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25 ABSTRACT
26 Lactoferrin (LF) is a glycoprotein naturally present in milk. Its content varies throughout the lactation 

27 but also with mastitis, therefore potentially being an additional indicator of udder health beyond somatic 

28 cell count. Therefore, there is an interest in quantifying this biomolecule routinely. First prediction 

29 equations proposed in the literature to predict the content in milk using milk mid-infrared (MIR) 

30 spectrometry were built using Partial Least Square regression (PLSR) due to the limited size of the 

31 dataset. Thanks to a large dataset, the current study aimed to test fourth different machine learning  

32 algorithms using a large dataset comprising 6,619 records collected across different herds, breeds and 

33 countries. The first algorithm was a PLSR as used in past investigations. The second and third algorithms 

34 used PLS factors combined with a linear and polynomial Support Vector regression (PLS + SVR). The 

35 fourth algorithm also used PLS factors but included in an artificial neural network having one hidden 

36 layer (PLS + ANN). The training and validation sets comprised 5,541 and 836 records, respectively. 

37 Even if the calibration prediction performances were the best for PLS + polynomial SVR, their 

38 validation prediction performances were the worse. The three other algorithms had similar validation 

39 performances. Indeed, the validation root mean squared error (RMSEv) ranged between 162.17 and 

40 166.75 mg/L of milk. However, the lower standard deviation of cross-validation RMSE and the better 

41 normality of the residual distribution observed for PLS + ANN suggest that this modeling was the more 

42 suitable to predict the LF content in milk from milk MIR spectra (R²v=0.60 and RMSEv=162.17 mg/L 

43 of milk). This PLS+ANN model was then applied to almost 6 million spectral records. The predicted 
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44 LF showed the expected relationships with milk yield, somatic cell score, somatic cell count and stage 

45 of lactation. The model tended to underestimate high LF values (higher than 600 mg/L of milk). 

46 However, if the prediction threshold was set to 500 mg/L, 82% of samples from the validation having a 

47 content of LF higher than 600 mg/L were detected. Future research should aim to increase the number 

48 of those extremely high LF records in the calibration set. 

49 Keywords: milk, lactoferrin, mid infrared, machine learning
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50 INTRODUCTION
51

52 Lactoferrin (LF), a 80-kDa glycoprotein naturally present in milk, is synthetized by the 

53 mammary gland epithelial cells (Molenaar et al., 1996) and has antibacterial, antiviral and antifungal 

54 activities potentially interesting to improve the cow’s disease resistance. More details about the 

55 nutraceutical and pharmaceutical properties of milk bovine LF can be found in the review of Giansanti 

56 et al. (2016). These immune effects explain why the synthesis of LF increases in the presence of mastitis 

57 infection (Gaunt et al., 1980; Hagiwara et al., 2003) but the responses can be different following the 

58 incriminated pathogens (Kawai et al., 1999; Chaneton et al., 2008). Moreover, the content of LF in milk 

59 can also vary naturally depending on parity, age, lactation stage (Gaunt et al., 1980; Hagiwara et al., 

60 2003), and breed (Król et al., 2010). Consequently, there is an interest to quantify the LF content in milk 

61 at the individual level for different issues related to animal welfare (i.e., early detection of infection) and 

62 human health due to the presence of this active bio-molecule in milk. Indeed, humans can take also 

63 profit to administer orally LF due to its anti-infective, anti-cancer and anti-inflammatory properties 

64 (Wakabayashi et al., 2006).

65 LF content can be quantified using an immunodiffusion method (Hagiwara et al., 2003) but its 

66 quantification is more often based on enzyme-linked immunosorbent assay (ELISA) (Chen and Mao, 

67 2004; Chaneton et al., 2013). Unfortunately, those methods are too labour intensive for routine screening 

68 of the cow population at the individual scale as desired. Therefore, alternative methods offering a 
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69 quantification at a low cost must be found. In 2007, a first study was published about the prediction of 

70 LF content in milk using milk mid-infrared (MIR) spectrometry (Soyeurt et al., 2007), a technology 

71 largely implemented in most milk laboratories. This first study measured the content of LF in a limited 

72 number of samples (i.e., 69 records). However, this first study and a follow-on one based on a bigger 

73 dataset (i.e., 2,499 records) (Soyeurt et al., 2012) validated the potential of MIR to provide a relevant 

74 indicator of LF. Indeed, the cross- and external validation coefficients of determination (R²) and root 

75 mean square error (RMSE) obtained from this second study were of 0.71 and 0.60, and of 50.55 and 

76 58.98 mg/L of milk, respectively. Recently, the European Milk Recording network (EMR, 

77 www.milkrecording.eu) has developed also its own equation from more than 2,000 records and offers 

78 the prediction service of this biomolecule to its members. By combining all of those datasets, new 

79 perspectives are opening to try different machine learning algorithms which could maybe improve the 

80 current accuracy of LF prediction. Indeed, all LF prediction equations were built using Partial Least 

