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ABSTRACT  

BACKGROUND  

A robust proxy for estimating methane (CH4) emissions of individual dairy cows would 

be valuable especially for selective breeding. This study aimed to improve the robustness and 

accuracy of prediction models that estimate daily CH4 emissions from milk Fourier-transform 

mid-infrared (FT-MIR) spectra by 1) increasing the reference dataset and 2) adjusting for 

routinely recorded phenotypic information. Prediction equations for CH4 were developed using 

a combined dataset including daily CH4 measurements (n = 1,089; g/day) collected using the 

SF6 tracer technique (n = 513) and measurements using the respiration chambers (RC, n = 576). 

Furthermore, in addition to the milk FT-MIR spectra, the variables of milk yield (MY) on the 

test day, parity (P) and breed (B) of cows were included in the regression analysis as 

explanatory variables. 

RESULTS  

Models developed based on a combined RC and SF6 dataset predicted the expected 

pattern in CH4 values (in g/day) during a lactation cycle, namely an increase during the first 

weeks after calving followed by a gradual decrease until the end of lactation. The model 

including MY, P and B information provided the best prediction results (cross-validation 

statistics: R² = 0.68 and standard error = 57 g CH4/day).  

CONCLUSIONS 

The models developed accounted for more of the observed variability in CH4 

emissions than previously developed models and thus were considered more robust. This 

approach is suitable for large-scale studies (e.g. animal genetic evaluation) where robustness 

is paramount for accurate predictions across a range of animal conditions.  
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INTRODUCTION  

Estimation of individual methane (CH4) emissions from a large number of animals 

and development of strategies to reduce such emissions represent major challenges for the 

dairy sector. Indeed, CH4 has a global warming potential 28 times that of carbon dioxide1. 

Livestock sector represents at global level 14.5% of human-induced greenhouse gases (GHG) 

where emissions of enteric CH4 contribute to 39%2. 

Measuring individual daily CH4 emissions (g/day) using the classical reference 

techniques (i.e., respiration chamber, SF6 tracer gas technique) is labor intensive and 

expensive. These techniques are typically applied in research scenarios and are not feasible 

for large-scale studies, such as for the purpose of genetic selection where thousands of data 

records are needed3. So, a robust proxy to estimate CH4 would be valuable. 

Previous studies highlighted the use of milk components such as fatty acids to estimate 

enteric CH4 emissions4, 5, 6, suggesting an indirect link between CH4 emissions and milk 

composition. Furthermore, previous investigations7, 8, 9 have shown that the milk Fourier-

transform mid-infrared (FT-MIR) spectra can be a convenient proxy for daily enteric CH4 

emissions, as the analysis of milk samples can be performed quickly and at reasonable cost. 

Indeed, individual milk FT-MIR spectra are already collected routinely during the milk 

recording process and thus present a potential solution for estimating individual CH4 

emissions during a day on a large number of cows maintained under commercial conditions10, 

11, 12. This prospect is particularly interesting for large-scale studies such as those needed for 

genetic selection3, 13, 14, 15 or for benchmarking farms to detect herd management practices 

which can be related to low CH4 emissions. Vanlierde et al.7 demonstrated the potential of 

using milk FT-MIR spectra to predict CH4 emissions from individual cows, and especially 

after inclusion of explanatory variables that take into account the stage of lactation for each 

cow. Vanlierde et al.8 developed a prediction model based on CH4 measurements from cows 



 

 

obtained using the SF6 tracer technique in Belgium and in Ireland. Vanlierde et al.9 also 

developed a prediction model based on CH4 measurements from cows in respiration chambers 

(RC) during diet comparison trials in France, Northern Ireland, Switzerland, Denmark and 

Germany. However, when these two prediction models were applied to 558,510 milk spectra 

from Holstein cows collected through the Walloon milk recording system between 1 January 

2016 and 31 December 2017 (after removal of spectra with a Mahalanobis distance (GH) 

value higher than 5 to avoid extrapolation during the prediction step), the CH4 emission 

profiles during lactation were different (Figure 1). An increase in CH4 emissions is expected 

in the first weeks post-calving until a peak in milk yield, after which a decline in emissions 

until the end of the lactation occurs16. The model developed from SF6 observations does not 

predict the expected increase in emissions and instead predicts a relatively constant emission 

of CH4 at the beginning of lactation and then a decrease after 180 DIM. In contrast, the model 

based on RC observations predicts the increase in emissions in early lactation, but then the 

predictions increase again after 220 DIM, which is unexpected. Therefore, these two models 

need refinement. 

