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Zusammenfassung 

Pilze sind von einer dicken Schicht aus Kohlenhydraten und Proteinen umgeben, die für die 
Lebensfähigkeit der Zelle essentiell ist – der pilzlichen Zellwand. Proteine sind auf 
unterschiedliche Arten in dieses Organell integriert: einige sind kovalent an den 
Kohlenhydratanteil der Zellwand gebunden, entweder über Glycosylphosphatidylinositol 
(GPI)-Anker oder alkaliempfindliche Bindungen, andere indirekt über Disulfidbindungen. 
Zellwandproteine sind an unterschiedlichen zellulären Funktionen beteiligt, wie der 
Zellwandbiosynthese, der Adhäsion an Oberflächen oder der Sensorik. 
Im ersten Teil dieser Arbeit wurden die GPI-verankerten Proteine des thermophilen 
Modellorganismus Chaetomium thermophilum identifiziert. Zunächst wurde eine Vorhersage 
der an Zellwand und Plasmamembran befindlichen GPI-Proteine durchgeführt. Die 
Vorhersage wurde durch den massenspektrometrischen Nachweis der GPI-verankerten 
Zellwandproteine in isolierten Zellwänden ergänzt. Die detektierten Proteine wurden 
hinsichtlich ihrer Funktionen und mutmaßlichen Rollen analysiert. Interessante Targets für 
pharmazeutische Anwendungen und Grundlagenforschung konnten ermittelt werden, u. a. 
Gel1/2, Kre9/Knh1 und Ecm33. Zusätzlich wurde die Ultrastruktur der Zellwand von 
C. thermophilum mittels Transmissionselektronenmikroskopie analysiert, wobei kurze 
Mikrofibrillen in der äußeren Zellwandschicht und Ähnlichkeit zu der Zellwand von 
S. cerevisiae festgestellt werden konnten. 
Die Arbeit behandelt im zweiten Teil die Analyse der A-Domänen der Candida glabrata 
Adhäsine Awp1 und Awp3, die Mitglieder des Adhäsinclusters VI sind. Obwohl diesem 
humanpathogenen Pilz bestimmte Virulenzfaktoren - z. B. zur Hyphenbildung - fehlen, werden 
C. glabrata Infektionen häufig beobachtet, wobei sein großes Repertoire an Adhäsinen einer 
der wesentlichen Gründe sein sollte. Awp1A und Awp3A bestehen beide aus einer β-Helix-
Domäne und einer α-Kristallin-Domäne. Sie ähneln strukturell kohlenhydratbindenden 
Proteinen, z. B. Polysaccharid-Lyasen. Allerdings konnte keine Bindung von Kohlenhydraten 
an Awp1-Typ Adhäsinen nachgewiesen werden. Ein Sequenzähnlichkeitsnetzwerk leitet eine 
hohe Ähnlichkeit zu den Adhäsinen Awp2 und Awp4 des Adhäsinclusters V ab und 
untermauert damit frühere Klassifizierungen. Die Strukturen von Awp1 und Awp3 geben erste 
Einblicke in neue Typen von Adhäsinen in C. glabrata, zu denen Adhäsine der Cluster V und VI 
gehören. 
Weiterhin wurde der G-Protein-gekoppelte Rezeptor Pth11 aus C. thermophilum analysiert. Er 
enthält eine N-terminale CFEM-Domäne - diese Domäne kommt ausschließlich in 
Pilzzellwand- und Plasmamembranproteinen vor -, die als Ligandenbindungsstelle 
vorhergesagt wurde. Die CFEM-Domäne von CtPth11 besteht aus fünf α-Helices und weist 
zwei potenzielle Bindungsstellen auf, die durch F48 geteilt werden. Bestimmte Orientierungen 
des Aminosäurerestes F48 ermöglichen die Bildung eines Tunnels durch die Domäne. Ein 
Modell der CtPth11-CFEM-Domäne und der Transmembranregion - basierend auf der 
Vorhersage benachbarter Reste mittels Sequenzkovarianzanalyse - zeigt, dass beide 
potenziellen Bindungsstellen zugänglich sind. In einem Fragment-Screen wurden vier 
Fragmente an der gleichen Bindestelle gebunden; drei davon konnten in die jeweiligen 
Elektronendichten modelliert werden. Diese hydrophoben Fragmente sind in der 
hydrophoben Bindestelle platziert und weisen nur wenige zusätzliche Interaktionen auf, was 
zu der Hypothese passt, dass Pth11 hydrophobe Charakteristika auf der Pflanzenoberfläche 
wahrnimmt. 
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Summary 

Fungi are surrounded by a thick layer of carbohydrates and proteins, which is essential for the 

cell’s viability – the fungal cell wall. Proteins are incorporated into this organelle in different 

ways: some are covalently linked to the carbohydrate moiety of the cell wall via 

Glycosylphosphatidylinositol (GPI)-anchors or alkali-sensitive linkages, others are indirectly 

attached to the cell wall via disulfide bonds. Cell wall proteins are involved in various cellular 

functions, such as cell wall biosynthesis, adhesion to external surfaces, or sensing. 

The GPI-anchored cell wall proteome of the thermophilic model organism Chaetomium 

thermophilum was identified in the first part of this thesis. First, a prediction of GPI-proteins, 

anchored to the cell wall and the plasma membrane was done. The prediction was then 

complemented by mass-spectrometric identification of GPI-anchored cell wall proteins in 

isolated cell walls. The detected proteins were then analyzed concerning their functions and 

putative roles and interesting targets for pharmaceutical applications and fundamental 

research were established, including Gel1/2, Kre9/Knh1, and Ecm33. In addition, the 

ultrastructure of the C. thermophilum cell wall was analyzed via transmission electron 

microscopy, revealing short microfibrils in its outer layer and its similarity to the cell wall of S. 

cerevisiae. 

The thesis then advances to the analysis of the A-domains of the Candida glabrata adhesins 

Awp1 and Awp3, which are members of adhesin cluster VI. Although the fungal pathogen lacks 

certain virulence factors – such as hyphae formation – C. glabrata infections are commonly 

observed; its large repertoire of adhesins is believed to be the reason therefore. Awp1A and 

Awp3A both consist of a β-helix domain and an α-crystallin domain. They are structurally 

similar to carbohydrate binding proteins, e. g. polysaccharide lyases, but carbohydrate binding 

could not be observed. A sequence similarity network (SSN) elucidates their high similarity to 

cluster V adhesins Awp2 and Awp4 and thereby reinforces previous classifications. The 

structures of Awp1 and Awp3 provide first insights into new types of adhesins in C. glabrata 

that include the adhesin clusters V and VI. 

Furthermore, the G-protein coupled receptor Pth11 from C. thermophilum was analyzed. It 

contains an N-terminal CFEM domain – a domain exclusively found in fungal cell wall and 

plasma membrane proteins – that is predicted to be the ligand binding site. The CtPth11 CFEM 

domain consists of five α-helices and reveals two potential binding sites, divided by F48. 

Distinct conformers of F48 allow formation of a tunnel through the domain. A model of the 

CtPth11 CFEM domain and transmembrane region – based on prediction of neighboring 

residues via sequence covariation analysis – shows that both potential binding sites are 

accessible. In a fragment screen, four fragments were bound in the same cavity; three of them 

could be fitted into their respective electron densities. These hydrophobic fragments are 

placed in the hydrophobic cavity, with only few additional interactions, which is in accordance 

with the proposal that Pth11 senses hydrophobic cues on the plant surface. 
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1. Introduction 

1. 1. The Fungal Cell Wall 

Fungi are covered by a 110 – 200 nm thick carbohydrate layer, the fungal cell wall. The wall 

provides high stability to the cell, but is also subject to constant remodelling1. It constitutes 

15 – 30% of the total dry mass of the cell in vegetative Saccharomyces cerevisiae2. Its 

importance is additionally underlined by the fact that approximately one-fifth of the yeast 

genome is dedicated to cell wall biosynthesis and remodeling1. The fungal cell wall fulfills 

various functions that are crucial for the cell’s viability: Maintenance of osmotic homeostasis, 

protection from mechanical damage, determination of the cell shape along the whole cell 

cycle and providing a scaffold for extracellular proteins. Proteins within the wall vary in their 

function, amongst other things they are involved in cell wall synthesis and remodeling, 

sensing, adhesion, or nutrient acquisition1,3. 

Since the cell wall is an essential compartment of the fungal cell and is at the same time distinct 

from the cell walls or membranes of mammals, plants or bacteria, it is generally considered a 

promising target for the development of antifungal drugs1,4. 

 

1. 1. 1. Structure of the Fungal Cell Wall 

The unique structure of the fungal cell wall enables it to fulfill its diverse functions. A schematic 

representation of the cell wall is depicted in Figure 1. The cell wall is often divided into an inner 

layer, which is rich in carbohydrates, and an outer layer, which is rich in protein5. The two layers 

can be differentiated in transmission electron microscopy (TEM) images. The inner wall 

consists of chitin, β-1,3-glucan, and β-1,6-glucan. A thin layer of chitin surrounds the plasma 

membrane and provides rigidity to the cell wall. Chitin is essential for cell wall integrity3; cell 

wall defects are often compensated by the fungus through increased levels of chitin in the cell 

wall2. In S. cerevisiae only 1.5 – 6% of the cell wall mass consist of chitin3, whereas in 

filamentous fungi – like Aspergillus fumigatus – it can constitute up to 15% of the whole cell 

wall mass5. The major component of the cell walls of fungi characterized so far is β-1,3-glucan, 

which forms a three-dimensional network. Other components, such as certain proteins, are 

embedded in this network3. Highly branched β-1,6-glucan was identified in several fungi, 

including yeast-like Saccharomycetales. It plays a role in crosslinking the different constituents 

of the fungal cell wall5. Cell wall proteins are usually highly glycosylated by the addition of 

branched mannose chains and are therefore called mannoproteins. They are enriched in the 

outer layer of the cell wall5. 
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Figure 1: Schematic representation of the fungal cell wall, adapted from Cassone (2013)6 

In TEM images the two layers of the fungal cell wall can be distinguished – in this example an image of the 

C. thermophilum cell wall is shown. The protein-rich outer wall is more electron dense - i.e. appears darker on 

the image - than the inner, carbohydrate-rich wall. The plasma membrane is visible as a very electron dense 

bilayer. The right panel shows a schematic representation of the cell wall. The inner layer of the cell wall consists 

of chitin, β-1,3-glucan, and β-1,6-glucan, as well as proteins. In the outer layer of the cell wall, mannoproteins 

can be found. Many of those are GPI-anchored proteins, connected to the β-1,6-glucan moiety of the cell wall 

via a few mannose units and a remnant of the GPI-anchor. 

 

The composition of the cell wall varies considerably in different fungi. Additional components 

were identified in some fungi. The most striking example might be melanin, which is 

responsible for the black color of certain fungi5. Other fungi were found to lack particular cell 

wall components. For example, no β-1,6-glucan could be detected in the cell wall of 

A. fumigatus7. 

 

1. 1. 2. Incorporation of proteins into the fungal cell wall 

Proteins are incorporated into the cell wall in different ways: A few proteins are ester-linked to 

the β-1,3-glucan moiety of the cell wall and can be released by treatment with mild alkali, they 

are therefore often referred to as ASL (alkali sensitive linkage) cell wall proteins (CWPs). Also 

the term PIR (proteins with internal repeats) CWPs is commonly used for those proteins, 

because they contain multiple repeats of the sequence DGQ[hydrophobic amino acid]Q2,3; a 

linkage between the central glutamine residue (Q) and β-1,3-glucan attaches them to the cell 

wall8. PIR-CWPs can form several linkages, thus they are able to interconnect glucans. Single 

PIR repeats can also be found in certain glycosylphosphatidylinositol (GPI)-anchored CWPs. 

Fungal cell walls also contain disulfide-linked CWPs, which are thought to be connected to the 
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cell wall either directly or indirectly by being linked to other proteins. They can be released 

from the cell wall using sulfhydryl reagents2. 

The majority of proteins in fungal cell walls are GPI-CWPs. In eukaryotic genomes 

approximately 1% of encoded proteins are post-translationally modified by addition of a 

GPI-anchor. The anchor’s core structure is conserved in mammals, protozoa, and yeast; 

modifications can be species- or even tissue-specific. GPI-anchored proteins have to undergo 

a maturation process before they reach the cell surface: The GPI-anchor is pre-assembled in 

the endoplasmic reticulum (ER) to which the protein is directed by a signal peptide. In the 

lumen of the ER, a specific signal sequence is recognized at the protein’s C-terminus. The 

C-terminal end of the protein, up to the so-called “ω site”, is removed and replaced by the 

GPI-anchor. GPI-proteins then go through the secretory pathway, during which glycans and 

lipids of the GPI-anchor are subject to several modifications. At the cell surface, a lipid portion 

of the GPI-anchor embeds it into a single leaflet of the membrane9. In fungi, proteins can then 

be linked to the β-1,6-glucan moiety of the cell wall via a remnant of the GPI-anchor. This is 

achieved by a transglycosylation reaction, catalyzed by a member of the glycoside hydrolase 

(GH) 76 family10. In this context, it should be noted that possibly the majority, but not all GPI 

proteins are relocated to the carbohydrate moiety of the cell wall; some remain at the plasma 

membrane, others are found in both locations9. 

As mentioned above, GPI-anchored proteins have certain features that can be used for their 

identification, specifically an N-terminal signal peptide and a C-terminal GPI anchor 

attachment sequence. The GPI anchor attachment sequence itself also possesses particular 

characteristics: the GPI-attachment site (ω-site) is typically a G, A, S, N, D, or C. N-terminal 

from the ω site lies the ω- region that consists of around 10 polar amino acids (ω-10 to ω-1), 

which serve as a flexible linker. ω+2 is restricted to G, A, S, or V, it is followed by a spacer 

region of 4 – 19 amino acids and a stretch of hydrophobic amino acids that varies in length, 

but is able to span the membrane. Upon GPI-anchor attachment, the peptide bond between 

ω and ω+1 is cleaved9,11,12. 

Consensus sequences for the GPI anchor attachment sequence have been described in several 

publications11–13. In this study, detection of GPI-anchored proteins has been done using the 

Big-PI Fungal Predictor12. In addition, the following sequence was used for detection of 

GPI-anchored proteins via a pattern search11: 

[NSGDAC]–[GASVIETKDLF]–[GASV]–X(4,19)–[FILMVAGPSTCYWN](10)> 

The final location of GPI-anchored proteins in fungi – i. e. the plasma membrane or the cell 

wall – is proposed to be influenced by residues in the ω- region of the GPI attachment signal 

sequence. Proteins that are located at the plasma membrane usually contain basic amino acids 

in positions ω-1 and ω-211, typically in form of a dibasic motif13. The ω- region of GPI-anchored 

proteins that are sorted to the cell wall is considerably different: typically, V, I or L are located 

at positions ω-4 and ω-5 and Y or N at ω-211. 
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1. 2. Chaetomium thermophilum – a thermophilic model organism for biochemical 

studies 

Proteins derived from thermophilic organisms are generally considered more stable than their 

corresponding mesophilic orthologues14. The most prominent example for this phenomenon 

might be the DNA-polymerase of Thermus aquaticus15. The production of more heat tolerant 

proteins is not only of high interest for industrial applications16, but also biochemical and 

structural studies profit from the usage of thermally stable proteins, as these also tend to be 

highly stable at lower temperatures14. For this reason, proteins derived from thermophilic 

organisms are enthusiastically used for in vitro studies, rather than their orthologues 

originating from mesophilic organisms17. 

In this context, the thermophilic fungus C. thermophilum provides a well suited model 

organism for in vitro studies on eukaryotic proteins. The filamentous fungus belongs to the 

Ascomycetes and grows in rotten organics at temperatures of up to 60 °C, with an optimal 

growth temperature of 50 – 55 °C18. The genome of C. thermophilum has first been published 

in 201119. It is available at https://c-thermophilum.bork.embl.de, with annotations updated 

and curated in 2014. Additionally, its proteome has been analyzed via mass spectrometry, 

resulting in the identification of 4266 proteins from 7227 predicted protein coding 

sequences18. Increased solubility of heterologously expressed proteins originating from 

C. thermophilum compared to their orthologues from other fungi has been described on 

several occasions10,18,20. Seemingly the fungus also enjoys a certain popularity among 

structural biologists, as suggested by the 314 PDB entries of proteins derived from 

C. thermophilum (as of November 25th, 2020). Although the fungus is a popular model 

organism, it has not yet been widely used for the study of cell wall proteins. Structurally 

characterized C. thermophilum cell wall proteins include the glycoside hydrolases (GH) Dfg5 

(PDB: 6RY0 and related entries)10 and Lam55 (PDB: 5M5Z and 5M60)21. 

 

1. 3. Adhesins in C. glabrata – important contributors to the virulence of a yeast-

like fungus 

The yeast C. glabrata is a mammalian commensal that can cause mucosal, blood stream and 

medical-device related infections. Especially immunocompromised patients are severely 

affected by Candida infections22,23. The opportunistic pathogen C. glabrata is the second most 

cause of these infections in human after Candida albicans, with increased numbers over the 

years. In addition, the prerequisite that C. glabrata is naturally resistant against azole class 

antifungal drugs complicates treatment of infections. Interestingly, the organism is 

phylogenetically more closely related to S. cerevisiae than to other Candida species and it lacks 

certain virulence factors, such as hyphae formation23. However, C. glabrata possesses a 

remarkably large number of putative adhesins, which are thought to compensate for the lack 

of other virulence factors24,25. These are proteins on the cell’s surface that enable the fungus 
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to adhere to a variety of biologic and abiotic substances. Adhesion to host tissue is considered 

a critical first step in the establishment of fungal infections and also adhesion to medical 

devices, followed by biofilm formation, has been described22. 

Adhesins are GPI-anchored proteins, most of which share a particular domain architecture: 

Being GPI-anchored, they apparently possess an N-terminal signal peptide. The signal peptide 

is followed by the so called “A-domain” or “effector domain”, which harbors the adhesive 

function. A central serine/threonine-rich region of low complexity and of various lengths – also 

referred to as “B-domain” – acts as a proteoglycan-like stalk to present the A-domain on the 

surface of the fungal cell. Lastly, the C-terminal domain contains the GPI anchor attachment 

signal sequence and is required for the integration of the protein into the cell wall via a 

GPI-anchor22,26. 

Obviously, the exact number of adhesins in a fungus cannot be specified, but one can compare 

the numbers of already identified adhesion-like encoding genes in different fungi. This reveals 

that C. glabrata contains an exceptionally large number of adhesins, specifically 67 putative 

adhesins, which can be identified by domain architecture in the genome of the C. glabrata 

strain ATCC2001/CBS13822. In comparison, 25 adhesins were described in C. albicans by 

de Groot et al. in 201322. In this context, the plasticity of the C. glabrata genome is worth 

mentioning, i. e. the genome of the organism is highly dynamic. This feature is also found in 

other pathogens and enables adaptation to environmental changes. In addition, many 

adhesins are encoded in subtelomeric regions of the genome. Those are regions with a high 

amount of sequence repeats and therefore particularly susceptible to rearrangements. The 

presence of sequence repeats also increases the complexity of correct sequencing27. 

Applying the specific domain architecture of adhesins as a criterion for the identification of 

adhesins, De Groot et al. bioinformatically identified novel putative adhesins within the second 

assembly of the C. glabrata genome (2004). Four of those were confirmed via mass 

spectrometric analysis of the cell walls of different C. glabrata strains (ATCC 90876 and ATCC 

2001) under varying growth conditions in 2008. Those novel putative adhesins were named 

Adhesin-like wall protein (Awp) 1-4 and represent the first identified members of the Awp 

family of C. glabrata adhesins24. Two more novel adhesins were identified in C. glabrata 

stationary phase cells and in biofilms by Kraneveld et al. in 2011 and named Awp5/625; 

Awp7-13 were identified in hyperadhesive clinical isolates of C. glabrata in 201528. The 

putative adhesins Awp1-14 are members of different clusters of C. glabrata adhesins, the 

classification being based on a phylogenetic tree, which was generated using the N-terminal 

regions of the sequences. The current classification of C. glabrata adhesins was published with 

the newly assembled genome of the organism by Xu et al.27 and generally corresponds to the 

classification presented by de Groot et al. in 200824,27. 
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Figure 2: Domain architecture and model of a typical adhesin, classification of Awp’s in different clsuters 

A) The distinct domain architecture of C. glabrata adhesins: The proteins carry an N-terminal signal peptide that 

targets them to the cell wall. The N-terminal effector domain (or A-domain) has the adhesive function. It is 

followed by a Ser/Thr-rich region, also referred to as B-domain, which displays the A-domain at the cell’s surface. 

Finally, adhesins are connected to the cell wall or the plasma membrane via a GPI-anchor, they therefore have a 

GPI anchor attachment sequence. B) Awp’s are members of different clusters, as shown in the table. Colors of 

the clusters were chosen according to Xu et al.27. The classification is based on Xu et al.27, de Groot et al.24 and 

Gómez-Molero et al.28. C) Model of an adhesin: the protein is anchored to the cell wall via a GPI-anchor. A 

proteoglycan-like stalk (represented by orange spheres) presents the effector domain on the cell surface. The 

effector domain (shown as a green surface representation of Epa1A) has the adhesive function. 

 

C. glabrata contains 7 different clusters of adhesins, summarized in Appendix I; classification 

of Awp’s is shown in Figure 2. The Epithelial adhesion (Epa) family forms cluster I. The Epa 

family consists of 20 members27, structural information is available on Epa1, Epa6, and Epa9; 

all containing an anthrax protective antigen 14 (PA14) domain. These proteins bind various 

carbohydrates, which can be found on the surface of epithelial cells26,29,30. Also some other 

Candida species, which are closely related to C. glabrata, contain Epa genes. 12 and 9 Epa 

orthologs were identified in C. bracarensis and C. nivariensis, respectively, both pathogenic 

fungi. In contrast, only one Epa gene was found in the non-pathogenic fungus Nakaseomyces 

delphensis, underlining the important role of Epa family members in virulence31. Cluster II is 

formed by the PA14 domain containing Wall Protein (Pwp) family of adhesins, which has 

seven members. However, information on this family is rather limited22; Pwp7 was shown to 

be involved in adhesion to human endothelial cells32. Cluster III contains 14 members, 

including Awp5/Aed127 – which is proposed to be required for adhesion to human endothelial 

cells32 –, as well as Awp13 and Awp14. Awp6, which was shown to be upregulated in biofilms25, 

and Awp7 constitute cluster IV27. Cluster V contains several Awp’s, namely Awp2, Awp4, and 
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Awp8-11. Proteome mass-spectrometry analysis of hyperadhesive C. glabrata strains revealed 

that the number of peptides from cluster V corresponded to the number of identifiable 

peptides from Epa family members, suggesting that this cluster also plays an important role in 

cell adhesion28. Cluster VI contains Awp1, Awp3a, and Awp3b, amongst other members. The 

Awp3 gene was misassembled in the 2004 reference genome, the current assembly led to the 

identification of two paralogs, named Awp3a and Awp3b27. Awp12 is a member of cluster VII 

and also its first member to be identified in cell walls via proteome analysis. This is the first 

indication for biological relevance of cluster VII adhesins28. 

Interestingly, homology of Awp1 and Awp2 – which are members of cluster VI and V, 

respectively – to Awa1, Hpf1, and Hpf1’ from yeast has been described24. Awa1 – “awa” is 

Japanese for foam – is a GPI-anchored cell wall protein unique to sake yeast, which is essential 

for foam-formation and surface hydrophobicity33. Haze protective factors (Hpf) have first been 

described by Waters et al. in 199434. They are cell wall proteins of several S. cerevisiae strains 

and are contained in isolates of wine, where they are proposed to compete with wine proteins 

for the components that form visible protein aggregates – i. e. haze35. 

The Awp family represents the second largest family of adhesins in C. glabrata, but most 

members are still uncharacterized; structural and biochemical information is lacking. 

Nevertheless, the identification of these proteins in cell wall isolates of different C. glabrata 

strains, especially in clinical isolates of hyperadhesive strains, indicates that they play 

significant roles in cell adhesion28. 

 

1. 4. Proteins with a CFEM domain 

The CFEM (common in several fungal extracellular membrane proteins) domain is exclusively 

found in fungal membrane or cell wall proteins. It has a size of around 60 amino acids, with 

the following consensus sequence: 

PxC[A/G]x2Cx8–12Cx1–3[x/T]Dx2–5CxCx9–14Cx3–4Cx15–16 

The formation of 4 disulfide bonds by the eight cysteines of the domain was first predicted by 

Kulkarni et al. 36 and could be confirmed in structural studies on the CFEM domain containing 

protein Csa237. The domain can occur in one or more copies in a protein, it is usually located 

at the N-terminus. N-terminal signal sequences, transmembrane spans or GPI-anchor 

sequences are often identified in CFEM domain containing proteins36. Proteins with a CFEM 

domain fulfil a variety of functions37–40. A classification of CFEM-proteins was done by Dr. Vitali 

Kalugin via a Sequence Similarity Network (SSN). It is shown in Figure 3 and reveals various 

families of CFEM domain containing proteins. These also differ in function and domain 

architecture41. 
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Figure 3: SSN of proteins with a CFEM-domain, created by Dr. Vitali Kalugin41 

The SSN (created by Dr. Vitali Kalugin) shows different families of proteins with a CFEM domain. Additionally, the 

domain architecture of the families is given. Protein sequences are represented by so called "nodes" in the 

network, their relationship to each other is indicated by "edges", which are depicted as lines. The distance 

between two protein sequences is defined by the BLAST E-value: If a certain E-value cutoff is exceeded, no edge 

is displayed. The lower the E-value (and thus the more similar two sequences are to each other), the closer 

together two nodes are. The families Ccw14 (light green) and Mad1 (light yellow) are further away from the main 

body of the proteins that form the network. Following other families could be identified in the network: Pth11 

(dark blue), Pga7 (orange) and Cfma (bright yellow)41. 

 

The first CFEM domain containing proteins that were identified are Ccw14 (Covalently-linked 

cell wall protein 14, formerly known as Icwp) from S. cerevisiae and Aci1 (Mac1 interacting 

protein 1) from the rice blast fungus Magnaporthe oryzae39,42. Ccw14 is a small (238 AA) 

GPI-CWPs, which is important for maintenance of cell wall integrity. It consists of a signal 

peptide, the CFEM domain and a GPI anchor attachment sequence39. Aci1 shows the same 

domain architecture; it interacts with the adenylate cyclase Mac1, an essential player in 

appressorium formation in the M. oryzae and is therefore important for the organism’s 

pathogenicity42,43. Members of the Pga7 family are proposed to be involved in heme-iron 

acquisition from hemoglobin in the cell walls of fungal pathogens. Also Csa2, which is 

structurally characterized in complex with heme, is a member of this family37. 
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In this work, the focus will reside on the non-canonical GPCR Pth11, which was shown to be 

important for appressorium formation in M. oryzae40,44. The fungus is one of the most relevant 

plant pathogens worldwide45,46 and its control poses a major challenge46. M. oryzae exhibits a 

remarkable disease cycle that begins with the landing of a conidium on the plant leaf. It forms 

a germ tube, which quickly develops into an infection structure, the so-called appressorium. 

The mature appressorium then develops a penetration peg, which enables the fungus to 

penetrate the plant cell wall. M. oryzae can thereby intrude into the cells of the host plant, 

where hyphae spread, recognizable by lesions on the plant surface. Within 7 days a new 

disease cycle is induced, as these lesions present numerous freshly developed conidia44,45. 

Pth11 has an N-terminal signal peptide to target the protein to the cell membrane, followed 

by the CFEM domain, 7 transmembrane helices, and an unknown cytoplasmic domain40,44. The 

N-terminal CFEM domain was shown to be vital for the protein’s function via several 

approaches: first, a deletion of the CFEM domain leads to disruption of appressorium 

formation and therefore also of plant cell infection, as does a disruption of disulfide bonds 

within the domain. Complementation with the CFEM domain of C. albicans Csa1 cannot 

compensate for loss of the Pth11 CFEM domain. This observation underlines the functional 

diversity of different CFEM domains40. Pth11 is thought to respond to certain surface cues44, 

but its ligand remains unknown40. Recently, this GPCR type has also been shown to play a role 

in the virulence of Fusarium graminearum, a plant pathogen that infects cereals and causes 

the disease Fusarium head blight47. Pth11 is regarded as a promising target for the 

development of novel antifungal agents in agriculture40. 

 

1. 5. Objectives of the thesis 

The first part of the thesis will be focused on the identification of cell wall proteins in 

C. thermophilum. The fungus has been shown to be a promising model organism for 

biochemical and structural studies of eukaryotic proteins on several occasions10,19,20. Also 

genetic manipulation of C. thermophilum is feasible, so that it can be used as a source for 

purification of thermally stable native macromolecular assemblies48. However, the cell wall of 

the fungus has not yet been characterized, which brings up the first goal of this work: The cell 

wall proteome of C. thermophilum is investigated to reveal attractive candidates for the 

biochemical and structural characterization of CWPs. These can be proteins involved in cell 

wall assembly, remodeling, or integrity, which are expected to be of interest of further research 

to understand these processes in fungi. In addition, the characterization of the GPI-anchored 

cell wall proteome could also prove to be a useful tool for the identification of new targets for 

antifungal drugs. To characterize the C. thermophilum GPI- and cell wall proteome, a prediction 

of GPI-anchored proteins will be done using bioinformatics methods. Furthermore, 

C. thermophilum cell walls are isolated and analyzed via mass spectrometry, enabling the 

identification of GPI-CWPs. 
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The focus of the thesis will then advance to structural and biochemical studies on certain cell 

wall proteins: first, adhesins of the Awp family from C. glabrata will be analyzed, then the 

ligand-binding CFEM domain of the GPCR Pth11 from C. thermophilum will be characterized. 

Mass spectrometric detection of various Awp proteins in the cell walls of various C. glabrata 

strains and clinical isolates suggests that they play a significant role in the infection process22. 

Awp1 and Awp3, which are members of adhesin cluster VI, will be the focus of this thesis. The 

sequence of Awp3 was misassembled in the older version of the C. glabrata genome, which 

was used for the initial identification of these proteins25,27. A de novo assembly of the 

C. glabrata genome in 2020 revealed two paralogs of Awp3, named Awp3a and Awp3b. 

Nevertheless, the sequence of the Awp3 A-domain used in this work remained the same and 

corresponds to the paralog Awp3b. The sequence of Awp1 remained unchanged27. The 

effector domains of Awp1 and Awp3b will be produced in E. coli, purified and structurally 

characterized. The structures of cluster VI adhesins are expected to provide insights into a 

novel class of adhesins in C. glabrata, as they lack any similarity to the PA14 domain containing 

Epa family of adhesins. A SSN will be used to elucidate their relationship to other adhesins and 

to reinforce classification of certain adhesin clusters. In addition, carbohydrate binding studies 

will be conducted on the Awp1 and Awp3b A-domains. 

Characterization of even another adhesin cluster will be pursued by heterologous expression, 

purification and structural characterization of the A-domain of the cluster III adhesin Awp14. 

Other members of this cluster, specifically Awp5/Aed1, were shown to adhere to human 

epithelial cells32, indicating a function in virulence. 