81 Squares regressions (PLSR).

82  Since the nineties, several pieces of research were conducted in dairy science using artificial 

83 neural network (ANN), for instance, to analyze breeding dairy patterns (Finn et al., 1996), or to predict 

84 the incidence of clinical mastitis (Yang et al., 2000) or milk yield (Grzesiak et al., 2006). At our best 

85 knowledge, only 3 articles used mainly or partly the milk MIR spectra as predictors. Those studies 

86 concerned the prediction of conception success for a given insemination (Hempstalk et al., 2015), 
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87 content of blood β-hydroxybutyrate (Pralle et al., 2018) and feed intake (Dórea et al., 2018). Several 

88 reasons could explain potentially the large use of PLSR to model milk MIR spectral data. Absorbance 

89 values of consecutive spectral data points are highly correlated. Therefore, collinearity problems are 

90 present if conventional simple linear regression is employed using all spectral data points as explanatory 

91 variables. Fortunately, some solutions exist to solve this problem. The first one consists in selecting a 

92 limited number of spectral points by trying to keep the most relevant information in the dataset, while 

93 limiting the correlations between them. Then, those low correlated spectral points can be included in a 

94 multivariate regression. The second possibility is to reduce the dimensionality of the spectral X matrix 

95 by using a principal component analysis (PCA). The PCA latent variable (LV) can be then used in a 

96 multivariate regression, commonly named principal component regression. However, the PCA 

97 methodology used to define those LVs takes into account only the spectral variability and not the 

98 variability of the trait to be predicted. This could lead to a lack of relevant spectral information to predict 

99 the trait of interest. The PLS method solves this problem by defining LVs considering simultaneously 

100 the variabilities of X and Y (Despagne et al., 2000). This explains why this methodology was and is still 

101 mainly used to develop milk MIR models to predict traits related to milk quality like fatty acids (Soyeurt 

102 et al., 2011), cheese making properties (De Marchi et al., 2009), body weight (Soyeurt et al., 2019), 

103 fertility (Delhez et al., 2020), traits related to animal welfare (Grelet et al., 2016) and environmental 

104 issues (Vanlierde et al., 2016). Unfortunately, PLS is able to consider weakly non-linear relationships 

105 by adding LVs, potentially leading to over-fit the developed prediction model (Thissen et al., 2004). 
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106 Other machine learning algorithms such as Support Vector Regression (SVR) and ANN have the ability 

107 to model the non-linear relations (Thissen et al., 2004). Compared to ANN, SVR can deal with a high 

108 number of input variables (Thissen et al. 2004). However, after a feature selection, ANN can be also 

109 efficient. Moreover, using the priors obtained from a past calibration dataset, the weights used in an 

110 ANN network can be updated using a new calibration dataset. This is particularly interesting when a 

111 large number of phenotypes useful to predict the trait of interest is available. 

112 The computational methodology differs between SVR and ANN. SVR was created by Vapnik 

113 (Thissen et al., 2004) and consists in defining a classification boundary between records in order to 

114 minimize the distance between the records and the boundary by taking into account a certain limit of 

115 detection (called epsilon). More specifically, SVR is a method that selects a reduced number of samples, 

116 the support vectors, defining the best sparse deterministic regression relationship between the MIR data 

117 and the reference values. To ensure a global solution, a penalty (called C penalty) is used during the 

118 computation. Different kernels can be used to compute the boundary like linear, polynomial or radial 

119 kernel; each kernel has its own parameters to be optimized. More details about this method are given by 

120 Thissen et al. (2004). ANN, initially introduced by McCulloch and Pitts (1943), is the basis of deep 

121 learning which tries to mimic neuronal brain activity (i.e., the computer learns by experience). ANN is 

122 composed of different layers including units: one input layer, one output layer and a certain number of 

123 hidden layers. The number of hidden layers and its corresponding units must be defined by the user. The 
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124 higher the number of hidden layers and their corresponding units, the higher the complexity of the model 

125 and therefore the higher the potential to over-fit the prediction model. The ANN algorithm aims to 

126 estimate the weights of each relation among units by using, for instance, the back propagation 

127 methodology. The cost function is related to the minimization of the residual error. The ANN model 

128 will provide a response of one or more variables given many explanatory variables (i.e., units) (Beck, 

129 2018). In conclusion, SVR and ANN require the optimization of several parameters. To achieve this 

130 objective and to get a global solution, it is important to have a large dataset, explaining potentially why 

131 those methods are not often used in milk MIR spectrometry as the size of the dataset is often limited. 

132 However, compared to PLSR, SVR and ANN in themselves do not solve the issue of collinearity 

133 between spectral data points. So, there is an interest to combine the dimension reduction obtained by 

134 PLS with SVR or ANN algorithms. Therefore, the objective of the current study was to compare the 

135 accuracy of predictions of milk LF content from milk MIR spectra using 4 different machine learning 

136 algorithms: PLSR, linear and polynomial SVR coupled with PLS LVs and ANN coupled with PLS LVs. 

