the restriction of 5 to E, 5 �E is defined as 5 �E (G) = 5 (I) where,

I8 =

G8 E8 = ∗

E8 E8 ∈ {0, 1}

Let 5 : � → {0, 1}A be a function. Then, we denote by 58 the function which outputs the 8-th

output bit of 5 . Let 5 : � → {0, 1}A be a function and let E ∈ {0, 1}A be a vector. Then, we denote

by 5E the function which outputs all 58 such that E8 = 1.

As throughout we are considering multi-output generalizations of functions with a single output

(either bit or field element), we say that a multiple output function 5 = (51, . . . , 5<) is in C if 58 ∈ C

for any 8 ∈ [<].

2.2 Non-Malleable Codes

Non-malleable codes were first defined in [7].

Definition 2 (Coding Scheme [42]). Let Σ be a finite alphabet set. A coding scheme, (E,D),

consists of a (possibly randomized) encoding function E : {0, 1}: → Σ= and a deterministic

decoding function D : Σ= → {0, 1}: ∪ {⊥} such that ∀< ∈ {0, 1}: , Pr [D(E(<)) = <] = 1 (over

randomness of E).

We say (E,D) has block length = and message length : .

Our result on Local tampering (Chapter 5) will additionally rely on a randomized decoding

function. We say a (E,D) is an encoding scheme with randomized decoding if D is randomized.

We note that unlike as is the case for encryption, we do not know how to generically derandomize

decoding for non-malleable codes and so these definitions may not be equivalent.

We define the distance of a randomized coding scheme by considering the minimum distance

of all codes formed as follows: for each message G ∈ {0, 1}: choosing an arbitrary codeword

corresponding to that message, 2G ∈ {E(G; A)}A∈{0,1}∗ . We take the distance of the randomized

encoding scheme to be the maximum of all such minimum distances (i.e. the distance of the best

sub-code).

15

Definition 3 (Distance of a Coding Scheme). The distance of a (randomized) coding scheme,

(E,D), is

max
(⊂{2=E(G;A):G∈{0,1}: ,A∈{0,1}∗}:
∀G∈{0,1}: ,∃2G∈(:Pr[D(2G)=G]>1/2

min
2G ,2H∈(:
G≠H∈{0,1}:

‖2G − 2H‖0

Note that this definition can be extended to arbitrary alphabets. Moreover, it is clear that

the minimum distance of any coding scheme with messages and codeword space Σ= is upper

bounded by the maximum of the traditional notion of minimum distance in (non-randomized)

codes with the same parameters: the minimum distance between codewords from a code (over Σ=

with distinct code words).

We define a function that will be useful in defining non-malleable codes:

copy(G, H) =

G if G ≠ same

H if G = same.

Definition 4 (Non-malleable codes). Let Σ be a finite alphabet set. A coding scheme (Enc,Dec)

on alphabet Σ with block length = and message length : is a non-malleable code with respect to

a tampering family G and error n if for every 6 ∈ G there is a random variable �6 supported on

{0, 1}: ∪ {same} that is independent of the randomness in Enc, and any message I ∈ {0, 1}: , we

have

Δ(Dec(5 (Enc(I))); copy(�6, I)) ≤ n

We define the rate of a non-malleable code C to be the quantity :
= log(|Σ|) .

Dziembowski et al. [43] provided the following convenient characterization of non-malleability

for single-bit messages

Lemma 1 (Lemma 2 [43]). Let (E,D) be a coding scheme with E : {0, 1} → X and D : X →

{0, 1}. Let F be a set of functions 5 : X → X. Then (E,D) is Y-non-malleable with respect to F

16

if and only if for every 5 ∈ F ,

Pr
1←{0,1}

[D(5 (E(1))) = 1 − 1] ≤ 1
2
+ Y,

where the probability is over the uniform choice of 1 and the randomness of E.

Because this yields such a clean characterization of non-malleability, we will will say that a

one-bit encoding scheme is Y-malleable w.r.t. a tampering class F if there exists 5 ∈ F such that

Pr1 [D(5 (E(1))) = 1 − 1] ≥ 1/2 + Y.

We sometimes prefer to use a simpler, but equivalent, definition based on the following notion

of non-malleable reduction by Aggarwal et al. [44].

A non-malleable reduction from F to G is simply an encoding scheme, (Enc,Dec) such that

for any 5 ∈ F and any message G, the value Dec(5 (Enc(G))) is statistically close to 6(G) for 6

chose from some distribution over functions in G. In particular a non-malleable code for F is a

non-malleable reduction from F to the family G consisting of the identity function and constant

functions.

Definition 5 (Non-Malleable Reduction [44]). Let F ⊂ �� and G ⊂ �� be some classes of

functions. We say F reduces to G, (F ⇒ G, Y), if there exists an efficient (randomized) encoding

function Enc : �→ �, and an efficient decoding function Dec : �→ �, such that

1. ∀G ∈ �, Pr[Dec(Enc(G)) = G] = 1 (over the randomness of E).

2. ∀ 5 ∈ F , ∃� s.t. ∀G ∈ �, Δ(Dec(5 (Enc(G)));� (G)) ≤ Y, where � is a distribution over G

and � (G) denotes the distribution 6(G), where 6 ← �.

If the above holds, then (Enc,Dec) is an (F ,G, Y)-non-malleable reduction.

Definition 6 (Non-Malleable Code [44]). Let NM: ⊆ { 5 : {0, 1}: → {0, 1}: } denote the set of

trivial manipulation functions on :-bit strings, consisting of the identity function id(G) = G and all

constant functions 52 (G) = 2, where 2 ∈ {0, 1}: . (Enc,Dec) defines an (F=(:) , :, Y)-non-malleable

17

code, if it defines an (F=(:) ,NM: , Y)-non-malleable reduction. Moreover, the rate of such a code

is taken to be :/=(:).

The following useful theorem allows us to compose non-malleable reductions.

Theorem 1 (Composition [44]). If (F ⇒ G, Y1) and (G ⇒ H , Y2), then (F ⇒ H , Y1 + Y2).

Definition 7 (Alternative-Non-Malleability [7]). Let F be a family of tampering functions. We

say that a coding scheme (Enc,Dec) is n-alternative-non-malleable with respect to F if for any

<0, <1 ∈ {0, 1}: and any 5 ∈ F , we have:

AltNM 5 ,Enc,Dec
<0,<1 (0) ≈n AltNM 5 ,Enc,Dec

<0,<1 (1)

where we define the two experiments by

AltNM 5 ,Enc,Dec
<0,<1 (1) :=

2 ← Enc(<1), 2̃ ← 5 (2), <̃ = Dec(2̃)

Output same if <̃ ∈ {<0, <1}, and <̃ otherwise.

Lemma 2 ([7]). If (Enc,Dec) is n-alternatively-non-malleable with respect to F for :-bit inputs,

then (Enc,Dec) is (n + 2−:)-non-malleable with respect to F .

If (Enc,Dec) is n-non-malleable with respect to F for :-bit inputs, then (Enc,Dec) is 2n-

alternatively-non-malleable with respect to F .

2.3 Seedless Non-Malleable Extractors

We introduce and discuss a useful ingredient for building non-malleable codes (and more).

Informally, a randomness extractor is a deterministic algorithm that produces nearly uniform

bits of randomness from defective sources of randomness. Before defining a randomness extractor

formally, we first define the notion of min-entropy that is typically used as a measure of the quality

of a source:

18

Definition 8 (Min-entropy and (=, :)-sources). Let - be a distribution on {0, 1}=. The min-entropy

of - , denoted by �∞(-), is defined as minG (log(1/Pr[- = G])).

An (=, :)-source is a distribution on {0, 1}= with min-entropy at least : .

We say such a source has entropy deficiency = − : .

Definition 9 (Extractor). Let X be a family of sources on {0, 1}=. A function Ext : {0, 1}= →

{0, 1}< is called an extractor for the family X with error n if for any - ∈ X,

Δ(Ext(-); U<) ≤ n,

where U< is the uniform distribution over {0, 1}<.

It turns out that there cannot exist an extractor that works for the family of distributions on

{0, 1}= with min-entropy even = − 1. To circumvent this difficulty, a long line of work has focused

on extracting from a weak source - assuming access to a short independent seed. . Such extractors

are called seeded extractors (See Def. 17) [45] and we now have almost optimal constructions

of such extractors [46, 47]. Another successful line of research focused on extracting random

bits assuming more structure on the source - . Such extractors are called as seedless extractors.

Examples include assuming that the weak source consists of multiple independent sources [48,

49, 50, 51] (see Def. 18), assuming that the source is supported on an affine subspace [52, 53] or

an algebraic variety [54], or even simply assuming that there are some unknown coordinates of

the source that are uniform and independent [55]. Explicit constructions of seeded and seedless

extractors have found numerous applications in complexity theory [56], coding theory [57] and

cryptography [58, 59].

Recently, several works studied a a more robust notion of a randomness extractor called non-

malleable extractor. The main motivations for studying this stronger variant is from applications

in cryptography. Surprisingly, explicit constructions of non-malleable extractors have led to im-

proved constructions of standard extractors. As in the case of standard extractors, there are seeded

non-malleable extractors and seedless non-malleable extractors. The seeded variant was intro-

19

duced by Dodis and Wichs [60] with applications to the problem of privacy application [58]. The

seedless variant of non-malleable extractors was introduced by Cheraghchi and Guruswami [11]

with applications to constructions of non-malleable codes.

We focus on the seedless variant of non-malleable extractors. We begin with a simplified

variant that only considers tampering functions without fixed points (i.e. ∀G, 5 (G) ≠ G).

Definition 10 (Relaxed Seedless non-malleable extractor). Let X be a family of sources on {0, 1}=

and F be a class of tampering functions acting on {0, 1}=. Further assume that all 5 ∈ F does

not have any fixed points. A function NMExt : {0, 1}= → {0, 1}< is defined to be a relaxed non-

malleable extractor with respect to X and F with error n if the following hold: for any - ∈ X and

5 ∈ F , we have

Δ(NMExt(-),NMExt(5 (-)); U<,NMExt(5 (-))) ≤ n .

An informal way of interpreting the above definition is as follows. Let - be a source from the

family X. The distribution -′ = 5 (-) represents the tampered distribution, where 5 ∈ F (note

that -′ ≠ -). The task of the non-malleable extractor NMExt is to remove the correlation between

the random variables - and -′ (which are clearly dependent). With this intuition we give the full

definition:

Definition 11 (Seedless non-malleable extractors). Let Σ be a finite alphabet set, G be a class of

tampering functions Σ= → Σ= and X be a class of distributions over Σ=. A function NMExt :

Σ= → {0, 1}< is called a seedless non-malleable extractor that works for X with respect to G with

error n if for every distribution - ∈ X and every tampering function 6 ∈ G, there exists a random

variable �6 on {0, 1}< ∪ {same} that is independent of - , such that

Δ(NMExt(-),NMExt(6(-)); U<, copy(�6,U<)) ≤ n .

Cheraghchi and Guruswami [11] showed that relaxed seedless non-malleable extractors imply

20

seedless non-malleable extractors with some loss in parameters for the specific case of independent

sources and with independent tampering. Their transformation generalizes, but in general the class

of sources may change as well (depending on the tampering class considered). We leave the details

as an exercise for the reader if they are interested.

Chattopadhyay and Zuckerman [37] gave explicit constructions of seedless non-malleable ex-

tractors assuming - consists of 10 independent sources, and each source is arbitrarily tampered.

This was improved by Chattopadhyay, Goyal and Li [61] to construct seedless non-malleable ex-

tractors for 2 independent sources and later improved upon by Li [35]. Chattopadhyay and Li

[15] constructed a seedless non-malleable extractor against the class of affine functions. In another

work, Chattopadhyay and Li [14] constructed seedless non-malleable extractors when the source

- consists of 2 independent sources that are interleaved in an unknown way. They also consider

some generalizations such as composition of linear tampering and partitioned tampering.

Non-malleable codes via seedless non-malleable extractors

Cheraghchi and Guruswami [11] established the following connection between non-malleable

codes and seedless non-malleable extractors.

Theorem 2. Let Σ be some finite alphabet set. Let NMExt : Σ= → {0, 1}< be a polynomial time

computable seedless non-malleable extractor that works for uniform distribution with respect to a

class of tampering functions G acting on Σ=. Suppose there is a sampling algorithm Samp that on

any input I ∈ {0, 1}< runs in time poly(=, log |Σ|) and samples from a distribution that is X-close

to uniform on the pre-image set NMExt−1(B).

Then there exists an efficient construction of a non-malleable code on alphabet Σ with block

length =, relative rate <
=

, error 2<n + X with respect to the tampering family G.

Given such an invertible non-malleable extractor, the non-malleable code for G is defined as

follows: Any message E ∈ {0, 1}< is encoded as Samp(E). The decoding of a codeword 2 ∈ Σ= is

NMExt(2) ∈ {0, 1}<.

21

2.4 Split-State Tampering

We will define each tampering class in the relevant section, however many of our results build

on non-malleable codes for the following class.

2.4.1 Split-State Tampering

Most of our results build upon non-malleable codes for so-called “split-state” tampering.

Definition 12 (Split-State Model [7]). The split-state model, SS: , denotes the set of all functions:

{ 5 = (51, 52) : 5 (G) = (51(G1::) ∈ {0, 1}: , 52(G:+1:2:) ∈ {0, 1}:), G ∈ {0, 1}2: }.

Split-State Tampering is perhaps the most extensively studied form of tampering in the litera-

ture, and many constructions of non-malleable codes are known for this class. We highlight three

of them here.

Theorem 3 ([36]). There is an explicit split-state non-malleable code rateΩ(1) and error exp(−=Ω(1)).

Theorem 4 ([35]). There is an explicit split-state non-malleable code with rate Ω(log log =/log =)

and error exp(−Ω(= log log =/log =)).

Theorem 5 ([34, 62]). There is an explicit split-state non-malleable code with rate Ω(1/poly(=))

and error exp(−=Ω(1)).

We will also use some results of Li on seedless non-malleable extractors. We follow the lit-

erature and refer to (relaxed) seedless non-malleable extractors for 2 independent sources and

split-state tampering as non-malleable two-source extractors.

Theorem 6 ([35]). There is a constant W such that there exists explicit non-malleable two-source

extractors for (=, (1 − W)=)-sources that outputs Ω(=) bits with error 2−Ω(=/log =) .

22

A (relaxed) non-malleable two-source non-malleable extractor, NMExt : {0, 1}2= → {0, 1}<

for (=, :)-sources is said to be strong, with error n , if for every independent pair of (=, :)-sources

-,. and every pair of tampering functions 5 : {0, 1}= → {0, 1}= and 6 : {0, 1}= → {0, 1}=,

-,NMExt(-,.),NMExt(5 (-), 6(.)) ≈n -,U<,NMExt(5 (-), 6(.)).

Theorem 7 ([35]). If NMExt : {0, 1}2= → {0, 1}< is a two-source non-malleable extractor with

error n and (=, :)-sources, then for any :′ ≥ : , NMExt is a strong two-source non-malleable

extractor for min-entropy :′ with error 22< (n + 2:+1−: ′).

So, there is a constant W such that there exists explicit strong non-malleable two-source extrac-

tors for (=, (1 − W)=)-sources that outputs Ω(=) bits with error 2−Ω(=/log =) .

2.5 Elements of Complexity Theory

We take E to denote the class of languages decidable in deterministic time 2$ (=) .

We say a circuit has size B if it contains at most B gates. We say it has depth 3 if every path

from an input wire to any output gate (where edges are directed out along gate outputs and in along

gate inputs) is of length at most 3. A circuit family, {�=}=∈N, is a collection of circuits such that

�= takes inputs of length =.

NC0denotes the class of circuit families comprised of fan-in 2 AND/OR gates and NOT gates of

polynomial size (in the input length) and constant depth.1 AC0denotes the class of circuit families

comprised of unbounded fan-in AND/OR gates and NOT gates of polynomial size and constant

depth. NC0denotes the class of circuit families comprised of fan-in 2 AND/OR gates and NOT

gates of polynomial size and $ (log =) depth. NC denotes the class of circuit families comprised

of fan-in 2 AND/OR gates and NOT gates of polynomial size and polylogarithmic depth.

A nondeterministic circuit � is a circuit with additional “non-deterministic” inputs, in addition

1If one is defining fast parallel algorithms, one would like NC0(and NC more generally) to be uniform consisting
solely of circuit families that can be generated by a polynomial time (or, often, logarithmic space) deterministic turing
machine (on input 1=, the TM outputs a description of �=). However, here NC0and NC will play an adversarial role,
so we do not impose this restriction.

23

to the usual inputs. We say � evaluates to 1 on G if and only if the exists an assignment, F, the non-

deterministic input wires such that the circuit, evaluated deterministically on input (G, F) outputs

1.

Promise problems generalize the concept of languages that give a better handle on semantic

complexity classes. A promise problem, Π, consists of a set of Yes instances, Π. , and a disjoint set

of No instances, Π# . A machine is considered to decide Π if on input G promised to be in Π. ∪Π#

it accepts G if and only if G ∈ Π. . In other words, the machine should accept Π. and reject Π# , but

can behave arbitrarily elsewhere.

Interactive Proofs (IP) correspond to interactive Turing Machines where a Prover and Veri-

fier interact and the Prover (Merlin) is computationally unbounded while the Verifier (Arthur) is

(randomized) and computationally efficient (in the input length). Typically, Arthur is required

to be probabilistic polynomial time, but here we occasionally allow Arthur non-deterministic ad-

vice. An IP is said to (n, X)-recognize a promise problem, Π = (Π. ,Π#), if it satisfies: (n-

Completeness) there exists a Prover such that for all G ∈ Π. Arthur accepts with probability at

least n , (X-Soundness) for any Prover and any G ∈ Π# Arthur accepts with probability at most X.

An IP is said to be constant round if Arthur and Merlin exchange a constant number of messages.

The completeness/soundness gap of an (n, X)-IP is n − X.

An IP is said to be an AM-protocol (AM/poly) if the protocol follows the following format: (1)

Arthur sends a uniformly random message, (2) Merlin responds, (3) Arthur accepts or rejects as a

deterministic polynomial time function (with non-uniform advice) of the transcript. An IP is said

to be an MA-protocol (MA) if the following format: (1) Merlin sends a proof, (3) Arthur accepts or

rejects as a randomized polynomial time function of the transcript. (Note this class is only distinct

from NP if Arthur is uniform.)

Lemma 3 ([63, 64, 65]). For any polynomial B(=), there exists a polynomial B′(=) such that the

following holds.

For any = ∈ N, if Π = (Π. ,Π#) is a promise problem with a constant-round private-coin

interactive proof where the verifier runs in deterministic time B(=) with B(=) bits of non-uniform

24

advice with a gap between soundness and completeness of 1/B(=) on inputs of length =, then Π is

decided by a nondeterministic circuit of size B′(=) on inputs of length =.

2.5.1 Distributional Problems

Definition 13 (Distributional Problem). A distributional problem is a decision problem along with

ensembles (Ψ = {Ψ=}∞==1, ! = {!=}∞==1) for = ∈ N, where Ψ= is probability distribution over

{0, 1}=. The decision problem is to decide whether B ∈ != where, B← Ψ=. For a string B ∈ {0, 1}=,

we define ! (B) to output 1, if and only if B ∈ !=.

We say distributional problem (Ψ = {Ψ=}∞==1, ! = {!=}∞==1) is in P if ! ∈ P. We say it is

efficiently samplable if there is a randomized poly-time algorithm that on input 1= samples Ψ=.

Definition 14 (Y(=)-Hard Distributional Problem). Let (Ψ = {Ψ=}∞==1, ! = {!=}
∞
==1) be a distribu-

tional problem, we say that (Ψ, !) is Y(=)-hard for family of boolean circuits C = {�=}∞==1, if and

only if for every circuit �= ∈ C,

Pr
G←Ψ=

[�= (G) = != (G)] ≤
1
2
+ Y(=)

If no distribution is specified it assumed to be uniform. In particular, we say a problem or

language, !, is n (=)-hard for a class of C if ∀� ∈ C, PrG←U= [� (G) = ! (G)] ≤ n (=) for almost all

=.

2.5.2 Hard Cores

Definition 15 (Y-hard-core function). Let 5 : {0, 1}= → {0, 1} be a boolean function, and �(be

a distribution over {0, 1}= induced by the characteristic function of set (⊂ {0, 1}=2. We call 5

Y-hard-core on (for size B (where = ≤ B ≤ 2=
=

), if for any boolean circuits � of size at most B

Pr
G←�(

[� (G) = 5 (G)] < 1
2
· (1 + Y)

2Characteristic function of set (outputs 1 if the input to the function is in set (.

25

.

We also present the following theorem from [66]. Note that stronger variants of Impagliazzo’s

Hard-core set lemma exist in the literature(in fact, in [66]), however this simple variant suffices for

us.

Theorem 8 (Theorem 1 [66]). Let 5 : {0, 1}= → {0, 1} be boolean function that X-hard for size B.

Also, let Y > 0. Then ∃ set (⊆ {0, 1}= and constant 2, such that |(| ≥ X · 2= and 5 is Y-hard-core

on (for circuits of size B′ ≤ 2 · Y2 · X2 · B.

Impagliazzo’s theorem assumes an expressive computation class, however at the very low end

of complexity is not always clear if such a proof will go through. The following property is a

sufficient condition to apply the theorem above to a circuit class F .

Definition 16 (Hard Core Set (HCS) Amenable). We say that F = {F=}∞==1 is HCS-Amenable if

for any polynomial ?(·), it holds that if �1, . . . , �?(=) ∈ F= then MAJ(�1, . . . , �?(=)) ∈ F=.

2.6 Pseudorandom Objects

2.6.1 Extractors

Definition 17 (Strong Extractors [45]). A function Ext : {0, 1}= × {0, 1}3 → {0, 1}< is a (:, n)

extractor if for every (=, :) source X, Y,Ext(X,Y) is n-close to Y,U< where Y is uniformly dis-

tributed over {0, 1}3 and U< is uniformly and independently distributed over {0, 1}<. An extractor

is explicit if it is computable in polynomial time.

Theorem 9 (Explicit Strong Extractors [46]). For every constant U > 0, and all positive integers

=, : and all n > 0, there is an explicit construction of a (:, n) extractor Ext : {0, 1}= × {0, 1}3 →

{0, 1}< with 3 = $ (log = + log(1/n)) and < ≥ (1 − U): .

Definition 18 (Two Source Extractors [48]). A function 2Ext : {0, 1}= × {0, 1}= → {0, 1}< is a

(:, n) two source extractor if for independent source X and sources . such that H∞(-) +H∞(.) ≥

26

: , (Y, 2Ext(X,Y)) is n-close to (Y,U<) and (X, 2Ext(X,Y)) is n-close to (X,U<) where U< is

uniformly distributed over {0, 1}<. An extractor is explicit if it is computable in polynomial time.

Theorem 10 (Explicit Two Source Extractors [48]). For all positive integers <, = such that = is a

multiple of < and for all n ≥ 0, there exists an efficient (= + < + 2 log 1/n, n) 2-source extractor

with =-bit sources and <-bit output.3

2.6.2 Binary Ramp Secret Sharing Encoding Schemes, or “Reconstructable Probabilistic Encod-

ing (RPE)”

Reconstructable Probabilistic Encoding (RPE) schemes were first introduced by Choi et al. [67,

68], extending a definition from [69, 70]. Informally, RPE is a combination of error correcting code

and secret sharing, in particular, it is an error correcting code with an additional secrecy property

and reconstruction property. Linear error correcting secret sharing schemes are a special case of

RPEs.

Definition 19 (Binary Reconstructable Probabilistic Encoding [67, 68]). We say a triple (E,D,R)

is a binary reconstructable probabilistic encoding scheme with parameters (:, =, 2err, 2sec),

where :, = ∈ N, 0 ≤ 2err, 2sec < 1, if it satisfies the following properties:

1. Error correction. E: {0, 1}: → {0, 1}= is an efficient probabilistic procedure, which maps

a message G ∈ {0, 1}: to a distribution over {0, 1}=. If we let C denote the support of E,

any two strings in C are 22err-far. Moreover, D is an efficient procedure that given any

F′ ∈ {0, 1}= that is n-close to some string F in C for any n ≤ 2err, outputs F along with a

consistent G.

2. Secrecy of partial views. For all G ∈ {0, 1}: and any non-empty set (⊂ [=] of size

≤ b2sec · =c, E(G)(is identically distributed to the uniform distribution over {0, 1} |(|.

3. Reconstruction from partial views. R is an efficient procedure that given any set (⊂ [=]
3[48] implies this theorem and the parameters have been taken from [13].

27

of size ≤ b2sec · =c, any 2̂ ∈ {0, 1}=, and any G ∈ {0, 1}: , samples from the distribution E(G)

with the constraint E(G)(= 2̂(.

For the special case of 2err = 0, this is object is called binary ramp secret sharing scheme (with

parameters (:, =, 2sec)).

Lemma 4. [69, 70, 67, 68] For any : ∈ N, there exist constants 0 < 2rate, 2err, 2sec < 1 such that

there is a binary RPE scheme with parameters (:, 2rate:, 2err, 2sec).

To achieve longer encoding lengths =, with the same 2err, 2sec parameters, one can simply pad

the message to an appropriate length.

We conclude this section, by observing that binary ramp secret sharing schemes (RPEs with

parameters (:, =, 0, 2sec)) are implied by any linear error correcting code with parameters (:, =, 3)

where : is the message length, = is the codeword length, 3 := 2sec · = + 1 is the minimal distance.

Lemma 5. Suppose there exists a binary linear error correcting code with parameters (:, =, 3),

then there is a binary RPE scheme with parameters (:, =, 0, (3 − 1)/=).

Proof. For a linear error correcting code with (:, =, 3), let � denote its encoding matrix, � denote

its parity check matrix. Let � be a matrix so that �� = � where � is the : × : identity matrix (such

� exists because � has rank : and can be found efficiently). By property of parity check matrix,

�� = 0 and �B ≠ 0 for any 0 < | |B | |0 < 3 where 0 is the (= − :) × : all 0 matrix.

We define (E,D,R) as follows: for G ∈ {0, 1}: and randomness A ∈ {0, 1}=−: , E(G; A) :=

�)G + �)A, for 2 ∈ {0, 1}=; D(2) := �)2; given (⊂ [=] of size ≤ 3 − 1 , 2̂ ∈ {0, 1}=, G ∈ {0, 1}: ,

R samples A uniformly from the set of solutions to (�)A)(= (2̂ − �)G)(then outputs E(G; A).

(E,D) is an encoding scheme because D ◦ E = �)�) = �) = �. For secrecy property, note

that for any non-empty (⊆ [=] of size at most 3 − 1, (�A)(is distributed uniformly over {0, 1} |(|,

because for any 0 ∈ {0, 1} |(|,

Pr
A
[(�)A)(= 0] = E[Π8∈(

1 + (−1) (�) A)8+08
2

] = 2−|(|
∑
(′⊆(

E[Π8∈(′ (−1) (�) A)8+08] = 2−|(|,

28

where the last equality is because the only surviving term is (′ = ∅ and for other (′,
∑
8∈(′ �

)
8
≠

0 so E[Π8∈(′ (−1) (�) A)8] = 0. It implies E(G)(is also distributed uniformly over {0, 1}(. By

definition, ' satisfies reconstruction property. Hence (E,D,R) is a binary RPE with parameters

(:, =, 0, (3 − 1)/=).

�

Lemma 6. Suppose there exists a binary linear error correcting code with parameters (:, =, 3),

then there is a binary ramp secret sharing scheme with parameters (:, =, (3 − 1)/=).

Proof. For a linear error correcting code with (:, =, 3), let � denote its encoding matrix, � denote

its parity check matrix. Let � be a matrix so that �� = � where � is the : × : identity matrix (such

� exists because � has rank : and can be found efficiently). By property of parity check matrix,

�� = 0 and �B ≠ 0 for any 0 < | |B | |0 < 3 where 0 is the (= − :) × : all 0 matrix.

We define (Enc,Dec) as follows: for G ∈ {0, 1}: and randomness A ∈ {0, 1}=−: , Enc(G; A) :=

�)G + �)A , for 2 ∈ {0, 1}=; Dec(2) := �)2.

(Enc,Dec) is an encoding scheme because Dec ◦ Enc = �)�) = �) = �. For secrecy property,

note that for any non-empty (⊆ [=] of size at most 3 − 1, (�A)(is distributed uniformly over

{0, 1} |(|, because for any 0 ∈ {0, 1} |(|,

Pr
A
[(�)A)(= 0] = E[Π8∈(

1 + (−1) (�) A)8+08
2

] = 2−|(|
∑
(′⊆(

E[Π8∈(′ (−1) (�) A)8+08] = 2−|(|,

where the last equality is because the only surviving term is (′ = ∅ and for other (′,
∑
8∈(′ �

)
8
≠ 0

so E[Π8∈(′ (−1) (�) A)8] = 0. It implies Enc(G)(is also distributed uniformly over {0, 1}(. Hence

(Enc,Dec) is a binary ramp secret sharing encoding scheme with parameters (:, =, (3 − 1)/=).

�

To achieve longer encoding lengths =, with the same 2sec parameter, one can simply pad the

message to an appropriate length.

29

2.6.3 Bounded Independence

We note some useful facts about bounded independence.

Definition 20. Random variables, -1, . . . , -= supported on a set (, are C-wise independent if for

any B1, . . . , BC ∈ (and any distinct 81, . . . , 8C ∈ [=],

Pr[-81 = B1 ∧ · · · ∧ -8C = BC] =
C∏
9=1

Pr[-8 9 = B 9]

We say a hash family H = {ℎ : [=] → [<]} is said to be C-wise independent if the random

variables � (1), . . . , � (=), where � is sampled uniformly fromH , are C wise independent.

We say function � : {0, 1}B → {0, 1}= is a f-wise independent generator if � (Z) is f-wise

independent where Z is uniformly distributed over {0, 1}B.

Note that ifH is a C-wise independent hash family of size 2B, then � (�) := � (1), . . . , � (=) is

a C-wise independent generator.

The simple Carter-Wegman hashing construction based on random polynomials suffices for our

purposes.

Lemma 7. [71] There exists an (explicit) C-wise independent generator: � : {0, 1}(C+1) log = →

{0, 1}=, computable in time $̃ (C=).

Moreover, � : {0, 1}(C+1)< → {0, 1}= can be constructed such that for a subset (⊆ [=] of size

f, � (Z)(≡ -1, . . . , -C (for uniformly chosen Z) where (1) -8’s are independent Bernoullis with

Pr[-8 = 1] = @/3 for @ ∈ {0, . . . , 3}, and (2) < = max{log =, log 3}.

Let �f,? denote a f-wise independent Carter-Wegman generator with bias ?, and �f such a

generator with ? = 1/2

2.6.4 Characters sums over finite fields

Let @ be a prime. The additive characters of F@ are of the form j 9 (G) = 4(G 9/@), for 9 =

0, 1, . . . , @ − 1. j0 is called the trivial character, and the others are called as non-trivial characters

30

of F@. We now recall a deep result from algebraic geometry that has found various applications in

pseudorandomness.

Theorem 11 (Weil bound [72]). Let ? be a non-constant univariate polynomial of degree 3 < @

over F@. For any non-trivial additive character j of F@, we have������∑H∈F@ j(?(H))
������ ≤ 3√@.

We record a couple of XOR lemmas that lets us translate bounds on expectations of characters

under a distribution �, to the closeness of � in statistical distance to the uniform distribution.

Lemma 8 ([73]). For every prime @, there exists an efficiently computable map f : F@ → {0, 1}<

such that if . is a distribution on F@ such that for every non-trivial additive character j of F@,

E[j(.)] ≤ X,

then it is the case that

|f(.) − U< | ≤ n,

where n = X2</2 +$ (2</@).

Lemma 9 ([73, 74]). For every prime @, there exists an efficiently computable map f : F@ →

{0, 1}< such that if (.,. ′) is a distribution on F@ ×F@ where for all additive characters j, q of F@,

where j is non-trivial,

E[j(.)q(. ′)] ≤ X,

then it is the case that

| (f(.), f(. ′)) − (U<, f(. ′)) | ≤ n,

where n = X2< +$ (2</@).

31

2.6.5 Pseudorandom Generators for Space-Bounded Computation

Definition 21. [75] A generator prg : {0, 1}< → ({0, 1}=): is a pseudorandom generator for

space(F) and block size = with parameter Y if for every finite state machine, &, of size 2F over

alphabet {0, 1}= we have that

| Pr
H
[& accepts H] − Pr

G
[& accepts prg(G)] | ≤ Y

where H is chosen uniformly at random in ({0, 1}=): and G in {0, 1}<.

Theorem 12. [75] There exists a fixed constant 2 > 0 such that for any F, : ≤ 2= there exists

an (explicit) pseudorandom generator prg : {0, 1}$ (:)+= → {0, 1}=2: for space(F) with parameter

2−2=. Moreover, prg can be computed in polynomial time (in =, 2:).

2.6.6 The Pseudorandom Switching Lemma of Trevisan and Xue

Definition 22. Fix ? ∈ (0, 1). A string B ∈ {0, 1}=×log(1/?) encodes a subset ! (B) ⊆ [=] as follows:

for each 8 ∈ [=],

8 ∈ ! (B) ⇐⇒ B8,1 = · · · = B8,log(1/?) = 1.

Definition 23. Let D be a distribution over {0, 1}= log(1/?) × {0, 1}=. This distribution defines a

distribution R(D) over restrictions {0, 1, ∗}=, where a draw d ← R(D) is sampled as follows:

1. Sample (B, H) ← R(D), where B ∈ {0, 1}= log(1/?) , H ∈ {0, 1}=.

2. Output d where

d8 :=

H8 if 8 ∉ ! (B)

∗ otherwise

Theorem 13 (Polylogarithmic independence fools CNF formulas [76, 77]). The class of "-clause

CNF formulas is n-fooled by $ ((log("/n))2)-wise independence.

32

Theorem 14 (A Pseudorandom version of Håstad’s switching lemma [12, 78]). Fix ?, X ∈ (0, 1)

and F, (, C ∈ N. There exists a value A ∈ N,

A = poly(C, F, log((), log(1/X), log(1/?)), 4

such that the following holds. LetD be any A-wise independent distribution over {0, 1}=×log(1/?) ×

{0, 1}= 5 . If � : {0, 1}= → {0, 1} is a size-(depth-2 circuit with bottom fan-in F, then

Pr
[

DT(� � 1) ≥ C
]
≤ 2F+C+1(5?F)C + X,

where the probability is taken with respect to a pseudorandom restriction 1 ← R(D).

Proof. By Lemma 7 of [78], any distributionD′ over {0, 1}=×log(1/?)×{0, 1}= that n-fools the class

of all ((· 2F(log(1/?)+1))-clause CNFs satisfies

Pr
[

DT(� � 1) ≥ C
]
≤ 2F+C+1(5?F)C + n · 2(C+1) (2F+log () ,

where the probability is taken with respect to a pseudorandom restriction 1 ← R(D′). By Theo-

rem 13, the class of " := ((· 2F(log(1/?)+1))-clause CNF formulas is

n := X · 2−(C+1) (2F+log ()

fooled by A-wise independence where

A = $ ((log("/n))2) = poly(C, F, log((), log(1/X), log(1/?)),

and the proof is complete. �

4The exponent of this polynomial is a fixed absolute constant independent of all other parameters.
5Recall that an A-wise independent distribution over {0, 1}< can be generated with seed length $ (A log<). In this

case, < = = × log(1/?) + = so this is $ (A log(= log(1/?))).

33

Taking a union bound we get the following corollary.

Corollary 1. Fix ?, X ∈ (0, 1) and F, (, C ∈ N. There exists a value A ∈ N,

A = poly(C, F, log((), log(1/X), log(1/?)),

such that the following holds. LetD be any A-wise independent distribution over {0, 1}=×log(1/?) ×

{0, 1}=. Let �1, . . . , �" be " many size-(depth-2 circuits with bottom fan-in F. Then

Pr
1←R?

[
∃ 9 ∈ ["] such that DT(�9 � 1) ≥ C

]
≤ " ·

(
2F+C+1(5?F)C + X

)
. (2.1)

2.7 Concentration Inequalities and Other Useful Lemmas

Theorem 15 (Generalized Chernoff Bound [79]). Let -1, . . . , -= be Boolean random variables

such that, for some 0 ≤ X ≤ 1, we have that, for every subset (⊆ [=], E[Π8∈(-8] ≤ X |(|. Then

Pr[∑=
8=1 -8 ≥ 2X=] ≤ exp(−=X/3).

The following useful theorems give Chernoff-type concentration bounds for C-wise independent

distributions.

Theorem 16 ([80]). Let -1, . . . -= be C-wise independent random variables supported on [0, 1]

such that ` = E[∑=
8=1 -8], then for � > 0

Pr

[����� =∑
8=1

-8 − E
[
=∑
8=1

-8

] ����� ≥ �
]
≤ 1.0004

(C=
�2

) C/2
.

Theorem 17 ([81]). If - is a sum of C-wise independent random indicator variables with ` = E[-],

then ∀n : 0 < Y ≤ 1, C ≤ Y2`4−1/3, Pr[|- − ` | > Y`] < exp(−bC/2c).

We recall a useful result from [82] (Lemma 4.2).

Lemma 10. Let =, A, 3, _ be arbitrary positive integers, and @ be a prime. Let ?1(G), . . . , ?A (G)

be non-constant =-variate polynomials of degree at most 3 over F@. Suppose that 38 = 346(?8).

34

Define 28 = _(23A + 1) + _8. Then, for all 1 ≤ 8 < 9 ≤ A, we have

|346(?28
8
) − 346(?2 9

9
) | = |28 · 38 − 2 9 · 3 9 | ≥ _.

We also record the Schwartz-Zippel Lemma.

Lemma 11 ([26, 83]). Let ?(G) ∈ Poly=,@,3 be a non-zero polynomial. Then,

Pr
G∈F=@
[?(G) = 0] ≤ 3/@.

Proposition 1 (Implicit in Lemma 3.8.1 in [84]). Let -0, -1 be random variables such thatΔ(-0; -1) =

n . Consider the following game:

• Arthur samples a coin 1 ←U and gives Merlin G ← -1.

• Merlin responds with 1′. If 1′ = 1, Merlin wins. Otherwise, Merlin loses.

Merlin wins with probability 1+n
2 by outputting 1′ such that Pr[-1′ = G] ≥ Pr[-1−1′ = G].

Moreover, this strategy is optimal.

We also use the following simple combinatorial propositions.

Proposition 2. Let 2 > 1. Let (-.), (-/) be two joint random variables supported on any space

Σ- × Σ such that Δ(-,. ; -, /) ≤ n , then exists an event (⊆ Σ- such that

1. Pr[- ∈ (] ≥ 1 − 1/2

2. ∀G ∈ (,Δ(-. |- = G; -/ |- = G) ≤ 2n , where (-. |- = G) denotes the random variable

-. conditioned on - = G and, similarly, (-/ |- = G) denotes the random variable -/

conditioned on - = G.

Proof. Let � the variable distributed according to the procedure where G ← - and then Δ(-. |- =

35

G; -/ |- = G) is output. By definition, E[�] ≤ n .6 Thus, by Markov’s inequality we have

Pr[� ≥ 2n] ≤ E[�]
2n
≤ 1
2

It follows that there exists a set (with the desired properties. In particular, (is the set of G

such that � conditioned on - = G is not greater than 2n . �

Proposition 3. Let V ∈ (0, 1) Let (-.), (-/) be two joint random variables supported on any

space Σ- × Σ such that Δ(-,. ; -, /) > n , then exists an event (⊆ Σ- such that

1. Pr[- ∈ (] ≥ n − V

2. ∀G ∈ (,Δ(-. |- = G; -/ |- = G) ≥ V, where (-. |- = G) denotes the random variable

-. conditioned on - = G and, similarly, (-/ |- = G) denotes the random variable -/

conditioned on - = G.

Proof. Let � the variable distributed according to the procedure where G ← - and then Δ(-. |- =

G; -/ |- = G) is output. Let �′ = 1−�. By definition, E[�′] < 1−n . Thus, by Markov’s inequality

we have,

Pr[�′ ≥ 1 − V] < 1 − n
1 − V .

So, it follows that Pr[� ≤ V] < 1−n
1−V . Thus

Pr[� > V] ≥ 1 − 1 − n
1 − V =

n − V
1 − V ≥ n − V.

It follows that there exists a set (with the desired properties. In particular, (is the set of G such

that � conditioned on - = G is greater than V. �

6E[�] = ∑
G∈Σ-

Pr[- = G]Δ(-. |- = G; -/ |- = G) = Δ(-. ; -/).

36

Chapter 3: Warming Up

In this chapter we provide some elementary results that, hopefully, grant some contextual clar-

ity to the rest of this work.

Efficient codes exist for small families. In Section 3.1, we extend an argument from [7] show

that for any family of tampering functions of size 2C , F , if D is chosen to be drawn from a C′-wise

independent hash family, {ℎ : {0, 1}= → {0, 1}}ℎ∈H , (C′ ≈ C) then with overwhelming probability

(E,D) is a single-bit non-malleable code for F , where E encodes 1 by sampling a random string,

G, conditioned on D(G) = 1.1

In Section 3.2, we observe that this construction can be further derandomized for the specific

case of polynomial size circuit tampering. This is because, for this class, the property of not being

a non-malleable code for this class admits an MA proof (provided (E,D) can be implemented by

polynomial size circuits).

Non-Malleability implies lower bounds. In section 3.3, we present the observation that explicit

non-malleability against a tampering class F (extended in the usual way), implies explicit average-

case hardness lower bounds against F , for many natural families, F . This can also be interpreted

as showing a non-malleable code for F is in fact leakage resilient against a related class.

On non-malleable codes as a relaxation of error-correcting codes: tampering functions that

change 3/2 bits, where 3 is the distance of the code. It is common to present non-malleable

codes as a strict relaxation of error correcting codes. Non-malleable only guarantee correctness

of decoding in the absence of errors and consequently gain “security” against a wider range of

1In fact, E as described may not be efficient, but rejection sampling suffices (with appropriate fallback behavior
after sufficiently many failures).

37

adversarial channels, in particular channels that can modify more bits of the codeword. However,

note that in all known results, there is a tradeoff: Non-malleable codes allow for modifying more

(or all) symbols of the codeword than error correcting codes but require that the computation of

the tampering function is restricted in some way, while error correcting codes can tolerate modifi-

cation of less codeword symbols, but do not place any computational restrictions on the tampering

adversary.

In Section 3.4, we ask whether this is in fact necessary: Specifically, does the relaxed definition

of non-malleable codes allow us to construct codes that allow for modifying more symbols of

the codeword than error correcting codes without placing any computational restrictions on the

tampering. Note that error correcting codes with distance 3 that allow for error correction after

modification of at most (3 − 1)/2 symbols are known (e.g. Reed Solomon codes achieve this

bound) and error correction is impossible under modification of 3/2 symbols. Given the above,

we resolve question negatively, showing that it is impossible to construct non-malleable codes

with distance 3 against tampering functions that arbitrarily modify 3/2 codeword symbols. This

indicates that in order to obtain improved parameters beyond what is possible with error correcting

codes, imposing computational restrictions on the tampering function is necessary.

3.1 An Efficient One-Bit NMC for Small Tampering Families Exists

Dziembowski Pietrzak and Wichs [7] showed that for any tampering family F that is not too

much larger, if the decoding function D is simply chosen at random, and encoding, E, simply

selects a random string that decodes to the correct value, this code is non-malleable against F with

overwhelming probability.