Concerning cell wall proteins with a CFEM domain, the CFEM domain of the GPCR Pth11 from 

C. thermophilum will be characterized. The C. thermophilum orthologue was chosen because 

heterologous expression of the CFEM domain from M. oryzae Pth11 in E. coli did not result in 

production of soluble protein. CtPth11 was identified using the SSN presented above41. The 

CtPth11 CFEM domain will be produced in E. coli, purified and structurally analyzed. Using a 

fragment screening approach, new information on putative natural ligands of the protein will 

be obtained. 
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2. Materials 

 

2. 1. Chemicals 

1,5-Pentanediol Sigma 

2′-Deoxycytidine 5′-triphosphate disodium salt (dCTP-Na2) Thermo Fisher 

2′-Deoxyguanosine 5′-triphosphate trisodium salt (dGTP-Na3) Thermo Fisher 

2-Bis(2-hydroxyethyl)amino-2-(hydroxymethyl)-1,3-propanediol 

(Bis-Tris) 

Sigma 

3-(N-Morpholino)propanesulfonic acid (MOPS) Roth 

3-Fucosyllactose  

3-O-(β-D-Galactopyranosyl)-D-galactopyranose Carbosynth 

Acetic acid VWR 

Agar-agar Roth 

Agarose Invitrogen 

Ammonium persulfate (APS) Merck 

Beta glucan (Barley) Megazyme 

Boric acid (H3BO3) Grüssing GmbH 

Bromphenolblue Roth 

Calcium chloride (CaCl2) Fluka 

CM-curdlan Megazyme 

cOmplete Protease Inhibitor Cocktail Roche 

Coomassie brilliant blue R-250 Serva 

Dextrin (potato) Sigma 

Dipotassium phosphate (K2HPO4) Merck 

Dithiothreitol (DTT) Merck 

Erbium(III) chloride (ErCl3)  

Ethanol VWR 

Ethylenediaminetetraacetic acid (EDTA) Merck 

Gadolinium (III) acetate (Gd(OAc)3) Alfa Aesar 

Galα1-3Gal Dextra 

Galα1-3Galβ1-4Gal Dextra 

Galβ1-3GalNAc Dextra 

Galβ1-3GalNAcβ1-4Galβ1-4Glc Dextra 

Galβ1-3GlcNAc Dextra 

Galβ1-4GlcNAc Dextra 

Glucosamine Roth 

Glucose Roth 

Glycerol Roth 

Glycine Sigma 
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Hydrochloric acid (HCl) VWR 

Imidazole Merck 

Iron(III) sulfate hydrate (Fe2(SO4)3) Merck 

Isopropanol VWR 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) Gerbu 

Kanamycin sulfate VWR 

lacto-N-neotetraose  

lacto-N-tetraose  

Laminarin  

Lewisa trisaccharide Dextra 

Magnesium chloride (MgCl2) Merck 

Magnesium sulfate (MgSO4) VWR 

Manganese(II) chloride (MnCl2) Sigma 

Mannopentaose Dextra 

Mannose Merck 

Mannotetraose Dextra 

Midori Green Biozym 

N,N’-diacetylchitobiose Dextra 

Peptone Difco 

Polyethylene glycol 8000 (PEG 8000) Sigma 

Potassium acetate (CH3COOK) Merck 

Rotiphorese Gel 30 (37,5:1) Roth 

Rubidium chloride (RbCl) Sigma 

Saccharose VWR 

Sodium chloride (NaCl) VWR 

Sodium dihydrogen phosphate (NaH2PO4) Merck 

Sodium dodecyl sulfate (SDS) AppliChem 

Sodium hydroxide (NaOH) AppliChem 

Sorbitol Sigma 

Terbium(III) chloride (TbCl3)  

Tetramethylethylenediamine (TEMED) Roth 

Tris(hydroxymethyl)aminomethane (Tris) Roth 

Tryptone Th. Geyer 

Virkon VWR 

Yeast extract Th. Geyer 

Ytterbium(III) chloride (YbCl3)  

α1,2-mannobiose Dextra 

α1,3-mannobiose Dextra 

α1,4-mannobiose Dextra 

α1,6-mannobiose Dextra 

β-Hydroxy-4-morpholinepropanesulfonic acid (MOPSO)  

β-mercaptoethanol Roth 
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2. 2. Equipment 

Device Model (Manufacturer) 

Autoclave T-Line (Fedegari) 

Balance PC2200 (Mettler) 

LabStyle 54 (Mettler Toledo) 

Bead mill FastPrep-24 (MP Biomedicals) 

Centrifuge bottles 1L Superspeed CB with sealing (Nalgene) 

JA-20 (Beckman) 

Centrifuge rotors F6S 6x1000Y (Thermo Fisher) 

JA-20 Fixed Angle Rotor (Beckman) 

Centrifuges Centrifuge 5810 R (Eppendorf) 

Heraeus Fresco 21 (Thermo Fisher) 

J2-HS (Beckman) 

Lynx 6000 (Sorvall) 

Chromatography columns HiLoad 26/600 Superdex 200 pg (GE Healthcare) 

HiLoad 16/600 Superdex 200 pg (GE Healthcare) 

HiLoad 26/600 Superdex 75 pg (GE Healthcare) 

HiLoad 16/600 Superdex 75 pg (GE Healthcare) 

Protino Ni-NTA Column 5 mL (Macherey-Nagel) 

Chromatography system NGC Chromatography System (Bio-Rad) 

Crystallization plate 

documentation 

Rock Imager (Formulatrix) 

Crystallization robot Honeybee 963 (Digilab) 

Electrophoresis chambers (Feinmechanische Werkstatt, Chemistry department, PUM) 

Mini-PROTEAN Tetra Vertical Electrophoresis Cell (Bio-Rad) 

Gel documentation Computer E.A.S.Y. (UVP) 

Thermal printer UP-D 895 (Sony) 

UV-transilluminator (Herolab) 

Heating block BT3 (Grant Instruments) 

Incubators Certomat IS (Sartorius) 

FED-53 (Binder) 

Innova S44i (Eppendorf) 

Multitron (InforsHT) 

Microfluidizer Emulsifier C5 (Avestin) 

Microscopes B601 (Olympus) 

MZ 8 (Leica) 

Microwave (LG) 

MilliQ water dispenser Seralpur Pro90CN (Seralpur) 

Peristaltic pump Pump drive 5201 (Heidoph) 

pH meter HI2020 edge (Hanna Instruments) 

Pipets Research variable 100 – 1000 µL (Eppendorf) 
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Research variable 20 – 200 µL (Eppendorf) 

Research variable 10 – 100 µL (Eppendorf) 

Research variable 1 – 10 µL (Eppendorf) 

Research plus variable 0.1 – 2.5 µL (Eppendorf) 

Power Boxes EPS 301 (Amersham Biosciences) 

Spectrometers NanoDrop 800 Spectrophotometer (Thermo Fisher) 

OD 600 (Implen) 

Spin concentrators Amicon Ultra-15 (3 – 30 kDa MWCO) (Millipore) 

Thermocycler GeneAmp PCR System 2400 (Perkin Elmer) 

Rotor-Gene Q (Qiagen) 

Thermomixer Comfort (Eppendorf) 

Waterbath NK22 (Haake) 

X-ray sources/beamlines Beamlines ID23-1/2, ID29 (ESRF, Grenoble) 

Beamlines X06SA (PXI), X06DA (PXIII) (SLS, Villigen) 

 

2. 3. Commercial kits, enzymes, and consumables 

Crystallization and Fishing 

Equipment 

EasyXtal 15-Well Tools (Qiagen) 

MRC 2 Well UVP (Swissci) 

VIEWseal (Greiner BIOone) 

Crystallization Screens NeXtal Tubes JCSG Core I Suite (Qiagen) 

NeXtal Tubes JCSG Core II Suite (Qiagen) 

NeXtal Tubes JCSG Core III Suite (Qiagen) 

NeXtal Tubes JCSG Core IV Suite (Qiagen) 

NeXtal Tubes AmSO4 Suite (Qiagen) 

NeXtal Tubes Classics Suite (Qiagen) 

Morpheus (Molecular Dimensions) 

Morpheus II (Molecular Dimensions) 

Cuvettes (single use) 67.724 (Sarstedt) 

DNA Ladder 1 kb DNA Ladder (NEB) 

DNA-Ligase T4 DNA Ligase (NEB) 

DNA-Polymerase Phusion Polymerase (2U/µL) (NEB) 

Phusion HF-Buffer (5x) (NEB) 

Gel extraction kit QIAquick Gel Extraction Kit (Qiagen) 

Miniprep kit QIAprep Spin Miniprep Kit (Qiagen) 

PCR purification kit QIAquick PCR Purification Kit (Qiagen) 

Pipet tips (Sarstedt) 

Protein Ladder Pierce Unstained Protein MW Marker (Fermentas) 

Reaction tubes (Sarstedt) 

Restriction Enzymes BamHI (NEB) 

EcoRI-HF (NEB) 
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HindIII-HF (NEB) 

NheI-HF (NEB) 

SspI-HF (NEB) 

CutSmart (10x) (NEB) 

Sterile filters Bottle-top filters (Millipore) 

Filtropur S 0.2 (Sarstedt) 

Filtropur S 0.45 (Sarstedt) 

Ultrafree-MC (Millipore) 

Sypro Orange SYPRO Orange Protein Gel Stain (Thermo Fisher) 

 

2. 4. Oligonucleotides, vectors, and DNA 

2. 4. 1. List of oligonucleotides used for gene amplification 

Table 1: List of primers used for amplification (restriction sites underlined, overlaps used for LIC bold) 

Name Sequence (5’ – 3’) Target 

ScEcm33 21 - 360 fwd CATGGCTAGCAACTCAACTACTTCTATTCCAT pET-28a(+) 

ScEcm33 21 - 360 rev AGTAAGCTTTTACTTAACGGAGGTAGATGTGGCA pET-28a(+) 

ScPst1 20 - 357 fwd AGCTGCTAGCGCTACTTCCTCTTCTTCCAGCAT pET-28a(+) 

ScPst1 20 - 357 rev AGTGGATCCTTAGGATGATGCACCATTTTTGCA pET-28a(+) 

ScEcm33 35 - 148 fwd ATAAGCTAGCACTTCTGCCACTGCTACTGCTCA pET-28a(+) 

ScEcm33 35 - 148 rev AGTAAGCTTTTAGTCAGAAACAATAATGTTGTT pET-28a(+) 

CaPst1 25 - 351 fwd ATAAGCTAGCAACAAATGTTCATTCTCTAAAACTT pET-28a(+) 

CaPst1 25 - 351 rev AGTAAGCTTTTAATGAGTACAAACATAATTGTGACCT pET-28a(+) 

CgEcm33 21 - 357 fwd ATAAGGATCCACATCTGACGATGTTCCATCTGGG pET-28a(+) 

CgEcm33 21 - 357 rev ATTAAGCTTTTAAGTAGCACCGTTCTTGCAGACGAA pET-28a(+) 

KpEcm33 35 - 360 fwd TGCAGCTAGCATTTCAATTGCATCTGGATGTAGT pET-28a(+) 

KpEcm33 35 - 360 rev AATGGATCCTTAAGCAGCAGAGCACTGATACTCA pET-28a(+) 

CaEcm33 32-360 fwd ATGCGCTAGCAAATCTGAATGTTCATTCAAAGATTTC pET-28a(+) 

CaEcm33 32-360 rev ATGCAAGCTTTTAGGTTTGTCTGTCTTCACATTGGAATT pET-28a(+) 

CaPst1 24-354 fwd ATACGCTAGCTCAAACAAATGTTCATTCTCTAAA pET-28a(+) 

CaPst1 24-354 rev AGTAAGCTTTTAATTAGCTGGATGAGTACAAACA pET-28a(+) 

ScEcm33 21-160 rev AGTAAGCTTTTACAAAGTGGAGAAACCTTCGACACTT pET-28a(+) 

CtEcm33 fwd CAGAGGATCCAGCTGCAAGGCGACGACGACGACT pET-28a(+) 

CtEcm33 rev CAGTAAGCTTTTAGGCAGCAGCGTTGTCGCTCGTGCAG pET-28a(+) 

G0RYL2 fwd ATGCGCTAGCACCGACTTCCCGCCCAACA pET-28a(+) 

G0RYL2 rev AGCTGGATCCTTACGCAAGAATGCCACCGCAAAAGC pET-28a(+) 

G0S002 fwd ATGCGCTAGCGAGGCTTCTTCTAGTGTCAG pET-28a(+) 

G0S002 rev AGCTGGATCCTTAAGCCCACTTGCCGCAGATGCCCTG pET-28a(+) 

G0S3S8 fwd ACGAGCTAGCGACGCCCAGCCCACTCTTCCT pET-28a(+) 

G0S3S8 rev AGCTGGATCCTTAAGCAGTCGGCAGATCGCTCACTT pET-28a(+) 

G0S9T6 fwd ACGAGCTAGCCAGTCTATTGACACCCTTGACCCCT pET-28a(+) 

G0S9T6 rev AGCTGGATCCTTAAGCAGGGGAGGGAGCCGCAGTGA pET-28a(+) 
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G0SBA5 fwd ACGAGCTAGCAGCACCACTGCCACGGCTACCTC pET-28a(+) 

G0SBA5 rev AGCTGGATCCTTAGGCCGGTGTGACGGCAACGCAAT pET-28a(+) 

G0SBE2 fwd ACGAGCTAGCGTCGATGCCCCCGGATCGCTGTTGT pET-28a(+) 

G0SBE2 rev AGCTGGATCCTTAGCTCTTTGGCGTGACACCGCACAT pET-28a(+) 

G0SDR6 fwd ACGAGCTAGCGACCCAATTCCCTCTGCCGCGGT pET-28a(+) 

G0SDR6 rev AGCTGGATCCTTAGTTGAGAACACAGTCGCAGACCTT pET-28a(+) 

Awp6 fwd ATGCGGATCCATCGAACCAACAACCACGCTA pET-28a(+) 

Awp6 rev ATCGGAATCCCTACCAGGCAGTAACAATACCTG pET-28a(+) 

ScEcm-LIC fwd TACTTCCAATCCAATGCAAACTCAACTACTTCTATTCCAT pET-LIC 

ScEcm-LIC rev TTATCCACTTCCAATGTTATTACTTAACGGAGGTAGATGTGGCA pET-LIC 

CtEcm-LIC fwd TACTTCCAATCCAATGCAAGCTGCAAGGCGACGACGACGA pET-LIC 

CtEcm-LIC rev 
TTATCCACTTCCAATGTTATTAGGCAGCAGCGTTGTCGCTCGTG

C 
pET-LIC 

Awp1 I165M fwd AATACAGGCACAATGAATTACGAAAGT SDM 

Awp1 I165M rev ACTTTCGTAATTCATTGTGCCTGTATT SDM 

Awp1 I285M fwd ACACAGACAGGTATGCTTACTGTTACC SDM 

Awp1 I285M rev GGTAACAGTAAGCATACCTGTCTGTGT SDM 

 

Genomic DNA (gDNA) from S. cerevisiae (Sc), C. albicans (Ca), C. glabrata (Cg) and 

Komagataella phaffii (Kp) were used as templates for amplification of the desired genes. gDNA 

is the complete chromosomal DNA of an organism, containing introns and exons. Primers were 

therefore designed with care to avoid introduction of noncoding sequences into the final 

expression construct. 

As the thermophilic fungus C. thermophilum (Ct) contains a high number of introns, usage of 

gDNA as a template for gene amplification is not applicable. Therefore, complementary DNA 

(cDNA) of C. thermophilum was used in this work. The preparation of cDNA is achieved by 

isolation of the organism’s complete RNA, which is subsequently amplified via Reverse 

Transcriptase (RT)-Polymerase chain reaction (PCR) using poly-A primers. In this step only the 

polyadenylated messenger RNA (mRNA) is amplified, thus cDNA only contains sequences of 

proteins that are transcribed. C. thermophilum cDNA used in this work was received from two 

sources: as a generous gift from Dr. Patrick Pausch and by isolation of cDNA, executed by 

Christin Schulz. 

 

2. 4. 2. pET-28a(+) 

The pET vectors are used for the recombinant overproduction of target proteins in E. coli. They 

were originally developed by Studier and Moffat49 and can currently be acquired from 

Novagen. pET-28a(+) is a translation vector, accordingly no ribosome binding site needs to be 

inserted, but the vector contains the ribosome binding site from the phage T7 major capsid 

protein. Thus, combination with a suitable E. coli strain (a T7 expression host) is essential. The 

protein expression is also controlled by the lac operator, which facilitates induction of protein 
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expression by addition of lactose or its structural analogue IPTG to the cell’s growth medium. 

pET-28a(+) also contains a kanamycin resistance cassette, allowing application of selective 

pressure by addition of kanamycin to the growth medium. The origin of replication (ori) 

ensures that the vector can be copied by the cell. With pET-28a(+) being a low copy plasmid, 

around 15 – 20 copies per cell are produced. 

Target sequences are inserted into the multiple cloning site of the vector, which contains a 

variety of restriction enzyme target sites. This ensures that appropriate restriction enzymes 

can be chosen for cloning. An N-terminal His6-Tag, followed by a thrombin cleavage site, and 

a C-terminal His6-Tag are encoded next to the multiple cloning site and can be added to the 

target protein as desired. 

In this work, an N-terminal His6-Tag was added to target proteins that were cloned into 

pET28-28a(+). The plasmid map of pET28a_Awp1A is shown below as an example. 

 

 

Figure 4: Visualization of pET28a_Awp1 as an example of a plasmid map created in this work 
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2. 4. 3. pET-vectors designed for Ligation Independent Cloning (LIC) 

Vectors containing an N-terminally His6 tagged solubility tag, followed by a TEV cleavage site 

and a LIC cloning site were acquired via Addgene from the Scott Gradia laboratory. Target 

proteins cloned into those vectors therefore have an N-terminal His6-Tag enabling purification 

via IMAC, as well as a solubility tag, which can both be removed via cleavage with TEV 

protease. The LIC cloning site itself is the same in all three vectors, making the inserts 

compatible with each of them. Following Addgene vectors were used: pET His6 GST TEV LIC 

cloning vector (1G) (Plasmid #29655), pET His6 MBP TEV LIC cloning vector (1M) (Plasmid 

#29656), pET His6 Mocr TEV LIC cloning vector (1O) (Plasmid #29658). 

Glutathione S-transferase (GST) and maltose binding protein (MBP) are commonly used 

solubility tags, which also facilitate binding to certain columns and can therefore be used for 

affinity purification. With a size of 13.8 kDa, monomeric Ocr (Mocr) is the smallest of those 

three tags and does not confer binding to a specific column matrix50. Thus, the N-terminal 

His6-Tag encoded on the LIC vector is indispensable for affinity purification in this construct. 

 

2. 4. 5. Plasmids used in this work 

Table 2: List of plasmids that were used in this work 

Name Comments 

pET28a_ScEcm33  

pET28a_CgEcm33  

pET28a_KpEcm33  

pET28a_CaEcm33  

pET28a_CaPst1  

pET28a_CtEcm33  

pET28a_G0SBA5  

pET28a_G0S9T6 Pga7 

pET28a_G0SBE2 Pth11 

pET28a_CtPth11 36-101 received by Dr. Vitali Kalugin 

pET28a_CtMad1 391-453 received by Dr. Vitali Kalugin 

pET28a_Awp1  

pRSETa_Awp1 received by Dr. Piet de Groot 

pET28b_Awp2 received by Dr. Piet de Groot 

pET28a_Awp3  

pRSETa_Awp3 received by Dr. Piet de Groot 

pET28b_Awp4 received by Dr. Piet de Groot 

pRSETa_Awp2 received by Dr. Piet de Groot 

pRSETa_Awp4 received by Dr. Piet de Groot 

pRSETa_Awp5 received by Dr. Piet de Groot 

pET28a_Awp5  

pRSETa_Awp6 received by Dr. Piet de Groot 
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pRSETa_Awp7 received by Dr. Piet de Groot 

pET28a_Awp7  

pET28a_Awp8 received by Dr. Piet de Groot 

pET28a_Awp9 received by Dr. Piet de Groot 

pET28a_Awp10 received by Dr. Piet de Groot 

pRSETa_Awp12 received by Dr. Piet de Groot 

pET28a_Awp12  

pET28a_Awp13 received by Dr. Piet de Groot 

pET28b_Awp14 received by Dr. Piet de Groot 

pET28a_Awp6  

pET28a_Awp1 I165M I285M 'SeMet' 

Mocr-pET_ScEcm33  

Mocr-pET_Awp2  

Mocr-pET_Awp4  

Mocr-pET_Awp9  

MBP-pET_ScEcm33  

MBP-pET_CtEcm33  

MBP-pET_Awp2  

MBP-pET_Awp4  

MBP-pET_Awp9  

MBP-pET_Awp10  

GST-pET_ScEcm33  

GST-pET_CtEcm33  

GST-pET_Awp2  

GST-pET_Awp4  

GST-pET_Awp8  

GST-pET_Awp9  

GST-pET_Awp10  

pBC542_empty received by Dr. Piet de Groot 

pEH070_Awp3 received by Dr. Piet de Groot 

 

Numerous plasmids were created for the overproduction of fungal proteins in E. coli. Plasmids 

that resulted in successful production and purification of the protein are written in bold, yeast 

plasmids in italics. The sequences of all plasmids used in this work were verified via 

sequencing. 

 

  



  2. Materials 

20 
 

2. 5. Organisms 

2. 5. 1. Escherichia coli DH5α 

Genotype: F- ϕ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17(rk-, mk+) phoA supE44 

thi-1 gyrA96 relA1 λ- 

E. coli DH5α (Invitrogen) have a high plasmid replication rate. Accordingly, the strain is well 

suited for the production of plasmids. Accordingly, chemically competent E. coli DH5α were 

used for this purpose. 

 

2. 5. 2. Escherichia coli BL21 (DE3) Gold 

Genotype: F- ompT gal dcm lon hsdSB(rB-mB-) λ(DE3 [lacI lac UV5-T7p07 ind1 sam7 nin5]) 

[malB+]K-12(λS) 

E. coli BL21(DE3) Gold (Invitrogen) is one of the standard strains used for heterologous 

production of proteins using the T7 expression system. Chemically competent cells from this 

strain were used for production of proteins that do not contain any disulfide bonds. 

 

2. 5. 3. Escherichia coli SHuffle T7 Express 

Genotype: fhuA2 lacZ::T7 gene1 [lon] ompT ahpC gal λatt::pNEB3-r1-cDsbC (SpecR, lacIq) ΔtrxB 

sulA11 R(mcr-73::miniTn10--TetS)2 [dcm] R(zgb-210::Tn10 --TetS) endA1 Δgor 

Δ(mcrC-mrr)114::IS10 

E. coli SHuffle T7 Express (Invitrogen) is a strain designed for heterologous production of 

proteins containing disulfide bonds using the T7 expression system. Disulfide bond formation 

is enabled by the deletion of gor and trxB and introduction of the disulfide isomerase DsbC. 

 

2. 5. 4. Chaetomium thermophilum DMSZ No.: 1495 

The strain C. thermophilum var. thermophilum La Touche 1950 (DMS No.: 1495), originally 

isolated from wheat straw compost in the UK, was used in this work. Fungal spores (dried on 

a filter paper) and cultivation protocols were kindly provided by the group of Prof. Dr. Ed Hurt 

(Heidelberg University Biochemistry Center). 

 

  



  2. Materials 

21 
 

2. 6. Software and Algorithms 

Software or algorithm Version (if applicable) 

CCP4i and CCP4i2 software suite51 7.0.067 

PHENIX suite52 1.14-3260 

WinCoot53 0.8.9 

XDS54  

ARP/wARP Webservice55 8.0 

Cytoscape56 3.7.1 

PyMOL 4.5.0 

BLAST57  

Clustal Omega58  

ProtParam59  
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3. Methods 

3. 1. Bioinformatics methods 

Bioinformatics has become an essential tool for practice in biological sciences. It is generally 

understood to be the application of information techniques for organization of biological 

information and understanding it. The field of bioinformatics includes the storage and 

retrieval of information from databases, as well as providing effective ways to computationally 

analyze this information or to carry out predictions60. 

Bioinformatics applications are continuously updated and enhanced, so it is hardly possible to 

keep track of all the latest advancements. Nevertheless, a basic understanding of the 

algorithms commonly used in these applications is beneficial for understanding the results 

and limitations of an application. 

 

3. 1. 1. Prediction of GPI-anchored proteins in C. thermophilum 

The prediction of the GPI-anchored proteins in C. thermophilum depends on three specific 

characteristics: firstly, GPI-anchored proteins contain an N-terminal signal peptide, which 

targets them to the ER, where the GPI-anchor is attached to the protein. Secondly, they do 

not contain any transmembrane helices. Lastly, the GPI anchor attachment sequence has 

characteristic features and can therefore be recognized9. The workflow used here was done 

together with Dr. Piet de Groot and has already been described in 200311. 

The sequences of all proteins included in version 3.0 of the C. thermophilum genome – which 

was the newest version of the genome available at the time of the analysis – were retrieved 

from the National Center for Biotechnology Information (NCBI; 

https://www.ncbi.nlm.nih.gov/) database. 

The presence of the N-terminal signal peptide was analyzed using SignalP 5.0 with Eukarya set 

as an organism group. SignalP 5.0 uses a machine learning approach to recognize signal 

peptides, applying a deep artificial neural network of the recurrent type61. Artificial neural 

networks are widely used for many different applications. They consist of several layers of 

nodes or “neurons”, where each neuron in a layer is connected to each neuron of the next 

layer. The connections between the neurons propagate information from one layer to the next 

one via a propagation function, which assigns a certain weight to a connection that is 

descriptive for the relative importance. A learning process is used to define the weights of the 

connections. There is a wide variety of neural network architectures (see 

https://www.asimovinstitute.org/neural-network-zoo/). In recurrent networks, such as the 

one used in SignalP 5.0, certain layers do not only obtain information from the previous layer, 

they also feed on previous information from themselves. Additionally, the implementation of 
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long/short term memory enables memorizing features from the beginning of a sequence, 

while already classifying positions further downstream62. 

At this point it has to be noted that the presence or absence of a signal peptide does not equal 

secretion of a protein or no secretion. Few proteins are secreted without signal peptides and 

a few have a signal peptide, but are not secreted61. 

Protein sequences, in which a signal peptide was detected by SignalP 5.0 were further 

analyzed for absence of transmembrane helices using TMHMM v. 2.0. As indicated by the 

name, a hidden Markov model (HMM) – an algorithm well suited for pattern detection – is 

used for identification of potential transmembrane helices63. As the GPI anchor attachment 

sequence is usually recognized as a transmembrane helix, C-termini of the proteins were 

ignored in the prediction. 

Protein sequences were then further analyzed for presence of a GPI anchor attachment 

sequence using the Big-PI Fungal Predictor (http://mendel.imp.ac.at/gpi/fungi_server.html)12. 

In addition, a pattern search was applied for identification of GPI-anchored proteins, using the 

following pattern: [NSGDAC]–[GASVIETKDLF]–[GASV]–X(4,19)–[FILMVAGPSTCYWN](10)>11. 

 

3. 2. Cell wall extraction and analysis 

3. 2. 1. Cultivation of C. thermophilum 

C. thermophilum (DMSZ No.: 1495) spores were received as a kind gift by the group of Dr. Ed 

Hurt (Heidelberg University Biochemistry Center). To reactivate spores on a filter paper 50 µL 

CCM medium (composition described below) were pipetted onto the paper, followed by 

incubation for 10 min. The filter paper was then laid onto a CCM agar plate (spore side down), 

which was put into a plastic bag together with a wet towel, sealed tightly and incubated at 

54 °C for 2 days. Subsequently, half a plate was used to inoculate 150 mL CCM medium. 

Therefore, mycelium was cut into small pieces and as much agar as possible was removed. 

Liquid cultures were incubated at 54 °C, 100 rpm, for 1 day. Mycelium was then either 

harvested or used for production of new spores. For harvesting, cells were strained through a 

gauze, then washed with deionized water. The mycelium was then dried by pressing it 

between some sheets of paper towel, frozen in liquid nitrogen and stored at -80 °C. 

Spores were grown on rice agar, which was produced by cooking 75 g of brown rice for 2 h in 

1 L water. 15 g agar were added, the rice broth was filtered through a sieve to remove the rice 

seeds and the volume was refilled to 1 L. Rice agar was filled into beakers (50 mL each) and 

autoclaved. 50 mL rice agar were then inoculated with 2 mL mycelium grown in a liquid 

culture, closed tightly and incubated at 37 °C until black spores could be seen on the surface 

of the agar (at least 7 days). Spores were harvested in 1 M sterile sorbitol by scratching the 

agar surface with a sterile spatula. The presence of spores in the solution was verified by 

microscopy. Spore aliquots were then frozen in liquid nitrogen and stored at – 80 °C. 
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For the proteomic analyses of the C. thermophilum cell wall, 250 µL spore solution were used 

to directly inoculate 150 mL liquid CCM medium. Cultures were incubated at 54 °C, 100 rpm, 

for 2 days, then harvested and either directly used for cell wall isolation or stored as described 

above. 

CCM medium 

Sucrose 3 g/L 

NaCl 0,5 g/L 

K2HPO4 ∙ 3 H2O 0,65 g/L 

MgSO4 ∙ 7 H2O 0,5 g/L 

Fe(III)sulfate-hydrate 0,01 g/L 

Tryptone 5 g/L 

Peptone 1 g/L 

Yeast extract 1 g/L 

Dextrine (potatoe) 

(dissolved in ¼ of the final volume, 

heated, then added to the 

medium) 

15 g/L 

Agar added for plates 20 g/L 

 

3. 2. 2. Cell wall isolation 

Different approaches can be used for the isolation of certain components of the fungal cell 

wall, depending on the intended purpose of the experiments. For example, the exposed 

surface proteins of a cell can be identified by digestion of living cells using proteases, followed 

by identification of the released peptides via mass spectrometry (MS)64. Obviously, cell surface 

“shaving” does not yield in a complete picture of the cell wall proteome, as some proteins are 

not sufficiently exposed to the surface or not digested by the protease for other reasons e. g. 

heavy glycosylation65. In this work, the cell wall material was isolated from broken cells to 

achieve determination of the cell wall proteome of C. thermophilum. The workflow used was 

also described by de Groot et al.66. 

C. thermophilum mycelium was resuspended in 10 mM Tris-HCl, pH 7.5 and divided into 2 mL 

screw-cap cups. Glass beads and 10 µL protease inhibitor (cOmplete™ Protease Inhibitor 

Cocktail, Roche) were added. Cells were then lyzed in a FastPrep Homogenizer (MPBio) for 

60 sec, at a speed of 6.5 m/s. Cell lysis was repeated until full breakage of the cells could be 

observed under the microscope; the samples were kept on ice for 5 min after each run. The 

lysate was then extensively washed with 1 M NaCl to remove intracellular contaminants. 

Additionally, the glass beads were removed in this step. Subsequently, 0.5 mL SDS extraction 

buffer (50 mM Tris-HCl, 100 mM EDTA, 150 mM NaCl, 2% SDS, pH 7.8) per 100 mg wet weight 

cell walls were added, as well as 8 µL β-mercaptoethanol per mL of extraction buffer. The 

extraction was done by incubation in a boiling water bath for 10 min; then the cell wall 

material was pelleted 5 min at 1800 g, the supernatant was removed and the extraction step 
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repeated. The treatment of the cell wall material with denaturing and reducing agents is 

intended to remove proteins that are not covalently incorporated into the cell wall65. The 

isolated cell walls were then washed with ddH2O by centrifugation at 1800 g for 5 min, until 

SDS was fully removed. Complete removal of SDS was assessed by the absence of foam 

formation. The cell walls were freeze dried and stored at -20 °C. 