137 MATERIALS AND METHODS

138 All analyses were performed using R software (version 4.0.1.; https://www.r-project.org/).

139 Data
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140 The first dataset comprised 3,965 milk samples (50% of morning and 50% of evening milk) 

141 preserved with bronopol collected between April 2005 and April 2006 in Belgium, between April 2009 

142 and August 2009 in Ireland, and during August 2009 in Scotland. Part of those samples was also used 

143 in a previous study (Soyeurt et al., 2012). The Belgian samples (N=549) were analyzed using one 

144 MilkoScan FT6000 spectrometer (Foss, Hillerod, Denmark) located in the milk laboratory “Comité du 

145 Lait” (Battice, Belgium). The Irish and Scottish samples (N=3,416) were also analyzed on the same 

146 brand of spectrometer at the Animal and Grassland Reasearch and Innovation Centre, Teagasc 

147 Moorepark (Fermoy, Co. Cork, Ireland). The spectral data of each sample contained 1,060 

148 wavenumbers. The second dataset comprised 2,654 milk samples (50% of morning milk and 50% of 

149 evening milk) collected by the EMR in France (N=1,333), Luxembourg (N=246), England (N=500) and 

150 Germany (N=575) between June 2016 and January 2017. The samples in this second dataset were 

151 selected based on their LF content predicted using the equation developed by Soyeurt et al. (2012) to 

152 increase the variability over what was present in the samples of the first dataset. All samples were 

153 analyzed using either FT+ MilkoScan spectrometers (Foss, Hillerod, Denmark) or Bentley 

154 spectrometers (Chaska, MN, United States). The spectral data were then standardized based on the 

155 procedure explained by Grelet et al. (2017). All aspects related to this standardization was managed by 

156 the European Milk recording network and resulted in all samples having 1,060 harmonized 

157 wavenumbers and absorbance values available for analysis. A single milk sample per cow was selected 

158 from animals of different breeds across several herds and countries right across lactation. 
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159 Lactoferrin Quantification

160 LF concentration was quantified from the milk samples already analyzed by infrared 

161 spectroscopy using commercial ELISA kits: Bovine Lactoferrin ELISA Quantification kit from Bethyl 

162 Laboratories Inc. (Montgomery, TX, USA) for the first dataset and e_bLF_01 kit from IDBiotech 

163 (Issoire, France) for the second dataset. The Belgian samples were analyzed by Gembloux Agro-Bio 

164 Tech – University of Liège (Gembloux, Belgium). The ELISA analyses of the Irish and Scottish samples 

165 were conducted by Enfer Laboratories (Naas Co. Kildare, Ireland). The ELISA analysis of the second 

166 dataset was conducted at Seenovia (Saint-Berthevin, France). The samples were diluted 1:1000; 1:2000; 

167 1:4000; 1:6000; 1:8000 or 1:10000 in sample buffer. The LF concentrations used for the calibration 

168 were the average of at least two ELISA measures taken on the same milk sample. 

169 Spectral Pre-treatment

170 The spectral data coming from the first dataset were not standardized as this procedure did not 

171 exist when the samples were collected. Therefore, in order to correct for a potential baseline drift, the 

172 first derivative was applied to the recorded spectra for the dataset 1 and standardized spectra for the 

173 dataset 2 using the formula:

174 𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟′𝑖 = 𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑖 ― 𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑖 + 𝑔𝑎𝑝

175 where  represents the first derivative value of the ith wavenumber,  is the 𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟′𝑖 𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑖

176 raw value observed for the ith wavenumber and the gap is the windows chosen for the derivation and 
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177 was equal to 5. Then, the wavenumbers located in the most informative regions were selected. So, a 

178 total of 277 wavenumbers were kept for this study and were located from 950 to 1,580 cm−1; from 1,720 

179 to 1,770 cm−1, from 1,780 to 1,850 cm−1, and from 2,800 to 2,970 cm−1.

180 The presence of potential spectral outliers was assessed by estimating the standardized 

181 Mahalanobis distance (also called GH distance) for all recorded spectra. In order to allow the inversion 

182 of the matrix needed to calculate the Mahalanobis distance due to the high collinearity existing between 

183 some spectral points, a PCA was performed using FactoMineR package (version 1.42; Lê et al., 2008), 

184 defining 22 uncorrelated principal components (PC) which explained 99.04% of the spectral variability. 

185 The formula used to calculate the GH distance was:

186  𝐺𝐻 = (𝑥 ― µ)𝑇𝑆 ―1(𝑥 ― µ) 𝑛𝑃𝐶

187 where,  is the PC scores of a specific spectrum;  is the mean of PC scores estimated from the entire 𝑥 µ

188 dataset; S corresponds to the (co-)variance matrix between PC scores estimated from the entire dataset; 

189 nPC is the number of PC used in the calculation (i.e., 22 in our case). The PC analysis was performed 

190 on a combined dataset containing all the records to improve the certainty of spectral outlier detection. 