We show that, for protecting a single bit, selecting a$ (log |F |)-wise independent hash suffices

for D. To encode, rejection sampling is enough.

Theorem 18. For any F of size at most 2C ′, the construction in Figure 3.1 with parameters = >

log(12C/n2) and C ∈ [2 log(3|F |/V), n2/6 · 2=] is an n-NMC for F with probability at least 1 − V.

Proof. We follow the framework of Dziembowski, Pietrzak, and Wichs.

38

Let = be a parameter.
LetH = {ℎ : {0, 1}= → {0, 1}} be a C-wise independent hash family.

Preprocessing Sample ℎ←H . Output ℎ. Let 20, 21 be strings such that ℎ(20) = 0 and ℎ(21) = 1.

Encode To encode a bit 1:

Sample i.i.d. G1, . . . , G=
D← {0, 1}=. Output the first G8 such that ℎ(G8) = 1, if one exists.

Otherwise, output 21.

Decode On input 2:

Output ℎ(2).

Figure 3.1: A Non-Malleable Code for Small Families

Let (Eℎ,Dℎ) denote the code defined by ℎ ∈ H .

Fix some 5 ∈ F . Let � 5 denote the digraph with the vertex set + (�) = {0, 1}= and edge set

� (�) = {(G, 5 (G)) : G ∈ {0, 1}=}. We will considerH as a set of colorings of � 5 .

Note that the rejection sampling procedure fails with probability at most 2−=. Conditioned on

that event, (, not happening, Eℎ (1) outputs a uniformly random G ∈ {0, 1}= such that ℎ(G) = 1.

Observe that if we conditioned on the success of the reduction sampling (i.e. (not happening),

Eℎ (1) for uniform 1 outputs a uniformly random string G ∈ {0, 1}=. Additionally, note that because

� 5 has out-degree 1, so we can associate each edge 4 = (D, E) with a unique vertex D.

So, conditioned on (not happening for any fixed ℎ,

Pr
1
D←{0,1}

[D(5 (E(1))) = 1 − 1] = Pr
2
D←{0,1}=

[D(5 (G)) = 1 − ℎ(G)]

= Pr
(D,E) D←� (� 5)

[ℎ(D) ≠ ℎ(E)]

=
1
2=

©«
∑

(D,E)∈� (� 5)
jℎ(D)≠ℎ(E)

ª®¬ .
In other words, if (does not happen, 5 breaks n-non-malleability with respect to (Eℎ,Dℎ) if and

only if ∑
4∈� (� 5)

jℎ(D)≠ℎ(E) ≥ (1/2 + n)2=.

39

Proposition 4 ([7]). For any directed graph � = (+, �) where each vertex has out-degree one,

there is a partition of � into two components *1,*2 such that neither component contains a non-

trivial cycle and each component contains at least 1/3 of the edges in �.

Proof. Note that because each vertex has out-degree one, it can be on at most one cycle. Let

�1, �2, . . . be an enumeration of non-trivial cycles. Partition the =8 vertices of �8 arbitrarily such

that b=8/2c are in*1 and d=8/2e are in*2. Partition the remaining =∗ vertices such that b=∗/2c are

in*2 and d=∗/2e are in*1.

Neither *1 nor *2 contains a complete non-trivial cycle and because the smallest odd non-

trivial cycle is of size 3, we have each of |*1 |, |*2 | ≥ |� |/3. �

Given this claim, it suffices to prove that each of �1 = (+,*1) and �2 = (+,*2) are bounded

with high probability, namely

for 8 = 1, 2: Pr
ℎ

∑
(D,E)∈*1

jℎ(D)≠ℎ(E) ≥ (1/2 + n) |�8 |
 ≤

V

3|F | .

The theorem follows by union bounding over all 5 ∈ F , as well as the event (.

Fix �8 (for 8 ∈ {1, 2}) from the claim above.

Let (-4)4=(D,E)∈� (�8) denote the sequence of variables for each 4 ∈ *8, -4 = 1 if and only if

ℎ(D) ≠ ℎ(E), where ℎ←H .

Because � is at least 2-wise independent, for any -4, E[-4] ≤ 1/2 (if 4 = (D, D) for some D

then -4 is constant 0).

Claim 1. The -4’s are C-wise independent.

Proof. Fix any set (′ ⊂ *8 of size at most C. Any self-loops, 4, in (′, corresponding to variables

-4 that are identically equal to 0, independently of � and all other variables -4′. So, it suffices to

consider (the subset of edges in (′ that are not self-loops.

Now, consider the connected components in �′
(
, the subgraph of �8 induced by (, with all

vertices lacking adjacent edges removed.

40

By Claim 4, there are no non-trivial cycles in�′
(
. Therefore,�′

(
is a directed acyclic graph with

out-degree 1. Consider sampling (-4)4∈(by coloring vertices according to � in reverse topological

order. Because ℎ is 2C-wise indedendent and there are at most 2C vertices in �′
(
, it is equivalent to

randomly color each vertex one-by-one.

Namely, at step 8, color the 8th vertex in the reverse toplogical ordering, E8, according to �,

� (E8). At the outset 8-th step of this procedure, the (8 − 1)th vertex, E8−1 has been colored by �.

Recall, that because the edge 48 = (E8, E8−1) is the unique on-going edge from E8, by the reverse

toplogical ordering this means E8 has not yet been colored at the outset of step 8.

Moreover, regardless of whether we condition on ℎ(E8−1) = 0 or ℎ(E8−1) = 1, the probability

that ℎ(E8) ≠ ℎ(E8−1) (and hence Pr[-48 = 1|-48−1,...,-41
]) remains 1/2 (i.e. Pr[-48 = 1]). �

By linearity of expectation, E[∑4∈� (�8) -4] ≤ 1/2|� (�8) |. Therefore by Theorem 16,

Pr
[∑

-4 − E[
∑

-4] ≥ n |� (�8) |
]
≤ 1.0004

(
C |� (�8) |
n2 |� (�8) |2

) C/2
Because C ≤ n2/6 · 2= ≤ n2/2 · |� (�8) |, we have

Pr[
∑

4∈� (�8)
-4 ≥ (1/2 + n) |�8 |] ≤ 1.0004

(
C |� (�8) |
n2 |� (�8) |2

) C/2
≤ 1.0004 · 2−C/2

So, the theorem follows so long as C ≥ 2 log(3|F |/V). �

3.2 An Efficiently Enumerable Family Exists for Small Circuit Tampering (under strong

derandomization assumptions)

In this section, we show that a PRG for MA protocols suffices to fool the test of non-malleability

for small circuit sampling. Assuming a PRG against MA distinguishers indeed allows us to shrink

the family from Section 3.1 to a polynomial number of candidate codes, most of which remain

good. This, in particular, implies an efficient construction in the CRS model where the CRS is

41

smaller than size of the tampering functions.

We do not discuss this PRG assumption here, because in Chapter 9 we show how to get rid of

the CRS entirely and encode more bits from the related assumption that E requires nondeterminis-

tic circuits of exponential size. In particular, this assumption implies PRGs for non-deterministic

circuits which suffices for Theorem 19.

Theorem 19. For any constant 2, let SIZE[=2] denote the class of =-bit to =-bit functions that can

be represented by an =2 size circuit. Note that |SIZE[=2] | = 222=2 log =) , for almost all =.

Let C = 2 log(3) + 42=2 log = + = and =/2 > log(12C)..

Let 2′ > 2 + log(C log C log2 =) + 1.

Let Eℎ,Dℎ be the encoding and decoding procedures from Figure 3.1 where ℎ is a C-wise inde-

pendent hash from the familyH of Lemma 7.

And let � : {0, 1}B → {0, 1}< be a PRG such that no MA protocol with Arthur size at most <2
′

has advantage greater than <−2
′/3, where < = $ (C log =) is the description length of the family

H from Lemma 7.

Then, for any n > <−2
′
there is a coding scheme with a CRS of length B that is n-non-malleable

against F with probability at least <−2
′/n , over the randomness of the CRS.

Let � : {0, 1}B → {0, 1}ℓ be a PRG for MA protocols with Arthur a (randomized) circuit of

size =2
′

with security U. Let G denote the pseudorandom distribution corresponding to the output

of � on a uniform seed.

Now, suppose the construction in Figure 3.1 is not n-non-malleable with probability at least

X when the CRS is drawn from the pseudorandom distribution G instead of a random seed. In

particular, with probability at least X (over 6 ← G) there exists an 5 such that

Pr
1
[D6 (5 (E6 (1))) = 1 − 1] > 1/2 + n .

Then, consider the following randomized non-deterministic distinguisher. On input, G:

Merlin Send 5 of size =2 from above, if such an 5 exists.

42

Arthur • Sample uniform bit 1.

• Sample 1′ = DG (5 (EG (1))).

• If 1′ ≠ 1, output 1. Otherwise, output 0.

Note that Arthur is size $ (=2 + ℓ2)

If G is drawn from G, then with probability X the distinguisher outputs 1 with probability 1/2+n .

On the other hand, a constant function 2, always makes the distinguisher output 1 with probability

at least 1/2. So in total, the distinguisher on G outputs 1 with probability at least 1/2 + X · n .

If G is drawn from U, then with probability at least 1 − X′, the distinguisher outputs 1 with

probability at most 1/2 + n′. So, in total the distinguisher outputs 1 with probability at most

1/2 + n ′ + X′.

So, in total the distinguisher has advantage Xn − n′ − X′. And in conclusion, we must have

Xn < n′ + X′ + U.

Thus, if U, X′, n′ < =−2
′/3, then it must be that X, n < =−2

′
. In other words, the derandomized

code must be n non-malleable with probability at least 1 − =−2′/n .

3.3 Non-Malleability against circuits implies circuit lower bounds

In this section we assume a binary alphabet. Let C be a class of boolean functions with the

following closure property (*): if 2 ∈ C, then for 0, 1 ∈ {0, 1} the function 20,1 ∈ C where

20,1 (G) = 0 if 2(G) = 0 and 20,1 (G) = 1 if 2(G) = 1.

Now consider tampering class C as we consider in this paper: namely the 8th tampered output

corresponds to some 2 ∈ C, for all 8.

Proposition 5. If C has the closure property (*), then an explicit non-malleable code, even for a

single bit, (Enc,Dec) implies an n-hard distributional problem for C, with a samplable distribu-

tion. In particular, (Enc(U)),Dec) is n-hard.

43

Suppose for the sake of contradiction there exists some 2 ∈ C such that

Pr
G←Enc(U)

[2(G) = Dec(G)] > 1/2 + n .

Then, (Enc,Dec) is not n-non-malleable with respect to C. In particular, consider the following

attack. Fix any encoding of 1, G1, and any encoding of 0, G0. Now consider the tampering function

such that the 8 tampered output is computed by 2G0
8
,G1
8
. Because 2 correctly decodes with probaility

> 1/2 + n this attack flips the encoded bit with probability > 1/2 + n . By the characterization of

one-bit NMC, Lemma 1, (Enc,Dec) is not n-non-malleable.

3.4 Non-malleability is no better than error-correction for many arbitrary errors

Let (E,D) be a coding scheme with distance 3. Define the class of functions F3/2−1 = { 5 : 5

changes < 3/2 codeword symbols }. We know that ECC exist, and thus NMC also exist, for F3/2−1

(e.g. Reed Solomon Codes achieve this bound).

We now define the slightly larger class F3/2 = { 5 : 5 changes ≤ 3/2 symbols}. In Theo-

rem 20 we show that even inefficient NMC do not exist for F3/2, unless exactly one bit needs to be

protected. Recall that distance for randomized coding schemes is upper bounded by the notion of

distance for (non-randomized) codes with the same message/codeword-space parameters. Specif-

ically, for a set of codewords (, we define the distance of ((dist(()) as the minimum pairwise

distance over all pairs of codewords in (. Let S, be the set that consists of all sets (that contain

exactly one codeword for each message in the message space. Then the distance of the code is de-

fined as max(∈S dist((). Refer to definition 3 for formal definition of distance of coding scheme,

presented earlier.

3.4.1 Lower bound for encoding more than a bit

Theorem 20. Let (E,D) be a coding scheme with message space of size greater than 2, alphabet

Σ and distance 3. Then, for any n > 0, (E,D) is not a 1
8 − n-NMC for F3/2.

44

Proof. We begin with some notation Given U, V ∈ Σ=, we denote by ‖U − V‖0 the number of

positions 8 ∈ [=] such that U8 ≠ V8.

Let (E : * → +,D : + → *) be a randomized encoding scheme, where * ⊆ Σ: , + ⊆ Σ= and

|* | > 2.

Claim 2. ∃G ∈ * such that ∀2G ∈ E(G) there is a I = I(2G) ∈ + :

1. ‖2G − I‖0 ≤ 3
2

2. Pr[D(I) ≠ G] =≥ 1
2 .

Assuming the claim, consider the following tampering function 5 ∈ F3/2. Let I2 be the I for

each 2 ∈ E(G∗) guaranteed to exist for some G∗ ∈ * by the above claim.

5 (2) :=

I2 if 2 ∈ E(G∗)

2 otherwise

Let Pr2G∗←E(G∗) [D(I(2G∗)) ≠ G∗] = ? ≥ 1
2 . Then, ∃H∗ ≠ G∗ ∈ * such that Pr2G∗←E(G∗) [D(I(2G∗)) =

H∗] ≤ ?

|* |−1 , but Pr[D(5 (E(H∗))) = H∗] = 1. This means that a distribution � 5

G∗ that exactly agrees

with D(5 (E(·))) on G∗ must output same or G∗ with probability 1 − ? and H∗ with probability at

most ?

|* |−1 . A distribution � 5

H∗ that exactly agrees with D(5 (E(·))) on H∗ must output same or H∗

with probability 1. Thus, any distribution � 5 can only agree with D(5 (E(·))) for both G∗ and H∗

at most (1 − ?) + ?

|* |−1 ≤ 3/4 fraction of the time (and must have statistical distance at least 1/8

from one of them), since ? ≥ 1/2 and |* | > 2.

All that remains is to prove the claim.

Suppose for the sake of contradiction that∀G ∈ *, ∃2G ∈ E(G) such that∀I ∈ + with ‖2G−I‖0 ≤
3
2 it is the case that Pr[D(I) ≠ G] < 1

2 . Fix any such set of codewords corresponding to all

messages (= {2G : ∀I ∈ + ‖2G − I‖0 ≤ 3
2 =⇒ Pr[D(I) ≠ G] < 1

2 }G∈* . Note that the distance

of ((min2G≠2H∈(‖2G − 2H‖0) is at most 3 (by definition of the distance of a randomized code).

Let 2G ≠ 2H ∈ * be two such codewords such that ‖2G − 2H‖ ≤ 3. Then, ∃I ∈ + such that

‖I − 2G ‖0 ≤ 3/2 and ‖I − 2H‖0 ≤ 3/2. But then by assumption it follows that Pr[D(I) = G] > 1
2

45

and Pr[D(I) = H] > 1
2 , which is a contradiction because G ≠ H.

�

We observe that a randomized coding scheme with message spaceM, codeword space C and

distance 3 (as defined above for randomized coding schemes), implies a (possibly inefficient) error

correcting code with the same message/codeword space that can correct up to 3/2 − 1 errors. To

see this, note that one can take the set (∈ S (as in the definition of distance for randomized coding

schemes) achieving the maximum dist((). Since (⊆ C contains exactly one codeword for each

message in the message space, the set (itself comprises a code with message spaceM, codeword

space C and distance 3. This, in turn, implies a (possibly inefficient) error correcting code with

message spaceM and codeword space C that can correct up to 3/2 − 1 errors. We thus obtain the

following corollary:

Corollary 2. Fix a message spaceM (|M| > 2) and a codeword space C. If the optimal (ineffi-

cient) error-correcting code for (M, C) can correct at most C errors, then there is no non-malleable

code with message spaceM and codeword space C against tampering class FC+1.

3.4.2 Protecting a single bit against = − 1 errors

In this section, we complement the above by showing when the message space has size 2

(i.e. single bit messages), non-malleable codes are possible against 3 − 1 arbitrary errors, whereas

error correcting codes can tolerate at most (3 − 1)/2 arbitrary errors. In the next section, we will

show that if the message space is increased to 3 or more, then non-malleable codes are impossible

even against 3/2 errors.

The construction is simply a repetition code (E,D). On input a bit 1, E outputs the string 13

(the bit 1 repeated 3 times). On input a string 11, . . . , 13 , D outputs 1 if there is some 8 ∈ [3] such

that 18 = 1. Otherwise, D outputs 0. Note that this code has distance 3.

We next prove that (E,D) is a 0-non-malleable code (i.e. the two distributions in the secu-

rity definition for non-malleable codes–see Definition 2–are identical). Applying Lemma 1, it is

46

sufficient to show that for every tampering function 5 that modifies at most 3 − 1 symbols,

Pr
1←{0,1}

[D(5 (E(1))) = 1 − 1] ≤ 1
2
,

We will use the fact that for the decode algorithm defined above,

Pr[D(5 (E(1))) = 0] = 0,

since a tampering function that modifies at most 3 − 1 bits cannot flip a 1 codeword to a tampered

codeword that decodes to 0 under D.

Therefore,

Pr
1←{0,1}

[D(5 (E(1))) = 1 − 1] = 1
2

Pr[D(5 (E(0))) = 1] + 1
2

Pr[D(5 (E(1))) = 0]

=
1
2

Pr[D(5 (E(0))) = 1]

≤ 1
2
.

This completes the proof.

47

Chapter 4: Bounded-Communication Tampering (Leakage-Resilient

Split-State)

In this chapter we construct non-malleable codes resilient to tampering attacks which can be

formulated as two-player low-communication games, or leaky split-state tampering. More specifi-

cally, this class of tampering attacks corresponds to arbitrary two player protocol where they play-

ers, Alice and Bob, each get =-bit inputs, can communicate significantly less than = bits, and then

each produce =-bit outputs. In our tampering experiment, we will imagine the codeword consists of

two halves, ! and ' (where |! | = |' | = =) that are the inputs to Alice and Bob respectively. Alice

and Bob then run their interactive protocol and we apply decoding to their outputs. Non-malleable

codes resilient to this tampering class are also known as leakage-resilient split-state non-malleable

codes. [13]

Definition 24 (Leaky/Bounded-Communication Split-State Model). Let U ∈ [0, 1] be a parameter.

We say 5 ∈ {0, 1}2: → {0, 1}2: is in U-leaky split-state model, U − SS: if there exists a commu-

nication protocol between Alice and Bob such that for G = (G1:: , G:+1:2:) ∈ {0, 1}2: , 5 (G) can be

computed by a communication protocol with parameter U between Alice and Bob where Alice has

access to G1:: , Bob has access to G:+1:2: . Alice and Bob send information back and forth depend-

ing on their own inputs and the current transcript of the communication so far. Overall the total

communication is at most U: bits and finally Alice outputs 5 (G)1:: and Bob outputs 5 (G):+1:2: .

We provide a construction of non-malleable codes for this class that can tolerate communica-

tion of up to a 1/4-fraction of the codeword which, to our knowledge, is the best known.1

1[85] does not give an explicit bound on leakage and [13] allows 1/12-fraction leakage (or 1/6 in a more restricted
model where the leakage amount from each side has to be the same).

48

Theorem 21. There is an explicit split-state non-malleable code supporting leakage of up to a

1/4-fraction of the bits with rate Ω(log log =/log =) and error exp(−Ω(= log log =/log =)).

Additionally, there is an explicit split-state non-malleable code supporting leakage of up to a

1/4-fraction of the bits with rate Ω(1) and error exp(−=Ω(1)).

In particular, our construction allows one to reduce leakage-resilient split-state tampering to

any split-state tampering with just a constant factor increase in codeword size. Theorem 21 is

thus a corollary of our reduction, Lemma 12, with Theorem 4 and Theorem 3. Previously, such

reductions were only known with worse parameters and if the underlying split-state code had

decoder with certain properties [13]. On the other hand, [85] observe that split-state seedless non-

malleable extractors are, in fact, leakage-resilient, yielding codes with rate comparable to that of

the present work (but the leakage bound is left unspecified).

Unlike either of these previous constructions, our reduction yields improved leakage-resilient

split-state non-malleable codes from any future improvement in the rate of explicit split-state

non-malleable codes. In fact, our reduction immediately yields leakage-resilient split-state non-

malleable codes with constant rate when combined with the recent construction of constant-rate

split-state non-malleable codes due to Aggarwal and Obremski [36]. (This corresponds to the

second item in Theorem 21.)

As we will later see in Chapter 9, our compiler also preserves certain useful properties of the

underlying non-malleable code. Finally, our analysis is much simpler than that of [13].

We conclude the chapter by observing that our reduction preserves certain properties of the

underlying split-state non-malleable code, which will be useful in Chapter 9.

4.1 Technical Overview

Our leakage-resilient reduction is quite intuitive. We show that given a statistically-secure

leakage-resilient encryption scheme (where an adversary can receive bounded leakage from both

ciphertext and the key used to encrypt it) it suffices to simply encrypt the left and right split-state

codewords independently (with their own keys) and place the keys in the opposite state. By the

49

strong security property of the encryption scheme, the ciphertext hides each underlying split-state

codeword piece, whatever (bounded amount) is leaked from the key in the opposite state.

To complete the reduction, we construct such a statistically-secure leakage-resilient encryp-

tion scheme from extractors. Our notion of leakage-resilience essentially combines the notions of

“forward-secure storage” [86] and “leakage-resilient storage” [87] to get the best of both worlds,

and our construction essentially combines the ideas behind the constructions of the above two

objects.

4.2 A Reduction from Leaky Split-State to Split-State

In this section, we show how to reduce leaky split-state to split-state non-malleability. In other

words, we show how to add leakage-resilience generically to any split-state non-malleable code.

Our construction handles up to 1
4 fraction leakage. Concretely, we prove the following lemma,

where the tampering classes SS: (split-state) and U-SS= (leaky split-state) are defined in Definition

12 and 24 respectively.

Lemma 12. For any constant U ∈ [0, 1/4), there is an
(
U-SS= ⇒ SS: , exp(−Ω(=))

)
non-

malleable reduction with constant rate.

The main theorem of this chapter is a corollary of this Lemma and Theorem 3 and Theorem 4.

Our main tool is new notion of (information-theoretic, one-time) leakage-resilient encryption

defined below.

Definition 25 (Leakage-Resilient Encryption). We consider a (randomized) encryption scheme

(Encrypt,Decrypt) which encrypts message G of length |G | = : using a key of size |key| = <.

For some message G ∈ {0, 1}: we consider the following randomized experiment GameLRENC(G):

• Choose key← {0, 1}<, ct← Encrypt(key, G).

• Alice gets ct and Bob gets key. They can run an arbitrary protocol with each other subject

to the total communication being at most ℓ1 bits. Let trans ∈ {0, 1}ℓ1 be the transcript.

50

• At the end of the protocol, Alice also outputs an additional value aux ∈ {0, 1}ℓ2 .

• The output of the game is key, trans, aux.

We say that an encryption scheme is (ℓ1, ℓ2, n)-leakage-resilient if for any adversarial strategy

of Alice and Bob and for any G0, G1 the outputs of GameLRENC(G0) and GameLRENC(G1) have

statistical distance at most n .

The above definition is similar to the “forward-secure storage” of Dziembowski [86], which

corresponds to our notion with ℓ1 = 0 (there is only leakage on the ciphertext; it is completely

independent of the key but can be much larger than the key). It is also similar to the notion

of “leakage-resilient storage” of Davi, Dziembowski and Venturi [87], which corresponds to our

notion with ℓ2 = 0 (there is back-and-forth leakage on the ciphertext and the key but the total

leakage is smaller than either the ciphertext or the key). Our definition combines the two notions.

We will crucially rely on a setting of parameters where, if the key size is < and the message size

is : then we need ℓ1 < < ≤ ℓ2 < : . In other words, we allow ℓ1 bits of back-and-forth leakage

between the ciphertext and the key where ℓ1 is smaller than either component, but then allow and

additional ℓ2 bits of leakage on the ciphertext where ℓ2 is larger than the key.

Reduction via Leakage-Resilient Encryption. We first show how to use leakage-resilient en-

cryption as defined above to construct a reduction from leaky split-state to split-state tampering.

We do so by encrypting the two states G! , G' using leakage-resilient encryption and storing the key

with the other state (i.e., the key used to encrypt the left state is stored on the right sides and vice

versa). Intuitively, the leakage-resilient encryption ensures that the leakage is independent of the

actual states G! , G'. However, we face the challenge that, by tampering the key on the right side

we can influence how the left side is decrypted and vice versa. We get around this by thinking of

the tampered keys as additional leakage (aux).

Let E = (Encrypt,Decrypt) be a leakage-resilient encryption with message size : and key

length <. We define our reduction (Enc,Dec) below:

51

• Enc(G! , G'): Sample key! ← {0, 1}<, ct! ← Encrypt(G!), key' ← {0, 1}<, ct' ←

Encrypt(G'). Output (H! , H') where H! = (ct! , key'), H' = (ct', key!).

• Dec(H! , H') to parse H! = (ct! , key'), H' = (ct', key!) and output G! = Decrypt(key! , ct!)

and G' = Decrypt(key', ct').

Lemma 13. Assume E is an (ℓ1, ℓ2, n)-leakage-resilient encryption with message length : , key

length < ≤ ℓ2 and ciphertext length 2. Then (Enc,Dec) defined above is a 2n-non-malleable

reduction from (ℓ1/(2 + <))-leaky split-state to split-state. For a messages (G! , G') of length 2: ,

the resulting codeword Enc(G! , G') has length 2(2 + <)

Proof. Consider the following game: GameNM(G! , G'):

1. Compute (H! = (ct! , key'), H' = (ct', key!)) ← Enc(G! , H!)

2. Give Alice H! and Bob H'. They can run an arbitrary protocol with each other subject to the

total communication being at most ℓ1 bits. Let trans ∈ {0, 1}ℓ1 be the transcript.

3. At the end of the protocol Alice outputs H′
!
= (ct′! , key′') and Bob outputs H′

'
= (ct′', key′!).

4. The output of the game (G′
!
, G′
'
) = Dec(H′

!
, H′

'
) so that G′

!
= Decrypt(key′! , ct′!) and G′

'
=

Decrypt(key′', ct′').

To prove the Lemma, we fix an arbitrary strategy of Alice and Bob and need to show that

there exist some distribution � over functions (6! , 6') such that for every G! , G' the output of

GameNM(G! , G') is 2n-statistically close to 6! (G!), 6' (G') where (6! , 6') ← �.

Let us define the distribution I ← � (G! , G') to be the distribution of the values

I = (key! , key', trans, key′! , key′')

in the context of GameNM(G! , G'). We make two observations, which we then combine to prove

our lemma.

52

Observation 1. In GameNM(G! , G'), if we condition on some particular choice of I ← � (G! , G'),

then the distribution of G′
!

is a completely independent of (G', G′') and similarly G′
'

is independent

of (G! , G′!). In particular, we can define the randomized process 6I
!

which has I hard-coded and

samples G′
!
← 6I

!
(G!) by first sampling Alice’s view in the game conditioned on I and G! , com-

puting her output ct′! and setting G′
!
= Decrypt(key′! , ct′!). We can define the randomized process

G′
'
← 6I

'
(G') analogously. It is easy to see that the distribution of GameNM(G! , G') is then

identical to sampling I ← � (G! , G') and outputting G′
!
← 6I

!
(G!), G′' ← 6I

'
(G').

Observation 2. For any G! , G' the distribution of � (G! , G') is 2n-statistically close to � (0: , 0:).

We argue that this holds via two steps. We first argue that � (G! , G') is n-close to � (0: , G') and

then argue that � (0: , G') is n-close to � (0: , 0:). For the first step, we can fix any worst case

choice of key', ct' and use the security of leakage-resilient encryption to argue that the joint

distribution of key! , trans, key′' is n-close between � (G! , G') and � (0: , G'); we set aux = key′'

in this argument and use the fact that |key′' | = < ≤ ℓ2. We then note that key′! is just a function

of ct', key! and trans and therefore the total distribution of (key! , key', trans, key′! , key′') is n

close between � (G! , G') and � (0: , G'). The argument that � (0: , G') is n-close to � (0: , 0:) is

identical.

By combining observations 1 and 2, we see the distribution of GameNM(G! , G') is 2n statisti-

cally close to sampling I ← � (0: , 0:) and outputting G′
!
← 6I

!
(G!), G′' ← 6I

'
(G'). This con-

cludes our reduction as desired; we define the distribution � over functions (6! , 6') by sampling

I ← � (0: , 0:) and setting 6! = 6I! and 6' = 6I'. The output of GameNM(G! , G') is 2n-statistically

close to 6! (G!), 6' (G') where (6! , 6') ← �. �

Construction of Leakage-Resilient Encryption. Let Ext be a seeded strong-extractor with A-

bit source, 3-bit seed and output size : which is (A − ℓ1 − ℓ2, n1)-secure. Let 2Ext be a strong

two-source extractor with <-bit sources and 3-bit output which is (2< − ℓ1, n2)-secure.

Define the scheme (Encrypt,Decrypt) as follows:

53

• Encrypt(key, G): Choose D ← {0, 1}A , H ← {0, 1}<, B = 2Ext(key, H), I = Ext(D; B) ⊕ G.

Output ct = (D, H, I).

• Decrypt(key, ct = (D, H, I)) to compute B = 2Ext(key, H) and output I ⊕ Ext(D; B).

Claim 3. Consider a variant of the leakage-resilient encryption game, which we denote “weak

leakage resilience”, where Alice does not get the I part of the ciphertext during the game but the

output of the game is key, trans, aux, I. If the scheme is (ℓ1, ℓ2, n)-“weak leakage resilient” then

it also satisfies (ℓ1, ℓ2, n · 2:)-leakage resilience.

Proof. Assume there exists some (Alice, Bob, Distinguisher) strategy in the original game such

that the Distinguisher has an n2: advantage in distinguishing the game with G0 and G1. We convert

this into an (Alice’, Bob, Distinguisher’) strategy for the weak game by guessing a random value

E ← {0, 1}: at the beginning of the game and having Alice’ run Alice with E in place of I. Then

Distinguisher’ gets I and if E = I it runs the original Distinguisher else outputs 0. It’s easy to see

that the advantage of Distinguisher’ is the same as that of Distinguisher when E = I, which happens

with probability 2−: , and 0 otherwise. Therefore, Distinguisher’ has advantage 2−: smaller than

Distinguisher which proves the claim. �

Lemma 14. The scheme (Encrypt,Decrypt) is (ℓ1, ℓ2, (n1 + n2)2:+1)-leakage-resilient.

Proof. It suffices to show that the scheme is (ℓ1, ℓ2, 2(n1 + n2)) weak leakage resilient and the rest

follows by the preceding claim. We use a statistical hybird argument.

Hybrid 1: This is the weak leakage resilient game with message G0. Recall that in the game Alice

gets (D, H) and Bob gets key. They run a protocol with ℓ1 bits of communication resulting

in transcript trans. At the termination of the protocol, Bob also outputs an additional ℓ2-bit

value aux. The output of the protocol is key, trans, aux, I where I = Ext(D; B) ⊕ G0 and

B = 2Ext(key, H).

Hybrid 2: Note that, in Hybrid 1, conditioned on the random variable +1 = (B, H, trans) the ran-

dom variables +2 = (D, aux, I) and +3 = key are independent. Therefore, we can define

54

Hybrid 2 to run the same game as Hybrid 1, which defines (+1, +2, +3), but then, instead of

key, output a freshly re-sampled key′ from the correct distribution of +3 conditioned on +1.

This is distributed identically to Hybrid 1.

Hybrid 3: In this hybrid, we choose B uniformly at random instead of B = 2Ext(key, H) and set

I = Ext(A; B) ⊕ G0. We still sample key′ from the same distribution of +3 conditioned on +1

at the end of the game, just like in Hybrid 2.

The statistical distance between Hybrid 2 and Hybrid 3 is n2. We rely on the fact that 2Ext

is a strong extractor and that trans amounts to ℓ1 bits of entropy loss from key to argue that,

even given (D, H, trans) the value B is n2-close to uniform.

Hybrid 4: In this hybrid, we set I to uniform instead of I = Ext(D; B) ⊕ G0.

The statistical distance between Hybrid 3 and Hybrid 4 is n1. This follows from the strong-

extractor property of Ext and the fact that trans, aux gives ℓ2 + ℓ1 bits of leakage on D.

Hybrid 5,6,7: Are the same as 3,2,1 with G0 replaced by G1. In particular Hybrid 7 is the weak

leakage resilience game with message G1.

Hybrids 4,5 are n1 close (same argument as Hybrids 3,4), Hybrids 5,6 are n2 close (same

argument as Hybrids 2,3) and Hybrids 6,7 are identical (same argument as 1,2).

Combining the above we get a total distance of 2(n1 + n2) between Hybrids 1 and 7 as we wanted

to show. �

We can now plug in parameters using the inner-product two-source extractor [48], and the

strong extractor [46] to prove the main Lemma of this section:

Proof of Lemma 12. For n ∈ (0, 1), let n1 = n2 = n/2:+3 and ℓ2 = <. By Theorem 9, there exists

some constant 21, 22 ≥ 1 and explicit Ext such that for A − ℓ1 − ℓ2 ≥ 21 · : , Ext can extract :

bits from (A, A − ℓ1 − ℓ2) source with 3 = 22 log(A/n1)-bit seed and error n1. By Theorem 10, for

2< − ℓ1 ≥ < + 3 + 2 log(1/n2), there exists explicit 2Ext that extracts 3 bits with error n2 from

55

<-bit sources with entropy 2< − ℓ1. Plugging in Ext and 2Ext, by Lemma 14 and Lemma 13,

we obtain (ℓ1, ℓ2, (n1 + n2)2:+1) leakage-resilient encryption and a (n1 + n2)2:+2-non-malleable

reduction from (ℓ1/=)-split state to split state with = = A + 2< + : . By setting A = ℓ1 + < + 22: ,

< = ℓ1 + 3 + 2 log(1/n2) and 3 = 22(log(A/n1)), we obtain that = ≤ 4ℓ1 + 23(: + log 1/n) for some

constant 23 ≥ 1. Therefore for any U < 1/4 and ℓ1 = U=, we can set = = Θ(:+log(1/n)
1/4−U). The desired

conclusion follows from setting n = exp(−Ω(:)) and = = Θ(:). �

56

Chapter 5: Local (Junta) Tampering

In this chapter, we construct codes that are non-malleable with respect to local tampering: each

output bit only depends on a few inputs (importantly, each output may depend on different inputs).

More formally,

Definition 26. We say that a bit G8 affects the boolean function 5 ,

if ∃ {G1, G2, · · · G8−1, G8+1, · · · G=} ∈ {0, 1}=−1 such that,

5 (G1, G2, · · · G8−1, 0, G8+1, · · · G=) ≠ 5 (G1, G2, · · · G8−1, 1, G8+1, · · · G=).

Given a function 5 = (51, . . . , 5=) (where each 5 9 is a boolean function), we say that input bit

G8 affects output bit H 9 , or that output bit H 9 depends on input bit G8, if G8 affects 5 9 .

Definition 27 (Locality). A function 5 : {0, 1}= → {0, 1}= is said to have

• Output locality < if every output bit 58 is dependent on at most < input bits.

• Input locality ℓ if every input bit 58 affects at most ℓ output bits.

We take Local<ℓ to denote the class of functions with input locality ℓ and output locality <,

and let Local< denote the class of functions with output locality < (and no restriction on input

locality).

Note that the above notions can be generalized to function ensembles { 5= : {0, 1}= →

{0, 1}=}=∈Z with the following corresponding locality bound generalizations: ℓ(=), <(=).

Recall that NC0is the class of functions where each output bit can be computed by a boolean

circuit with constant depth and fan-in 2 (namely in constant parallel time). It is easy to see that

NC0⊆ Local$ (1) .

The class of bounded-depth bounded-fan-in circuits is natural both as a complexity class and

in the context of practical tampering attacks, where it seems to realistically capture the capabilities

57

of a tampering adversary who has limited time to tamper with memory before the memory gets

overwritten and/or refreshed. Moreover, the class of bounded output locality functions is a natural

class in its own right, and is in fact much broader, including arbitrarily complex functions (even

those outside of P), as long as the output locality constraint is maintained; we do not impose

any constraints on the number or type of gates in the circuit. Finally, as we discuss below, our

constructions actually hold for an even broader class, that also includes all split state functions,

and beyond. We prove the following.

Main Theorem (informal): For any ℓ> = >(=
log =), there is an explicit, unconditionally

secure non-malleable code for Localℓ> , which encodes a 2: bit string into a string of

length = = Θ(:ℓ>) bits. The encoding and decoding run in time polynomial in =,

namely poly(:, ℓ>).

This construction can be instantiated for any ℓ> = >(=/log =), and the resulting code has rate

Θ(1/ℓ>). In general, since the the output length is = = Θ(:ℓ>) bits, this may result in super-

polynomial length encoding. However, using sublinear locality =X yields an efficient code. We

highlight this, as well as the special cases of constant depth circuits (a subset of Local$ (1)), in the

following.

Corollaries: There are efficient, explicit, and unconditionally secure non-malleable

codes for the following classes:

• Local=
X

for any constant 0 ≤ X < 1, with inverse-polynomial rate.

• NC0with rate Θ(1/ℓ>) for any ℓ> = l(1).

• NC0
2 for any constant 2, with constant rate.

The first corollary follows by instantiating the main theorem with ℓ> = =X, the second by using any

ℓ> that is super constant (e.g., log∗(=)), and the third by using ℓ> = 22 (a constant).

While our result for NC0correspond to constant depth circuits, the first corollary above implies

as a special case that the code is also non-malleable against any X log = depth NC circuit, for any

58

constant 0 ≤ X < 1. Note that, since separations between P and NC1are not known, constructing

(unconditional) non-malleable codes against NC1is unlikely, since an attacker in P can always

decode and re-encode a related message, thus immediately breaking non-malleability.

5.1 Technical Overview

We give a high level technical overview of our construction. We use as an underlying tool

a form of binary ramp secret sharing called “Reconstructable Probabilistic Encoding” (RPE) or

“Linear Error Correcting Secret Sharing” (Def. 19), a code that can correct a constant fraction

of errors (denoted 2err), and enjoys some additional secret-sharing like properties: any (smaller)

constant fraction 2sec of a codeword reveals no information about the encoded message, and can in

fact be completed to a (correctly distributed) encoding of any message. This or similar tools have

utilized elsewhere either implicitly or explicitly, e.g., the construction based on Reed Solomon

codes and Shamir secret sharing with Berlekamp-Welch correction, as used already in [88] is a

RPE (any small enough subset of shares is distributed uniformly at random, and any such collection

of shares can be extended to be the sharing of any message of our choice). Other RPE schemes

with possibly improved parameters can be constructed from, e.g., [69, 70, 67, 68].

5.1.1 Handling Local Functions

Local functions are functions that have both small input and small output locality (i.e. each

input bit affects a small number of output bits and each output bit depends on a small number of

input bits). Our goal is to show a non-malleable reduction from a class of local functions with

appropriate parameters, to the class of split-state functions. Loosely speaking, a non-malleable

reduction from a class F to a class G, is a pair (E,D) of encoding/decoding functions along

with a reduction that transforms every 5 ∈ F into a distribution � 5 over functions 6 ∈ G, such

that for every G, the distributions D(5 (E(G))) and � 5 (G) are statistically close. In the case of

reductions to split-state, we let G = (L,R) where L,R ∈ {0, 1}: . We want to construct (E,D)

such that, informally, given any local 5 , the effect of applying 5 to the encoding E(G) and then

59

decoding D(5 (E(G))), can be simulated by applying some split state function 6 = (6! , 6') directly

to G = (L,R).

We will use an encoding that works on each half of the input separately, and outputs � (L,R) =

(�! (L), �' (R)) = (BL, BR), where |BL | = =! , |BR | = =' (we will refer to these as “left” and “right”

sides, though as we will see they will not be of equal lengths, and we will have appropriately

designed decoding algorithms for each part separately). Now for any given local 5 , consider

5 (BL, BR) = (5 ! (BL, BR), 5 ' (BL, BR)). Clearly, if 5 ! only depended on BL and 5 ' only depended

on BR, we would be done (as this would naturally correspond to a distribution of split state functions

on the original G = (L,R)). However, this is generally not the case, and we need to take care of

“cross-effects” of BR on 5 ! and BL on 5 '.

Let’s start with 5 ! , and notice that if its output locality is at most ℓ>, then at most =!ℓ> bits

from BR could possibly influence the output of 5 ! . Thus, we will use �' that is an RPE with

=!ℓ> ≤ 2sec='. This means that we can just fix the relevant =!ℓ> bits from BR = �' (R) randomly

(and independently of R), and now 5 ! will only depend on BL, while BR can still be completed to

a correctly distributed encoding of R. Note that this requires making the right side larger than the

left side (=' ≥ =!ℓ>
2sec).

Now let’s consider 5 '. Clearly we cannot directly do the same thing we did for 5 ! , since

that technique required =' to be much longer than =! , while applying it here would require the

opposite. Instead, we will take advantage of the smaller size on the left, and its limited input

locality. Specifically, if the input locality of 5 ! is ℓ8, then at most =!ℓ8 bits on the right side can be

influenced by BL.

A first (failed) attempt would be to just make sure that the encoding on the right can correct

up to =!ℓ8 errors, and hope that we can therefore set BL arbitrarily when computing 5 ' and the

resulting encoding would still be decoded to the same initial value R. While this argument works

if the only changes made to BR (a valid codeword) are caused by the “crossing bits” from BL, it

fails to take into account that 5 ' can in fact apply other changes inside BR, and so it could be that

BR is malformed in such a way that applying 5 ' will cause it to decode differently in a way that

60

crucially depends on BL. The issue here seems to be that there is an exact threshold for when the

decoding algorithm succeeds or not, and thus the function can be designed so that 5 ' is just over

or under the threshold depending on the left side.

To overcome this problem, we use randomized decoding and a “consistency check” technique

introduced in [67], and a forthcoming version by the same authors [68], in a different context.

Roughly speaking, we make the right side encoding redundant, so that any large enough subset of

bits is enough to recover R. An RPE has this property, due its error correction capabilities. The

decoding algorithm will decode via the first such subset, but will check a random subset of bits

were consistent with a particular corrected codeword. This will yield similar behavior, regardless

of which subset is used to decode. This construction has various subtleties, but they are all inherited

from previous work, so we do not explain them here. The main point is that, like in the followup

to [67], while the real decoding algorithm uses the first large enough subset, its output can be

simulated by using any other large enough subset.

Now, if we use ℓsec rows (a parameter), then given 5 we can find a row with at most (=!ℓ8)/ℓsec

bits from BL influencing it. We will simulate the decoding using this row, plus the random subset

of columns needed for the column check. We will use a RPE on the left and set all the parameters

such that the overall number of bits on the left that influences either this row (can be bounded using

ℓ8 on the left) or the column check (can be bounded using ℓ> on the right) is low enough (below

2sec=!), and so can again be fixed to some random values independently of L, and 5 ' can be turned

local.