Improved accuracy and robustness of these previously mentioned prediction models 

may be achieved by adding new reference data and/or by including additional explanatory 

variables. Both potential improvements will be investigated in the present study. Indeed, 

increasing the number of reference values in the calibration dataset and potential variability 

among animals (i.e. breeds, diet, milk yield, etc.) is a recognized way to improve the 

predictive model since it is known that development of a calibration equation requires a 

sufficiently varied set of data17. This is why the performance of a model to estimate CH4 

emissions of dairy cows from milk FT-MIR spectra based on the combination of both 

available datasets (SF6 and RC representing 1,116 records) was investigated. The 

incorporation of phenotypic information as explanatory variables in the prediction model may 



 

 

be beneficial. Shetty et al.18 included milk yield (MY), herd, parity (P), lactation stage and 

season as additional explanatory variables to predict CH4 emissions from milk MIR spectra. 

Their CH4 observations were obtained using the “sniffer” measurement approach, whereas the 

current study was based on CH4 measurements from SF6 and RC studies.  

Within this context, this paper has two objectives: (1) to assess the effect of combining 

SF6 and RC reference CH4 data to construct a predictive model that explains more of the 

variability in CH4 emissions among cows using FT-MIR spectra and (2) to assess the effect of 

including additional phenotypic explanatory variables for cows such as MY, P and breed (B) 

to increase the accuracy of the model. 

MATERIALS AND METHODS 

Existing datasets 
Two reference datasets were used to carry out the present study. These datasets were 

described by Vanlierde et al.8 for the data collected using the SF6 tracer gas technique (n = 

532), and by Vanlierde et al.9 for data collected from RC studies (n = 584). Each dataset 

consists of individual daily CH4 measurements from dairy cows with the corresponding milk 

FT-MIR spectra calculated as the average of the two milk spectra obtained from the morning 

and evening milkings weighted proportionally depending on the milk yield for each milking. 

This produces a daily FT-MIR spectra in a similar format to daily milk recording data and 

thus, ensures the practical application of the models.  With the exception of spectra which 

predates the development of the standardization technique (N = 557), milk FT-MIR spectra 

were standardized according to Grelet et al.19 to correct for the instrument interference and to 

ensure that the milk FT-MIR spectra are comparable regardless of the spectrometer used at 

the date of analysis. Also, a first derivative was applied to the milk FT-MIR spectra to correct 

the baseline drift as recommended by Soyeurt et al.20. The spectral regions studied were from 

wavenumbers 968 to 1,577 cm−1, 1,720 to 1,809 cm−1, and 2,561 to 2,966 cm−1 (i.e., 289 



 

 

spectral data points). As explained in detail by Vanlierde et al.7, constant (P0), linear (P1), and 

quadratic (P2) modified Legendre polynomials were computed from days in milk (DIM) on 

the day of CH4 measurement. The resulting Legendre polynomials were applied to each 

wavenumber of spectra to take into account the metabolic status of each cow during lactation. 

Each final modified spectrum was therefore based on a total of 867 data points (i.e. 3 × 289 

data points).  

Cross-validation of CH4 values obtained using existing predictive models 
based on SF6 and RC observations  

To highlight the interest to merge the existing SF6 and RC reference datasets, the CH4 

prediction models by Vanlierde et al.8 using SF6 measurements and by Vanlierde et al.9 using 

RC measurements were tested by cross-validation. The existing model based on SF6 

observations8 was used to predict CH4 emissions from RC measurements, and the existing 

model based on RC observations9 was used to predict CH4 emissions from SF6 observations. 

To achieve this specific objective, some editing was applied on the datasets. At a spectral 

level, 106 observations from the RC-based dataset (18.4% of the RC observations) had a GH 

> 3, meaning that those spectra were too far from the values used in the calibration of the SF6-

based prediction model. Consequently, to prevent spectral extrapolation, the SF6-based model 

was applied on only the remaining 478 RC observations. Within the SF6-based dataset 27 

observations (5.3% of the SF6 observations) had a GH > 3. Thus, the RC-based prediction 

model was applied on the remaining 504 observations. The root mean square error of 

predictions (RMSEP) was calculated as well as the relative predictive error (RPE) defined as 

the ratio between each RMSEP and the mean of the corresponding observations. 

Combined SF6 and RC calibration dataset 
A new calibration dataset was developed from merging SF6 and RC-based datasets (n 

= 1,116) to capture more variability among animals with the aim to create a more robust 

prediction model. The GH value was calculated for each spectrum based on their coordinates 



 

 

on principal components. Principal components were used since some of the spectral 

variables were highly correlated (11% of spectral variables had an absolute Pearson 

correlation higher than 95%). Spectra with a GH value greater than 3 were considered as 

different from the total reference dataset and removed21, 22. Indeed, during the calibration 

process, the presence of outlying spectra in the reference dataset means we have gaps in the 

spectral data. This could negatively influence the quality of the prediction model. During this 

calibration process, 27 data values were considered outliers and discarded (2.4% of the initial 

dataset). This is a little higher than reported by Withfield et al.23 who discarded 1% of the 

dataset based on a GH threshold > 3. The final dataset for model development comprised 