191 A total of 86 records with a GH higher than 5 were discarded from the dataset. The cleaned dataset 

192 contained finally 6,533 records (i.e., 3,931 and 2,602 records of the first and second datasets, 

193 respectively). 

194 Data Splitting
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195 To perform a complete external validation, the data coming from 2 different DHI organizations 

196 (one in Germany and one in England) were not used to calibrate the model. This external validation 

197 dataset represented 836 samples. The remaining samples (N=5,541) were used to calibrate the model 

198 and performed two different cross-validations: 10-fold cross-validation where the samples were chosen 

199 randomly in the calibration dataset and a leave-one DHI out cross-validation. The leave-one DHI out 

200 cross-validation allows to evaluate the models with samples coming from the same context (countries, 

201 diets, breeds) as mentioned by Prekopcsak et al. (2010). So, we supposed that the first dataset contained 

202 9 DHI which corresponded in this case to 9 herds. The second dataset contained records coming from 6 

203 different DHI but records coming from 2 DHI were kept for the external validation as explained 

204 previously. Therefore, the leave-one DHI out cross-validation procedure considered 13 groups. Two 

205 cross-validations were tested and compared in this study as a random N-fold cross-validation could 

206 provide over-optimistic prediction performances (Wang and Bovenhuis, 2019).  

207 Machine Learning Algorithms

208 All machine learning algorithms used in this study were implemented using the CARET 

209 package version 6.0-86 (Kuhn, 2008). For all models, the spectral data were scaled and centered before 

210 computation. 

211 PLSR was performed on the 277 selected wavenumbers using the method=”pls” as an argument 

212 in the train function of CARET package. The maximum number of PLS latent variables was set to 50. 
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213 The optimized number of factors was chosen using the selectionFunction=“oneSE” and “best” as 

214 arguments in the train function of CARET package. The “best” selection function defines the optimal 

215 model as the one having the lowest RMSEcv. The “oneSE” selection function allows to select a simpler 

216 model having a RMSE lower within one standard error from the lowest obtained RMSEcv. This simpler 

217 model is assumed to have a better generalization. 

218 The computation of SVR was based on linear and polynomial kernels and was implemented 

219 using the method=”svmLinear” or “svmPoly” as arguments in the train function of the CARET package. 

220 For both kernels, the expand.grid function was used to test different values to optimize the required 

221 parameters. So, for “svmLinear”, the tested C values were 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 

222 1.75, 2, and 5. For the “svmPoly” kernel, the tested values were 0.25, 0.5, 1 and 2 for C; 1 until 3 for 

223 the polynomial degree; and 0,001, 0.01, 0.1 and 1 for the scale. For both kernels, the epsilon parameter 

224 was set to 0.1. As for PLSR, the optimal parameters were chosen using the selection function “best” or 

225 “oneSE”. A total of 26 PLS factors explaining 99% of the spectral variability were combined in SVR to 

226 limit the problem of overfitting. The interest in using PLS factors instead of other more conventional 

227 selections of features is based on the fact that PLS will extract factors by considering simultaneously 

228 the spectral variability and the variability of the trait to be predicted.

229 ANN seems to be more powerful when the selection of features is made before the modelling 

230 (Thissen et al., 2004). So as performed for SVR, ANN included the 26 PLS latent variables instead of 
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231 the 277 initially selected wavenumbers. ANN based on one-layer perceptron was tested in this study. 

232 This ANN architecture is composed of one hidden layer in order to minimize the risk of overfitting. To 

233 estimate the weights related to this ANN design, a back propagation was used. This model was 

234 performed using method=”nnet” as argument in the train function of the CARET package. Different 

235 numbers of units in the unique hidden layer (ranging from 1 to 5) were tested using the expand.grid 

236 function. In order to ensure a global solution, a penalty was introduced during the computation of 

237 weights (called decay). Decay values of 0, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, and 0.5 were tested 

238 using the expand.grid function. As done for other algorithms, the optimized values for the size and decay 

239 were chosen using the selection function “best” or “oneSE”. The maximum iteration for the weight 

240 estimations was set to 1000 in order to be sure to reach the convergence.

241 The prediction performances of the different models developed were assessed by estimating the 

242 calibration, 10-fold cross-validation, leave-one DHI out cross-validation and external validation 

243 coefficients of determination (R²c, 10-fold R²cv, DHI R²cv and R²v, respectively) as well as their 

244 corresponding RMSE (i.e., RMSEc, 10-fold RMSEcv, DHI RMSEcv and RMSEv, respectively). 