Putting the above together will indeed yield what we are looking for, namely a non-malleable

reduction from local to split state functions, albeit with worse parameters than the construction we

provide. We note that the proof above in fact works for a more general class of functions (a fact

we will use in our second construction). In particular, the first part requires a limit on the output

locality of 5 ! , and the second part requires a limit on the output locality of 5 ' and the input locality

of 5 ! , where all of these only refer to “cross-over” influences (within each part separately 5 can

be arbitrary). Moreover, due to our use of encoding, security is maintained even with leakage, as

61

long as the leakage is a constant fraction of bits on the left and a constant fraction on the right,

independently. Similarly, security is maintained even when a constant fraction of bits on the left

do not adhere to the input locality bound.

5.1.2 Removing Input Locality

We next present another non-malleable reduction from output local functions (which have no

restriction on input locality) to local functions. Now let 5 be an output local tampering function.

Since the input and output to 5 are the same size, note that the average input locality of 5 can be

bounded by its output locality, ℓ>. Our local construction above requires low input locality for the

left side, but also requires the left side to be much shorter than the right side. Unfortunately, what

this means is that the input locality of all bits on the left side of the local encoding described above

can be far higher than average. So, in order to bound the average input locality of the left side, we

must increase the length of the left side, but this destroys our analysis from the first construction.

In order to achieve the best of both worlds, our idea is to construct a non-malleable reduction

which increases the size of the left side of the underlying local encoding by adding dummy inputs.

The “relevant” inputs, which correspond to bits of the left side of the underlying local encoding, are

placed randomly throughout the left side of the new encoding. The idea is that since the adversary

does not know which bit positions on the left side are “relevant,” it cannot succeed in causing too

many “relevant” positions to have input locality that is too much above average.

But now, in order to decode properly, the decoding algorithm must be able to recover these

“relevant” locations, without sharing a secret state with the encoding algorithm (which is disal-

lowed in the standard non-malleable codes setting). In order to do this, the first idea is to encode

the relevant positions on the left side of the new encoding in an additional string, which is then

appended to the left side during the new encoding procedure. Unfortunately, it is not clear how to

make this work: Since this additional string is long, it can depend on a large number of input bits

from both the left and right sides; on the other hand, in order to obtain a reduction from output

local to local functions, the reduction must be able to recover this (possibly tampered) additional

62

string so that it “knows” which tampered output bits on the left, -̃L, are relevant.

The solution is to use a (subexponential) PRG with a short seed. The seed of the PRG is now

the additional string that is appended to the left side and the output of the PRG yields an indicator

string which specifies the “relevant” locations for decoding. Note that now since the PRG seed of

length A is short, we can, using the leakage resilient properties of the underlying local code, leak

all A · ℓ> ≤ 2sec · =! ≤ 2sec · =' number of bits affecting these output locations from both the left

and right sides.

Moreover, because the tampering attacker is very limited, in the sense that it must choose the

tampering function before learning any information about the output of the PRG, we are able to

show that Nisan’s PRG (see Definition 21), an unconditional PRG is sufficient for our construction.

Thus, our construction does not rely on any computational assumption.

5.1.3 On tampering functions where each output symbol depends on = − log(1/(4n)) input sym-

bols

At this point, we have shown explicit non-malleable codes for tampering functions with locality

=X, for constant X < 1. The size of the class of all output-local tampering functions (with locality

sufficiently smaller than =) is also bounded in size and therefore NMC for this class follow from

the existential results of [42]. A natural question is how large can the output-locality be?

We prove the impossibility of n-non-malleable codes (see Definition 2) for the class of (= −

log(1/(4n)))-output-local tampering functions. In addition to the above motivation, parity over

= bits is average-case hard for this class.1 Therefore, our impossibility result can be viewed as a

“separation” between average-case hardness and non-malleability, as it exhibits a class for which

we have average-case hardness bounds, but cannot construct non-malleable codes for. Further-

more, the class F ′ constructed in our lower bound proof has size only 4= · 22=−log(1/(4n))
, which in

turn means that log log |F ′| = = − log(1/(4n)) = = − log(1/n) + 2. On the other hand, the afore-

mentioned result of Dziembowski et al. [42] shows existence of an n-non-malleable code for any

1Note that, even arbitrary decision trees of depth = − 1 have no advantage in computing the parity of = bits with
respect to the uniform distribution. [89]

63

class F such that log log |F | ≤ = − 2 log(1/n). Thus, our lower bound result is close to matching

the existential upper bound.

5.1.4 On tampering functions where each input symbol affects at most one output symbol

A natural question is whether non-malleable codes can be constructed for the class of input-

local functions, where for codeword length =, each input bit affects� = output bits.

We conclude this chapter by showing a strongly negative answer to this question. We show that

even achieving NMC for 1-input local functions (where each input bit affects at most one output

bit) is impossible. In fact, our proof shows an even stronger result: the impossibility holds even

if each input symbol can only affect the same single output symbol. That is, it is impossible to

construct NMC for the tampering class that allows to change only one codeword symbol in a way

that depends on the input (while the other symbols may be changed into constant values). Stated

like this, this result can also be viewed as an extension of our first result above on the maximum

number of symbols that can be modified in a non-malleable code.

5.1.5 Remark on deterministic vs. randomized decoding.

The standard (and original) definition of NMC requires deterministic decoding and perfect

correctness, although some later work took advantage of randomized decoding.2 We note that our

lower bound for the class of input-local functions holds for standard schemes (with deterministic

decoding and perfect correctness). Our lower bound (with n = 1
4=) for the class of = − log(=)

output-local functions holds even for coding schemes that have randomized decoding and perfect

correctness. The lower bound for the class of functions that change 3/2 symbols holds even for

coding schemes with randomized decoding and imperfect correctness.

2For the class of output-local functions (where each output depends on at most ℓ inputs) we have constructed
non-malleable codes with randomized decoding (and n = negl(=)) for ℓ < =/log = [2], whereas constructions with
deterministic decoding are known for locality up to =1/2−n for small n . [15, 90].

64

5.2 Non-malleable Codes for Localℓ8 (=)
ℓ> (=)

Theorem 22. (E,D) is a (Localℓ> (:)
ℓ8 (:) ⇒ SS: , negl(:))-non-malleable reduction given the follow-

ing parameters for Localℓ> (:)
ℓ8 (:) (where 2rate, 2err, 2sec are taken from lemma 6):

• ℓ> ≤ 2rate2sec:

log2 (:) .

• ℓ8 ≤ 12ℓ>/2sec.

• = := 2rate :2

log2 (:) + 2
rate: = $

(
:2

log2 (:)

)
.

Putting together Theorem 22 with Theorems 1 and 4, we obtain the following.

Corollary 3. (E ◦ ESS,DSS ◦ D) is a (Localℓℓ, :, negl(:))-non-malleable code with rate Θ(1/ℓ),

where ℓ = $̃ (
√
=).

Remark 1. The reduction presented below is, in fact, a (XLocalℓℓ ⇒ SS: , negl(:))-non-malleable

reduction, where ℓ = $̃ (
√
=) and XLocalℓℓ is the following class of functions 5 : {0, 1}=!+=' →

{0, 1}=!+=' :

• For 8 = 1, . . . , =! , there are at most ℓ indices 9 ∈ {=! +1, . . . , =! +='} such that the 8-th input

bit affects 5 9 . And, for 8 = =! + 1, . . . , =! + =', there are at most ℓ indices 9 ∈ {1, . . . , =!}

such that the 8-th input bit affects 5 9 .

• For 8 = 1, . . . , =! , there are at most ℓ indices 9 ∈ {=! + 1, . . . , =! + ='} such that the 58-th is

affected by the 9-th input bit. And, for 8 = =! + 1, . . . , =! + =', there are at most ℓ indices

9 ∈ {1, . . . , =!} such that the 58-th is affected by the 9-th input bit.

In other words, the reduction holds for a generalized variant of split state tampering where we only

restrict locality with respect to the opposite side, and allow arbitrary locality within each side. =!

and =' are the lengths of the left and right side codewords, respectively.

We construct an encoding scheme (E,D) summarized in Figure 5.1 and parametrized below.

We then show that the pair (E,D) is an (Localℓ> (:)
ℓ8 (:) , SS: , negl(:))-non-malleable reduction. This

65

immediately implies that given a non-malleable encoding scheme (Ess,Dss) for class SS: (where

SS is the class of split-state functions), the encoding scheme scheme (Ebd,Dbd), where Ebd(<) :=

E(Ess(<)) and Dbd(®B) := Dss(D(®B)) yields a non-malleable code against Localℓ> (:)
ℓ8 (:) .

We parametrize our construction for Localℓ> (:)
ℓ8 (:) ⇒ SS: with the following:

• (E! ,D!) parametrized by (:, =! , 2err
!
, 2sec
!
) := (:, 2rate:, 2err, 2sec) where 2err, 2sec, 2rate are

taken from lemma 6.

• =check := log2(:).

• ℓsec :=
√

2=!
=check

= Θ(
√
:

log(:)).

• (E',D') parametrized by (:, =', 2err
'
, 2sec
'
) := (:, ℓ>2

rate:
2sec , 2err, 2sec).

• = := ℓ>2rate: + 2rate: = $ (:2

log2 (:)) .

Note that this setting of parameters is taken with our forthcoming reduction in mind. (See

Corollary 4 and Theorem 23.) One may take any parametrization for which (a) such RPEs exist,

(b) (1 − 2err/4)=check is negligible in : , and (c) Observation 1 (below) is satisfied. For certain

applications, parametrization other than ours may be advantageous.

Let 5 (®BL, ®BR) = (5 L(®BL, ®BR), 5 R(®BL, ®BR)), where (®BL, ®BR) ∈ {0, 1}=!×{0, 1}=' and 5 L(®BL, ®BR) ∈

{0, 1}=! and 5 R(®BL, ®BR) ∈ {0, 1}=' .

• Let SR→L denote the set of positions 9 such that input bit ®BR
9

affects the output of 5 L.

• Let SL→R denote the set of positions 8 such that input bit ®BL
8

affects the output of 5 R.

• For � ⊂ [='], let S�L→R denote the set of positions 8 such that input bit ®BL
8

affects the output

of 5 R
9

for some 9 ∈ �.

• For a set 'check ⊆ =' of size =check, let Scheck denote the set of positions 8 such that input

bit ®BL
8

affects the output of 5 R
ℓ

for some ℓ ∈ 'check.

66

Let (E! ,D! ,R!) be a binary reconstructable probabilistic encoding scheme with parameters
(:, =! , 2err

!
, 2sec
!
) and let (E',D',R') be a binary reconstructable probabilistic encoding scheme with

parameters (:, =', 2err
'
, 2sec
'
).

Also let ℓsec, =check be parameters.

E(G := (L,R)):

1. Compute (BL1 , . . . , B
L
=!
) ← E! (L) and (BR1 , . . . , B

R
='
) ← E' (R).

2. Output the encoding (®BL, ®BR) := ([BL
8
]8∈[=!] , [BR8]8∈[=']).

D(®f := (®fL, ®fR)):

1. Let (®fL, ®fR) := ([fL
8
]8∈[=!] , [fR

8
]8∈[=']).

2. Compute ((FL
1 , . . . , F

L
=!
), L) ← D! (fL

1 , . . . , f
L
=!
). If the decoding fails, set L :=⊥.

3. (decoding-check on right) Let C := d=' (1 − 2err
'
/4)e Define ®f′R := f′R1 , . . . , f′R=' as

follows: Set f′R
ℓ

:= fR
ℓ

for ℓ = 1, . . . , C. Set f′R
ℓ

:= 0 for ℓ = C + 1, . . . , ='. Compute
((FR

1 , . . . , F
R
='
),R) ← D' (f′R1 , . . . , f′RC). If the decoding fails or (FR

1 , . . . , F
R
='
) is not 2err

'
/4-

close to (fR
1 , . . . , f

R
C'
), set R :=⊥.

4. (codeword-check on right) Pick a random subset 'check ⊂ [='] of size =check < 2
sec
'
·

='. For all ℓ ∈ 'check, check that fR
ℓ
= FR

ℓ
. If the check fails, set R :=⊥.

5. (output) Output G := (L,R).

Figure 5.1: THE (Localℓ> (:)
ℓ8 (:) , SS, negl(:))-NON-MALLEABLE REDUCTION (E,D)

67

®BL and ®BR is the split state representation of the output of the encoded message.

BL1 BL2 BL3 · · · BL=!

fR
1 fR

2 fR
3 · · · fR

8−1 fR
8

fR
8+1 · · · fR

='−2 fR
='−1 fR

='

®fL and ®fR is the split state representation of the output of the tampering function.

fL
1 fL

2 fL
3 · · · fL

=!

BR1 BR2 BR3 · · · BR
8−1 BR

8
BR
8+1 · · · BR

='−2 BR
='−1 BR='

Figure 5.2: The adversary chooses tampering function 5 = (5 L, 5 R) ∈ Localℓ> (:)
ℓ8 (:) which takes inputs (®BL, ®BR) and

produces outputs (®fL, ®fR). The highlighted bits of ®BL and ®BR are the “bad" bits. E.g. note that bits BR2 and BR
8

affect
the output bits fL

2 and fL
1 respectively after 5 L is applied to (®BL, ®BR). Thus we add 2 and 8 to the set SR→L. Similarly,

the bits BL1 and BL3 affect the bits {fR
1 , f

R
8
} and the bits {fR

2 , f
R
8+1, f

R
=' , } respectively after the tampering function 5 R

is applied to (®BL, ®BR). We therefore add 1 to the sets S1
L→R and S8L→R, while we add 3 to the sets S2

L→R,S
8+1
L→R and

S='L→R. We also add both 1 and 3 to the set SL→R.

The sets defined above are illustrated in Figure 5.2. We observe the following immediate facts

about their sizes:

Observation 1. For 5 ∈ Localℓ>
ℓ8

, we have the following:

1. There is some set �∗ ⊂ [='] such that |�∗ | = C and |S�∗L→R | = 0 (from now on, �∗ denotes the

lexicographically first such set).

(Since |SL→R | ≤ ℓ8 · =! ≤ =' − C.)

2. By choice of parameters =! , =check, 2
sec
!

, we have that |Scheck | ≤ =! · 2sec
!

.

(Since Scheck ≤ ℓ> · =check.)

3. By choice of parameters =! , =', 2sec
'

, we have that |SR→L | ≤ ℓ> · =! ≤ =' · 2sec
'

.

Now, for every 5 ∈ Localℓ>
ℓ8

, we define the distribution � 5 over SS: . A draw from � 5 is defined

as follows:

• Choose a random subset 'check ⊆ [='] of size =check.

• Choose vectors �L ∈ {0, 1}=! × {∗}=! , �R ∈ {∗}=! × {0, 1}=' uniformly at random.

68

• Let �∗ be the subset of [='] as described in Observation 1.

• The split-state tampering function 6 := (6! , 6') ∈ SS: has �L, �R hardcoded into it and is

specified as follows:

6! (L):

1. (apply tampering and plain decode on left) Let ®BL := R(Scheck, �
L, L).

Let (fL
1 , . . . , f

L
=!
) := 5 L ��R (®BL). Compute ((FL

1 , . . . , F
L
=!
), L̃) ← D! (fL

1 , . . . , f
L
=!
).

If the decoding fails, set L̃ :=⊥.

2. (output) Output L̃.

6' (R):

1. (apply tampering and decoding-check on right)

Let ®BR = (BR1 , . . . , B
R
='
) := R(SR→L, �

R,R). Let (fR
1 , . . . , f

R
='
) := 5 R ��L (®BR). Define

®f ′R := f′R1 , . . . , f′R=' as follows: Set f′R
ℓ

:= fR
ℓ

for ℓ ∈ [�∗]. Set f′R
ℓ

:= 0 for

ℓ ∉ [�∗]. Compute ((FR
1 , . . . , F

R
='
), R̃) ← D' (f′R1 , . . . , f′RC). If the decoding fails or

(FR
1 , . . . , F

R
='
) is not 2err

'
/4-close to (fR

1 , . . . , f
R
='
), then set R̃ :=⊥.

2. (codeword-check on right) For all ℓ ∈ 'check, check that fR
ℓ
= FR

ℓ
. If the

check fails, set R̃ :=⊥.

3. (output) Output R̃.

• Output 6 = (6! , 6').

Whenever R is run above, we assume that enough positions are set by S such that there is only

a single consistent codeword. If this is not the case, then additional positions are added to S from

�L, �R, respectively.

By the definition of a non-malleable reduction (Definition 5), in order to complete the proof of

Theorem 22, we must show that (E,D) have the following properties:

1. For all G ∈ {0, 1}: , we have D(E(G)) = G with probability 1.

69

2. For all 5 ∈ Localℓ>
ℓ8

,

Δ(D(5 (E(G)));� 5 (G)) ≤ negl(:),

where � 5 is the distribution defined above.

Item (1) above is trivial and can be immediately verified. In the following, we prove Item (2)

above by considering the following sequence of hybrid arguments for each function 5 ∈ Localℓ>
ℓ8

(for the intermediate hybrids, we highlight the step in which they are different from the desired end

distributions).

Hybrid �0. This is the original distribution D(5 (E(G)))

Hybrid �1. �1 corresponds to the distribution D′(5 (E(G))), where D′ is defined as follows:

D(®f := (®fL, ®fR)):

1. (plain decode on left) Let (®fL, ®fR) := ([fL
8
]8∈[=!] , [fR

ℓ
]ℓ∈[=']).

Compute ((FL
1 , . . . , F

L
=!
), L) ← D! (fL

1 , . . . , f
L
=!
). If the decoding fails, set L :=⊥.

2. (decoding-check on right) Define ®f ′R := f′R1 , . . . , f′R=' as follows: Set f′R
ℓ

:= fR
ℓ

for ℓ ∈ �∗ and f′R
ℓ

:= 0 for ℓ ∉ �∗, where �∗ ⊆ [='] is the lexicographically first set such

that |�∗ | = C and |S�∗L→R | = 0. Compute ((FR
1 , . . . , F

R
='
),R) ← D' (f′R1 , . . . , f′RC'). If the

decoding fails or (FR
1 , . . . , F

R
='
) is not 2err

'
/4-close to (fR

1 , . . . , f
R
C'
), set R :=⊥.

3. (codeword-check on right) For all ℓ ∈ 'check, check that fR
ℓ
= FR

ℓ
. If the check

fails, set R :=⊥.

4. (output) Output G := (L,R).

Note that the only difference between D and D′ is that in decoding-check on right,

®fR is decoded from �∗, instead of the first =check positions.

Claim 4.

�0
B≈ �1.

70

Proof. Let X := 2err
'

4 . Additionally, define

d(=', X, =check) :=

((1−X)='
=check

)(='
=check

) .
Notice that our parametrization of =check, X yields d(=', X, =check) = negl(:).

((1−X)='
=check

)(='
=check

) =
((1−X)=')!=check!(='−=check)!
=check!((1−X)='−=check)!='! =

(
(1−X)='
='

) (
(1−X)='−1
='−1

)
· · ·

(
(1−X)='−=check+1
='−=check+1

)
≤ (1 − X)=check ,

where the last inequality follows due to the fact that for 8 ∈ {0, . . . , =check−1}, (1−X)='−8
='−8 ≤ (1−X).

Since (1 − X) < 1 is a constant, we can set =check = l(log(:)).

Note that correctness still holds for D′ with probability 1.

We want to show that for every ®f = (®fL, ®fR) ← 5 (E(G)), D(®f) = D′(®f) with high probabil-

ity, over the coins of D,D′.

Let D := (DL,DR) (respectively, D′ := (D′L,D′R)), where DR (respectively, D′R) correspond

to the right output of the decoding algorithm. Notice that only decoding on the right changes. So,

it suffices to show that for each (®fL, ®fR) in the support of the distribution 5 (E(G)),

Pr[D �®fL (®fR) = D′ �®fL (®fR)] ≥ 1 − negl(=), (5.1)

where the probabilities are taken over the coins of D,D′.

LetW denote the set of all valid codewords for the given reconstructable probabilistic encod-

ing scheme with parameters :, =', 2err
'
, 2sec
'
,GF(2)). For G ∈ GF(2)=' , define its distance from

W to be 3 (G,W) := minF∈W 3 (G, F).

To analyze (5.1), we define the following set of instances (which intuitively corresponds to the

set of instances on which both D �®fL and D′ �®fL are likely to output ⊥).

Π⊥ := {®fR ∈ {0, 1}=' 3 (®f,W) ≥ X}.

71

So, now consider the two cases:

• Suppose ®fR ∈ Π⊥. Then, both D(®fR) and D′(®fR) will fail the codeword-check with prob-

ability ≥ 1 − d(=', X, =check).

• Suppose ®fR ∉ Π⊥. Then, ∃F ∈ W such that 3 (®fR, F) ≤ X. Moreover, in both D and D′

it must be the case that ®f ′R is 2err/2-close to F. (Because X + (=' − C)/=' ≤ 2err/2). So

both D and D′ must decode to the same F. Fix a set of coins for D and D′. Therefore, when

D and D′ are run with the same coins, all comparisons made during the codeword-check are

identical, and thus the probability (over the coins of D,D′) that the codeword-check fails in

D and D′ is identical.

So for any ®f = (®fL, ®fR), Δ({D(®f)}, {D′(®f)}) = Δ({DR �®fL (®fR)}, {D′R �®fL (®fR)}) ≤

d(=', X, =check). Therefore, Δ({D(5 (E(G)))}, {D′(5 (E(G)))} ≤ d(=', X, =check).

�

Hybrid �2. �2 corresponds to the distribution �′(G), where �′
5

is a distribution over functions

6′ = (6′
!
, 6′
'
) defined as follows:

• Choose a random subset 'check ⊆ [='] of size =check.

• Choose vectors �L ∈ {0, 1}=! , �R ∈ {0, 1}=' in the following way: �L ← E! (L), �R ←

E' (R).

• Let �∗ be the subset of [='] as described in Observation 1.

• The split-state tampering function 6 := (6! , 6') ∈ SS: has �L, �R hardcoded into it and is

specified as follows:

6! (L):

1. (apply tampering and plain decode on left) Let ®BL := R(S := Scheck, �
L, L).

Let (fL
1 , . . . , f

L
=!
) := 5 L ��R (®BL). Compute ((FL

1 , . . . , F
L
=!
), L̃) ← D! (fL

1 , . . . , f
L
=!
).

If the decoding fails, set L̃ :=⊥.

72

2. (output) Output L̃.

6' (R):

1. (apply tampering and decoding-check on right)

Let ®BR = (BR1 , . . . , B
R
='
) := R(SR→L, �

R,R). Let (fR
1 , . . . , f

R
='
) := 5 R ��L (®BR). Define

®f ′R := f′R1 , . . . , f′R=' as follows: Set f′R
ℓ

:= fR
ℓ

for ℓ ∈ [�∗]. Set f′R
ℓ

:= 0 for

ℓ ∉ [�∗]. Compute ((FR
1 , . . . , F

R
='
), R̃) ← D' (f′R1 , . . . , f′RC). If the decoding fails or

(FR
1 , . . . , F

R
='
) is not 2err

'
/4-close to (fR

1 , . . . , f
R
='
), then set R̃ :=⊥.

2. (codeword-check on right) For all ℓ ∈ 'check, check that fR
ℓ
= FR

ℓ
. If the

check fails, set R̃ :=⊥.

3. (output) Output R̃.

• Output 6 = (6! , 6').

Note that the only difference between � 5 and �′
5

is that �L ← E! (L), �R ← E' (R) are chosen

honestly, instead of being chosen uniformly at random. Furthermore, note that 6′ = (6′
!
, 6′
'
) are

not split-state, since 6′
!

depends on �R and 6′
'

depends on �L.

Claim 5.

�1 ≡ �2.

The claim can be verified by inspection.

Hybrid �3. Hybrid �3 is simply the distribution � 5 (G), defined previously.

Claim 6.

�2 ≡ �3.

Note that the result of 5 R only depends on the bits in �∗ and 'check. Moreover, 5 R
j�∗∪'check

only

depends on on ®BR, [BL
8
]8∈Scheck . Moreover, note that 5 L depends only on ®BL, [BR

8
]8∈SR→L . Since by

Observation 1, we have that |Scheck | ≤ =! · 2sec
!

and |SR→L | ≤ =' · 2sec
'

, the claim follows from

the secrecy property of the reconstructable probabilistic encoding scheme.

73

5.2.1 Extending to Leaky Local

The construction from Section 5.2 is actually secure against a slightly larger class of tampering

functions beyond Localℓ>
ℓ8

functions, which we call LLocal, or “Leaky Local.” Notice that the

parameters given above (as in observation 1) in fact yield:

1. |S�∗L→R | + |Scheck | = |Scheck | ≤ =! ·
2sec
!

3 .

2. |S+R→L | ≤ ℓ> · =! ≤ =' ·
22sec
'

3 .

It is not too hard to see that we can leak 1/3 of the security threshold, on both the left and right,

to a tampering adversary. Given this leakage, the adversary can then select a tampering function

from the subset of Localℓ> where all but a fraction of the first =! bits have input locality ℓ8. Note

that the input locality restrictions are only needed on the left portions of codewords in the above

proof. We formalize this new class of tampering functions as follows.

Definition 28. Let LLocal ⊆ {{0, 1}=! × {0, 1}=' → {0, 1}=! × {0, 1}=' }, Leaky Local, be the set

of functions {k 5 ,ℎ1,ℎ2}, parametrized by functions (5 , ℎ1, ℎ2), where

k 5 ,ℎ1,ℎ2 (®BL, ®BR) := �D=8E (5 (ℎ1(®BL), ℎ2(®BR)), ®BL, ®BR)

, 5 outputs a circuit � and �D=8E is a universal circuit that computes the output of the circuit � on

input (®BL, ®BR). Moreover, we require that 5 , ℎ1, ℎ2 have the following form:

• On input ®BL ∈ {0, 1}=! , ℎ1 outputs a subset of 2err
!
/3 of its input bits.

• On input ®BR ∈ {0, 1}=' , ℎ2 outputs a subset of 2err
'
/3 of its input bits.

• On input ℎ1(®BL), ℎ2(®BL) ∈ {0, 1}2
err
!
/3 × {0, 1}2err

'
/3, 5 outputs a circuit � : {0, 1}=! ×

{0, 1}=' → {0, 1}=! × {0, 1}=' , where � has output-locality ℓ>. Of the first =! input bits, all

but at most 2err
!
/3-fraction have input-locality at most ℓ8.

The following corollary can be easily verified.

Corollary 4. (E ◦ ESS,DSS ◦ D) is an (LLocal, SS: , negl(:))-non-malleable reduction.

74

5.3 Extending to Local<(=)

We now state our theorem for Local<(=) tampering functions, or bounded fan-in bounded-depth

circuits.

Theorem 23. (E′,D′) is a (Localℓ>
′ ⇒ LLocal, negl(=))-non-malleable reduction given the fol-

lowing parameters for Localℓ>
′
:

• ℓ>′ := 2sec/12 · ℓ8, where ℓ8 is the input locality of LLocal,

• E′ : {0, 1}= → {0, 1}# , where # = =8= + 2= − =! , and A = log4(:), where = is the output

length of LLocal and =! is the length of the left output of LLocal.

We construct an encoding scheme (E′,D′) summarized in Figure 5.3 and parametrized below.

In brief, our encoding simply distributes the bits of the left input pseudorandomly in a string

comparable in length to the right input. We then append a short description of where the encoding

is hiding, a seed to pseudorandom generator.

We then show that the pair (E′,D′) is an (Localℓ>
′
,LLocal, negl(=))-non-malleable reduction.

Combined with our previous construction, this immediately implies that given a non-malleable

encoding scheme (Ess,Dss) for SS: , the encoding scheme scheme (Êbd, D̂bd), where Êbd(<) :=

E′(E(Ess(<))) and D̂bd(®B) := Dss(D(D′(®B))) yields the following corollary, a non-malleable code

against Localℓ>
′
.

Corollary 5. (E′,D′) yields, with previous results, a (Local$̃ (
√
=) , :, negl(:))-non-malleable re-

duction with sublinear rate, where = = Θ(:2

log2 (:)).

Remark 2. As before, the encoding scheme presented below is independent on the left and right.

Therefore, our reduction holds for not just for Localℓ>
′

but additionally any split-state function,

independent on each side, trivially.

We parametrize our construction for Localℓ>
′ ⇒ LLocal with the following:

• A := log4(:)

75

Let prg be a pseudorandom generator for space bounded computations (see Definition 21), with inputs
of length A and outputs of length log(g) · g.
Let G(Z) be defined as follows:

1. Compute H := prg(Z).

2. Divide pseudorandom tape H into blocks of bit strings H1, . . . , Hg . Let q be the randomized
function that chooses a bit 1 ∈ {0, 1} with bias ? := 3=!/2g. For 8 ∈ [g], let d8 = q(H8), where
H8 is the explicit randomness of q. Let d = d1, . . . , dg . Let num denote the number of positions
of d that are set to 1.

3. If num < =! , set d := 1=
!

0g−=! .

4. Otherwise, flip all but the first =! 1’s in d to 0.

5. Output d.

Let E′ : {0, 1}= → {0, 1}# and D′ : {0, 1}# → {0, 1}=.

E′(GL := GL
1 , . . . , G

L
=!
, GR):

1. Choose Z ← {0, 1}A uniformly at random. Choose Z ← {0, 1}A uniformly at random. Compute
d := G(Z).

2. For 9 ∈ [num], let pos 9 denote the 9-th position 8 such that d8 = 1.

3. Let -L ∈ {0, 1}g be defined in the following way: For 9 ∈ [=!], -L
pos 9

:= GL
9
. In all other

locations, -L
8

is set uniformly at random.

4. Output the encoding (Z, -L, GR).

D′(/ := (Z̃ , -̃L, G̃R)):

1. (Recover d̃) Let d̃ := � (Z̃). Let �num ≥ =! denote the number of ones in d̃ := d̃1, . . . , d̃g .

2. (Recover G) For 9 ∈ [�num], let pos 9 denote the 9-th position 8 such that d̃8 = 1.

3. Let G̃L
9
∈ {0, 1}=! be defined in the following way: For 9 ∈ [min(�num, =!)], G̃L

9
:= -̃L

pos 9
.

4. (output) Output (G̃L, G̃R).

Figure 5.3: THE (Localℓ>
′
,LLocal, negl(=))-NON-MALLEABLE REDUCTION (E′,D′)

76

• g := 2(= − =!), where = is the length of the output of LLocal and =! is the length of the left

output of LLocal.

Now, for every ` ∈ Localℓ>
′

where `(Z, -L, GR) := (`Z (Z, -L, GR), `L(Z, -L, GR), `R(Z, -L, GR))

we define the distribution �` over LLocal. A draw from �` is defined as follows:

• Choose Z ← {0, 1}A uniformly at random. Compute H := prg(Z), where H = H1, . . . , Hg. For

8 ∈ [g], compute Compute d8 := q(H8).

• If d has less than =! number of ones, then set ℎ1, ℎ2, 5 all to the constant function 0.

• Otherwise, choose vector �L ∈ {0, 1}g+=' such that ∀ 8 such that 1 ≤ 8 ≤ g if d8 = 1 then

�L
8
= ∗ and otherwise, �L

8
is chosen uniformly at random.

• The function ℎ1 is defined as follows: ℎ1 outputs the bits in input GL that affect the output

bits of `Z (at most A · ℓ>′ ≤ 2sec
!
/3 · =!).

• The function ℎ2 is defined as follows: ℎ2 outputs the bits in GR that affect the output bits of

`Z (at most A · ℓ>′ ≤ 2sec
'
/3 · =').

• The function 5 is defined as follows:

– 5 computes Z̃ , given Z and the output of ℎ1, ℎ2.

– 5 computes H̃ := prg(Z̃), where H̃ = H̃1, . . . , H̃g.

– For 8 ∈ [g], 5 computes d̃8 := q(H̃8).

– Let d̃∗ ∈ {0, 1}g be defined as follows: For 8 ∈ [pos∗], d̃∗ = d̃; for pos∗ < 8 ≤ g, d̃∗ =

0, where pos∗ is the index of the =!-th one in d̃ (and is set to g if no such index exists).

– Let `L,Z (resp. `R,Z) correspond to the function `L(Z, -L, GR) (resp. `R(Z, -L, GR))),

which has Z hardcoded in it.

– Let � be the circuit corresponding to the following restriction: ((`L,Z ��L)d̃∗ , `R,Z ��L).

– If � is in LLocal, then 5 outputs �. Otherwise, 5 outputs the constant function 0.

77

By the definition of a non-malleable reduction (Definition 5), in order to complete the proof of

Theorem 23, we must show that (E′,D′) has the following properties:

1. For all G ∈ {0, 1}=, we have D′(E′(G)) = G with probability 1.

2. For all ` ∈ Localℓ>
′
,

Δ(D′(`(E′(G)));�` (G)) ≤ negl(=),

where �` is the distribution defined above.

Item (1) above is trivial and can be immediately verified.

In the following, we prove Item (2), above, by noting that the statistical distance

Δ(D′(`(E′(G)));�` (G))

is upper bounded by the probability that either d does not contain at least =! number of ones or �

is not in LLocal.

We first argue that if d is chosen uniformly at random, then the probability that either of these

events occurs is negligible and then show that the same must be true when d is chosen via a PRG

with appropriate security guarantees.

Clearly, by multiplicative Chernoff bounds, if d is chosen uniformly at random, then the prob-

ability that d contains less than =! ones is negligible. We now show that the probability that

� ∉ LLocal is negligible. If � ∉ LLocal, it means that more than 2sec
!
/3 number of positions 8 in

-L are such that (1) -L
8

has “high input locality” (i.e. input locality greater than 12/2sec
!
· ℓ>′ = ℓ8)

(2) d8 = 1.

Since the adversary first specifies the tampering function `, all positions in -L with “high input

locality” are determined. Note that, by choice of parameters (since g ≥ #/2), there can be at most

2sec
!
· g/6 number of positions in -L with “high input locality”. Since ? = 3=!/2g, we expect

2sec
!
· =!/4 number of positions 8 in -L where (1) -L

8
has “high input locality” and (2) d8 = 1.

Therefore, by multiplicative Chernoff bounds, the probability that more than 2sec
!
· =!/3 number

78

of positions 8 in -L are such that (1) -L
8

has “high input locality” and (2) d8 = 1 is negligible.

We now argue that these events must also occur with negligible probability when d is pseu-

dorandom. Assume the contrary, then the following is a distinguisher) that can distinguish truly

random strings H from strings H := prg(Z) with non-negligible probability.

) is a circuit that has a string F ∈ {0, 1}g hardwired into it (non-uniform advice). F corre-

sponds to the high input locality positions determined by the tampering function ` that was chosen

by the adversary �. Intuitively, F is the string that causes � to succeed in breaking security of the

non-malleable code with highest probability.

On input H = H1, . . . , Hg (where either H := prg(Z) or H is chosen uniformly at random),) (H)

does the following:

1. Set 2>D=C1 = 0, 2>D=C2 = 0.

2. For 8 = 1 to g:

(a) Run q(H8) to obtain d8.

(b) If d8 = 1, set 2>D=C2 := 2>D=C2 + 1

(c) If d8 = 1 and F8 = 1, set 2>D=C1 := 2>D=C1 + 1.

3. If 2>D=C1 > 2sec
!
· =!/3 or 2>D=C2 < =! , output 0. Otherwise, output 1.

) can clearly be implemented by a read-once, Finite State Machine (FSM) with 2$ (log2 (g))

number of states. However, note that by Theorem 12, prg is a pseudorandom generator for space

log3(:) with parameter 2− log3 (:) . Thus, existence of distinguisher) as above, leads to contradic-

tion to the security of the Nisan PRG.3

5.4 Achieving Resilience against >(=/log =) Output Locality

We now present the proof of our final main theorem. The encoding scheme we use is simply

the composition of the two schemes presented previously with slightly different parameters The
3Note that by Theorem 16, C-wise independence would suffice in the analysis, where prg(B) = ℎB (1), . . . , ℎB (#)

for some C-wise independent hash family{ℎB : [#] → {0, 1}}B .

79

only substantial difference is in the analysis.

Theorem 24. (E′,D′) is a (Localℓ> ⇒ ((, negl(=))-non-malleable reduction given the following

parameters for Localℓ>:

• ℓ> = >(=/log(=)).

• E′ : {0, 1}2: → {0, 1}=, where = = $ (ℓ>:).

Putting together Theorem 24 with Theorems 1 and 4, we obtain the following.

Corollary 6. (E ◦ ESS,DSS ◦D) is a (Localℓ> , :, negl(:))-non-malleable code with rate Θ(1/ℓ>),

where ℓ> = >(=/log =).

Remark 3. Note that = = Θ(ℓ>:). Thus, for resilience against ℓ> = =1−Y our codes is of polynomial

length = = :1/Y.

We construct an encoding scheme (E,D) summarized in Figure 5.1 and parametrized below.

We then show that the pair (E,D) is a (Localℓ> , SS: , negl(:))-non-malleable reduction.

We parameterize our construction for Localℓ> ⇒ SS: with the following:

• C := d=' (1 − 2err
'
/4)e.

• 2dec := 1 − C
='

.

• X := 2sec

9 .

• (E! ,D!) parametrized by (:, =! , 2err
!
, 2sec
!
) := (:, 2rate:, 2err, 2sec) where 2err, 2sec, 2rate are

taken from lemma 6.

• =check := : .

• =' := d 2ℓ>2rate:

X2dec2sec e

• (E',D') parametrized by (:, =', 2err
'
, 2sec
'
) := (:, =', 2err, 2sec).

• A := :

80

• g := d 30ℓ>2rate:

(2sec)22dec + 1
X
e

• = := A + g + =' = $ (ℓ>:).

Proof Overview. To prove the theorem, we analyze the composed encoding schemes as a single

reduction. As mentioned in the introduction, the idea is to use the PRG to “free up” the restrictions

relating the size of the left RPE (previously denoted by =!) and ℓ> that is an artifact of the piecewise

analysis.

Recall that our encoding scheme is comprised of three blocks: (1) the PRG seed, (2) the “hid-

den” left side encoding, and (3) the right side encoding. First, (as in the previous section) we claim

that a number of good things happen if the left side is “hidden” in a large block in a truly random

way. Namely, we have that, with respect to the tampering function, only a small fraction of bits

in the hidden left-side RPE is either (1) of high input locality, (2) effects bits in the right-side’s

consistency check or (3) effects the PRG seed used in decoding. (1) Implies that there exists a

“safe” subset to simulate decoding from (as before), and (2) and (3) allow us to relax the bounds

on locality. Next, we use a hybrid argument to essentially disconnect influence between the 3

blocks of our encoding (that is dependent on the underlying message, (L,R)).

Proof. We will consider the “Left” side of the encoding to be (Z, -!) and the “Right” side to be

®BR.

Let 5 (Z, -L, ®BR) = (5 L(Z, -L, ®BR), 5 R(Z, -L, ®BR)), where (Z, -L, ®BR) ∈ {0, 1}A+g × {0, 1}='

and 5 L(Z, -L, ®BR) ∈ {0, 1}A+g and 5 R(Z, -L, ®BR) ∈ {0, 1}=' . Furthermore, let 5 L = (5Z , 5-) where

5Z : {0, 1}A+g+=' → {0, 1}A and 5- : {0, 1}A+g+=' → {0, 1}g

• Let* = {8 ∈ [g] : d8 = 1} denote the (relative) locations of ®BL.

• Let SR→L denote the set of positions 9 such that input bit ®BR
9

affects the output of 5 L.

• Let SL→R denote the set of positions 8 such that input bit ®BL
8

affects the output of 5 R.

81

Let (E! ,D! ,R!) be a binary reconstructable probabilistic encoding scheme with parameters
(:, =! , 2err

!
, 2sec
!
) and let (E',D',R') be a binary reconstructable probabilistic encoding scheme with

parameters (:, =', 2err
'
, 2sec
'
).

Also, let =check be a parameter.
Let prg be a pseudorandom generator for space bounded computations (see Definition 21), with inputs
of length A and outputs of length log(g) · g.
Let G(Z) be defined as follows:

1. Compute H := prg(Z).

2. Divide pseudorandom tape H into blocks of bit strings H1, . . . , Hg . Let q be the randomized
function that chooses a bit 1 ∈ {0, 1} with bias ? := 3=!/2g. For 8 ∈ [g], let d8 = q(H8), where
H8 is the explicit randomness of q. Let d = d1, . . . , dg . Let num denote the number of positions
of d that are set to 1.

3. If num < =! , set d := 1=
!

0g−=! .

4. Otherwise, flip all but the first =! 1’s in d to 0.

5. Output d.

E(G := (L,R)):

1. Compute ®BL = (BL1 , . . . , B
L
=!
) ← E! (L) and ®BR = (BR1 , . . . , B

R
='
) ← E' (R).

2. Choose Z ← {0, 1}A uniformly at random. Compute d := G(Z).

3. Otherwise, for 9 ∈ [=!], let pos 9 denote the 9-th position 8 such that d8 = 1.

4. Let -L ∈ {0, 1}g be defined in the following way: For 9 ∈ [=!], -L
pos 9

:= BL
9
. In all other

locations, -L
8

is set uniformly at random.

5. Output the encoding (Z, -L, ®BR).

Figure 5.4: THE (Localℓ> , SS, negl(:))-NON-MALLEABLE REDUCTION (E,D) (Continued in Fig-
ure 5.5)

82

D(®f := (Z̃ , -̃L, ®fR)):

1. (Recover d̃) Let H̃ := prg(Z̃), where H̃ = H̃1, . . . , H̃g . For 8 ∈ [g], compute d̃8 := q(H̃8). Let�num denote the number of ones in d̃ := d̃1, . . . , d̃g .

2. (Recover G) For 9 ∈ [�num], let pos 9 denote the 9-th position 8 such that d̃8 = 1.

3. Let ®fL ∈ {0, 1}=! be defined in the following way: For 9 ∈ [min(�num, =!)], fL
9

:= -̃L
pos 9

.

4. (plain decoding on left) Compute ((FL
1 , . . . , F

L
=!
), L) ← D! (fL

1 , . . . , f
L
=!
). If the

decoding fails, set L :=⊥.

5. (decoding-check on right) Let C := d=' (1 − 2err
'
/4)e Define ®f′R := f′R1 , . . . , f′R=' as

follows: Set f′R
ℓ

:= fR
ℓ

for ℓ = 1, . . . , C. Set f′R
ℓ

:= 0 for ℓ = C + 1, . . . , ='. Compute
((FR

1 , . . . , F
R
='
),R) ← D' (f′R1 , . . . , f′RC). If the decoding fails or (FR

1 , . . . , F
R
='
) is not 2err

'
/4-

close to (fR
1 , . . . , f

R
C'
), set R :=⊥.

6. (codeword-check on right) Pick a random subset 'check ⊂ [='] of size =check < 2
sec
'
·

='. For all ℓ ∈ 'check, check that fR
ℓ
= FR

ℓ
. If the check fails, set R :=⊥.

7. (output) Output G := (L,R).

Figure 5.5: CONTINUATION OF THE (Localℓ> , SS, negl(:))-NON-MALLEABLE REDUCTION

(E,D) (Begins in Figure 5.4)

83

• For � ⊂ [='], let S�L→R denote the set of positions 8 such that input bit ®BL
8

affects the output

of 5 R
9

for some 9 ∈ �.

• For a set 'check ⊆ =' of size =check, let Scheck denote the set of positions 8 such that embed-

ded input bit ®BL
8

affects the output of 5 R
ℓ

for some ℓ ∈ 'check.

• For a set 'check ⊆ =' of size =check, let S+check denote the set of positions 8 such that input

bit -L
8

affects the output of 5 R
ℓ

for some ℓ ∈ 'check.

