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_____________________________________________________________________________27 

ABSTRACT 28 

 29 

Real-time process/product monitoring can be achieved using suitable process analytical 30 

technologies (PAT) to improve process efficiencies and product quality. In the dairy industry, near 31 

infrared (NIR) spectroscopy has been utilised as a laboratory analytical method (off-line) for 32 

compositional analysis of dairy products since the 1970s. Recent advances in NIR technology 33 

and instrumentation have widened its applications from a bench-top analytical instrument to a 34 

promising PAT tool for on-line and in-line implementation. This review focuses on the use of NIR 35 

technology for real-time monitoring of dairy products, by briefly outlining the measurement 36 

principle, NIR instrument configurations, in-line sampling methods, calibration models 37 

development, some practical considerations for process installation, and current state of the art in 38 

on-line and in-line NIR applications (2012 to date) for continuous process monitoring in the 39 

production of dairy products. The challenges and additional resources required to improve 40 

production efficiencies using NIR spectroscopy are also discussed. 41 

_____________________________________________________________________________ 42 
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1.  Introduction 70 

 71 

The consumption of dairy products is expected to increase by 25% from 2015 to 2024 (IDF, 2019). 72 

This increasing demand is driving dairy processors to become more competitive and streamline 73 

processes to be more efficient. To achieve this, it is essential for dairy plants to implement real-time 74 

process monitoring to allow corresponding production lines to be controlled and optimised, while also 75 

ensuring the production of a high quality and consistent final product. The acquisition of real-time process 76 

information (i.e., operating conditions, quality attributes of processed materials) can be achieved by 77 

implementation of process analytical technologies (PAT) in the manufacturing processes. The concept of 78 

PAT was first introduced to the pharmaceutical industry by the US Food and Drug Administration (FDA, 79 

2004), with the aim of supporting innovation and efficiency in pharmaceutical development, manufacturing, 80 

and quality assurance. Since then, the adoption and promotion of PAT initiatives have been widely 81 

spread across other related areas (Chew & Sharratt, 2010), particularly in the food industry including the 82 

dairy sector (O'Donnell, Fagan, & Cullen, 2014).  83 

In the dairy industry, common PAT tools such as pH, temperature, pressure and flow 84 

instrumentation are installed at critical control points of a processing line to provide real-time operating 85 

information of the process (Tajammal Munir, Yu, Young, & Wilson, 2015). In recent decades, the 86 

importance for real-time measurement of chemical composition of in-process materials has been 87 

recognised by dairy processors as an important component to ensure end products meet desired quality 88 

specifications (Munir et al., 2017). For example, the protein-to-fat ratio (PFR) of cheese milk governs the 89 

coagulation process, cheese yield and final composition of the cheese (Sturaro, De Marchi, Zorzi, & 90 

Cassandro, 2015). It is important to maintain batch-to-batch consistencies during cheese manufacturing 91 

with the use of standardised cheese milk. The milk standardisation process can be optimised and 92 

controlled by real-time measurement of fat and protein content using suitable PAT tools, such as an in-93 

line NIR spectrometer or in-line milk standardisers. The majority of in-line milk standardisation currently is 94 

carried out with at-line middle infrared (MIR) instruments (i.e., the MilkoScanTM or more recently 95 

MilkoStreamTM instruments from FOSS, Hillerød, Denmark), as a result, the fat and protein content can be 96 

continuously adjusted to achieve a target PFR.  97 
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Near-infrared (NIR) spectroscopy has been identified as a powerful analytical technology for 98 

compositional analysis of a variety of dairy products, since its first application in the dairy industry in the 99 

late 1970s (Cattaneo & Holroyd, 2013). This technique can overcome the disadvantages of time-100 

consuming and tedious laboratory analysis, offering a rapid (results derived in seconds), non-destructive 101 

(no sample damage), cost-effective (simultaneously measure multiple quality parameters) and 102 

environmentally-friendly (chemical-free and no waste disposal required) solution to meet the requirements 103 

of a fast-paced processing supply chain. In 2006, the International Organisation for Standardisation (ISO) 104 

together with IDF published an international standard, providing guidelines for the application of NIR 105 

spectrometry as an off-line analytical technology for quality measurement of several milk products (ISO & 106 

IDF, 2006). This standard was substantially updated and revised in 2019 to cover a wider range of dairy 107 

samples in different forms (i.e., liquid, semi-solid and solid). In addition, a Bulletin of the IDF (No. 108 

497/2019) entitled "Applications of NIR spectrometry for the analysis of milk and milk products" was 109 

recently released (Niemöller & Holroyd, 2019). This document summarised unpublished calibration 110 

statistics originating from global dairy companies and NIR instrument vendors, to provide comprehensive 111 

and up-to-date information on NIR performance in the dairy industry. To meet current process 112 

requirements of quality by design (QbD), the latest NIR instruments are equipped with features that are 113 

suitable for real-time (on-line or in-line) process monitoring. The application and implementation of NIR 114 

technology has also started to move from the laboratory (off-line measurement) to production lines (at-line, 115 

on-line and in-line analysis), and from scientific research to industrial applications.  116 

Currently, NIR technology has been successfully implemented in the pharmaceutical industry for 117 

process understanding, monitoring and control. Guidelines offered to the pharmaceutical industry 118 

regarding ‘development and submission of near infrared analytical procedures’ have been provided by the 119 