245 Distributions of residuals were also studied for all models.  

246 Prediction of LF from The Walloon Milk Recording Database

247 As the calibration and validation sets were composed of a limited number of records and were 

248 not representative of the studied dairy population due to the sampling procedure used, there is an interest 
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249 in observing the behavior of the prediction on a large scale spectral database. Indeed, this allows 

250 observing the behavior of the predictions according to known sources of variation like the stage of 

251 lactation, parity, breed, and season. So, the machine learning algorithm chosen as the best based on the 

252 validation prediction performances was applied on the first derived milk MIR spectra. The spectral 

253 database is managed by the Walloon Breeding Association (Awé, Ciney, Belgium). This database is 

254 related to the milk recording. A total of  5,651,470 records were collected between January 2007 and 

255 March 2020 from 349,396 cows in 1,963 herds. The average values for the predicted LF were estimated 

256 according to the stage of lactation, the milk yield and the somatic cell score (SCS; log2(somatic cell 

257 count (SCC)/100000)+3). The correlations between the predicted LF and milk yield, fat and protein 

258 contents as well as SCC and SCS were also estimated.  

259 RESULTS AND DISCUSSION

260 Descriptive Statistics and Data Cleaning

261 The LF content measured in the samples included in the first dataset (N=3,931) ranged from 3 

262 to 2,038 mg/L of milk, with an average of 202 ± 170 mg/L of milk. LF content in the second dataset 

263 (N=2,602) varied from 6 to 1,299 mg/L of milk, with an average of 325 ± 257 mg/L of milk. The average 

264 content observed in the first dataset is within the expected range compared to other published articles. 

265 For instance, Gaunt et al. (1980) found an average content of LF of 266 ± 136 mg/L of milk from a first 

266 set of 4 herds and 228 mg ± 112 mg/L of milk from a second set of 4 herds. Cheng et al. (2008) found 
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267 a slightly lower content of LF in bovine milk (177 ± 120 mg/L) from samples collected on cows without 

268 mastitis infection. In a previous article using a part of the first dataset (N=2,499), Soyeurt et al. (2012) 

269 found an average content of LF equal to 163 ± 103 mg/L of milk. The content observed in the second 

270 dataset seemed to be high compared to the literature. Moreover, the standard deviation was also higher 

271 compared to the first dataset. This can be related to the sample selection. Indeed, the samples included 

272 in the second dataset did not come from entire herds as they were selected based on a past LF MIR 

273 predictive model in order to cover as much as possible the LF content and spectral variation. However, 

274 the ranges of variation observed in both datasets were very high, especially extreme high LF 

275 measurements were obtained. This could be related to the fact that some samples could be collected 

276 from cows having subclinical mastitis. Indeed, some authors found a positive relationship between the 

277 content of LF and the presence of mastitis (Kawai et al., 1999) even if the response differs following the 

278 incriminated pathogens (Chaneton et al., 2008). For instance, Gaunt et al. (1980) measured average LF 

279 content of 222 ± 168 mg/L of milk for healthy cows to 640 ± 250 mg/L of milk for cows presenting 

280 mastitis. Cheng et al. (2008) obtained similar values (i.e., 742 ± 374 mg/L of milk for cows suspected 

281 of having mastitis on the basis of the SCC of the milk). The distribution of LF (Figure 1) and spectra 

282 (data not shown) from the 2 datasets were complementary. This was expected since samples of the 

283 dataset 2 were selected to complement the dataset 1. 

284 Lactoferrin Predictions Using Milk MIR Spectrometry
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285 Two kinds of cross-validation procedures were tested in this study to fix the model parameters 

286 (i.e., number of LVs for PLS regressions; C value for linear SVR; C, scale and degree for polynomial 

287 SVR; and size and decay for ANN). The leave-one DHI out cross-validation leads to the model being 

288 under-fit resulting a higher prediction error. Indeed, RMSEv values were higher than 175 mg/L of milk 

289 and were always greater for models developed using the leave-one DHI out cross-validation when 

290 compared to models built using the 10-fold cross-validation (Table 1). Moreover, the high RMSEcv SD 

291 for models building using the leave-one DHI out cross-validation (i.e., values higher than 90 mg/L of 

292 milk) confirmed the low robustness of the developed models. This suggests that too many informative 

293 samples were taken out from the calibration set. For instance, during a 10-fold cross-validation, samples 

294 coming from the same herd can be in the training and validation set involving relevant information to 

295 provide a better prediction. Consequently, the use of a 10-fold cross-validation to parametrize a model 

296 is still relevant to limit the under-fitting but as mentioned by Wang and Bovenhuis (2019), this procedure 

297 leads to be over-optimistic concerning the prediction performances. Indeed, the observed RMSEcv were 

298 always lower than the one observed for the validation set (Table 1).  R²cv values obtained from models 

299 developed using 10-fold cross-validation were similar between models used and ranged from 0.51 to 

300 0.56. Similarly, the observed RMSEcv were also globally the same and ranged from 138.40 to 144.60 

301 mg/L (Table 1). This suggests similar prediction performances. However, RMSEcv SD was higher for 

302 PLS + polynomial SVR compared to other tested algorithms. Based on the external validation, PLSR, 

303 PLS + polynomial SVR and PLS + ANN showed similar validation prediction performances with 
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304 respective RMSE values of 163.76, 166.75 and 162.17 mg/L of milk. However, the correlation values 

305 between predictions on the validation set (N=836) suggested some differences. Indeed, higher 

306 correlations were observed between the predictions given by the PLSR and PLS + linear SVR models 

307 (0.99) compared to PLS + polynomial SVR or PLS + ANN (0.95 for both algorithms). The correlation 

308 between PLS + ANN and PLS + polynomial SVR was 0.94. From Figure 2, it is clear that the 

309 relationships between the predictions made from PLSR and PLS + linear SVR models is strong. 