• For a set 'check ⊆ =' of size =check, let Scheck denote the set of positions 8 such that embed-

ded input bit ®BL
8

affects the output of 5 R
ℓ

for some ℓ ∈ 'check.

• Let (+in(ℓ8) denote the set of 8 such that -L
8

has input locality greater than ℓ8.

• Let (in(ℓ8) denote the set of 8 such that ®BL
8

has input locality greater than ℓ8.

• Let S+L→Z denote the set of positions 8 such that input bit -L
8

affects the output of 5Z .

• Let SL→Z denote the set of positions 8 such that input bit ®BL
8

affects the output of 5Z .

• Let SR→Z denote the subset of SR→L that affects 5Z .

We next define the following event Good 5 .

Definition 29. The event Good 5 occurs if for tampering function 5 ∈ Localℓ> all of the following

hold:

1. d contains at least =! ones.

2. |Scheck ∪ (in(1/X · ℓ>) ∪ SL→Z | ≤ 2sec · =! .

3. There is some set �∗ ⊂ [='] such that |�∗ | = C and |S�∗L→R \ (in(1/X · ℓ>) | = 0 (from now on,

�∗ will denote the lexicographically first such set).

4. |SR→L | ≤ ℓ> · (A + =!) ≤ =' · 2sec
'

.

84

Claim 7. Suppose d is chosen truly at random (ones occuring with bias ? = 3=!/2g). Then for

every 5 ∈ Localℓ> , Pr[Good 5] ≥ 1 − negl(=).

Proof. We consider each part of the event Good 5 separately.

1. Recall that |d | = g, =! = 2rate: , = = $ (ℓ>:) and ? = 3=!
2g .

Let the number of ones in d = d1. Note that d1 is a Binomial random variable with param-

eters (g, ?).

Therefore, let ` = E[d1] = g? = g
3=!
2g =

3=!
2 Using Chernoff’s bound we can write,

Pr[d1 ≤ 2/3`] ≤ 4
−1/32

2 `. Therefore,

Pr[d1 ≤ =!] ≤ 4−
1
9
`

2

= 4−
1
9

3=!
4

= 4−
=!
12 ,

which is negligible.

2. We know that, |S+check | ≤ ℓ>=check, |(+in(1/X · ℓ>) | ≤ X= ≤ 2Xg and |S+L→Z | ≤ ℓ>A. There-

fore, we can upper bound |S+check ∪ (
+
in(1/X · ℓ>) ∪ S

+
L→Z | ≤ 3Xg.

We would now like to show that with high probability, |Scheck ∪ (in(1/X · ℓ>) ∪ SL→Z | ≤

2sec=! . We consider a mental experiment, in which the adversary fixes the tampering func-

tion 5 and only after 5 is fixed, 'check and d are chosen. In this case, each position in

S+check ∪ (
+
in(1/X · ℓ>) ∪ S

+
L→Z corresponds to an ®BL

8
input variable (selected by d) with inde-

pendent probability ?. We therefore observe that the size of |Scheck ∪ (in(1/X · ℓ>) ∪ SL→Z |

can be upper bounded by a Binomial random variable V with parameters (3Xg, ?). Let

` = E[V] = 3Xg? = 3gX 3=!
2g = 9

2=! · X Using Chernoff’s bound we can write,

Pr[V ≥ 2`] ≤ 4−
3·=! ·X

2 . Therefore, since X = 2sec

9 , we have that Pr[|Scheck ∪ (in(1/X · ℓ>) ∪

85

SL→Z | ≥ 9=! · X = 2sec · =!] ≤ 4−
2sec ·=!

6 , which is negligible.

3. Clearly, |SL→R \ (in(1/X · ℓ>) | ≤ =! · 1/X · ℓ>. Thus, in order to prove this part of the claim,

it is sufficient to show that =' − =! · 1/X · ℓ> ≥ C, where C = d=' (1 − 2err
'
/4)e. Plugging in

our choice of parameters, we get

=' − =! · 1/X · ℓ> ≥ d
2ℓ>2rate:

X2dec2sec
e − d2

rate: · ℓ>
X

e

≥ d=' (1 −
2dec2sec

2
)e

Since 2dec2sec

2 ≤ 2err
'
/4, the inequality holds.

4. We need to show that |SR→L | ≤ ℓ> · (A + =!) ≤ =' · 2sec
'

.

The first inequality |SR→L | ≤ ℓ> · (A + =!), holds from the definition of output locality.

Recall that 2sec
'
· =' = 2sec

'
· d 2ℓ>2rate:

X2dec2sec e ≥ 2ℓ>2rate: . Thus, by substituting parameters we get

ℓ> · (A +=!) = ℓ> · (: + 2rate:) ≤ 2ℓ>2rate: , since 2rate > 1 and so the second inequality holds

as well.

�

Now, for every 5 ∈ Localℓ> , we define the distribution � 5 over SS: . A draw, 6 = (6! , 6'), from

� 5 is defined as follows:

• Choose Z ← {0, 1}A uniformly at random. Compute d := � (Z).

• If Good 5 does not hold, then set 6 to the constant function 0.

• Otherwise, choose vectors �R ∈ {0, 1}=' , �L ∈ {0, 1}=! uniformly at random. �mask ∈

{0, 1, ∗}g such that if 8 ≤ pos (the location of the =!-th 1 in d) and d8 = 1, then �mask
8

= ∗

and is uniformly independently drawn from {0, 1} otherwise.

86

Let �- be �mask where the 8-th ∗ is replaced by the 8th bit of �L. (id ��mask (�L).)

• Compute Z̃ according to 5Z , given inputs Z and �LSL→Z
, �RSR→Z

.

• Compute d̃ := G(Z̃), where d̃ = d̃1, . . . , d̃g. Let *̃ = {8 ∈ [g] : d̃8 = 1}.

• Choose a random subset 'check ⊆ [='] of size =check.

• Let �∗ be the the lexicographically first subset of [='] such that |�∗ | = C and |S�∗L→R \

(in(ℓ>/X) | = 0. Note that such �∗ must exist since Good 5 occurs.

• The split-state tampering function 6 := (6! , 6') ∈ SS: has �L, �R, �mask, Z hardcoded into it

(as well as *̃, Z̃ , d̃) and is specified as follows:

6! (L):

1. (apply tampering and plain decode on left) Let ®BL := R(Scheck ∪

SL→Z ∪ (in(ℓ>/X), �L, L). Let (fL
1 , . . . , f

L
=!
) := (5- �Z,�mask,�R (®BL))*̃ . Recall that the

above notation denotes (1) applying the function 5- to the input (Z, -L, �R), where -L

is �mask where the 8-th ∗ is replaced by the 8th bit of ®BL. (2) outputting the positions of

5- indexed by *̃. Compute ((FL
1 , . . . , F

L
=!
), L̃) ← D! (fL

1 , . . . , f
L
=!
). If the decoding

fails, set L̃ :=⊥.

2. (output) Output L̃.

6' (R):

1. (apply tampering and decoding-check on right)

Let ®BR = (BR1 , . . . , B
R
='
) := R(SR→L, �

R,R). Let (fR
1 , . . . , f

R
='
) := 5 R �Z,�- (®BR).

Define ®f ′R := f′R1 , . . . , f′R=' as follows: Set f′R
ℓ

:= fR
ℓ

for ℓ ∈ [�∗]. Set f′R
ℓ

:= 0 for

ℓ ∉ [�∗]. Compute ((FR
1 , . . . , F

R
='
), R̃) ← D' (f′R1 , . . . , f′RC). If the decoding fails or

(FR
1 , . . . , F

R
='
) is not 2err

'
/4-close to (fR

1 , . . . , f
R
='
), then set R̃ :=⊥.

2. (codeword-check on right) For all ℓ ∈ 'check, check that fR
ℓ
= FR

ℓ
. If the

check fails, set R̃ :=⊥.

87

3. (output) Output R̃.

• Output 6 = (6! , 6').

Whenever R is run above, we assume that enough positions are set by S such that there is only

a single consistent codeword. If this is not the case, then additional positions are added to S from

�L, �R, respectively.

Remark 4. Note that 6 = (6! , 6') drawn from the distribution � 5 is a split-state function with

probability 1. This is true since if the event Good 5 does not hold, then 6 is set to the constant

function 0 (which is in split-state). If the event Good 5 does hold, then as can be seen by inspection

above, 6! takes only L as input, 6' takes only R as input.

By the definition of a non-malleable reduction (Definition 5), in order to complete the proof of

Theorem 22, we must show that (E,D) have the following properties:

1. For all G ∈ {0, 1}2: , we have D(E(G)) = G with probability 1.

2. For all 5 ∈ Localℓ> ,

Δ(D(5 (E(G)));� 5 (G)) ≤ negl(:),

where � 5 is the distribution defined above.

Item (1) above is trivial and can be immediately verified.

In the following, we prove Item (2) above by considering the following sequence of hybrid

arguments for each function 5 ∈ Localℓ> (for the intermediate hybrids, we highlight the step in

which they are different from the desired end distributions).

Our reduction will move in three phases to essentially disconnect influence between the 3

blocks of our encoding (that is dependent on the underlying message, G.

Firstly, we will argue that with high probability, the pseudorandomness of the PRG4 is sufficient

to obtain that the event Good 5 holds even when d is chosen via the PRG (instead of being truly

4As before, we note that a C-wise indpendent generator would also suffice here.

88

random). This will give us bounds on the “bad” bits in the output of the encoding of the left input,

L.

Next, we will use two hybrids to show that we can safely sample bits in SR→Z , SR→L, SL→Z ,

Scheck, and (in uniformly at random. Given our first claim, the sizes of all of these sets together

will be below the secrecy threshold of the respective Reconstructible Probablitistic Encodings. As

such, the distribution over the randomness of the encoding procedure will be identical, for any

message. Notice that at this stage we can simulate the entire left hand side, as well as codeword

check on the right. All that we need to handle is influence from ®BL on the rest of ®fR.

So for our final hybrid, we will use a technique from [67] to show that we can decode from a

“clean” portion of ®fR, �∗. This is possible because, by Claim 8 (and previous hybrids), the only

non-uniformly-random bits in ®BL have bounded input locality. Thus, these bits on the left can only

effect a constant fraction of bits on the right.

To begin, we prove the following claim to bound the set of “bad” bits on the left side.

Claim 8. In any given tampering experiment, with tampering function 5 ∈∈ Localℓ> , the event

Good 5 holds with all but negligible probability, even when d generated according to Figure 5.4.

Proof. Suppose not, then there exists some 5 that violates the above constraints, or any 5 will

because the PRG will not select enough ones. Notice that 5 determines (in(ℓ>/X). (SL→Z ,Scheck

are determined by 5 and the randomness of E.)

Recall by choice of parameters when d is chosen at random, there can be at most ℓ>=' + X= +

ℓ>A ≤ 2secg/3 number of positions in -L in Scheck ∪ (in(ℓ>/X) ∪ SL→Z . Since ? = 3=!/2g, we

expect 2sec
!
· =!/2 number of positions 8 in -L where (1) -L

8
∈ Scheck ∪ (in(ℓ>/X) ∪ SL→Z (is

“bad”) and (2) d8 = 1. Therefore, by multiplicative Chernoff bounds, the probability that more

than 2sec
!
· =! number of positions 8 in -L are such that (1) -L

8
is “bad” and (2) d8 = 1 is negligible.

We now argue that these events must also occur with negligible probability when d is pseu-

dorandom. Assume the contrary, then the following is a distinguisher) that can distinguish truly

random strings H from strings d := G(Z) with non-negligible probability.

89

) is a circuit that has a string F ∈ {0, 1}g hardwired into it. F corresponds to the characteristic

vector of (in(ℓ>/X) ∪ SL→Z ∪ Scheck.

On input H = H1, . . . , Hg (where either H := prg(Z) or H is chosen uniformly at random),) (H)

does the following:

1. Set 2>D=C1 = 0, 2>D=C2 = 0.

2. For 8 = 1 to g:

(a) Run q(H8) to obtain d8.

(b) If d8 = 1, set 2>D=C2 := 2>D=C2 + 1

(c) If d8 = 1 and F8 = 1, set 2>D=C1 := 2>D=C1 + 1.

3. If 2>D=C1 > 2sec
!
· =!/3 or 2>D=C2 < =! , output 0. Otherwise, output 1.

) can clearly be implemented by a read-once, Finite State Machine (FSM) with 2$ (log2 (g))

number of states. However, note that by Theorem 12, prg is a pseudorandom generator for space

log3(:) with parameter 2−: . Thus, existence of distinguisher) as above, leads to contradiction to

the security of the Nisan PRG. �

Hybrid �0. This is the original distribution D(5 (E(G)))

Hybrid �1. �1 corresponds to the distribution D(5 (E′(G))), where E′ is defined as follows:

E′(G := (L,R)):

1. Given 5 , find SR→Z , SR→L, SL→Z , Scheck, and (in(ℓ>/X).

2. Compute ®BL = (BL1 , . . . , B
L
=!
) ← R(Scheck ∪ SL→Z ∪ (in(ℓ>/X),E! (L), L)

and ®BR = (BR1 , . . . , B
R
='
) ← R(SR→L,E' (R),R).

3. Choose Z ← {0, 1}A uniformly at random. Compute d := G(Z).

4. Otherwise, for 9 ∈ [=!], let pos 9 denote the 9-th position 8 such that d8 = 1.

90

5. Let -L ∈ {0, 1}g be defined in the following way: For 9 ∈ [=!], -L
pos 9 := BL

9
. In all other

locations, -L
8

is set uniformly at random.

6. Output the encoding (Z, -L, ®BR).

Note that the only difference between E and E′ is that we are reconstructing codewords before

outputting. As the original codewords are already complete, the output is identical.

Claim 9.

�0 ≡ �1.

The claim follows trivially from the definition of the reconstruction procedure.

Hybrid �2 �2 corresponds to the distribution D(5 (E(2) (G))), where E(2) is defined as follows:

E(2) (G := (L,R)):

1. Given 5 , find SR→Z , SR→L, SL→Z , Scheck, and (in(ℓ>/X).

2. Choose �L ∈ {0, 1}=! , �R ∈ {0, 1}=' uniformly at random.

3. Compute ®BL = (BL1 , . . . , B
L
=!
) ← R(Scheck ∪ SL→Z ∪ (in(ℓ>/X), �L, L)

and ®BR = (BR1 , . . . , B
R
='
) ← R(SR→L, �

R,R).

4. Choose Z ← {0, 1}A uniformly at random. Compute d := G(Z).

5. For 9 ∈ [=!], let pos 9 denote the 9-th position 8 such that d8 = 1.

6. Let -L ∈ {0, 1}g be defined in the following way: For 9 ∈ [=!], -L
pos 9 := BL

9
. In all other

locations, -L
8

is set uniformly at random.

7. Output the encoding (Z, -L, ®BR).

Claim 10.

�1 ≡ �2.

91

By Claim 8, the sets reconstructed from are below the security thresholds of the respective RPE

schemes. Thus by definition, the distribution of E(2) (G) is identical to that of E(G).

Hybrid �3. �3 corresponds to the distribution D′(5 (E(2) (G))), where D′ is defined as follows:

D(®f := (Z̃ , -̃L, ®fR)):

1. (Recover d̃) Let H̃ := prg(Z̃), where H̃ = H̃1, . . . , H̃g. For 8 ∈ [g], compute d̃8 := q(H̃8).

Let �num denote the number of ones in d̃ := d̃1, . . . , d̃g.

2. (Recover G) For 9 ∈ [�num], let pos 9 denote the 9-th position 8 such that d̃8 = 1.

3. Let ®fL ∈ {0, 1}=! be defined in the following way: For 9 ∈ [min(�num, =!)], fL
9

:= -̃L
pos 9 .

4. (plain decoding on left) Compute ((FL
1 , . . . , F

L
=!
), L) ← D! (fL

1 , . . . , f
L
=!
). If the

decoding fails, set L :=⊥.

5. (decoding-check on right) Let C := d=' (1 − 2err
'
/4)e Define ®f ′R := f′R1 , . . . , f′R='

as follows: Set f′R
ℓ

:= fR
ℓ

for ℓ = 1, . . . , C. Set f′R
ℓ

:= 0 for ℓ = C + 1, . . . , ='. Compute

((FR
1 , . . . , F

R
='
),R) ← D' (f′R1 , . . . , f′RC). If the decoding fails or (FR

1 , . . . , F
R
='
) is not

2err
'
/4-close to (fR

1 , . . . , f
R
C'
), set R :=⊥.

6. (codeword-check on right) Pick a random subset 'check ⊂ [='] of size =check <

2sec
'
· ='. For all ℓ ∈ 'check, check that fR

ℓ
= FR

ℓ
. If the check fails, set R :=⊥.

7. (output) Output G := (L,R).

8. (decoding-check on right) Define ®f ′R := f′R1 , . . . , f′R=' as follows: Set f′R
ℓ

:= fR
ℓ

for ℓ ∈ �∗ and f′R
ℓ

:= 0 for ℓ ∉ �∗, where �∗ ⊆ [='] is the lexicographically first set such that

|�∗ | = C and |S�∗L→R ∩ ¯(in(ℓ>/X) | = 0. Compute ((FR
1 , . . . , F

R
='
),R) ← D' (f′R1 , . . . , f′RC'). If

the decoding fails or (FR
1 , . . . , F

R
='
) is not 2err

'
/4-close to (fR

1 , . . . , f
R
C'
), set R :=⊥.

9. (codeword-check on right) For all ℓ ∈ 'check, check that fR
ℓ
= FR

ℓ
. If the check

fails, set R :=⊥.

92

10. (output) Output G := (L,R).

Note that the only difference between D and D′ is that in decoding-check on right,

®fR is decoded from �∗, instead of the first =check positions.

Claim 11.

�2
B≈ �3.

We want to show that for every ®f = (®fL, ®fR) ← 5 (E(G)), D(®f) = D′(®f) with high probabil-

ity, over the coins of D,D′. The proof is identical to the proof of Claim 4.

Hybrid �4. Hybrid �4 is simply the distribution � 5 (G), defined previously.

Claim 12.

�3 ≡ �4.

This claim follows by inspection.

5.5 Limits to Local-Tamper Resilience

A function 5 : {0, 1}= → {0, 1}= is (= − log(=))-output-local if each output bit depends on

at most = − log(=) input bits. The particular class F ′ that we use in our lower bound proof is a

subclass of all (=− log(=))-local tampering functions F . Each 5 ∈ F ′ has the following structure:

First, 51, . . . , 5=−log(=) (the functions that output the first =−log(=) bits) are all the same, except that

two different bits from {0, 1} are hardcoded in each. Second, 5=−log(=)+1, . . . , 5= are also the same,

except that a different value from {0, 1} is hardcoded in each. Finally, the set of input bits upon

which 51, . . . , 5=−log(=) depend and the set of input bits upon which 5=−log(=)+1, . . . , 5= depend are

fixed. Taken together, this means that the total number of functions 5 in F is at most 4= · 22=−log(=)
,

so log log |F ′| = = − log(=). On the other hand, Dziembowski et al. [42] showed existence of a

1/=-non-malleable code for any class F such that log log |F | ≤ = − 2 log(=). Thus, our lower

bound result is nearly tight matching the existential upper bound. In our theorem, we prove a more

general statement:

93

Theorem 25. Let (E,D) be a coding scheme with E : {0, 1} → {0, 1}= and D : {0, 1}= → {0, 1}.

Let F be the class of (= − log(1/n) + 2)-output- local functions, where 1/8 ≥ n ≥ 1/2=. Then

(E,D) is n-malleable with respect to F .

Note that the parameters discussed above can be obtained by setting n = 1
4= .

Additionally, note that non-malleable codes whose decode function D may output values in

{0, 1,⊥} imply non-malleable codes whose decode function D may only output values in {0, 1}.

Thus, ruling out the latter implies ruling out the former and only makes our result stronger.

Proof. Fix an arbitrary (E,D) with E : {0, 1} → {0, 1}= and D : {0, 1}= → {0, 1}. Our analysis

considers two cases and shows that for each case, there exists 5 ∈ F such that

Pr
1←{0,1}

[D(5 (E(1))) = 1 − 1] ≥ 1
2
+ n .

This is sufficient to prove Theorem 25.

We begin with some notation and the proceed to the case analysis. For codeword 2 = 21, . . . , 2=,

let 2top (resp. 2bot) denote the first = − log(1/n) + 2 bits (resp. last log(1/n) − 2 bits) of 2. I.e.

2top := 21, . . . , 2=−log(1/n)+2 (2bot := 2=−log(1/n)+3, . . . , 2=). For C ∈ N, let (C denote the set of all

C-bit strings and let*C denote the uniform distribution over C bits. Assume = ≥ 2.

Case 1:

Pr
1←{0,1}

[D(2top | |A) = 1 | 2 ← E(1), A ← *log(1/n)−2] ≥ 1/2 + n .

Let 2∗,0 = 2
∗,0
1 , . . . , 2

∗,0
= (resp. 2∗,1 = 2

∗,1
1 , . . . , 2

∗,1
=) be the lexicographically first string that

decodes to 0 (resp. 1) under D (i.e. D(2∗,0) = 0 and D(2∗,1) = 1.

In this case we consider the following distribution over tampering circuits 5 = 51, . . . , 5=,

where 58 outputs the 8-th bit of 5 :

Sample A ← *log(1/n)−2, construct circuits 58 for each 8 ∈ [=], which take input 2top and output

2′
8
. Each 58 does the following:

94

• Compute 3 := D(2top | |A).

• Output 2′
8
= 2
∗,1−3
8

.

We now analyze Pr1←{0,1} [D(5 (E(1))) = 1 − 1].

Pr
1←{0,1}

[D(5 (E(1))) = 1 − 1] = Pr
1←{0,1}

[5 (E(1)) outputs 2∗,1−1]

= Pr
1←{0,1}

[D(2top | |A) = 1 | 2 ← E(1), A ← *log(1/n)−2]

≥ 1/2 + n,

where the two equalities follow from the definition of the tampering function 5 , and the inequality

follows since we are in Case 1. This implies the n-malleability of (E,D).

Case 2:

Pr
1←{0,1}

[D(2top | |A) = 1 − 1 | 2 ← E(1), A ← *log(1/n)−2] ≥ 1/2 − n .

In this case we consider the following distribution over tampering circuits 5 = 51, . . . , 5=,

where 58 outputs the 8-th bit of 5 :

The first = − log(1/n) + 2 circuits (51, . . . , 5=−log(1/n)+2) simply compute the identity function: I.e.

58 for 8 ∈ [= − log(1/n) + 2] takes 28 as input and produces 28 as output.

We next describe the distribution over circuits 58 for 8 ∈ {= − log(1/n) + 3, . . . , =}. Sample

A′← [1/(4n) − 1]. Construct circuits 58 for each 8 ∈ {= − log(1/n) + 3, . . . , =} that take input 2bot

and produce output 2′
8
. Each 58 does the following:

• Let A := A=−log(1/n)+3, . . . , A= be the A′-th lexicographic string in the set (log(1/n)−2 \ {2bot}5.

• Output 2′
8
= A8.

We now analyze Pr1←{0,1} [D(5 (E(1))) = 1 − 1].
5Recall that, C ∈ N, let (C denote the set of all C-bit strings and let*C denote the uniform distribution over C bits.

95

Since we are in Case 2 we have that:

1/2 − n ≤ Pr
1←{0,1}

[D(2top | |A) = 1 − 1 | 2 ← E(1), A ← *log(1/n)−2]

= Pr
1←{0,1}

2bot = A |

2 ← E(1), A ← *log(1/n)−2

 · Pr
1←{0,1}

D(2top | |A) = 1 − 1 |

2bot = A ∧ 2 ← E(1), A ← *log(1/n)−2

+ Pr
1←{0,1}

2bot ≠ A |

2 ← E(1), A ← *log =

 · Pr
1←{0,1}

D(2top | |A) = 1 − 1 |

2bot ≠ A ∧ 2 ← E(1), A ← *log(1/n)−2

= Pr
1←{0,1}

2bot = A |

2 ← E(1), A ← *log(1/n)−2

 · 0
+ Pr
1←{0,1}

2bot ≠ A |

2 ← E(1), A ← *log(1/n)−2

 · Pr
1←{0,1}

D(2top | |A) = 1 − 1 |

2bot ≠ A ∧ 2 ← E(1), A ← *log(1/n)−2

= Pr
1←{0,1}

2bot ≠ A |

2 ← E(1), A ← *log(1/n)−2

 · Pr
1←{0,1}

D(2top | |A) = 1 − 1 |

2bot ≠ A ∧ 2 ← E(1), A ← *log(1/n)−2

= (1 − 4n) · Pr

1←{0,1}

D(2top | |A) = 1 − 1 |

2bot ≠ A ∧ 2 ← E(1), A ← *log(1/n)−2

 .
Note that

Pr
1←{0,1}

D(2top | |A) = 1 − 1 |

2bot ≠ A ∧ 2 ← E(1), A ← *log(1/n)−2

 = Pr
1←{0,1}

[D(5 (E(1))) = 1 − 1] .

Thus, we have that

1/2 − n ≤ (1 − 4n) Pr
1←{0,1}

[D(5 (E(1))) = 1 − 1] .

96

Since

(1/2 + n) · (1 − 4n) = 1/2 + n − 2n − 4n2

≤ 1/2 − n,

we have that

Pr
1←{0,1}

[D(5 (E(1))) = 1 − 1] ≥ 1/2 − n
1 − 4n

≥ 1/2 + n .

This implies the n-malleability of (E,D).

�

97

Chapter 6: Decision Tree Tampering

In this chapter we construct non-malleable codes that are resilient to tampering by low-depth

decision trees.

Decision trees of depth 3 capture tampering where each output bit is set arbitrarily after adap-

tively reading 3 locations of the input, where the choice of which input location to read next at

any point in time can depend on the values of all the previous locations read. In contrast, local

tampering corresponds to the locations being statically chosen a priori.1

Definition 30 (Decision Trees). A decision tree with = input bits is a binary tree whose internal

nodes have labels from G1, . . . , G= and whose leaves have labels from {0, 1}. If a node has label G8

then the test performed at that node is to examine the 8-th bit of the input. If the result is 0, one

descends into the left subtree , whereas if the result is 1, one descends into the right subtree. The

label of the leaf so reached is the output value on that particular input. The depth of a decision tree

is the number of edges in a longest path from the root to a leaf. Let DT(C) denote decision trees

with depth at most C.

We construct non-malleable codes resilient to tampering by decision-trees of depth =1/4−>(1) .

Theorem 26. For any C = $ (=1/4/log3/2 =), there is an explicit and efficient non-malleable code

that is unconditionally secure against depth-C decision trees with codeword length = = $ (:C2 log4 =/log log =)

and error exp(−Ω(=/C4 log5 =)) for a :-bit message.
1Note that any decision tree of depth 3 can also be represented by a 23-local function or as a DNF with 23 clauses

of width 3. Thus, the results of Chapter 5 yield non-malleable codes against (1 − n) log =-depth decision trees. The
present chapter improves upon this exponentially.

98

6.1 Technical overview

We prove our theorem by constructing a non-malleable reduction (Def. 5) from decision-

tree tampering to leaky split-state tampering. Theorem 26 is thus a corollary of this reduction,

Lemma 15, and Theorem 21 from Chapter 4.

We will outline our reduction for decision tree tampering. The key idea here, as in Chapter 5,

is to exploit size differences. Our encoder and decoder will work independently on the left and

right pieces of the message, so we will in turn think of having left and right encoders, decoders,

codewords, and tampering functions (corresponding to the respective outputs).

First, let us suppose that the right piece of the message (corresponding to the right split-state

codeword) is much longer than that of the left. Then, suppose both the right and left encoders and

decoders are simply the identity function. Then, all the left tampering functions together will make

a number of queries to the right codeword that is below our leakage threshold.

However, because the right is much longer than the left, the above analysis won’t help in

simulating tampering on the right with low leakage from the left. Instead, we modify the left

encoder/decoder to make it much longer than the right, but while retaining the property that the

left can be decoded from just a few decision trees. To do so, we sample a random small set, whose

size is that of the message, in a much larger array. We plant the message in these locations and

zero everything else out. Then, we bit-wise secret share a description of the small set (i.e., its seed)

such that the secrecy threshold is relatively large. To decode, we can simply extract the seed and

output what is in the corresponding locations of the array.

Now, note that decoding the left still only requires at most relatively few queries to the right:

decision tree depth times both encoded seed length plus message length. But we can’t make the

encoded seed too long or we will be dead again. Instead, we critically use the fact that tampering

is by a forest of decision trees. In particular, for any small set of tampering functions on the right,

the seed remains uniformly chosen regardless of what queries the set makes, so we expect only

a small fraction of any queries made to the array to actually hit the message locations. Strong

99

concentrations bounds guarantee that this is more or less what actually happens. Finally we simply

union bound over all such subsets to guarantee that collectively the right tampering function makes

few queries to the left with overwhelming probability.

Finally, we apply the same style of encoding used on the left to the right side to fix the syntactic

mismatch and reduce to the case where the right and left messages are the same size.

6.2 Decision Trees to Leaky Split-State Model

In this section, we give a non-malleable reduction from decision tree tampering to leaky split-

state tampering.

Lemma 15. For any constant U ∈ (0, 1) and C = $ (=1/4/log3/2 =), there is a (DT(C) ⇒ U −

SS: , n)-non-malleable reduction with rate Ω(1/C2 log3 =) where n ≤ exp(−Ω(=/C4 log5 =)).

A single decision tree from {0, 1}= to {0, 1} of depth C can be viewed as an adversary (or

computation) that first adaptively queries at most C input coordinates, and then outputs a bit. Given

a tampering function 5 from {0, 1}= to {0, 1}= such that each output bit is computed by a decision

tree of depth C (i.e., each output is the result of adaptively querying at most C coordinates from the

input, here a codeword), we will non-malleably reduce 5 to a special subclass of leaky split-state

functions.

Recall that an U-leaky split-state function 6 = (6! , 6') from {0, 1}2: to {0, 1}2: can be com-

puted by a communication protocol with parameter U between Alice and Bob where Alice has

access to G! := G1:: and Bob has access to G' := G:+1:2: . Alice and Bob send information back

and forth depending on their own inputs and the current transcript of the communication so far.

And finally, Alice outputs 6! (G! , G') and Bob outputs 6' (G! , G'). We consider a special subclass

of U-leaky split-state function where Alice and Bob simply make a bounded number of adaptive

queries to each other’s input. In particular, when Alice (resp. Bob) makes a query to G' (resp. G!),

Alice (resp. Bob) sends location 8 ∈ [:] and ask Bob (resp. Alice) to send back the 8th coordinate

of G' (resp. G!).

100

Note that the communication cost for each query (and answer) is dlog :e + 1 bits. (For the

remainder of this section, we will assume that both : and = are powers of 2.) So if both Alice and

Bob make at most U:/(2(log : + 1)) queries to each other’s input, the total communication is at

most U: and 6 is an U-leaky split-state function. We will show that our reduction reduces decision

tree tampering functions (of appropriate depth) to this subclass of leaky split-state functions.

Given 5 = (5! , 5') ∈ DT(C), we sample an U-split state 6 from the distribution � 5 as follows: sample
and hardwire the randomness required for Enc! ,Enc'. Let Z! and Z' be the respective seeds used for
� in Enc! and Enc'. Then, 6 = (6! , 6') is defined as follows: on input G = (G! , G')

• 6! (G) simulates Dec! (5! (Enc! (G!),Enc' (G'))) with at most U:/2(log : + 1) queries to G'
(*)

1. Decode the tampered seed Z̃! by computing the first 4<! outputs of
5! (Enc! (G!),Enc' (G')) then applying Dec'((.
(To evaluate the necessary portion 5! the simulator evaluates the corresponding decision
trees. When a bit is queried in Enc' (G') we have three cases (recall that these encodings
consist of two parts, Enc'(((Z') and 2'): (a) if the index corresponds to a location in
Enc'(((Z'), it is hardwired already in 6!; (b) if the index corresponds to 2' and a location
specified by Z', query/request the relevant bit from G'; (c) if the index corresponds to 2'
and a location not specified by Z', simply use 0.)

2. Compute the output bits of 5! (Enc! (G!),Enc' (G')) indexed by set � (Z̃!).
(The decision trees corresponding to indices specified by Z̃! are evaluated identically to
the preceeding step.)

(*) whenever 6! (G) makes more than U:/(2(log : + 1)) queries to G', abort and output 0: .

• 6' (G) simulates Dec' (5' (Enc! (G!),Enc' (G'))) with at most U:/2(log : + 1) queries to G!
(*)

1. Compute H̃' = 5' (Enc! (G!),Enc' (G')).
(The corresponding decision trees in 5' are evaluated in a symmetric manner to those
needed for 6! .)

2. Compute Dec' (H̃').

(*) whenever 6' (G) makes more than U:/(2(log : + 1)) queries to G! , abort and output 0: .

Figure 6.1: Simulator for (Enc,Dec)

Our reduction relies on a ramp secret sharing scheme over binary alphabet. For parameter<, let

(Enc'((,Dec'(() be an efficient coding scheme such that Enc'((maps an <-bit to a (random) 4<-

101

bit string so that for any Z ∈ {0, 1}< and subset (≠ ∅ of size at most <, Enc'(((Z)(distributes

uniformly and randomly over {0, 1} |(|. As observed by Ball et al. [90] (see Lemma 4), such a

coding scheme can be constructed efficiently from any linear error correcting code from < bits to

4< bits with minimal distance < + 1. We choose constant 4 to simplify the presentation.

Based on (Enc'((,Dec'((), we define a coding scheme that hides a message in random loca-

tions. Let �:,= be the function that given a short “seed,” Z , of : distinct indices in [=] expands it

to the corresponding =-bit string with hamming weight : (where the ones are in locations indexed

by Z). Let �:,= be a distribution such that �:,= (�:,=) is uniform over =-bit strings with hamming

weight : . Note that �:,= can be computed efficiently and �:,= can be sampled efficiently by sim-

ply sampling : locations from [=] without replacement. For :, = and < ≥ : log =, we define an

encoding Enc∗
=,:,<

: {0, 1}: → {0, 1}4< × {0, 1}=, as follows: on a :-bit string G, sample a random

seed Z ← �:,= for �:,=, and output (Enc'(((Z), 2) so that 2 is 0 everywhere except 2� (Z) = G.

Dec∗
=,:,<

is defined in the straightforward way (it first decodes Z using Dec'((, then outputs 2� (Z)).

The high level idea of our reduction is to use two copies of Enc∗ to hide inputs G! and G'

independently inside two long messages (with different length). Let =! , <! , =', <' be parameters

to be determined later. We define Enc as Enc(G! , G') = (Enc! (G!),Enc' (G')) where Enc! =

Enc∗
=! ,:,<!

and Enc' = Enc∗
=' ,:,<'

. And we define Dec as Dec(H! , H') = (Dec! (H!),Dec' (H'))

where Dec! = Dec∗
=! ,:,<!

and Dec' = Dec∗
=' ,:,<'

.

Now we show (Enc,Dec) non-malleably reduces DT(C) to U-SS: and prove Lemma 15. First

observe that Dec◦Enc is the identity function due to the correctness of (Enc! ,Dec!) and (Enc',Dec').

It remains to show that for any 5 : {0, 1}= → {0, 1}= ∈ DT(C), Dec ◦ 5 ◦Enc becomes U-split state

functions. In fact, in Figure 6.1, we reduce decision trees to a simpler subclass of U-SS: where

Alice and Bob, in parallel, make at most U:/(2(log : + 1))-bounded number of adaptive queries

to locations of the other party’s inputs, then output tampered values.

By the special condition (∗) in 6! , 6', 6 = (6! , 6') is indeed U-split state function because

Alice and Bob communicates at most log : + 1 bits per query (including the answer). Moreover,

for any G, � 5 (G) distributes identically to Dec◦ 5 ◦Enc(G) conditioning on that (∗) doesn’t happen.

102

Therefore n , the difference between the simulation and the real experiment, is at most the proba-

bility that (∗) happens. To bound the event that (∗) happens, we begin by proving the following

more general proposition.

Proposition 6. For integers =, :, < ≥ : log =. Let � be an arbitrary algorithm that makes at most

< adaptive queries to (Enc'(((Z), � (Z)). Let . denote the number of distinct 1’s in � (Z) which

are queried by �. It holds that over the randomness of Z and Enc'((,

Pr[. ≥ 2<:/=] ≤ exp(−<:/3=).

Proof. Note that, for any fixed Z , any � that makes at most < adaptive queries cannot distinguish

(Enc'(((Z), � (Z)) and (*,� (Z)) where * is uniformly distributed over {0, 1}4<. That’s because

(*,� (Z)) generates any possible transcript (81, 11, . . . , 8<, 1<), (Enc'(((Z), � (Z)) with exactly

the same probability due to the secrecy property of Enc'((. Because * and Z are independent,

it suffices to bound the probability that �*,� (Z) queries more than 2<:/= number of 1’s for an

arbitrary fixed choice of* and a random Z .

Without loss of generality, we assume � queries < distinct locations of � (Z) because any

algorithm can be made into one which sees more ones from � (Z) by querying distinct locations.

Let .1, . . . , .< be indicators that � (Z) returns 1 for these < queries made by �. Note that . = .1 +

· · ·+.< and E[.] ≤ <:/=. In addition, observe that for any 11, . . . , 1< ∈ {0, 1}, Pr[∀8 ∈ [<], .8 =

18] =
(=−<
:−|1 |0

)
/
(=
:

)
. It follows that for any set (⊆ [<], E[Π8∈(.8] =

(=−|(|
:−|(|

)
/
(=
:

)
≤ (:/=) |(|. By the

generalized Chernoff bound by Theorem 15 with X = :/=, we obtain the desired conclusion. �

We then apply proposition 6 in following two claims to bound (*), the probability that the num-

ber of bits required from the opposite side exceeds some threshold for either half of the simulated

tampering function. We will handle each side separately. In particular, these claims will bound

the number of queries or probes made to bits on the opposite side that depend on the input (if we

fix the randomness of encoding). Because in the simulated tampering, both Alice and Bob jointly

know the randomness of encoding, if a bit on the opposite side is not dependent on the input, then

103

both Alice and Bob know this and do not need to request its value. So, in order to complete the

proof we only need to bound queries the simulator makes to the opposite side that additionally

correspond to locations specified by the respective Z (in the respective Enc∗).

Claim 13. Suppose <' ≥ (4<! + :)C, then for any G ∈ {0, 1}2: , the event that 6! makes more than

2(4<! + :)C:/=' queries to G' happens with probability at most exp(−(4<! + :)C:/3=').

Proof. Fix any G! , G' and the randomness for Enc! (G!). Note that Dec! reads at most 4<! +

: coordinates from its input, 4<! to reconstruct the tampered “seed” Z̃ and then the at most :

locations specified by� (Z̃). Each decision tree tampering one of these bits makes at most C queries

Enc' (G') (it makes at most C queries total). Therefore 6! , in order to simulate the tampering of

the bits Dec! requires, makes at most (4<! + :)C queries to Enc' (G') = (Enc'(((Z'), � (Z')). By

Proposition 6, 6! queries more than 2(4<! + :)C:/=' locations happens with probability at most

exp(−(4<! + :)C:/3='). �

Claim 14. Suppose <! ≥ C, then for any G ∈ {0, 1}2: , the event that 6' makes more than 2(4<' +

=')C:/=! queries to G! happens with probability at most (=' + 4<')C/<! · exp(−<!:/3=!).

Proof. Fix any G! , G' and the randomness for Enc' (G'). Note that any subset of <!/C outputs

of 5' makes at most <! queries to Enc! (G!). By Proposition 6, the probability that 2<!:/=!

ones in � (Z!) are queried is at most exp(−<!:/3=!). We partition the output bits of 5' into

(=' + 4<')C/<! disjoint subsets of size <!/C. By a union bound over these subsets, the even

that 5' makes more than 2(4<' + =')C:/=! queries to G! happens with probability at most (=' +

4<')C/<! · exp(−<!:/3=!). The number of queries made by 6' to G! is at most the queries made

by 5' and the desired conclusion follows. �

Then for fixed U, there exists constants 21, 22, 23 (only dependent on U) such that if we set

<! = 21: log =, =' = <' = 22C: log = log : and =! = 23C
2: log = log2 : , then (*) (the event

that the number of queries to either opposing side exceeds U:/(2(log : + 1)) happens with prob-

ability at most (C2 log :) · exp(−Ω(:/C2 log2 :)). Note that it follows that the rate is :/= =

104

Ω(1/C2 log3 =) and for C = $ (=1/4/log3/2 =), the error can be simplified to exp(−Ω(=/C4 log5 =))

because Ω(=/C4 log5 =) = Ω(log =) and C2 log : = exp($ (log =)).

105

Chapter 7: Small-Depth Circuit Tampering

In this chapter we construct non-malleable codes for small-depth circuits.

Small-Depth Circuits. Let AC3 (() denote alternating depth 3 circuits of size at most (with

unbounded fan-in. Let F-AC3 (() denote alternating depth 3 circuits of size at most (with fan-in

at most F at the first level and unbounded fan-in elsewhere. For depth 2 circuits (AC2(()), a DNF is

an OR of ANDs (terms) and a CNF is an AND or ORs (clauses). The width of a DNF (respectively,

CNF) is the maximum number of variables that occur in any of its terms (respectively, clauses).

We use F-DNF (contained in F-AC2(()) to denote the set of DNFs with width at most F.

We prove the following theorem.

Theorem 27. For any constant 2 ∈ (0, 1), there exist constants 21, 22 ∈ (0, 1) such that for any

3 ≤ 21 log =/log log = and (= exp(=22/3) there is an explicit, efficient, information theoretic non-

malleable code for depth 3 size (circuits with error exp(−=Ω(1/3)) and encoding length = = :1+2.

Our result again proceeds by designing an efficient non-malleable reduction from small-depth

tampering to decision tree tampering, essentially showing how we can construct an efficient non-

malleable code that is secure against small-depth adversaries given one that is secure against

decision-tree tampering. The theorem is then a simple corollary of this reduction and Theorem 26.

Remark 5 (On limits of extending our result). Because any function in NC1 can be computed by a

polynomial-size unbounded fan-in circuit of depth $ (log(=)/log log(=)) [91, 92], any non-trivial

non-malleable code for larger depth circuits would yield a separation of NC1 from P. Hence, in

this respect Theorem 27 is the limit of what we can hope to establish given the current state of the

art in circuit and complexity theory.

106

7.1 Technical Overview

To prove our results, we use the non-malleable reduction framework, introduced by Aggarwal

et al. [13]. Loosely speaking, an encoding scheme (E,D) non-malleably reduces a “complex” tam-

pering class, F , to a “simpler” tampering class, G, if the tampering experiment (encode, tamper,

decode) behaves like the “simple” tampering (for any 5 ∈ F , D(5 (E(·))) ≈ � 5 , a distribution over

G). [13] showed that a non-malleable code for the simpler G, when concatenated with an (inner)

non-malleable reduction (E,D) from F to G, yields a non-malleable code for the more “complex”

F .

Our main technical lemma is a non-malleable reduction from tampering via small depth circuits

to split-state tampering, where left and right halves of a codeword may be tampered arbitrarily, but

independently. Combining with best known split state non-malleable codes [35], the result is a

non-malleable code against small depth circuits.