European Medicine Agency (EMA, 2014) and the FDA (FDA, 2015). However, the majority of the NIR 120 

implementation in the dairy industry is still off-line or at-line measurements.  121 

Several other spectroscopic methods such as Raman spectroscopy (Yang & Ying, 2011), 122 

fluorescence spectroscopy (Shaikh & O'Donnell, 2017) and hyperspectral imaging (Manley, 2014) have 123 

been applied in the diary sector. This review will focus on the NIR technology and its recent applications 124 

as a PAT tool for on-line and in-line measurements during dairy processing. The review will cover several 125 
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aspects including the basic principle of NIR spectroscopy, NIR instrumentation, in-line sampling, 126 

calibration development and some practical considerations for on-line and in-line implementation. 127 

Information listing global companies that provide on-line and in-line NIR solutions and the instrument 128 

specifications is summarised in Supplementary material Table S1.  129 

 130 

2.  Principle of NIR spectroscopy  131 

 132 

2.1. Spectral region 133 

 134 

Spectroscopy studies the interaction between light and matter. Light is a form of electromagnetic 135 

radiation, which contains a certain amount of energy. The energy (E) of the light depends on its frequency; 136 

the higher the frequency f of the light (or the shorter the wavelength λ), the higher the light energy E, as 137 

shown in Equation 1.  138 

� = ℎ ∙ � =
ℎ ∙ �

�
							(1)		 

where h is the Planck constant (m2 kg s-1), f is the frequency of the light (s-1), c is the light speed (m s-1) 139 

and λ is the wavelength of the light (m).  140 

Fig. 1 illustrates the electromagnetic spectrum that is divided into several spectral regions. 141 

Increasing the wavelength of the light from gamma waves to radio waves will result in the corresponding 142 

light energy decreasing. Visible light that can be perceived by the human eye covers the wavelength 143 

range from 350 nm to 800 nm. The whole infrared (IR) region is from 800 nm to 100 µm, and is sub-144 

divided into three main regions: near infrared (NIR, 800–2500 nm), middle infrared (MIR, 2500 nm – 25 145 

µm) and far infrared (FIR, 25–100 µm) (Dufour (2009)). The NIR region is the region that is closest to the 146 

visible right, thus, it is called ‘near’ infrared. Generally, the wavelength (in nm) is most frequently used for 147 

the NIR region and the wavenumber (in cm-1) is used for the MIR region. The conversion between 148 

wavelength and wavenumber is given in Equation 2.  149 

�
��������	(cm-1) =
10�

�
�������ℎ	(nm)
									(2) 
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As a sample is exposed to a beam of IR light, the sample will absorb part of the light energy that 150 

can cause molecular vibrations. Each chemical bond (i.e., C–H, N–H, O–H, S–H) of a molecule has 151 

unique vibration modes (i.e., stretching, bending and rocking) and vibration frequencies (i.e., fundamental, 152 

overtones and combination; see Supplementary material for description and explanation). When the 153 

chemical bonds receive the light frequency that matches its vibrational frequency, the light energy will be 154 

absorbed. The concentration of absorbing chemical bonds in the light path influences the absorbance 155 

signal. As a result, the higher concentration, the more pronounced absorption signals being observed in 156 

the corresponding spectrum.  157 

 158 

2.2.  Why NIR spectroscopy 159 

 160 

Both NIR and MIR spectroscopy are considered as rapid and chemical-free technologies. Table 1 161 

compares NIR and MIR spectroscopy. NIR spectroscopy is more attractive for on-line and in-line 162 

applications since: (i) the NIR region has higher energy than MIR (as known from Equation 1) resulting in 163 

a larger penetration depth into the sample; (ii) NIR light can pass through materials such as glass, films 164 

and plastic materials without losing much energy, giving a major advantage over the MIR in measuring 165 

samples through these materials (Lin, Rasco, Cavinato, & Al-Holy, 2009); (iii) The NIR spectrum contains 166 

a large amount of information related to the overtone and combination bands of hydrogen bonds (i.e., C–167 

H, O–H and N–H). Most organic materials are made of these bonds, allowing a wide range of organic 168 

samples in chemistry, pharmaceutical and agri-food industries to be suitable for NIR analysis (Manley, 169 

2014). For example, the N–H vibration bands presented in the NIR spectrum of a milk sample are mainly 170 

corresponding to the protein molecules.  171 

Nevertheless, NIR spectroscopy has its limitations. The NIR spectra are made up of overtones 172 

and combination bands of chemical bonds, the peaks are broad and overlapped which makes the 173 

spectral interpretation more difficult. NIR data exploration and interpretation rely heavily on the use of 174 

multivariate data analysis (chemometrics). The NIR technology cannot measure 175 

constituents/contaminations (e.g., melamine) that are lower than 0.1%, as a trace amount of 176 

contamination will have no measurable effect on the scatter properties of the samples (Norris, 2009). 177 
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 178 