 

3. 2. 3. Mass-spectrometric analysis of isolated cell walls 

The proteomic analysis of isolated cell walls was done in the MarMass facility for MS. The 

analysis protocol was outlined with Dr. Uwe Linne. 

The isolated cell walls were resuspended in Urea and proteins were digested by addition of 

Sequencing Grad Modified Trypsin (Serva) and incubated at 37 °C overnight. Peptides were 

desalted and concentrated using Chromabond C18WP spin columns (Macherey-Nagel, Part 

No. 730522). Finally, Peptides were dissolved in 25 µL of water with 5% acetonitrile and 0.1% 

formic acid. 

The mass spectrometric analysis of the samples was performed using an Orbitrap Velos Pro 

mass spectrometer (Thermo Scientific). An Ultimate nanoRSLC-HPLC system (Dionex), 

equipped with a custom end-fritted 50cm x 75µm C18 RP column filled with 2.4 µm beads 

(Dr. Maisch) was connected online to the mass spectrometer through a Proxeon nanospray 

source. 1-15 µL (depending on peptide concentration and sample complexity) of the tryptic 

digest were injected onto a 300µm ID x 1cm C18 PepMap pre-concentration column (Thermo 

Scientific). Automated trapping and desalting of the sample was performed at a flowrate of 

6 µL/min using water/0.05% formic acid as solvent. 

Separation of the tryptic peptides was achieved with the following gradient of water/0.05% 

formic acid (solvent A) and 80% acetonitrile/0.045% formic acid (solvent B) at a flow rate of 

300 nL/min: holding 4% B for five minutes, followed by a linear gradient to 45%B within 30 

minutes and linear increase to 95% solvent B in additional 5 minutes. The column was 

connected to a stainless steel nanoemitter (Proxeon, Denmark) and the eluent was sprayed 

directly towards the heated capillary of the mass spectrometer using a potential of 2300 V. A 

survey scan with a resolution of 60000 within the Orbitrap mass analyzer was combined with 

at least three data-dependent MS/MS scans with dynamic exclusion for 30 s either using CID 

with the linear ion-trap or using HCD combined with Orbitrap detection at a resolution of 

7500. 

Data analysis was performed with Proteome Discoverer 2.4 (Thermo Scientific) with SEQUEST 

as search engine. The search libraries used were the proteome translated from the 

C. thermophilum genome v 3.0 (downloaded from NCBI) and a list of common contaminants 

found in proteome analysis (provided by the MarMass facility). Sequence coverage, number 

of identified peptides, number of unique peptides and Sequest HT score were used to assess 



  3. Methods 

26 
 

the quality of the results. Particularly the Sequest HT score was used for the evaluation, and 

identified proteins with a score below 40 were not included in the further analysis. Finally, the 

identified proteins were sorted manually: Contaminants from other cellular components (e.g. 

cytosol or plasma membrane) were removed from the list of GPI-CWPs and the function of 

each identified protein was assigned by database analysis and other sequence analysis 

methods. 

 

3. 2. 4. Imaging of C. thermophilum cell walls via Transmission Electron Microscopy (TEM) 

Transmission electron microscopy (TEM) imaging was used to reveal the cell wall structure of 

C. thermophilum. 

A TEM consists of an electron optical column, a vacuum pump and a sample chamber. The 

electron optical column is kept under vacuum; it contains the electron source ("electron gun"), 

a lens system and a detector. An electron beam is generated by applying heat or a strong 

electric field to a cathode in the electron gun (a tungsten filament or LaB6 cathode). The gun 

also contains an anode, which is a disc with an axial hole. The electrons emerging from the 

cathode are accelerated towards the anode and pass through the central hole at constant 

energy. The energy of the electrons can be controlled by the voltage (often 80 kV - 200 kV) 

applied on the cathode. The electron beam then passes a lens system with magnetic lenses 

inside the electron optical column. The energy and speed of the electrons remain unchanged 

as they pass through the column; only the path is adjusted to focus the beam on the sample, 

which is usually an ultrathin section (less than 100 nm thick) of the specimen. An image can 

be obtained, because electrons are scattered when they hit an atomic nucleus (elastic 

scattering). On leaving the sample, diffracted electrons are shielded by the contrast aperture 

and cannot reach the detector. Visualization is often realized by a fluorescent screen placed 

at the base of the column; charge-coupled device (CCD) cameras are widely used to capture 

images67. 

Well-grown mycelium was used for recording TEM images of C. thermophilum. Fixation, 

embedding, microtomy, and imaging were done by Dr. Thomas Heimerl from the Synmikro 

Electron Microscopy Facility. 
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3. 3. Molecular Biology Methods 

3. 3. 1. Polymerase Chain Reaction (PCR) 

The polymerase chain reaction (PCR) is one of the standard methods in molecular biology. It 

constitutes an in vitro method for amplification of specific nucleic acid sequences that has first 

been described by Mullis et al. in 1983. 

It consists of three steps that are repeated in cycles: denaturation, annealing, and elongation. 

In the first step, the template double strand is split into two single strands by heat. Then, 

primers anneal to the flanking regions of the DNA sequence to be amplified. In the elongation 

step, a heat stable polymerase synthesizes the missing complementary strand. The annealed 

primers serve as the starting points for elongation. The execution of these steps in cycles leads 

to an exponential amplification of the desired DNA product, as long as the polymerase is still 

intact and required components are sufficiently available. Usually, 25 to 30 cycles are 

performed68. 

Experimental parameters for PCRs done in this work are shown below. 

 

 Volume or weight 

Template DNA 20 – 50 ng 

Forward primer (5 µM) 2.5 µL 

Reverse primer (5 µM) 2.5 µL 

Phusion HF-Buffer (5x) 10.0 µL 

Phusion Polymerase (2 U/µL) 0.5 µL 

dNTPs (10 mM each) 1.0 

ddH2O Ad 50 µL 
 

 Temperature Duration  

Initial Denaturation 98 °C 5 min  

Denaturation 98 °C 15 sec 

35 x Annealing 55 – 58 °C 20 sec 

Elongation 72 °C 15 – 30 s/kbp 

Final Elongation 72 °C 5 min  

Cool down 4 °C ∞  

 

3. 3. 2. Agarose gel electrophoresis 

Agarose gel electrophoresis is used for separation of nucleic acids based on the size of the 

molecules, using an electric field. The agarose gel provides a matrix, through which smaller 

molecules migrate faster than larger ones. It is covered by a conductive buffer and an electric 

field is applied, causing the negatively charged nucleic acid samples to migrate from the 

cathode to the anode. 
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1% agarose gel were used for analysis of DNA fragments, such as PCR products. The 1% gel 

consists of 0.65 g agarose, which were dissolved in 70 mL TBE buffer (0.1 M Tris, 0.1 M boric 

acid, 2 mM EDTA) by boiling in a microwave. The gel was allowed to cool to approximately 

55 °C, then 2.5 µL Midori green were added and the gel was poured. When the gel was 

completely solidified, 5 µL sample for an analytical run or 45 µL sample for a preparative run 

were applied. The gel was then run at 120 V for 1 h and finally examined on an imager under 

UV illumination. 

 

3. 3. 3. PCR purification and gel extraction 

To ensure that further work with the amplified DNA fragments is not disturbed by 

contaminations – like nucleotides, primers, enzymes or salts – the PCR products were purified. 

Kits designed for this purpose are sold by many manufacturers, in this work the QIAquick PCR 

Purification Kit (Qiagen) was used. A buffer containing isopropanol and guanidine 

hydrochloride (PB buffer in the kit) is added to the PCR product. The mixture is then applied 

on a silica matrix, which binds the DNA in the presence of chaotropic agents. An ethanol 

containing buffer (PB) is then used to remove nucleotides, primers, enzymes, and salts. Finally, 

the PCR products can be eluted using a low salt buffer (EB) or water69. 

When specific DNA fragments needed to be extracted from a preparative agarose gel, the 

QIAquick Gel Extraction Kit (Qiagen) was used. First, the desired DNA fragment was carefully 

excised, removing as much agarose gel around the band as possible, while keeping the UV 

exposure time short. The gel piece is dissolved in a guanidine thiocyanate-containing buffer 

(QG) at 50 °C, followed by addition of isopropanol. The sample was then applied to the 

column, washing and elution are done in the same way as for PCR purification. 

Detailed protocols for performing PCR purifications or gel extractions can be found in the 

manufacturer's manual. 

 

3. 3. 4. DNA-modification: digestion and ligation 

In a standard cloning procedure, as performed in this thesis, the insertion of a target gene into 

the desired vector requires certain manipulations of the PCR product and the vector: First, 

both are cut with restriction enzymes that produce stick ends. Afterwards, insert and vector 

can be combined using a DNA ligase. 

Specific enzymes serve as tools for these modifications. Endonucleases are able to cleave the 

phosphodiester bonds of the DNA, either non-specifically or at specific sites called restriction 

sites. Such restriction sites typically consist of a palindromic sequence of 4 to 8 bp. Depending 

on the restriction enzyme used, either sticky ends (where one DNA strand has a short 

overhang compared to the other one, e. g. after restriction with EcoRI) or blunt ends (without 

an overhang, e. g. after restriction with SspI) are obtained. Usually, both the insert and the 
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vector are cut with the same restriction enzyme that produces a sticky end. The overhangs 

then have a complementary sequence, giving a specific direction for the introduction of the 

insert. The DNA molecules are then combined using a DNA ligase, which is capable of forming 

a phosphodiester bond between the 5’-phosphate and the 3’-OH group of adjacent 

nucleotides. 

A typical restriction digest is done at 37 °C (depending on the enzymes used) for around 2 h, 

followed by heat inactivation at either 65 °C or 80 °C, depending on the restriction enzyme 

used. The restriction digest has following composition: 

 Volume or weight 

CutSmart buffer (10x) 2 µL 

Restriction enzyme 1 1 µL 

Restriction enzyme 2 1 µL 

DNA 1 µg 

ddH2O ad 20 µL 

 

Ligation was usually done overnight at 16 °C, using T4 DNA ligase. Since the success of a 

ligation depends partially on the insert/vector ratio, a molar ratio of 3:1 was aimed for. The 

composition of the ligation mix is as follows: 

 Volume or weight 

Vector 50 ng 

Insert x 

T4 DNA Ligase 1 µL 

Ligase buffer (10x) 2 µL 

ddH2O ad 20 µL 

 

3. 3. 5. Preparation of competent cells and plasmid transformation 

Competence is defined as the ability of a cell to take up DNA from its surrounding. Some 

bacteria (e. g. Bacillus subtilis) are naturally competent, others are made competent by 

enhancing their membrane permeability, either physically (by electroporation) or chemically 

(by salt treatment, followed by a heat shock)70,71. E. coli is not a naturally competent organism; 

chemically competent E. coli cells were used in this work. 

For the preparation of competent E. coli, cells from a glycerol stock (as supplied by the 

manufacturer) were plated onto an LB-agar plate, which was incubated overnight at 37 °C. A 

single colony was used to inoculate a 5 mL preculture; the preculture was incubated overnight 

at 37 °C, shaking. 1 mL from the preculture was transferred to 50 mL LB-medium; the cells 

were grown at 37 °C, 225 rpm, until an OD600 or 0.5 – 0.6 was reached. The cells were then 

harvested by centrifugation at 3200 g, 4 °C, for 15 min. The supernatant was carefully 

removed; the pellet was resuspended in 15 mL sterile TBF-I buffer on ice. The cells were then 

pelleted again and the cell pellet was resuspended in 2 mL TFB-II buffer. 50 µL aliquots were 
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prepared and rapidly frozen in liquid nitrogen. The competent cells were then stored at – 80 °C 

for further use. 

TBF-I  

Rubidium chloride (RbCl) 100 mM 

Manganese(II) chloride (MnCl2) 50 mM 

Potassium acetate (CH₃COOK) 30 mM 

Calcium chloride dihydrate (CaCl2 ∙ 2 H2O) 10 mM 

Glycerol 15% (v/v) 

 

TBF-II  

Rubidium chloride (RbCl) 10 mM 

Calcium chloride dihydrate (CaCl2 ∙ 2 H2O) 10 mM 

MOPS 10 mM 

Glycerol 15% (v/v) 

 

For the transformation of plasmids into competent E. coli, a 50 µL aliquot was thawed on ice 

and approximately 50 ng DNA were added. Transformation of a ligation was done with 10 µL 

ligation mix. Cells were then incubated on ice for 30 min, subjected to a 45 sec heat shock at 

42 °C and cooled on ice for approximately 2 min. 1 mL LB medium was added and competent 

E. coli were allowed to recover at 37 °C for around 1 h. Recovered cells were pelleted at 3500 g 

for 2 min, 900 µL supernatant were removed and the pellet was resuspended in the remaining 

LB medium. The cells were then plated onto an LB agar plate containing the appropriate 

antibiotics and incubated overnight at 37 °C. 

 

LB medium  LB agar 

Tryptone 10 g/L  Tryptone 10 g/L 

Yeast extract 5 g/L  Yeast extract 5 g/L 

NaCl 10 g/L  NaCl 10 g/L 

NaOH (10 M) 400 µL/L  NaOH (10 M) 400 µL/L 

   Agar 15 g/L 

 

3. 3. 6. Plasmid preparation 

Plasmids are – usually circular – DNA molecules within a cell that do not belong to the 

chromosome of the organism – i. e. they are extrachromosomal. After transformation they 

remain in the cytosol of E. coli, as long as a selective pressure is present. In this work, plasmids 

providing resistance against certain antibiotics, in most cases kanamycin, were used. 

Additionally, they are replicated in E. coli, which makes the plasmid preparation a convenient 

tool for multiplication of desired plasmids72. 
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5 mL LB medium containing the appropriate antibiotics were inoculated with a single colony 

from a transformation plate and incubated overnight at 37 °C, 225 rpm. The plasmid 

preparation was then performed according to the manual provided with the QIAprep Spin 

Miniprep Kit (Qiagen), which is based on the alkaline extraction procedure, described by 

Birnboim and Doly73. In brief, the cells were pelleted and then thoroughly resuspended in a 

buffer containing EDTA and RNaseA (P1). Alkaline lysis was then achieved by addition of buffer 

P2, which consists of NaOH and SDS and also serves the denaturation of proteins and high 

molecular weight DNA. Addition of a third buffer (N3) then leads to neutralization of the 

solution by potassium acetate and facilitation of DNA binding to the silica matrix by guanidine 

hydrochloride. The mixture is centrifuged at 17000 g for 10 min, leaving the plasmid DNA in 

the supernatant. The supernatant is applied to a silica matrix, washed with an ethanol 

containing buffer and finally eluted in elution buffer (EB) or water. 

A detailed protocol for performing the plasmid preparation can be found in the 

manufacturer’s manual. 

 

3. 3. 7. Site-directed mutagenesis (SDM) 

Site-directed mutagenesis (SDM) is a method for introduction of specific changes in the 

nucleotide sequence of a plasmid. The mutations are introduced during a PCR, in which 

forward and reverse primers completely overlap and the desired nucleotide change is located 

in their center. The entire plasmid is copied in the elongation step of the PCR, with the primers 

used as the starting point. Copies of the plasmid therefore contain the mutation and serve as 

templates for the following rounds of PCR (in addition to the original template). To eliminate 

plasmids that do not contain the desired mutation, the PCR mix is digested with DpnI, a 

restriction endonuclease that degrades methylated DNA74. 

A double mutant of Awp1 (I165M, I285M) was created for attempts to determine the 

structure. The mutations were introduced in succession via SDM, using a protocol based on 

the one described by Bachman74. Composition of PCR mixture and the thermocycler program 

are shown below. 

 

 Volume or weight 

Template Plasmid 10 ng 

Forward primer (5 µM) 1 µL 

Reverse primer (5 µM) 1 µL 

Phusion HF-Buffer (5x) 10.0 µL 

Phusion Polymerase (2 U/µL) 0.5 µL 

dNTPs (10 mM each) 1.0 

ddH2O Ad 50 µL 
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 Temperature Duration  

Initial Denaturation 98 °C 5 min  

Denaturation 98 °C 30 sec 

18 x Annealing 55 °C 30 sec 

Elongation 72 °C 210 sec 

Final Elongation 72 °C 5 min  

Cool down 4 °C ∞  

 

After completion of the PCR, 1 µL DpnI was added to the mixture and digestion was performed 

for 1 h at 37 °C, followed by heat inactivation for 20 min at 60 °C. The plasmids were purified 

using the QIAquick PCR Purification Kit (Qiagen), analyzed via agarose gel electrophoresis and 

transformed into E. coli DH5α. Success of the SDM was assessed by sequencing. 

 

3. 3. 8. Ligation-Independent Cloning (LIC) 

In Ligation/Ligase-Independent Cloning (LIC), the 3’ – 5’ exonuclease activity of T4 DNA 

Polymerase utilized to generate an overlap of around 15 base pairs between vector and insert. 

The overlap is created by addition of dCTP/dGTP to the insert/linearized vector. The addition 

of dCTP leads to single strand digestion of the blunt ends, until a C is reached; upon addition 

of dGTP, the digestion is stopped at a G. The resulting single stranded overlaps then enable the 

integration of the insert into the vector without the help of ligase. The remaining nicks are 

repaired in E. coli after transformation. LIC takes less time than the classical cloning procedure 

and a variety of vectors containing the same overlap sequence are available, making the inserts 

compatible with different vectors. However, only vectors that have been designed for LIC can 

be used75. 

The inserts were amplified from already existing plasmids, using a standard PCR as described 

in chapter 3. 3. 1. The PCR products were then purified using the QIAquick PCR Purification Kit 

(Qiagen). Vectors were linearized by digestion with the blunt end creating restriction enzyme 

SspI for 3 h at 37 °C (reaction mixture shown below), followed by heat inactivation at 65 °C for 

20 min. 

 

 Volume or weight 

CutSmart buffer (10x) 2 µL 

SspI-HF 1 µL 

vector 1 µg 

ddH2O ad 20 µL 
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The linearized vectors were then purified via preparative agarose gel electrophoresis (see 

3. 3. 2.). A LIC reaction was done for both, inserts and vectors, at 22 °C for 40 min, using 

following reaction mixtures: 

 Volume or weight 

Linearized vector x 

CutSmart buffer (10x) 2 µL 

dGTP (25 mM) 2 µL 

DTT (100 mM) 1 µL 

T4 DNA Polymerase(3 000 U/mL) 0.2 µL 

ddH2O ad 20 µL 

 

 Volume or weight 

Insert y 

CutSmart buffer (10x) 2 µL 

dCTP (25 mM) 2 µL 

DTT (100 mM) 1 µL 

T4 DNA Polymerase(3 000 U/mL) 0.2 µL 

ddH2O ad 20 µL 

 

The LIC reaction was stopped by heat inactivation at 75 °C for 20 min. For annealing, equivalent 

amounts of insert and vector were mixed (total 8 µL), and the reaction volume was filled up to 

20 µL with water. After a 30-minute incubation at room temperature, the annealing mixture 

was transformed into E. coli DH5α. 
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3. 4. Protein biochemistry 

3. 4. 1. Analytical overproduction of proteins and cell lysis 

To evaluate whether a protein can be produced in E. coli – in the best case soluble and in large 

amounts – overexpression was performed on an analytical scale. In this way, different factors 

that influence protein overproduction were evaluated, such as the strain of E. coli used, 

expression temperatures and durations, or type and concentration of the inducing agent. 

For each overexpression condition that was tested, plasmids were transformed into various 

E. coli strains via heat-shock transformation as described in chapter 3. 3. 5. Cells were then 

plated onto LB agar plates containing the appropriate antibiotic; plates were incubated 

overnight at 37 °C. One colony was used to inoculate a 5 mL overnight culture with antibiotics, 

which was incubated at 37 °C, 225 rpm, overnight. Then, 50 mL LB containing the appropriate 

antibiotics were inoculated 1:50 and the cells were grown at 37 °C, 225 rpm, until an OD600 of 

approximately 0.6 was reached. Expression was induced by addition of either IPTG or lactose 

and the cultures were further incubated at different expression temperatures and durations. 

Parameters that were tested in small scale expression are summarized below. 

 

E. coli strains Inducing agents Temperature/Duration 

BL21 (DE3) Gold IPTG 37 °C 3 h 

SHuffle T7 Express Lactose 30 °C Overnight 

BL21 Star (DE3)  18 °C 48 h 

Rosetta  12 °C 72 h 

Origami    

 

When the analytical overexpression was finished, the cells were pelleted by centrifugation at 

3200 g, 4 °C, for 20 min. The cell pellets were resuspended in Ni-NTA buffer 1, transferred into 

screw-cap cups, 1 µL lysozyme (50 mM) and glass beads were added. Cell lysis was done in a 

FastPrep Homogenizer (MPBio), run twice for 60 sec at 6.5 m/s; between the runs the cells 

were cooled on ice for 5 min. To divide the soluble and the insoluble fraction, the lysed cells 

were centrifuged for 10 min at 17000 g, 4 °C. The supernatant was removed and the pellet 

was resuspended in 1 mL Ni-NTA buffer 1. Both were analyzed for presence of the desired 

protein via SDS-PAGE. 

Expression conditions that were proven to produce soluble protein in analytical scale 

overexpression were upscaled. The description of those conditions can be found in chapter 3. 

4. 2. 

Ni-NTA buffer 1 

NaH2PO4 50 mM 

NaCl 300 mM 

 pH 8.0 
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3. 4. 2. Preparative overexpression of proteins 

For preparative overexpression of a desired protein, plasmids were transformed into E. coli 

and a colony from the transformation plate was used to inoculate 50 mL LB with 35 µg/mL 

kanamycin (Kan35). The 50 mL starter culture was incubated at 37 °C, 225 rpm, overnight. 

Several 5 L baffled Erlenmeyer flasks containing 2 L LB+Kan35 were inoculated with starter 

culture (ratio 1:100) and cells were grown at 37 °C, 140 rpm, until an OD600 of around 0.6 was 

reached. Expression was induced by addition of 0.1 mM IPTG and the incubation temperature 

was lowered. The expression conditions for the constructs used in this work are as follows: 

 

Construct E. coli strain Temperature/ Duration 

pET28a_Awp1 SHuffle T7 Express 12 °C/72 h 

pET28a_Awp3 SHuffle T7 Express 12 °C/72 h 

pET28a_Awp14 BL21 (DE3) Gold 12 °C/72 h 

pET28a_CtPth11 SHuffle T7 Express 18 °C/48 h 

 

The cells were then harvested by centrifugation at 3200 g, at 4 °C, for 20 min. The cell pellets 

were resuspended in Ni-NTA buffer 1 and washed by centrifugation at 4000 rpm, 4 °C, 20 min. 

The supernatant was removed; the pellets were stored at -80 °C for further use. 

 

3. 4. 3. Cell lysis 

The cells were lysed mechanically, either by subjecting them to high pressure using an 

emulsifier, or by sonication with ultrasound. For both methods, the cell pellet was thawed in 

a water bath at room temperature and then resuspended in Ni-NTA buffer 1. Complete 

resuspension of the cells is critical, as clumps may remain unbroken during sonication or clog 

the emulsifier tubes. In addition, mechanical cell lysis is associated with the generation of 

heat, and many proteins are sensitive to heat. To avoid excessive thermal effects on the 

proteins, cooling of the lysate is essential. 

Cell lysis by sonication was performed with the cells kept on ice. The resuspended cells were 

sonicated for a total of 9 minutes, divided into 3 cycles, applying pulses with 50% intensity. 

Between the cycles the cell lysate was mixed and cooled on ice for 5 minutes. When the 

emulsiflex C5 (Avestin) was used for cell lysis, the equipment was first pre-cooled with ice for 

around 30 min. Then the cell suspension was passed 3 times through the emulsifier, applying 

pressures between 50 000 and 100 000 kPa. 

The lysate was then cleared by centrifugation at 18000 rpm, 4 °C, for 30 min (J2-HS, Beckman), 

and the supernatant was sterile-filtered using a 0.45 µm syringe filter. 
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3. 4. 4. Protein purification 

In order to perform protein analysis techniques, a certain purity level of the desired protein 

must be achieved, with the necessary degree of purity depending on the technique. 

Crystallographic studies in particular require a highly pure sample (> 95%). In addition, the 

homogeneity and monodispersity of the desired protein should be ensured, which demands 

a combination of several purification steps. The standard routine in many protein 

crystallography laboratories is to perform affinity chromatography (most commonly using a 

His-Tag), followed by size exclusion chromatography (SEC) as a polishing step. However, for 

the purification of some proteins inclusion of further steps may be required. 

 

3. 4. 4. 1. Immobilized metal affinity chromatography (IMAC) 

Affinity chromatography is enabled by the addition of a tag to the target protein, which 

mediates binding to a specific column matrix, while untagged proteins pass directly through 

the column. All proteins purified in this work contain an N-terminal His6-Tag, which is 

compatible with Immobilized metal affinity chromatography (IMAC), the most commonly used 

chromatographic technique. Various metal ions have an affinity to histidine, in this work Ni2+, 

immobilized by the chelating agent nitrilotriacetic acid (NTA), was used. The method is 

therefore also referred to as Ni-NTA chromatography. Elution of the desired proteins is 

achieved by the addition of imidazole, which displaces the bound target protein76. 

A peristaltic pump was used to apply the cleared and sterile-filtered cell lysate on a 5 mL 

Ni-NTA column (Macherey-Nagel), equilibrated with at least 5 column volumes (CV) Ni-NTA 

buffer 1. To evaluate appropriate imidazole concentrations in the wash and elution buffer for 

each protein, a step-wise increase of imidazole concentrations was done in the first 

purification (4 CV per step). The fractions were then analyzed via SDS-PAGE for presence and 

purity of the desired protein; fractions containing the target protein were pooled and 

subjected to the next purification step. Further purifications only consisted of sample 

application, a wash step, and elution. Imidazole concentrations of wash and elution buffers 

are summarized below for each protein. 

 

 Imidazole concentration [mM] 

Protein Wash Elution 

Awp1A 30 250 

Awp3A 20 500 

Awp14A 15 250 

CtPth11 20 500 
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3. 4. 4. 2. Size exclusion chromatography (SEC) 

Size exclusion chromatography (SEC) was done after IMAC as a polishing step. Molecules are 

separated based on their size, but also the shape, or more exactly their hydrodynamic 

diameter, plays a role in the separation process. Operation of SEC benefits from two 

differently accessible volumes, the external volume and the internal volume. The internal 

volume is the liquid within the porous matrix of the SEC column, which is typically composed 

of beads. The external volume is the liquid between the beads and is also called void volume. 

Smaller molecules travel through both the external and the internal volume; they migrate 

more slowly through the column. Molecules larger than the beads of the column matrix only 

pass through the external volume and elute at the void volume. A variety of different resins 

are available for SEC, adjusted to the size and type of the molecule, as well as the choice of 

eluent and other parameters. In this work, Superdex resins were used, which consist of a 

dextran matrix bound to cross-linked agarose77. 

The pooled fractions from IMAC containing the desired protein were concentrated to a final 

volume of approximately 2 mL. The sample was then filtered to remove aggregates or physical 

contaminants (foreign particles) using centrifugal filter units (Ultrafree-MC, Merck). It was 

then applied on a SEC column that had been equilibrated with sterile-filtered and degassed 

SEC buffer. Choice of the SEC column was based on the size and the expected quantity of the 

desired protein. SEC was run on an NGC Chromatography System, eluting proteins were 

detected by absorption at 280 nm and collected in 1.5 mL fractions. After SEC, the purity of 

the desired protein was assessed via SDS-PAGE and the sample was either concentrated or 

flash-frozen in liquid nitrogen and stored at – 80 °C for further use. 

 

Protein Columns SEC buffer 

Awp1A 
26/600 Superdex 200 pg 

16/600 Superdex 200 pg 
20 mM Tris-HCl, 300 mM NaCl, pH 8.0 

Awp3A 
26/600 Superdex 200 pg 

16/600 Superdex 200 pg 
20 mM Tris-HCl, 300 mM NaCl, pH 8.0 

Awp14A 
26/600 Superdex 200 pg 

16/600 Superdex 200 pg 
20 mM Tris-HCl, 300 mM NaCl, pH 8.0 

CtPth11 26/600 Superdex 75 pg 50 mM NaH2PO4, 300 mM NaCl, pH 8.0 
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3. 4. 5. Protein concentration 

The pooled fractions from IMAC and from SEC were concentrated using Amicon Ultra 

concentrators (Millipore). The concentrators are available with different molecular weight 

cut-offs (MWCO), a MWCO of 30 kDa was used for the concentration of Awp1A, Awp3A, and 

Awp14A. For concentrating CtPth11, a MWCO of 3 kDa was chosen. Concentrators were first 

rinsed with dH2O, then the membrane was equilibrated with the buffer, in which the protein 

was currently contained, by centrifugation at 3200 g, at 4 °C, for 5 min. The protein solution 

was then filled into the concentrator and centrifuged at 3200 g, at 4 °C, for 15 min. The 

concentration step was repeated until either the desired amount or concentration of the 

protein solution was reached. The protein solution was mixed between each concentration 

step. 

 

3. 5. Protein analysis 

3. 5. 1. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is used to separate 

proteins based on their size, and consecutively visualize them via staining of the gel. It was 

used to visualize the desired proteins and to roughly estimate their purity by analyzing each 

fraction after IMAC and SEC. Protein samples are mixed with a SDS-PAGE loading buffer, which 

contains SDS and β-mercaptoethanol. These components (often used in combination with 

heating of the sample to 95 °C for several min) ensure that proteins are linearized, as SDS is 

able to denature proteins and β-mercaptoethanol reduces disulfide bonds. Simultaneously, 

the negatively charged SDS attaches to the linearized proteins and hides their surface charges, 

resulting in a constant mass/charge ratio. Proteins are then separated in the gel by application 

of an electrical field. In this work, discontinuous SDS-PAGE was used, a technique that provides 

improved separation compared to continuous SDS-PAGE. 

4 μL sample were mixed with 4 μL 2x SDS-PAGE loading buffer and pipetted into the pockets 

of a gel with a 4.5% (v/v) stacking gel and either a 12% (v/v) or 15% (v/v) separation gel. One 

pocket of the gel was loaded with 5 μL Pierce Unstained Protein MW Marker. SDS-PAGE was 

run in an SDS-PAGE chamber filled with SDS-PAGE running buffer with an EPS 301 power box 

set to 35 mA per gel, until the sample reached the end of the separation gel. Protein bands 

were then visualized by staining the gel with hot Coomassie for 5 min, followed by destaining 

in hot destain solution, until bands were clearly visible. 
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SDS-PAGE, 12 gels 

 Stacking gel (4.5%) Separation gel (12%) Separation gel (15%) 

dH2O 29.8 mL 32 mL 18.3 mL 

Stacking gel buffer 12.5 mL - - 

Separation gel buffer - 20 mL 20 mL 

Acrylamide (30%) 6.67 mL 32 mL 40 mL 

SDS (10% w/v) 500 μL 800 μL 800 μL 

APS (10% w/v) 500 μL 800 μL 800 μL 

TEMED 50 μL 80 μL 80 μL 

 

Stacking gel buffer  Sepeartion gel buffer 

Tris/HCl, pH 6.8 625 mM  Tris/HCl, pH 8.8 1.125 M 

   Saccharose 30% (w/v) 

 

2x SDS-PAGE loading buffer  10x SDS-PAGE running 

buffer 

Tris/HCl, pH 6.8 62.5 mM  Tris 30.3 g 

Glycerol 15%  Glycine 144.4 g 

β-mercaptoethanol 4% (v/v)  SDS 10 g 

SDS 4% (w/v)  ddH2O ad 1 L 

Bromphenolblue a pinch    

 

Coomassie  Destain 

Coomassie brilliant blue R250 3.2 g  Ethanol 400 mL 

Ethanol 400 mL  Acetic acid 80 mL 

Acetic acid 80 mL  dH2O 400 mL 

dH2O 400 mL    

 

3. 5. 2. Determination of protein concentration 

There are various analytical methods available for the determination of protein concentration. 