We achieve the aforementioned reduction by composing two non-malleable reductions, with a

variant of local tampering (each output bit is a function of some not-too-large set of input bits),

where the choice of local tampering may depend on leakage from the codeword. First, we collapse

small-depth circuit tampering to the variant of local tampering using a carefully designed pseu-

dorandom restriction with extractable seeds (for which there exists a “switching lemma”), which

may be of independent interest. Then, we demonstrate that a small modification to a construction

from [2] yields non-malleability against this leaky local tampering class.

Chattopadhyay and Li [15] also used a switching lemma to reduce small-depth tampering to lo-

cal tampering. [15] uses a framework from [11] to derive non-malleable codes from non-malleable

extractors. An unfortunate side effect of the [11]-framework is that the rate of the code is tied to

the error of the extractor. As the parameters of known switching lemmas yield (at best) quasi-

polynomial error when reducing to local functions, this translates (via the [11] framework) into

codes with at best exponentially small rate. Circumventing this limitation therefore necessitates

a significantly different approach, and indeed, in this work we construct our NMCs that achieve

107

efficient rate without using extractors as an intermediary.

Small-Depth Circuits to Local Functions. Let us consider the simpler case of reducing F-DNFs

(each clause contains at most F literals) to the family of leaky local functions. The reduction for

general small-depth circuits will follow from a recursive composition of this reduction.

A non-malleable reduction (E,D) reducing DNF-tampering to (leaky) local-tampering needs

to satisfy two conditions (i) Pr[D(E(G)) = G] = 1 for any G and, (ii) D ◦ 5 ◦ E is a distribution

over (leaky) local functions for any width-F DNF 5 . A classic result from circuit complexity, the

switching lemma [93, 94, 95, 12], states DNFs become local functions under random restrictions

(“killing” input variables by independently fixing them to a random value with some probability).1

Thus a natural choice of E for satisfying (ii) is to simply sample from the generating distribution

of restrictions and embed the message in the surviving variable locations (fixing the rest according

to restriction). However, although 5 ◦E becomes local, it is not at all clear how to decode and fails

even (i). To satisfy (i), a naive idea is to simply append the “survivor” location information to the

encoding. However, this is now far from a random restriction (which requires among other things

that the surviving variables are chosen independently of the random values used to fix the killed

variables) and consequently no longer guaranteed to “switch” the DNFs to Local functions with

overwhelming probability.

To circumvent those limitations, we consider pseudorandom switching lemmas, which arose

in the context of derandomization [96, 97, 98, 99, 78, 100], to relax the stringent properties of

the distribution of random restrictions needed for classical switching lemmas. In particular, we

invoke a pseudorandom switching lemma from Trevisan and Xue [78], which reduces DNFs to

local functions while only requiring that randomness specifying survivors and fixed values be

f-wise independent. This allows us to avoid problems with independence arising in the naive

solution above. Now, we can append a f-wise independent encoding of the (short) random seed

that specifies the surviving variables. This gives us a generating distribution of random restrictions

1The switching lemma actually shows that DNFs become small-depth decision trees under random restrictions.
However, it is this (straightforward) consequence of the switching lemma that we will use in our reduction.

108

such that (a) DNFs are switched to Local functions, and (b) the seed can be decoded and used to

extract the input locations.

At this point, we can satisfy (i) easily: D decodes the seed (whose encoding is always in, say,

the first < coordinates), then uses the seed to specify the surviving variable locations and extract

the original message. In addition to correctness, 5 ◦ E becomes a distribution over local functions

where the distribution only depends on 5 (not the message). However, composing D with 5 ◦ E

induces dependence on underlying message: tampered encoding of the seed, may depend on the

message in the survivor locations. The encoded seed is comparatively small and thus (assuming

the restricted DNF collapses to a local function) requires a comparatively small number of bits

to be leaked from the message in order to simulate the tampering of the encoded seed. Given

a well simulated seed we can accurately specify the local functions that will tamper the input

(the restricted DNFs whose output locations coincide with the survivors specified by the tampered

seed). This is the intermediate leaky local tampering class we reduce to, which can be described via

the following adversarial game: (1) the adversary commits to # local functions, (2) the adversary

can select< of the functions to get leakage from, (3) the adversary then selects the actual tampering

function to apply from the remaining local functions.

To deal with depth 3 circuits, we recursively apply this restriction-embedding scheme 3 times.

Each recursive application allows us to trade a layer of gates for another (adaptive) round of <

bits of leakage in the leaky local game. One can think of the recursively composed simulator

as applying the composed random restrictions to collapse the circuit to local functions and then,

working inwardly, sampling all the seeds and the corresponding survivor locations until the final

survivor locations can be used to specify the local tampering.

7.2 Reducing Small-Depth Circuits to Decision-Trees

To capture our reduction in a more general sense, we introduce yet another “leaky” tampering

model. In particular, given an arbitrary class of tampering functions, we consider a variant of the

class of tampering functions which may depend in some limited way on limited leakage from the

109

underlying code word.

Definition 31 (Leaky Function Families). Let LL8,<,# [C] denote tampering functions generated

via the following game:

1. The adversary first commits to # functions from a class C, �1, . . . , �# = L.

(Note: �9 : {0, 1}# → {0, 1} for all 9 ∈ [#].)

2. The adversary then has 8-adaptive rounds of leakage. In each round 9 ∈ [8],

• the adversary selects B indices from [#], denoted (9 ,

• the adversary receives L(G)(9 .

Formally, we take ℎ 9 : {0, 1}<(9−1) → [#]< to be the selection function such that

ℎ 9 (� (-)(1 , . . . , � (-)(9−1) = (9 .

Let ℎ1 be the constant function that outputs (1.

3. Finally, selects a sequence of = functions (�C1 , . . . , �C=) () = {C1, . . . , C=} ⊆ [#] such that

C1 < C2 < · · · < C=) to tamper with.

Formally, we take ℎ : {0, 1}<8 → [#]= such that ℎ(� (-)(1 , . . . , � (-)(8) =) .

Thus, any g ∈ LL8,<,# [C] can be described via (L, ℎ1, · · · , ℎ8, ℎ). In particular, we take g =

Eval(L, ℎ1, · · · , ℎ8, ℎ) to denote the function whose output given input - is) (-), where) is, in

turn, outputted by the above game given input - and adversarial strategy (L, ℎ1, · · · , ℎ8, ℎ).

We note that the “leakage” is simply a restricted form 8 ·< adaptive queries to depth-C decision

trees. Thus, LL8,<,= [DT(C)] ⊆ DT(8<C). Therefore non-malleable code for large depth decision

trees immediately yields a new non-malleable code for small depth circuits (with improved error).

However, LL8,<,= [DT(C)] gives decision trees that are identical excepting (up to) the last C queries

before output (and that the last C-queries must be consistent with one of = depth-C decision trees).

110

Lemma 16. For (, 3, =, C ∈ N, ?, X ∈ (0, 1), there exist

f = poly(C, log(2C(), log(1/X), log(1/?))2

and < = $ (f log =) such that, for any 2< ≤ : ≤ =(?/4)3 ,

(AC3 (() =⇒ LL3,<,= [DT(C)], 3Y)

where

Y = =(

(
22C+1(5?C)C + X

)
+ exp(− f

2 log(1/?)).

For constant-depth polynomial-size circuits (i.e.,AC0), by setting ? = =−$ (1/3) (such as =−1/1003),

C′ = 1/40? and X = exp(=−Ω(1/3)), the error of our non-malleable reduction, Lemma 16, is

exp(−=Ω(1)).

The same setting of parameters lead to non-malleable reduction for circuits of depth as large

as Θ(log(=)/log log(=)) and size (= exp(=$ (1/3)) with error exp(−=Ω(1/3)). Combining our

reduction, Lemma 16, with Theorem 26 yields our main theorem for this chapter.

Lemma 16 will ultimately proven by a recursive application of a more general Lemma 17 that

allows generically transforms pseudorandom switching lemmas (Section 2.6.6) into non-malleable

reductions. However before continuing we introduce some additional notation that will streamline

our presentation.

Helpful Functions. For a random restriction d = (d(1) , d(2)) ∈ {0, 1}=×{0, 1}=, ExtIndices(d(1)) :=

(81, . . . , 8:) ∈ [= + 1]: are the last : indices of 1s in d(1) where 81 ≤ 82 · · · ≤ 8: and 8 9 = = + 1 for

9 ∈ [:] if such index doesn’t exist (: should be obvious from context unless otherwise noted).

We define a pair of functions for embedding and extracting a string G according to a random

restriction, d. Let Embed : {0, 1}:+2= → {0, 1}=, such that for d = (d(1) , d(2)) ∈ {0, 1}= × {0, 1}=

and G ∈ {0, 1}: , and 8 ∈ [=],
2The exponent of this polynomial is a fixed absolute constant independent of all other parameters.

111

Embed(G, d)8 =

G 9 if ∃ 9 ∈ [:] : 8 = ExtIndices(d(1)) 9

d
(2)
8

otherwise

And, let Extract : {0, 1}2= → {0, 1}: × {⊥} be such that if 2 ∈ {0, 1}=, d(1) ∈ {0, 1}=, and

‖d(1) ‖0 ≥ : , then Extract(2, d(1)) = 2ExtIndices(d (1)) . Otherwise, Extract(2, d(1)) = ⊥.

Note that, for any d such that ‖d(1) ‖0 ≥ : , Extract(Embed(G, (d(1) , d(2))), d(1)) = G.

7.2.1 Proof of Lemma 17

The simple encoding and decoding scheme based on the pseudorandom switching lemma is

defined in Figure 7.1.

Lemma 17. Let F and G be two classes of functions. Suppose for = ∈ N, ? ∈ (0, 1) and any f-

wise independent distribution D over {0, 1}= log(1/?) × {0, 1}=, it holds that for any � : {0, 1}= →

{0, 1} ∈ F ,

Pr
d←R(D)

[
�d is not in G

]
≤ Y.

Then for 8, #, : ∈ N, (E★
:,=,?,f

,D★
:,=,?,f

) defined in figure 7.1 is an

(LL8,<,# [F] =⇒ LL8+1,<,# [G], #Y + exp(− f

2 log(1/?)))

non-malleable reduction when (4f/log(1/?)) ≤ : ≤ (= − <)?/2.

The Lemma follows immediately from Claims 15, 16, and 17 below.

Claim 15. For any G ∈ {0, 1}: , Pr[D∗(E∗(G)) = G] = 1.

Proof. The second step of E∗ guarantees that ExtIndices(! (� (Z)))1 > < and ‖! (� (Z)‖0 ≥ : .

Therefore, E' (Z) is located in the first < bits of 2 and the entire G is embedded inside the re-

maining = − < bits of 2 according to ! (� (Z)). By the decoding property of RPE from lemma 4,

Pr[D' (2, . . . , 2<) = Z] = 1, namely, Pr[Z̃ = Z] = 1. Conditioned on Z̃ = Z , because ‖! (� (Z)‖0 ≥

: , D∗(E∗(G)) = Extract(2, ! (� (Z))) = G holds. The desired conclusion follows. �

112

Take :, =, ?, f to be parameters.
Let � = �f : {0, 1}B (f) → {0, 1}= log 1/? be an f-wise independent generator from Lemma 7.
Let (E',D',R') denote the RPE from lemma 4 with codewords of length <(B) ≥ f/2sec.
Let Z∗ ∈ {0, 1}B (f) be some fixed string such that ‖! (� (Z∗))=−<+1,...,=‖0 ≥ : . (For our choice of �,
such a Z∗ can be found efficiently via interpolation.)

E★(G):

1. Draw (uniformly) random seed Z ← {0, 1}B and (uniformly) random string * ←
{0, 1}=−<.

2. Generate pseudorandom restriction, d = (d (1) , d (2)):
d (1) ← ! (� (Z)); (∗) If ‖! (� (Z))=−<+1,...,=‖0 < : , set Z = Z∗.
d (2) ← E' (Z)‖*.

3. Output 2 = Embed(G, d).

D★(2̃):

1. Recover tampered seed: Z̃ ← D' (2̃1, . . . , 2̃<).
If ‖! (� (Z̃))=−<+1:=‖0 < : , output ⊥ and halt.

2. Output Extract
(
2̃, ! (� (Z̃))

)
.

Figure 7.1: A Pseudorandom Restriction Based Non-Malleable Reduction, (E★
:,=,?,f

,D★
:,=,?,f

)

given LL8,<,# [F] tampering g = (L, ℎ1, . . . , ℎ8 , ℎ) output g′ = (L′, ℎ′1, . . . , ℎ
′
8+1, ℎ

′):

1. Draw (uniformly) random seed Z ← {0, 1}B and (uniformly) random string ' ← {0, 1}=−<.
2. Generate pseudorandom restriction, d = (d (1) , d (2)):

d (1) ← ! (� (Z)). (∗) If ‖! (� (Z))=−<+1,...,=‖0 < : , set Z = Z∗.

d (2) ← E' (Z)‖'
3. Apply (constructive) switching lemma with pseudorandom restriction to get function L′ ≡ L |d

(=-bit output).
If L is not in G, halt and output some constant function.

4. For 9 ∈ [8], ℎ′
9
≡ ℎ 9 .

5. ℎ′
8+1(H

′
1, . . . , H

′
8
) := ℎ(H′1, . . . , H

′
8
)[<] .

6. ℎ′(H′1, . . . , H
′
8+1) := ℎ(H′1, . . . , H

′
8
)ExtIndices(! (� (D' (H′8+1)))) .

7. Finally, output g′ = (L′, ℎ′1, . . . , ℎ
′
8+1, ℎ

′).

Figure 7.2: Simulator, Sim, for (E★,D★)

Claim 16. Given any g = Eval(L, ℎ1, . . . , ℎ8, ℎ) ∈ LL8,<,# [F], there is a distribution (g over

g′ ∈ LL8+1,<,# [G], such that for any G ∈ {0, 1}: , D★◦g◦E★(G) is X-close to g′(G) where g′← Simg

113

and X ≤ Pr[L ◦ E∗ is not in G].

Proof. Recall that a function g in LL8,<,# [F] can be described via (L, ℎ1, . . . , ℎ8, ℎ) where L is a

function in F from {0, 1}: to {0, 1}# and for every G ∈ {0, 1}: , ℎ takes L(G)(1 , . . . , L(G)(8 (where

(9 are sets adaptively chosen by ℎ 9 for 9 ∈ [8]) as input and outputs a set) of size : . And the

evaluation of g on G is L(G)) .

Let Simg be defined in Figure 7.2. We call a chocie of randomness Z,*, A “good for L =

(�1, · · · , �#)” (where A is the randomness for E') if L ◦ E★(·; Z,*, A) is in G. We will show for

any good Z,*, A for L, D★ ◦ g ◦ E★(·; Z,*, A) ≡ g′(·), where g′ = (g (Z,*, A).

For good Z,*, A , note that (1) L′ ≡ L |d and (2) d was used in both E★ and (g. It follows

that for all G, L′(G) = L |d (G) = L(E★(G; Z, ', A)). Because ℎ′
9
≡ ℎ 9 for 9 ∈ [8], it follows

by induction that H′
9
= H 9 (the output of each ℎ′

9
and ℎ 9 respectively, 9 ∈ [8]). Therefore,

ℎ(H1, · · · , H8) = ℎ(H′1, · · · , H
′
8
). It follows that 2̃ [<] = H′

8+1 and ! (� (D' (H′8+1))) = ! (� (Z̃)).

Consequently, ℎ′(H′1, · · · , H
′
8+1) outputs that exact same indices that the decoding algorithm, D★,

will extract its output from. Thus, g′(G) = D★ ◦ g ◦ E★(G; Z, ', A) for any G.

Because Sim and E★ sample their randomness identically, the distributions are identical, con-

ditioned on the randomness being “good.” Hence X is at most the probability that Z,*, A are not

“good for L”, i.e., Pr[L ◦ E∗ is not in G].

�

Claim 17. Pr[L ◦ E∗ is not in G] ≤ #Y + exp(−f/2 log(1/?)).

Proof. We first show D = � (Z)‖E' (Z)‖* is f-wise independent when Z ← {0, 1}B and * ←

{0, 1}=−<. As * is uniform and independent of the rest, it suffices to simply consider / =

� (Z)‖E' (Z). Fix some (⊆ [= log(1/?) + <] such that |(| ≤ f. By the secrecy property

of the RPE and < · 2sec ≥ f, conditioned on any fixed Z , /(∩{= log(1/?)+1,...,= log(1/?)+<}is dis-

tributed uniformly. Therefore, Z is independent of /(∩{= log(1/?)+1,...,= log(1/?)+<}, so � guarantees

that /(∩{1,...,= log(1/?)} is independently of (∩ {= log(1/?) + 1, . . . , = log(1/?) + <} and also dis-

tributed uniformly. Therefore, /(is distributed uniformly.

114

Note that d in E∗ is distributed identically to R(D), except when Z∗ is used. Hence

Pr[L ◦ E∗ is not in G] ≤ Pr
d←R(D)

[
Ld is not in G

]
+ Pr[‖! (� (Z))=−<+1,...,=‖0 < :] .

By our assumption and a union bound over the # boolean functions, Ld ∉ G happens with proba-

bility at most #Y when d ← R(D). Observe that ! (� (Z))=−<+1,...,= is a f
log(1/?) -wise independent

distribution over {0, 1}=−< and each coordinate is 1 with probability ?. Let ` = (= − <)? denote

the expected number of 1’s in ! (� (Z))=−<+1,...,=. By linearity of expectation ` = (= − <)?. For

: ≤ `/2 and f
log(1/?) ≤ `/8, we can use the concentration bound from Theorem 17 to conclude

that ‖! (� (Z))=−<+1,...,=‖0 < : happens with probability at most exp(− f
2 log(1/?)). The desired

conclusion follows. �

7.2.2 Proof of Lemma 16

To prove Lemma 16, we instantiate Lemma 17 using the pseudorandom switching lemma of

Theorem 14 (in fact, Corollary 1) and iteratively reduce AC3 (() to leaky local functions. Each

application of the reduction, after the first, will allow us to trade a level of depth in the circuit for

an additional round of leakage until we are left with a depth-2 circuit. The final application of the

reduction will allow us to convert this circuit to local functions at the expense of a final round of

leakage.

Let C := log(ℓ) and let f := poly(C, log(2C(), log(1/X), log(1/?)) as in Corollary 1 so that

any depth-2 circuits with bottom fan-in C become depth C decision trees with probability at least

1−(22C+1(5?C)C+X) under pseudorandom restrictions drawn from f-wise independent distribution.

We use AC3 (() ◦ DT(C) to denote alternating (unbounded fan-in) circuits of depth 3, size (

that take the output of depth C decision trees as input. (Note may contain up to (decision trees.)

Similarly it is helpful to decompose an alternating circuit (from F-AC3) into a base layer of CNFs

or DNFs and the rest of the circuit, AC3−2(() ◦ F-AC2((′). (Again, the base may contain up to (

CNFs/DNFs of size (′.)

115

Claim 18. (AC3 (() =⇒ LL1,<,= [AC3−2(() ◦ C-AC2(2C()], Y).

Proof. Let � ∈ AC3 (() be a boolean function. Note that Theorem 14 and Corollary 1 are only

useful for bounded width DNF and CNF. So, we view � as having an additional layer of fan-

in 1 AND/OR gates, namely, as a function in 1-AC3+1((). Because there are at most (DNFs

(or CNFs) of size (at the bottom layers of �, by Corollary 1, the probability that � is not in

AC3−1(() ◦ DT(C) is at most (
(
2C+2(5?)C + X

)
under the pseudorandom switching lemma with

parameters ?, X, f. So by Corollary 1, (E★,D★) reduces AC3 (() to LL1,<,= [AC3−1(() ◦ DT(C)]

with error =((
(
2C+2(5?)C + X

)
) + exp(−Ω(f

log(1/?))) ≤ Y.

By the fact that DT(C) can be computed either by width-C DNFs or width-C CNFs of size at

most 2C , any circuit in AC3−1(() ◦ DT(C) is equivalent to a circuit in AC3−2(() ◦ C-AC2(2C(), in

other words, a depth 3 circuit with at most (width-C size-(2C DNFs or CNFs at the bottom. Hence,

AC3−1(() ◦ DT(C) is a subclass of AC3−2(() ◦ C-AC2(2C() and the claim follows. �

Claim 19. (LL8,<,= [AC3−8−1(() ◦ C-AC2(2C()] =⇒ LL8+1,<,= [AC3−8−2(() ◦ C-AC2(2C()], Y).

Proof. For a boolean function � ∈ AC3−8−2(() ◦ C-AC2(2C(), because there are at most (DNFs

(or CNFs) of size 2C(at the bottom layers of �, Corollary 1 shows � is not in AC3−2(() ◦

DT(C) with probability at most (
(
22C+2(5?C)C + X

)
under a pseudorandom switching lemma with

paramemters ?, X, f. So by Lemma 17, (E★,D★) reduces (LL8,<,= [AC3−8−2(() ◦ C-AC2(2C()] to

LL8+1,<,= [AC3−8−2(() ◦ DT(C)] with error at most Y. Similarly as the previous proof, because

AC3−8−2(() ◦ DT(C) is a subclass of AC3−8−3(() ◦ AC2(2C(), the claim follows. �

Claim 20. (LL3−1,<,= [C-AC2(2C()] =⇒ LL3,<,= [Local2
C], Y)

Proof. Finally, for a boolean function � ∈ C-AC2(2C(), Corollary 1 shows � is not in DT(C) with

probability at most (
(
22C+2(5?C)C + X

)
. So by Lemma 17, (E★,D★) reduces LL3−1,<,= [C-AC2(2C()]

to LL3,<,= [DT(C)] with error at most Y. The desired conclusion follows from the fact that DT(C) is

a subclass of Local2
C

. �

116

By applying Claim 18 once, then Claim 19 (3 − 2) times and Claim 20 once, AC3 (() reduces

to LL3,<,= [Local2
C] with error at most 3Y. Note that < = $ (f log =) throughout, and during

each application of above claims, given a codeword of length =′ ≥ : ≥ 2<, Lemma 17 holds for

messages of length (=′ − <)?/2 ≥ =′(?/4). Therefore, the composed reduction works for any

2< ≤ : ≤ =(?/4)3 .

117

Chapter 8: Low-Degree Polynomial Tampering

In this chapter we construct non-malleable codes resilient to tampering by low-degree polyno-

mials. In contrast to prior chapters, here we consider the codeword alphabet to, accordingly, consist

of field elements. Our techniques also follow a very different framework. In contrast to previous

chapters which constructed a sequence of non-malleable reductions, here we follow a paradigm

introduced by Cheraghchi and Guruswami [11] and construct an invertible seedless non-malleable

extractor that is resilient to tampering by low degree polynomials.

Polynomial Tampering. Let @ be a prime, and Poly=,@,3 denote the family of n-variate polynomi-

als over F@ of degree at most 3. We are interested in the following family of tampering functions:

F=,@,3 := {(?1, . . . , ?=) : ∀8 ∈ [=], ?8 ∈ Poly=,@,3}.

For % = (?1, . . . , ?=) ∈ F=,@,3 , and G ∈ F=@, define %(G) := (?1(G), . . . , ?= (G)).

The following is our main result.

Theorem 28 (NMCs for bounded-degree polynomials). There exists a constant� > 0 such that for

all integers =, 3, <, any n > 0 and any prime @ > (�=234<22</n2) · log(=3/n), there exists a non-

malleable code on alphabet [@], with block length =, message length <, relative rateΩ(</= log @)

and error n , with respect to the family F=,@,3 .

To prove Theorem 28, we construct new explicit seedless non-malleable extractors that can

handle the tampering class F=,@,3 . A similar strategy was adopted in [15], where they constructed

seedless non-malleable extractors against affine tampering functions (i.e, F=,@,1). However, their

construction of such extractors heavily exploit the linearity of the tampering functions and explicit

constructions of extractors that are linear, and their techniques seem to break down even against

118

quadratic tampering functions. We introduce a completely different approach to construct seedless

non-malleable extractors against higher degree polynomial tampering.

We use Theorem 28 to derive a non-malleable code that is secure against tampering by arith-

metic circuits. Consider the following family of tampering functions:

E=,@,B := {(41, . . . , 4=) : 48 is an =-variate size-B arithmetic circuit over F@}.

For � = (41, . . . , 4=) ∈ E=,@,B and G ∈ F=@, we define � (G) := (41(G), . . . , 4= (G)).

Corollary 7 (NMCs for arithmetic circuits). There exists a constant� > 0 such that for all integers

=, B, <, any n > 0 and any prime @ > (�=2B<24B+2</n2) · log(=/n), there exists a non-malleable

code on alphabet [@], with block length =, message length <, relative rate Ω(</= log @) and error

n , with respect to the family E=,@,B.

Theorem 7 follows as a straightfoward consequence of Theorem 28, using the fact that a size-B

arithmetic circuit computes a polynomial of degree at most 2B.

As mentioned above, to construct this code we first construct a seedless non-malleable extrac-

tor.

Theorem 29. There exists a constant � > 0 such that for all integers =, 3, <, any prime @ and any

n > 0 such that @ > (�=234<22</n2) · log(=3/n), there exists an explicit function NMExt : F=@ →

{0, 1}<, that is a seedless non-malleable extractor with respect to the family of sources

X = {- : X is a skew affine source on F=@ of dimension ≥ 1}

and the tampering family F=,@,3 .

We note that our seedless non-malleable extractor can also be used to construct non-malleable

secret sharing schemes resilient to polynomial tampering using a framework introduced by Lin et

al. [17]. In brief, a non-malleable secret sharing scheme is a threshold secret sharing scheme that

119

is resilient to tampering attacks performed jointly across all shares. We refer the reader to [101]

for the full definition and details.

As is the case above, the existence of seedless non-malleable extractors for arithmetic circuit

tamepring is an immediate corollary of Theorem 29.

Corollary 8. There exists a constant � > 0 such that for all integers =, B, <, any prime @ and any

n > 0 such that @ > (�=2B<24B+2</n2) · log(=/n), there exists an explicit function NMExt : F=@ →

{0, 1}<, that is a seedless non-malleable extractor with respect to the

X = {- : X is a skew affine source on F=@ of dimension ≥ 1}

and the tampering family E=,@,B.

8.1 Technical Overview

In this section we discuss the main ideas that are used in our explicit constructions of non-

malleable codes, non-malleable extractors, and non-malleable secret sharing schemes. We start by

discussing the explicit non-malleable extractor against polynomial tampering (Theorem 29). We

then discuss ideas that go into using this construction to construct efficient non-malleable codes

and non-malleable secret sharing schemes that are robust to polynomial tampering.

Seedless non-malleable extractors against polynomials. We discuss the main ideas behind the

construction of the non-malleable extractor from Theorem 29. We consider the simpler setting and

assume the the source is uniform (instead of being a skew affine source as in Theorem 29). This

setting cleanly captures our main ideas. The setup is as follows:

Let =, 3 be arbitrary integers, and fix any n > 0. Let @ = poly(=, 3, 1/n) be a large enough

prime (for exact details, see the statement of Theorem 29). Let - be the uniform distribution on

F=@. Our goal is to construct a polynomial time function NMExt : F=@ → {0, 1}< such that for any

tampering function % = (?1, . . . , ?=) from the class F=,@,3 , such that there exists 8 ∈ [=] for which

120

?8 (G) ≠ G8, we have

| (NMExt(-),NMExt(%(-))) − (U<,NMExt(%(-))) | ≤ n .

The high level idea of our construction is to observe that we can express - as a convex com-

bination of distributions that are flat1 on lines in F=@, and then design a non-malleable extractor

for such line sources. We note that Gabizon and Raz [53] used such an approach for constructing

affine extractors on large fields.

We now describe our approach more precisely. Our plan is to construct a low-degree multivari-

ate polynomial ℎ : F=@ → F@ such that the following hold: for all V ∈ F@, the polynomial

6V = ℎ(G) + Vℎ(%(G))

is non-constant. (We stress that the choice of ℎ cannot depend on %.) Now, for a suitable choice of

< (we pick < = a log @ for some small enough a), we claim that for such an ℎ, defining

NMExt(G) = ℎ(G) (mod 2<)

would satisfy the conclusion of Theorem 29.

Before constructing such an ℎ, we first discuss why this is indeed enough. For any 0 ∈ F=@,

1 ∈ F=@ \ {0=}, define the line !0,1 = {(01 + C11, . . . , 0= + C1=) : C ∈ F@}. We abuse notation, also

use !0,1 to denote the flat distribution on !0,1. Then clearly, - can be sampled by first uniformly

sampling 0, 1 (from their respective domains), and then sampling from !0,1.

The first observation is the following: let � = 346(6V), and let 6V,0,1 (C) be the univariate

restriction of 6V to the line !0,1. We note that the coefficient of C� is 6V (1). Appealing to the

fact that a low degree polynomial has few roots (Lemma 11), it follows that with high probability

(over sampling 0, 1), the univariate polynomial 6V,0,1 (C) is a non-constant polynomial of degree �.

1We say a distribution is flat if it is uniformly distributed on its support.

121

Fix such vectors 0, 1 so that 6V,0,1 is a non-constant polynomial. We now use a deep result from

algebraic geometry known as the Weil bound (see Theorem 11) to conclude that for any non-trivial

character2 j of F@, we have

|EC∼F@ [j(6V,0,1 (C))] | ≤ �/
√
@.

Roughly, this asserts the fact that the non-trivial Fourier coefficients of the distribution 6V,0,1 (*F@)

are bounded, where*F@ denotes the uniform distribution on F@. Such a bound can be now be trans-

lated into statistical closeness of the distribution (NMExt(!0,1),NMExt(%(!0,1))) to (U<,NMExt(%(!0,1)))

using known XOR lemmas (see Lemma 8, Lemma 9). To conclude that (NMExt(-),NMExt(%(-)))

is close to (U<,NMExt(%(-))), we combine the fact that - is a convex combination of the

flat sources !0,1, and that for most 0, 1, we have (NMExt(!0,1),NMExt(%(!0,1))) is close to

(U<,NMExt(%(!0,1))).

Given the above discussion, all that remains to construct the required non-malleable extractor

is to find such an ℎ. We recall the guarantee we need from ℎ for convenience of the reader:

• for all V ∈ F@ and % = (?1, . . . , ?=) ∈ F=,@,3 satisfying that for some 8 ∈ [=] ?8 (G) ≠ G8, the

polynomial 6V (G) = ℎ(G) + Vℎ(%(G)) is a non-constant polynomial.

• ℎ must a low degree polynomial. In particular, we require 346(ℎ) � @1/2.

An initial attempt to construct such an ℎ could be to use a polynomial similar to the one used by

Gabizon and Raz [53] in their affine extractor construction and define

ℎ(G1, G2, . . . , G=) = G21
1 + G

22
2 + . . . + G

2=
= ,

where 21, 22, . . . , 2= are arbitrary distinct positive integer. It is not hard to see that this does not

work as follows. It is always possible to find V, W1, W2, . . . , W= ∈ F∗@ such that W28
8
= −V−1 for every 8

and W8 ≠ 1 for at least one 8. Now defining % = (W1G1, . . . , W=G=) gives the desired counterexample

since for this choice of V and %, ℎ(G) + Vℎ(%(G)) is identically the zero polynomial.

2See Section 2.6.4 for a quick recap of characters of finite fields.

122

We avoid the above counterexample as follows: Pick 21, 22, . . . , 22= from an arithmetic pro-

gression such that the common difference is co-prime with @ − 1, and define

ℎ(G1, G2, . . . , G=) =
=∑
8=1

(
G
228−1
8
+ G228

8

)
.

For this choice of ℎ, it is not hard to prove that if each ?8 (G) = W8G8 (for some W8 ∈ F@), and

6(G) is a constant polynomial, it must be that each W8 is 1, and V = −1. However this contradicts

our assumption on % that for some 8, ?8 (G) ≠ G8. Thus we avoid the counterexample discussed

above.

We in fact prove that this choice of ℎ works for all % ∈ F=,@,3 \{(G1, . . . , G=)}. To prove this, we

rely on a result (Lemma 10) which shows that for such a choice of 28’s, for any distinct 81, 82 ∈ [=],

346(?281
81
) is well separated from 346(?282

82
). With a careful case analysis, we use this to show that

some monomial (of degree at least 1) in 6(G) survives. We provide the details in Section 8.2.

Non-malleable extractors for skew affine sources against polynomial tampering. In the pre-

vious paragraph we sketched how to construct a non-malleable extractor against polynomial tam-

pering assuming access to a uniform source on F=@. In Section 8.2, we actually show that the non-

malleable extractor works for any affine source which is non-constant on every coordinate. We call

such source a skew affine source. In other words, our non-malleable extractor is resilient to affine

leakage which does not reveal any single coordinate in the source. We will see the application of

this property in non-malleable secret sharing.

To prove this stronger property of the non-malleable extractor, recall that in the previous section

we defined a polynomial 6V (G) = ℎ(G) + Vℎ(%(G)), and its restriction to the line !0,1, denoted by

6V,0,1 (C). We then sketched a proof that 6V,0,1 is non-constant if 6V (1) ≠ 0, which happens with

high probability over 1. In Section 8.2, we actually show the following stronger result: ∀8, 18 ≠ 0

is a sufficient condition for 6V,0,1 to be non-constant. In fact, it is also a necessary condition. If

there exists 8 such that 18 = 0, the adversary can set ? 9 (G) = G 9 for every 9 ≠ 8 and ?8 (G) = 2 for a

constant 2 ≠ 08. One can verify that 6−1,0,1 is a constant in this case.

123

The proof idea is that a similar case analysis as sketched in the previous section also works for

6V,0,1 if 18 ≠ 0 for every 8. We then show that every skew affine source is a convex combination of

line source !0,1 where 18 ≠ 0 for every 8 (Claim 18) to finish the proof.

Non-malleable codes against polynomial tampering. We now turn to cryptographic applica-

tions of our non-malleable extractors. To build a non-malleable code against polynomial tamper-

ing, we use the connection between non-malleable code and non-malleable extractor established

in [11]. To apply the reduction in [11], we need an efficient algorithm which samples almost

uniformly from a pre-image of our non-malleable extractor on any output.

Recall that our non-malleable extractor is of the form NMExt(G) = f(ℎ(G)), where f is

modulo 2< and ℎ is a bounded-degree polynomial. Inverting f is easy, and there exists an al-

gorithm by Cheraghchi and Shokrollahi [102] which almost-uniformly samples a pre-image of

bounded-degree polynomial (over any large enough prime field). An initial attempt to sample

from NMExt−1(I) would be first sample H ∈ f−1(I) and then sample from ℎ−1(H). However this

does not work since ℎ−1(H) might have different size for different H ∈ F@. So we need to sample

H ∈ f−1(I) with probability proportional to |ℎ−1(H) |. A possible way to perform such weighted

sampling from f−1(I) is to do a rejection sampling which samples H ∈ f−1(I) uniformly in each

round and accept with probability proportional to |ℎ−1(H) |. However, we need to (approximately)

count |ℎ−1(H) | in this approach, which is difficult in general.

Chattopadhyay and Zuckerman [37] handled a similar sampling task while constructing effi-

cient non-malleable codes in the split-state model, with the crucial difference being that they were

dealing with polynomials on a constant number of variables. In [37], they adopted a similar sam-

pling strategy as the one sketched above, and they count |ℎ−1(H) | with an algorithm from [103],

which has running time doubly exponential in the number of variables (which, in their case, still

takes constant time).

To get around this difficulty, we observe that the algorithm in [102] is actually a rejection sam-

pling which has accepting probability proportional to |ℎ−1(H) | in each round. Therefore, we can

124

embed an uniform sampling of H in each round of [102] and bypass the computation of |ℎ−1(H) |.

We provide the details of our sampling algorithm in Section 8.3.

8.2 Non-malleable extractors against polynomials

We present the proof of Theorem 29 in this section. On a high level, our idea is to express -

as a convex combination of sources on lines in F=@, and design a non-malleable extractor for such

line sources. We note that Gabizon and Raz [53] adopted such an approach for constructing affine

extractors over large fields. First we show that a skew affine source is a convex combination of

skew line source.

Lemma 18. Let @ be a prime, = < @ be a integer and - ∈ F=@ be a skew affine source of dimension

: . Then there exists a distribution � ∈ F=@ and a vector 1 ∈ (F@\{0})= such that - ≡ �+)1, where

) is uniform over F@. In other words,

- =
∑
0∈�=@

Pr[� = 0] · !0,1,

where !0,1 is the uniform distribution over the line {0 + C1 : C ∈ F@}.

Proof. Suppose - is uniform over the affine subspace , + I where , is a linear subspace of F=@

and I ∈ F=@ is a fixed vector. Our goal is to find a vector 1 ∈ , s.t. 18 ≠ 0 for every 8 ∈ [=]. Given

such 1 we can set � ≡ - , and the lemma holds because C1 ∈ , for every C ∈ F@, and - + F ≡ -

for every F ∈ , .

Fix a basis {F1, . . . , F: } of the linear subspace, . For every 8 ∈ [:], define (8 = { 9 ∈ [=] : (F8) 9 ≠ 0}

(i.e. the indices of the non-zero coordinates of F8) and (8 =
⋃8
9=1 (9 . Note that (: = [=] because

, + I does not have any constant coordinate. We will prove by induction that for every 8 ∈ [:]

there exists E8 ∈ span(F1, . . . , F8) s.t. (E8) 9 ≠ 0 for every 9 ∈ (8. Assume that there exists E8−1

which satisfies the induction hypothesis. (Note that E0 = 0.) Consider the set of @ distinct vectors

!8 = {E8−1 + CF8 : C ∈ F@} ⊆ span(F1, . . . , F8). Observe that for every 9 ∈ (8, there exists at most

one vector D 9 ∈ !8 satisfying that (D 9) 9 = 0. Since = < @, there must exist D∗ ∈ !8 s.t. (D∗) 9 ≠ 0

125

for every 9 ∈ (8. Moreover, for every 9 ∈ (8\(8 ⊆ (8−1, (D∗) 9 = (E8−1) 9 ≠ 0. Therefore (D∗) 9 ≠ 0

for every 9 ∈ (8. By mathematical induction, our claim is true for every 8 ∈ [:]. Finally observe

that E: is a valid choice of 1 because (: = [=] and span(F1, . . . , F:) = , . �

Next we present the extractor construction and prove correctness. Let � be the smallest integer

greater than 3 such that gcd(�, @ − 1) = 1. Note that � must be a prime. We can deduce an upper

bound on � as follows. Define the primorial function a(ℓ) as the product of the first ℓ primes. It is

known that a(ℓ) = 4(1+>(1))ℓ log(ℓ) [104]. Further, it is known that the ℓ’th smallest prime number is

at most$ (ℓ log(ℓ)) [105, 106]. Hence, it must be that � ≤ ` log @, for some large enough constant

`. We can thus find such a � efficiently.

For 8 ∈ [2=], define 28 = �(43= + 1) + �8. Define the function ℎ : F=@ → F@ as

ℎ(G1, . . . , G=) =
=∑
8=1
(G228−1
8
+ G228

8
).

Let f : F@ → {0, 1}< be the mapping from Lemma 9. We now define the non-malleable

extractor:

NMExt(G) = f(ℎ(G)).

For any 0 ∈ F=@ and 1 ∈ F=@ \ {0=}, define the line !0,1 = {0 + C1 : C ∈ F@}. We overload

notation, and also use !0,1 to denote the flat source on this line. We will show that NMExt is

a non-malleable extractor against Poly=,@,3 for every skew line source. Theorem 29 then follows

using Claim 18.

Lemma 19. Let 0 ∈ F=@, 1 ∈ (F@\{0})=. For every tampering function % ∈ Poly=,@,3 which is not

identity on !0,1,3

(NMExt(!0,1),NMExt(%(!0,1))) ≈n (U<,NMExt(%(!0,1))),

where n = $
(

2<32= log @√
@

)
3That is, there exists G ∈ !0,1 s.t. %(G) ≠ G.

126

The following bound is the key ingredient. Indeed, Claim 19 then follows using Lemma 9.

Lemma 20. Let j, q be additive characters of F@ such that j is non-trivial. Then,

��E[j(ℎ(!0,1))q(ℎ(%(!0,1)))]�� ≤ $ ((32= log @)/√@).

Let j(H) = 42cUH/@ and q(H) = 42cU′H/@. Since j is non-trivial, we know that U ≠ 0. Let

V = U′/U. Define the polynomial

6V (G) = ℎ(G) + Vℎ(%(G)).

We note that

|E[j(ℎ(-))q(ℎ(%(-)))] | ≤
����E [

4

(
U6V (-)
@

)] ���� .
Let 6V,0,1 (C) be the univariate polynomial obtained by restricting 6(G) to the line !0,1. The

following two claims directly yields Claim 20.

Lemma 21. Suppose for some 0, 1 ∈ F=@, 6V,0,1 is a non-constant polynomial. Then,����EC∼F@ [
4

(
U · 6V,0,1 (C)

@

)] ���� ≤ $ ((32= log @)/√@).

Lemma 22. For every 0 ∈ F=@, 1 ∈ (F@\{0})=, 6V,0,1 is a constant polynomial only if % is identity

on !0,1.

Claim 21 is indeed simple to obtain using the Weil bound.

Proof of Claim 21. Follows directly from Theorem 11 using the fact that 346(6V,0,1 (C)) ≤ $ (32= log @).

�

Now we prove Claim 22.

Proof of Claim 22. For every 8 ∈ [=], define the polynomial @8 (C) = ?8 (0 + C1). Since 0 + C1 is an

127

affine function, 346(@8) ≤ 346(?8) ≤ 3. Let 38 = 346(@8). For every 8 ∈ [=], define

F8 (C) = (08 + C18)228−1 + (08 + C18)228 + V@8 (C)228−1 + V@8 (C)228 .

Recall that

6V,0,1 (C) =
∑
8

F8 (C).

First we prove that 346(F8) ∈ {0, 22838, 228, 228−1, 228 − 1}. Moreover, 346(F8) = 0 if and only

if V = −1 and @8 (C) = 08 + C18. (In other word, F8 is constant if and only if V = −1 and ?8 (G) = G8

for every G ∈ !0,1.) To prove this statement, first we consider the case 346(@8) ≥ 2. Suppose that

the leading coefficient in @8 is B8 ≠ 0. If V ≠ 0, the coefficient of C22838 in F8 is VB228
8
≠ 0. Therefore

346(F8) = 22838. If V = 0, the coefficient of C228 in F8 is 1228
8

≠ 0. Therefore 346(F8) = 228.

Next consider the case 346(@8) = 0. With an argument similar to the case V = 0, we also have

346(F8) = 228. Finally consider the case 346(@8) = 1. Suppose @8 (C) = A8 + CB8. Observe that the

coefficient of C228 in F8 is 1228
8
+ VB228

8
and the coefficient of C228−1 in F8 is 228 (081228−1

8
+ VA8B228−1

8
).

In this case either 346(F8) ∈ {228, 228 − 1} or

1
228
8
= −VB228

8
and 081

228−1
8

= −VA8B228−1
8

.

The equations hold only when there exists : ∈ F@ s.t.

A8 = :08, B8 = :18 and :228 = −V−1.

If such : exists, we can write F8 (C) = (1 − :−� (08 + C18)228−1 . If V = −1, we have : = 1, F8 (C) = 0

and @8 (C) = 08 + C18. If V ≠ −1, then : ≠ 1, which implies (1− :−�) ≠ 0 because gcd(�, @−1) = 1.

Therefore F8 contains a monomial of degree 228−1 with coefficient (1 − :−�)1228−1
8

≠ 0, and hence

346(F8) = 228−1.