310 However, the relationship of those models with other tested ones was not linear. There appears to be a 

311 saturation for low and high prediction values (i.e., S shape). 

312 Therefore, even though the predictions made by the 4 models were highly correlated (i.e., higher 

313 than 0.94), the low and high values behaved differently. Moreover, the range of predictions is really 

314 different, with PLS + linear SVM and PLS + ANN having a reduced range compared to PLSR and PLS 

315 + polynomial SVR. Moreover, except PLS + ANN, all other tested algorithms had the tendency to 

316 predict negative values (Table 2). The correlation between residuals and predicted content of LF ranged 

317 from 0.64 for PLS + ANN to 0.77 for PLS + linear SVM based on the training set. From the validation 

318 set, these correlation values were comprised between 0.60 for PLS + ANN to 0.83 for PLS + linear 

319 SVM. These correlation values were lower with the squared residuals (from 0.49 for PLS + ANN to 

320 0.61 for PLS + linear SVR and from 0.30 for PLS + ANN to 0.68 for PLS + linear SVR  based on the 

321 training and validation sets, respectively). This suggests that higher errors were made for samples having 
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322 a high content of LF. The validation prediction performances, the robustness (low RMSEcv SD) (Table 

323 1), the prediction of positive values (Table 2) and the lowest correlation between squared residuals and 

324 LF content observed for PLS + ANN suggest that this modeling is the most relevant to predict daily LF 

325 content in milk from milk MIR spectrometry. For another application dedicated to dairy science, Dórea 

326 et al. (2018) obtained also better prediction performances using ANN including one hidden layer after 

327 a selection of input variables compared to PLSR to predict feed intake. Pralle et al. (2018) obtained 

328 similar performances for PLSR and ANN including also one hidden layer to predict blood β-

329 hydroxybutyrate.  

330 Compared to the previous studies published by our team on the same topic, the prediction error 

331 observed in the current study is higher than the one observed in the past (RMSEv = 77.26 mg/L of milk 

332 in Soyeurt et al. (2012) vs. 163.76 mg/L in the current study based on PLSR or 162.17 mg/L of milk for 

333 PLS+ANN). However, this is difficult to compare as the validation dataset was not the same and all 

334 spectra were not standardized. If the equation published in 2012 (Soyeurt et al., 2012) is applied on the 

335 current validation set, the validation prediction error is of 462 mg/dL with a R²v equal to 0.02. Even if 

336 this old equation was built from a part of the dataset 1 (2499 samples), the variability in the current 

337 datasets is higher and the past prediction equation is not suitable to predict those records. This could 

338 also be related to the fact that 2 different ELISA kits were used. However, the residual distributions 

339 obtained after using the PLS + ANN model were similar for datasets 1 and 2 (data not shown). Moreover, 
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340 an analysis of variance also confirmed that the differences between residuals observed from datasets 1 

341 and 2 were not significant. It is interesting to note that 50% of records had a residual error between – 

342 69.06 and 51.66 mg/L of milk and between -85.78 and 91.37 mg/L of milk for the training and validation 

343 set, respectively. 

344 Besides the interest to predict the quantity of lactoferrin in milk, it could be useful to know if 

345 the models were able to detect extreme values. Indeed, even if a high prediction error exists for the 

346 records having a high content of lactoferrin, the prediction increased as expected but with a lower 

347 intensity. PLS + ANN model gave predictions allowing detection of 65% of the records with a content 

348 of LF higher than 600 mg/L of milk in the training set if we fixed the prediction limit to 500 mg/L of 

349 milk. This proportion reached to 82% for the samples in the validation set. The threshold of 600 mg/L 

350 was used as the RMSE started to be related to the content of LF from this content and because authors 

351 like Gaunt et al. (1980) and Kawai et al. (1999) mentioned that a such high content is potentially 

352 related to cows having mastitis.

353 Due to the distribution of LF observed in Figure 1, we have also tested the log transformation 

354 but the results were not better (data not shown).

355 PLS + ANN Model Applied to a Large Spectral Database

356 PLS + ANN model was applied to 5,651,470 records from cows within the first 365 days in 

357 milk. The obtained average prediction was 307.80 mg/L of milk with a SD of 209.17 mg/L of milk. 
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358 The minimum and maximum values were 19.74 and 1121.00 mg/L, respectively. So as observed on 

359 the training and validation datasets, no negative predictions were observed. 

360 The LF content predicted using MIR varied according to the stage of lactation (Figure 3). This 

361 variation was already observed by Gaunt et al. (1980). The differences per lactation stages of the log 

362 transformed LF contents obtained by predictions and found by Cheng et al. (2008) and Hagiwara et al. 