The type of method that can be used depends, among other things, on the composition of the 

protein solution (defined or undefined), the properties of the protein and the choice of buffer. 

Time considerations and reproducibility are also important selection criteria. In this thesis UV 

spectroscopic analysis was used to determine the protein concentrations. The method is 

based on UV absorbance, usually measured at 280 nm, which relies on the aromatic amino 

acids. However, it has to be kept in mind that these show strong differences in their absorption 

behavior. The absorption maximum of both tryptophan and tyrosine is 280 nm, while the 

maximum of phenylalanine is about 260 nm. In addition, the protein’s structure can change 

the absorption behavior78. 
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The extinction (E) of the sample was measured using a NanoDrop photometer. Knowing E, the 

Lamber-Beer law can be applied to determine the protein concentration: 

𝐸 =  𝜀 ∙ 𝑐 ∙ 𝑑 

𝑐𝑚 =  
𝐸 ∙ 𝑀𝑊

𝜀 ∙ 𝑑
 

E: extinction; ε: molar absorptivity; c: concentration; d: length of the solution the light passes through; cm: mass 

concentration; MW: molecular mass 

 

In addition, the molecular mass of the protein and its extinction coefficient are required for 

determination of its concentration. These values were calculated from the amino acid 

sequence using the online tool ProtParam, which is available on the ExPASy Bioinformatics 

Resource Portal59. 

 

3. 5. 3. Thermal shift assay (TSA) 

A wide variety of methods are available for the characterization of protein-ligand interactions. 

The thermal shift assay (TSA) – also referred to as differential scanning fluorimetry or 

thermofluor assay – offers a relatively high throughput, while it can be easily performed with 

standard lab equipment. 

Ligand binding is associated with a change in protein stability, usually it leads to stabilization 

of the protein. In a TSA, the thermal stability of protein solutions containing ligands is 

measured with the aim of detecting changes in melting temperature – i. e. thermal shifts. The 

detection of protein unfolding is facilitated by addition of SYPRO Orange, a component that 

shows low fluorescence in polar environments and high fluorescence in non-polar 

environments. Upon denaturation of the protein, its non-polar core is exposed, leading to an 

increase of fluorescence signal. As a result, a melting curve is obtained, of which the melting 

temperature is the inflection point (maximum of the first derivative). 

 

 Volume 

Awp1A/Awp3A (50 µM) 4 µL 

Glycan (50 mM*) 4 µL 

SYPRO Orange (1:62.5) 4 µL 

SEC buffer ad 40 µL 

* if not indicated otherwise  

 

Binding of Awp1A and Awp3A to various disaccharides and oligosaccharides was analyzed in 

a TSA using 40 µL reaction volumes. The experiment was run in a RotorGene Q (Qiagen), the 

temperature was raised by 0.2 °C each 4 sec, from 25 °C to 90 °C. Gain optimization was done 



  3. Methods 

41 
 

manually. The TSA mixture is shown below; reference measurements were done by adding 

the solvents of the ligands to the protein solution and 8x SYPRO Orange. Following 

carbohydrates were used: Laminarin, beta glucan (barley, 0,1%), CM-curdlan (0,01%), 3-O-(β-

D-galactopyranosyl)-D-galactopyranose, Galβ1-3GlcNAc, Galβ1-3GalNAc, N,N’-

diacetylchitobiose, Galα1-3Gal, 3-Fucosyllactose, Lewisa trisaccharide, lacto-N-tetraose, lacto-

N-neotetraose, Galα1-3Galβ1-4Gal, Galβ1-4GlcNAc, Manα1-6Man, Manα1-2Man, Manα1-

3Man, Manα1-4Man, mannotetraose, mannopentaose and Galβ1-3GalNAcβ1-4Galβ1-4Glc. 

 

3. 5. 4. High throughput glycan binding studies at the Consortium for Functional Glycomics 

Another high-throughput method for screening specific interactions is suspension array 

technology, which uses glass slides printed with specific components (DNA, peptides, glycans). 

The Consortium of Functional Glycomics (CFG) offers the implementation of so-called glycan 

arrays, which allow screening for binding of a protein to several hundred immobilized glycans. 

Purified protein samples were sent to the Consortium for Functional Glycomics (CFG), where 

binding of Awp1A and Awp3A was examined on the newest version of the Mammalian Glycan 

Array (version 5.2), as described by Heimburg-Molinaro et al.79. For both samples a protein 

concentration of 50 µg/mL in SEC buffer was used. Detection was carried out via an anti-His 

antibody, coupled to AlexaFluor 488 (Qiagen). Glycan array data was deposited at the CFG, 

under the identifier cfg_rRequest_3531. 
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3. 6. Determination of protein structures 

Structural biology is concerned with the analysis of the 3D structures of biological 

macromolecules, especially proteins and nucleic acids. Proteins play an essential role in every 

aspect of life and the structure of a protein is uniquely suited to its function. Therefore, new 

insights can be generated into a protein’s function via the determination of its structure. 

Three major methods are commonly used for the determination of structures of biological 

macromolecules: X-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy 

and 3D electron microscopy (3D-EM). Obtained structures are deposited in the Protein Data 

Bank (PDB), an open access database for the 3D structures of large biological molecules. 88.8% 

of the structures in the PDB have been determined via X-ray crystallography, highlighting the 

importance of the method for biological sciences. NMR spectroscopy accounts for 7.9% of 

structures in the PDB and 3D-EM for 3.2%. Around 0.2% of structures have been determined 

using multiple methods or other methods (e. g. neutron diffraction or solution scattering). 

In recent years, 3D-EM has gained popularity due to advances in the technology of detectors 

and in image processing, enhancing the resolution that can be achieved with these 

structures80. Nevertheless, also X-ray crystallography has seen major recent developments: 

various X-ray free electron lasers were put into operation. Among other applications, they 

provide the possibility to determine crystal structures in a time-resolved manner (time-

resolved serial femtosecond crystallography), thereby providing direct insights into functional 

reactions of the sample81. 

 

3. 6. 1. Protein crystallization 

The crystallization process is a bottleneck in the process of protein structure determination. 

First protein crystals were already described in 1840, but remained a laboratory curiosity for a 

few decades. From the 1880ies on, protein crystallization was done as a purification method, 

until – around 1930 – protein crystals acquired a new application, when X-ray crystallography 

was applied for the determination of the structures of biological macromolecules82. Although 

the crystallization process has been observed for 160 years, the exact requirements for 

crystallization are still unknown and the process remains unpredictable. However, a few 

requirements that lead to a higher probability of crystallization are known: protein samples 

have to be pure and monodisperse. These prerequisites are ensured by the purification 

process. 

Crystallization itself is reached by a slow decrease of the solubility of a protein by addition of 

precipitants. In some cases, this leads to formation of a so called nucleus, around which 

crystals then grow. The process is often described via a phase diagram (see Figure 5) and 

depends on many different factors, such as protein concentration, precipitant concentration, 

pH, temperature, additives, ligands, inhibitors, coenzymes, and many others. Nowadays, the 

bottleneck of crystallization is tackled by trying out a large amount of different crystallization 
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conditions. Various methods are available, the most common ones are microbatch 

experiments, vapor diffusion, dialysis, and free interface diffusion. Many labs use sitting drop 

vapor diffusion setups, which can be pipetted by robots in a short time, usually in a 96 well 

format. Nevertheless, the overall success of crystallizing a protein in structural biology 

laboratories is estimated to be around 30 – 40%83. 

 

Figure 5: Protein crystallization phase diagram84 

A phase diagram with commonly varied parameters of a crystallization experiment – protein concentration and 

precipitant concentration – is displayed. Additionally, the crystallization curves of the most common protein 

crystallization methods are indicated: A) Batch crystallization, B) Vapour diffusion, C) Dialysis, D) Free-interface 

diffusion (liquid/liquid diffusion). All methods aim to reach the nucleation zone, from which the system 

progresses through the metastable zone to finally arrive at the solubility curve. 

 

Initial crystallization experiments were done in the MarXtal crystallization facility in a sitting 

drop vapor diffusion setup, using a variety of commercially available screens (see below). The 

screens were pipetted with a crystallization robot (Honeybee 963, Digilab). The reservoir of 

MRC 2 Well plates (Swissci) were filled with 80 µL mother liquor, 300 nL mother liquor and 

300 nL protein solution were pipetted in each well. The plates were then sealed with sealing 

film and incubated at 18 °C in a Rock Imager (Formulatrix) crystallization imager, a system that 

is also documenting crystal growth. 
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Protein Protein 

concentrations 

Crystallization Screens 

Awp1A 
48 mg/mL 

24 mg/mL 

JCSG Core I (Qiagen), JCSG Core II (Qiagen), JCSG Core III (Qiagen), 

JCSG Core IV (Qiagen), Morpheus (Molecular Dimensions), Morpheus 

II (Molecular Dimensions), Classics (Qiagen) 

Awp3A 
24 mg/mL 

12mg/mL 

JCSG Core I (Qiagen), JCSG Core II (Qiagen), JCSG Core III (Qiagen), 

JCSG Core IV (Qiagen), Morpheus (Molecular Dimensions), Morpheus 

II (Molecular Dimensions), Classics (Qiagen) 

Awp14A 
22 mg/mL 

11 mg/mL 

JCSG Core I (Qiagen), JCSG Core II (Qiagen), JCSG Core III (Qiagen), 

JCSG Core IV (Qiagen), Morpheus (Molecular Dimensions), Morpheus 

II (Molecular Dimensions), Classics (Qiagen), Classics Lite (Qiagen) 

CtPth11 
10.8 mg/mL 

5.4 mg/mL 

JCSG Core I (Qiagen), JCSG Core II (Qiagen), JCSG Core III (Qiagen), 

JCSG Core IV (Qiagen), Morpheus (Molecular Dimensions), Morpheus 

II (Molecular Dimensions), Classics (Qiagen), AmSO4 (Qiagen) 

 

 

3. 6. 2. Optimization of crystallization conditions 

If a crystallization condition is identified in initial crystallization experiments, it is often 

followed by an optimization of said condition with the purposes of crystal reproduction for 

additional experiments and growing crystals with a better diffraction quality. Usually, two 

factors influencing protein crystallization are altered around the original condition, e. g. pH 

and precipitant concentration. 

 

3. 6. 2. 1. Optimization of Awp1A crystals 

A 24-well hanging drop vapor diffusion optimization screen was pipetted, as depicted in the 

scheme in Figure 6. The original crystallization solution contained 0.1 M MOPSO/Bis-Tris 

pH 6.5, 10% (w/v) PEG 8000, 20% 1,5-pentanediol, 0.5 mM erbium(III) chloride hexahydrate, 

0.5 mM terbium(III) chloride hexahydrate, 0.5 mM ytterbium(III) chloride hexahydrate, and 

0.5 mM yttrium(III) chloride hexahydrate85. For the optimization screen the ratios of MOPSO 

and Bis-Tris were changed to alter the pH and the concentrations of both precipitants were 

varied in the same proportion to each other. Erbium(III) chloride, terbium(III) chloride and 

ytterbium(III) chloride were present at a concentration of 0.5 mM each. A drop size of 1.2 µL 

was chosen, composed of 0.6 µL reservoir and 0.6 µL protein solution. Two drops were set, 

one using a protein concentration of 48 mg/mL, the other one using 24 mg/mL. The 

crystallization plate was incubated at 20 °C. 
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Figure 6: Optimization screen for Awp1A 

The pipetting scheme of the optimization screen is shown. MOPSO and Bis-Tris were used at a final concentration 

of 0.1 M MOPSO/Bis-Tris. The concentrations of PEG 8000 are given in (w/v), the concentrations of 

1,5-pentanediol are given in (v/v). Buffer mixing ratios were varied along the x-axis, the precipitant 

concentrations were changed along the y-axis. All reservoir solutions contained 0.5 mM erbium(III) chloride, 

0.5 mM terbium(III) chloride, and 0.5 mM ytterbium(III) chloride. 

 

3. 6. 2. 1. Optimization of Awp3A crystals 

The original crystallization condition of Awp3A contained 0.2 M MgCl2, 0.1 M Tris pH 7.0 and 

2.5 M NaCl. The condition was optimized in a hanging drop vapor diffusion setup, as described 

for Awp1A. The pH was varied along the y-axis of the optimization, in a range from 7.0 to 8.5, 

using increments of 0.5. Different precipitant concentrations were used along the x-axis of the 

screen, ranging from 1 M NaCl to 3.5 M NaCl, in increments of 0.5 M. The salt concentration 

(0.2 M MgCl2) remained unchanged. Additionally protein solution:reservoir ratios of 1:1, 1:2 

and 2:1 were used. The crystallization plate was incubated at 20 °C. 

 

3. 6. 3. Crystal harvesting and soaking 

When crystals stop growing or when the next beam time at a synchrotron is approaching, 

protein crystals are harvested and stored in liquid nitrogen for transport to the synchrotron, 

where diffraction data is collected. For some crystals, soaking may be required or desired at 

that point. The soaking process can serve different purposes, e. g. protection from ice 

formation, introduction of heavy atoms for phasing, or introduction of ligands into the protein 

crystals. 

Protein crystals typically have a high solvent content with usually observed values around 50% 

and a range from around 30% to 85%. In many cases, the solvent is an aqueous solution that 
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will form ice upon freezing. Ice formation lowers diffraction quality by disruption of the 

protein crystal structure and ice rings can be observed on the diffraction images. Thus, the 

process is often prevented by soaking protein crystals with cryoprotectants, such as glycerol, 

ethylene glycol or MPD. The necessity of introducing additional cryoprotectants depends on 

the crystallization condition. 

Another purpose of protein crystal soaking is the introduction of heavy atoms for solving the 

phase problem. Some phasing methods, such as multiple wavelength anomalous dispersion 

(MAD) or single wavelength anomalous dispersion (SAD) require the presence of heavy atoms 

showing said anomalous dispersion. These can be naturally present in the protein, for example 

as cofactors or as part of a ligand. If that is not the case, the experimenter can choose between 

several methods for the introduction of heavy atoms: The substitution of the methionine 

residues in a protein by selenomethionine (SeMet) is a common method called SeMet labeling. 

It has the advantage that the number of heavy atom sites within the asymmetric unit of the 

protein crystal – a variable that may be decisive for the phasing process – is already known. 

However, protein production, purification and crystallization may have to be adapted when 

working with SeMet labeled proteins. Additionally, some proteins do not have a sufficient 

amount of Met residues and one or even a few mutations need to be introduced– as a rule of 

thumb, at least one SeMet per 100 AA is required for phasing86,87. Another approach for heavy 

atom derivatization is soaking already existing crystals in heavy atom containing solutions. 

Soaking is a lot swifter than SeMet labeling, because overproduction, purification and 

crystallization do not have to be repeated. However, it is not predictable whether the protein 

crystal will endure the soaking process and whether the protein will bind the metal. A variety 

of heavy metal compounds are available for phasing purposes and also iodine and bromide 

can be used87. 

In some cases, ligands or a variety of potential ligands are introduced into the protein crystal 

by soaking. The structural context of ligand binding in a protein using an already known ligand 

can be examined in this way, but also ligand screening experiments are often conducted by 

soaking. In the recent years, fragment-based lead discovery (FBLD) has become a conventional 

approach for drug discovery. Protein crystals are soaked with a variety of low-molecular-mass 

molecules, i. e. fragments. If binding is observed, the fragments can be combined or upsized 

into lead compounds88. 

In this work, crystals were harvested and usually directly flash-frozen in liquid nitrogen 

without any additional cryoprotectant. To enable phasing of Awp3A by single wavelength 

anomalous diffraction (SAD), crystals were transferred to a drop of mother liquid, containing 

50 mM Gd(III) acetate. They were allowed to sit in this drop for 90 min and then flash-frozen 

in liquid nitrogen without any additional cryoprotectant. 
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Table 3: Fragment concentrations and soaking times used for fragment binding experiments on the CtPth11 
CFEM domain 

Fragment 

No. 

Concentration 

[mM] 

Soaking times  Fragment 

No. 

Concentration 

[mM] 

Soaking times 

1 50 10 sec  46 100 25 min 

2 50 23 h  47 100 30 min 

3 50 23 h  48 100 1 min, 20 min 

4 50 23 h  49 100 20 sec 

5 50 23 h  50 50* 2 ½ h 

6 100 2 min  51 100 1 h, 19 h 

7 50 20 min  52 100 3 min 

8 100 26 h  58 100 5 min 

9 50 2 min, 4 min  59 100 3 h 

10 50 26 h  60 100 7 min, 10 min 

11 100* 30 sec  61 100 3 h, 19 h 

12 100* 30 sec, 1 min  62 100 6 min 

13 50 26 h  63 50 19 h, 24 h 

14 100* 10 sec, 30 sec  64 50 19 h, 24 h 

15 100* 15 sec  65 100 3 h 

16 100 5 min  66 100 2 h 

17 100 5 min  67 50 15 sec, 6 min 

18 100 30 min, 50 min  68 50 3 h, 24 h 

20 50 3 h, 26 h  69 100 30 sec 

21 50 3 h, 26 h  70 50 3 h 

22 100* 10 min, 20 min  71 100 1 h, 3 h 

23 100 5 min, 3 h  72 100 3 h, 24 h 

24 100 20 min, 1 h  73 100 3 h, 24 h 

25 50 1 h  74 50 3 h, 24 h 

26 100 1 min  75 50 3 h, 24 h 

27 100 1 ½ h, 3 h  76 50 3 h, 24 h 

28 100 1 ½ h, 3 h  77 50 3 h, 24 h 

29 100 1 ½ h  78 50 3 h, 24 h 

31 50 1 h, 3 h  79 100* 2 min 

32 100 4 min, 10 min  80 50 3 h, 24 h 

33 100 10 min, 24 h  81 50 3 h 

34 50 3 h, 24 h  83 100 30 sec 

35 100 30 sec  84 100 10 sec, 1 min 

36 100 10 min  85 100 15 min, 20 min 

37 100 15 min, 50 min  86 50 3 h 

38 50 3 h, 4 h  87 100 20 min 

39 100 15 min, 90 min  88 100 1 ½ h 

40 100 1 h  89 100 12 min 

41 50 1 h, 24 h  90 50* 10 sec 

42 100 30 min  91 100 14 min, 15 min 

43 100 30 min  92 50* 30 sec 

44 100* 10 sec, 3 min  93 100 3 h 

45 100* 15 sec, 1 min  94 100 1 min, 2 min 

* Fragment powder remaining undissolved was centrifuged and the supernatant was used for soaking. 

Fragment number refers to the Frag Xtal Screen from Jena Bioscience.  
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Crystals of the CtPth11 CFEM domain were soaked with fragments from the Frag Xtal Screen 

(Jena Bioscience), which were received as a kind gift from the group of Prof. Dr. Gerhard Klebe 

and Prof. Dr. Andreas Heine. 1 M fragment stock solutions (in DMSO) were mixed with mother 

liquor and glycerol (2.4 M ammonium sulfate, 0.8% MPD, 20% glycerol) to reach a final 

fragment concentration of either 100 mM or 50 mM, depending on the solubility of the 

fragment. Crystal soaking times of 3 h in the fragment containing solution were aimed for. If 

that time was not achievable, crystals were soaked as long as possible (up to 26 h), i.e. the 

crystals were harvested as soon as severe fractures were observed or when 26 h had passed. 

A summary of the soaking experiments conducted on CtPth11 can be found in Table 3. 

Appendix II contains a list of all datasets collected during the soaking experiments and the 

fragments used. 

 

3. 6. 4. Principles of X-ray diffraction 

The principles of X-ray diffraction are described in several excellent resources, both online and 

offline, in open-access resources and available for purchase. The topic is therefore only 

described briefly in this work. 

The prerequisite for being able to collect meaningful high resolution X-ray diffraction data is 

the presence of a crystal. Crystals are characterized by the periodic arrangement of a certain 

motif within a three-dimensional lattice. The repeating motif is referred to as the unit cell, the 

whole crystal can be recreated by translation of the unit cell in the three lattice directions (a, 

b, c). The smallest fragment of the crystal is the asymmetric unit, from which the unit cell can 

be recreated by symmetry operations. The symmetry of the molecules within a crystal is 

described by the crystallographic space groups. A combination of the seven crystal systems 

(triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, cubic) and 14 Bravais 

lattices results in 230 space groups. But because proteins are chiral molecules, certain 

symmetry operations (such as inversion or reflection) cannot be performed. Thus, 65 space 

groups are viable in protein crystallography. Another common characteristic of crystals is 

mosaicity. In an impeccable crystal, all unit cells would be perfectly aligned. Naturally, most 

crystals are not perfect and show slight displacements of blocks of unit cells relative to each 

other, i.e. mosaicity. 

When the crystal is placed in an X-ray beam, an X-ray diffraction pattern is the result. 

Diffraction occurs when X-rays with a wavelength that approximately corresponds the lattice 

parameters of the protein crystal are directed at the crystal and can be explained by the Bragg 

model. It describes in which circumstances constructive interference of scattered X-ray beams 

can occur, resulting in Bragg reflexes. In this context, the crystal is regarded as a set of equally 

spaced planes that are parallel to each other (Bragg planes). Each plane acts as mirrors for the 

incident X-ray beam – the angle of incidence (θ) equals the angle of scattering. Constructive 

interference of X-rays that are scattered from adjacent planes can only occur under certain 

circumstances, formulated as Bragg’s law (see formula below and Figure 7). 
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2𝑑 sin 𝜃 = 𝑛𝜆 

d = spacing between planes; θ = angle between plane and X-ray; n = integer; λ = X-ray wavelength 

 

 

Figure 7: Visual representation of Bragg’s law 

X-ray beams with the wavelength λ meet scatterers at the imaginary Bragg planes – which are separated by the 

distance d – at an angle of incidence θ. When the total path length difference 2dsinθ is an integer number of λ, 

Bragg’s law is fulfilled and constructive interference will occur. 

 

3. 6. 5. Practical approach to data collection 

All datasets from this thesis were measured at the ESRF (beamlines ID29, ID23-1, ID23-2) or at 

the SLS (beamlines PXI or PXIII). 

When X-ray diffraction data is collected from a crystal at a synchrotron beamline, several 

criteria should be adapted to measure high-quality datasets in a reasonable amount of time89. 

Automatic sample changers at the synchrotrons mount the loop onto a goniometer, where the 

crystal is cooled in a cryostream at 100 K. Room temperature measurements are rather 

unusual nowadays, because the radiation damage is lower at colder temperatures, allowing 

the collection of a complete dataset from a single crystal. At least two test exposures at 

orthogonal orientations (e. g. 0° and 90°) are done for determining the space group and 

estimating optimal data collection parameters. The required calculations are automatically 

done by the data acquisition and analysis software. At the ESRF, the data collection software 

is MxCuBE and data collection strategies are calculated by the EDNA framework90; at the SLS 

both tasks are run by the automatic data analysis software DA+91. Nevertheless, results from 

the data analysis software should be examined by the experimenter and manual estimations 

of the parameters should be done if required. During the work for this PhD thesis, the 

estimation of a crystal’s resolution by DA+ was found to be flawed in many cases; usually the 

appropriate crystal-to-detector distance had to be estimated manually. Exposure times and 

beam intensity were often accepted as indicated by the data analysis software. Datasets for 
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SAD phasing were tendentially collected with lower beam intensity to prevent extra radiation 

damage, to which the presence of heavy atoms can contribute significantly. The wavelength 

for measurement of native datasets was set to approximately 1 Å (12.398 keV); when 

anomalous data was measured, it was changed accordingly (see Pike et al.87). Usually, rotation 

ranges of in total 180° to 360° were collected, even if not necessarily required for collecting a 

complete dataset. As a larger range of rotation yields multiple measurements of the symmetry-

equivalent reflections, it theoretically results in higher-quality data. However, radiation 

damage has to be taken into account (amongst other factors)92. 

Datasets for S-SAD phasing of CtPth11 were measured according to a specialized data 

collection strategy described by Basu et al.93, together with Dr. Vincent Olieric from the SLS, 

Villigen. The wavelength was set to 5.5 keV (2.25 Å) and a raster scan was used to determine 

the best diffracting location within the crystal. Then, the first 360° ω dataset was collected. 

The starting angle for data collection was altered by +5° in Ϗ and φ orientations and another 

360° ω dataset was measured. This protocol was repeated, until the data collection statistics 

revealed significant radiation damage. Using this method, four datasets with acceptably low 

radiation damage could be collected from a single crystal. 

 

3. 6. 6. Data processing and data reduction 

Data processing consists of several steps: First, the space group of the crystal is determined – 

a procedure called indexing. Then, the intensities of the measured reflexes are integrated and 

finally, they are scaled54. During data reduction, the data is scaled to produce internally 

consistent data. Several datasets can also be combined in this step, a process called merging94. 

In this work, mainly the program XDS54 was used for data processing and AIMLESS95 was used 

for data reduction. 

In XDS, data processing is done in consecutive steps: XYCORR, INIT, COLSPOT, IDXREF, DEFPIX, 

INTEGRATE, and CORRECT. Each step produces a log file, named after the step, with the 

appendix “.LP” added. In the XYCORR step, geometrical corrections are applied if required. 

Correction files have to be specified in the XDS input file (“XDS.INP”). INIT then calculates the 

gain of detector, i. e. it differentiates between background and reflexes. In the COLSPOT step, 

strong reflections are identified, which are then used for indexing during IDXREF. Possible 

space groups are determined in this step. XDS chooses the space group with the highest 

symmetry and a good quality of fit for further processing steps. If the chosen space group is 

found to be incorrect, the space group can also be specified by the user to enforce correct cell 

constants. In the subsequent process – DEFPIX – certain pixels of the detector are labelled to 

be ignored during the integration step. INTEGRATE then calculates the intensities of the 

reflections in the dataset and CORRECT corrects the calculated intensities for decay, 

absorption, and variations of detector surface sensitivity. Processing statistics are provided in 

the “CORRECT.LP” file and the output file – “XDS_ASCII.HKL” – is generated54. 
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After processing a dataset, the space group was reviewed and corrected if required. 

Additionally, the quality of the data was assessed and the resolution of the dataset was 

estimated using the statistics provided in the “CORRECT.LP” file. CC(1/2) and I/σ were treated 

as main indicators for the dataset’s resolution. The dataset was then processed again, with 

space group and resolution already specified in XDS.INP. 

Data processing is followed by data reduction, which was done using AIMLESS95, run within 

CCP4i251. In this procedure the space group is determined a second time, because the indexing 

in the integration program only detects the lattice symmetry, which may not reflect the true 

symmetry. Symmetry related observations of reflections are then scaled and merged and a 

free-R set is generated, by default with 5% of the data94,95. Statistics given by AIMLESS were 

then used to reassess data quality and the resolution. 

 

3. 6. 7. Structure determination – solving the phase problem (SAD, S-SAD & MR) 

To be able to determine the structure of a molecule from X-ray diffraction data, the phase 

problem must be solved. The real space (i.e. the electron density function) and the reciprocal 

space (i.e. the structure factors measured in the diffraction experiment) are related to each 

other via the Fourier transform. The real space can be used to calculate the reciprocal space, 

but not vice versa, because some information is lost during data acquisition. This missing 

information are the phases of the X-ray waves, therefore the dilemma of lacking information 

is referred to as the phase problem. The phase problem is described by following equation: 

𝜌(𝑥𝑦𝑧) =
1

𝑉
∑|𝐹(ℎ𝑘𝑙)| ∙ 𝑒−2𝜋𝑖[ℎ𝑥+𝑘𝑥+𝑙𝑧−𝜙(ℎ𝑘𝑙)]

+∞

ℎ𝑘𝑙
−∞

 

ρ(xyz) = function of electron density at position xyz, V = Volume of the unit cell, |F(hkl)| = structure factor 

amplitudes, Φ(hkl) = phase associated with Fhkl 

 

Several methods are available for the determination of phases. The most commonly used 

method is Molecular Replacement (MR), which requires a model of a similar structure. Other 

methods do not rely on the availability of structural information92,96; among those, single-

wavelength anomalous diffraction (SAD) phasing has become the preferred structure solution 

method for many crystallographers92,97. 
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3. 6. 7. 1. SAD phasing enabled by heavy metal soaking 

For SAD phasing, the presence of anomalous scatterers is required to solve the phase problem. 

The anomalous scattering effect is especially strong for heavier atoms, thus some of the 

classical compounds brought into crystals for structure determination purposes contain Hg, 

Pt, U or Au87, but the use of lanthanides has also proven to be well suited for phase 

determination10,98,99. 

Anomalous diffraction occurs when heavy atoms are subjected to an X-ray wavelength at or 

near their absorption maximum. Therefore, the experiments may have to be conducted at 

tunable synchrotron beamlines, i. e. beamlines where it is possible to alter the X-ray 

wavelength. Absorption maxima are different for each atom and can either be determined 

experimentally or extracted from literature (e. g. found in Pike et al.87 or under 

http://skuld.bmsc.washington.edu/scatter/AS_periodic.html). When anomalous diffraction 

occurs, Friedel’s law is broken. Certain reflections are related to each other by inversion 

through the origin (they occupy the positions h, k, l and –h, -k, -l), these are referred to as a 

Friedel pairs. Friedel’s law states that these have equal amplitude and opposite phase, hence 

the intensity of the reflections is equal. When it is not fulfilled, a difference in the intensities 

of this pair of reflections can be observed, called the Bijvoet difference92. 

To be able to determine the phases, the positions of the anomalous scatterers have to be 

determined first. This is achieved from the Bijvoet differences using Patterson or direct 

methods100. This results in two possible enantiomers, of which the correct one is selected by 

evaluating which hand provides the better electron density map for the partial structure. The 

heavy atom parameters are refined, before the starting phases for the protein are deduced 

from the calculated anomalous model phases. Finally, phases are improved by density 

modification92. 

To enable phase determination of Awp3A via SAD, crystals were soaked in a drop of mother 

liquor containing 50 mM Gd(III) acetate for 90 min, before they were frozen in liquid nitrogen. 

For data collection, the X-ray wavelength was set to 1.71237 Å, which is near the L-III 

absorption edge of Gd. Crystallographic phases of a SAD dataset were determined using 

CRANK2101. 

 

3. 6. 7. 2. Native SAD phasing using the anomalous diffraction from sulfur 

Native SAD phasing exploits the anomalous diffraction from atoms not heavier than calcium 

(atomic number 20) for structure solution. Such can occur naturally in the protein, in ligands 

(e. g. phosphorous in bound DNA or RNA), or in buffers. In many cases, the sulfur atoms from 

cysteine or methionine residues in the protein are used for native SAD phasing, a practice also 

referred to as S-SAD phasing102. Usually, the wavelength of the X-ray beam wavelength cannot 

be adjusted to be very close to the X-ray absorption edge of the atom addressed in this phasing 

approach. This results in only low anomalous signal, so the data has to be collected carefully 
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to increase the signal to noise ratio of the data by reduction of noise97. This is often achieved 

by collection of several datasets and merging the data93. Other approaches are also applied at 

beamlines specialized for the collection of native SAD datasets, i. e. longer wavelength ranges, 

vacuum or helium environment, or the usage of special detectors103. 