2.3.  Measurement modes 179 

 180 

The interactions between light and matter include absorbance, reflectance and transmittance, as 181 

shown in Fig. 2. When the light (located in the NIR region) is passing through the sample, some parts of 182 

the light can be absorbed by the sample causing molecular vibrations, and the rest of the light is either 183 

reflected back towards the sample or transmitted through the sample, or a combination of both depending 184 

on the sample properties (i.e. sample density and chemical compounds). 185 

According to the specific light-output captured by the detector in an NIR instrument, NIR 186 

spectroscopy can be performed in transmittance, reflectance, and transflectance (a mixture of 187 

transmittance and reflectance) mode, as shown in Fig. 3. The transmittance mode measures the light 188 

transmitted through a sample, with the detector located at the opposite side of the light source. The 189 

reflectance mode measures the light reflected by the sample, with the detector located on the same side 190 

of the light source. For the transflectance mode, a gold reflector (functioning as a mirror) is placed at the 191 

bottom of the sample, the transmitted light will be reflected back once it reaches the gold reflector 192 

(Núñez-Sánchez et al., 2016). As the light travels through the sample twice, the optical pathlength is 193 

double the sample thickness.  194 

In dairy applications, for example, NIR light can penetrate through skim milk liquid easily, thus, 195 

the transmission spectra will provide more detailed compositional information on the sample. Compared 196 

with whole milk that has a fat content of 3~5%, light scattering effect could be observed due to the 197 

presence of different fat globules (Chen, Iyo, Terada, & Kawano, 2002), as a result, NIR spectrometers 198 

operating in either reflectance or transmittance can be considered for whole milk compositional 199 

measurement (Aernouts, Polshin, Lammertyn, & Saeys, 2011). Milk powders have a strong diffuse 200 

reflectance of the light, as a result, the reflectance spectrum carries more sample information compared 201 

with the transmission spectrum. The transflectance mode is very useful in applications where there is a 202 

significant physical and chemical change in the in-process materials. For example, in the fermentation 203 

process of yoghurt, the rheology of the in-process materials changes from liquid milk to semi-solid gel 204 

after the addition of microorganism for a certain period of time (Grassi et al., 2013). It should be noted 205 
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that the penetration depth of the light is also wavelength-dependent (Aernouts et al., 2011), therefore, the 206 

selection of an optimal measurement mode of a NIR analyser is mainly based on the physical and 207 

chemical properties of a target sample (i.e., sample thickness, liquid or powder, clear liquid or emulsion) 208 

and the instrument specifications (i.e., spectral range and resolution). Supplementary material Table S1 209 

gives more details on the acquisition modes of NIR instruments and their suitable applications.  210 

 211 

2.4. NIR instrumentation 212 

 213 

There are five main types of NIR instruments available on the market, according to the 214 

wavelength selection methods (AB Vista, 2018; Agelet & Hurburgh, 2010); these are as follows. 215 

(1) Filter-based device, which uses optical filters that are mounted in a rotating wheel to generate 216 

the specific wavelengths required 217 

(2) Dispersive type of spectrometer, which employs an optical prism or a grating element to 218 

generate a set of continuous wavelengths, e.g., as a ray of white light passes through a prism, it can be 219 

split into a whole spectrum of wavelengths due to different light refractions 220 

(3) Fourier-transform (FT) spectrometer, which is based on the theory of Michelson interference, 221 

the light source is split and reflected by two mirrors, and then re-combined to interact with the sample. 222 

The resulting signal recorded by the detector is the light intensity as a function of time (called 223 

‘interferogram’). Using Fourier-transform, the optical signal can be converted from time to frequency 224 

domain, as a result, a spectrum (light intensity as a function of frequency or wavelength) can be obtained. 225 

Many of the modern NIR instruments are FT-NIR instruments since the spectra generated are of a higher 226 

spectral resolution and quality.  227 

(4) Diode-array type of instrument, which measures all the wavelengths at the same time using a 228 

fixed grating element with a dedicated diode detector for each wavelength (AB Vista, 2018), resulting in a 229 

high measurement speed.  230 

(5) Micro-electro-mechanical systems (MEMS) type of spectrometer (Schuler, Milne, Dell, & 231 

Faraone, 2009), which is a small, compact and cost-effective NIR device based on semi-conductor 232 

technologies (Agelet & Hurburgh, 2010). This type of device can be used to fabricate portable / handheld 233 
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NIR instruments that are suitable for on-site measuring applications. As an example, Fig. 4 shows the 234 

working principles of the filter-based, dispersive and Fourier-transform types of NIR instruments.  235 

 236 

3.  Analysis of NIR data 237 

 238 

3.1.  Spectral profiles of dairy products 239 

 240 

Fig. 5 illustrates the typical NIR spectra of three different dairy powders: skim milk powder (SMP: 241 

protein content, 34%; moisture content, 4.0%), milk protein concentrate (MPC: protein content, 86%; 242 

moisture content, 5.6%) and whey protein isolate (WPI: protein content, 90.1%; moisture content, 6.9%). 243 

The spectra were collected using a FOSS-NIR 6500 system operating in the reflectance mode (FOSS UK 244 

Ltd., Warrington, UK). The spectral range is from 1100 nm to 2500 nm with a spectral interval of 2 nm. As 245 

observed in Fig. 5, the absorption bands in the NIR region are broad and overlapped. The water 246 

absorption bands due to the vibration of O–H bonds are found in the region of 1440–1470 nm and 1920–247 

1940 nm (Manley, 2014). The protein absorption band at around 2172 nm can be attributed to the 248 

combination of C–O stretching, N–H bending and C–N stretching (Manley, 2014). The absorption band at 249 

2274 nm is possibly due to C–H and O–H vibration from lactose (Holroyd, 2013). More specifically, the 250 