1,089 CH4 records of 413 ± 102 g/d (mean ± SD; 513 records from SF6 and 576 records from 

RC studies including 299 different cows between 7 and 322 DIM) and corresponding milk 

FT-MIR spectra (Table 1). Reference data were collected in seven countries: Belgium (BE) 

and Ireland (IE) for SF6 data, and United-Kingdom (UK), France (FR), Denmark (DK), 

Switzerland (CH) and Germany (D) for the RC data. Seven breeds were included in this 

dataset: Holstein (HO, 42 cows from BE, 98 from IE, 9 from CH, 5 from UK, 9 from FR, 9 

from DK and 50 from D), Jersey (JER, 10 cows from DK), Brown Swiss (BS, 39 cows from 

CH), Red Holstein (RH, 8 cows from CH), Swedish Red Crossbred (SRX, 7 cows from UK), 

Norwegian Red (NR, 6 cows from IE) and Holstein Crossbred (HOX 6 cows from IE and 1 

cow from CH). Within the dataset 74% of cows were  HO breed. A summary for each breed 

within the reference dataset is provided in Table 2. The DIM of each cow is included in the 

fitted model at the spectral level through the modified Legendre Polynomials. Table 3 gives 

details on the number of cow records within the reference dataset with regard to stage of 

lactation, the country of origin and the method used to measure enteric CH4 emissions. Of the 

1,089 records, 291, 401 and 397 were from cows in their first, second or third and greater 

parity, respectively. The lack of data from cows in first lactation and measured in RC (Table 



 

 

1) is partly because heifers are not ideal for dietary trials as they have specific dietary needs 

due to growth requirements. Additionally, they are more difficult to manage in a RC. 

Attention was paid to avoid increasing the error of the model that could be attributed 

to the merging of two datasets which used different methods to measure CH4 emissions. This 

step is detailed in Appendix 1, and found that, in this case, the SF6 and RC reference datasets 

can be combined without adjusting the CH4 values for either of the measurement methods 

used. 

Calibration process 
To avoid collinearity problems in the regression due to the high correlation existing 

between some spectral datapoints, a modified partial least square (PLS) regression was used 

for each calibration model as implemented in the WinISI software (version 4.6; Foss, 

Hillerød, Denmark) including an auto-scale process. This regression is based on PLS latent 

variables, which are a linear combination of explanatory variables built by taking into account 

the variability of X (i.e., matrix of explanatory variables) and y (i.e., vector of CH4 

observations). More details about the PLS methodology can be found in Despagne et al.24. 

The number of latent variables was estimated using a 5-group internal cross-validation 

procedure. This means that the reference data set was divided randomly into five groups; five 

different calibration models were then developed on four groups by removing each time one 

of the groups. To assess the robustness of developed equations, R² of calibration (R²c) and of 

cross-validation (R²cv) as well as the standard errors of calibration (SEC) and cross-

validation (SECV) obtained in the PLS procedure of WinISI 4 software (Foss, Hillerod, 

Denmark) were compared. The data were not pre-corrected for the animal effect using a 

random model. Indeed, including this correction in the model would involve having a 

reference CH4 measurement for all cows for which we want to have a prediction. This last 

point would not be possible for all cows on the field for practical and financial issues. 



 

 

Usefulness of including additional explanatory variables  
Previous studies by our group7, 8, 9 that described the performance of equations to 

estimate CH4 emissions were based only on milk FT-MIR spectra regressed by the modified 

Legendre polynomials to take into account the expected metabolic status of cows associated 

with their lactation stage. The inclusion of additional explanatory variables in the model could 

improve the accuracy of CH4 prediction. Explanatory variables based on information routinely 

recorded on commercial farms are preferable to ensure the applicability of the models 

developed to commercial farms. Therefore diet information was not added as an explanatory 

variable as dietary traits are not routinely collected in commercial farms. In the present study, 

milk yield, parity and breed information were included either individually or together as 

explanatory variables in model development, as well as the milk FT-MIR spectra, to predict 

CH4 emissions. This led to eight different calibration equations based on different 

combinations of explanatory variables. Abbreviations were given to these models in order to 

improve the clarity of the presentation of results (Table 4). Milk yield was considered as a 

quantitative variable in the model. Parity (1, 2 and > 2) was also considered as a quantitative 

variable since a trend exists between CH4 emissions as the milk yield and the dry matter 

intake increase when the cow gets older25. Different breeds of cows were categorized as 

dummy variables: HO, JER, BS, RH, SRX and “others” for the remaining breeds (0: absence; 

1: presence). 