Datasets of CtPth11 crystals were collected at the SLS, beamline X06DA (PXIII), together with 

Dr. Vincent Oliereic. The data collection strategy described by Basu et al. in 2019 was applied 

in this case: Several 360° ω datasets were collected from a single crystal, using a wavelength 

of 2.25 Å. After measurement of a dataset, Ϗ and φ orientations were incremented 5° and the 

next 360° dataset was collected93. S-SAD datasets were then merged on site using a custom 

script for xscale54. The structure of the CtPth11 CFEM domain was solved using CRANK2101. 

 

3. 6. 7. 3. Molecular replacement (MR) 

If a structure of a protein with a low root-mean-square deviation (RMSD) to the target protein 

is accessible, the phase problem might be solved by Molecular Replacement (MR). A low RMSD 

is generally indicated by a high sequence identity, with a minimal sequence identity of 30% 

often suggested in literature. The critical point in MR is the model quality; thus models may 

have to be trimmed – i. e. long loops or other flexible regions are removed, as well as bulky 

side chains – or adapted otherwise (e. g. a polyalanine model can be used)92,96. 

The structure solution process is essentially a comparison of the measured data with the 

model data. To enable this process, Patterson maps are calculated from both the observed 

data and the model. The maps are then correlated, whereby 6N parameters must be 

established to define the solution: three rotation angles and three translations for each 

molecule (N) in the asymmetric unit. As this six-dimensional search would take very long, it is 

usually split into two three-dimensional searches: maps are rotated against one another, then 

translated. However, the correct rotation cannot be calculated with an unknown translation. 

A scoring algorithm has to be applied at this point to pick a small number of solutions to go on 

with104; in Phaser this is the maximum likelihood method105. If the searches are completed 

successfully, the initial phases can be calculated and an electron density map is generated104. 

In this thesis, Phaser105 was used to solve the structure of Awp1A, with Awp3A serving as a 

search model. The initial MR result was then subjected to 20 cycles of model building using 

the model mode in the ARP/wARP Web Service (running ARP/wARP version 8.0)55 to obtain a 

complete structural model. Phaser105 is also implemented in the DIMPLE pipeline, which was 

used to analyze the CtPth11 fragment screen data (see chapter 3. 6. 8.). 
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3. 6. 8. Analyzing fragment screen data – the DIMPLE pipeline 

DIMPLE (DIfference Map PipeLinE) is an automated software pipeline designed to analyze 

crystals of a known protein that may have bound a ligand. It has been developed by the CCP4 

software group and the Diamond light source and can be run in CCP4106. A detailed description 

of the pipeline can be found under: https://ccp4.github.io/dimple/. The workflow applies 

rigid-body refinement to obtain the electron density map of the target structure; MR is done 

only when necessary. 

DIMPLE requires several input files: The model of the apo structure (pdb) and the 

corresponding reflection data (merged mtz) have to be given, as well as the target structure 

data (merged mtz). The target structure data is then prepared for rigid-body refinement in 

several steps: if the unit cell constants do not match the apo structure data, reindexing is 

required; this is done using POINTLESS. The data is then truncated (TRUNCATE) and 

FREERFLAG is run. When comparing data, it might be advisable to use consistent flags. DIMPLE 

therefore automatically assigns the same flags when the same pdb file is used. Alternatively, 

external reference flags may be given or the existing flags from the input mtz can be used. 

After these preparations, rigid-body refinement is done by REFMAC5, followed by a few more 

rounds of restrained refinement. Sometimes, MR is required before restrained refinement, 

this is done using Phaser. Finally, unmodelled blobs are identified. 

In this work, a custom script for running DIMPLE on a large amount of datasets measured at 

the SLS has been used (see Appendix III). The script is written for execution in the Unix shell, 

using the programming language Bash. The input of multiple datasets from the SLS is 

facilitated by implementation of a step for identifying “XDS_ASCII.HKL” files within a set of 

given directories. POINTLESS and AIMLESS are then run to obtain the merged mtz files from 

the XDS output files. Then DIMPLE is executed, with Free-R flags derived from the input mtz 

of the apo structure. 

 

3. 6. 9. Structure refinement 

Structure refinement is done to achieve agreement between the structural models obtained 

in the structure solution process and the experimental data. This is necessary because the 

initial structural model usually contains errors, i.e. deviations from the electron density map 

or chemical or physical flaws. During refinement, water molecules and ligands are added as 

well. 

The refinement is carried out in iterative cycles of manual model building and computational 

refinement; the data are continuously evaluated by the examination of certain parameters 

during the process. Manual model building is done by inspecting the fit of the model to the 

electron density map and adjusting it appropriately. Computational refinement is done by 

statistical improvement of the model to better fit the diffraction data, commonly applying two 

different methods: maximum likelihood refinement (used in REFMAC107) or simulated 
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annealing (phenix.refine52). Both use restraints in respect to bond distances, bond angles, 

torsion angles, and temperature factors (B-factors). 

The main indicators for the progress and quality of a refinement are the R-factors, Rwork and 

Rfree. These serve as a measure of the agreement between the structural model and the 

experimental data and are calculated as follows: 

 

𝑅 =  
∑ ||𝐹𝑜𝑏𝑠| − |𝐹𝑐𝑎𝑙𝑐||

∑ |𝐹𝑜𝑏𝑠|
 

Fobs = structure factor amplitudes of the experimental data, Fcalc = structure factor amplitudes calculated from 

the model 

 

Rwork is calculated from the working model, whereas Rfree is calculated from reflections 

excluded from the refinement process (by default 5% of reflections), providing a tool for cross-

validation. Rwork is always higher than Rfree, but large differences between the values indicate 

that the model is over-refined92. 

Most structures in this thesis were refined via iterative cycles of model building, performed in 

phenix.refine (part of the PHENIX crystallographic software suite52) and WinCoot53. The 

refinement of Awp3A-Gd was done in REFMAC5107 (run within the CCP4 software suite51) and 

WinCoot53. 
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4. Results 

4. 1. The cell wall proteome of Chaetomium thermophilum 

4. 1. 1. Prediction of GPI-anchored proteins 

For prediction of GPI-anchored proteins in C. thermophilum several features were considered. 

Firstly, GPI-anchored proteins have an N-terminal signal peptide, which targets them to the 

ER108. SignalP61 was used for identification of these signal peptides. The annotated 

C. thermophilum proteome contains 7165 protein sequences; an N-terminal signal peptide 

was identified in 562 sequences. Typically, GPI-anchored proteins do not contain any 

transmembrane helices108, absence of those was analyzed via TMHMM63. However, it must 

be considered that the GPI-anchor attachment sequence is recognized as a transmembrane 

helix108, therefore C-termini were ignored in this analysis. Among the 562 proteins with a 

signal peptide, transmembrane helices were not identified in 473 sequences. Finally, the Big-

PI Fungal Predictor was used for detection of C-terminal GPI anchor attachment sequences12. 

61 GPI-anchored proteins were predicted in this way. As an alternative approach for 

identification of GPI anchor attachment sequences, a pattern search was conducted using the 

sequence described by de Groot et al.11. This search lead to a set of 76 predicted GPI-anchored 

proteins. By combining the Big-PI positives and the proteins identified by pattern search, a 

total of 79 predicted GPI-anchored proteins were derived. Assignment to different protein 

families was then done by consulting the UniProt database in combination with BLAST 

searches. 

Table 4 shows a list of 46 proteins, for which an assignment of either protein family or 

contained domains could be made. Proteins without any assignments are shown in Table 5. 

 

Table 4: Predicted GPI-anchored proteins with family or domain assignments 

UniProt-ID Description Family/Domains Big-PI Pattern  

G0S879 hypothetical protein CTHT_0037870 Agglutinin-like - + 

G0S3D9 alpha-amylase-like protein Alpha-amylase-like + + 

G0SAA8 hypothetical protein CTHT_0041610 
Alpha-carbonic anhydrase, zinc-ion 
binding 

- + 

G0RYL2  hypothetical protein CTHT_0007090 CFEM + + 

G0SBA5 hypothetical protein CTHT_0049520 CFEM + + 

G0SDR6  hypothetical protein CTHT_0052730 CFEM + - 

G0S3S8  hypothetical protein CTHT_0030500 CFEM + + 

G0S002  hypothetical protein CTHT_0008240 CFEM, Mad1-like + + 

G0S223  hypothetical protein CTHT_0015720 ChpA-C/DUF320 + + 

G0SEJ6 putative covalently-linked cell wall protein Contains PIR-repeat + + 

G0S1Y6  hypothetical protein CTHT_0015310 Cupredoxin + + 

G0S9D8 hypothetical protein CTHT_0045490 Cupredoxin - + 
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G0SEF6 putative cell wall protein Ecm33 + + 

G0SEN2 hypothetical protein CTHT_0064350 
Endonuclease/exonuclease/phosphatase-
like 

- + 

G0SEQ3 hypothetical protein CTHT_0064570 FAD-binding, false positive result? - + 

G0S7F5 hypothetical protein CTHT_0027960 Ferritin-like superfamily, Rds1 - + 

G0SG17 hypothetical protein CTHT_0064700 GH catalytic core, ASL-like - + 

G0S4P0  hypothetical protein CTHT_0023010 GH16 + + 

G0SFX7 putative cell wall protein GH16 + + 

G0S5R2 hydrolase-like protein GH16, ConA-like domain + + 

G0SCM1 putative cell wall protein GH16, LamG superfamily + + 

G0SA20 cell wall glucanase-like protein GH16, LamG-superfamily + + 

G0SFR4 hypothetical protein CTHT_0071830 GH17 + + 

G0S1A4  hypothetical protein CTHT_0012900 GH18, chitinase, LysM-domain + + 

G0SH28 hypothetical protein CTHT_0068470 GH45, cerato-platanin - + 

G0S1V8  hypothetical protein CTHT_0015000 GH64, thaumatin-like + + 

G0S6S8 
1,3-beta-glucanosyltransferase-like 
protein 

GH72/Gel1 + + 

G0S249 
1,3-beta-glucanosyltransferase-like 
protein 

GH72/Gel2 + + 

G0S7C3 chitosanase-like protein GH75, Endo-chitosanase - + 

G0SFA3 
mannan endo-1,6-alpha-mannosidase 
DCW1-like protein 

GH76/Dcw1 + + 

G0SFW3 
putative UPF0619 GPI-anchored 
membrane protein 

Kre9/Knh1 + + 

G0SHT5 hypothetical protein CTHT_0073300 Kre9/Knh1 + + 

G0SF37 phospholipase-like protein Lysophospholipase + + 

G0S1H4 aspartic-type endopeptidase-like protein 
Peptidase A1 family/aspartic-type 
endopeptidase 

+ + 

G0S4R8  hypothetical protein CTHT_0023290 
Peptidase A1 family/aspartic-type 
endopeptidase 

+ + 

G0S3I8  hypothetical protein CTHT_0021410 Peptidase A1/pepsin-like + + 

G0SAA2 hypothetical protein CTHT_0041530 Peptidase A1-domain/aspartic peptidase - + 

G0S6I1 phosphoric diester hydrolase-like protein 
PLC-like phosphodiesterase, TIM 
beta/alpha-barrel domain superfamily 

+ - 

G0SDH5 phosphoric diester hydrolase-like protein 
PLC-like phosphoric diesterase, TIM 
barrel 

- + 

G0SI08  hypothetical protein CTHT_0074060 Polyampholyte  + + 

G0S1M2  hypothetical protein CTHT_0014100 
SAP-like domain-containing 
protein/Aspartic peptidase A1 family 

+ + 

G0SGS6 Cu/Zn superoxide dismutase-like protein SOD-like Cu/Zn-domain + + 

G0S667  hypothetical protein CTHT_0034360 SUN family + + 

G0S3B5  hypothetical protein CTHT_0020420 SurE-like + + 

G0SAZ2 hypothetical protein CTHT_0048310 Tetratrico peptide repeat - + 

G0SDV4 hypothetical protein CTHT_0053120 Wsc-domain + + 

G0RXT8 guanyl-specific ribonuclease-like protein false positive result? + + 
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Table 5: Uncharacterized or unknown predicted GPI-anchored proteins 

UniProt-ID Description Big-PI Pattern 

G0SDD9 
putative structural constituent of cell wall 
protein 

+ + 

G0RXW9  hypothetical protein CTHT_0004570 + + 

G0S179  hypothetical protein CTHT_0012640 + + 

G0S4A7  hypothetical protein CTHT_0039500 + + 

G0S348 hypothetical protein CTHT_0019640 - + 

G0S193  hypothetical protein CTHT_0012780 + + 

G0S5B3  hypothetical protein CTHT_0024200 + + 

G0S5C3  hypothetical protein CTHT_0024300 + + 

G0S759  hypothetical protein CTHT_0027530 + + 

G0S4Y9  hypothetical protein CTHT_0032150 + + 

G0S6P8  hypothetical protein CTHT_0035150 + + 

G0S6S2  hypothetical protein CTHT_0035400 + + 

G0S8L8  hypothetical protein CTHT_0038540 + + 

G0S8N5  hypothetical protein CTHT_0038740 + + 

G0S8Q3  hypothetical protein CTHT_0039950 + + 

G0S9L3 hypothetical protein CTHT_0046300 + + 

G0SBG4 hypothetical protein CTHT_0050180 + - 

G0SDX5 hypothetical protein CTHT_0053340 + + 

G0SDZ7 hypothetical protein CTHT_0053570 + + 

G0SBN8 hypothetical protein CTHT_0054240 + + 

G0SBT2 hypothetical protein CTHT_0054690 + + 

G0SCA5 hypothetical protein CTHT_0056530 + + 

G0SCN2 hypothetical protein CTHT_0057830 + + 

G0SF62 hypothetical protein CTHT_0060930 + + 

G0SHI8 hypothetical protein CTHT_0070170 + + 

G0SI03  hypothetical protein CTHT_0074010 + + 

G0S306 hypothetical protein CTHT_0019200 - + 

G0S609 hypothetical protein CTHT_0025610 - + 

G0S671 hypothetical protein CTHT_0034410 - + 

G0SCW3 hypothetical protein CTHT_0058590 - + 

G0SFJ0 hypothetical protein CTHT_0071010 - + 

G0S0P3  hypothetical protein CTHT_0010740 + + 
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The set of predicted GPI-anchored proteins in C. thermophilum contains a variety of commonly 

encountered cell wall proteins, e. g. an agglutinin-like protein, proteins containing a CFEM 

domain, several members of GH-families, Ecm33, and a member of the SUN-family11,12. 

 

4. 1. 2. Proteomic analysis of isolated C. thermophilum cell walls 

The prediction of GPI-anchored proteins poses a useful tool to generate an overview of the 

cell wall proteome and the families represented therein. However, data must be interpreted 

with some reservations, as it may contain false positive or false negative results. Additionally, 

it is based on genomic data, thus proteins without any proteomic evidence are included as 

well. To obtain a more realistic picture of the C. thermophilum cell wall proteome, cell wall 

isolates were analyzed by MS/MS analysis after digestion with proteases (trypsin and LysC). 

Data analysis was done with Proteome Discoverer 2.4 (ThermoFisher), using SEQUEST as a 

search engine and the C. thermophilum proteome and a list of common contaminations found 

in MS samples as search libraries. 

Because significant differences between samples were observed in previous measurements, 

three samples were measured to ensure high quality of results. The quality of the three 

samples was found to be consistent. Sample 1 contained 44 proteins that met the quality 

criteria employed for data analysis. 14 of those were identified to be contaminants, including 

9 proteins from other cellular components. This results in the identification of 30 potential cell 

wall proteins. Sample 2 contained 41 proteins, with 10 contaminants (5 coming from other 

cell organelles) and 31 cell wall proteins. 46 proteins were identified in sample 3, 15 of those 

were classified as contaminants (9 from other cellular components) and 31 as cell wall 

proteins. In total, 34 potential cell wall proteins were identified in the samples, 26 of those 

were found in all samples. The differences between the cell wall samples is highlighted in 

Figure 8, a list of the identified proteins can be found in Table 6. 
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Figure 8: Venn diagram of C. thermophilum cell wall samples 

The diagram shows the amount of proteins identified in each sample. 26 proteins were found in all three samples. 

One protein was identified only in sample 1 (UniProt-ID indicated in the figure), and one only in sample 3. Two 

proteins were found in samples 1 and 2, but not in sample 3, three proteins in sample 2 and 3, but not in sample 1. 

G0S8P3 was found in sample 1 and 3, but not in sample 2. 

 

Table 6: List of proteins identified in isolated C. thermophilum cell walls (sorted by Sequest HT score) 

UniProt-ID Description (UniProt) GPI predicted Family/Domains/Orthologues 

G0SDK5 Endo-1,3(4)-beta-glucanase-like protein - 
GH16, peptidase M48 and ConA-
like domain 

G0SEU4 Hydrolase-like protein - GH17 

G0RZV2 SH3b domain-containing protein - 
GH24, endolysin T4 type, 
lysozyme-like, SH3-like bact type 

G0SFR4 Uncharacterized protein CTHT_0071830 + GH17 

G0SDZ7 Uncharacterized protein CTHT_0053570 +  

G0SH48 1,3-beta-glucanosyltransferase - 
GH72, X8 domain, probably 
anchored to PM via helix 

G0SFX7 Putative cell wall protein + GH16, ConA-like domain 

G0SA20 Glycosidase + GH16, LamG-superfamily 

G0S5W8 LysM domain-containing protein -* 
Cyanovirin-N, Gly zipper, LysM 
domain – probable adhesin 

G0S763 Uncharacterized protein CTHT_0027570 - Bys1, osmotin/thaumatin-like 

G0RZV3 Uncharacterized protein CTHT_0004320 - 
SH3b-like bac type, peptidase C51, 
CHAP domain 

G0SCM1 Glycosidase + Crh1, GH16, ConA-like domain 

G0SG36 SH3b domain-containing protein - 
Hcy domain, SH3b domain, 
Papain-like - similar to NlpC/P60-
like protein 

G0SD45 Probable alpha/beta-glucosidase agdC - GH31, Gal mutarotase 

G0SF37 Lysophospholipase + PLA2c 

G0SBL0 Glyoxal oxidase-like protein - 5 x Wsc-domain, galactose oxidase 



  4. Results 

61 
 

G0S9L3 Uncharacterized protein CTHT_0046300 +  

G0SFW3 
Putative UPF0619 GPI-anchored membrane 
protein 

+ Kre9/Knh1 

G0S2U2 C3H1-type domain-containing protein - 
contains C3H1-type Zn-finger 
domain 

G0S1A4 Chitinase + GH18, Chitinase, LysM-domain 

G0SA61 Uncharacterized protein CTHT_0041120 - 
6-blade b-propeller TolB-like, 
quinoprot gluc/sorb DH 

G0SB94 Exo-1,4-beta-D-glucosaminidase - GH2, Mannosidase, Ig GlcNase 

G0RZA2 Glucoamylase - 
6-hairpin glycosidase, CBM20, 
GH15 

G0S8P3 Serine-type endopeptidase-like protein - 
Fn3, Peptidase S8/S53, subtilisin - 
annotated as cell wall protein in 
the UniProt 

G0SCA5 Uncharacterized protein CTHT_0056530 +  

G0S3S8 CFEM domain-containing protein + CFEM 

G0SFS7 Uncharacterized protein CTHT_0071970 - 
similar to Neurospora crassa 
Acw12 

G0S6S8 1,3-beta-glucanosyltransferase + GH72/Gel1 

G0S3D9 Alpha-amylase + Alpha-amylase 

G0S249 1,3-beta-glucanosyltransferase + GH72/Gel2 

G0SEF6 Putative cell wall protein CTHT_0063570 + Ecm33 

G0S5M7 Catalase - Catalase class 2 

G0S1H4 Aspartic-type endopeptidase-like protein + 
Peptidase A1 family/aspartic-type 
endopeptidase 

G0S002 CFEM domain-containing protein + CFEM/Mad1 

* no signal peptide predicted by SignalP 

The GPI anchor signal sequence was predicted using the Big-PI Fungal Predictor and the pattern search. 

 

In total, 17 of the predicted proteins were identified in the cell wall isolates. At this point, it 

has to be considered that not all GPI-anchored proteins are associated to the carbohydrate 

moiety of the cell wall, some remain at the plasma membrane (e. g. Dcw1). The prediction 

does not include sorting signals in the ω- region of the GPI-attachment site12, hence 

identification of all predicted proteins in the cell wall isolates should not be expected. 

Interestingly, the analysis of cell wall isolates also revealed 17 proteins that were not included 

in the prediction. These proteins have a signal peptide, but no GPI anchor attachment 

sequence was detected by the Big-PI Fungal Predictor - with the exception of G0S5W8, for 

which no signal peptide was predicted either. 
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4. 1. 3. Imaging of C. thermophilum cell walls 

To provide first insights into the structure of the C. thermophilum cell wall, cells were imaged 

using TEM. Well-grown mycelium from liquid cultures was used for imaging; sample 

preparations were done by Dr. Thomas Heimerl from the Synmikro Electron Microscopy 

Facility. Selected images are shown in Figure 9 and Figure 10. 

 

 

Figure 9: TEM image of C. thermophilum 

C. thermophilum was imaged using TEM; the image shows fungal hyphae. The identified cellular components are 

labelled as follows: N = nucleus, PM = plasma membrane, CW = cell wall, ER = endoplasmic reticulum, 

M = mitochondria. 

 

Several organelles can be identified in the TEM images of C. thermophilum, including the 

nucleus, mitochondria, the endoplasmic reticulum, the plasma membrane and the cell wall. 

Further components could not be clearly identified and therefore remained unlabeled in 

Figure 9. The diameter of both hyphae shown were measured using the image analysis 

software Fiji109, revealing a diameter of ca 2.6 µm. 
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During sample preparation, the cell wall is partly detached from the plasma membrane. The 

cell wall is therefore not visible in parts of the image. A closer look on the C. thermophilum 

cell wall is provided in Figure 10, which provides insight into the cell wall structure. 

 

 

Figure 10: TEM image of the C. thermophilum cell wall 

An image of the C. thermophilum cell wall (CW) reveals the two layers of the cell wall: the less electron 

dense inner wall is mainly composed of the β-1,3-glucan moiety of the cell wall; the outer more 

electron dense layer is mainly composed of mannoproteins. The plasma membrane (PM) appears as a 

very electron dense double layer. 

 

The two layers of the wall, which are described in literature, can be recognized in TEM images 

of C. thermophilum. The carbohydrate-rich inner part of the cell wall appears less electron 

dense (i. e. lighter) than the protein-rich outer part. The plasma membrane is visible as a 

bilayer with very high electron density. A cell wall thickness of ca 75 nm was measured. 
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4. 2. Analysis of cluster VI adhesins from C. glabrata 

4. 2. 1. Functional classification of Awp’s based on a SSN 

The SSN can be used as a tool for the identification of isofunctional subfamilies within a set of 

similar sequences. Sequences within the network are represented as “nodes”, their 

relationship to each other is shown by lines connecting those, referred to as “edges”. The 

similarity between sequences within the network is assessed via all-by-all BLAST. An E-value 

is specified by the user as a cut-off for drawing edges. This leads to the formation of clusters 

of nodes that represent protein subfamilies. Additionally, the information gained from a SSN 

often allows the identification of orthologues, which could not be clearly assigned using a 

BLAST search alone110. In this context, the SSN was used as a tool to re-evaluate previous 

classifications of Awp’s into different subfamilies and to incorporate proteins from other 

organisms in the analysis and thereby exhibit possible orthologues. An SSN was created that 

used the β-helical region of the Awp1 and Awp3b A-domains (see below) as search templates 

for iterative PSI-BLAST searches. After 10 rounds, the aligned sequences were combined and 

redundant sequences were removed, resulting in a total of 11737 sequences that served as 

an input for the SSN. Initial analysis was done with a E-value cut-off of 10-5, which was then 

decreased to 10-20 and 10-25, respectively, for edge removal. The resulting SSN contains 4507 

nodes with a pair-wise sequence identity greater than 80% for each node. 

 

 

Figure 11: Classes of fungal cell wall proteins of the Awp1/Hyr1/Hpf1-type 

The upper left panel shows the SSN of orthologues of Awp1, Awp3a, Awp3b and Awp4 (E-value cut-off 10-20), 

which were identified via 10 repeated rounds of PSI-BLAST and then merged. Bacterial classes are shown in 

different shades of grey; fungal classes are colored red. Fungal classes (color scheme shown on the left) are 

enlarged in the right panel. Awp1 and Awp3b are located in two different clusters. Also, the Iff family of adhesins 

forms a large cluster, as well as the numerous paralogs of Awp2.  
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The SSN consists of protein sequences from bacteria (colored grey in the upper left panel of 

Figure 11) and fungi (shown in red in the same panel). Among the 11737 sequences in the 

network (4507 nodes), 625 sequences (445 nodes) are of fungal origin. The majority of fungal 

sequences are from Saccharomycetes (colored in different shades of orange and green in 

Figure 11). Awp1/3 orthologues from Dothideomycetes, Taphrinomycetes and Basidiomycetes 

form their own subcluster. The largest cluster is the IFF4 subcluster, containing several 

members of the Iff family of adhesins, as well as Hyr1 and Hyr3 paralogs. S. cerevisiae Hpf1, 

Css1 and Awa1 form a common subcluster. Concerning the C. glabrata Awp proteins, Awp1 

and Awp3 form their own subclusters. The Awp1 subcluster contains 17 paralogs of Awp1 (17 

sequences forming 11 nodes) and the Awp3 subcluster is made up from four nodes (five 

sequences). Interestingly, Awp2 and Awp4 are members of the same subcluster, consisting of 

15 nodes (31 sequences). 

 

4. 2. 2. Structural analysis of Awp3A 

4. 2. 2. 1. Cloning, expression and purification of Awp3A 

The Ser/Thr rich region of adhesins is subject to heavy glycosylation and therefore expected 

to be a flexible region. To increase the chance of crystallization, only the A-domain of Awp3 

(Awp3A) was expressed in E. coli and used for further experiments. A plasmid containing the 

domain was received by Prof. Dr. Piet de Groot (pRSETa-Thr_Awp3A). Because some features 

of pET28a(+) were regarded more favorable than certain features of the pRSETa vector (e. g. 

kanamycin resistance instead of ampicillin resistance), Awp3A was cloned into pET28a(+). This 

was achieved by digestion of pRSETa-Thr_Awp3A with BamHI and HindIII, followed by ligation 

into the pET28a(+) vector, which was also digested with named restriction enzymes 

beforehand. The resulting recombinant Awp3A contains an N-terminal His6-Tag to facilitate 

IMAC that is removable by thrombin cleavage. Theoretical properties of Awp3A were 

computed using the ProtParam tool (accessible via the ExPASy server)59. 

 

Name UniProt-ID 
Native amino 

acid range 
Length pI MW 

Extinction coefficient 

(280 nm)* 

Awp3A A0A6C0A1R4 20 – 345 360 aa 5.67 38.7 kDa 28.225 mM-1 cm-1 

* assuming all cysteine residues form disulfide-linked cystines 

 

The expression strain E. coli SHuffle T7 Express was included in the test expression experiment, 

because the sequence of Awp3A contains 6 cysteine residues that may form disulfide bonds. 

The strain is engineered to support formation of disulfide bonds in the cytoplasm of the cells111 

and proved to be well suited for production of Awp3A. The protein was overproduced for 72 

h at 12 °C; expression was induced with 0.1 mM IPTG. 
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For purification, 2 – 8 L liquid culture were used, depending on the application. Cells were 

lysed either by sonication or with the microfluidizer. The lysate was cleared by centrifugation, 

sterile-filtered and applied on a 5 mL Ni-NTA column. Washing steps with phosphate buffer 

containing 10 and 20 mM imidazole were done and the protein was eluted with buffer 

containing 500 mM imidazole. Resulting fractions, analyzed by SDS-PAGE, are shown in Figure 

12. For further purification by SEC, the elution fraction from Ni-NTA chromatography was 

concentrated and applied on either a HiLoad 26/600 Superdex 200pg column (320 mL column 

volume) or a HiLoad 16/600 Superdex 200pg column (120 mL column volume), depending on 

the expected quantity of Awp3A. SDS-PAGE analysis of the SEC, as well as the chromatogram, 

are depicted in Figure 12. Pure fractions from SEC were pooled and brought to the 

concentration required for further experiments, usually via concentrating the sample. Large 

scale expression of Awp3A resulted in a yield of approximately 6 mg of pure protein per L of 

culture. 

 

 

Figure 12: Purification of Awp3A 

A) The SEC chromatogram of the Ni-NTA elution fraction is shown. B) 12% SDS-PAGE analysis of the Ni-NTA 

purification of Awp3A. M: marker, L: lysate, FT: flow-through, W1: wash 1 (10 mM imidazole), W2: wash 2 (20 mM 

imidazole), E: elution (500 mM imidazole) C) The SDS-PAGE analysis of the SEC purification of Awp3A is pictured. 

A red marking indicates the fractions that have been used for the SDS-PAGE. 
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4. 2. 2. 2. Crystallization, soaking and structure solution 

Crystal growth could be observed at a protein concentration of 24 mg/mL in 0.2 M magnesium 

chloride, 0.1 M Tris pH 7.0, 2.5 M sodium chloride after two to three weeks of incubation at 

18 °C. The condition was optimized using a hanging-drop vapor diffusion setup, resulting in 

larger crystals (see Figure 13). Awp3A crystals were harvested from an optimized condition 

containing 0.2 M magnesium chloride, 0.1 M Tris pH 7.0, 3.0 M sodium chloride. As no protein 

with over 30% sequence identity could be found in the PDB, SAD phasing was chosen as an 

approach to solve the structure of Awp3A. Therefore, some crystals were soaked in 

Gd(III) acetate before taking them to the synchrotron. Awp3A crystals were also observed in 

an initial crystallization screen, growing in 0.1 M sodium phosphate, 0.1 M potassium 

phosphate, 0.1 M MES pH6.5, 2.0 M sodium chloride after several months. These were directly 

frozen without any additional cryoprotection and taken to the ESRF. 

 

 

Figure 13: Awp3A crystals 

A) Crystals of Awp3A that grew in a sitting-drop vapor diffusion setup at 18 °C in 0.2 M magnesium chloride, 

0.1 M Tris pH 7.0, 2.5 M sodium chloride after few weeks. B) The optimized crystallization condition: a hanging-

drop vapor diffusion setup with larger drop size (1.2 µL) was used, crystals were grown in 0.2 M magnesium 

chloride, 0.1 M Tris pH 7.0, 3.0 M sodium chloride at 20 °C. 