NIR band assignments for different dairy products (cheese, liquid milk and milk powder) were 251 

summarised in a table in the review paper by Holroyd (2013).  252 

 253 

3.2. Multivariate data analysis 254 

 255 

An NIR spectrum generally consists of hundreds of wavelengths and the wavelengths are 256 

considered as variables. For example, there are 700 variables (wavelengths) in the NIR spectra of dairy 257 

powders as shown in Fig. 5. In addition, the spectra are very complicated due to the overlapping of the 258 

overtones and combination bands. Thus, multivariate data analysis (MDA) is required to extract 259 

meaningful information from the NIR spectra of the sample. Common spectroscopic data analytical 260 

approaches include spectral pre-processing, spectra exploration, regression (quantitative analysis) and 261 
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classification (qualitative analysis), as summarised in Table 2. More details about multivariate data 262 

analysis and chemometrics in relation to spectroscopic data analysis can be referred to in papers by 263 

Rinnan, Berg, and Engelsen (2009), Roggo et al. (2007) and Xiaobo, Jiewen, Povey, Holmes, and Hanpin 264 

(2010). 265 

 266 

3.3. Development of a calibration model 267 

 268 

Before NIR spectroscopy can be employed in industry, a robust calibration model should be 269 

developed to ensure prediction results are accurate. A number of factors can influence the robustness of 270 

the model, i.e., the accuracy and reproducibility of the reference method, the sampling method used to 271 

collect representative samples, the spectra pre-processing methods, the quantitative or qualitative 272 

modelling methods. Fig. 6 illustrates a general procedure for the development of a calibration model. 273 

Samples in the calibration set are used to develop the calibration model, an external set of samples are 274 

used to evaluate and validate the model performance. For quantitative modelling, the quality composition 275 

parameter (i.e., protein, moisture, fat and total solids) is the dependent variable Y (results obtained from 276 

the reference method), the spectral signal/intensity at each waveband is the independent variable X (X1, 277 

X2, …, Xn). For qualitative analysis (i.e., classification analysis), the sample class would be the dependent 278 

variable Y.  279 

According to the IDF standard (ISO & IDF, 2006), typically at least 120 calibration samples are 280 

required for a robust model with the use of MLR and PLS techniques. For validation of the calibration 281 

models, at least 25 samples (a test set) that are independent of calibration samples are needed. A global 282 

or a local model can be developed based on the data used in calibration development. For example, 283 

Melenteva, Galyanin, Savenkova, and Bogomolov (2016) developed a global model (i.e., resistant to 284 

seasonal, geographical and genetic variation on milk composition) for measurement of fat and total 285 

protein content in raw milk, based on historical spectroscopic data that were collected from different cow 286 

breeds located in different regions over a specific time period.  287 

Once a robust calibration model is developed, it should be regularly validated and updated to 288 

ensure model prediction performance. A model that is developed on one NIR instrument might not be 289 
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used directly in another similar NIR instrument due to variations in instrument components and the 290 

detecting environment. In this case, standardisation and calibration transfer techniques as mentioned in 291 

the review paper by Fearn (2001) can be applied to ensure model transferability for a wider model 292 

application. 293 

 294 

3.4.  Evaluation of a calibration model 295 

 296 

The model prediction performance can be evaluated using statistical criteria such as coefficient of 297 

determination (R2), root mean square errors for prediction (RMSEP), bias, standard error of prediction 298 

(SEP), and the ratio of prediction to deviation (RPD; RPD = standard deviation (SD) / SEP or RMSEP). 299 

The calculations behind these prediction indices are outlined by Porep, Kammerer, and Carle (2015). For 300 

the same calibration range, a higher R2 value that is close to 1 (or a lower prediction error that is close to 301 

0) indicates a greater prediction performance of a model. Table 3 provides guidelines for the model 302 

prediction performance in terms of the R2 and RPD values. An R2 of over 0.92 is generally accepted for 303 

most applications including quality control (Williams, 2017). 304 

 305 

4.  NIR applications 306 

 307 

4.1. NIR application in dairy processing 308 

 309 

NIR spectroscopy applications in dairy processing include off-line (laboratories), at-line, on-line 310 

and in-line installations (FDA, 2015); the main differences between which are as follows. 311 

(1) Off-line: samples are manually taken-off the process line and tested in a bench-top NIR 312 

system located in the quality assurance/quality control (QA/QC) laboratory located away from the process 313 

line.  314 

(2) At-line: samples are removed from the process line and analysed in an NIR system placed 315 

near the process line.  316 
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(3) On-line: a sample by-pass is created at a sampling point to divert the process materials from 317 

the mainstream for NIR analysis.  318 

(4) In-line: the NIR analysis is directly integrated into the processing line by the use of different 319 

sampling strategies (in-line sampling will be discussed later).  320 

Off-line and at-line measurements require manual sampling and consequently there is a time 321 

delay between sampling and measurement that does not facilitate real time monitoring. On-line and in-322 

line analysis does not require manual sampling, which is a major advantage for measuring samples that 323 

are processed under high temperature and pressure conditions. In addition, the on-line and in-line 324 

measurement results can be obtained in seconds, which provides a real-time and continuous process 325 

measurement by ‘bringing the instrument to the sample’ (Cattaneo & Holroyd, 2013).  326 