Similarly to the methodology detailed in Appendix 1 about the consideration of an 

adjustment based on the CH4 measurement method used, an analysis of variance was 

performed on residuals to test the significance of effects related to DIM (indirectly included in 

the spectral modification), parity, breed and country. Those variables were considered 

separately as fixed effects in a one-way ANOVA using Proc GLM procedure in SAS software 

(version 9.4., SAS Inst. Inc., Cary, NC, USA) for each of the eight models developed. 



 

 

In addition to the cross-validation procedure previously mentioned, a cow and country 

dependent external validation (CCDEV) was conducted using R version 3.5.2 (R Core Team, 

2017, Vienna, Austria) and using packages “pls” version 2.7-126 and “cvTools” version 0.3.227 

to evaluate the robustness of the models as done in a previous study9. As there are often several 

measurements on the same cow in the calibration dataset, this procedure prevents data from the 

same cow being present both in the calibration and in the validation set. All the data from 20% 

of the cows per country were removed simultaneously, resulting in the removal of all data from 

8 cows from BE, 22 cows from IE, 10 cows from D, 12 from CH, 4 from DK, 1 from FR and 2 

from UK. The calibration model was developed on the remaining 80% of cows per country, 

and the model was subsequently tested on the removed data to avoid having the same animals 

in the calibration and in the validation set (unlike the aforementioned cross-validation 

procedure). The CCDEV process was repeated 500 times for each developed model to test a 

large number of combinations of randomly removed cows, and the variations of the R² of 

CCDEV and of the RMSEP of CCDEV between each calibration model were used to compare 

them. This allowed evaluation of the models ability to estimate CH4 emissions for independent 

cows under the same conditions as cows included in the calibration data. In this study, these 

various conditions are dependent on the specific trials from each country. 

Breed-specific models were tested to determine the accuracy of predictions within a 

specific breed. A PLS regression was performed as described before, with a 5-group cross 

validation process and a cow and breed dependent external validation (CBDEV). Regarding 

this CBDEV step, 20% of cows from one breed were removed randomly and simultaneously, 

with the calibration models developed on the remaining cows of this same breed, and 

subsequently tested using the removed data. The CBDEV process was repeated 200 times on 

each breed considered to test a maximum number of combinations of randomly selected cows. 

The R² and the RMSEP for CBDEV were determined for each calibration model. 



 

 

In addition, the Akaike information criterion (AIC), the Bayesian information criterion 

(BIC) and the concordance correlation coefficient (CCC) were obtained to determine the 

optimal prediction model (i.e. lowest values for AIC and BIC and the highest value for CCC). 

RESULTS AND DISCUSSION 

External validation of existing predictive models based on SF6 and RC 
observations 

The calibration model based on SF6 observations assessed using 478 RC observations 

leading to a RMSEP of 105 g of CH4/day (RPE of 26.2%). The RMSEP for the model based 

on RC observation assessed using 504 SF6 observations was 140 g of CH4/day (RPE of 

32.6%). These resulting RMSEPs values were expected due to differences between both 

datasets in terms of technological (reference methods used to measure CH4), zootechnical 

(breeds, management, genetics, study conditions, etc.) and phenotypic (range in CH4 values, 

milk yields, etc.) attributes. Figure 2 shows predicted CH4 emissions using either the SF6- and 

RC-based models against observed CH4 emissions for the cross-validation test. The 

aforementioned lower RMSEP value using the model based on SF6 observations on the RC 

data can be related to the tighter distribution of the validation dataset in Figure 2 a) than in 

Figure 2 b). The better predictive performance of the equation based on SF6 observations was 

also expected due to the greater range of reference CH4 values included in the SF6 reference 

dataset in comparison with the RC-based reference dataset.  

The equation based on SF6 observations applied to RC data, specifying the country of 

origin, resulted in RMSEP values of 152 g CH4/d for UK, 79 g CH4/d for FR, 121 g CH4/d for 

DK, 65 g CH4/d for CH and 87 g CH4/d for D. The CH-dataset had the lowest RMSEP. It is 

interesting to note that if only data from two of the three experiments included in the CH-

dataset were considered (111 reference data from 46 cows), the CH-statistics were 

significantly improved with a RMSEP of 60 g CH4/d. Differences can be observed within and 



 

 

between countries depending on the dataset in terms of the accuracy of predictions. This 

should be linked with the differences in data from each country regarding observed values and 

zootechnical attributes (Tables 1, 2 and 3).  

More than the zootechnical characteristics of the animals, Figure 3 graphically 

represents the milk FT-MIR spectrum as a function of the reference dataset (SF6 vs. RC) and 

for the first three principal components (explaining 82% of the total spectral variability). It 

can be noted that the information and the variability they contain respectively are 

complementary. This also infers that the models were not robust enough to perform external 

validation tests from one country or one reference method to another in the current state. 