 

Awp3A crystallized in space group H 3 2 with following unit cell constants: a = b = 147.34 Å, 

c = 117.44 Å, α = β = 90°, γ = 120°. Gd-soaked crystals diffracted to a resolution of 2 Å; 

processing was done in iMOSFLM112, scaling and data reduction were done in AIMLESS95, run 

in the CCP4i2 software suite51. Crystallographic phases of the SAD dataset were determined 

using the CRANK2 pipeline101, followed by refinement in REFMAC5107 and model building in 

ARP/wARP55. The structure was further refined in Coot53 and PHENIX52. The Gd-derivate of 

Awp3A is referred to as Awp3A-Gd hereafter. Data collection and refinement statistics are 

shown in Table 7.  
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Table 7: Data collection and refinement statistics of Awp3A and Awp3A-Gd (values in the parenthesis are for 
the outer shell) 

 Awp3A Awp3A-Gd 

Dataset name 2017_06_25-CC189A_x3 2017_06_25-CC213A_x2 

Data collection   

X-ray source ESRF, ID23-1 ESRF, ID29 

Wavelength (Å) 0.97625 1.71237 

Space group R 3 2 R 3 2 

Unit cell parameters (Å) a = b = 147.97, c = 117.77 a = b = 144.4, c = 113.95 

Resolution range (Å) 53.51  - 1.55 (1.61  - 1.55) 27.41  - 1.99 (2.06 - 1.99) 

Total no. of reflections 134731 (13321) 62641 (6200) 

No. of unique reflections 69278 (6889) 31321 (3100) 

Rmerge (%) 3.627 (42.99) 3.672 (12.86) 

I/σ(I) 10.68 (1.84) 18.42 (4.90) 

Completeness (%) 96.96 (97.30) 99.92 (100.00) 

Multiplicity 1.9 (1.9) 2.0 (2.0) 

CC1/2 0.999 (0.431) 0.997 (0.924) 

Refinement   

Rwork/Rfree (%) 15.93/18.79 19.03/22.78 

No. of atoms 3117 2658 

Average B factor (Å2) 28.78 37.13 

R.m.s. deviations   

Bond length (Å2) 0.008 0.014 

Bond angles (°) 0.99 2.02 

Ramachandran plot (%)   

Favoured 96.93 96.68 

Allowed 3.07 2.99 

Outliers 0.00 0.33 

Rotamer outliers (%) 0.35 3.09 

 

The asymmetric unit of Awp3A-Gd contains one molecule of Awp3A and 42 Gd3+ ions (see 

Figure 14). The A-domain of Awp3b consists of 33 β-strands and a short α-helix between 

strands 31 and 32. It can be divided into two domains: a parallel right-handed β-helix with 

three faces, and an α-crystallin domain. Due to uninterpretable electron density, the following 

residues could not be modelled in the structure of Awp3A-Gd: S75 – D82 and S320 – E322. 

These gaps are both located in loop regions. 

Crystals of Awp3A obtained in 0.1 M sodium phosphate, 0.1 M potassium phosphate, 0.1 M 

MES pH6.5, 2.0 M sodium chloride diffracted to 1.55 Å resolution. The structure was solved in 

Phaser105, using Awp3A-Gd as a model. Iterative cycles of real space and reciprocal space 

refinement were done in WinCoot53 and via phenix.refine52. In contrast to the heavy atom 

derivate (Awp3A-Gd), the electron density of the native structure of the Awp3 A-domain 

(Awp3A) is clearly defined in all parts of the structure. The conformation of some loops is 

different in both structures, indicating flexibility of these regions. 
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Figure 14: Comparison between native Awp3A and the Gd-derivate 

A) Cartoon and surface representation of Awp3A. Na (shown in light pink) and Cl (colored green) are bound to 

the structure. B) Cartoon and surface representation of Awp3A-Gd; the 42 Gd3+ ions are represented as orange 

spheres. C) Comparison between the protein moieties of the two structures. Awp3A is shown in red, Awp3A-Gd 

is shown in green. The structures are highly similar to each other, with minor changes in the conformation of 

some loops. Additionally, a few residues (S75 – D82 and S320 – E322) could not be modelled in Awp3A-Gd due 

to unclear electron density. 

 

4. 2. 3. Structural analysis of Awp1A 

4. 2. 3. 1. Cloning, expression and purification of Awp1A 

A plasmid containing the A-domain of Awp1 (Awp1A) was received from Prof. Dr. Piet de Groot 

(pRSETa-Thr_Awp1A). Just as Awp3A, Awp1A was cloned into pET28a using the restriction 

enzymes BamHI and HindIII. The recombinant Awp1A with an N-terminal His6-Tag was 

produced in E. coli SHuffle T7 Express at 12 °C for 72 h; induction was done with 0.1 mM IPTG. 

The theoretical properties of Awp1A were computed with ProtParam59. 

 

Name UniProt-ID 
Native amino 

acid range 
Length pI MW 

Extinction coefficient 

(280 nm)* 

Awp1A Q6FPN0 18 – 325 341 aa 4.94 35.7 kDa 16.515 mM-1 cm-1 

* assuming all cysteine residues form disulfide-linked cystines 

 

2 – 8 L liquid culture were used for purification; cells were broken either by sonication or with 

the microfluidizer. After clearing and sterile-filtering, the lysate was applied on a 5 mL Ni-NTA 
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column. A washing step was done with phosphate buffer containing 30 mM imidazole and 

Awp1A was eluted using buffer with 250 mM imidazole. Analyzed fractions are shown in 

Figure 15. SEC was done as a polishing step of the purification process, using either a HiLoad 

26/600 Superdex 200pg column or a HiLoad 16/600 Superdex 200pg column, depending on 

the expected quantity of purified protein. Fractions from SEC that contained pure Awp1A were 

pooled and brought to the concentration required for further experiments. A yield of 

approximately 7 mg pure protein per L of culture could be achieved. 

 

 

Figure 15: Purification of Awp1A 

A) The SEC chromatogram for the purification of Awp1A is shown. B) The 12% SDS-PAGE analysis of the Ni-NTA 

purification of Awp1A. M: marker, L: lysate, FT: flow-through, W1: wash 1 (10 mM imidazole), W2: wash 2 (30 mM 

imidazole), E: elution (250 mM imidazole). C) The SDS-PAGE analysis of the purification of Awp1A via SEC is 

shown. A red marking indicates the fractions in the SEC chromatogram, which have been used for the SDS-PAGE 

analysis. 

 

4. 2. 2. 2. Crystallization and structure solution 

Crystals of the Awp1 effector domain grew in several conditions, using protein concentrations 

of 48 mg/mL and 24 mg/mL. Mainly thin needle-shaped crystals were observed, forming 

brushes or sea urchins in many conditions (see Figure 17). Thicker needles were harvested and 

taken to the ESRF for data collection. Native crystals of Awp1A diffracted to a maximum 

resolution of around 2.5 Å, showing moderate anisotropy. Because Awp1 and Awp3 belong to 

the same subfamily of putative adhesins, structural similarity was expected. Additionally, the 

sequence identity and similarity of the effector domains (ranging from amino acid 19 to 325 
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in Awp1 and from 20 to 345 in Awp3b) are 25.1% and 40.6%, respectively, indicating a 

sufficient resemblance for MR. However, structure solution attempts failed. 

Optimization of the crystals was conducted to gain higher quality datasets. Additionally, 

reproduction of these well diffracting crystals for ab initio structure solution was expected to 

be required. An optimized crystallization condition for Awp1A, containing 0.1 M MOPSO/Bis-

Tris pH 6.5, 10% (w/v) PEG 8000, 20% 1,5-pentanediol, 0.5 mM erbium (III) chloride, 0.5 mM 

terbium (III) chloride, and 0.5 mM ytterbium (III) chloride was found. Resulting crystals 

diffracted to a resolution of up to 1.85 Å with some anisotropy. Crystals of the Awp1 effector 

domain that were soaked in various heavy atom solutions. However, various attempts of 

heavy atom phasing did not initially result in structure determination. Most heavy metals 

soaked into the crystal were either not bound (no anomalous signal could be detected) or the 

anomalous diffraction was very weak and did not reach a high resolution (in most cases 

anomalous diffraction to a resolution of only 6 Å could be detected). Also anomalous 

diffraction from the heavy atoms that were already present in the crystallization condition 

(erbium, terbium, and ytterbium) could not be observed. 

 

 

Figure 16: Crystals of the Awp1 effector domain 

The effector domain of Awp1 formed needle-shaped crystals in several conditions: (A) 0.1 M MOPSO/Bis-Tris 

pH 6.5, 12.5% (w/v) PEG 4000, 20% (v/v) 1,2,6-hexanetriol, Amino acid II mix (1:10), (B) 0.1 M MOPSO/Bis-Tris 

pH 6.5, 10% (w/v) PEG 8000, 20% 1,5-pentanediol, Lanthanide mix (1:10), (C) 0.1 M MOPSO/Bis-Tris pH 6.5, 12.5% 

(w/v) PEG 4000, 20% (v/v) 1,2,6-hexanetriol, Lanthanide mix (1:10), (D) 0.1 M MOPSO/Bis-Tris pH 6.5, 12.5% 

(w/v) PEG 4000, 20% (v/v) 1,2,6-hexanetriol, Alkali mix (1:10), (E) 0.1 M HEPES pH 7.5, 10% (w/v) PEG 6000, 5% 

(v/v) MPD, (F) 0.1 M MOPSO/Bis-Tris pH 6.5, 12.5% (w/v) PEG 4000, 20% (v/v) 1,2,6-hexanetriol, Alkalis mix 

(1:10)85 with a protein concentration of 24 mg/mL.  
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Figure 17 Crystal of the Awp1 effector domain and its diffraction image 

A) A photograph of the crystal before its characterization is shown. Its diffraction pattern is shown in B), the 

detector resolution at the edge is 2 Å. The data collection of 2018_06_28-CC223A_x6 is shown. 

 

Ultimately, the data collection represented in Figure 17 yielded a structure solution. The 

protein crystallized in space group P 43 21 2 with two molecules per asymmetric unit; the 

crystal diffracted to a resolution of 1.85 Å. Structure solution was done by MR in Phaser105 

with Awp3A as a template, resulting in an incomplete model of Awp1A, with an Rfree of 55.1%. 

Even though the Rfree does not indicate structure solution, the data was used as an input for 

model building using the ARP/wARP Web Service55. After 10 cycles of model building, which is 

the default setting in ARP/wARP, the Rfree dropped to 40.9% and 46% of expected residues 

were build. Finally, running 10 additional cycles lead to a decrease of Rfree/Rwork to 26.2/22.8% 

and 609 of 648 amino acids were modelled. Statistics after refinement using Coot53 and 

phenix.refine52 are presented in Table 8; the structure of Awp1 is shown in Figure 18. Just as 

Awp3A, Awp1A consists of 33 β-strands and a short α-helix between β-strands 31 and 32. It 

contains a triangular right-handed parallel β-helix and an α-crystallin domain as well. 

 

4. 2. 4. Structures of the A-domains of cluster VI adhesins Awp1 and Awp3 

Both, Awp1A and Awp3A consist of a β-helix domain and an α-crystallin domain. They are 

structurally highly similar to each other, with a root mean square deviation (RMSD) of 1.466 Å 

with 1300 aligned atoms (calculated via structure-based alignment in PyMOL). One could 

presuppose this, as both proteins belong to the same subfamily of putative adhesins, i. e. 

cluster VI (see chapter 1.3). In this context the sequence identity and similarity of 22.1% and 

32.4% (aligned via EMBOSS Needle), respectively, should be mentioned. Sequence identity 

and similarity of these effector domains (ranging from amino acid 19 to 325 in Awp1 and from 

20 to 345 in Awp3b) are 25.1% and 40.6%, respectively. The initial difficulties in solving the 

structure of Awp1A were therefore unexpected. 
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Figure 18: Overall structures of Awp1A and Awp3A 

A) Structure of Awp1A is shown on the left in cartoon representation, colored in a rainbow-scheme. The 

N-terminus is colored blue, the C-terminus is shown in red. Disulfide bonds are indicated by yellow sticks and 

spheres. The two domains both proteins consist of are indicated in different colors on the right, on Awp3A. The 

N-terminal β-helix domain is shown in green, the α-crystallin domain is pictured in cyan. Awp3A contains 3 

disulfide bonds (shown in yellow), of which only one is also present in Awp1A. B) Structural comparison between 

Awp1A (blue) and Awp3A (green), represented in two different orientations. The A-domains are structurally 

similar to each other, with an RMSD of around 1.4 Å. 
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Table 8: Data collection and refinement statistics for Awp1A (values in the parenthesis are for the outer 
shell) 

 Awp1A 

Dataset name 2018_06_28-CC223A_x6 

Data collection  

X-ray source ESRF, ID29 

Wavelength (Å) 0.97717 

Space group P 43 21 2 

Unit cell parameters (Å) a = b = 83.28, c = 274.24 

Resolution range (Å) 45.81  - 1.85 (1.92  - 1.85) 

Total no. of reflections 165589 (16103) 

No. of unique reflections 83156 (8101) 

Rmerge (%) 2.97 (34.94) 

I/σ(I) 12.64 (1.62) 

Completeness (%) 99.16 (97.48) 

Multiplicity 2.0 (2.0) 

CC1/2 0.998 (0.95) 

Refinement  

Rwork/Rfree (%) 18.79/20.83 

No. of atoms 5262 

Average B factor (Å2) 51.43 

R.m.s. deviations  

Bond length (Å2) 0.004 

Bond angles (°) 0.67 

Ramachandran plot (%)  

Favoured 96.89 

Allowed 2.62 

Outliers 0.49 

Rotamer outliers (%) 1.31 

 

The major structure motif of the A-domains of Awp1 and Awp3 is the N-terminal right-handed 

parallel β-helix with three faces. According to the nomenclature for β-helices introduced by 

Yoder & Jurnak113, the three β-strands forming a single turn are referred to as PB1, PB2, and 

PB3; loops between them are labeled T1 (connecting PB1 and PB2), T2 (PB2 and PB3), and T3 

(PB3 and PB1 of the next turn), as indicated in Figure 19 A. Along the whole β-helix, T2 and T3 

loops are very short, whereas T1 loops are more extended. Awp3A contains three disulfide 

bonds, of which two are placed within the latter loop regions. The third one is placed near its 

C-terminus and is not resolved in Awp3A-Gd. The disulfide bonds within the T1 loops are not 

observed in Awp1A, only the one near the C-terminus is preserved. 

Both structures display several features that are well conserved in parallel β-helix proteins. 

Within the β-helix domains of Awp1A and Awp3A, stacks of hydrophobic amino acids can be 

observed (see Figure 19 B). These are not perfectly aligned but slightly offset, which is 

achieved by twisting the β-helix. This prevents an energetically unfavorable alignment of the 
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aromatic side chains, in which the π-electron clouds would repel one another. In addition, the 

asparagine ladder, which can be detected in the T3 turns of both structures, has also been 

described as a typical feature of β-helix proteins. In Awp1A, it is composed of five asparagines, 

where each side chain forms a hydrogen bond to the next one. Both features provide 

additional stability and rigidity to the β-helix114,115. In case of the Awp1 A-domain, further 

amino acid stacks can be observed on the motif’s surface. These are serine/threonine ladders, 

which are not typical for β helix proteins (see Figure 19 D). 

 

 

Figure 19: Features of the β-helix domains of Awp1A and Awp3A 

A) A single turn of the β-helix domain is shown from above and labeled according to the standard nomenclature 

used for β-helices113. The β-strands PB1 and PB2 are packed against each other, while PB3 is placed perpendicular 

in relation to them. The T1 loops are elongated in both structures, whereas T2 and T3 loops are very short. 

B) Awp1A is depicted from the top of the β-helix. Stacking of hydrophobic residues can be observed inside the 

domain, involving leucine, isoleucine, and phenylalanine residues. C) A stack of asparagine residues inside the 

β-helix is found in both, Awp1A and Awp3A. Similar stacking interactions were also observed in other β-helix 

proteins114. D) Ladders of similar residues are also placed on the outer face of the Awp1A β-helix, namely stacks 

of serine, threonine, and asparagine. 
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4. 2. 5. Binding studies on Awp1A and Awp3A 

Due to the clear structural similarity between Awp1A and Awp3A and various polysaccharide 

binding proteins, carbohydrate binding studies were conducted: A TSA served as quick and 

easy screening method for analyzing potential binding of smaller polysaccharides that were 

available in the lab. Additionally, both proteins were sent to the Consortium of Functional 

Glycomics (CFG) to analyze binding properties on a glycan array. 

 

4. 2. 5. 1. Ligand screening via TSA 

The TSA provides a convenient screening method that can be done in a short time with a 

relatively low amount of sample. The determination of a protein’s melting temperature can 

serve various purposes, usually an increase of protein stability is looked for by screening the 

thermal stability in various buffers or in presence of potential ligands. As proteins tend to be 

more thermally stable when their cognate ligand is bound, a thermal shift, i. e. a shift of 

melting temperature, is an indication for protein-ligand-interaction116. 

 

 

Figure 20: Results of the TSA for Awp3A 

The melting temperature of Awp3A without any potential ligands added is used as a base line. The bars show the 

deviation of the melting temperatures of Awp3A in presence of the indicated glycan. A significant increase in 

melting temperature by 4.2 °C could be observed in the presence of 50 mM Manα1-6Man. 
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A melting temperature of 59.5 °C was measured for Awp3A in SEC buffer without any potential 

ligands added. In the ligand discovery experiment, addition of α-1,6-mannobiose revealed an 

increase in melting temperature by 4.2 °C. Other mannobiose components (α-1,2-

mannobiose, α-1,3-mannobiose, α-1,4-mannobiose) did not induce any significant changes in 

melting temperature, which is common for glycan binding proteins, as these proteins tend to 

be very specific and a change in the connection of the mannose units can alter the glycan 

structure significantly. Interestingly, also mannotetraose and mannopentaose did not induce 

any significant changes in melting temperature, although both compounds contain 

α-1,6-mannobiose. A TSA conducted with Awp1A with the same set of potential ligands did 

not show any thermal shifts (Appendix IV). 

The possible interaction of Awp3A and α-1,6-mannobiose was also examined via ITC, where 

no binding event could be observed (Appendix V). However, ITC experiments with 

carbohydrates may not reveal any binding, although present, because the release of ordered 

water molecules may compensate for the temperature change that is generated via the 

binding process. To further investigate a possible interaction, Awp3A crystals were soaked 

with highly concentrated α-1,6-mannobiose solution (1 M). In the structure obtained in this 

experiment, additional electron density is present (see Figure 21). However, this density can 

be unambiguously assigned to the His6-Tag of Awp3A. In conclusion, the addition of α-1,6-

mannobiose leads to conformational stabilization of the His6-Tag, but no specific binding of 

Awp3A to this glycan could be determined. 

 

 

Figure 21: Structure of Awp3A, soaked with 1 M α-1,6-mannobiose 

The overall structure of Awp3 is shown in cartoon style, with the ordered His6-Tag depicted as sticks. E121 

interacts with a sodium ion (purple sphere), to which the His6-Tag is bound. The 2mFobs-DFcalc map at a contouring 

level of 2.0 σ is depicted for the His6-Tag.  
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4. 2. 5. 2. Glycan array screening 

Due to the high structural similarity to various glycan binding proteins and the lack of 

availability of a wide variety of potential ligands in the lab, the binding properties of both, 

Awp1A and Awp3A, were analyzed via the Mammalian Glycan Array version 5.2 from the CFG. 

Glycan arrays have proven to be an efficient tool for determination of ligand binding patterns 

of glycan-binding proteins. The method requires only a small amount of sample, while a large 

library of glycans can be screened against117. Therefore, purified protein samples with a 

concentration of 50 µg/mL in SEC buffer were sent to the CFG, where the experiment was 

conducted. Detection was done via an anti-His antibody, coupled to AlexaFluor 488, to enable 

detection without masking any residues that may be involved in the binding process. The data 

is deposited under cfg_rRequest_3531. No binding to the glycans presented on the chip was 

detected (Appendix VI). 

 

4. 3. Analysis of the cluster III adhesin Awp14 

4. 3. 1. Cloning, expression and purification of Awp14A 

pET28b(+) containing the A-domain of Awp14 (Awp14A) has been received from Prof. Dr. Piet 

de Groot (pET28b_Awp14). An N-terminal His6-Tag enables protein purification via IMAC. 

Theoretical properties of Awp14A were computed via ProtParam59. 

 

Name 
Candida 

database ID 

Native amino 

acid range 
Length pI MW 

Extinction coefficient 

(280 nm) 

Awp14A CAGL0L00157g 22 – 400 413 aa 5.49 45.95 kDa 45.27 mM-1 cm-1 

 

As Awp14A only contains one cysteine residue, formation of disulfide bonds can be excluded. 

Accordingly, the protein was produced in E. coli BL21 (DE3) Gold at 12 °C for 72 h. Induction 

of protein expression was done by addition of 0.1 mM IPTG. 2 – 8 L of expression culture were 

used for purification of Awp14A. The cells were lyzed by sonication or using the microfluidizer. 

The lysate was cleared and sterile-filtered and loaded on a 5 mM Ni-NTA column, equilibrated 

with phosphate buffer. A washing step was performed with buffer containing 15 mM 

imidazole, before the protein was eluted with phosphate buffer containing 250 mM imidazole. 

Awp14A was further purified via SEC, either with a HiLoad 26/600 Superdex 200pg column or 

a HiLoad 16/600 Superdex 200pg column. Fractions containing pure Awp14A were pooled and 

concentrated. Approximately 10 mg of pure protein were produced per L of culture. 
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Figure 22: Purification of Awp14A 

A) The chromatogram of the SEC, which was used as a polishing step for the purification of Awp14A. B) 12% 

SDSPAGE analysis of fractions from the Ni-NTA purification of Awp14A. M: marker, L: lysate, FT: flow-through, 

W1: wash 1 (10 mM imidazole), W2: wash 2 (15 mM imidazole), E: elution (250 mM imidazole). C) SDS-PAGE 

from the SEC purification of Awp14A. The red marking indicates the fractions in the SEC chromatogram, which 

have been used for the SDS-PAGE analysis. 

 

4. 3. 2. Crystallization of Awp14A 

The Awp14 A-domain crystallized at a protein concentration of 22.5 mg/mL in four different 

crystallization conditions, all part of the Morpheus II crystallization screen. The plates that 

grew in 0.1 M BES/TEA pH 7.5, 10% (w/v) PEG 8000, 20% 1,5-pentanediol, “Amino-acid II” 

(1:10)85 were harvested and sent to the ESRF for data collection. The crystals diffracted to a 

resolution of approximately 2.5 Å, data collection statistics are given in Table 9. Awp14A 

crystallized in space group C 2 2 21. Calculation of the Matthews coefficient indicates a unit 

cell content of two molecules with a solvent content of 52.63%. Unfortunately, an appropriate 

model for MR is not available and the reproduction of Awp14A crystals could not be achieved 

in this work. 
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Figure 23: Awp14A crystals 

Crystals of Awp14A that grew in different crystallization conditions, all part of the Morpheus II crystallization 

screen. Each crystallization condition in the Morpheus II screen is composed of precipitant mix, buffer mix and 

additive mix (1:10). The conditions leading to crystallization all contain the same mix of precipitants, namely 

10% (w/v) PEG 8K, 20% (v/v) 1,5-pentanediol. A) shows the crystals in condition A3, which additionally contains 

a MOPSO/Bis-Tris buffer system (0.1 M MOPSO and 0.1 M Bis-Tris, mixed in a ratio that produces a pH of 6.5), as 

well as the “LiNaK” additive mix (0.3 M lithium sulfate, 0.3 M sodium chloride and 0.3 M potassium sulfate). 

B) Crystals from the condition C3, containing the MOPSO/Bis-Tris buffer mix and the “Alkalis” additive mix 

(10 mM rubidium chloride, 10 mM strontium acetate, 10 mM cesium acetate, 10 mM barium acetate). 

C) Condition G3, containing the MOPSO/Bis-Tris buffer mix and the “Amino-acids II” additive mix (0.2 M 

DL-arginine HCl, 0.2 M DL-threonine, 0.2 M DL-histidine HCl H2O, 0.2 M DL-5-hydroxylysine HCl, 0.2 M trans-4-

hydroxy-L-proline). D) Crystals grown in condition G7, composed with a BES/TEA buffer mix (0.1 M BES/TEA pH 

7.5) and the “Amino-acids II” additive mix85. 

 

Table 9: Data collection statistics for Awp14A 

Dataset name 2017_05_17-CC172A_x6 

X-ray source ESRF, ID23-1 

Wavelength (Å) 0.972 

Space group C 2 2 21 

Unit cell parameters (Å) a = 78.23, b = 172.94, c = 140.99 

Resolution range (Å) 46.41 – 2.5 (9.01 – 2.5) 

Total no. of reflections 142870 (16343) 

No. of unique reflections 32560 (3687) 

Rmerge (%) 0.276 (1.685) 

I/σ(I) 5.9 (1.1) 

Completeness (%) 97.8 (99.3) 

Multiplicity 4.4 (4.4) 

CC1/2 0.982 (0.337) 
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4. 4. Analysis of the CFEM domain of the GPCR CtPth11 

4. 4. 1. Cloning, expression and purification of CtPth11 

First work on the GPCR Pth11 has already been conducted by Dr. Vitali Kalugin. In this work, 

no overproduction of soluble protein could be achieved using the CFEM-domain of M. grisea 

Pth11. The C. thermophilum orthologue of Pth11 was therefore identified via a SSN41 and 

cloned into the vector pET28a(+). The transmembrane helices, as well as the signal peptide 

and a few residues predicted to be unstructured at the N-terminus of the protein, were 

removed for this purpose. The generated plasmid (pET28a_CtPth11) contains V24 – S105 with 

an N-terminal His6-Tag to enable purification via IMAC. Theoretical properties of the domain 

were calculated via the ExPASy ProtParam tool and are as follows: 

 

Name UniProt-ID 
Native amino 

acid range 
Length pI MW 

Extinction coefficient 

(280 nm)* 

CtPth11 G0SBE2 24 – 105 105 aa 6.62 11.0 kDa 1.99 mM-1 cm-1 

* assuming all cysteine residues form disulfide-linked cystines 

 

For overexpression of the CtPth11 CFEM-domain, the strain E. coli SHuffle was chosen, 

because the domain is proposed to contain four disulfide bonds36. The overproduction was 

done by growing the cells to an OD600 of approximately 0.6, induction by addition of 0.1 mM 

IPTG and further incubation at 18 °C for 48 h. 

8 L of liquid culture were used for quantitative preparation of CtPth11 CFEM protein. The cells 

were broken by sonication or with the microfluidizer and the lysate was cleared via 

centrifugation at 18000 rpm, 4 °C. After sterile-filtering, the lysate was applied on a 5 mL 

Ni-NTA column, which was then washed with Ni-NTA buffer containing 20 mM imidazole. The 

CtPth11 CFEM domain was eluted with 500 mM imidazole. The elution fraction was 

concentrated and applied on a HiLoad 26/600 Superdex 75pg column, which was equilibrated 

with SEC buffer (in this case phosphate buffer). The fractions from the peak containing the 

target protein were analyzed by SDS-PAGE and pooled. The sample was concentrated and 

glycerol was added to a final concentration of 10% (v/v). The purified protein sample was then 

divided into several 1.5 mL Eppendorf cups, shock-frozen in liquid nitrogen and stored at -

80 °C for further use. 
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Figure 24: Purification of CtPth11 

A) The chromatogram of the SEC purification of CtPth11. Only low absorption at 280 nm can be detected in this 

case, because CtPth11 does not contain any tryptophans. B) The 15% SDS-PAGE analysis after Ni-NTA purification 

of CtPth11. M: marker, L: lysate, FT: flow-through, W: wash (20 mM imidazole), E: elution (500 mM imidazole). 

C) SDS-PAGE analysis of the SEC purification of CtPth11. A red marking was used to indicate the fractions in the 

SEC chromatogram, which were analyzed via SDS-PAGE. 

 

4. 4. 2. Crystallization of CtPth11 

In initial crystallization experiments, crystal growth could be observed at a protein 

concentration of 5.4 mg/mL in 0.1 M citrate pH 5.6, 0.2 M K-Na tartrate, 2.0 M ammonium 

sulfate after several weeks of incubation at 18 °C (shown in Figure 25). These crystals 

diffracted to a resolution of approximately 2.4 Å. Around two months after setting up the 

crystallization screens, CtPth11 crystals were observed in following conditions as well: 

- 0.5 M ammonium sulfate, 0.1 M tri-Na citrate pH 5.6, 1.0 M lithium sulfate 

- 0.1 M citric acid pH 4.0, 1.6 M ammonium sulfate 

- 2.0 M ammonium sulfate. 

As these crystallization conditions contain medium to high concentrations of ammonium 

sulfate, the AmSO4 crystallization suite was used for further crystallization experiments. 

Crystal growth could be observed in several conditions of the screen, diffraction to a 

resolution of up to 1.8 Å was measured. CtPth11 crystallized in space group P 41 21 2 with the 

unit cell constants a = b = 68.68, c = 176.78, α = β = γ = 90 or a = b = 71.59, c = 141.93, α = β = 

γ = 90, depending on the crystallization condition. 
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Figure 25: Crystals of the CtPth11 CFEM domain and corresponding unit cells 

A) Crystals observed in the initial crystallization experiments are shown. These grew after several weeks of 

incubation at 18 °C in 0.1 M citrate pH 5.6, 0.2 M K-Na tartrate, 2.0 M ammonium sulfate; space group and unit 

cell constants are given below. The calculation of the Matthews probability 

(http://www.ruppweb.org/mattprob/default.html) determined a content of 4 molecules per asymmetric unit. B) 

Crystals of CtPth11 used for collection of S-SAD datasets – grown in 3.0 M ammonium sulfate, 1%(w/v) MPD – 

have different unit cell constants. The Matthews probability was calculated to determine the number of 

molecules per asymmetric unit, but does not show a clear result. The asymmetric unit accordingly contains either 

3 or 4 molecules. 

 

4. 4. 3. Structure solution 

MR was attempted using the structure of Csa2 (PDB: 4Y7S) as a model. For this purpose, the 

full-length structure and several shortened variants of the structure were used. Additionally, 

a model of Pth11 was created using MODELLER118 with Csa2 as a template to generate a model 

structure for MR. Despite all attempts, the structure could not be determined using this 

approach. Subsequently, heavy metal soaking and SAD phasing were pursued, but crystal 

quality was found to be massively affected by the soaking procedure. 



  4. Results 

84 
 

As an alternative method for structure solution, native SAD-phasing using the anomalous 

diffraction from sulfur atoms was chosen. The method seemed feasible for CtPth11 because 

the CFEM-domain contains eight cysteines. As they are predicted to form four disulfide bridges 

they might be treated as “super-sulfurs” during the site-detection step if required. 

Furthermore, the high-symmetry space group the CFEM domain crystallized in is favorable for 

SAD phasing, as high multiplicity can be easily achieved. The data-collection strategy 

commonly applied for native SAD-phasing at beamline X06DA at the Swiss Light Source has 

been described by Basu et al. in 2019: The maximum wavelength achievable at the beamline 

(5.5 keV/2.25 Å) is used for data collection93. As this wavelength is still remote from the sulfur 

absorption edge (K-edge) of 2.472 keV/5.0155 Å87, several 360° datasets are collected and 

merged. This approach generates high multiplicity, thus the low anomalous signal originating 

from the sulfur atoms is significantly enhanced. The data collection strategy is described to be 

suitable for crystals with anomalous signal extending to a wavelength of up to ~2.8 Å93. 