 327 

4.2.  In-line sampling 328 

 329 

The configuration of in-line NIR sampling contains three parts: (i) the NIR analyser; (ii) hygienic-330 

design optical interface (i.e., probes, flow cells, or non-contact sensor heads) to be used in the process 331 

line; (iii) fibre optic cables for the connection between the NIR analyser and the sensing elements to 332 

achieve remote control and analysis (Hitzmann et al., 2015). During dairy processing, raw materials, 333 

intermediates and final products are either stored in tanks / vats or transported by pipes / conveyor belts 334 

around the plant. Thus, in-line spectroscopic sensors can be mounted in the production line with either an 335 

immersion probe, by a flow cell or through an optically transparent window in the NIR range. Fig. 7 336 

summarises a variety of in-line sampling methods in specific applications. 337 

 338 

4.3.  Practical considerations for process installation 339 

 340 

Currently, most of the NIR applications in the dairy industry are off-line or are at-line 341 

measurements. Moving NIR technology from a well-controlled measuring environment (samples are 342 

measured at static state and at a controlled temperature) to a more practical environment (samples are 343 

measured in flow conditions) can present many challenges, i.e., the effect of process conditions (e.g., 344 
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temperature and flow) on the prediction performance and transferability of the calibration models. For 345 

example, the temperature of the samples and operating environment may vary during the production, 346 

which can influence the repeatability of the spectral signals collected, resulting in a reduction in the 347 

prediction accuracy of the calibration model. Therefore, it is essential to identify variables that might affect 348 

the spectra and these variables (i.e., temperature) must be considered when developing a calibration 349 

model.  350 

For on-line and in-line implementation, NIR spectrometers should be able to bear harsh operating 351 

environments such as high temperature, high humidity, process vibrations (Nikos, Serafim, & George, 352 

2004). To avoid the effect of humidity, the NIR spectrometer can be placed in a protective cabinet. The 353 

installation of the NIR probes or sensors should not affect the processing line (e.g., not introduce external 354 

contaminants, not disturb the process flow). The probes and sensors should meet an appropriate hygienic 355 

standard (i.e., 3-A Sanitary Standards (3-A SSI), European Hygienic Engineering & Design Group 356 

(EHEDG) standards (EHEDG)) to ensure a high standard of food safety is upheld. For some specific 357 

process / product applications where a frequent internal cleaning and sterilisation is required, the sensors 358 

applied should always be fully capable for cleaning-in-place (CIP) and sterilisation-in-place (SIP).   359 

The result generated from NIR analysis can be integrated into an industrial control system (i.e., 360 

the Supervisory Control and Data Acquisition (SCADA) system) for monitoring and to achieve continuous 361 

process control and optimisation. However, the cost for integration and communication between the NIR 362 

system and the control system should also be considered for real-time industrial applications.  363 

 364 

5.  Recent applications in dairy processing  365 

 366 

NIR spectroscopy can be applied across the whole dairy processing chain, i.e., (i) to check the 367 

quality of raw milk on a farm and at milk intake points, (ii) at-line, on-line and in-line monitoring of products 368 

along production lines, (iii) routine off-line quality measurement conducted in QA/QC laboratories, (iv) 369 

determination of final products to meet quality specifications. This section of the review focuses on the 370 

application of NIR technologies for on-line and in-line measurement in the dairy industry. Most of the 371 

industrial-level applications are rarely reported in literature, possibly as the data are confidential and 372 
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commercially sensitive (Munir et al., 2017). Therefore, this review summarises the information available 373 

from literature and companies’ application notes, to provide an overview of the on-line and in-line NIR 374 

applications during processing at industrial-level, close to industrial-level (i.e., pilot scales), or laboratory-375 

scale research which indicates the potential for future on-line and in-line industrial applications.  376 

 377 

5.1. Compositional analysis of milk  378 

 379 

Raw milk is the starting material of all dairy products. The changes in quality and composition of 380 

incoming milk can be due to seasonality, the animal feeding system used and stage of lactation, which 381 

can have a significant impact on the subsequent processes and products. As a result, continuous 382 

monitoring of incoming milk quality is required. Protein and fat are two nutritional components in liquid 383 

milk with high economic value. Bogomolov, Dietrich, Boldrini, and Kessler (2012) investigated the use of 384 

visible-NIR spectroscopy (TIDAS E, J&M Analytik AG, Essingen, Germany, 400–1000 nm) to 385 

quantitatively analyse fat and total protein in bovine milk. Milk samples were prepared using cream (fat 386 

source), skim milk (protein source) and a 10%-solution of lactose and water. The samples had a protein 387 

content ranging from 2.6 to 3.2% and fat content ranging from 3.0% to 4.0%. PLS regression was 388 

conducted on the raw spectra, an excellent prediction performance (R2 > 0.94 and root mean square 389 

errors < 0.05%) for the fat and protein content prediction was derived from the model, demonstrating the 390 

potential of NIR spectroscopy to be suitable for raw milk analysis either in the laboratory or in-line 391 

measurement. 392 

An in-line NIR instrument (PSS-1720, Polytec GmbH, Waldbronn, Germany) using diffuse 393 

reflectance was applied to a milking parlour on a farm in Germany (Melfsen, Hartung, & Haeussermann, 394 

2012). The NIR spectra (n = 785) covering the spectral range of 851–1649 nm were recorded to predict 395 

fat (%), protein (%), lactose (%), urea content (mg L-1) and somatic cell count. Promising results were 396 

obtained for the prediction of fat, protein and lactose content, with R2 = 0.99, 0.98, 0.92 and a standard 397 

error = 0.09, 0.05, 0.06, respectively, while satisfying results were obtained for the prediction of urea (R2 = 398 