363 (2003) were very similar (Table 3) even if the contents observed in this study were closer to the ones 

364 obtained by Hagiwara et al. (2003). 

365 We also observed a negative correlation with milk yield (-0.24) but positive with fat and 

366 protein contents (0.11 and 0.28, respectively).  Cheng et al. (2008) also found a strongly positive 

367 relationship with protein (r=0.48) but they mentioned that the correlation with fat content was not 

368 significantly different from 0. However, the negative relationship between LF and milk yield was 

369 stronger for Cheng et al. (2008) (r=-0.47). The difference of LF after log transformation and observed 

370 by the level of milk yield was similar even if the contents found in this study were higher (Table 4). 

371 As expected, positive correlations with predicted LF were observed for SCC and SCS (0.21 and 0.30, 

372 respectively; N= 5,477,197). Cheng et al. mentioned that the correlation between LF and SCC was not 

373 significantly different than 0 but the correlation found by these authors for SCS (r=0.37) was similar to 

374 the one estimated in the current study. The evolution of log-transformed predicted LF was also in 

375 agreement with the results found by Hagiwara et al. (2003) and Cheng et al. (2008) (Table 5).
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376 CONCLUSIONS

377 This study tried 4 examined machine learning algorithms to predict the daily content of 

378 lactoferrin in cow’s milk from milk MIR spectral data. It found, based on the validation prediction 

379 performances, that PLS, PLS + polynomial SVR and PLS + ANN provided similar results, but that the 

380 model using PLS factors combined with an ANN was the best. This model was then applied to the 

381 Walloon milk recording spectral database to observe the relationships between predicted LF content and 

382 the main milk components as well as SCC and SCS which were in line with the literature. However, the 

383 model still had some difficulties in predicting extremely high values. Indeed, the observed RMSE 

384 increased strongly once LF content exceeded 600 mg/L of milk; 12 percent of records coming from the 

385 Walloon dairy cow population reached this level of LF production. Including extreme values of milk LF 

386 content to the calibration set could help to improve the prediction models. We now have the possibility 

387 to directly predict the content of LF in the milk lab allowing identification of those specific samples. 

388 Moreover, as the quantity of milk required for the ELISA analysis is quite low, the same sample as the 

389 one analyzed for the routine milk recording could be used. This could be an appropriate task to improve 

390 in the future the ability of the ANN network to discriminate low and high LF samples. Until now, no 

391 implementation of this LF prediction is done by DHI. However, there is an interest for them to use this 

392 molecule information to improve the detection of subclinical mastitis. The inclusion of the LF trait into 
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393 breeding program to improve the cow robustness or the milk nutritional quality has not been investigated 

394 yet. 
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507Table 1. Ten-fold cross-validation and external validation performances for predicting lactoferrin content 

508in milk using four different machine learning algorithms.

PLSR
PLS + 

Linear SVR

PLS + 
Polynomial 

SVR PLS + ANN
Selection function oneSE oneSE best best = oneSE*

parameters nLV=23 C=5
degree=3; 

scale=0.01; 
C=1

size=4;
decay=0.5

R²c 0.53 0.53 0.64 0.60

Calibration 
(N=5541)

RMSEc 140.94 144.32 125.89 130.59
R²cv 0.51 0.53 0.56 0.55
R²cv SD 0.03 0.03 0.03 0.03
RMSEcv 144.31 144.60 138.40 139.01
RMSEcv 
SD 5.77 5.61 8.08 5.05

Cross-
validation

RPD 1.43 1.42 1.49 1.48
R²v 0.61 0.63 0.62 0.60External 

validation 
(N=836) RMSEv 163.76 174.92 166.75 162.17

509PLSR= Partial least squares regression; PLS + Linear SVR = Linear Support Vector Regression based on 26 PLS latent 
510variables; PLS + Polynomial SVR = Linear SVR based on 26 PLS latent variables; PLS + ANN = modeling based on 
511artificial neural network including 26 PLS latent variables in the input layer and one hidden layer; nLV= number of 
512PLS latent variables; C= cost penalty used for SVR; * = the selection function ‘best’ and ‘oneSE’ provided the same 
513results.

514

515
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516Table 2. Data distribution of the reference lactoferrin contents as well as the predictions obtained from the 

517developed models after a 10-fold cross-validation. 