Therefore, there is a real interest to combine these CH4 reference data to develop a new 

model.  

This section highlights the importance of ensuring that the characteristics of animals or 

their milk FT-MIR spectra for which predictions are required are represented in the 

calibration dataset used to develop the model.  

Calibration equations combining RC and SF6 reference datasets and inclusion 
of phenotypic information as explanatory variables  

Calibration and cross-validation statistical results for the eight developed calibration 

equations built from raw CH4 data and including different combinations of milk yield, parity 

and breed in addition to milk spectra as explanatory variables are detailed in Table 5. With 

the addition of zootechnical information as explanatory variables, R²c and R²cv slightly 

increased compared to the MS model. Consequently, a decrease in SEC and SECV was 

expected with the inclusion of additional phenotypic information (i.e. milk yield, parity and 

breed). The highest R² values and minimum errors were observed for the MSMYPB model 

with an R²c of 0.73, a R²cv of 0.68, a SEC of 53 g CH4/d and a SECV of 57 g CH4/d. 

Regarding the CCDEV procedure, MSMYPB presented the highest R² (0.60) and lowest 



 

 

RMSEP (65 g CH4/d). Moreover, the MSMYPB model presented the highest CCC value 

(0.81 meaning accurate predictive ability28) and the lowest AIC and BIC values (-186 and -

181 respectively from the AIC and BIC of the MS model). 

 In comparison with the statistics obtained with the models based on one kind of 

measurement method, R²c and R²cv shown in Table 5 (between 0.68 and 0.73, and between 

0.64 and 0.68 respectively) are lower than for the equation based only on SF6 observations8 

(0.74 and 0.70, respectively) and higher than for the equation based only on RC observations9 

(0.65 and 0.57, respectively). Regarding the errors, the SEC and SECV obtained with the 

models developed here and shown in Table 5 (between 58 and 53, and between 61 and 57 

CH4/d, respectively) are all lower than the ones obtained for the existing model based on SF6 

observations8 (66 and 70 g CH4/d, respectively) and greater than the ones obtained for the 

existing model based on RC observations9 (43 and 47 g CH4/d, respectively). The statistical 

results for the MSMYPB version were similar to the R²c and R²cv for the model based on SF6 

observations8 with lower errors, which suggests an improvement of accuracy. Moreover, by 

considering a higher number of observations the MSMYPB model described more of the 

variability in CH4 emissions than previous models8,9 based on SF6 and RC observations, 

leading to an improvement of the robustness of the model. Figure 4 illustrates the CH4 

observations compared to the predictions obtained with the MSMYPB model.  

Based on the reference datasets available for this study, RPEcv and CCC parameters 

reach respectively 14.1% and 0.81 for the MSMYPB model (Table 5). These statistics are 

slightly better than the best models based on ingestion, dietary components and/or animal 

attributes (but no milk MIR spectra) summarized in Niu et al.29 (respectively 14.7% and 0.76 

in the best conditions). The advantage of predictive models based on milk MIR spectra is that 

spectra are routinely collected and permit to have easily a value at individual animal level at 

large scale. MSMYPB model developed in this study also has better statistics than Shetty et 



 

 

al.18 who observed a R² of prediction and a RMSEP of 0.13 and 111 L of CH4/d respectively 

for the model based only on the milk FT-MIR spectra while these parameters were about 0.39 

and 94 L/d respectively when they also considered MY, herd, P, DIM and season as variables 

in the model. 

Figure 5 details the trends of the predictions obtained when these new models are 

applied on the same spectral dataset described in the introduction (n = 558,510 milk FT-MIR 

spectra from Holstein cows collected through the Walloon milk recording system) as a 

function of the DIM of the animal. The CH4 curves of the eight models are very similar and 

are now much more in accordance with the literature16, with an increase during the first weeks 

of lactation followed by a moderate decrease until the end of lactation.  

The effect on the residuals of adding DIM, parity, country and breed into each of the 

eight developed models are specified in Table 6. It can be noted that DIM had no significant 

effect on the residuals. Since the lactation stage is accounted for by using the modified 

Legendre polynomials to regress spectral data, this non-significant influence of DIM on the 

residuals was expected. The daily milk yield has a significant impact on the residuals for the 

models where milk yield is not an explanatory value of the regression. So, considering milk 

yield in the model is relevant. The inclusion of parity in the regression model has a low 

influence compared to other variables (Table 5). When parity is not included in the model, the 

resulting residuals are significantly dependent on the parity of the cow (Table 6). Adding 

parity information in the model seems therefore to be appropriate. The country factor has a 

highly significant effect on residuals in models where breed was excluded. This is because 

some breeds are represented in only one country (e.g. JER, BS, NR). Finally, breed had a 

significant effect on the residuals in all models including those with breed as a factor. Some 

breeds had a very low representation in the calibration set and were also linked with particular 

experimental protocols and diet, which can explain this effect. However, the breed effect was 



 

 

less significant when breed was included in the model as a parameter in combination with 

parity or/and milk yield (Table 6). Accordingly, these phenotypic combinations permitted a 

better description of the animal and its performance than breed alone. Models with MSPB and 

MSMYPB were found to best describe variability in CH4 among this dataset.  