Now we show that 6V,0,1 (C) is a constant polynomial only if V = −1 and @8 (C) = 08 + C18 for

every 8 ∈ [=]. Consider the set of index � = {8 ∈ [=] : 346(F8) > 0}. Then for every 8 ∈ �,

128

346(F8) ∈ {38228, 228, 228−1, 228 − 1} if 38 > 0, or 346(F8) ∈ {228, 228−1, 228 − 1} if 38 = 0. By

Lemma 10, for every pair 8, 9 ∈ � s.t. 8 ≠ 9 , we have 346(F8) ≠ 346(F 9). Therefore 346(6V,0,1) >

0 if � is non-empty. If 6V,0,1 is a constant polynomial, it must be the case that 346(F8) = 0 for

every 8 ∈ [=]. This only happens when V = −1 and @8 (C) = 08 + C18 for every 8 ∈ [=], i.e. V = −1

and %(G) = G for every G ∈ !0,1. Claim 22 then follows directly.

�

Finally we prove Theorem 29 formally.

Theorem 30 (Theorem 29, restated). There exists a constant � > 0 such that for every integers

=, <, 3, any n > 0, any prime @ such that @ > �=234<22< · log(=3/n), any skew affine source

- ∈ F=@ of dimension ≥ 1 and any tampering function 5 ∈ Poly=,@,3 , there exists a distribution � 5

on {0, 1}< ∪ {same} that is independent of - , such that

| (NMExt(-),NMExt(5 (-))) − (U<, copy(� 5 ,U<)) | ≤ n .

Proof. By Claim 18, there exists a distribution � on F=@ and vector 1 such that - =
∑
0 Pr[� =

0] · !0,1 . Define � = {0 ∈ F=@ : 5 is identity on !0,1}. For every 0 ∈ �, define (� 5)0 = same. For

every 0 ∉ � define (� 5)0 = NMExt(5 (!0,1)). Then we claim that � 5 =
∑
0 Pr[� = 0] · (� 5)0

satisfies the requirement:

|NMExt(-),NMExt(5 (-)) − U<, copy(� 5 ,U<) |

≤
∑
0

Pr[� = 0] · |NMExt(!0,1),NMExt(5 (!0,1)) − U<, copy((� 5)0,U<) |

=
∑
0∈�

Pr[� = 0] · |NMExt(!0,1),NMExt(!0,1) − U<,U< |

+
∑
0∉�

Pr[� = 0] · |NMExt(!0,1),NMExt(5 (!0,1)) − U<,NMExt(5 (!0,1)) |

≤
∑
0∈�

Pr[� = 0] · n +
∑
0∉�

Pr[� = 0] · n

= n

129

The first inequality is by the convexity of statistical distance, and the second inequality is by

Claim 19. �

8.3 Efficient sampling

Recall that to construct efficient non-malleable codes using the connection established in [11],

we need to efficiently sample from the pre-image of any given output of the non-malleable extractor

constructed in the previous section. (We discuss this connection in Section 2.3.) In this section we

show how to construct such a sampler for the non-malleable extractor constructed in Theorem 29.

Note that Theorem 8 uses the same non-malleable extractors.

Theorem 31. Let NMExt : F=@ → {0, 1}< be the non-malleable extractor against F=,@,3 tampering

in Theorem 29. Then there exists a randomized algorithm nmExt−1 such that for every I ∈ {0, 1}<

the distribution of nmExt−1(I) is n-close to uniform distribution on NMExt−1(I). The running time

of nmExt−1 is bounded by poly(=, 3, log @, log(1/n)).

Our starting point to prove Theorem 31 is a sampling algorithm from [37], which has running

time $ (3=$ (=) (log @)$ (1)) and error $ (3$ (==)/√@). We will show how to modify this algorithm

and get an improved running time of poly(=, 3, log @, log(1/n)) for arbitrarily small error n .

Let NMExt be the non-malleable extractor from Theorem 29. Recall that NMExt = f ◦ ℎ

where f : F@ → {0, 1}< is defined as f(G) = G (mod 2<) and ℎ : F=@ → F@ is a multivariate

polynomial of degree 3 over F@. Given I ∈ {0, 1}<, the pre-image of I under NMExt is

NMExt−1(I) =
⋃

H∈f−1 (I)
ℎ−1(H),

and our goal is to sample from NMExt−1(I) almost uniformly. The sampling algorithm in [37] is

based on the following rejection sampling strategy.

Let " ≥ maxH |ℎ−1(H) |.

1. Sample H ∈ f−1(I) uniformly at random.

130

2. Compute |ℎ−1(H) | (approximately), and accept H with probability |ℎ−1(H) |/" . If H is re-

jected, go back to step 1.

3. Output an (almost) uniform sample from ℎ−1(H).

In [37], the second step is achieved by an algorithm from [103] that has running time$ (3=$ (=) (: log @)$ (1)).

The third step is based on the following algorithm in [102].

Lemma 23 ([102]). Let @ be a sufficiently large prime, 5 ∈ F@ [G1, . . . , G=] be polynomials of

total degree bounded by 3, and each polynomial has at most ℓ monomials. Let (⊆ F=@ be the set

of common zeroes of 5 . There exists a randomized algorithm which takes 5 as input (as a list of

monomials) and outputs a random value - ∈ F=@ such that the distribution of - is$ (3$ (1)/@)-close

to uniform distribution on (. The worst-case running time of this algorithm is poly(log @, 3, =, ℓ).

Thus the bottleneck in achieving a polynomial time sampling algorithm is Step (2) which takes

time that is doubly exponential in =. We get around this difficulty as follows: first note that

the rejection sampling in Step (2) is to ensure that the subset ℎ−1(H) is selected with probability

proportional to |ℎ−1(H) |. Our crucial observation is that the algorithm in Claim 23 is actually

a rejection sampling which accepts an output with probability proportional to |ℎ−1(H) | in each

round. Therefore we can actually combine the rejection sampling in Step 2 and 3, and bypass the

computation of |ℎ−1(H) |.

First we explain the relation between the algorithm in Claim 23 and rejection sampling. A

naive way to sample from the variety ℎ−1(H) is to repeatedly sample a point G ∈ F=@ and verify if

ℎ(G) = H. However, the success probability of the naive rejection sampling is only |ℎ−1(H) |/@=,

which is too small. The idea in [102] is that the space F=@ can be split into lines, and the variety (is

split into many “slices" by these lines. The naive rejection sampling is equivalent to first sampling

a line and then sampling a point from this line. Since each line has @ points, the probability of

a certain point in the variety being chosen is still 1/@=−1 · 1/@. However, if we choose a good

direction to split the space, each slice of the variety only has at most 3 points where 3 � @,

and these points can be enumerated efficiently. Therefore instead of sampling every point in this

131

subspace with equal probability we can sample only from the slice of variety instead. This allows

us to increase the accepting probability in each round to |ℎ−1(H) |/3@=−1, which is high enough and

still proportional to |ℎ−1(H) |. With the ideas above we get the following lemma.

Lemma 24. Let ℎ : F=@ → F@ be a =-variate polynomial of degree 3 < @/2 with ℓ monomials, and

f : F@ → {0, 1}< be any function. Suppose we have access to an oracle Sampf which takes input

I and outputs a sample from f−1(I) uniformly at random. Then for every n > 0, there exists a

randomized algorithm � such that for every I ∈ {0, 1}<, the algorithm either outputs a uniformly

random sample from (f ◦ ℎ)−1(I) or output ⊥. The probability that the algorithm outputs ⊥ is at

most n .

Moreover, the expected running time of � on I is) · poly(log @, =, 3, ℓ) plus) oracle calls to

Sampf, where

) = $

(
@=−1 · 3 ·

��f−1(I)
����(f ◦ ℎ)−1(I)

�� log(1/n)
)
.

Before we formally prove Theorem 24, first we show how to prove Theorem 31 based on

Theorem 24. The following corollary shows that the algorithm in Theorem 24 is efficient when

f ◦ ℎ is an “extractor for uniform distribution" and f does not concentrate on certain output.

Corollary 9. Suppose that f(ℎ(UF=@)) ≈1/2<+1 U<, and |f−1(I) | ≤ �@/2< for every I. Then the

running time of the algorithm in Theorem 24 is � log(1/n) poly(=, ℓ, log @, 3).

Proof. The number of rounds of rejection sampling in the algorithm from Theorem 24 is) =

$

(
@=−1·3·|f−1 (I) |
| (f◦ℎ)−1 (I) | log(1/n)

)
.

Observe that

��(f ◦ ℎ)−1(I)
�� = @= · Pr[f(ℎ(UF=@)) = I] ≥ @= · (1/2< − 1/2<+1) = @=/2<+1.

Plugging this in, and the upper on f−1(I), we have) = $ (3 log(1/n)). The corollary now

follows directly from Theorem 24. �

Proof of Theorem 31. To prove Theorem 31 we only need to show that our non-malleable extrac-

132

tor satisfies the condition in Theorem 9. The fact that f(ℎ(UF=@)) is close to U< follows from

Theorem 29, and the second condition is also true because f(G) = G mod 2<, which satisfies

|f−1(I) | ≤ d@/2<e for every I ∈ {0, 1}<. �

We now prove Theorem 24. First we need the following lemma which is analogous to Propo-

sition 4.3 in [102]. Note that we slightly tweak the lemma to make the sampling algorithm able to

handle arbitrarily small error. The lemma says a random direction is a good direction to split the

space with high probability.

Lemma 25. Let ℎ : F=@ → F@ be a =-variate polynomial of degree at most 3, and let 1 =

(11, . . . , 1=) be uniformly random samples from F@. Then with probability at least 1 − 3/@,

ℎ0,1 (C) = ℎ(01 + 11C, . . . , 0= + 1=C) is a non-constant polynomial of C for every 0 = (01, . . . , 0=) ∈

F=@.

Proof. Let 6 be the highest-degree homogeneous part of ℎ. Then observe that ℎ0,1 (C) has degree

at most 3, and its coefficient of C3 equals to 6(11, . . . , 1=). By Lemma 11, the probability that

6(11, . . . , 1=) is non-zero is at least 1 − 3/@. Therefore with probability 1 − 3/@ over 1, ℎ0,1 (C)

has degree exactly 3 for every 0 ∈ F=@. �

Proof of Theorem 24. In algorithm �, first we repeatedly sample 1 ∈ F=@ uniformly at random until

we find 1 which satisfies the condition in Claim 25. If we fail to find such 1 in log(1/n) +1 rounds,

abort and output ⊥. Then repeat the following steps for at most) rounds:

Sample H ∈ f−1(I) with oracle Sampf, and sample 0 = (01, . . . , 0=) uniformly at random. Com-

pute the restriction of ℎ(G) = H on the line !0,1 = {(01 + 11C, . . . , 0= + 1=C) : 1 ∈ F@}, i.e.

ℎ0,1 (C) = H where ℎ0,1 (C) = ℎ(01 + 11C, . . . , 0= + 1=C). Note that ℎ0,1 is a non-constant polynomial

of degree at most 3. Then we run Berlekamp-Rabin algorithm [107] to enumerate all the roots of

ℎ0,1 in F@, denoted by C1, . . . , C: where : ≤ 3. Now pick a number 8 ∈ [3] uniformly at random.

If 8 ≤ : , the algorithm succeeds, and we will return (01 + 11C8, . . . , 0= + 1=C8). Otherwise sample H

and 0 again and repeat. If no value is returned after all) rounds, return ⊥.

133

To prove the correctness of �, first we compute the distribution �(I) conditioned on that the algo-

rithm succeeds. Observe that �(I) never returns an element which is not in (f◦ℎ)−1(I). Moreover,

for every E ∈ (f ◦ ℎ)−1(I), in each round the probability that �(I) outputs E is

1
|f−1(I) |

· 1
@=−1 ·

1
3
.

The first factor is the probability that H = ℎ(E), the second factor is the probability that !0,1 3 E,

and the third factor is the probability that E is chosen from the list of roots of ℎ0,1. Since this

formula does not depend on E, we can conclude that �(I) is a uniform distribution on (f◦ℎ)−1(I),

conditioned on �(I) ≠ ⊥.

Now we compute the probability that � fails. Assuming @ ≥ 23, the probability that we fail to

find a 1 satisfying the condition in Claim 25 in ;>6(1/n)+1 rounds is at most (3/@)log(1/n)+1 ≤ n/2.

If we find such 1 successfully, observe that � successfully returns a sample with probability

? =
| (f ◦ ℎ)−1(I) |
|f−1(I) | · @=−1 · 3

in one round. Now define

) =
� log(1/n)

?
,

for a large enough constant �. Then the probability that � does not output any element after)

rounds is at most (1 − ?)) < n/2. Therefore Pr� [�(I) = ⊥] ≤ n .

Finally we analyze the running time of �. Finding a vector 1 which satisfies Claim 25 (or abort

and output ⊥) takes at most log(1/n) poly(=, ℓ, log @, 3) steps. After finding 1, we run at most)

rounds of rejection sampling, where in each round we first make an oracle call to Sampf, sample 0

and compute the polynomial ℎ0,1 which takes poly(=, ℓ, log @, 3) steps, and run Berlekamp-Rabin

which takes expected poly(=, ℓ, log @, 3) steps. Therefore the total expected running time is as

claimed. �

Remark 6. While we only show the expected running time in Theorem 24, it is possible to bound

134

the worst-case running time by introducing a small error to the output distribution as follows. In

each of the) rounds, we are running Berlekamp-Rabin algorithm to factorize a polynomial of

degree at most 3. Recall that in Berlekamp-Rabin algorithm, we are repeatedly trying to factor-

ize a polynomial into two non-trivial factors. Moreover, each attempt of factoring succeeds with

probability at least 1/2. To factorize) polynomials of degree 3, we need at most)3 successful

attempts. Note that the probability that there are less than)3 success in the first 7)3 attempts are

at most (1/2)) < n . Therefore, we can force the algorithm to terminate and output ⊥ after 6)3

unsuccessful attempts of Berlekamp-Rabin. This ensures that the worst-case running time is still

) · poly(=, ℓ, log @, 3). Besides, since the time-out event happens with probability at most n , the

output distribution is still n-close to uniform distribution on (f ◦ ℎ)−1(I).

135

Chapter 9: Small Circuit Tampering

Perhaps the most natural class of tampering functions, is tampering by polynomial size circuits.

Unfortunately, a simple argument shows that any non-malleable code resilient to polynomial size

circuit tampering cannot be evaluated in polynomial time (see Section 3.3 for details). The obvious

next best thing would be a non-malleable code computable in polynomial time that is resilient to

bounded polynomial size circuit tampering, tampering by circuits of size at most =2 where 2 is a

constant fixed a priori.

We know efficient non-malleable codes exist for tampering by bounded polynomial size circuits

in the CRS model [11, 19] as well as under cryptographic assumptions [20, 21]. However, the

latter require assumptions that we currently only know how to instantiate with random oracles and

additionally fall short of achieving statistical security guarantees.

In this work, we show that seed-extending PRGs for nondeterministic circuits of size =2, where

2 is a constant, suffice to construct explicit1 codes for bounded polynomial size circuits. Before

explaining what this object is, we remark that they are implied by an assumption introduced in the

context of derandomizing AM: there is a language that can be computed in exponential determin-

istic time that requires exponential size nondeterministic circuits.

Assumption 1 (E is hard for exponential size nondeterministic circuits). There is a language ! ∈

E = DTIME(2$ (=)) and a constant W such that for sufficiently large = nondeterministic circuits of

size 2W= fail to compute the characteristic function of ! on inputs of length =.

Informally, this says that non-uniformity and non-determinism do not always imply significant

speed-ups.

1We say a code, or family of codes, is explicit if encoding and decoding can be performed in uniform polynomial
time.

136

As mentioned, this assumption and less robust variants been in the complexity and derandom-

ization literature for some time. [108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118] While this

assumption may not be as well understood as we might like, we would like to note that is a worst-

case assumption on a class of languages (that admits complete problems). We would also like to

highlight that it is orthogonal to standard cryptographic assumptions such as one-way functions for

all that we know, so it may hold even if cryptography does not exist (in some sense P = NP only

bolsters confidence that E is hard for exponential size nondeterministic circuits).

We can now state our main theorem of this chapter.

Theorem 32. If E is hard for exponential size nondeterministic circuits, then for every constant 2,

there is an explicit =−2-non-malleable code resilient to tampering by =2-size circuits.

On the feasibility of explicit codes from minimal assumptions. It is known that explicit non-

malleable codes for circuits of size $ (=2) imply explicit languages that are hard on average for

circuits of size$ (=2). For this reason, it is unlikely to construct explicit codes for such a tampering

class. Yet, one might still hope to construct codes by simply assuming minimal circuit lower

bounds (simply assuming there exists a language computable in time =3 , for some 3 > 2, that

is hard on average for $ (=2)-size circuits). Unfortunately, in Chapter 10 we will see a barrier to

proving such a theorem. In particular, the results their rule out non-malleable code constructions

where the security proof reduces a successful tampering attack to (breaking) such an assumption

makes black box use of the tampering attack. While, of course, non-black-box methods may be

possible, one could also take this result to mean that stronger assumptions are needed (given our

current toolkit).

In more detail, our present result skirts this lower because the techniques of Chapter 10 criti-

cally require that the reduction is no more complex than the tampering class. Here, our tampering

class consists of small deterministic circuits, but our ingredients require hardness for small nonde-

terministic circuits.

137

9.1 Technical Overview

We begin by introducing seed-extending PRGs for non-deterministic circuits. We then follow

our technical presentation and describe how to construct seedless non-malleable “extractors” for

bounded polynomial size circuit tampering and uniform sources.2 While this doesn’t yield a good

randomness extractor, it does effectively capture the core non-malleability of our construction. We

conclude by sketching how we leverage this concept to a non-malleable code.

Nondeterministic circuits. A nondeterministic circuit� is a circuit with additional “non-deterministic”

inputs, in addition to the usual inputs. We say � evaluates to 1 on G if and only if there exists an as-

signment, F, to the non-deterministic input wires such that the circuit, evaluated deterministically

on input (G, F), outputs 1.

Seed-extending pseudorandom generators. A pseudorandom generator (PRG) for nondeter-

ministic circuits of size B(=), prg : {0, 1}ℓ → {0, 1}=, allows one to extend a short random seed

into a long string that is indistinguishable from random to nondeterministic circuits of size B(=).

More precisely, for every nondeterministic circuit, �, of size at most B(=),

| Pr[� (prg(Uℓ)) = 1] − Pr[� (U=) = 1] | ≤ 1
B(=) ,

whereU< denotes a random variable uniformly distributed over {0, 1}<.

We are interested in such PRGs that additionally remain secure when given the seed. In par-

ticular, we will use “seed-extending” PRGs.3 A PRG, prg : {0, 1}ℓ → {0, 1}=, is said to be

seed-extending if prg(B) = (B, prg′(B)) (where prg′ is the function corresponding to the = − ℓ

bit suffix). This particular name was introduced by Kinne et al. in the context of derandomizing

randomized algorithms on random inputs. [119, 120] They showed that PRG constructions based
2In fact, the construction sketched here can handle sources of the form (, - where (is a truly random seed and

- has high min-entropy. This corresponds to a seeded extractor where the seed and source can be jointly tampered.
However, because our extractor still requires - to have very high entropy, we do not formalize this.

3Elsewhere, such objects have been called strong PRGs (borrowing from the Extractor literature) or systematic
PRGs (borrowing from the coding theory literature).

138

on Nisan and Wigderson’s seminal construction [119] can be made seed-extending. Consequently,

many constructions of PRGs for nondeterministic circuits can be made seed extending.

Theorem 33 ([119, 121, 113, 115, 116, 65]). If E is hard for exponential size nondeterministic

circuits, then for every constant 2 > 1 there exists a constant U > 1 such that for every sufficiently

large =, and every A such that U log = ≤ ℓ ≤ = there is a PRG, prg : {0, 1}ℓ → {0, 1}=, for

nondeterministic circuits of size =2.

We remark that both our requirements that prg is (a) secure against non-deterministic circuits

of size =2 and (b) seed-extending each necessitate that prg cannot be evaluated in time less than

=2. As such, no cryptographic PRG meets these criteria.

Our proofs follow the approach of Applebaum et al. [65] and reduce to PRG security by con-

structing constant round private coin interactive proofs with a small non-uniform verifier sufficient

gap between completeness (probability of accepting pseudorandom inputs) and soundness (prob-

ability of accepting random inputs). By the classical results [63, 64], constant-round interactive

proofs can be compiled into AM protocols4, without blowing up the size of the verifier (Arthur)

too much. From there, standard techniques (AM/poly ⊆ NP/poly) yield a small nondeterministic

circuit with the same promise.

Seedless Non-Malleable Extractor. Our construction of a (relaxed) seedless non-malleable ex-

tractor for uniform sources and =2-size circuit tampering is exceedingly simple. Recall that a

relaxed seedless non-malleable extractor (Def. 10) is a deterministic function NMExt such that for

any =2 size circuit, � without fixed points we have

NMExt(B, G),NMExt(� (B, G)) ≈ U,NMExt(� (B, G)).

Let 2NMExt be a two-source non-malleable extractor (NME). Our seedless non-malleable ex-
4AM protocols consist of a uniformly random message, followed by a response from Merlin, at which point Arthur

must, deterministically, output based on the transcript.

139

tractor, NMExt, is defined as

NMExt : (B, G) ↦→ (prg(B), G)

where prg is a seed-extending PRG for nondeterministic circuits of size =3 for some constant 3 > 2.

At a very high level, our approach is to fool the non-malleable extractor experiment with our

PRG. The fact that the pseudorandom distribution can be compressed to small seed is going to

allow us to translate efficient circuit tampering. In particular, by conditioning on the tampered

seed our small circuit tampering is effectively split-state. Because the seed is short, conditioning

on the seed won’t impact the entropy of our sources too much in the truly random case. However,

the argument is a bit nuanced so we go through it in more detail below.

Fix a small circuit tampering � and consider a uniformly random (B, G). For � (B, G) = (B̃, G̃).

Let 6, 5 be the functions corresponding to the B̃ and G̃ portions of� output, respectively (6(B, G) = B̃

and 5 (B, G) = G̃).

Now, we would like to invoke the security of the PRG to claim that the outcome of non-

malleability two-source non-malleability experiment (2NMExt(prg(B), G), 2NMExt(prg(6(B, G)), 5 (B, G))

is statistically close the game where prg(B) is chosen uniformly at random instead of pseudoran-

domly.

As mentioned before, our intuition for why the tampering is effectively independent on B and G,

is because B is short. In particular, if G is chosen at random conditioned on B, B̃ (in particular, such

that 6(B, G) = B̃) then (a) B and G are tampered independently, and (b) G retains has high entropy.

So, in the two-source NME game (with sources (B, H), G) we have on the one hand that if (B, H)

is truly random, then conditioning on B, B̃ yields independent sources with high min-entropy. On

the other hand, tampering (B, H), G in either the pseudorandom or random experiment corresponds

to producing tampered sources (B̃, H̃) = prg(6(B, G)) = prg(B̃) which is independent of G, and

G̃ = 5 (B, G) = 5B (G) which is independent of B, H (again when we condition on B). Thus, we

have split state-tampering. We are close to being able to apply our conclusion but we have a few

obstacles:

140

• In the PRG game we get prg(B), but we need to evaluate prg on a correlated input. Because

the seed is given explicitly in the distinguishing game, we can only guarantee the output is

pseudorandom to adversaries who cannot evaluate the PRG.

• Our PRG is secure against boolean distinguishers (single bit output), the output of the two-

source NME game is potentially (hopefully) much longer.

To get around all of these things at once we leverage two things in combination. Firstly, every

two-source NME is secure even if one of the sources is output jointly in the NME experiment. In

other words, for independent (�, �) of sufficient min-entropy, and any 6′, 5 ′ such that one does

not contain fixed points,

�,NMExt(�, �),NMExt(6′(�), 5 ′(�) ≈ �,U,NMExt(6′(�), 5 ′(�)).

Secondly, we use the fact that our PRG is secure against nondeterministic circuits, and hence

constant round private coin interactive proofs with efficient verifiers.

In brief, we use our unbounded (honest) prover Merlin to expand the tampered seed. Then we

apply a standard trick (dating back to GNI) to efficiently distinguish long outputs with a prover:

Arthur completes simulating the experiment flips a coin: if heads he gives Merlin the output of

the real experiment and if tails he gives Merlin the output of the ideal experiment (where the

output of the extractor on the non-tampered sources is replaced with independent uniform bits).

Merlin’s maximal advantage in guessing Arthur’s bit tightly corresponds to the distance between

these distributions.

In the random case, Merlin’s view is identically distributed to the outcome of the strong NME

experiment (real or ideal depending on Arthur’s coin). Because the H and G have sufficient entropy

after conditioning to make the tampering split state, we are guaranteed that these distributions are

statistically close and Merlin effectively has no advantage (i.e. soundness is very close to 1/2.)

On the other hand if there is too much error in the pseudorandom case, then we have an (honest)

Merlin strategy that can distinguish with noticeable probability (i.e. completeness is bounded away

141

from a 1/2 by an inverse polynomial).

See Section 9.2 for the full details.

Extending to Non-Malleable Codes. Given the non-malleable extract, a natural approach to

constructing a non-malleable code is to follow the framework laid out by Cheraghchi and Gu-

ruswami [11]. They showed efficiently inverting a seedless non-malleable extractor, sampling a

uniformly random preimage, suffices to construct non-malleable codes. Unfortunately, there are a

number of obstacles to this approach here:

1. It is not clear how to efficiently invert. A natural approach is sample a uniform seed prg(B)

and then invert the two-source extractor conditioned on the left source/state being prg(B).

Unfortunately, known two-source non-malleable extractors are incredibly complex and their

inverters often more so. So, we aren’t sure if this is possible using current techniques.

2. Above we constructed a (relaxed) seedless non-malleable extractor for uniform sources,

while Cheraghchi and Guruswami’s transformation requires the non-relaxed version. Cher-

aghchi and Guruswami showed that relaxed two-source non-malleable extractors for suffi-

ciently low min-entropy imply the non-relaxed variant. While their ideas can be ported to

our setting, we would need our seedless non-malleable extractor to work for recognizable

sources (meeting some min-entropy budget). Recognizable sources are random variables

uniformly distributed over the satisfying assignments to a small circuit. We aren’t sure how

to extend our construction handle such sources without weakening our assumption (to E is

hard for exponential size nondeterministic circuits with gates that compute SAT).

3. Finally, our extractor has inverse-polynomial error. Cheraghchi and Guruswami’s trans-

formation (provided an efficient inverter) has a 2: -loss when a code for :-bit messages is

desired. This means Black-box impossibilities of Applebaum et al. [65] suggest that new

ideas are needed to get negligible error for even normal (not non-malleable) extractors for

recognizable sources.

142

Instead, we take a different approach and use a strong variant of leakage-resilient split-state

non-malleable codes with a special encoding property.

Replay the non-malleable extractor argument above, but this time imagine our pseudorandom

source, H, G, as instead a (half-pseudorandom) candidate leakage-resilient split-state codeword.

The H state is public (and possibly pseudorandom), and G will be sampled privately by Arthur

(conditioned on H). (We will sketch how Arthur can sample it later.)

Notice that in our argument above, any adversarial Merlin strategy yields a tampering attack

that is nearly split state. The left tampering, corresponding to the adversarial Merlin strategy, only

depends on a ℓ-bits of leakage from Arthur’s private state, G, (and the ℓ-bit seed B, but this is easily

resolved by no longer including B with H as the left state). This is exactly the tampering model that

leakage-resilient split-state NMCs can handle!

Our argument relied on the fact that two-source extractor was strong. In the regime of split-state

NMC the analogous property is termed “augmented” (due to [32]), where the simulator is required

to jointly simulate the result of tampering with one of the codeword states. For the argument above

to go through, we require that the leakage can be simulated in addition to one of the states and

the outcome of the tampering experiment. We then show that the leakage-resilient split-state to

split-state reduction of Ball, Guo, and Wichs [3] yields such a code, provided the underlying code

is an augmented split-state NMC.

Next, we note that it’s not obvious how to apply the usual definition of non-malleability in this

setting where for every tampering function g there is guaranteed to be a simulator Simg. This is

because the tampering function in our proof will depends on Merlin’s strategy, but we need Arthur

to sample the strategy himself. Instead, we use a simple alternative definition of non-malleability

due to Dziembowski et al. [7] that simply requires that the outcome of the tampering experiment

for any two messages is indistinguishable, provided the experiment did not output either message.

This allows Arthur to sample a private coin at the beginning and play out either experiment as

before. Dziembowksi et al. [7] showed that this definition is equivalent to the original for large

enough message domains, and we observe that this equivalence extends to the augmented setting.

143

Finally, we also need to show how to encode efficiently (and allow Arthur) to sample code-

words. We follow the (failed) paradigm sketched above for the non-malleable extractor. We sam-

ple a seed, expand it to prg(B) and then “complete” the split-state codeword with G sampled from

the correct conditional distribution (encodings of the message < with left codeword state prg(B)).

The comparatively simple split-state non-malleable code of Aggarwal, Dodis, and Lovett [62] al-

lows one to efficiently “complete” codewords in this manner because the inner code is simply an

inner product. We observe that the compiler of Ball, Guo, and Wichs [3] additionally preserves

this ability to complete codewords.

See Section 9.3 for details on the leakage-resilient split-state code and Section 9.4 for details

on the NMC.

9.2 Relaxed seedless non-malleable extractor for small circuit tampering

We begin by presenting the simplest variant of our result, a seedless non-malleable “extractor.”

This proof captures our central idea and is enough to build a non-malleable code for small circuit

tampering that can encode a few bits if we encode by rejection sampling. However, in later sections

we will extend this basic argument to construct efficient non-malleable codes for longer messages.

Lemma 26. For any polynomial B(=), there exists a polynomial B′(=) > B(=) such that the follow-

ing is true. Let ℓ(=′) = $ (log =) be the function from Theorem 33 for prg : {0, 1}ℓ(=′) → {0, 1}=′,

where =′ = ℓ(=′) + =.

If 2NMExt : {0, 1}2= → {0, 1}< is a strong two-source non-malleable extractor with er-

ror X(=) < (B′(=))2/16 for independent sources of length = with min-entropy deficiency 3 (=) =

l(log =) computable in time >(B(=)), and prg : {0, 1}ℓ(=′) → {0, 1}=′ is a seed-extending PRG

for nondeterministic circuits of size B′(=), then the construction, NMExt : {0, 1}ℓ×= → {0, 1}<, in

Figure 9.1 is a relaxed seedless non-malleable extractor for uniform sources, ((, -) with respect

to SIZE[B(=)]-tampering and error 4/B′(=).

Proof. Let 1/B′(=) be denote the security of the PRG and let n = 4/B′(=). (And let X the secu-

144

Let B(=),B′(=) 2 be as in Lemma 26.
Let 2NMExt be a strong two-source non-malleable extractor with error X(=) < (B′(=))2/16 for inde-
pendent sources of length = with min-entropy deficiency 3 (=) = l(log =), computable in time >(B(=)).
Let prg be a PRG for nondeterministic circuits of size $ (B′(=)).

NMExt : (B, G) ↦→ 2NMExt(prg(B), G)

Figure 9.1: (RELAXED) NON-MALLEABLE EXTRACTOR FOR POLYSIZE CIRCUIT TAMPERING

AND UNIFORM SOURCES

rity/error of 2NMExt). Suppose for the sake of contradiction that there exists a successful tamper-

ing function, g : (B, G) ↦→ (B̃, G̃) in SIZE[B(=)]

with no fixed points. We will define 5 to denote the function that computes (B, G) ↦→ G̃ accord-

ing to g, and 6 to denote the function that computes (B, G) ↦→ B̃ according to g. In other words,

g(B, G) = 6(B, G), 5 (B, G) and moreover, for each (B, G) either 6(B, G) ≠ B or 5 (B, G) ≠ G.

Now, our assumption on g (and hence 5 , 6) can be restated as

Δ(2NMExt(prg((), -), 2NMExt(prg(6((, -)), 5 ((, -));U<, 2NMExt(prg(6((, -)), 5 ((, -))) ≥ n .

(9.1)

We will use this assumption to distinguish the seed-extending PRG, prg, from the uniform

distribution via an interactive proof. In more detail, recall that the guarantee of prg : {0, 1}ℓ →

{0, 1}ℓ+= says that for any non-deterministic circuit, �, of size B′(=),

Δ(� (prg(Uℓ));� (U=)) < 1/B′(=).

We show that there exists a circuit � of size at most B′(=) that does not obey this inequality.

We do this by following the approach of [65] and constructing a private coin, constant round

interactive proof protocol (see Figure 9.2) where Arthur is a circuit of size at most $ (B(=)) for

a promise problem, Π = (Π. ,Π#) where Π. is n/2-dense under prg and Π# is (1 − n/4)-dense

under the uniform distribution. By standard transformations [64, 63] (Lemma 3), this results in a

nondeterministic circuit of size B′(=) that decides the same problem, and hence breaks the PRG.

145

Looking ahead, Assumption (9.1) above on malleability of the resulting extractor when pro-

vided pseudorandom inputs will enable us to prove the protocol is complete, i.e. Arthur accepts

pseudorandom inputs with high probability. Soundness, i.e. Arthur rejects random inputs with high

probability, will ultimately follow from security of the 2-source non-malleable extractor. Further-

more, what ultimately will enable our soundness argument to go through is the fact that to achieve

completeness Arthur needs to communicate very little about each sample - and thus - remains

entropic, even after conditioning on this communication. We use a standard private coin technique,

where Arthur forces Merlin to guess between two samplable distributions [122] to handle the fact

that our extractor has relatively long outputs (even though our hardness assumption only holds for

boolean distinguishers in a relatively high error regime).

Claim 21. There exists a set Π. such that

1. Π. is noticeably dense in prg: Pr
B
D←{0,1}ℓ [prg(B) ∈ Π.] ≥ n/2

2. Arthur accepts inputs in Π. with probability > 1+n/2
2 when playing with (honest) Merlin (as

prescribed in Figure 9.2).

Proof. If the protocol in Figure 9.2 is given inputs from prg(() (where (≡ Uℓ), then observe that

if Arthur chooses 1 = 1, it follows that his final message is sampled as follows:

(I, Ĩ) ∼ 2NMExt(prg((), -), 2NMExt(prg(6((, -)), 5 ((, -)).

On the other hand, if 1 = 0, Arthur’s final message is sampled according to:

(I, Ĩ) ∼ U<, 2NMExt(prg(6((, -)), 5 ((, -)).

By our assumption, these two distributions are n-far from each other.

By Proposition 3, this implies there exists a set Π. such that for any (B, H) ∈ Π. these distribu-

tions are n/2-far, and moreover Pr[prg(() ∈ Π.] ≥ n/2.

146

Let 2NMExt be a strong two-source non-malleable extractor with error X(=) for independent sources
of length = with min-entropy deficiency 3 (=) = l(=), computable in time >(B(=)). Let prg be a
seed-extending PRG for nondeterministic circuits of size B′(=).
Recall that 5 , 6 correspond to the tampering attack.
Our protocol aims to accept strings from� (Uℓ) when Merlin plays according to below (completeness)
and reject strings from U= regardless of the strategy Merlin utilizes (soundness). Because we can
amplify by repetition, it suffices for there to be small gap between the two.

On input (B, H),

Arthur Sample G ←U=. Send Merlin B̃ = 6(B, G).

Merlin If (B, H) = prg(B), respond H̃ such that (B̃, H̃) = prg(B̃). Otherwise, respond arbitrary H̃.

Arthur Sample a random coin 1 ←U and set Ĩ = 2NMExt((B̃, H̃), G̃) where G̃ = 5 (B, G).

• If 1 = 0: Sample I ←U< and send I, Ĩ.

• Else if 1 = 1: Sample I ← 2NMExt((B, H), G) and send I, Ĩ.

Merlin (Guess Arthur’s bit.) If

Pr
U<,U=

[(U<, 2NMExt(H̃, 5 (B,U=))) = (I, Ĩ) |6(B,U=) = B̃]

is upper bounded by

Pr
U<,U=

[(2NMExt((B, H),U=), 2NMExt((B̃, H̃), 5 (B,U=))) = (I, Ĩ) |6(B,U=) = B̃],

set 1′ = 1. Otherwise, set 1′ = 0. Respond 1′.

Arthur Accept if 1 = 1′, and reject otherwise.

Figure 9.2: INTERACTIVE PROOF FOR DISTINGUISHING prg FROM UNIFORMLY RANDOM BITS

147

So by Proposition 2.7, Thus for any prg(B) ∈ Π. , 1′ = 1, Merlin guesses correctly with

probability ≥ 1+n/2
2 . �

Claim 22. There exists a set Π# such that

1. Π# is large: Pr(B,H) D←{0,1}ℓ+= [(B, H) ∈ Π#] ≥ 1 − 4X/n

2. Arthur accepts inputs in Π# with probability ≤ 1+n/4
2 when playing with (honest) Merlin (as

prescribed in Figure 9.2).

Proof. As in Claim 9.2, we will analyze the view of Merlin (up to guessing) on a random input

and deduce that their exists a large Π# which Arthur rejects with probability close to 1/2. The

difference from there, is here Merlin can behave arbitrarily.

We get around this by observing that Arthur accepts if and only if Merlin guesses his bit, 1,

correctly (1′ = 1). It follows by Proposition 2.7 that there is an optimal (for any specific input,

not just with respect to uniform inputs) Merlin strategy, "∗, that chooses messages to maximize

the distance between his view when Arthur chooses 1 = 0 versus his view when 1 = 1. By the

optimality of such a strategy, it suffices to consider just this "∗.

So, suppose the protocol in Figure 9.2 is given uniformly random inputs (B, G) ← Uℓ+=. Fix an

optimal strategy, "∗. In particular, let �∗ : (B, H, B̃) ↦→ H̃ be the function that given the transcript

thus far, outputs Merlin’s first message.

Now, note that if conditioned on B, B̃, then �∗(B, H, B̃) = H̃ is independent of G (as is B̃). And

similarly, G̃ = 5 (B, G) is independent of (B, H). In otherwords, we can sample (B, H, G, B̃, H̃, G̃)

identically as follows:

1. Sample B uniformly at random and B̃ = 5 (B, G) for uniformly random G. (This is identically

distributed to Figure 9.2.)

2. Sample H uniformly at random, and sample G uniformly at random, conditioned on 5 (B, G) =

G̃. Note that H and G each have min-entropy = − ℓ, conditioned on B, B̃. Let . , -B,B̃ denote

these random variables.

148

3. Apply the tampering:

• g B̃
!

: (B, H) ↦→ B̃, H̃ where H̃ = �∗(B, H, B̃)

• gB
'

: G ↦→ G̃ = 5 (B, G)

Thus, conditioned on B, B̃, g! , g' is a split-state tampering. Moreover, because g has no fixed

points, either 5 (B, G) ≠ G or 6(B, G) ≠ B. So, either g B̃
!

or gB
'

contains fixed points.

Thus, for any (valid) fixed choice of B, B̃, ., -B,B̃ each have min-entropy = − ℓ, and (g B̃
!
, gB
'
) is a

split-state tampering function with no fixed points.

Thus, conditioned on B, B̃ and Arthur’s coin 1 = 0, Merlin’s view is simply

)
B,B̃

0 ≡ (B, H),U, 2NMExt(g B̃! (B, H), g
B
' (G)).

On the other hand, if Arthur’s coin is 1 = 1, Merlin’s view is

)
B,B̃

1 ≡ (B, H), 2NMExt((B, H), G), 2NMExt(g B̃! (B, H), g
B
' (G)).

Because 2NMExt is a strong two-source non-malleable extractor with error X for source with

min-entropy deficiency $ (log =), we have that for any (worst-case) choice of B, B̃,

Δ() B,B̃0 ;) B,B̃1) ≤ X.

Thus, by Proposition 2 there exists a set Π# such that Pr(B,H) D←{0,1}ℓ+= [(B, H) ∈ Π#] ≥ 1 − 4X/n

and for any (B, H) ∈ Π# , Arthur accepts with probability at most 1+n/4
2 .

It follows from Proposition 2.7 that for any strategy of Merlin and any input (B, H) ∈ Π# ,

Pr[1′ = 1] ≤ 1+n/4
2 . �

We conclude from Claim 9.2 and Claim 9.2, that there is a constant round IP protocol where

Arthur can be represented by circuit of size $ (B(=)) that recognizes Π = (Π. ,Π#) with com-

pleteness/soundness gap n/2. By Lemma 3, this implies the existence of an B′(=)-size nonde-

149

terministic circuit,�, that decides the promise problem, Π. Because Π. is n/2-dense under prg

(i.e. PrB [prg(B) ∈ Π.]) andΠ# is 1−4X/n dense under the uniform distribution (i.e. PrI [I ∈ Π.] ≤

4X/n). The nondeterministic circuit� can distinguish with advantage |n/2−4X/n | ≥ n/4 = 1/B′(=).

So, our initial assumption must be false. �

9.3 Augmented Leakage-Resilient Split-State

In this section we observe that the leakage-resilient compiler of Chapter 4 preserves two prop-

erties of an underlying non-malleable code that are of interest to us:

• Augmented split-state non-malleability: there exists a simulator which can simulate the

joint distribution of the left (or right) codeword states in addition to the outcome of non-

malleability experiment.

Because in the leaky split-state tampering setting the tampered left (or right) codeword ad-

ditionally depends on the leakage, we also require the simulator to output this as well.

• Special encoding: there exists a special encoding procedure that given a desired left code-

word state (or right) and message can output a valid encoding. Importantly, the special en-

coder is given uniform left codeword states, the output is identically distributed to encodings

of the message.

We conclude the section by observing that the definition and equivalence of alternative-non-

malleability (Definition 7 and Lemma 2) extends to augmented non-malleability.

9.3.1 Augmenting the construction of Chapter 4

Here we sketch how to prove that the construction from Chapter 4 preserves augmented non-

malleability. In particular, we show how to extend the analysis of [3].

Lemma 27. For any U ∈ (0, 1/4) there exists a setting of parameters such that the following holds.

If (E′,D′) is an efficient n-augmented-split-state non-malleable code, then (Enc ◦E′,D′ ◦Dec)

is an efficient U-leakage-resilient 2n-augmented split-state non-malleable code.

150

Sketch. In Chapter 4 we observed that for any leaky split-state tampering strategy and any mes-

sage (corresponding to a split-state codeword), the joint distribution, / , of the leakage-resilient

encryption keys, transcript used to specify Alice and Bob’s ultimate tampering, and the tampered

leakage-resilient encryption keys was statistically close to its distribution of these items when the

leaky-split state tampering strategy was applied to encodings of the all zero , /0. (In other words,

this distribution can be simulated independently of the input. Notably, this means the leakage can

be simulated.) Moreover, conditioned on these items, Alice’s and Bob’s tampering is independent.

So the result of the leaky split-state experiment with respect to (Enc,Dec) was statistically close

to some distribution (6/0

!
, 6/

0

'
) over split-state tampering functions.

We simply observe that after conditioning on some choice I from the simulated distribution /0

and the local randomness sampling the split-state tampering, the left codeword is simply a function

of the left input which we can get from the underlying augmented split-state simulator (and the

corresponding leakage, or transcript, is simply a part of I). So, we can simulate as follows:

1. Sample I0 = (key! , key', trans, ˜key! , ˜key') ← /0, where /0 denotes the random vari-

able corresponding to the distribution of leakage-resilient encryption keys, transcript used to

specify Alice and Bob’s ultimate tampering, and the tampered leakage-resilient encryption

keys when 0: , 0: is encoded in the non-malleability game.