  Data distribution (mg/L of milk)
  0% 5% 10% 25% 50% 75% 90% 95% 100%

Lactoferrin 3.01 34.00 57.22 99.84 179.72 302.69 532.39 669.97 2038.27
PLSR -277.95 35.10 77.14 142.16 218.59 308.55 430.42 521.86 1244.38
PLS + linSVR -195.05 37.97 74.54 128.68 194.55 271.75 385.47 466.19 1060.68
PLS + polSVR -47.40 51.77 74.18 119.48 187.15 271.52 413.47 532.49 1423.58Tr

ai
ni

ng
 se

t

PLS + ANN 31.27 77.53 95.71 135.09 188.21 289.78 472.00 605.24 1053.65
Lactoferrin 6.00 32.32 47.46 122.30 280.58 476.69 707.86 860.52 1286.86
PLSR -162.60 13.98 70.29 165.56 320.69 420.68 518.84 591.00 912.53
PLS + linSVR -129.09 22.84 68.17 150.40 290.59 367.41 455.30 520.24 795.47
PLS + polSVR -72.59 27.30 55.13 123.53 263.11 381.74 533.62 626.71 1200.00V

al
id

at
io

n 
se

t

PLS + ANN 36.67 67.71 85.11 127.48 313.83 483.87 633.11 682.23 851.38
518PLSR= Partial least squares regression; PLS + linSVR = linear Support Vector Regression based on 26 PLS latent 
519variables; PLS + polSVR = polynomial SVR based on 26 PLS latent variables; PLS + ANN = modeling based on an 
520artificial neural network including 26 PLS latent variables in the input layer and one hidden layer.
521

522
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523Table 3. Evolution of lactoferrin content predicted by MIR following the stage of lactation and comparison 
524with the literature.
525

  
MIR lactoferrin
mg/L of milk

log(lactoferrin)
 

log(lactoferrin) 
[Cheng et al.,2008]  

log(lactoferrin) 
[Hagiwara et al., 2003]*

 N Mean SD Mean SD  N Mean SD  N Mean SD
DIM <= 20 317,322 229.75 181.22 2.23 0.33

20 > DIM <= 100 1,486,501 245.45 176.28 2.29 0.30 49 1.90 0.12 8 2.06 0.43
100 > DIM <= 200 1,736,757 297.04 198.64 2.37 0.30 45 2.03 0.28 59 2.23 0.38
200 > DIM <= 365 2,110,890 372.31 223.49 2.48 0.29  28 2.20 0.20  32 2.30 0.45

526DIM = days in milk; * The range of DIM was slightly different

527

528

529
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530Table 4. Evolution of lactoferrin content predicted by MIR following the milk yield (kg/day) and 
531comparison with the literature.

  
MIR lactoferrin
mg/L of milk log(lactoferrin)  

log(lactoferrin) 
[Cheng et al.,2008]

 N Mean SD Mean SD  N Mean SD
milk yield < 20 kg 1,611,617 374.43 228.40 2.48 0.30 36 2.18 0.25
20 kg <= milk yield < 25 kg 1,333,645 308.94 204.31 2.39 0.30 34 1.99 0.23
25 kg <= milk yield < 30 kg 1,201,798 283.77 194.82 2.35 0.30 33 1.93 0.16
30 kg >= milk yield 1,504,410 254.63 181.96 2.30 0.30  19 1.89 0.18
532

533

534

535

536
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537Table 5. Evolution of lactoferrin content predicted by MIR following the somatic cell score (SCS) and 

538comparison with the literature.

 MIR lactoferrin log(lactoferrin)  
log(lactoferrin) 

[Cheng et al.,2008]  
log(lactoferrin) 

[Hagiwara et al., 2003]
SCS N Mean SD Mean SD  N Mean SD  N Mean SD

0 163,716 236.23 166.91 2.28 0.29 12 1.91 0.14 36 2.18 0.19
1 996,710 233.82 169.95 2.27 0.29 20 2.02 0.17 28 2.16 0.42
2 1,365,672 267.61 184.44 2.33 0.30 50 1.98 0.19 39 2.27 0.51
3 1,164,258 305.80 199.50 2.39 0.30 40 2.06 0.26
4 860,534 347.21 214.41 2.45 0.30 34 2.10 0.25
5 510,941 382.85 227.91 2.49 0.30 20 2.26 0.32
6 292,339 403.68 234.51 2.52 0.30 22 2.28 0.30
7 160,828 421.79 234.70 2.54 0.30
8 83,575 461.05 235.88 2.59 0.28
9 42,340 569.97 244.31 2.70 0.25         

539* 10,557 records were deleted because the SCS had a negative value.

540

541

542

543

544

545

546

Page 31 of 34

ScholarOne support: (434) 964 4100

Journal of Dairy Science



For Peer Review

MID-INFRARED LACTOFERRIN PREDICTION IN MILK THROUGH 3 MACHINE LEARNING ALGORITHMS

32

547

548Figure 1. Distribution of ELISA Lactoferrin quantifications in the first dataset on the left and the second 

549dataset on the right.

550

551

552
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553

554Figure 2. Relationships between reference lactoferrin content (mg/L of milk) and the predictions obtained 

555using fourth different machine learning approaches applied on the validation set (PLSR = Partial Least 

556Squares Regression; PLS+linSVR = 26 PLS factors included in a linear Support Vector Regression; 

557PLS+polSVR= 26 PLS factors included in a polynomial SVR; PLS+ANN = 26 PLS factors included in an 

558artificial neural network having one hidden layer).

559  
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560

561Figure 3. Evolution of lactoferrin content predicted by mid-infrared spectrometry following the stage of 
562lactation.
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