Even for MSPB and MSMYPB models, the breed effect was not totally accounted for 

by the model as the effect on the residual was still significant. Therefore, the prediction 

accuracy of cross-validation can be impacted as the CCDEV procedure was conducted 

randomly regarding cows selected for calibration or validation datasets.  

The results obtained during the CBDEV procedure are given in Table 7. Depending 

on the version of the equation, the average R² values ranged from 0.57 to 0.60 for the HO 

breed. At the statistical level, the MSMYP model presents the most interesting combination of 

highest coefficients of determination and lowest errors for both calibration and validations 

steps.  

The statistical performance of the CBDEV models were not greater than the predictive 

models based on the total dataset with all breeds included and were similar to the results 

obtained during the CCDEV procedure. Data from other breeds may bring added value to the 

models. This would allow predictions from milk spectra collected on additional breeds than 

HO as long as there is not sufficient data to consider the development of breed-specific 

models. 

The combined information given by including milk yield, parity and breed improved 

the prediction of daily CH4 emissions of dairy cows by milk FT-MIR spectra. As the 

phenotypic information included is routinely available, the MSMYPB model can be applied 

to commercial farms. The prediction model can be chosen depending on available phenotypic 

information. The more explanatory variables included that describe the animal, the better the 



 

 

accuracy of the prediction model. Therefore, inclusion of other routinely available traits 

presents the possibility of further improvement. There is still potential for this model to be 

improved and to evolve by the inclusion of new explanatory variables and as new data 

becomes available. 

A next step will be to determine the performance of the models developed in the 

present study under practical conditions by measuring the methane emissions of animals 

estimated to differ in this trait. Once the equations prove to be robust in this respect, the use of 

milk FT-MIR spectra could be introduced as a tool for estimating CH4 emissions for a large 

number of dairy cows. In addition, the present observations confirm the necessity to 

collaborate between research teams from different countries to test the models in specific 

local conditions and to include local variability (at spectral and phenotypical levels) in the 

reference dataset if it is not yet present. This is why a further improvement of the robustness 

of the models could occurs in the future with the availability of such new relevant reference 

databases.  

 

CONCLUSIONS 

The models developed in the current study combining CH4 observations obtained with 

SF6-tracer and RC measurement methods accounted for more variability in spectral and 

zootechnical data. They explained more variation in CH4 emissions among cows and 

consequently are more robust than previous versions based on those datasets considered 

independently. Additionally, the inclusion of milk yield, parity and breed as explanatory 

variables in the prediction model improved the description of variability. Moreover, the trends 

of the predictions obtained by these new models applied on a large spectral database adjusted 

for the lactation stage of animals are now more in accordance with the literature. By taking 



 

 

care of removing outlying spectral data and cow phenotypic information not included in the 

model, an improvement in FT-MIR derived CH4 predictions under practical conditions is 

expected. 
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Figure 1: Average predicted CH4 (g/day) for each class of 20 days in milk (DIM) during 

lactation using equation of Vanlierde et al.
8
 (── SF6) or equation of Vanlierde et al.

9
(- - - 

Respiration chamber) based on spectral data collected from Holstein cows through the 

Walloon milk recording system between 1 January 2016 and 31 December 2017 (n = 

538,510). 
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Figure 2: Measured methane emissions (g CH4 per day) using SF6 tracer technique (●) or respiration 

chamber (●) methods against predicted methane (a) using equation calibrated only on data collected 

with SF6 tracer technique
8
 (validation set is the RC dataset) or (b) using equation calibrated only on 

data collected with respiration chamber technique
9
 (validation set is the SF6 dataset). 
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a)  b)

  

c)  

Figure 3: Graphical representation of reference milk FT-MIR spectra as a function of the first three 

principal components (PC) and the original dataset               (● = SF6 dataset; ● = RC dataset); a) PC 2 

vs. PC 1, b) PC 3 vs. PC 1, c) PC 3 vs. PC 2 
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Figure 4: Measured methane (g CH4 per day) from SF6 and respiration chamber datasets (●: data 

collected with the SF6 tracer technique
8
, n = 531; ●: data collected with the respiration chamber 

method
9
, n = 576) compared to predicted values using the MSMYPB model. 