0.82) and somatic cell count (SCC) (R2 = 0.85). Melfsen, Hartung, and Haeussermann (2013) 399 

investigated the robustness of in-line NIR calibration models for the prediction of raw milk composition (fat, 400 
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protein and lactose) in three different farms during the milking process and over a six-month period (n = 401 

3119). The authors reported that the prediction accuracy of the NIR calibration models on each farm 402 

could be improved once a validation set was completed using spectra from an external farm. Further 403 

improvements were observed after the inclusion of data sets from additional farms in the calibration set. 404 

The improved model performance was attributed to the diverse model developed from the farms that 405 

included more sample variations.  406 

 407 

5.2. Dairy powders 408 

 409 

Milk powders [i.e., whole milk powder (WMP), skim milk powder (SMP) and whey protein 410 

concentrate (WPC)] are widely produced final products in the dairy industry, as the milk powders have a 411 

high-value and are easy to store and transport. Holroyd, Prescott, and McLean (2013) reported on a 412 

number of industrial trials conducted in the Fonterra Co-operative Group Ltd (a major dairy processor in 413 

New Zealand) in which different on-line and in-line NIR instruments have been implemented and tested in 414 

the milk powder plants since the 1990s. Four on-line NIR systems (5500 series) from the FOSS company 415 

(Laurrel, MD, USA) were installed to measure powder samples from the surge hopper after the sifter. Two 416 

of the instruments were calibrated for moisture prediction only, giving an SEP of 0.07–0.09%. One 417 

instrument was also calibrated for fat and protein prediction; however, the result was not stable and 418 

difficult to maintain overtime. The authors also pointed out other challenges / issues experienced with the 419 

on-line NIR systems, including the sample presentation system and instrument tolerance to high 420 

operating temperatures. A fifth NIR system from the FOSS company was an in-line system consisting of a 421 

probe, a spectrometer and fibre-optic cables. The instrument was calibrated for moisture prediction of 422 

different milk powders, giving a standard error of validation from 0.09% to 0.14%. It has been highlighted 423 

that the calibration stability of the system was related to the powder type, flow and production rate. A 424 

fixed-filter NIR system from NDC Infrared Engineering (Maldon, Essex, UK) was installed in the plant for a 425 

number of years to measure moisture of skim milk powder and butter milk powder, the prediction 426 

accuracy (SEP) was 0.13% for skim milk powder and 0.17% for butter milk powder. A recent study carried 427 

out in Fonterra was the use of a Matrix-F in-line FT-NIR system from Bruker Optics for a two-month trial of 428 
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WMP. The system consisted of a spectrometer that was located in a temperature-controlled cabinet far 429 

from the process line, two reflectance probes and 10 m fibre optic cables to connect the probes to the 430 

spectrometer. Results demonstrated that the system was stable throughout the trials and could be used 431 

to measure the moisture (SEP = 0.03%), fat (SEP = 0.11%) and protein content (SEP = 0.07%) of milk 432 

powder accurately. For optimal or best results, powder flow over the probe area must be uniform and 433 

stable to ensure consistent powder sampling.  434 

Among a variety of dairy powders, infant formula production requires the highest standard of 435 

quality. Cama-Moncunill, et al. (2016) employed multipoint NIR spectroscopy (MultiEye, Innopharma 436 

Labs., Dublin, Ireland, 1515–2170 nm) at laboratory scale to evaluate the carbohydrate and protein 437 

content of powdered infant formula under static and motion conditions. It was expected that an improved 438 

prediction performance would be achieved at the static condition (Rp
2 = 0.89~0.92) compared with in-439 

motion conditions (Rp
2 = 0.73~0.90), which are more realistic to industrial applications. A greater 440 

prediction accuracy was obtained for carbohydrate prediction rather than protein, results indicated the 441 

potential of this NIR instrument for future in-line or on-line measurement of infant milk formula.  442 

 443 

5.3. Cheese manufacturing 444 

 445 

During cheese manufacturing, the determination of the optimal cutting-time of a formed milk gel is 446 

very important for producing high-quality cheese products. Lyndgaard, Engelsen, and van den Berg (2012) 447 

applied in-line NIR spectroscopy (Antaris MX FT-NIR Process Analyzer, Thermo Scientific, Waltham, MA, 448 

USA, 1000–2500 nm) for real-time measurement of the milk coagulation process. NIR spectra were 449 

collected during the coagulation process using a reflectance probe. PCA was applied to the spectral data 450 

to extract meaningful process information. Using component scores as a function of time, two kinetic 451 

models were developed, with one describing the whole coagulation process and the other describing 452 

three milk coagulation processes (k-casein proteolysis, micelle aggregation, and network formation). The 453 

models were successfully evaluated and validated using an additional 12 cheese batches to determine 454 

the cheese cutting-time. Nicolau, Buffa, O’Callaghan, Guamis, and Castillo (2015) used an in-line NIR 455 

light backscattering fibre optic sensor (CoAguLab, at 880nm, Reflectronics Inc., Lexington, KY, USA) to 456 
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predict the clotting and cutting times during sheep cheese manufacture. However, the study was carried 457 

out at laboratory scale using 300 mL of sheep milk to simulate the coagulation process, further studies on 458 

validating the models at a larger scale were required. An improved in-line sensor (FluorLiteTM Milk 459 