 

Table 10: Data collection and refinement statistics for the structure of the CtPth11 CFEM domain (outer shell 
values are given in the parenthesis) 

 CtPth11 

Dataset name 2018_06_28-CC220A_x3 

Data collection  

X-ray source ESRF, ID 

Wavelength (Å)  

Space group P 41 21 2 

Unit cell parameters (Å) a = b = 68.68, c = 176.78 

Resolution range (Å) 54.23  - 1.822 (1.887  - 1.822) 

Total no. of reflections 77555 (7568) 

No. of unique reflections 38778 (3784) 

Rmerge (%) 0.02256 (0.239) 

I/σ(I) 10.73 (2.56) 

Completeness (%) 99.96 (99.92) 

Multiplicity 2.0 (2.0) 

CC1/2 0.999 (0.97) 

Refinement  

Rwork/Rfree (%) 19.1/23.76 

No. of atoms 2726 

Average B factor (Å2) 49.72 

R.m.s. deviations  

   Bond length (Å2) 0.012 

   Bond angles (°) 1.08 

Ramachandran plot (%)  

   Favoured 98.79 

   Allowed 1.21 

   Outliers 0.00 

Rotamer outliers (%) 4.47 
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Four datasets were merged on site using a custom script for xscale54, anomalous diffraction 

was observed to a resolution of around 3.5 Å. This does not meet the requirements for native 

SAD-phasing that were previously described93. Substructure determination was attempted on 

site using the SHELXD procedure119, but the substructure could not be detected. Evaluation of 

the same merged datasets was done using CRANK2120 and lead to structure solution. The 

native SAD structure was then used as a template to solve another dataset from a CtPth11 

crystal that diffracted to 1.8 Å resolution (see Table 10 for data collection and refinement 

statistics). 

 

4. 4. 4. The structure of the CtPth11 CFEM domain 

The structure of the CtPth11 CFEM domain is shown in Figure 26. It consists of five α-helices 

and is stabilized by four disulfide bonds, which are formed between following residues: C43 

and C83, C47 and C78, C57 and C64, C66 and C99. Chain B from the asymmetric unit was 

chosen here to examine the surface of the CFEM-domain of CtPth11. The surface examination 

reveals a large positively charged cleft on one side of the protein and a smaller negatively 

charged indentation on the other side. Analysis of surface electrostatics was done using the 

APBS Plugin for PyMOL. The positive charge is caused by three lysine residues (K80, K92, K104) 

on the cleft’s entrance. Deeper inside, it is predominantly composed of hydrophobic and 

uncharged amino acids. In the crystal structure the cleft is occupied by two sulfates, which are 

part of the crystallization condition. The smaller indentation on the other side is negatively 

charged due to a glutamic acid (E49) on its entrance. On the inside, hydrophobic amino acids 

can be observed (I52, F48). F48 seems to divide the two cavities from each other. Interestingly, 

a different orientation of this residue can be observed in each molecule of the asymmetric 

unit or alternative side chain conformations are present. The CtPth11 CFEM domain thereby 

has either a hole or two cavernous surface invaginations. 
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Figure 26: Structure of the CtPth11 CFEM domain 

A) The asymmetric unit of crystals of the CtPth11 CFEM domain. It contains (in this case) four molecules of the 

CFEM domain and 13 sulfurs originating from the crystallization condition. B) The overall structure of a single 

molecule (chain B) is shown in two orientations. Two cavities can be identified when observing the protein 

surface, the APBS Tool in PyMOL was used to generate a surface electrostatic potential map. The larger positively 

charged cavity is mainly composed of hydrophobic and uncharged residues. F48 is shown in its two alternative 

side chain conformations, which indicates a certain flexibility of this residue. Three lysine residues at the entrance 

of the pocket provide a positive charge to the potential binding pocket. A smaller indentation can be found on 

the other side of the molecule. F48 also plays a role in this cavity, as well as the negatively charged E49. C) The 

sequence of the Pth11 CFEM-domain. The α-helices are indicated by boxes above the sequence; disulfide bonds 

are marked below the sequence. 
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4. 4. 5. Fragment screen 

Although several studies aimed for the identification of the ligand of M. oryzae Pth11, it still 

remains unknown40,44. To gain hints on a putative ligand of Pth11, a fragment screen was 

conducted against its CFEM domain. Given the important role of Pth11 in appressorium 

formation and plant infection, Pth11 represents a promising target for agrotechnological 

applications. 

Fragments were soaked into protein crystals in concentrations of either 100 mM or 50 mM, 

depending on the solubility of the fragment in the crystallization condition. The protein 

crystals were protected from ice crystal formation by addition of glycerol in the soaking 

conditions. Soaking times were extended as long as possible, up to 26 h. However, in many 

cases, the soaked crystals dissolved rather quickly and the soaking times had to be kept very 

short. Crystals were then frozen in liquid nitrogen and brought to the synchrotron for data 

collection. In many cases, a significant decrease of crystal quality could already be anticipated 

during the soaking procedure. Crystals cracked, slowly dissolved or showed other signs of 

disintegration. For those conditions, soaking times were kept very short (e. g. only 1 min). In 

total, 87 different fragments were used in the experiments. As multiple soaking durations 

were used for most fragments, in total 163 CtPth11 crystals were soaked and analyzed. 35 

crystals did not show sufficient diffraction for data collection. The automatic data analysis 

software at the SLS (DA+) was able to automatically process 80 datasets; 48 datasets had to 

be processed manually using XDS, which failed for 10 of those. All datasets obtained from the 

fragment screen are listed in Appendix II. 

A custom script was then used for data reduction (using AIMLESS) and running the DIMPLE 

software pipeline. 21 datasets could not be handled by the script, data reduction, structure 

solution (using Phaser) was done manually for those. Also, all structures were manually 

evaluated to detect any bound fragments that may have been overlooked by DIMPLE. 

Additional electron density was observed for four fragments (see Figure 27). 

 

 

Figure 27: Fragments that were bound by the CtPth11 CFEM domain 

The chemical structures of the fragments and their number in the Frag Xtal Screen (Jena Biosciences) are shown.  



  4. Results 

88 
 

Table 11: Data collection and refinement statistics for fragment-bound CtPth11 (outer shell values written in 
parentheses) 

 CtPth11-Frag3 CtPth11-Frag34 CtPth11-Frag62 

Dataset name VR_139 VR_219 VR_171 

Data collection    

X-ray source SLS, X06SA (PXI) SLS, X06SA (PXI) SLS, X06SA (PXI) 

Wavelength (Å) 1.0 1.0 1.0 

Space group P 41 21 2 P 41 21 2 P 41 21 2 

Unit cell parameters (Å) 
a = b = 68.76, 

c = 175.59 

a = b = 68.87, 

c = 175.74 

a = b = 69.22, 

c = 176.26 

Resolution range (Å) 
46.86  - 2.0 

(2.07  - 2.0) 

48.7 – 2.12 

(2.2 – 2.12) 

48.95 – 2.1 

(2.18 – 2.1) 

Total no. of reflections 59061 (5754) 49658 (4796) 51722 (5017) 

No. of unique reflections 29536 (2881) 24831 (2398) 25879 (2516) 

Rmerge (%) 0.01416 (0.5417) 0.01988 (0.8066) 0.01316 (0.5151) 

I/σ(I) 15.64 (1.22) 11.85 (0.92) 21.08 (1.36) 

Completeness (%) 99.71 (98.96) 99.39 (95.48) 99.71 (99.80) 

Multiplicity 2.0 (2.0) 2.0 (2.0) 2.0 (2.0) 

CC1/2 1 (0.713) 1 (0.498) 1 (0.739) 

Refinement    

Rwork/Rfree (%) 18.66/22.36 20.89/23.49 19.51/25.13 

No. of atoms 2589 2507 2553 

Average B factor (Å2) 52.64 82.61 74.65 

R.m.s. deviations    

   Bond length (Å2) 0.014 0.01 0.007 

   Bond angles (°) 1.33 1.24 0.82 

Ramachandran plot (%)    

   Favoured 98.47 99.07 98.17 

   Allowed 1.22 0.93 1.52 

   Outliers 0.33 0.0 0.3 

Rotamer outliers (%) 2.82 3.62 3.25 
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4.4.5.1. CtPth11 CFEM domain – Fragment 3 

A crystal of the CtPth11 CFEM domain was soaked in mother liquor containing 50 mM 

fragment 3 (SMILES code: CNC(=S)NC1=C(C=C(C=C1)Br)Cl) for 23 h, then directly flash-frozen 

in liquid nitrogen and brought to the synchrotron for data collection. The crystal diffracted to 

a resolution of 2.0 Å. Data analysis using the DIMPLE pipeline did not identify any unmodelled 

blobs, but upon manual examination of the data additional electron density was found. 

Fragment 3 is bound to three of the four CFEM domains in the asymmetric unit (see Figure 

28). Placement and conformation of the bound fragment are the same in each of the three 

molecules with occupancies of 0.68 in chain A, 0.59 in chain B and 0.75 in chain D. The electron 

density for each ligand molecule in the structure is clearly defined. At the location of the 

Br-ion, negative difference electron density can be observed, caused by increased radiation 

damage at this specific location. 

 

 

Figure 28: Interaction between fragment 3 and the CtPth11 CFEM domain 

A) Surface representation of a single CtPth11 CFEM domain. The fragment is bound in the larger, negatively 

charged cleft of three from the four molecules in the asymmetric unit. The orientation of the bound fragment is 

the same in all three. B) 2mFobs-DFcalc maps (contoured at 2.0 σ) of the ligands. The electron density is nicely 

defined for all three bound fragments. C) Binding mode of fragment 3. The hydrophobic fragment is placed in 

the hydrophobic cleft. Only two weak electrostatic interactions are formed, involving C66 and N72. 
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Two weak electrostatic interactions are formed between the CFEM domain and the ligand: 

first, between the hydroxyl group of the side chain of N72 and the fragment with a distance 

of 3.1 Å; second, between the hydroxyl group O of the peptide bond of C66 and the ligand 

with 3.0 Å distance. Further specific interactions between the CtPth11-CFEM domain and 

fragment 3 cannot be observed. It is rather the case that the hydrophobic fragment is placed 

in the hydrophobic region of the larger cavity of the domain. 

 

4.4.5.2. CtPth11 CFEM domain – Fragment 34 

CtPth11 CFEM-domain crystals were soaked in mother liquor containing 50 mM fragment 34 

(SMILES code: CCOc1nc(NC(N)=N)nc2c(C)cccc12) for 3 h and 24 h. The corresponding datasets 

have resolutions of 2.0 Å and 2.1 Å, respectively. The 24 h dataset was successfully processed 

by automatic data analysis software DA+ and unmodelled blobs were identified by DIMPLE. 

Contrarily, the 3 h dataset had to be evaluated manually. Fragment 34 is bound to all four 

molecules in the asymmetric unit in both cases. Due to better data quality, the 24 h dataset 

was chosen for refinement and interpretation of the structure. 

The placement of the ligand in the electron density is unambiguous. A part of the fragment is 

not visible in the electron density map. This is the same in all four molecules of the asymmetric 

unit and could be caused by a certain degree of flexibility of the fragment in this area. 

However, it is more likely that the fragment has broken apart because the O atom in the 

vicinity of the aromatic rings is not expected to be flexible and should therefore be visible in 

the electron density map. This could have happened during storage of the fragment, dissolving 

it in the crystallization condition or during soaking. 

The side chains of three residues interact with the guanidine group of fragment 34: N72, T76 

and T95. These form electrostatic interactions with following distances: 2.6 Å between the 

hydroxyl group O of N72 and the fragment, 3.2 Å between T76 and the fragment, and 2.9 Å 

between T95 and the ligand. Additionally, the hydrophobic aromatic rings of the fragment are 

placed in the hydrophobic cavity. 
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Figure 29: Interaction between the CtPth11 CFEM domain and fragment 34 

A) Cartoon and surface representation of a single CtPth11 CFEM domain. Fragment 34 is located in the negatively 

charged cleft, with the same orientation in all four molecules in the asymmetric unit. B) 2mFobs-DFcalc maps 

(contoured at 2.0 σ) of the bound fragments reveal that the electron density is clearly interpretable. The same 

part of the ligand is not visible, indicating that the ligand has disintegrated. The electron density of the fragment 

bound to chain A merges into the density of a sulfate, which is located in its vicinity. C) Interactions between the 

CFEM domain and fragment 34 are shown. There are three residues involved: N72, T76 and T95. 

 

4.4.5.3. CtPth11 CFEM domain – Fragment 62 

100 mM fragment 62 (SMILES code: COC(=O)C(CC1=CC=CC=C1)N.Cl) were soaked into a 

CtPth11 CFEM domain crystal for 6 min, which diffracted to 2.1 Å. The acquired dataset was 

successfully processed by the automatic data analysis software DA+ and by the DIMPLE 

pipeline. However, no unmodelled blobs were identified by DIMPLE. Only upon manual 

examination of the data, additional electron density was found in the cavities of all four CFEM 

domains in the asymmetric unit. 

All four unmodelled regions in the electron density map are clearly interpretable and each one 

reveals a good fit of fragment 62. The occupancies are 0.95, 1.0, 0.76, and 0.84, for chain A, B, 

C, and D, respectively. Interestingly, the fragment is positioned slightly different in each 

CtPth11 CFEM domain in the asymmetric unit. The aromatic ring is analogously placed in all 

four cavities; the other portion of the fragment is positioned differently in each one. Specific 
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interactions between protein and fragment cannot be observed. Rather, the hydrophobic 

fragment is bound within the hydrophobic cavity. 

 

 

Figure 30: Interaction between the CtPth11 CFEM domain and fragment 62 

A) A CFEM domain is shown in cartoon and surface representation, with fragment 62 depicted in all orientations. 

Slight differences can be observed between the fragments bound to each molecule in the asymmetric unit. The 

aromatic ring is in the same position in chains B, C, and D, but slightly displaced in chain A. B) The electron 

densities of each bound ligand. All electron densities are defined very well. Interactions with specific residues in 

the CFEM domain cannot be observed. 

 

4.4.5.4. CtPth11 CFEM domain – Fragment 94 

Soaking experiments with crystals of the CtPth11 CFEM domain and 100 mM fragment 94 

(SMILES code: NS(=O)(=O)c1ccc(Cl)s1) were conducted for approximately 2 min. Crystals were 

quickly disintegrating during the soaking process. Nevertheless, a dataset with a resolution of 

2.0 Å could be collected. The dataset was successfully handled by DA+, as well as by the 

DIMPLE pipeline, but unmodelled blobs were only identified upon manual examination of the 

dataset. 
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Additional electron density has been detected in all four molecules, to different extent. The 

most striking unmodelled region is located in chain C of the asymmetric unit and shown in 

Figure 31. However, the fragment does not fit into the densities. Data collection statistics for 

the corresponding dataset are shown in Table 12. 

 

 

Figure 31: Additional electron density observed in VR_225 

After soaking CtPth11 crystals with 100 mM fragment 94, unmodelled blobs could be observed. The additional 

electron density located in chain C of the asymmetric unit is shown here. The soaked fragment is depicted in 

the lower left corner of the image. 

 

Table 12: Data collection statistics for the CtPth11 CFEM domain, soaked with fragment 94 

Dataset name VR_225 

X-ray source SLS, X06SA (PXI) 

Wavelength (Å) 1.0 

Space group P 41 21 2 

Unit cell parameters (Å) a = b =, c =  

Resolution range (Å) 48.67 – 2.0 (2.06 – 2.0) 

Total no. of reflections 420935 (29716) 

No. of unique reflections 29439 (2103) 

Rmerge (%) 0.112 (1.599) 

I/σ(I) 13.6 (2.0) 

Completeness (%) 99.8 (98.3) 

Multiplicity 14.3 (14.1) 

CC1/2 0.998 (0.722) 
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5. Discussion 

5. 1. The cell wall of the thermophilic fungus C. thermophilum 

Proteins from thermophilic organisms are generally considered more stable than their 

mesophilic counterparts14. This feature is not only favorable for the expression and 

biochemical characterization of a protein, but also for the crystallization process121. In recent 

years, the thermophilic fungus C. thermophilum has proven to be an excellent model organism 

for analysis of eukaryotic proteins10,19,20 and it may also serve as a well suited model organism 

for the study of fungal cell wall proteins. However, information on the cell wall proteome of 

C. thermophilum is still lacking. This thesis aimed to fill this gap by bioinformatic prediction of 

GPI-anchored proteins and mass spectrometric analysis of GPI-CWPs. Additionally, the cell 

wall structure was analyzed via TEM. 

 

5. 1. 1. Prediction of the C. thermophilum cell wall proteome 

In total, 79 GPI-anchored proteins were predicted in C. thermophilum (see chapter 4. 1. 1, 

Table 4) using combination of signal peptide detection (using SignalP62), rejection of proteins 

with transmembrane helices (TMHMM63), and identification of GPI anchor signal sequences 

via the Big-PI Fungal Predictor12 and a pattern search (as described by de Groot et al.11). The 

annotated C. thermophilum proteome, which was used as an input for the prediction, is 

derived from its genome and contains 7165 protein sequences. The number of predicted 

GPI-anchored proteins in C. thermophilum therefore represents 1.1% of its proteome. This 

fraction varies significantly in different fungi. For example, only 28 proteins in 

Schizosaccharomyces pombe (0.56 % of the proteome) contain both, an N-terminal signal 

peptide and a GPI anchor attachment sequence. In S. cerevisiae 59 GPI-anchored proteins 

(0.93 % of the proteome) were predicted; and 169 proteins (1.19 %) in C. albicans. Within the 

proteome of the filamentous fungus Aspergillus nidulans, 74 (0.78 %) proteins were predicted 

to be GPI-anchored12. With 79 predicted GPI-anchored proteins in C. thermophilum, the 

absolute number is very similar to A. nidulans, but in relative terms they represent a higher 

percentage of the genome. 

The prediction of GPI-anchored proteins has proven to be very robust12, but several limitations 

have to be considered. First, the Big-PI Fungal Predictor and the pattern search do not include 

the ω- region of the GPI anchor signal sequence, which has been shown to be associated with 

the final location of GPI-anchored proteins11,13. The amino acids located right upstream the 

GPI anchor attachment site (ω site) are considered determinants for the final localization of a 

GPI protein, i. e. the plasma membrane or the cell wall9,13,122,123. In yeast, the sequences of 

GPI-plasma membrane proteins (GPI-PMPs) are proposed to contain a dibasic motif just 

before the ω site (ω-4 to ω-1)13. However, the dibasic motif can be overridden by certain 

sequence features, e. g. long Ser/Thr-rich regions124. The sorting signal was shown to be 
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slightly different in A. fumigatus, where only one basic residue at the ω-1 or ω-2 site was 

identified in many GPI-PMPs123. The exact sequence requirements for discrimination between 

GPI-PMPs and GPI-CWPs are therefore elusive. Also, the localization of proteins to either the 

cell wall or the plasma membrane is not considered absolute124. Nevertheless, discrimination 

between GPI-PMPs and GPI-CWPs based on the features of the ω- region should provide a 

first insight on the distribution of the predicted GPI proteins. The Big-PI Fungal Predictor was 

used for the identification of the ω site before manual examination of the ω- regions in the 

protein sequences was done. If no potential GPI modification site was found by Big-PI, the 

residue indicated to be most likely the ω site was used. Proteins were assigned as GPI-PMPs, 

if a dibasic motif in the region from ω-4 to ω-1 was identified, or if a single basic residue at 

positions ω-2 or ω-1 was found. Unexpectedly, only few GPI-PMPs could be determined using 

this method; these are listed in Table 13. 

 

Table 13: Predicted GPI-PMPs in C. thermophilum 

UniProt-ID Description (UniProt) Family/Domains Recognition as GPI-PMP 

G0SEQ3 hypothetical protein CTHT_0064570 FAD-binding Dibasic motif (ω-4 and ω-3)* 

G0S249 
1,3-beta-glucanosyltransferase-like 

protein 
GH72/Gel2 

Single basic residue (ω-2, 

alternative GPI-modification 

site) 

G0SDH5 
phosphoric diester hydrolase-like 

protein 

PLC-like phosphoric 

diesterase 
Single basic residue (ω-2)* 

G0SDV4 hypothetical protein CTHT_0053120 Wsc-domain Single basic residue (ω-1) 

G0S5C3 hypothetical protein CTHT_0024300  Single basic residue (ω-1) 

G0SCA5 hypothetical protein CTHT_0056530  Single basic residue (ω-1) 

G0SHI8 hypothetical protein CTHT_0070170  Single basic residue (ω-1) 

G0SFJ0 hypothetical protein CTHT_0071010  Dibasic motif (ω-2 and ω-1)* 

* No GPI-modification site predicted by Big-PI, residue with the best score used 

 

A dibasic motif is only contained in two C. thermophilum GPI proteins (G0SEQ3 and G0SFJ0). 

Identification of GPI-PMPs using only a single basic amino acid as an indicator for the final 

localization resulted in a list of 6 more proteins, including Gel2 (G0S249). However, certain 

proteins considered as typical GPI-PMPs, such as Gel1 or Ecm33, were not detected as 

such122,123. This may have two reasons: firstly, some of the GPI proteins that are located at the 

plasma membrane in other fungi are transferred to the cell wall in C. thermophilum. Secondly, 

the conditions for retention of GPI-proteins in the plasma membrane might be different in the 

thermophilic fungus. The transfer of GPI proteins from the plasma membrane into the cell wall 

is catalyzed by the transglycosidase Dfg5. It was shown that the removal of an ethanolamine-

phosphate (EtN-P) group at the first mannose of the GPI-core glycan is required for successful 

cell wall transfer10. This group is proposed to be removed by Cdc1125, a process which might 

be dependent on the amino acids in the ω- region of a protein. An analysis of Cdc1 may 

therefore provide the missing link in determining whether a GPI protein ends up in the plasma 

membrane or in the cell wall. 
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Another limitation of the prediction of GPI-anchored proteins is associated with the input 

itself. When ORFs are used to predict an organism’s proteome, the analysis does not confer a 

realistic picture of the proteome and the relevance of a part of the hits may be debatable. To 

elucidate the importance of the hits, they were compared to the proteomic study conducted 

by Bock et al.18. The predicted GPI proteome contains 28 proteins, for which there is proteomic 

evidence, indicating biological relevance of these proteins. These are expressed in the 

organism upon growth in the standard media conditions described by the German Collection 

of Microorganisms and Cell Cultures (DSMZ)18 and listed in Table 14. 

 

Table 14: Predicted proteins with proteomic evidence in Bock et al.18 

UniProt-ID Description (UniProt) Family/Domains 

G0S879 hypothetical protein CTHT_0037870 Agglutinin-like 

G0S3D9 alpha-amylase-like protein Alpha-amylase-like 

G0SAA8 hypothetical protein CTHT_0041610 
Alpha-carbonic anhydrase, zinc-ion 

binding 

G0S3S8  hypothetical protein CTHT_0030500 CFEM 

G0SEF6 putative cell wall protein Ecm33 

G0SG17 hypothetical protein CTHT_0064700 GH catalytic core, ASL-like 

G0SFX7 putative cell wall protein GH16 

G0S5R2 hydrolase-like protein GH16, ConA-like domain 

G0SCM1 putative cell wall protein GH16, LamG superfamily 

G0SA20 cell wall glucanase-like protein GH16, LamG-superfamily 

G0SFR4 hypothetical protein CTHT_0071830 GH17 

G0S1A4 hypothetical protein CTHT_0012900 GH18, Chitinase, LysM-domain 

G0S6S8 1,3-beta-glucanosyltransferase-like protein GH72/Gel1 

G0S249 1,3-beta-glucanosyltransferase-like protein GH72/Gel2 

G0SFW3 
putative UPF0619 GPI-anchored membrane 

protein 
Kre9/Knh1 

G0SHT5 hypothetical protein CTHT_0073300 Kre9/Knh1 

G0SF37 phospholipase-like protein Lysophospholipase 

G0S1H4 aspartic-type endopeptidase-like protein 
Peptidase A1 family/aspartic-type 

endopeptidase 

G0S3I8 hypothetical protein CTHT_0021410 Peptidase A1/pepsin-like 

G0SAZ2 hypothetical protein CTHT_0048310 Tetratricopeptide repeat 

G0S8N5 hypothetical protein CTHT_0038740  

G0S8Q3 hypothetical protein CTHT_0039950  

G0S9L3 hypothetical protein CTHT_0046300  

G0SDX5 hypothetical protein CTHT_0053340  

G0SDZ7 hypothetical protein CTHT_0053570  

G0SCA5 hypothetical protein CTHT_0056530  

G0SI03 hypothetical protein CTHT_0074010  

G0SCW3 hypothetical protein CTHT_0058590  
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5. 1. 2. Mass-spectrometric analysis of C. thermophilum GPI-cell wall proteins 

The limitations of the cell wall proteome prediction were addressed by mass spectrometric 

determination of the GPI-CWPs in C. thermophilum. The fungus was grown in liquid culture 

until spherical aggregates of mycelium had formed. The cell walls were then isolated as 

described by de Groot et al., with only cell wall carbohydrates and GPI-CWPs supposed to be 

remaining in the sample. Cytosolic contaminants were removed by extensive washing with 

1 M NaCl, and a boiling step with β-mercaptoethanol and SDS was conducted to remove PIR 

and disulfide linked proteins66. Regardless of the isolation steps, contamination by non-cell 

wall proteins cannot be completely prevented. Obvious contaminations were removed before 

the analysis. 

34 GPI-CWPs were identified in C. thermophilum cell walls, with only few variations between 

the analyzed samples (see chapter 4. 1. 2, Table 6). Surprisingly, only 17 proteins were already 

included in the list of predicted GPI-anchored proteins. Among those, two are in the list of 

GPI-PMPs, namely G0S249 (Gel2) and G0SCA5 (uncharacterized). Accordingly, 17 proteins 

were found in the cell wall samples, but not predicted. These unpredicted proteins were all 

not recognized as GPI-anchored proteins by the Big-PI Fungal Predictor and via the pattern 

search. The identified proteins were sorted according to their putative function and are 

summarized in Table 15. 

 

Table 15: Functional annotation of the C. thermophilum cell wall proteome 

Category and 
UniProt-ID 

Description (UniProt) Family Properties, proposed function 

Carbohydrate-active enzymes   

G0SB94 Exo-1,4-beta-D-glucosaminidase GH2 SP, 897 aa 
Involved in chitin degradation 

G0RZA2 Glucoamylase GH15 SP, 667 aa 
Hydrolyzes α-1,4-glycosidic bonds of 
starch 

G0SDK5 Endo-1,3(4)-beta-glucanase-like protein GH16 SP, 1104 aa 
Contains GH16-domain and Zn2+ 
dependent metallopeptidase (Peptidase 
M48) domain 

G0SFX7 Putative cell wall protein GH16 SP, GPI, 445 aa 
Involved in carbohydrate metabolism, 
acting on O-glycosyl components; Crh 

G0SA20 Glycosidase GH16 SP, GPI, 383 aa 
Involved in chitin metabolism, similar to 
Crh1 

G0SCM1 Glycosidase GH16 SP, GPI, 423 aa 
Involved in chitin metabolism, similar to 
Crh1 

G0SFR4 Uncharacterized protein CTHT_0071830 GH17 SP, GPI, 394 aa 
Involved in carbohydrate metabolism, 
probable β-1,3-endoglucanase 

G0SEU4 Hydrolase-like protein GH17 SP, 552 aa 
Involved in carbohydrate metabolism 
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G0S1A4 Chitinase GH18 SP, GPI, 908 aa 
Chitinase 

G0RZV2 SH3b domain-containing protein GH24 SP, 263 aa 
Lysozyme activity, Endolysin T4 type 

G0SD45 Probable alpha/beta-glucosidase agdC GH31 SP, 926 aa 
Involved in carbohydrate metabolism, 
α- and β-glucosidase activity 

G0SH48 1,3-beta-glucanosyltransferase GH72 SP, 514 aa 
Transglycosidase, also contains X8 
domain 

G0S6S8 1,3-beta-glucanosyltransferase GH72 SP, GPI, 453 aa 
Gel1 

G0S249 1,3-beta-glucanosyltransferase GH72 SP, GPI, 482 aa 
Gel2 

G0SFW3 Putative UPF0619 GPI-anchored 
membrane protein 

 SP, GPI, 218 aa 
Kre9/Knh1 

G0S3D9 Alpha-amylase  SP, GPI, 533 aa 
Alpha-amylase 

Other enzymatic activity   

G0S8P3 Serine-type endopeptidase-like protein  SP, 919 aa 
Subtilisin 

G0S5M7 Catalase  SP, 723 aa 
Clade 2 catalase 

G0S1H4 Aspartic-type endopeptidase-like protein  SP, GPI, 470 aa 
Pepsin 

G0SBL0 Glyoxal oxidase-like protein Wsc SP, 1111 aa 
Contains 5 Wsc-domains and annotated 
glyoxal oxidase function 

G0RZV3 Uncharacterized protein CTHT_0004320  SP, 237 aa 
Papain-like 

G0SF37 Lysophospholipase  SP, GPI, 676 aa 
Lysophospholipase 

G0SG36 SH3b domain-containing protein  SP, 253 aa 
Papain-like 

Potential adhesins   

G0S002 CFEM domain-containing protein CFEM SP, GPI, 601 aa 
Mad1 

G0S5W8 LysM domain-containing protein  327 aa 
Probably contains sequencing errors, 
Cyanovirin-N domain 

Unknown proteins   

G0SDZ7 Uncharacterized protein CTHT_0053570  SP, GPI, 195 aa 

G0S763 Uncharacterized protein CTHT_0027570  SP, 155 aa 
Bys1 

G0S9L3 Uncharacterized protein CTHT_0046300  SP, GPI, 162 aa 

G0S2U2 C3H1-type domain-containing protein  SP, 162 aa 

G0SA61 Uncharacterized protein CTHT_0041120  SP, 507 aa 

G0SCA5 Uncharacterized protein CTHT_0056530  SP, GPI, 200 aa 

G0S3S8 CFEM domain-containing protein CFEM SP, GPI, 170 aa 
Contains CFEM domain, unknown 
function 

G0SFS7 Uncharacterized protein CTHT_0071970  SP, 373 aa 
similar to Neurospora crassa Acw12 

G0SEF6 Putative cell wall protein CTHT_0063570 Ecm33 SP, GPI, 400 aa 
Ecm33 

SP: signal peptide detected by SignalP; GPI: GPI anchor attachment signal predicted  
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With exception of G0S002 (Mad1) and G0S2U2, all proteins identified in this study were also 

found in the proteomic analysis conducted by Bock et al.18. This is hardly surprising, because 

similar growth conditions were used. 

More surprisingly, half of the detected proteins are not included in the list of predicted 

GPI-anchored proteins (see chapter 4. 1. 1, Table 4 and Table 5). There are two possible 

explanations for this outcome: First, the cell wall samples could be contaminated with material 

from other cellular components. Secondly, the GPI anchor signal sequence in C. thermophilum 

may not be recognized by the applied methods. 

Obviously, the isolated cell walls are not completely free of contaminations with cytosolic 

proteins or plasma membrane proteins and the samples contain several proteins that are 

described to be GPI-PMPs, such as members of the GH72 family126, as well as Gel1, Gel2, and 

Ecm33123. However, only very few transmembrane proteins were identified and the detection 

of GPI-PMPs in cell wall samples does not seem to be uncommon. An example for this is 

Ecm33: plasma membrane localization was described to be important for its function127, but 

Ecm33 is still commonly identified in isolated cell walls24,28,66,128. The purity of the samples 

analyzed in this work is therefore considered appropriate. 