 

 

 

Figure 5: Average CH4 predictions (g/day) from spectral data collected from Holstein cows 

through the Walloon milk recording system between 1 January 2016 and 31 December 2017 

(n = 538,510) adjusted for days in milk (DIM) and explanatory variables included in the 

prediction model (── MS; ── MSMY, ── MSP, ── MSB, ── MSMYP,  - - - MSMYB, 

── MSPB, - - - MSMYPB). 
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Table 1: The number and the range of methane (CH4) records, number of cows and in each parity for data obtained 

from SF6 and respiration chamber (RC) studies across countries included in the present study. 

Reference 

method 
Country n data n cows 

Parity (n cows) CH4 (g/d)                 

mean ± SD 
1 2 > 2 

SF6 
BE 252 42 16 11 15 510 ± 105 

427 ± 127 
IE 261 110 45 29 36 347 ± 89 

RC 

UK 24 12 / 3 9 365 ± 44 

400 ± 72 

FR 81 9 / 7 2 366 ± 61 

DK 129 19 8 4 7 367 ± 64 

CH 135 57 8 16 33 451 ± 75 

D 207 50 / 34 16 405 ± 60 

 TOTAL 1,089 299 77 104 118 413 ± 102 
SD: standard deviation; Belgium (BE), Ireland (IE), United-Kingdom (UK), France (FR), Denmark (DK), 

Switzerland (CH) and Germany (D) 

 

Table 2: Number of methane (CH4) records, number of cows and their parity, and mean methane emissions for each 

breed included in the present study. 

Breed n data 
% of 

data 
n cows 

% of 

cows 

Parity (n cows) CH4 (g/d)                 

mean ± SD 
1 2 > 2 

HO 891 82 222 74 63 84 75 415 ± 107 

JER 67 6 10  3 4 2 4 342 ± 42 

BS 78 7 39 13 7 7 25 458 ± 69 

RH 21 2 8 3 / 5 3 427 ± 74 

SRX 14 1 7 2.5 / 2 5 348 ± 37 

NR 9 1 6 2 / 2 4 423 ± 79 

HOX 9 1 7 2.5 3 2 2 427 ± 54 
HO: Holstein; JER: Jersey; BS: Brown Swiss; RH: Red Holstein; SRX: Swedish Red crossed; NR: Norwegian red; 

HOX: Holstein crossed. 

 

Table 3 : Number of methane (CH4) records included in the reference dataset with regard to stage of lactation (DIM), 

country of origin and the method used to measure enteric CH4 emissions  

Class of DIM BE IE UK FR DK CH D Total SF6 Total RC TOTAL 

0-20 - - - - - 6 - - 6 6 

21-40 4 - - - - 24 63 4 87 91 

41-60 8 6 - - - 4 7 14 11 25 

61-80 15 17 - - - 4 - 32 4 36 

81-100 15 30 - - - 31 9 45 40 85 

101-120 20 29 - - - 30 56 49 86 135 

121-140 33 32 - 3 - 10 - 65 13 78 

141-160 12 33 - 11 3 4 2 45 20 65 

161-180 25 40 6 15 12 2 8 65 43 108 

181-200 14 25 16 13 16 4 2 39 51 90 

201-220 12 26 - 18 12 - 2 38 32 70 

221-240 38 18 2 16 17 2 2 56 39 95 

241-260 26 5 - 5 32 6 2 31 45 76 
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261-280 19 - - - 21 2 2 19 25 44 

281-300 5 - - - 14 4 31 5 49 54 

301-320 3 - - - 2 - 21 3 23 26 

321-340 3 - - - - 2 - 3 2 5 

TOTAL 252 261 24 81 129 135 207 513 576 1,089 
DIM: Days In Milk, RC: Respiration Chamber, Belgium (BE), Ireland (IE), United-Kingdom (UK), France (FR), 

Denmark (DK), Switzerland (CH) and Germany (D). 

 

 

Table 4: Versions of calibration equations developed based on milk FT-MIR spectra modified with Legendre 

Polynomials, with or without added phenotypic factors as explanatory variables. 

Model 
Number of   

explanatory variables 
Name 

Modified spectra 867 MS 

Modified spectra + milk yield 868 MSMY 

Modified spectra + parity 868 MSP 

Modified spectra + breed 873 MSB 

Modified spectra + milk yield + parity 869 MSMYP 

Modified spectra + milk yield + breed 874 MSMYB 

Modified spectra + parity + breed 874 MSPB 

Modified spectra + milk yield + parity + breed 875 MSMYPB 

Modified spectra: milk FT-MIR spectra regressed by the modified Legendre Polynomials to take into account 

the lactation stage of the cow
7
. 

 

Table 5: Calibration statistics for each developed calibration equation (n = 1,089).  