2. Sample D! , H! , D', H' uniformly at random, and derive the resulting split-state tampering

functions 6I0,D! ,H!
!

, 6
I0,D' ,H'
'

. Additionally, let I! denote Ext(D!; 2Ext(key! , H!).

3. Invoke the simulator for the underlying split-state non-malleable code with respect to our

tampering functions 6I0,D! ,H!
!

, 6
I0,D' ,H'
'

, (2! , B) ← Sim′(6I0,D! ,H!
!

, 6
I0,D' ,H'
'

) (where B ∈ {0, 1}:∪

{same}).

4. Output (D! , H! , I! + 2!), trans, B.

�

151

Now, we conclude by recalling that the construction of [62] (Theorem 5) is an augmented

split-state non-malleable code with special encoding.5

Lemma 28 ([62]). There exist efficient exp(−=Ω(1))-augmented-split-state non-malleable codes

with special encoding.

Our main theorem of this section is a corollary of Lemma 13 and Lemma 28.

Theorem 34. For any constant U ∈ (0, 1/4), there exist efficient U-leakage-resilient exp(−=Ω)-

augmented-split-state non-malleable codes with special encoding.

9.3.2 Augmenting alternate-non-malleability

In this section, we observe that the alternative definition of non-malleability of [7] (Def. 32)

can be extended to handle this notion of augmented non-malleability. As before these definitions

are equivalent up to an additive factor of 2−: in the security parameter.

We give a definition for the specific setting of leakage-resilient split-state.

Definition 32 (Alternate Definition of Augmented Non-Malleability). Let F be a family of U-leaky

split-state tampering functions. We say that a coding scheme (Enc,Dec) is an U-leakage-resilient

augmented-split-state n-alternative-non-malleable if for any <0, <1 ∈ {0, 1}: and any 5 ∈ F , we

have:

AltANM 5
<0,<1 (1) ≈n AltANM 5

<0,<1 (1)

where we define the two experiments by

AltANM 5
<0,<1 (1) :=

! , 2' ← Enc(<1), 2̃! , 2̃' ← 5 (2! , 2'), <̃ = Dec(2̃)

Output (2! ,same) if <̃ ∈ {<0, <1}, and (2! , <̃) otherwise.

The following lemma follows from the analysis given in [7].

5The special encoding is not noted explicitly in [62] but is easy to observe because to encode a message G, first it is
encoded as H ∈ F? (via an affine evasive encoding scheme), and then the encoder simply chooses �, � in F=? uniformly
at random such that 〈�, �〉 = H.

152

Lemma 29. Let (Enc,Dec) be a coding scheme for :-bit messages.

If (Enc,Dec) is an U-leakage-resilient augmented-split-state n-non-malleable code, then it is

an U-leakage-resilient augmented-split-state 2n-alternate-non-malleable code.

If (Enc,Dec) is an U-leakage-resilient augmented-split-state n-alternate-non-malleable code,

then it is an U-leakage-resilient augmented-split-state (n + 2−:)-alternate-non-malleable code.

9.4 A Non-Malleable Code for Small Circuit Tampering

In this section, we prove our main technical lemma. The main result of this chapter, Theorem 32

is a corollary of this Lemma in concert with Lemma 29 and Theorem 34.

Lemma 30. For any polynomial B(=), there exists a polynomial B′(=) > B(=) such that the follow-

ing is true. Let ℓ(=) = $ (log =) be the function from Theorem 33 for prg : {0, 1}ℓ(=) → {0, 1}=.

If alrssEnc : {0, 1}: → {0, 1}2=, alrssDec : {0, 1}2= → {0, 1}: is an augmented U(=)-

leakage-resilient two-source X-non-malleable code with special encoding, computable in time

>(B(=)), and prg : {0, 1}ℓ(=) → {0, 1}= is a seed-extending PRG for nondeterministic circuits

of size $ (B(=)2) such that ℓ(=) ≤ U(=) and X < (B′(=))2/32, then the construction, (E,D) in Fig-

ure 9.3 is a 4/B′(=)-alternate-non-malleable code resilient to SIZE[B(=)]-tampering with error

4/B′(=).

Proof. Let n (=) = 4/B′(=) (the target error of our non-malleable code). Recall taht 1/B′(=) is the

advantage bound of the PRG, prg. And (alrssEnc, alrssDec) is X-non-malleable (with additional

properties).

For the sake contradiction, assume (E,D) does not satisfy n-alternate-non-malleability: namely,

there exists <0, <1 ∈ {0, 1}: and tampering function g of size B(=) such that

AltNMg,E,D
<0,<1 (0) 04/n AltNMg,E,D

<0,<1 (1)

As before, we will use this fact (as well as the security of the underlying leakage-resilient

augmented-split-state non-malleable code) to break the pseudorandomness guarantee of prg by

153

Let (alrssEnc, alrssDec) be an augmented leakage-resilient two-source non-malleable code with
special encoding. Recall that special encoding means that alrssEnc that takes a state H as in-
put, in addition to the message <, and outputs alrssEnc′(<, H) = (H, -) with the property that
alrssEnc(·,U), alrssDec) is an augmented leakage-resilient two-source non-malleable code.
Let prg be a PRG for nondeterministic circuits of size $ (B(=)).

Encoding (E) : On input <, do the following

Sample B←Uℓ . Sample (prg(B), G) ← alrssEnc∗(<; prg(B)).
Output E(<) = (B, G).

Decoding (D) : On input (B̃, G̃), do the following

Compute <̃ = alrssDec(prg(B̃), G̃).
Output D(B̃, G̃) = <̃.

Figure 9.3: NON-MALLEABLE CODE FOR POLYSIZE CIRCUIT TAMPERING

designing a constant-round private coin interactive proof that distinguishes with some non-trivial

soundness/completeness gap.

For any g : (B, G) ↦→ (B̃, G̃) in SIZEΣ: [B(=)]. Define 5 to denote the function that computes

(B, G) ↦→ G̃ according to g, and 6 to denote the function that computes (B, G) ↦→ B̃ according to g.

In other words, g(B, G) = 6(B, G), 5 (B, G).

Claim 23. There exists a set Π. such that

1. Π. is noticeably dense in prg: Pr
B
D←{0,1}ℓ [prg(B) ∈ Π.] ≥ n/2

2. Arthur accepts inputs in Π. with probability > 1+n/2
2 when playing with (honest) Merlin (as

prescribed in Figure 9.2).

Proof. If the protocol in Figure 9.2 is given inputs from prg(() = ((, prg′(()) (where (≡

Uℓ), then upon the choice of 1 = 1, Arthur’s final message is exactly that of the alternate-non-

malleability game :

I ∼ AltNMg
<0,<1 (1).

154

Recall that (alrssEnc, alrssDec) is an augmented leakage-resilient split-state non-malleable code
with special encoding, alrssEnc′. Define alrssEnc′′ to be the alrssEnc′ that just outputs the right
state, i.e. if alrssEnc′ : (<, H; A) ↦→ (H, G) then alrssEnc′′ : (<, H; A) ↦→ G.
Recall that prg is a PRG for nondeterministic circuits of size $ (B(=)). Finally, recall that 5 , 6 corre-
spond to the tampering attack.
Our protocol aims to accept strings fromUℓ , � (Uℓ) when Merlin plays according to below (complete-
ness) and reject strings from Uℓ+= regardless of the strategy Merlin utilizes (soundness). Because we
can amplify by repetition, it suffices for there to be small gap between the two.
Hardcoded into Arthur as non-uniform advice are 5 , 6 and <0, <1.

On input B, H:

Arthur Sample coin 1 ←U. Sample encoding (H, G) ← alrssEnc′(<1, H). Send Merlin B̃ = 6(B, G).

Merlin If (B, H) = prg(B), respond H̃ such that (B̃, H̃) = prg(B̃). Otherwise, respond arbitrary H̃.

Arthur Set I′ = alrssDec(H̃, G̃) where G̃ = 5 (B, G). If I′ ∈ {<0, <1}, set I = same. Otherwise, set
I = I′. Send I to merlin.

Merlin (Guess Arthur’s bit.) If

Pr[alrssDec(H̃, 5 (B, alrssEnc′′(<0, H))) = I |6(B, alrssEnc′(<0, H)) = B′]

is upper bounded by

Pr[alrssDec(H̃, 5 (B, alrssEnc′′(<1, H))) = I |6(B, alrssEnc′(<1, H)) = B′]

set 1′ = 1. Otherwise, set 1′ = 0. Respond 1′.

Arthur Accept if 1 = 1′, and reject otherwise.

Figure 9.4: INTERACTIVE PROOF FOR DISTINGUISHING prg FROM UNIFORMLY RANDOM BITS

155

Similarly, if 1 = 0, Arthur’s final message is sampled according to:

(I, Ĩ) ∼ AltNMg
<0,<1 (0).

By our assumption, these two distributions are n-far from each other.

By Proposition 3, this implies there exists a set Π. such that for any (B, H) ∈ Π. these distribu-

tions are n/2-far, and moreover Pr[prg(() ∈ Π.] ≥ n/2.

By Proposition 2.7, for any (B, H) ∈ Π. Merlin guesses 1 correctly and Arthur accepts with

probability ≥ 1+n/2
2 . �

Claim 24. There exists a set Π# such that

1. Π# is large: Pr(B,H) D←{0,1}ℓ+= [(B, H) ∈ Π#] ≥ 1 − 8X/n

2. Arthur accepts inputs in Π# with probability ≤ 1+n/4
2 when playing with (honest) Merlin (as

prescribed in Figure 9.2).

Proof. Soundness follows from first observing that any Merlin strategy corresponds to some U-

leaky split-state tampering on the augmented-leakage resilient split state-code. We conclude sound-

ness because Merlin’s view is that of the alternate leakage-resilient augmented-split-state game. As

with we the case of the non-malleable extractor, we use the existence the optimality of some op-

timal strategy "∗ (who, for any input (B, H), chooses messages to maximize the distance of his

view when Arthur chooses 1 = 0 versus his view when Arthur chooses 1 = 1) to apply the Markov

argument to a single distribution.

Fix an optimal Merlin strategy "∗ as described above and assume B, H are uniformly dis-

tributed. We make some observations about the protocol in this case:

1. Well-formed augmented leakage-resilient split-state encodings.

Uniform H ∼ U means our leakage-resilient augmented-split-state codewords are properly

distributed, namely for 1 = 0, 1 it is the case that alrssEnc′(<1,U) ≡ alrssEnc(<1).

156

Moreover, B is independent of the split-state codeword (G, H) sampled by Arthur at the be-

ginning.

2. ℓ-leaky split-state tampering.

Arthur’s first message to Merlin, corresponding to the random variable B̃ = 6(B, G), can be

viewed as ℓ-bits of leakage from the right codeword state (to the left tampering function).

Thus, we have G̃ = 5 (B, G) and H̃ = "∗(B, H, 6(B, G)) which for any fixed choice of B is an

ℓ-leaky split-state tampering, ΠB. Thus when B is random, ΠB is a distribution over ℓ-leaky

split-state tampering functions.

3. Merlin’s view is identical to augmented alternate-non-malleable game.

Recall that Merlin’s view corresponds to the variables (B, H, B̃, I) = View"∗ (1), where 1 is

Arthur’s initial coin. Observe that (H, B̃, I) is sampled identically to AltANMΠB ,alrssEnc,alrssDec(1),

where 1 is Arthur’s initial coin toss. And B is independent of the initial encoding in the

AltANM game, which has worst case guarantees that apply to ΠB for any choice of B.

Putting these observations together, we have by that, because (alrssEnc, alrssDec) is an ℓ-

leakage-resilient X-augmented-split-state non-malleable code,

View"∗ (0) ≈2X View"∗ (1).

Observe that if there existed a strategy "′ and input (B, H) such that the distance between the

view of "′ on 1 = 0 vs 1 = 1 was greater than that of "∗, this would contradict the optimality of

"∗. Thus, by Proposition 2 there exists a set, Π# such that Pr(B,H) D←{0,1}ℓ+= [(B, H) ∈ Π#] ≥ 1−8X/n

and for each (B, H) ∈ Π# and any Merlin strategy "′, the view when 1 = 0 is n/4-far from the

view when 1 = 1.

Thus, by Proposition 2.7, this means for any (B, H) ∈ Π# , any Merlin strategy outputs 1′ such

that 1′ = 1 with probability at most 1+n/4
2 . �

157

We conclude from Claim 9.4 and Claim 9.4, that there is a constant round IP protocol where

Arthur can be represented by circuit of size $ (B(=)) that recognizes Π = (Π. ,Π#) with com-

pleteness/soundness gap n/2. By Lemma 3, this implies the existence of an B′(=)-size nonde-

terministic circuit,�, that decides the promise problem, Π. Because Π. is n/2-dense under prg

(i.e. PrB [prg(B) ∈ Π.]) andΠ# is 1−8X/n-dense under the uniform distribution (i.e. PrI [I ∈ Π.] ≤

4X/n). The nondeterministic circuit� can distinguish with advantage |n/2−8X/n | ≥ n/4 = 1/B′(=).

So, our initial assumption must be false. �

158

Chapter 10: Black-Box Barriers

In the previous chapter we presented a non-malleable code for tampering by circuits of bounded

polynomial size, assuming E requires nondeterministic circuits of exponential size. However, it is

not clear if this assumption is necessary. From Section 3.3, we know that this NMC implies lower

bounds on polynomial size circuits. In this chapter, we investigate whether the necessary circuit

lower bounds on the tampering class suffice for constructing non-malleable codes. Our specific

focus is on classes just beyond the reach of current circuit lower bound techniques, such as NC1.

In Chapters 5-8 we presented unconditional constructions of non-malleable codes for a variety

of circuit classes for which strong unconditional lower bounds are known. In fact, the construction

of Chapter 7 remains secure for circuit depths as large as Θ(log(=)/log log(=)). Moreover, due to

the impossibility of efficient NMC for all of P, extending their result to obtain unconditional NMC

for circuits with asymptotically larger depth would require separating P from NC1, a problem that

is well out of reach with current complexity-theoretic techniques. However, rather than ruling out

such constructions entirely, in this regime we ask what are the minimal assumptions necessary for

achieving non-malleable codes for NC1, as well as other classes F that are believed to be strictly

contained in P.

The above question was partially addressed by Ball et al. [22, 20] in their recent work, where

they presented a general framework for construction of computationally-secure NMC for various

classes F in the CRS model and under cryptographic assumptions. Instantiating their framework

for NC1 yields a computational, CRS-model construction of 1-bit NMC for NC1, assuming there

is a distributional problem that is hard for NC1, but easy for P. Moreover, such distributional

problems for NC1 can be based on worst-case assumptions.1

1Assuming ⊕L/poly * NC1 yields a distributional problem since randomized encodings for ⊕L/poly are known
to exist [123, 124, 125, 126].

159

In this chapter, our focus is on whether 1-bit non-malleable codes for NC1 in the standard (no-

CRS) model can be constructed from the assumption that there are distributional problems that are

hard for NC1 but easy for P. Recall that this assumption is minimal, since the decoding function of

a 1-bit non-malleable code for NC1 w.r.t. the distribution of random encodings of 1 bit messages

yields such a distributional problem.

We provide a negative answer, showing that, under black-box reductions (restricting use of the

tampering function in the security proof to be black-box), this is impossible.

Specifically, we define a notion of black-box reductions for the setting of 1-bit non-malleable

codes (E,D) against a complexity class F to a distributional problem (Ψ, !) that is hard for

F . This type of reduction is required to use the “adversary”—i.e. the tampering function in our

setting—in a black-box manner, but is not restricted in its use of the underlying assumptions. To

motivate our new notion, we begin by recalling the notions of reductions in complexity theory and

cryptography, and how they are used.

Reductions in Cryptography. Reductions in cryptography are exactly like reductions in com-

plexity theory. For example, the seminal result of [127] proves by reduction that breaking a pseu-

dorandom function (Problem 1) is as hard as breaking a pseudorandom generator (Problem 2).

In order to prove this, they present a reduction ' such that that given an algorithm � that breaks

the constructed pseudorandom function, '� breaks the underlying pseudorandom generator. Note

that since ' only has oracle access to �, so ' does not care how � works, as long as it exhibits

input-output behavior that qualifies it as a valid distinguisher between a pseudorandom and ran-

dom function. Thus, ' is black-box. Further, ' is only useful if it is polynomial time, since

otherwise ' can break the pseudorandom generator on its own. Furthermore, we again want to use

the existence of the reduction to draw conclusions about the security relationship between the pseu-

dorandom function and the pseudorandom generator. Here we want to show that if there exists a

polynomial-time algorithm that breaks the pseudorandom function, then there exists a polynomial-

time algorithm that breaks the pseudorandom generator. Therefore, we want it to be the case that

160

whenever � is polynomial time, '� is also polynomial time. This trivially holds, as before, since

P is closed under composition. However, in the following we will consider cases where this type

of closure does not necessarily hold. For example, when � and ' are in NC1, '� may no longer

be in NC1 (in fact '� could have depth up to log2(=)). We therefore need to include a notion of

closure under composition as one of the requirements of a black-box reduction in our setting.

A fine-grained setting: Security reductions for non-malleable codes. What would a security

reduction in the setting of non-malleable codes look like? In this case, we want to show that

breaking the non-malleable code (Problem 1) is as hard as breaking distributional problem (Ψ, !)

(Problem 2). Here, an algorithm that breaks the non-malleable code simply consists of a tampering

function 5 . A reduction ' is provided black-box access to the tampering function 5 and must use

it to break the distributional problem (Ψ, !). First, note that since we assume ' is black-box, '

is only allowed to use 5 as a subroutine (gives it inputs and obtains its output), regardless of how

5 performs its computation. Thus, as in all the cases discussed above, we require that ' 5 break

the distributional problem (Ψ, !), even in the case that 5 is not contained in F . Note that the

distributional problem (Ψ, !) is easy for polynomial-time. Therefore, for the reduction to be non-

trivial, ' must be in a complexity class that does not contain P. Indeed, since we only assume that

(Ψ, !) is hard for F , ' must be contained in F in order for us to draw any conclusions (otherwise,

we cannot rule out the possibility that ' simply ignores its oracle and solves (Ψ, !) on its own).

Furthermore, as discussed above, the point of the reduction is to be able to conclude that if there

is a tampering function 5 in F that breaks the non-malleable code, then there exists an algorithm

in F that breaks the distributional problem (Ψ, !). Therefore, it is not enough that ' ∈ F , and we

actually need that whenever 5 ∈ F , ' 5 ∈ F . We will then use the fact that ' 5 breaks (Ψ, !) and

is used to obtain a contradiction to the hardness of (Ψ, !) for F .

Overall, at a high level (skipping some technical details), we require two properties of a black-

box reduction ' from (E,D) to (Ψ, !):

• If the tampering function 5 succeeds in breaking the non-malleable code, the reduction, ' 5 ,

161

should succeed, regardless of whether 5 ∈ F . This represents the fact that ' uses 5 in a

black-box manner.

• For any 5 ∈ F , ' 5 must also be in F , and in particular, ' itself must be in F . This

represents the fact that the black-box reduction ' should allow one to obtain a contradiction

to the assumption that (Ψ, !) is hard for F , in the case that (E,D) is malleable by F .

Note that for arbitrary classes F (unlike the usual polynomial-time adversaries typically used in

cryptography), the fact that ' ∈ F and 5 ∈ F does not necessarily imply that ' 5 ∈ F . This

introduces some additional complexity in our definitions and also requires us to restrict our end

results to classes F that behave appropriately under composition.

We present general impossibility results for constructing 1-bit non-malleable codes for a class

F from a distributional problem that is hard for F but easy for P. We present three types of

results: results ruling out security parameter preserving reductions for tampering class F that

behave nicely under composition; results ruling out “approximate” security parameter preserving

reductions for tampering class F with slightly stronger compositional properties; and results ruling

out non-security parameter preserving reductions for tampering class F that are fully closed under

composition. See Definitions 35, 36 and Lemmas 31, 32, 33 for the formal statements.

Briefly, security parameter preserving reductions have the property that the reduction only

queries the adversary (in our case the tampering function) on the same security parameter that it

receives as input. The notion of “approximate” security parameter preserving reductions is new

to this work. Such reductions are parameterized by polynomial functions ℓ(·), D(·) and on input

security parameter =, the reduction may query the adversary on any security parameter in the

range ℓ(=) to D(=). This notion is somewhat less restrictive than a security parameter preserving

reduction. Finally, in a non-security parameter preserving reduction, the reduction receives security

parameter = as input and may query the adversary on arbitrary security parameter =′. Note that

=′(=) must be in $ (=2) for some constant 2, since the reduction must be polynomial time. This

notion allows us to rule out the most general type of black-box reduction discussed above.

We can instantiate the tampering class F from our generic lemma statements with various

162

classes of interest. Our results on security parameter preserving and approximate security param-

eter preserving reductions apply to the class NC1 as a special case. Our result ruling out non-

security parameter preserving reductions applies to the class (non-uniform) NC as a special case.

See Corollaries 10, 11, 12 for the formal statements. As the proofs are already quite involved, we

make the simplifying assumption of deterministic decoding and perfect correctness. However, this

is not inherent to the proof and we expect the results to extend to coding schemes with imperfect

correctness and randomized decoding.

Do reductions for NMC take the above form? So far, in the non-malleable codes setting, re-

sults have either been unconditional (e.g. [42, 34]) or have been based on polynomial-hardness

assumptions (e.g. [31, 32]). The results that are based on polynomial-hardness assumptions have

all used black-box security reductions, in the standard polynomial-time sense [128]. Our notion

is new since it captures a fine-grained setting where the underlying distributional problem is, in

fact, easy for polynomial-time algorithms. As discussed above, this is the minimal computational

hardness assumption necessary to construct non-malleable codes for classes F for which we can-

not prove unconditionally that P * F . While this type of reduction implicitly arises in the work

of [22], our work is the first to formally define and explore this notion of fine-grained black-box

reductions in a cryptographic setting.

10.1 Technical Overview

We begin by describing our proof showing the impossibility of a black-box, security-parameter

preserving reduction, from NMC against the tampering class NC1, to a distributional problem

that is hard for NC1. The proof for approximately security parameter preserving reductions is

essentially the same, and so we subsequently describe the extension to impossibility of a black-

box, non-security-parameter preserving reduction, from non-malleable codes against the tampering

class NC, to a distributional problem that is hard for NC.

Our proof proceeds via the meta-reduction technique. Specifically, consider a black-box re-

163

duction ', reducing the security of a single-bit non-malleable code against NC1 to a distributional

problem that is hard for NC1. The form that this reduction takes, is that it submits codewords 2

to the tampering function 5 and gets back (tampered) codewords H as responses. The main idea

is to begin with a tampering function 5 , which is not in NC1. This tampering function receives a

codeword 2, decodes it to obtain the bit 1 and then submits a randomly generated encoding of the

bit 1−1. In the proof, we assume the existence of a reduction ' such that ' 5 breaks the underlying

distributional problem (this follows from the definition of a black-box reduction). We then switch

from 5 to a tampering function 5 ′ that is in NC1, which behaves as follows: Upon receiving a

codeword 2, 5 simply responds with a (hardcoded) random codeword 2′ that encodes a random bit,

independent of the bit that is obtained when the decoding algorithm is applied to 2. This switch is

desirable, since then ' 5
′

will be in NC1 (note that we are guaranteed that ' 5
′

is in NC1, since one

of the properties of ' is that whenever the tampering function 5 ′ is in NC1, then ' 5
′

must also be

in NC1). It remains, however, to show that ' 5
′

succeeds in breaking the underlying distributional

problem, which then implies that the underlying distributional problem is not hard for NC1. In

order to ensure this, we use a hybrid argument, where responses to queries from ' are switched

one by one, from responses according to 5 to responses according to 5 ′. In each step, we must

show that the reduction remains successful in breaking the underlying distributional problem. Im-

portantly, in the 8-th hybrid, the first 8 − 1 responses are answered according to 5 , the 8-th response

and on are answered according to 5 ′. Since ' is in NC1, we argue that if ' can distinguish the

(8 − 1)-st and 8-th hybrids, then we obtain a tampering attack in NC1 on the non-malleable code.

To do this, we construct a tampering function that hardwires the input to ', the transcript (queries

and responses) and entire state of ' for the first 8 − 1 queries made from ' to 5 , the 8-th query

along with the value 1 that it decodes to, and the responses to the queries 8 + 1 and on. Then, given

an input codeword 2′, the tampering function inserts this value as the response to the 8-th query,

runs the reduction ' from this point on (given the state of ' at the point of the response to the

8-th query) and responds with the random hardwired queries upon any future queries from '. If '

distinguishes between Hybrids 8 − 1 and 8, then the above yields a distinguisher between randomly

164

generated encodings of the bit 1, versus randomly generated encodings of a random bit. It is not

hard to see that such a distinguisher immediately yields a tampering attack, since it can be used to

predict the underlying encoded value and the tampering attack can then replace the codeword with

an encoding of a bit which is the opposite of the predicted bit.

In the above, note that it is crucial that the reduction is security parameter preserving. Indeed,

if ' queries codewords 2′ that are very short (say length log2(=)) then we can no longer use '

to obtain a valid tampering function against the non-malleable code. This is because ' has size

poly(=) and depth log(=), which is not in NC1 relative to input length log2(=). To deal with this

problem, we take advantage of the fact that ' must be successful even for tampering functions

5 that work only for very sparse input lengths {1, 2, 22, 222
, . . .}. In this way, we can essentially

guarantee that the reduction queries at most a single input length ℓ which is greater than log(=)

and at most poly(=). We now consider two cases: Either for this input length ℓ it is the case that

NC circuits can distinguish encodings of 0 and 1 with probability at least 3/4, or for this input

length ℓ it is the case that NC circuits can distinguish encodings of 0 and 1 with probability at most

1 − 1/poly(=). If we are in the first case, then we can actually honestly run the attack using a NC

circuit (in this case we just use the distinguisher to guess the value of the encoding and succeed

with probability 3/4). If we are in the second case, then we can use Impagliazzo’s Hard Core

Set [66] to find a set of encodings such that a NC circuit can distinguish random encodings of 0

and 1 from this set with probability at most 1/2+1/poly(=). In this case, we modify the tampering

function to hardcode random encodings from the hard core set and return these in response to the

queries from '. Note that to obtain contradiction to the security of the constructed non-malleable

code, we now require that when the reduction ' is composed with any tampering circuit in NC,

then the composed circuit is still in NC. This property holds for NC, but not NC1, which is why

our result on ruling out non-security preserving reductions holds only for NC.

165

10.2 Preliminaries

We begin by present definitions of functionalities Unroll and Replace which will then allow

us to define the appropriate notions of composition and closure for function classes for which our

methods hold. We conclude this section with the formal definitions of black box reductions.

Definition 33 (Unroll functionality.). Let � := { 5=}∞==1 ∈ F , where 5= : {0, 1}= → {0, 1} and � =

{6<}∞<=1 ∈ G, where 6< : {0, 1}< → {0, 1}<, be function families. Also let C, ? be polynomials.

Let < ∈ poly(=). Let �� denote families functions 5= : {0, 1}= → {0, 1} ∈ � which contains at

most C (=) oracle gates computing 6< : {0, 1}< → {0, 1}< ∈ � and get string of length ?(=) as

non-uniform advice. On an =-bit input, consider the DAG whose left side consists of the circuit

of 5= and whose right side consists of circuits 6=1 , . . . , 6=C (=) . The values of wires going from

the left to the right correspond to (a topological ordering of) the oracle queries G1, . . . , GC (=) of

lengths =1, . . . , =C (=) , made in each of the C (=) queries. For 8 ∈ [C (=)], circuit 6=8 takes as input

G8 and returns H8. The values of wires going from the right to the left correspond to the responses

H1, . . . , HC (=) . We say that this DAG, denoted Unroll(��), is an unrolling of �� (G).

Definition 34 (Replace Functionality.). Consider replacing each 6=8 , 8 ∈ [C (=)], in Unroll(��)

with a circuit 6′=8 that takes input (G1, . . . , G8) and produces output H8. This is denoted by

Replace(Unroll(��), 6′=1 , . . . , 6
′
=C (=))

.

Definition 35 ((G, C, ℓ, D)-closure of F). Let � := { 5=}∞==1 ∈ F , where 5= : {0, 1}= → {0, 1}

and � = {6<}∞<=1 ∈ G, where 6< : {0, 1}< → {0, 1}<, be function families. Also let C, ℓ, D be

polynomials, and ℓ(=) ≤ < ≤ D(=). Let 5=6< denote function 5= : {0, 1}= → {0, 1} which has

access to the output of 6< : {0, 1}< → {0, 1}< on at most C (=) inputs of its choice.

We say that F is (G, C, ℓ, D)-closed under compositions if for every � ∈ F such that for all

166

� ∈ G, Unroll(��) ∈ F , we have that for all �′ ∈ G and all 6′=1 , . . . , 6
′
=C (=) ∈ �

′,

Replace(Unroll(��), 6′=1 , . . . , 6
′
=C (=)) ∈ F

.

Definition 36 ((G, C)-closure of F under Strong Composition). Let � := { 5=}∞==1 ∈ F , where

5= : {0, 1}= → {0, 1} and � = {6<}∞<=1 ∈ G, where 6< : {0, 1}< → {0, 1}<, be function families.

Also let C, ? be polynomials. Let < ∈ poly(=). Let �� denote families functions 5= : {0, 1}= →

{0, 1} ∈ � which contains at most C (=) oracle gates computing 6< : {0, 1}< → {0, 1}< ∈ �.

We say that F is (G, C)-closed under compositions if for every � ∈ F we have that for all

�,�′ ∈ G and all 6′1, . . . , 6
′
C (=) ∈ �

′, Replace(Unroll(��), 6′1, . . . , 6
′
C (=)) ∈ F .

10.2.1 Black Box Reductions

Definition 37 (Black-Box-Reduction). We say ' is an (�, n, X)-black-box reduction from a (single

bit) non-malleable code, (E,D) = {(E=,D=)}∞==1, to a distributional problem, (Ψ, !) = {(Ψ=, !=)}∞==1,

if the following hold:

1. For every set of circuits { 5=}∞==1 parameterized by input length = such that 5= achieves n (=)-

malleability, for non-negligible n , i.e.

Pr
1
D←{0,1}

[D= (5= (E= (1))) = 1 − 1] > 1
2
+ n (=),

then ' 5 solves {(Ψ=, !=)}∞==1 with advantage X(=), where X is non-negligible. I.e.

Pr
G←Ψ=

[!= (G) = '{ 5: }
∞
:=1 (G)] > 1

2
+ X(=).

2. If { 5=}∞==1 ∈ �, then '{ 5: }
∞
:=1 (G) ∈ �.

We say a reduction ' is length-preserving if ', on input of length = is only allowed to make

167

queries to oracles with security parameter =. Namely,

Pr
G←Ψ=

[!= (G) = ' 5= (G)] >
1
2
+ X(=).

We say a reduction ' is approximately length-preserving if there are polynomials ?(·), @(·)

such that ', on input of length = is only allowed to make queries to oracles with security parameter

: ∈ [?(=), @(=)]. Namely,

Pr
G←Ψ=

[!= (G) = '{ 5: }
@ (=)
:=? (=) (G)] > 1

2
+ X(=).

We say a reduction is in NC1 if it can be written as a family of circuits of $ (log =)-depth,

poly(=)-size.

10.3 On NMC from Average-Case Hardness via BB Reductions

A crucial component of our impossibility result will be a lookup circuit that responds to queries

submitted by the reduction with hardwired responses. However, we need the lookup circuit to

maintain consistency: If the reduction queries the same query multiple times, the same response

should be given each time. Such a lookup circuit is trivial to implement with polynomial-size

circuits. However, in our case, we require that this lookup circuit is implementable in NC1. In the

following, we first formally define such a lookup circuit and then prove that it is implementable in

NC1.

Definition 38 (Look-Up Circuit.). A (ℓ(=), ?(=)) lookup circuit consists of ℓ(=) hardwired values

of length ?(=) bits, denoted H1, . . . , Hℓ(=) . The lookup circuit receives as input G1, . . . , Gℓ(=) , where

each G8 has length ?(=) bits. The circuit outputs ℓ(=) number of ?(=)-bit strings: H81 , . . . , H8ℓ (=) ,

where for 9 ∈ [ℓ(=)], 8 9 is set to the first index : ∈ [ℓ(=)] such that G 9 = G: . For example, on input

G1, G2, G3, G4, . . ., where G1 = G3 and G2 = G4, the circuit outputs H1, H2, H1, H2.

168

Proposition 7. For ?(=), ℓ(=) = $ (=2) for some fixed constant 2, there exist polynomial size

look-up circuits of depth $ (log =).

Sketch. The inputs, G1, . . . , Gℓ−1, can be put in sorted order via a circuit of size $ (=2 log =) and

depth$ (log =) [129]. Then each sorted G8 can determine if it is the first of that value (if G1, . . . , Gℓ−1

are in sorted order then G 9 is determining that there does not exist G8 = G 9 such that 8 < 9), by

comparing only to one neighboring value. This can be done in parallel. Finally, compare Gℓ to all

G8 that pass this test in parallel. If there is such an G8 such that G8 = Gℓ, the circuit will output H8.

Otherwise, the circuit will output Hℓ. �

We now present the central technical lemma of the section.

Lemma 31. Assume that F is (F , C, ?(=), ?(=))-closed under composition (see Definition 35), and

contains (C (=), ?(=)) look-up circuits for polynomials C (·), ?(·).2 If there is an (F , 1/2, X(=))-

black-box-reduction making C (=) security parameter-preserving queries from a (single bit) non-

malleable code for F , (E,D) = {(E=,D=)}∞==1, to a distributional problem, (Ψ, !) = {(= Ψ=, !=)}∞==1,

then one of the following must hold:

1. (E,D) is X(=)
2C (=) -malleable by F .

2. (Ψ, !) is (X(=)/2)-easy for F .

Moreover, if (E,D) is efficient, then it suffices that F contains such look-up circuits generated

in uniform polynomial time.

Proof. Let ' be such a security parameter-preserving (F , 1/2, X(=)-reduction, for a non-malleable

code (E,D) and distributional problem (Ψ, !). Moreover, for security parameter =, let ?(=) be the

length of the codeword generated by E, where ?(·) is a polynomial.

Consider the following tampering functions { 5?(=)}?(=) whose behavior on a given codeword

2 is defined as follows (where � is a random function � : {0, 1}?(=) → {0, 1}∗ and � (2) is the

2?(=) corresponds to the length of the codeword outputted by E=.

169

randomness used by encoding algorithm):

5?(=) (2) :=

E= (1;� (2)) if D= (2) = 0

E= (0;� (2)) if D= (2) = 1

Since, NMC are perfectly correct, we have (for any choice of �)

Pr
1
D←{0,1}

[D= (5?(=) (E(1))) = 1 − 1] = 1.

Therefore, by our assumption on ' we have that for all =,

Pr
G←Ψ=

[!= (G) = ' 5? (=) (G)] ≥
1
2
+ X(=).

Now, for the 9-th oracle query, we define 5
′, 9
?(=) , a stateful simulation of the output of the tamper-

ing function 5?(=) on the 9-th query. Each 5
′, 9
?(=) is a (9 , ?(=)) lookup circuit (with 9 number of

inputs/outputs of length ?(=)) that hardcodes a random codeword (sampled from E(1) where 1 is

uniform) as the H 9 value.

By our assumption on F (and '), we have that Replace(Unroll(' 5? (=)), 5
′,1
?(=) , . . . , 5

′,C (=)
?(=)) ∈

F . We will abuse notation and denote the resulting circuit by ' 5
′
? (=) . So, it suffices to show that

the behavior of ' 5
′
? (=) (G) is close that of ' 5

�
? (=) (G), for any G, which will imply that ' 5

′
? (=) (G) ∈ F

breaks the distributional problem w.h.p., since ' 5
�
? (=) (G) does. More accurately, if (E,D) is X(=)

2C (=) -

non-malleable by F , then we will show that

∀= ∈ N,∀G ∈ {0, 1}=,Δ(' 5 ′= (G); ' 5= (G)) ≤ X(=)/2.

By the above, this then implies that (Ψ, !) is (X(=)/2)-easy for F .

To show that the outputs of ' 5
′
? (=) (G) and ' 5

�
? (=) (G) are close, we will use a hybrid argument,

reducing to the X(=)
2C (=) -non-malleablity of (E,D) at every step.

In the 8-th hybrid, the function 5
(8), 9
?(=) responding to the 9-th query is a (9 , ?(=)) look-up circuit

170

that hardcodes values H81, . . . , H
8
9
. For : ∈ [C = C (=)], the H8

:
values are sampled as follows: For

: ∈ [C − 8], H8
:

is sampled as by 5 �
?(=) . For : > C − 8, H8

:
is a random encoding of a random bit.

The concatenation of the C circuits for each query is denoted by 5
(8)
?(=) . Clearly, 5 (0)

?(=) ≡ 5?(=) and

5
(C)
?(=) ≡ 5

′
?(=) .

We will show that for all G ∈ {0, 1}= (and any fixing of random coins A for ')

Δ(' 5
(8)
? (=) (G); ' 5

(8−1)
? (=) (G)) ≤ X(=)

2C (=) (for 8 ∈ [C (=)]), which proves the claim above. (' 5
(0)
? (=) (G) has

advantage X(=) and in each of the subsequent C (=) hybrids we lose at most an n (=) factor.)

Suppose not, then there exists an G (and random coins A, if ' is randomized) such that '’s

behavior differs with respect to 5
(8)
?(=) and 5

(8−1)
?(=) : | Pr[' 5

(8)
? (=) (G) = 1] − Pr[' 5

(8−1)
? (=) (G) = 1] | ≥ X(=)

2C (=) .

Note that for fixed random function � (that generates the random coins used to sample the H 9

values) 5 (8)
?(=) and 5

(8−1)
?(=) differ solely on the response to (C − 8)-th query. So, fix G, � and all but

the (C − 8)-th value H8
C−8 and “hardcode” all other H: values in both cases. The reason that we can

hardcode the H 9 values except for the (C−8)-th response is the following: Clearly, up to the (C−8)-th

query, the responses can be fully hardcoded since G is fixed and so all the queries and responses

can also be fixed. The H 9 values hardcoded in the (C − 8 + 1)-st lookup circuit and on can also be

fixed, since in both 5
(8)
?(=) and 5

(8−1)
?(=) , the (C − 8 + 1)-st value of H 9 and on is a random codeword, that

does not depend on the value encoded in the query submitted by the reduction. Let B�,G denote the

value encoded in the (C − 8)-th query in this hardcoded variant of the hybrid. Note that the value of

B�,G is also fixed.

1. In ' 5
(8−1)
? (=) (G) all values up to the (C − 8)-th response are hardcoded. The (C − 8)-th response,

which will be a random encoding of bit 1 − B�,G , is not hardcoded. All the other responses

are computed by lookup circuits with hardwired H 9 values.

2. In ' 5
(8)
? (=) (G), all values up to the (C − 8)-th response are hardcoded. The (C − 8)-th response,

which will be a random encoding of a random bit, is not hardcoded. All the other responses

are computed by lookup circuits with hardwired H 9 values.

Thus, we will treat the above as a new function '′
�,G
(·) that takes as input just the response to

171

the (C − 8)-th query and returns some value. Note that '′
�,G
(·) is in F , since it can be viewed as

the circuit ' 5
(8)
? (=) , with queries/responses to 5 (8), 9 , 9 ∈ [C − 8 − 1] hardcoded, the (C − 8)-th query

hardcoded, the (C−8)-th value H8
C−8 as the input to the circuit, and for 9 > C−8, the 5 (8), 9 functions as

lookup circuits contained in F . Moreover, by the above, '′
�,G
(·) distinguishes random codewords

that encode the bit 1− B�,G from random codewords that encode a random bit with advantage n (=).

Specifically,

Pr['′�,G (2) = 1 | 2 ← E= (1 − B�,G)] − Pr['′�,G (2) = 1 | 2 ← E= (1), 1 ← {0, 1}] ≥
X(=)
2C (=) .

By standard manipulation, the above is equivalent to:

1
2
· Pr['′�,G (2) = 1 | 2 ← E= (1 − B�,G)] +

1
2
· Pr['′�,G (2) = 0 | 2 ← E= (B�,G)] ≥

1
2
+ X(=)

2C (=) .

This implies that we can use '′
�,G

to construct a distribution over tampering functions in F that

successfully break (E,D). Details follow.

Let 2B�,G be a codeword encoding bit B�,G and let 21−B�,G be a codeword encoding bit 1 − B�,G .

Define 5̂�,G as follows: 5̂�,G hardcodes 2B�,G and 21−B�,G . On input (codeword) 2,

• If '′
�,G
(2) = 1, output 2B�,G ;

• Otherwise, output 21−B�,G .

We now analyze

Pr
1←{0,1}

[D= (5̂�,G (E= (1))) = 1 − 1] .

172

Pr
1←{0,1}

[D(5̂�,G (E(1))) = 1 − 1] = Pr[1 = 1 − B�,G] · Pr['′�,G (2) = 1 | 2 ← E= (1 − B�,G)]

+ Pr[1 = B�,G] · Pr['′�,G (2) = 0 | 2 ← E= (B�,G)]

=
1
2
· Pr['′�,G (2) = 1 | 2 ← E= (1 − B�,G)]

+ 1
2
· Pr['′�,G (2) = 0 | 2 ← E= (B�,G)]

≥ 1
2
+ X(=)

2C (=) .

But, the above implies that (E,D) is X(=)
2C (=) -malleable for F .

Therefore, we conclude that either (E,D) is X(=)
2C (=) -malleable for F or the distributional problem,

(Ψ, !) = {(Ψ=, !=)}∞==1 is (X(=)/2)-easy for F . �

The following corollary holds since NC1 is (NC1
, C, ?(=), ?(=))-closed under composition (for

all polynomials ?(·)), and NC1 contains (C (=), ?(=)) lookup circuits for any polynomials C (·), ?(·).

Corollary 10. If there is an (NC1
, 1/2, X(=))-black-box-reduction making C (=) security parameter

preserving queries from a (single bit) non-malleable code for NC1, (E,D) = {(E=,D=)}∞==1, to a

distributional problem, (Ψ, !) = {(Ψ=, !=)}∞==1, then one of the following must hold:

1. (E,D) is X(=)
2C (=) -malleable by NC1.

2. (Ψ, !) is (X(=)/2)-easy for NC1.

Note 1. The proof of Lemma 31 (as well as the other proofs in this section), does not extend

to cases in which the reduction ' is outside in the class of tampering functions F . Specifically,

in the hybrid arguments, we require that '′
�,G
(·) is in F . In particular, our proof approach does

not extend to proving impossibility of constructing a (single bit) non-malleable code for F , from a

distributional problem, (Ψ, !) that is hard for some larger class F . E.g. our techniques do not allow

us to rule out constructions of non-malleable codes for NC1 from a distributional problem that is

hard for NC2. Our techniques also do not rule out constructions of non-malleable codes for F from

173

an “incompressibility”-type assumption, such as those used in the recent work of [20]. Briefly, if

a function k is incompressible by circuit class F , it means that for C � =, for any computationally

unbounded Boolean function � : {0, 1}C → {0, 1} and any � : {0, 1}= → {0, 1}C ∈ F , the output

of � ◦� (G1, . . . , G=) is uncorrelated with k(G1, . . . , G=) (over uniform choice of G1, . . . , G=). In our

case, this would mean that the reduction ' is allowed oracle access to a computationally unbounded

Boolean function �, since the hardness assumption would still be broken by the reduction as long

as ' ∈ F and the query made to � has length C � =. Since ' composed with � is clearly outside

the tampering class F , our proof approach does not apply in the incompressibility setting.