Coagulation, Reflectronics Inc) integrating NIR (880 nm) and fluorescence (350 nm) was applied by 460 

Panikuttira, O'Shea, O'Donnell, and Tobin (2017) to optimise the milk coagulation process during cheese-461 

making. Validation of the sensor at industrial level is currently under investigation. Another application of 462 

NIR spectroscopy in terms of cheese manufacturing was quantification of casein fractions and their 463 

genetic variants in reconstituted casein samples (Marinoni, Monti, Barzaghi, & de la Roza-Delgado, 2013). 464 

Results illustrated that the NIR techniques could potentially be used to select milk products for cheese-465 

making, as milk rennet properties and cheese yield are affected by milk casein fractions and its content. 466 

Additional PAT tools based on different operating principles used on cheese manufacturing can be 467 

referred to in the review by Panikuttira, O'Shea, Tobin, Tiwari, and O'Donnell (2018). 468 

 469 

5.4. Yoghurt and other products 470 

 471 

In the production of yoghurt, the milk lactic acid fermentation process requires real-time 472 

monitoring for optimal control of the microbial counts, lactic acid and sugar concentration to ensure the 473 

consistency of the final yoghurt product. Grassi et al. (2013, 2014) used an FT-NIR spectrometer (MPA, 474 

Bruker Optics, Milan, Italy) with a fibre optic transflectance probe to directly monitor inoculated skimmed 475 

milk during the fermentation process. Though the study was conducted at laboratory scale, the results 476 

indicated that the NIR technology coupled with chemometrics [i.e., PCA and multivariate curve resolution-477 

aternating least squares (MCR-ALS)] could capture critical process information that matched the off-line 478 

rheology and conventional quality parameters, demonstrating a greater potential of NIR technology for 479 

further application in the production of yoghurt. Svendsen, Cieplak, and van den Berg (2016) carried out 480 

seven milk fermentation batches at pilot scale using a 15 L in-house glass single-wall fermenter vessel. 481 

Batches 1–4 were maintained at nominal fermentation temperature of 35 °C, batch 5 was kept at 32 °C 482 

and batches 6-7 were conducted at 37.5 °C. A fibre optic reflectance probe (ABB Bomen, Quebec, 483 

Canada) was inserted in the fermentation broth for in-line and real-time acquisition of the NIR spectra 484 



19 
 

(1000–1800 nm). The spectra were pre-processed by SNV to remove the scaling effect caused by 485 

sample differences, then modelled by PCA for each fermentation batch. In addition, an in-line pH meter 486 

was also placed in the fermentation broth for pH measurement, as it is currently used in the dairy industry 487 

for yoghurt fermentation monitoring. By comparing the pH profiles and the scores plot derived from the 488 

PCA modelling of the NIR data, it can be observed that NIR spectroscopy is preferable for process 489 

monitoring as it provides more information related to the physical (i.e., textural differences of gel formed) 490 

and chemical changes (i.e., conversion of sugar to lactic acids) during fermentation, rather than using the 491 

an in-line pH meter that only gives uni-variate pH information of the process. 492 

As reported in literature and from NIR companies’ application notes, other applications of NIR 493 

spectroscopy in dairy processing include prediction of total solids, protein and the protein-total solids ratio 494 

after the final ultra-filtration process in whey protein concentrate (WPC) and milk protein concentrate 495 

(MPC) production (FOSS). In addition, an in-line NIR system (DA 7300, Perten Instruments, Stockholm, 496 

Sweden) was installed at the outlet of a butter churn for continuously measuring of moisture, butter-fat 497 

and colour during butter production. The real-time results could be used for quick adjustments of moisture 498 

content during butter production as well as for a complete documentation of the product quality 499 

(https://www.perten.com/Publications/Articles/DA-7300-In-line-NIR-for-butter-production).  500 

 501 

6.  Current challenges and future work 502 

 503 

Currently, most of the NIR research reported for the dairy sector has been carried out in the 504 

laboratory (off-line) or at-line. For a successful implementation of in-line NIR spectroscopy at an industrial 505 

level, the following challenges have to been addressed.  506 

(1) The NIR instruments need to be stable over a 10-year life time. They should also be able to 507 

cope with vibrations and variations in processing conditions (i.e., the temperature / humidity fluctuation of 508 

the process environment). Alternatively, the spectrometer can be placed in a protective cabinet with 509 

temperature control to reduce the effect of the process environment on the NIR signal.  510 

(2) For those batch to batch type processes as mentioned in section 5.3 and 5.4 (i.e., milk 511 

coagulation in cheese manufacturing, milk fermentation in yoghurt production), the cost of the individual 512 
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NIR sensor should be taken into consideration, as a dairy processor may have many batches to be 513 

monitored at the same time. Alternatively, a multiplexed spectrometer which allows several process 514 

probes / sensors to be connected to the same spectrometer could be used for monitoring different 515 

batches.  516 

(3) For calibration development, the in-line sampling points must be as close to the sensor as 517 

possible. Thus, the spectra captured by the NIR are matched to the reference samples taken from the 518 

process stream.  519 

(4) Calibration models developed at laboratory-scale should be validated for further 520 

implementation at industrial scales to provide more reliable and accurate measurement results. 521 