Model  

n 

facto

rs 

R²

c 

R²c

v 

SEC 

(g/da

y) 

SEC

V 

(g/da

y) 

RP

Ec 

(%) 

RPE

cv  

(%) 

R² for 

CCD

EV 

Mean 

± SD 

RMS

EP 

for 

CCD

EV 

Mean 

(g/da

y) ± 

SD 

AIC BIC 
CC

C 

MS 14 0.6 0.6 58 61 13. 14.9 0.55 70 ± 12,0 12,1 0.7
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8 4 9 ± 

0.07 

4.5 55 35 9 

MSMY 

14 0.6

9 

0.6

5 

57 60 13.

6 

14.7 0.57 

± 

0.07 

70 ± 

4.5 11,9

97 

12,0

77 

0.7

9 

MSP 

14 0.7

0 

0.6

5 

56 60 13.

6 

14.8 0.57 

± 

0.07 

68 ± 

4.2 11,9

90 

12,0

70 

0.7

9 

MSB 

14 0.7

0 

0.6

6 

56 60 13.

5 

14.5 0.57 

± 

0.06 

68 ± 

4.4 11,9

89 

12,0

69 

0.8

0 

MSMY

P 

14 0.7

0 

0.6

6 

56 60 13.

4 

14.5 0.58 

± 

0.07 

67 ± 

4.1 11,9

62 

12,0

42 

0.8

0 

MSMY

B 

15 0.7

2 

0.6

8 

54 58 13.

0 

14.3 0.60 

± 

0.06 

66 ± 

4.2 11,8

97 

11,9

82 

0.8

1 

MSPB 

14 0.7

1 

0.6

7 

55 59 13.

2 

14.5 0.59 

± 

0.06 

66 ± 

4.1 11,9

27 

12,0

07 

0.8

1 

MSMY

PB 

15 0.7

3 

0.6

8 

53 57 12.

8 

14.1 0.60 

± 

0.06 

65 ± 

4.1 11,8

69 

11,9

54 

0.8

1 
MS: Modified spectra,  MSMY: Modified spectra + milk yield, MSP: Modified spectra + parity,  MSB: Modified spectra + 

breed, MSMYP: Modified spectra + milk yield + parity,  MSMYB: Modified spectra + milk yield + breed, MSPB: Modified 

spectra + parity + breed,  MSMYPB: Modified spectra + milk yield + parity + breed, SEC: Standard Error of Calibration, 

SECV: Standard Error of Cross Validation, RPEc: relative predictive error of calibration; RPEcv: relative predictive error of 

cross validation; R² for CCDEV: cow and country dependent external validation coefficient of determination, RMSEP forof 

CCDEV: Root Mean Square Error of prediction for cow and country dependent external validation, SD: standard deviation, 

AIC: Akaike information criterion, BIC: Bayesian information criterion; CCC: concordance correlation coefficient. 

 

Table 6: Effect of days in milk (DIM), daily milk yield, parity, country and breed on the residuals of each 

calibration model developed 

Model DIM Milk Yield Parity Country Breed 

MS NS *** *** *** *** 

MSMY NS * *** *** *** 

MSP NS *** NS ** *** 

MSB NS *** *** NS *** 

MSMYP NS NS NS *** *** 

MSMYB NS NS *** NS ** 

MSPB NS *** NS NS * 

MSMYPB NS NS NS NS * 

DIM: Days in milk, MS: Modified spectra, MSMY: Modified spectra + milk yield, MSP: Modified spectra + parity, MSB: 

Modified spectra + breed, MSMYP: Modified spectra + milk yield + parity, MSMYB: Modified spectra + milk yield + 

breed, MSPB: Modified spectra + parity + breed,  MSMYPB: Modified spectra + milk yield + parity + breed, DIM: Days In 

Milk, NS: Non Significant, * P<0.05, ** P<0.01, *** P<0.001 
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Table 7: Cow and breed dependent external validation statistics for developed calibration models for 

Holstein cows 

Model 
R² for CBDEV RMSEP for CBDEV 

Mean ± SD Min - Max Mean ± SD Min - Max 

MS 0.57 ± 0.08 0.38 – 0.77 71 ± 5.0 57 – 87  

MSMY 0.59 ± 0.08 0.36 – 0.77 71 ± 5.0 57 – 87  

MSP 0.59 ± 0.08 0.36 – 0.79 69 ± 4.9 56 – 82 

MSMYP 0.60 ± 0.08 0.36 – 0.78  68 ± 4.7 54 – 82 

MS: Modified spectra, MSMY: Modified spectra + milk yield, MSP: Modified spectra + parity, MSMYP: Modified spectra 

+ milk yield + parity, R² for CBDEV: cow and breed dependent external validation coefficient of determination, RMSEP for 

CBDEV: Root Mean Square Error of prediction for cow and breed dependent external validation 
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