Note 2. We can extend Lemma 31 to rule out (D(=), ℓ(=))-approximately security parameter pre-

serving reductions by allowing our reduction access to a greater range of inefficient/simulated

tampering functions (defined in the same manner as above): { 5: }D(=):=ℓ(=) and { 5 ′
:
}D(=)
:=ℓ(=) . In this case,

we can, WLOG, conflate the security parameter queried to the oracle with the length of the query

made to the oracle. However, we now require for our proof that F is (F , C, ℓ, D)-closed under

composition and contains look-up circuits with C (=) inputs, consisting of ℓ(=) to D(=) number of

bits, for polynomials C (·), ℓ(·), D(·).

Lemma 32. Assume F is (F , C, ℓ, D)-closed under composition (see Definition 35) and contains

(C (=), ?(=)) look-up circuits for polynomials C (·), ?(·). If there is an (F , 1/2, X(=))-black-box-

reduction making C (=) number of (ℓ(=), D(=))-approximately length preserving queries, from a

(single bit) non-malleable code for F , (E,D) = {(E=,D=)}∞==1, to a distributional problem, (Ψ, !) =

{(Ψ=, !=)}∞==1, then one of the following must hold:

1. (E,D) is X(=)
2C (=) -malleable by F .

2. (Ψ, !) is (X(=)/2)-easy for F .

Moreover, if (E,D) is efficient, then for the conclusion to hold it suffices that F contains such

look-up circuits generated that are generated uniform polynomial time.

The following corollary holds since NC1 is (NC1
, C, ℓ, D)-closed under composition, where

174

ℓ(=) = =W, for any constant W ≤ 1, D(=) = =2, for any constant 2 ≥ 1 and NC1 contains look-up

circuits with C (=) number of inputs of length ℓ(=) to D(=)-bits for polynomials C (·), ℓ(·), D(·).

Corollary 11. Fix constants W ≤ 1, 2 ≥ 1. If there is an (NC1
, 1/2, X(=))-black-box-reduction

making C (=) (=W, =2)-approximately length preserving queries from a (single bit) non-malleable

code for NC1, (E,D) = {(E=,D=)}∞==1, to a distributional problem, (Ψ, !) = {(Ψ=, !=)}∞==1, then

one of the following must hold:

1. (E,D) is X(=)
2C (=) -malleable by NC1.

2. (Ψ, !) is (X(=)/2)-easy for NC1.

We extend to non-security parameter preserving reductions, but require a stronger composi-

tional property for the tampering class F . As for approximate security parameter preserving re-

ductions, WLOG we may conflate the security parameter queried to the oracle with the length of

the query made to the oracle.

Lemma 33. Let F be closed under strong composition (see Definition 36) and contain (C (=), D(=))

lookup circuits. If for every non-negligible n , there is an (F , n , X(=))-black-box-reduction (for

some non-negligble X) making C (=) queries from an (single bit) n (=)-non-malleable code for F ,

(E,D) = {(E=,D=)}∞==1, to a distributional problem, (Ψ, !) = {(Ψ=, !=)}∞==1, then (Ψ, !) is not

(X(=) − C (=) · n (=))-hard for F .

Proof. Let S := {1, 21, 221
, 2221

, . . .}. Let n (=) be the following non-negligible function:

n (=) :=

1
4 if = ∈ S

0 if = ∉ S

Assume there is some reduction ' that succeeds with non-negligible probability X := X(=) for

this n . Since X is non-negligible, there must be an infinite set S′ such that X(=) ≥ 1/=2 for some

constant 2 and for all = ∈ S′.

175

WLOG, we may assume that the reduction ', on input of length =, queries at most a single

input length ℓ(=) ∈ l(log(=)), whereas all other queries are of input length $ (log(=)) (since we

may assume the oracle simply returns strings of all 0’s on any input of length : ∉ S). Additionally,

we may assume that (1) ℓ(=) is polynomial in = (since otherwise the reduction does not have time

to even write down the query) and (2) for any : ∈ N, the size of the set ℓ−1(:) ∩ S′ is finite

(otherwise we can hardcode all possible query/responses for a particular input length : into the

reduction–which is constant size since : is constant–and obtain a circuit that breaks the underlying

hard problem on an infinite number of input lengths). Moreover, we assume WLOG that ℓ(=) < =,

since otherwise our previous proof holds.

Since by assumption F is HCS-amenable, we can apply Impagliazzo’s hard-core set theorem

to adversaries in F . Specifically, for random codewords 2 ← Eℓ(=) (1), 1 ← {0, 1} of length

ℓ = ℓ(=) s.t. ℓ(=) < =, there are two possible cases:

1. For infinitely many = ∈ S′ (this set of values is denoted by S′′ ⊆ S′), there is some adversary

in F := {F=}=∈N that outputs Dℓ(=) (2) with probability at least 3/43.

2. For infinitely many = ∈ S′ (this set of values is denoted by S′′ ⊆ S′), there is some hardcore

set H of size at least n′(=) · 2ℓ, where n′(=) = 1
2·=2 ·C (=) such that every adversary in F :=

{F=}=∈N outputs Dℓ(=) (2) with probability at most 1/2 + n′(=), when 2 is chosen at random

fromH4.

In Case 1, we set the tampering function { 5: }: to use the circuit described above to decode

a random codeword with prob 3/4 and then chooses a random encoding of 0 or 1 appropriately.

Additionally, 5: only responds if : ∈ S. Clearly, 5: succeeds with non-negligible probability n .

Since the n function remains the same, we know that X and ℓ, S, S′ remain the same.

In this case, as in the previous proof, we can switch to a simulated tampering function Sim,

which responds with 5ℓ(=) on query input length ℓ(=) and hardcodes all responses for all possible

3Note that Dℓ (=) (2) takes inputs of length ℓ(=), whereas F= takes inputs of length =. We can easily resolve this
discrepancy by padding inputs of length ℓ(=) up to =.

4Again, the input 2 to Dℓ (=) has length ℓ(=) while F= takes inputs of length =. As above, we resolve the discrepancy
by padding inputs of length ℓ(=) up to =.

176

queries ' makes to 5: with input lengths : = : (=) ∈ $ (log(=)).

Note that since we are in Case 1, for infinitely many input lengths–input lengths = ∈ S′′–to ',

'Sim, is a circuit in F=, since F= strongly composes. Additionally, the behavior of 'Sim is identical

to the behavior of '{ 5: }: . Moreover, since 5: succeeds with non-negligible n , by assumption on

', it means that for all = ∈ S′, ' 5ℓ (=) agrees with (Ψ, !) with probability 1/2 + 1/=2. But then

we must have that for infinitely many = ∈ S′–input lengths = ∈ S′′–'Sim agrees with (Ψ, !) with

probability 1/2 + 1/=2 and 'Sim ∈ F=. So (Ψ, !) is (X′(=))-easy for F , where

X′(=) :=

1
=2

if = ∈ S′′

0 if = ∉ S′′

In Case 2, we set the tampering function { 5: }: to decode the query submitted by the reduction

' and respond with a random encoding from the hardcore set described above (if it exists), which

decodes to 0 or 1 as appropriate. Specifically, the hardcore set H is defined as follows: 5: sets

=∗ to be equal to the lexicographically first element in the (finite) set ℓ−1(:) ∩ S′′5, and chooses

the lexicographically first set H of size n′(=∗) · 2ℓ(=∗) = n ′(=∗) · 2: for which every adversary

in F= outputs Dℓ(=∗) (2) with probability at most 1/2 + n′(=∗), when 2 is chosen at random from

H . If ℓ−1(:) ∩ S′ = ∅ or there is no such hardcore set H , then 5: applies the trivial breaking

strategy described above (decoding the input and responding with a random encoding of 0 or 1 as

appropriate). Moreover, 5: responds only if : ∈ S. Since the n function remains the same in this

case as well, the X function also remains the same. Thus, for = ∈ S′, ' 5ℓ (=) must still agree with

(Ψ, !) with probability 1/2 + 1/=2.

In this case, as in the previous proof, we can switch to a simulated tampering function Sim that

does not decode but rather chooses a random codeword from the hardcode setH (which again we

can hardcode in using lookup circuits as before). Moreover, for queries ' makes to Sim with input

lengths : = : (=) ∈ $ (log(=)), all responses for all possible queries 2 are hardcoded into Sim.

Now, for infinitely many = ∈ S′–input lengths = ∈ S′′–'’s behavior should be C (=) · n′(=)-close

5Note that it is finite since ℓ−1 (:) ∩ S′ is finite and S′′ ⊆ S′.

177

when interacting with { 5: }: versus Sim, since otherwise in each hybrid step we can construct a

distinguishing circuit in F= (as in the previous proof) contradicting the guaranteed hardness of the

hardcore set. Finally, we must argue that for infinitely many = ∈ S′–input lengths = ∈ S′′–'

composed with Sim is in the class F . But due to the fact that F is (F , C)-closed under strong

composition, this occurs whenever the reduction is instantiated with security parameter = ∈ S′′,

where = is the lexicographically first element in the set ℓ−1(ℓ(=))∩S′′. Since = is always contained

in ℓ−1(ℓ(=)), since the size of ℓ−1(ℓ(=)) ∩ S′ is finite and since the size of S′′ is infinite, there

will be infinitely many = ∈ S′′ for which this event occurs. Thus, for infinitely many = ∈ S′′

(denote this set of values by S̃, '{ 5: }: agrees with (Ψ, !) with probability 1/2 + 1/=2 and 'Sim is

C (=) · n′(=) ≤ 1/2=2-close to '{ 5: }: . So we conclude that (Ψ, !) is (X′(=))-easy for F , where

X′(=) :=

1
2=2 if = ∈ S̃

0 if = ∉ S̃

�

The following corollary holds since NC is (NC, C)-closed under strong composition and Im-

pagliazzo’s HCS holds for NC.

Corollary 12. If for every non-negligible n = n (·), there is an (nu − NC, n , X)-black-box-reduction,

for some non-negligible X = X(·), making C (=) queries from a (single bit) non-malleable code

for nu − NC, (E,D) = {(E=,D=)}∞==1, to a distributional problem, (Ψ, !) = {(Ψ=, !=)}∞==1, then

(Ψ, !) is (X′(=))-easy for NC, for some non-negligible X′ = X′(·).

178

Conclusion

In this thesis, we have seen explicit constructions of non-malleable codes for a variety of compu-

tational classes. For classes where average-case unconditional lower bounds are known, we have

seen that unconditionally secure non-malleable codes exist. For polynomial size circuits tamper-

ing, non-deterministic circuit lower bounds imply explicit non-malleable codes for polynomial size

circuit tampering. And yet many questions remain.

Improving parameters. For many of our classes, we should be able to improve parameters. For

example, we know n-non-malleable codes exist for tampering of locality = − log(1/n) (we know

they do not exist for locality = − log(2/n), but are unsure about locality between these bounds).

On the other hand, we do not know even an inefficient construction that is secure for locality

Ω(=/log =). Can we achieve non-malleability against decision trees of depth =W for W ≥ 1/4?

Similarly, can the analysis in Chapter 7 be tightened to match the parameters in [130, 98]?

In this work we did not focus on rate (so long as codeword were polynomial in the message

length), but there is much room for improvement. Similarly, the error of our conditional construc-

tion for polynomial size circuit tampering is not even negligible. Ideally, we would like a code

that is efficient in the security parameter, in the language of this thesis this means Encoding and

Decoding can be performed in time poly(log(1/n)) (the construction in Chapter 9 is poly(1/n))).

Can the error be improved? Black box impossibility results of Applebaum et al. [65] suggest this

may be difficult without different assumptions.

Unconditional constructions for other classes. There are a variety of other classes for which

we know strong lower bounds, but do not yet know unconditionally secure codes. To name a few:

small formulas, low degree polynomials over small fields, branching programs with small width.

179

Towards a more unified theory of non-malleability? We opened this thesis with a discussion

of the feasibility of proving a hardness vs. non-malleability type result. We gave both semi-generic

constructions from nondeterministic circuit lower bounds (polynomial size circuits in Chapter 9)

and also show obstacles to proving such a theorem from the sufficient assumption of average-case

lower bounds against the class. However, it remains unclear what a minimal assumption indeed

would be for non-malleability. We observe that non-malleability for small circuit tampering admits

an MA proof. However, it seems likely that there is a test of this property with lower complexity.

Additionally, the separation between circuit lower bounds and non-malleability, Section 5.5,

is a bit underwhelming if only for the simple reason that lower bounds typically consider boolean

functions, but our classes have output equal to the input length. A relevant notion seems to be

hardness of compression, but it remains to be seen if this connection can be made tight.

There are also a host of internal questions about the theory of non-malleability. For example,

regarding (explicit) closure: Given an explicit NMC for F and an explicit NMC for G, can the

codes be generically compiled to yield a code against F ∪ G (provided one exists6)? Similarly,

given explicit NMCs for F and G can we generically compile them to get an NMC for F ◦ G

(provided such a code exists)?

Do combiners exist for non-malleable codes? In particular, given a few candidate non-malleable

codes for a class F , can I combine them to get a single explicit code for the class provided that

most are good.

Is domain expansion possible for natural classes? For example, given an NMC that can encode

a single bit, can I get a code for even just two bits (again provided such a code exists7). Rate

compilers [131, 32, 16], suggest that this is possible for specific classes in a certain sense.

Similarly, is hardness amplification possible? Namely, given an explicit n-NMC can we gener-

ically compile it into, say, an n2-NMC (provided one exists8)?

6Without this proviso, it is easy to construct counter-examples. For example F if = is odd and impossible if = is
even, where as G is defined oppositely.

7We know from Section 3.4 that at most one bit can be protected from tampering attacks that may change up to
= − 1 bits arbitrarily.

8Again, the results of Section 5.5 tell us that this is not always possible if the explicit condition is relaxed

180

For all of these questions, even results for specific classes would be very interesting. (Note that

in all of these examples, there are uninteresting “compilers” that ignore the input codes and simply

output a code with the desired properties. But, of course, this does not capture what we would

like.)

New frontiers? Stepping back, non-malleable codes have a clear utility in protecting memory

against tampering attacks. Moreover, we have seen in this thesis and elsewhere remarkable connec-

tions to combinatorics, pseudorandomness, complexity, and cryptography. Just like theory of error

correcting codes has found broad applicability well beyond its original use-case, we believe that

novel applications for these remarkable objects exist in both the theory and practice of computer

science.

181

References

[1] M. Ball, D. Dachman-Soled, M. Kulkarni, and T. Malkin, “Limits to non-malleability,”
in ITCS, ser. LIPIcs, vol. 151, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020,
80:1–80:32.

[2] M. Ball, D. Dachman-Soled, M. Kulkarni, and T. Malkin, “Non-malleable codes for bounded
depth, bounded fan-in circuits,” in TCC, 2016.

[3] M. Ball, S. Guo, and D. Wichs, “Non-malleable codes for decision trees,” in CRYPTO (1),
ser. Lecture Notes in Computer Science, vol. 11692, Springer, 2019, pp. 413–434.

[4] M. Ball, D. Dachman-Soled, S. Guo, T. Malkin, and L.-Y. Tan, “Non-malleable codes for
small-depth circuits,” in 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), IEEE, 2018, pp. 826–837.

[5] M. Ball, E. Chattopadhyay, J. Liao, T. Malkin, and L. Tan, “Non-malleability against poly-
nomial tampering,” in CRYPTO (3), ser. Lecture Notes in Computer Science, vol. 12172,
Springer, 2020, pp. 97–126.

[6] M. Ball, D. Dachman-Soled, and J. Loss, “Explicit non-malleable codes for polynomial
size circuit tampering,” (unpublished manuscript).

[7] S. Dziembowski, K. Pietrzak, and D. Wichs, “Non-malleable codes,” in Innovations in
Computer Science - ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010.
Proceedings, A. C. Yao, Ed., Tsinghua University Press, 2010, pp. 434–452.

[8] D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography (extended abstract),” in
STOC, ACM, 1991, pp. 542–552.

[9] E. Biham, “New types of cryptanalytic attacks using related keys (extended abstract),” in
EUROCRYPT, ser. Lecture Notes in Computer Science, vol. 765, Springer, 1993, pp. 398–
409.

[10] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin, “Algorithmic tamper-
proof (ATP) security: Theoretical foundations for security against hardware tampering,” in
TCC, ser. Lecture Notes in Computer Science, vol. 2951, Springer, 2004, pp. 258–277.

[11] M. Cheraghchi and V. Guruswami, “Non-malleable coding against bit-wise and split-state
tampering,” in Theory of Cryptography - 11th Theory of Cryptography Conference, TCC
2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, 2014, pp. 440–464.

182

[12] J. Håstad, “Almost optimal lower bounds for small depth circuits,” in Proceedings of the
18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley, Cali-
fornia, USA, 1986, pp. 6–20.

[13] D. Aggarwal, S. Dziembowski, T. Kazana, and M. Obremski, “Leakage-resilient non-
malleable codes,” in TCC (1), ser. Lecture Notes in Computer Science, vol. 9014, Springer,
2015, pp. 398–426.

[14] E. Chattopadhyay and X. Li, “Non-malleable codes, extractors and secret sharing for in-
terleaved tampering and composition of tampering,” Cryptology ePrint Archive, Report
2018/1069, 2018., Tech. Rep., 2019.

[15] ——, “Non-malleable codes and extractors for small-depth circuits, and affine functions,”
in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
ACM, 2017, pp. 1171–1184.

[16] D. Gupta, H. K. Maji, and M. Wang, “Explicit rate-1 non-malleable codes for local tam-
pering,” in CRYPTO (1), ser. Lecture Notes in Computer Science, vol. 11692, Springer,
2019, pp. 435–466.

[17] F. Lin, M. Cheraghchi, V. Guruswami, R. Safavi-Naini, and H. Wang, “Non-malleable
secret sharing against affine tampering,” arXiv preprint arXiv:1902.06195 (appeared at
ITC 2020), 2019.

[18] M. Cheraghchi and V. Guruswami, “Capacity of non-malleable codes,” in Innovations in
Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, 2014,
pp. 155–168.

[19] S. Faust, P. Mukherjee, D. Venturi, and D. Wichs, “Efficient non-malleable codes and key-
derivation for poly-size tampering circuits,” in Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, 2014, pp. 111–
128.

[20] M. Ball, D. Dachman-Soled, M. Kulkarni, H. Lin, and T. Malkin, “Non-malleable codes
against bounded polynomial time tampering,” in EUROCRYPT (1), ser. Lecture Notes in
Computer Science, vol. 11476, Springer, 2019, pp. 501–530.

[21] D. Dachman-Soled, I. Komargodski, and R. Pass, “Non-malleable codes for bounded poly-
nomial depth tampering,” IACR Cryptol. ePrint Arch., vol. 2020, p. 776, 2020.

[22] M. Ball, D. Dachman-Soled, M. Kulkarni, and T. Malkin, “Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tampering,” in
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May

183

3, 2018 Proceedings, Part III, J. B. Nielsen and V. Rijmen, Eds., ser. Lecture Notes in
Computer Science, vol. 10822, Springer, 2018, pp. 618–650.

[23] A. A. Razborov, “Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition,” Mathematical Notes of the Academy of Sciences of the USSR,
vol. 41, no. 4, pp. 333–338, 1987.

[24] R. Smolensky, “Algebraic methods in the theory of lower bounds for boolean circuit com-
plexity,” in Proceedings of the nineteenth annual ACM symposium on Theory of computing,
1987, pp. 77–82.

[25] ——, “On representations by low-degree polynomials,” in Proceedings of 1993 IEEE 34th
Annual Foundations of Computer Science, IEEE, 1993, pp. 130–138.

[26] R. Zippel, “Probabilistic algorithms for sparse polynomials,” in International Symposium
on Symbolic and Algebraic Manipulation, Springer, 1979, pp. 216–226.

[27] S. Faust, P. Mukherjee, J. B. Nielsen, and D. Venturi, “Continuous non-malleable codes,”
in Theory of Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San
Diego, CA, USA, February 24-26, 2014. Proceedings, 2014, pp. 465–488.

[28] D. Dachman-Soled, F. Liu, E. Shi, and H. Zhou, “Locally decodable and updatable non-
malleable codes and their applications,” in Theory of Cryptography - 12th Theory of Cryp-
tography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part
I, 2015, pp. 427–450.

[29] E. Chattopadhyay, V. Goyal, and X. Li, “Non-malleable extractors and codes, with their
many tampered extensions,” in Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, 2016,
pp. 285–298.

[30] N. Chandran, V. Goyal, P. Mukherjee, O. Pandey, and J. Upadhyay, “Block-wise non-
malleable codes,” in 43rd International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2016, July 11-15, 2016, Rome, Italy, 2016, 31:1–31:14.

[31] F. Liu and A. Lysyanskaya, “Tamper and leakage resilience in the split-state model,” in
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings, 2012, pp. 517–532.

[32] D. Aggarwal, S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, and M. Prabhakaran, “Op-
timal computational split-state non-malleable codes,” in TCC (A2), ser. Lecture Notes in
Computer Science, vol. 9563, Springer, 2016, pp. 393–417.

[33] A. Kiayias, F. Liu, and Y. Tselekounis, “Practical non-malleable codes from l-more ex-
tractable hash functions,” in Proceedings of the 2016 ACM SIGSAC Conference on Com-

184

puter and Communications Security, Vienna, Austria, October 24-28, 2016, 2016, pp. 1317–
1328.

[34] D. Aggarwal, Y. Dodis, and S. Lovett, “Non-malleable codes from additive combinatorics,”
in Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, D. B. Shmoys, Ed., ACM, 2014, pp. 774–783.

[35] X. Li, “Improved non-malleable extractors, non-malleable codes and independent source
extractors,” in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, H. Hatami, P. McKen-
zie, and V. King, Eds., ACM, 2017, pp. 1144–1156.

[36] D. Aggarwal and M. Obremski, “A constant-rate non-malleable code in the split-state
model,” IACR Cryptology ePrint Archive, vol. 2019, p. 1299, 2019.

[37] E. Chattopadhyay and D. Zuckerman, “Non-malleable codes against constant split-state
tampering,” in Proceedings of the 55th Annual IEEE Symposium on Foundations of Com-
puter Science, 2014, pp. 306–315.

[38] B. Kanukurthi, L. Obbattu, and S. Sekar, Four-state non-malleable codes with explicit
constant rate, Theory of Cryptography - 15th Theory of Cryptography Conference, TCC
2017, Baltimore, MD, USA, November 12-15, 2017, to appear, 2014.

[39] S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, and M. Prabhakaran, “Explicit non-malleable
codes against bit-wise tampering and permutations,” in Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, 2015, pp. 538–557.

[40] M. Cheraghchi and V. Guruswami, “Capacity of non-malleable codes,” IEEE Trans. Infor-
mation Theory, vol. 62, no. 3, pp. 1097–1118, 2016.

[41] S. Faust, K. Hostáková, P. Mukherjee, and D. Venturi, “Non-malleable codes for space-
bounded tampering,” in Advances in Cryptology - CRYPTO 2017 - 37th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part II, 2017, pp. 95–126.

[42] S. Dziembowski, K. Pietrzak, and D. Wichs, “Non-malleable codes,” J. ACM, vol. 65, no. 4,
20:1–20:32, Apr. 2018, Extended abstract appeared in Innovations in Computer Science
(ICS) 2010.

[43] S. Dziembowski, T. Kazana, and M. Obremski, “Non-malleable codes from two-source
extractors,” in CRYPTO (2), ser. Lecture Notes in Computer Science, vol. 8043, Springer,
2013, pp. 239–257.

185

[44] D. Aggarwal, Y. Dodis, T. Kazana, and M. Obremski, “Non-malleable reductions and ap-
plications,” in Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, R. A. Servedio and R.
Rubinfeld, Eds., ACM, 2015, pp. 459–468.

[45] N. Nisan and D. Zuckerman, “Randomness is linear in space,” J. Comput. Syst. Sci., vol. 52,
no. 1, pp. 43–52, 1996.

[46] V. Guruswami, C. Umans, and S. P. Vadhan, “Unbalanced expanders and randomness ex-
tractors from Parvaresh–Vardy codes,” J. ACM, vol. 56, no. 4, 2009.

[47] Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan, “Extensions to the method of multiplicities,
with applications to Kakeya sets and mergers,” in Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science, 2009, pp. 181–190.

[48] B. Chor and O. Goldreich, “Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity,” vol. 17, no. 2, pp. 230–261, 1988.

[49] J. Bourgain, “More on the sum-product phenomenon in prime fields and its applications,”
International Journal of Number Theory, vol. 01, no. 01, pp. 1–32, 2005. eprint: http:
//www.worldscientific.com/doi/pdf/10.1142/S1793042105000108.

[50] B. Barak, R. Impagliazzo, and A. Wigderson, “Extracting randomness using few indepen-
dent sources,” SIAM J. Comput., vol. 36, no. 4, pp. 1095–1118, Dec. 2006.

[51] E. Chattopadhyay and D. Zuckerman, “Explicit two-source extractors and resilient func-
tions,” Annals of Mathematics, vol. 189, no. 3, pp. 653–705, 2019.

[52] J. Bourgain, “On the construction of affine extractors,” GAFA Geometric And Functional
Analysis, vol. 17, no. 1, pp. 33–57, 2007.

[53] A. Gabizon and R. Raz, “Deterministic extractors for affine sources over large fields,”
Combinatorica, vol. 28, no. 4, pp. 415–440, 2008.

[54] Z. Dvir, “Extractors for varieties,” Computational complexity, vol. 21, no. 4, pp. 515–572,
2012.

[55] B. Chor, O. Goldreich, J. Hasted, J. Freidmann, S. Rudich, and R. Smolensky, “The bit ex-
traction problem or t-resilient functions,” in IEEE Symposium on Foundations of Computer
Science, 1985, pp. 396–407.

[56] D. Zuckerman, “Linear degree extractors and the inapproximability of max clique and
chromatic number,” in Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing, 2006, pp. 681–690.

186

http://www.worldscientific.com/doi/pdf/10.1142/S1793042105000108
http://www.worldscientific.com/doi/pdf/10.1142/S1793042105000108

[57] A. Ta-Shma and D. Zuckerman, “Extractor codes,” IEEE Transactions on Information The-
ory, vol. 50, no. 12, pp. 3015–3025, 2004.

[58] C. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification by public discussion,”
vol. 17, pp. 210–229, 1988.

[59] C.-J. Lu, “Hyper-encryption against space-bounded adversaries from on-line strong extrac-
tors,” in Annual International Cryptology Conference, Springer, 2002, pp. 257–271.

[60] Y. Dodis and D. Wichs, “Non-malleable extractors and symmetric key cryptography from
weak secrets,” in STOC, 2009, pp. 601–610.

[61] E. Chattopadhyay, V. Goyal, and X. Li, “Non-malleable extractors and codes, with their
many tampered extensions,” in STOC, 2016.

[62] D. Aggarwal, Y. Dodis, and S. Lovett, “Non-malleable codes from additive combinatorics,”
SIAM J. Comput., vol. 47, no. 2, pp. 524–546, 2018.

[63] S. Goldwasser and M. Sipser, “Private coins versus public coins in interactive proof sys-
tems,” in STOC, ACM, 1986, pp. 59–68.

[64] L. Babai and S. Moran, “Arthur-merlin games: A randomized proof system, and a hierarchy
of complexity classes,” J. Comput. Syst. Sci., vol. 36, no. 2, pp. 254–276, 1988.

[65] B. Applebaum, S. Artemenko, R. Shaltiel, and G. Yang, “Incompressible functions, relative-
error extractors, and the power of nondeterministic reductions,” Comput. Complex., vol. 25,
no. 2, pp. 349–418, 2016.

[66] R. Impagliazzo, “Hard-core distributions for somewhat hard problems,” in FOCS, IEEE
Computer Society, 1995, pp. 538–545.

[67] S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee, “Black-box construction of a
non-malleable encryption scheme from any semantically secure one,” in Theory of Cryp-
tography, Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March
19-21, 2008., R. Canetti, Ed., ser. Lecture Notes in Computer Science, vol. 4948, Springer,
2008, pp. 427–444.

[68] ——, “A black-box construction of non-malleable encryption from semantically secure
encryption,” IACR Cryptology ePrint Archive, vol. 2016, p. 720, 2016.

[69] S. E. Decatur, O. Goldreich, and D. Ron, “Computational sample complexity,” in COLT,
ACM, 1997, pp. 130–142.

187

[70] ——, “A probabilistic error-correcting scheme that provides partial secrecy,” in Com-
putational Complexity and Property Testing, ser. Lecture Notes in Computer Science,
vol. 12050, Springer, 2020, pp. 1–8.

[71] L. Carter and M. N. Wegman, “Universal classes of hash functions (extended abstract),” in
STOC, ACM, 1977, pp. 106–112.

[72] A. Weil, “On some exponential sums,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 34, no. 5, p. 204, 1948.

[73] A. Rao, “An exposition of Bourgain’s 2-source extractor,” in Electronic Colloquium on
Computational Complexity (ECCC), vol. 14, 2007.

[74] Y. Dodis, X. Li, T. D. Wooley, and D. Zuckerman, “Privacy amplification and nonmalleable
extractors via character sums,” SIAM Journal on Computing, vol. 43, no. 2, pp. 800–830,
2014.

[75] N. Nisan, “Pseudorandom generators for space-bounded computation,” Combinatorica,
vol. 12, no. 4, pp. 449–461, 1992.

[76] L. M. J. Bazzi, “Polylogarithmic independence can fool DNF formulas,” SIAM J. Comput.,
vol. 38, no. 6, pp. 2220–2272, 2009.

[77] A. Razborov, “A simple proof of bazzi’s theorem,” ACM Transactions on Computation
Theory (TOCT), vol. 1, no. 1, p. 3, 2009.

[78] L. Trevisan and T. Xue, “A derandomized switching lemma and an improved derandomiza-
tion of AC0,” in Proceedings of the 28th Conference on Computational Complexity, CCC
2013, K.lo Alto, California, USA, 5-7 June, 2013, IEEE Computer Society, 2013, pp. 242–
247.

[79] A. Panconesi and A. Srinivasan, “Randomized distributed edge coloring via an extension
of the chernoff-hoeffding bounds,” SIAM J. Comput., vol. 26, no. 2, pp. 350–368, 1997.

[80] M. Bellare and J. Rompel, “Randomness-efficient oblivious sampling,” in 35th Annual
Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22
November 1994, IEEE Computer Society, 1994, pp. 276–287.

[81] J. P. Schmidt, A. Siegel, and A. Srinivasan, “Chernoff-hoeffding bounds for applications
with limited independence,” SIAM J. Discrete Math., vol. 8, no. 2, pp. 223–250, 1995.

[82] Z. Dvir, A. Gabizon, and A. Wigderson, “Extractors and rank extractors for polynomial
sources,” Computational Complexity, vol. 18, no. 1, pp. 1–58, 2009.

188

[83] J. T. Schwartz, “Probabilistic algorithms for verification of polynomial identities,” in Inter-
national Symposium on Symbolic and Algebraic Manipulation, Springer, 1979, pp. 200–
215.

[84] S. P. Vadhan, “A study of statistical zero-knowledge proofs,” PhD thesis, Massachusetts
Institute of Technology, 1999.

[85] E. Chattopadhyay and X. Li, “Non-malleable extractors and codes in the interleaved split-
state model and more,” CoRR, vol. abs/1804.05228, 2018. arXiv: 1804.05228.

[86] S. Dziembowski, “On forward-secure storage,” in Advances in Cryptology - CRYPTO
2006, 26th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 20-24, 2006, Proceedings, 2006, pp. 251–270.

[87] F. Davì, S. Dziembowski, and D. Venturi, “Leakage-resilient storage,” in SCN, ser. Lecture
Notes in Computer Science, vol. 6280, Springer, 2010, pp. 121–137.

[88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, “Multi-prover interactive proofs:
How to remove intractability assumptions,” in STOC, ACM, 1988, pp. 113–131.

[89] H. Buhrman and R. de Wolf, “Complexity measures and decision tree complexity: A sur-
vey,” Theor. Comput. Sci., vol. 288, no. 1, pp. 21–43, 2002.

[90] M. Ball, D. Dachman-Soled, S. Guo, T. Malkin, and L. Tan, “Non-malleable codes for
small-depth circuits,” in FOCS, IEEE Computer Society, 2018, pp. 826–837.

[91] M. M. Klawe, W. J. Paul, N. Pippenger, and M. Yannakakis, “On monotone formulae with
restricted depth (preliminary version),” in Proceedings of the 16th Annual ACM Symposium
on Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA, R. A. DeMillo,
Ed., ACM, 1984, pp. 480–487.

[92] L. G. Valiant, “Exponential lower bounds for restricted monotone circuits,” in Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, D. S. Johnson, R. Fagin, M. L. Fredman, D. Harel, R. M. Karp, N. A.
Lynch, C. H. Papadimitriou, R. L. Rivest, W. L. Ruzzo, and J. I. Seiferas, Eds., ACM, 1983,
pp. 110–117.

[93] M. L. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits, and the polynomial-time hierarchy,”
Mathematical Systems Theory, vol. 17, no. 1, pp. 13–27, 1984.

[94] M. Ajtai, “First-order definability on finite structures,” Ann. Pure Appl. Logic, vol. 45,
no. 3, pp. 211–225, 1989.

189

https://arxiv.org/abs/1804.05228

[95] A. C. Yao, “Separating the polynomial-time hierarchy by oracles (preliminary version),”
in 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA,
21-23 October 1985, 1985, pp. 1–10.

[96] M. Ajtai and A. Wigderson, “Deterministic simulation of probabilistic constant depth cir-
cuits (preliminary version),” in 26th Annual Symposium on Foundations of Computer Sci-
ence, Portland, Oregon, USA, 21-23 October 1985, 1985, pp. 11–19.

[97] M. Agrawal, E. Allender, R. Impagliazzo, T. Pitassi, and S. Rudich, “Reducing the com-
plexity of reductions,” Computational Complexity, vol. 10, no. 2, pp. 117–138, 2001.

[98] R. Impagliazzo, W. Matthews, and R. Paturi, “A satisfiability algorithm for AC0,” in
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, Kyoto, Japan, January 17-19, 2012, 2012, pp. 961–972.

[99] P. Gopalan, R. Meka, and O. Reingold, “DNF sparsification and a faster deterministic
counting algorithm,” Computational Complexity, vol. 22, no. 2, pp. 275–310, 2013.

[100] O. Goldreich and A. Wigderson, “On derandomizing algorithms that err extremely rarely,”
in Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, 2014, pp. 109–118.

[101] M. Ball, E. Chattopadhyay, J. Liao, T. Malkin, and L. Tan, “Non-malleability against poly-
nomial tampering,” IACR Cryptol. ePrint Arch., vol. 2020, p. 147, 2020.

[102] M. Cheraghchi and A. Shokrollahi, “Almost-uniform sampling of points on high-dimensional
algebraic varieties,” in 26th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, 2009,
pp. 277–288.

[103] M. A. Huang and Y. Wong, “An algorithm for approximate counting of points on alge-
braic sets over finite fields,” in ANTS, ser. Lecture Notes in Computer Science, vol. 1423,
Springer, 1998, pp. 514–527.

[104] P. Dusart, “Estimates of some functions over primes without RH,” arXiv preprint arXiv:1002.0442,
2010.

[105] B. Rosser, “The n-th prime is greater than nlogn,” Proceedings of the London Mathematical
Society, vol. 2, no. 1, pp. 21–44, 1939.

[106] G. Robin, “Permanence de relations de récurrence dans certains développements asympto-
tiques,” Pub. Inst. Math. Beograd, vol. 43, no. 57, pp. 17–25, 1988.

[107] M. O. Rabin, “Probabilistic algorithms in finite fields,” SIAM J. Comput., vol. 9, no. 2,
pp. 273–280, 1980.

190

[108] B. Barak, S. J. Ong, and S. P. Vadhan, “Derandomization in cryptography,” in CRYPTO,
ser. Lecture Notes in Computer Science, vol. 2729, Springer, 2003, pp. 299–315.

[109] A. Drucker, “Nondeterministic direct product reductions and the success probability of
SAT solvers,” in FOCS, IEEE Computer Society, 2013, pp. 736–745.

[110] U. Feige and C. Lund, “On the hardness of computing the permanent of random matrices,”
Comput. Complex., vol. 6, no. 2, pp. 101–132, 1997.

[111] O. Goldreich and A. Wigderson, “Derandomization that is rarely wrong from short advice
that is typically good,” in RANDOM, ser. Lecture Notes in Computer Science, vol. 2483,
Springer, 2002, pp. 209–223.

[112] D. Gutfreund, R. Shaltiel, and A. Ta-Shma, “Uniform hardness versus randomness trade-
offs for arthur-merlin games,” Comput. Complex., vol. 12, no. 3-4, pp. 85–130, 2003.

[113] A. R. Klivans and D. van Melkebeek, “Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses,” SIAM J. Comput., vol. 31, no. 5,
pp. 1501–1526, 2002.

[114] P. B. Miltersen and N. V. Vinodchandran, “Derandomizing arthur-merlin games using hit-
ting sets,” Comput. Complex., vol. 14, no. 3, pp. 256–279, 2005.

[115] R. Shaltiel and C. Umans, “Simple extractors for all min-entropies and a new pseudoran-
dom generator,” J. ACM, vol. 52, no. 2, pp. 172–216, 2005.

[116] ——, “Pseudorandomness for approximate counting and sampling,” Comput. Complex.,
vol. 15, no. 4, pp. 298–341, 2006.

[117] ——, “Low-end uniform hardness versus randomness tradeoffs for AM,” SIAM J. Comput.,
vol. 39, no. 3, pp. 1006–1037, 2009.

[118] L. Trevisan and S. P. Vadhan, “Extracting randomness from samplable distributions,” in
FOCS, IEEE Computer Society, 2000, pp. 32–42.

[119] J. Kinne, D. van Melkebeek, and R. Shaltiel, “Pseudorandom generators, typically-correct
derandomization, and circuit lower bounds,” Comput. Complex., vol. 21, no. 1, pp. 3–61,
2012.

[120] F. Li and D. Zuckerman, “Improved extractors for recognizable and algebraic sources,” in
APPROX-RANDOM, ser. LIPIcs, vol. 145, Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019, 72:1–72:22.

[121] R. Impagliazzo and A. Wigderson, “P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma,” in STOC, ACM, 1997, pp. 220–229.

191

[122] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing but their validity for
all languages in NP have zero-knowledge proof systems,” J. ACM, vol. 38, no. 3, pp. 691–
729, 1991.

[123] B. Applebaum, Y. Ishai, and E. Kushilevitz, “Cryptography in nc0,” in FOCS, IEEE Com-
puter Society, 2004, pp. 166–175.

[124] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and B. Waters, “Time-
lock puzzles from randomized encodings,” in ITCS, ACM, 2016, pp. 345–356.

[125] A. Degwekar, V. Vaikuntanathan, and P. N. Vasudevan, “Fine-grained cryptography,” in
CRYPTO (3), ser. Lecture Notes in Computer Science, vol. 9816, Springer, 2016, pp. 533–
562.

[126] B. Applebaum and P. Raykov, “On the relationship between statistical zero-knowledge
and statistical randomized encodings,” in CRYPTO (3), ser. Lecture Notes in Computer
Science, vol. 9816, Springer, 2016, pp. 449–477.

[127] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random functions (extended
abstract),” in FOCS, IEEE Computer Society, 1984, pp. 464–479.

[128] O. Reingold, L. Trevisan, and S. P. Vadhan, “Notions of reducibility between cryptographic
primitives,” in TCC, ser. Lecture Notes in Computer Science, vol. 2951, Springer, 2004,
pp. 1–20.

[129] M. Ajtai, J. Komlós, and E. Szemerédi, “An o(n log n) sorting network,” in Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, D. S. Johnson, R. Fagin, M. L. Fredman, D. Harel, R. M. Karp, N. A.
Lynch, C. H. Papadimitriou, R. L. Rivest, W. L. Ruzzo, and J. I. Seiferas, Eds., ACM, 1983,
pp. 1–9.

[130] J. Håstad, “On the correlation of parity and small-depth circuits,” SIAM J. Comput., vol. 43,
no. 5, pp. 1699–1708, 2014.

[131] S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, and M. Prabhakaran, “A rate-optimizing
compiler for non-malleable codes against bit-wise tampering and permutations,” in Theory
of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland,
March 23-25, 2015, Proceedings, Part I, 2015, pp. 375–397.

192

	Acknowledgements
	Dedication
	Publication History
	Introduction
	Hardness vs. Tamper-Resilience?
	Non-Malleable Codes
	Our Results: How to Construct Non-Malleable Codes
	Relations between the tampering classes considered.
	Related work

	Preliminaries
	Notation
	Non-Malleable Codes
	Seedless Non-Malleable Extractors
	Split-State Tampering
	Split-State Tampering

	Elements of Complexity Theory
	Distributional Problems
	Hard Cores

	Pseudorandom Objects
	Extractors
	Binary Ramp Secret Sharing Encoding Schemes, or ``Reconstructable Probabilistic Encoding (RPE)''
	Bounded Independence
	Characters sums over finite fields
	Pseudorandom Generators for Space-Bounded Computation
	The Pseudorandom Switching Lemma of Trevisan and Xue

	Concentration Inequalities and Other Useful Lemmas

	Warming Up
	An Efficient One-Bit NMC for Small Tampering Families Exists
	An Efficiently Enumerable Family Exists for Small Circuit Tampering (under strong derandomization assumptions)
	Non-Malleability against circuits implies circuit lower bounds
	Non-malleability is no better than error-correction for many arbitrary errors
	Lower bound for encoding more than a bit
	Protecting a single bit against n-1 errors

	Bounded-Communication Tampering (Leakage-Resilient Split-State)
	Technical Overview
	A Reduction from Leaky Split-State to Split-State

	Local (Junta) Tampering
	Technical Overview
	Handling Local Functions
	Removing Input Locality
	On tampering functions where each output symbol depends on n-log(1/(4)) input symbols
	On tampering functions where each input symbol affects at most one output symbol
	Remark on deterministic vs. randomized decoding.

	Non-malleable Codes for Localo(n)i(n)
	Extending to Leaky Local

	Extending to Localm(n)
	Achieving Resilience against o(n/logn) Output Locality
	Limits to Local-Tamper Resilience

	Decision Tree Tampering
	Technical overview
	Decision Trees to Leaky Split-State Model

	Small-Depth Circuit Tampering
	Technical Overview
	Reducing Small-Depth Circuits to Decision-Trees
	Proof of Lemma 17
	Proof of Lemma 16

	Low-Degree Polynomial Tampering
	Technical Overview
	Non-malleable extractors against polynomials
	Efficient sampling

	Small Circuit Tampering
	Technical Overview
	Relaxed seedless non-malleable extractor for small circuit tampering
	Augmented Leakage-Resilient Split-State
	Augmenting the construction of Chapter 4
	Augmenting alternate-non-malleability

	A Non-Malleable Code for Small Circuit Tampering

	Black-Box Barriers
	Technical Overview
	Preliminaries
	Black Box Reductions

	On NMC from Average-Case Hardness via BB Reductions

	Conclusion
	References