Transferring calibration models between different on-line or in-line NIR instruments is also a challenge, as 522 

variations in instrument components (optics or new replacements) and detecting environment 523 

(temperature and humidity) may result in spectral differences between the same samples. Different 524 

standardisation techniques can be applied to adjust the calibration model by slope and bias correction, or 525 

to correct the spectra by spectral processing (i.e., SNV or MSC pretreatment) or standardisation (i.e., 526 

direct standardisation and piecewise direct standardization) (Fearn, 2001; Pu et al., 2017).  527 

(5) Seasonal variations, geographical differences and changes in an animals’ diet can have an 528 

effect on the chemical composition of raw milk, resulting in changes to the spectra of raw milk (Melenteva 529 

et al., 2016). As a result, the developed calibration models need to be routinely validated and updated to 530 

ensure accurate and robust prediction performance.  531 

(6) Due to the complexity of NIR spectra, interpretation of the data requires the use of multivariate 532 

data analysis. Efforts need to be made for integration of the NIR result to the process control system for 533 

successful PAT implementation to achieve process monitoring and control.  534 

 535 

7.  Conclusions 536 

 537 

The higher demand for global consumption of dairy products requires dairy processors to 538 

increase process efficiency, product quality and yield. NIR spectroscopy has been seen as a fast, non-539 

destructive and chemical-free process analytical technology for real-time measurement of a variety of 540 
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dairy products, from liquid, semi-solid to solid samples. Successful implementation of NIR technology in 541 

the production lines can bring many benefits to the dairy industry by improving the knowledge and 542 

understanding of the process through real-time process monitoring. Additional personnel upskilling is 543 

required for development, evaluation and maintenance of robust calibration models at industrial level to 544 

ensure the performance of a NIR analytical solution. Also, future work on the connection and 545 

communication between the NIR measuring system and the control system are required to close the loop 546 

of ‘process, monitoring and control’, and thus to achieve the goal of quality-by-design by real-time and 547 

continuous process automation. 548 
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Figure legends 

 

Fig. 1. The electromagnetic spectrum.  

 

Fig. 2. The interactions between light and matter. (This figure is extracted from the Application Note – 

TIDAS P Milk Inspector, J&M Analytik AG, Essingen, Germany; http://www.j-m.de/2/main-

navigation/applications/industry/milk/milk-inspector.htm). 

 

Fig. 3. Three spectrum acquisition modes of NIR spectroscopy. 

 

Fig. 4. Three main NIR instruments according to the wavelength selection methods: (a) filter-based 

instrument, (b) dispersive instrument, (c) FT-NIR instrument. 

 

Fig. 5. Typical NIR spectra of three different dairy powders. 

 

Fig. 6. Development of a calibration model. 

 

Fig. 7. In-line sampling examples: (a) diffuse reflectance sampling for in-pipe homogeneous process 

streams, (b) spoon probe sampling for powders, (c) transmission probe sampling for in-tank clear liquids, 

(d) transmission cell sampling for in-pipe liquids [Images in this figure are extracted from Q-interline 

brochure- InSight Pro (http://www.q-interline.com/)]. 

 



Table 1 

Comparison between NIR and MIR spectroscopy.  

Parameter NIR MIR 

Spectral region 800–2500 nm (shorter wavelength) 4000–400 cm-1 (longer wavelength) 

Light energy Higher Lower 

Vibrational frequencies Overtones and combination Fundamental 

Spectral peaks Broad and overlapped, weak intensity Sharp, strong intensity 

Peak assignment Not straightforward Can be assigned to specific functional 
groups, providing ‘fingerprint’ information 
of the sample 

Cost Lower Higher 

 

  



Table 2 

Analysis of NIR spectral data. 

Analysis Objectives Most frequently used methods 

Spectral 
pre-processing 

To remove undesired information (i.e., 
noise), to improve the signal to noise ratio 

Savitsky-Golay smoothing, 
Multivariate scatter correction (MSC),  
Standard normal variate (SNV) 

Spectral 
exploration 

To investigate the potential relations (i.e., 
grouping trends) between samples, to 
reduce data variates 

Principal component analysis (PCA) 

Regression 
(quantitative 
analysis) 

To correlate the spectral data with the 
quantities of particular constituents (i.e., 
protein, fat, moisture) in the sample 

Multiple linear regression (MLR), Partial least 
squares (PLS), Principal component 
regression (PCR), Artificial neural network 
(ANN) for regression 

Classification 
(qualitative 
analysis) 

To classify samples into different groups 
based on spectral differences, to identify 
out-of-specification samples (i.e., 
adulterated milk powders) 

Partial least squares discriminant analysis 
(PLS-DA), K-Means clustering, Soft 
independent modelling by class analogy 
(SIMCA); Support vector machine (SVM) 

 

 

  



Table 3 

Guidelines for model prediction performance indices. a 

R2 RPD Interpretation of R2 

< 0.66 0.75 Not recommended: further research needed 

0.66–0.81 < 1.7 Screening and some other ‘approximate’ applications 

0.83–0.90 2.3 Usable with caution for many applications 

0.92–0.96 3.6 Usable for most applications including quality control 

> 0.98 > 5.0 Usable in any application 
 

a This table was originally from Phil William who presented in the pre-conference course of ICNIRS 2017 
in Copenhagen, Denmark. The authors have received permission from Phil William for the use of the 
table. 

 

 

 
