The large amount of unpredicted proteins may be caused by the Big-PI Fungal Predictor not 

being perfectly suited for the prediction of GPI proteins in thermophilic fungi. The learning set 

of the algorithm consists of 254 entries, originating from following organisms: S. cerevisiae, 

C. albicans, Neurospora crassa, and Schizosaccharomyces pombe. The algorithm was then 

tested on sequences from A. nidulans, C. albicans, N. crassa, S. cerevisiae, and S. pombe, as 

well as several mutants of Gas1 and found to be reliable for these. But while filamentous fungi 

have been implemented in both the learning set and algorithm testing, this does not apply to 

thermophilic fungi. Even the pattern search failed to detect the 17 unpredicted proteins found 

in the isolated cell walls. This method is considered a much simpler tool for identifying GPI 

anchor signal sequences, which normally reveals a larger amount of potentially GPI-anchored 

proteins, but is also more unspecific. Nevertheless, the method proved to be compatible with 

the results of the Big-PI Fungal Predictor12. 

To obtain a clearer picture of the identified proteins, the 17 unpredicted cell wall proteins 

were analyzed via SignalP and the ω- region was examined for plasma membrane retention 

signals. A dibasic motif between ω-4 and ω-1 or single basic residues at positions ω-2 or ω-1 

were regarded as such. The results are listed in Table 16. 
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Table 16: Unpredicted GPI proteins in the isolated C. thermophilum cell walls 

Category and 
UniProt-ID 

Description (UniProt) Recognition as GPI-PMP 

Carbohydrate-active enzymes  

G0SB94 Exo-1,4-beta-D-glucosaminidase Single basic residue (ω-1) 

G0RZA2 Glucoamylase CWP 

G0SDK5 Endo-1,3(4)-beta-glucanase-like protein Dibasic motif (ω-4 and ω-3) 

G0SEU4 Hydrolase-like protein Single basic residue (ω-2) 

G0RZV2 SH3b domain-containing protein Dibasic motif (ω-4 and ω-3) 

G0SD45 Probable alpha/beta-glucosidase agdC Three basic residues (ω-4 to ω-2) 

G0SH48 1,3-beta-glucanosyltransferase CWP 

Other enzymatic activity  

G0S8P3 Serine-type endopeptidase-like protein Dibasic motif (ω-2 and ω-1), ω site is 
R! (GPI signal sequence maybe false) 

G0S5M7 Catalase Single basic residue (ω-2) 

G0SBL0 Glyoxal oxidase-like protein CWP 

G0RZV3 Uncharacterized protein CTHT_0004320 Single basic residue (ω-1) 

G0SG36 SH3b domain-containing protein Single basic residue (ω-1) 

Potential adhesins  

G0S5W8 LysM domain-containing protein CWP* 

Unknown proteins  

G0S763 Uncharacterized protein CTHT_0027570 CWP 

G0S2U2 C3H1-type domain-containing protein CWP 

G0SA61 Uncharacterized protein CTHT_0041120 CWP 

G0SFS7 Uncharacterized protein CTHT_0071970 Dibasic motif (ω-2 and ω-1) 

* no signal peptide detected by SignalP 

 

Approximately one third of the proteins identified in C. thermophilum cell walls (11 out of 34) 

contain a plasma membrane retention signal. Nine of these were not recognized in the 

prediction of GPI-anchored proteins. Accordingly, 23 proteins that were detected in the 

isolated cell walls could be assigned as GPI-CWP based on their sequence properties in the 

ω- region. Seven of these were not predicted and in one (G0S5W8), no signal peptide could 

be detected. That being said, the final localization of a particular GPI protein is not only 

dependent on the ω- region of the protein sequence. The plasma membrane retention signal 

was shown to be overridden by certain sequences, such as Ser/Thr-rich regions124, similar to 

the ones often observed in adhesins22,124. Also the presence of additional unknown sequence 

properties influencing GPI protein localization cannot be excluded. In addition, the final 

localization of a particular GPI-anchored protein is not considered as being exclusive, i. e. it is 

regarded as a predominant localization9,124. 

Several issues concerning GPI-anchoring are highlighted in the analysis of the C. thermophilum 

cell wall proteome: Firstly, many proteomically identified cell wall proteins were not 

recognized as such by the identification of the GPI anchor signal sequence via the Big-PI Fungal 

Predictor and the pattern search. This indicates that the GPI anchor signal sequence may be 
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slightly different in C. thermophilum and possibly also in other thermophilic fungi. Secondly, 

the conditions for GPI sorting in fungi need further investigation, as it clearly is not solely 

dependent on the ω- region. The presence of Ser/Thr-rich regions has already been described 

to override the sorting signal in the ω- region124, but additional properties may also be 

involved. In this context, it should also be considered GPI-anchored proteins are not strictly 

localized at either the plasma membrane or the cell wall, but rather predominantly124,129. 

Concerning GPI-sorting, Cdc1 is an attractive target for further research, as it is involved in 

GPI-anchor processing and thereby promotes the transfer of GPI-anchored proteins to the cell 

wall10,125. But also the interaction between the GPI-anchor and the plasma membrane itself 

has to be considered. Contrary to the widely held notion that GPI-anchors simply protrude 

from the plasma membrane (also referred to as the “lollipop” model), the glycan part of the 

GPI-anchor has been shown to interact with the membrane, so that the anchor is lying on the 

membrane (“flop down” model). This is thought to be caused by an interaction between amine 

groups (from EtN-Ps on the GPI-anchor) and the negatively charged phosphate groups of the 

membrane130; but also the presence of positively charged residues in the vicinity of the 

GPI-anchor, such as those commonly found in the ω- regions of GPI-PMPs, may contribute. 

This interaction between GPI-anchor and plasma membrane might be weakened by higher 

temperature, explaining the increased occurrence of proteins regarded as GPI-PMPs in the cell 

wall isolates of C. thermophilum. 

 

5. 1. 3. The structure of the C. thermophilum cell wall 

The ultrastructure of the cell walls of different fungi varies dramatically depending on their 

cell wall composition. In this regard, TEM presents a well-suited method to gain first insights 

into the cell wall properties of a fungus1. TEM is also commonly used to investigate the 

morphological effects of certain treatments or mutations on the cell wall (see for example 

Pardo et al.131 and Popolo et al.132). 

A few examples of different cell walls are described by Gow et al.1 and are shown in Figure 32, 

including an image of the C. thermophilum cell wall that was obtained in this work. TEM 

reveals long fibrils of mannoproteins in the outer wall of C. albicans; in contrast the 

A. fumigatus cell wall does not contain any fibrils1. However, the C. albicans fibrils were shown 

to differ significantly in length, depending on strains and methodologies133. Cryptococcus 

neoformans is an example for a fungus, which is surrounded by a capsule, which can be imaged 

nicely using TEM1,6. In the C. thermophilum cell wall, the two layers of the cell wall – i. e. the 

inner and the outer wall – can clearly be distinguished. Also, short mannoprotein fibrils can be 

identified. A cell wall width of ca 75 nm was measured in C. thermophilum; this is in accordance 

with the cell wall thickness of A. fumigatus134. 

The cell wall width and morphology depends on several factors, such as the strain, growth 

conditions and sample preparation. Nevertheless, this work provides a first insight on the 
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C. thermophilum cell wall. It shows that the fungus does contain mannoprotein fibrils in the 

outer layer of the cell wall, which is in contrast to the fibril-free cell wall of A. fumigatus. 

Noticeably, C. thermophilum is not surrounded by a capsule. 

 

 

Figure 32: Ultrastructure of different fungal cell walls, adapted from Gow et al.1 

TEM images of the cell walls of C. albicans, A. fumigatus, C. neoformans, and C. thermophilum. In all cases, inner 

and outer cell wall can be distinguished, but the ultrastructure of the walls differs significantly. The outer wall of 

C. albicans contains long mannoprotein fibrils, whereas A. fumigatus seems to lack these. C. neoformans in 

enveloped by a capsule, comprised of glucoronoxylomannan and galactoxylomannan. Mannoprotein fibrils can 

also be observed in the outer cell wall of C. thermophilum, but these appear very short compared to the ones in 

the C. albicans cell wall. 

 

5. 1. 4. Targets for structural and biochemical studies on cell wall proteins 

Since the fungal cell wall differs significantly from the cell walls of plants or bacteria and the 

cell membranes of mammalian cells, it has long been described as a promising target for 

antifungal drugs4. Especially cell wall biosynthesis has been shown to be an adequate target 

in this respect, as demonstrated by the effectiveness of the echinocandin class of antifungal 

drugs, which act on the β-1,3-glucan synthase Fks1135,136. However, the presence of 

resistances against echinocandins has already been described137. The demand for novel 

antifungal drugs is therefore a matter of concern. Fungal cell wall proteins are also used for 

the development of vaccines against fungal infections. For example, the recombinant 

A-domains of the C. glabrata adhesins Als1 and Als3 were shown to be effective in animal 

models138,139. But the development of antifungal drugs should not be the only focus of the 

analysis of cell wall proteins. Also the process of cell wall biosynthesis and the function of 

some essential cell wall proteins are not fully elucidated yet1. 

Proteins with a high Sequest HT score in all C. thermophilum cell wall samples are the glycoside 

hydrolases G0SDK5 (GH16), G0SEU4 (GH17), and G0RZV2 (GH24). Interestingly, homologs or 

orthologues of these could not be identified, thus their roles remain undetermined. In 

addition, many proteins known to be required for biosynthesis, remodeling, and integrity of 

the fungal cell wall were detected in the samples, including two homologs of Crh1 (G0SA20 

and G0SCM1), orthologues of Gel1 (G0S6S8) and Gel2 (G0S249), as well as Kre9/Knh1 

(G0SFW3) and Ecm33 (G0SEF6). These are obviously promising targets for further research. 
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The Crh family of transglycosidases is responsible for chitin-chitin and chitin-glucan 

crosslinking. The number of its members varies in different fungi, with three members in 

S. cerevisiae and C. albicans and five members in A. fumigatus and N. crassa140, and seven 

members in Aspergillus niger141. Three putative Crh family members were identified in the 

C. thermophilum cell wall isolates analyzed in this work, namely G0SFX7, G0SA20, and 

G0SCM1. Another member of this protein family may be G0S0M3, which was not found in the 

cell wall samples. Crystal structures of A. fumigatus Crh5 are already available (PDB: 6IBU, 

6IBW). The Crh family members function redundantly and are not essential for cell wall 

integrity140, thus they are not regarded promising targets for the development of antifungal 

drugs. 

Gel1 and Gel2 are β-1,3-glucanosyltransferases that are orthologous to members of the yeast 

Gas1 family142. The protein family plays a major role in cell wall biogenesis during vegetative 

growth; it has five members in S. cerevisiae2. The Gel protein family in A. fumigatus consists 

of seven members142. Two obvious members of the Gel family could be identified in 

C. thermophilum cell walls, the Gel1 orthologue G0S6S8 and G0S249, which is similar to Gel2. 

But also G0SH48, which was detected in the cell wall samples, is similar to Gel1 and may 

belong to the Gel family. 

Kre9 and Knh1 are functional homologues involved in β-1,6-glucan metabolism, with Kre9 

taking the dominant role. Deletion of Kre9 leads to slower cell growth and reduction and 

defects in the β-1,6-glucan moiety of the cell wall. The phenotype of the Kre9 mutant can be 

rescued by overexpression of Knh12. Recently, Candida tropicalis Kre9 has been shown to 

possess β-1,6-glucanase activity and has been identified as the target of the antifungal peptide 

CGA-N12143. Kre9 is therefore known to be an excellent target for antifungal drugs and a first 

biochemical analysis has been conducted; the structure of Kre9 remains unknown. The 

C. thermophilum cell wall isolates contain two proteins similar to Kre9/Knh1: G0SFW3 and 

G0SHT5. G0SBY7 is also similar to Kre9, but has not been identified in both, the prediction of 

GPI-anchored proteins (as no GPI-anchor attachment sequence could be identified) and the 

cell wall isolates. 

Ecm33 (Extracellular Mutant 33) and its paralog Pst1 (Protoplasts-Secreted) have been 

characterized in several fungi (S. cerevisiae131, Candida albicans144, and A. fumigatus145,146, 

among others147), but their function remains elusive. Deletion of Ecm33 results in cell wall 

defects, including a thin or even absent mannoprotein layer and defects in N-glycosylation, 

particularly affecting the elongation of N-linked outer chains. Ecm33 contains a receptor 

L-domain, which is characteristic for certain mammalian receptors, such as insulin receptor131. 

Ecm33 is one of the most common cell wall proteins and is considered to be of major 

importance for cell wall integrity and biosynthesis. It is regarded a promising target for further 

characterization. In this respect, especially structural and biochemical analysis of Ecm33 are 

required for understanding its function2. 

The C. thermophilum cell wall analysis revealed two potential adhesins: G0S5W8 and G0S002. 

G0S002 is an orthologue of the CFEM domain containing adhesin Mad1, which has been 
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shown to be involved in the adhesion to insect cells in Metarhizium anisopliae148,149. Some 

identified cell wall proteins appear a bit unusual on the first sight, such as G0S763, a protein 

similar to Bys1. Such proteins could also be identified in the cell walls of some Aspergillus 

species (A. fumigatus, Aspergillus flavus, A. nidulans)65. The function of Bys1 is unknown, it is 

expressed at high temperatures in the pathogenic fungus Blastomyces dermatitidis150. The 

C. thermophilum cell wall also contains an α-amylase (G0S3D9) and a glucoamylase (G0RZA2). 

These are commonly found in thermophilic fungi and hydrolyze α-1,4-glycosidic linkages151. 

Several proteins have been described as relevant targets for biochemical characterization 

within the fungal cell wall by Orlean (2012), including Ccw12, Ecm33, Kre1, and Kre92. Some 

orthologues of these were identified in C. thermophilum cell wall isolates. These may be of 

use for further biochemical studies and especially for structural studies on named proteins. 

 

5. 2. Analysis of cluster VI adhesins from C. glabrata 

The structures of Awp1A and Awp3A stand out from known structures of C. glabrata adhesins. 

This opportunistic pathogen harbors various families of adhesins, of which the Epa (epithelial 

adhesin) family resembles the largest and best characterized one22,31. High-resolution 

structures are available of the A-domains of three members, Epa1, Epa6, and Epa9, in complex 

with different ligands26,29,152. The A-domains of Epa family members contain an anthrax 

protective antigen (PA14) domain, which mediates glycan binding. Another family of 

C. glabrata adhesins also contains an N-terminal PA14 domain and is therefore called the Pwp 

(PA14 containing wall proteins) family. However, no structural information from Pwp family 

members is accessible at present31. Other subgroups on C. glabrata adhesins are poorly 

characterized, identification usually relies on the typical domain architecture of adhesins22. 

 

5. 2. 1. Structural similarity to pectate lyase 

Structural similarity of Awp1A and Awp3A to proteins deposited in the PDB was analyzed via 

a pairwise 3D alignment with PDBeFold v2.59 with the default cut-off of 70 % for lowest 

acceptable similarity (see Appendix VII)153. Various proteins were identified to be similar to 

Awp3A, including the heme-hemopexin binding HxuA from Haemophilus influenza154, a variety 

of polysaccharide lyases from different organisms (e. g. the pectate lyase Bsp165PelA from 

Bacillus Sp. N165155, pectate lyase A from Erwinia chrysanthemi156, alginate lyase from 

Paenibacillus Sp. Str. FPU-7157), as well as other polysaccharide binding proteins (e. g. the 

chitin-binding polysaccharide lyase-like protein Cthe_2159 from 

Chaetomium thermocellum158, the Vi-antigen lyase VexL from Achromobacter denitrificans159 

or the serine-rich repeat protein (SRRP100-23) from Lactobacillus reuteri160). The identified 

proteins all contain a three-faced right-handed β-helix. In general, sequence conservation was 

observed to be low, with sequence identities between Awp3A and search results ranging from 
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4.3 to 14.8 %; and RMSD values ranging from 2.63 to 6.04 Å, which indicates structural 

similarity. Similar results have also been observed for other β-helix proteins154,158. 

Because the identified structurally similar proteins are all carbohydrate-binding proteins, a 

similar function was assumed for Awp1 and Awp3. Thus, binding to a wide variety of 

carbohydrates was analyzed via TSA and Glycan array screening (see chapter 4. 2. 5). The 

experiments did not detect binding to any of the carbohydrates tested. 

 

5. 2. 2. Potential Ca2+ binding properties of Awp1A and Awp3A 

Because the structures of Awp1A and Awp3A both contain a parallel β-helix, they pose the 

question of Ca2+ binding. Parallel β-helices were identified in polysaccharide lyase families PL1, 

PL3, PL6, and PL9161. In those enzymes, as well as in the polysaccharide lyase-like Cthe_2159 

that was encountered in the PDBeFold search, Ca2+ is required for ligand recognition158,161. 

Also in the Epa family of C. glabrata adhesins, ligand binding is dependent on the presence of 

Ca2+ at the binding site31. The use of lanthanides as probes for Ca2+ binding sites has been 

described on several occasions162. Accordingly, potential Ca2+ coordination sites in Awp3A 

should be revealed by binding of the Ca2+ mimicking Gd3+ ions in the structure of Awp3A-Gd 

and conservation in Awp1A can be analyzed. A high number of the Gd3+ ions in Awp3A-Gd is 

involved in cluster formation, where they do not directly interact with the protein, or they 

interact with the protein via a single residue only (glutamic acid or aspartic acid). Obviously, 

these interactions do not resemble a Ca2+ binding site. Several Gd3+ ions are coordinated by 

two residues, amongst those two ions are located in a tetrahedral Gd3+ cluster, interacting 

with Q102, E132 and E134 (see cluster 2 in Figure 35). Interestingly, these Gd3+ coordination 

sites are not conserved in Awp1A, in which the Ser/Thr ladder is located at the corresponding 

face of the β-helix. Also Q70 and Q106 coordinate a single Gd3+ ion, as well as N181 and D183. 

Also these sites are not conserved in Awp1A. A higher coordination number can be observed 

for two Gd3+ ions in Awp3A-Gd, which are located in the T1 loop region of the β-helix. They 

interact with the carbonyl groups of K109, R110 and G139, and with E141 and D169 (see Figure 

33 A). However, a certain flexibility of these loop regions is implied, as the same regions are 

different in the native structures of Awp3A. The T1 loops Awp1A are dissimilar from the ones 

of Awp3A-Gd and Awp3A as well. A structural alignment with the pectate lyase C from Dickeya 

chrysanthemi (PDB: 2EWE) as a representative for the search results from the PDBeFold search 

indicates that no putative Ca2+ binding sites in Awp3A are located at positions equivalent to 

the the active site Ca2+ binding site of pectate lyases and pectate lyase-related enzymes (Figure 

33 B). Consequently, Awp3 cannot be considered a Ca2+ dependent adhesin. 

In Awp1A, no heavy atom binding was observed, although the crystallization condition 

contained a variety of lanthanides, namely Er, Tb, and Yb. Thus, there is no indication of Ca2+ 

binding in Awp1A too. 
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Figure 33: Coordination of Gd3+ in a potential Ca2+ binding site in Awp3A and comparison to pectate lyase 

A) A potential Ca2+ binding site in Awp3A, revealed by the Ca2+ mimicking Gd3+ that was introduced into the 

protein via soaking during the structure solution process. Among the numerous Gd3+ ions identified in the 

structure, only few are coordinated by more than one residue, therefore resembling a Ca2+ site. One of those is 

shown here, interacting with the side chains E141 and D169 and the carbonyl groups of K109, R110 and G139. 

B) A superposition of Awp3A-Gd (shown in green) and pectate lyase C from Dickeya chrysanthemi (PDB: 2EWE, 

depicted in blue) reveals that the potential Ca2+ binding sites of Awp3A are not located near the expected ligand-

binding site. Hence there is no indication for Ca2+ dependency of Awp3. 

 

5. 2. 3. Potential glycosylation sites in Awp1 and Awp3 

Many fungal CWPs are functionally dependent on glycosylation, which can be divided into 

N-linked glycosylation and O-linked glycosylation. Upon N-glycosylation sugars are transferred 

onto asparagine residues in the protein, a process taking place on the cytosolic side of the ER2. 

The consensus sequence N-X-S/T (X can be any amino acid) can be used to recognize potential 

N-glycosylation sites2,163. O-linked glycosylation occurs on serine or threonine residues. 

However, there is no specific sequence motif associated with O-linked glycosylation in fungi164. 

Rather, the glycosylation seems to depend on a number of factors, including the sequence 

context (which is significantly different for glycosylated serines and threonines), secondary 

structure, and surface accessibility. Prediction tools for O-linked glycosylation are available for 

mammalian proteins (NetOGlyc)165 and for Dictyostelium discoideum (DictyOGlyc)166. 

Because the structure of Awp1A reveals remarkable ladders of serine and threonine residues 

on the surface of the β-helix domain, a prediction of O-glycosylation sites in Awp1 was done 

using NetOGlyc 4.0165. The tool has been shown to overestimate O-glycosylation sites in fungi; 

nonetheless it is considered reliable, especially for the identification of highly O-glycosylated 

regions167. The tool predicted numerous glycosylation sides (see Appendix VIII), with the first 
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one being S235. Additional potentially O-glycosylated residues in Awp1 that are structurally 

resolved are: S254, S258, S262, T265, T267, T271, T273, T274, S292, T297, S299, S318, T321. 

Interestingly, none of the predicted glycosylation sites are located within the β-helix part of 

the protein; they are all located in the α-crystallin domain. Two potential O-glycosylation sites 

are not surface exposed and therefore not expected to be accessible (S254, T274); S318 and 

T321 are part of the C-terminal loop region in the structure. NetOGlyc also identified a vast 

amount of glycosylation sites in the Ser/Thr-rich region of Awp1. This coincides with 

glycosylation predictions performed on Ser/Thr-rich regions in other fungal cell wall 

proteins168. The last glycosylation site predicted is T845, which may already be part of the 

ω- region of the GPI-anchor signal sequence. 

 

5. 2. 4. Reclassification of cluster V and cluster VI adhesins via a SSN 

Classifications of Awp1-14 have been done by de Groot et al. in 200824 and by Xu et al. in 

202027; both classifications are based on a phylogenetic tree. In the phylogenetic analysis of 

protein sequences the gene tree is combined with the species tree. Resulting subtrees should 

contain proteins with similar functions, but this is not always the case169. In this respect, the 

SSN provides an additional tool for the classification of protein sequences, which is based on 

sequence similarity only170. Compared to a phylogenetic analysis, sequence similarity based 

methods perform better in the identification of isofunctional subgroups169. 

The SSN presented in this thesis was generated using the β-helical regions of the Awp1 and 

Awp3b A-domains for iterative PSI-BLAST searches. Thereby the included number of 

sequences could be expanded, which also lead to the inclusion of a large amount of bacterial 

sequences in the network. An E-value cut-off of 10-20 was used for SSN generation, hence the 

formed clusters only contain sequences below this E-value. The clusters in the network 

contain either bacterial or fungal sequences, no mixed clusters can be observed. In fact, most 

clusters in the network contain proteins from the same organism, except the Iff/Hyr cluster 

and a cluster of an unknown protein family, containing sequences from Dothideomycetes, 

Taphrinomycetes, Basidiomycetes and two plant sequences (from cork oak). Protein families 

could not be assigned to all clusters in the network. 

Various adhesin families contained the network, including the Hyr1 and the Iff family of 

adhesins from C. albicans, which are members of the same cluster. Another cluster is formed 

by Hpf1, Css1 and Awa1 from S. cerevisiae. Interestingly, Hpf1 and Awa1 have been described 

to be similar to Awp1 and Awp2 by de Groot et al.24; a relationship that could be confirmed in 

the SSN. The fact that Awp1 and Awp2 are members of different clusters of adhesins (cluster VI 

and cluster V, respectively), but are both similar to Hpf1, was not entirely conclusive at that 

time, but is now confirmed in the SSN. The cluster VI adhesins Awp1 and Awp3 fall into 

different clusters, both containing sequences from C. glabrata exclusively. In contrast to that, 

the cluster V adhesins Awp2 and Awp4 are members of the same cluster in the SSN, which 
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also consists of C. glabrata sequences. Numerous paralogs of Awp2 were identified (Awp2a-i); 

the Awp2 paralog originally identified by de Groot et al. is named Awp2. 

The SSN indicates a high similarity of the cluster V adhesins Awp1/3 to the cluster VI adhesins 

Awp2/4. This similarity is also expected to be conserved on the structural level, indicating that 

Awp2 and Awp4 also contain a β-helix motif. Sequence identity and similarity were 

determined via pair-wise alignment (using EMBOSS Needle) and are shown in Figure 34 A. The 

sequence identities between the proteins are range from 16.7% to 25.1%, which is generally 

high, especially for β-helix proteins114. Many hydrophobic residues are conserved and a 

pattern indicating the presence of β-strands can be observed, i. e. in many parts of the 

sequences every second amino acid is a hydrophobic one. Models of the Awp2 and Awp4 

A-domains (ranging from Q26 – Y344 in Awp2 and from Q27 – S231 in Awp4) were generated 

using SWISS-MODEL171 with Awp1A as a template. This resulted in generation of two different 

models for Awp2A and one model for Awp4A, which are shown in Figure 34. 

 

 

Figure 34: Models of the Awp2 and the Awp4 A-domains 

A) Sequence identities and sequence similarities between Awp1-4 are given. B) A model of the Awp2 A-domain, 

containing P98 – N290. It reveals a β-helix motif with elongated loops at one side, forming a short α-helix. C) The 

second Awp2A model comprises a larger part of the Awp2 A-domain, namely I27 – N321. The model is highly 

similar to Awp1A. D) The model of Awp4A contains A28 – S231, which form a three-sided parallel β-helix. 
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In case of Awp2A, model 1 does not include the full sequence of the A-domain, consisting of 

P98 – N290. In contrast, model 2 contains almost the full sequence of Awp2A (namely 

I27 – N321), only 23 residues on the C-terminal end of the domain are missing. The latter is 

more similar to Awp1A. However, a loop similar to the elongated loop region in model 1 that 

includes a short α-helix, might also be a part of Awp2A. The “true” structure of Awp2A is 

expected to be a mixture between the two models, containing a parallel β-helix with extended 

loops on one side, which eventually form additional secondary structure elements; similar to 

the structures of some pectate lyases114,115. Awp4A was modelled from A28 – S231, thus 

including the whole A-domain with only one residue missing in the beginning of the sequence. 

As expected, the model reveals a three-sided parallel β-helix, which is expected to reflect the 

true structure of the protein very well. 

 

5. 2. 5. Awp3A crystals soaked with Gd3+ acetate reveal a lanthanide cluster of three-fold 

symmetry 

Soaking of Awp3A crystals in Gd(OAc)3 resulted in incorporation of 42 Gd3+ ions in the 

asymmetric unit. At present, this is the highest number of lanthanide ions detected in a 

protein structure. Two Gd3+ clusters – which have formed by serendipity – can be identified in 

Awp3A-Gd, composed of 21 ions and four ions, respectively. The smaller cluster of four Gd3+ 

ions has the shape of a tetrahedron, participating ions are coordinated by Q102, E132 and 

E134. Distances between the Gd3+ ions range from 2.8 – 3.8 Å, they are 2.4 Å apart from the 

carboxyl group O of the coordinating residues. 

The larger cluster is connected to the protein via two residues, D40 and E59. It is composed of 

four tetrahedral subclusters (A, B, C, D). Subclusters A, B and C reveal distances of 3.3 – 4.1 Å 

between the ions. They are connected by triangular planar clusters composed of three Gd3+, 

with which they form a basket-like shape with three-fold symmetry. Distances of ions 

participating in composing those triangles range from 3.5 to 4.4 Å. Subcluster D is associated 

to the basket-like shape via a single Gd3+ ion, atoms in this subcluster are a bit further apparat 

from each other when compared to the other subclusters, namely 3.7 – 4.4 Å. 

The formation of lanthanide clusters – also in protein crystals – has been described on several 

occasions98,172–175. Ma et al. described a tetrahedral Gd4O4 cluster, in which they measured 

distances of approximately 3.7 – 3.9 Å between Gd atoms172. Gd-Gd distances observed in 

Awp3A-Gd are similar to those, but the tetrahedral clusters are more distorted. In case of 

cluster 2 this may be caused by the coordination via three residues that push the ions into 

their positions. A distance of ca 2.4 Å between Gd and the carboxyl group O of a valine ligand 

was described in the Gd4O4 cluster172; this coincides with the distances measured between 

Gd3+ ions of cluster 2 and coordinating residues E134, E132, and Q102, as well as with the 

distances measured between D40 and E59 to ions from cluster 1. Clustering of heavy atoms 

could also be observed in other protein structures. For example, a heptanuclear Gd3+ cluster 

was detected on the surface of the A-domain of the yeast flocculin Flo5, Flo5A. In this case, 
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the cluster could be divided into two subclusters; one exhibiting the tetrahedral shape 

described above, the other one having the triangular shape that was also observed in 

Awp3A-Gd98. 

 

 

Figure 35: Overall structure of the Awp3 A-domain and coordination of Gd3+ clusters 

The asymmetric unit of the Awp3A-Gd complex contains one molecule of the Awp3 A-domain (shown in cartoon 

representation in green), as well as 42 Gd3+ ions (orange spheres). Several single Gd3+ ions are associated to the 

protein’s surface, as well as two Gd3+ clusters, one containing 21 Gd3+, the other one consisting of 4 ions. Cluster 1 

is connected to the protein via residues D40 and E59. The tetrahedral subclusters A, B, and C form a basket-like 

shape of three-fold symmetry, subcluster D is connected to the compartment on a corner of the basket. Cluster 2 

is a tetrahedral cluster of 4 Gd3+ ions, coordinated by Q102, E132, and E134. 

 

The paramagnetic properties of certain transition metals and lanthanides are commonly 

exploited for use as contrast agents in magnetic resonance imaging (MRI). Especially Gd 

complexes are widely used, in approximately 25 - 30 % of all MRI scans (as of 2005)176. 

Although the compounds are designed to be completely excreted from the human body, the 

accumulation of Gd in different tissues has been described. In patients with compromised 

renal function, which increases the plasma elimination half-life, Gd is deposited in the skin and 

various internal organs after administration of certain Gd-based contrast agents. But also 

patients with normal renal function get accumulations of Gd in the brain and in the bones. 

Cumulative and long-term effects of these are still unknown176,177. Gd clusters, such as the 

ones observed in the structures of Awp3A-Gd or Flo5A, may provide a basis for the design of 

novel protein-based contrast agents for MRI98.  
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5. 3. Analysis of the CFEM domain of the GPCR CtPth11 

Pth11 is a GPCR that is essential for appressorium formation in several fungal plant pathogens, 

including the rice blast fungus M. oryzae40,44 and the causative of Fusarium Head Blight, 

F. graminearum47. The receptor has a CFEM domain on its N-terminus, which is proposed to 

contain the binding site for an unknown ligand, seven transmembrane helices, and an 

unknown cytoplasmic domain. Pth11 is regarded a relevant target for the development of 

antifungal agents for agriculture40. 

 

5. 3. 1. Structure of the CtPth11 CFEM domain 

The structure of the CtPth11 CFEM domain was solved via S-SAD, after initial attempts using 

MR. For latter, the structure of the CFEM protein Csa2 from C. albicans (PDB: 4Y7S)37 was used 

as an MR model. The Csa2 structure is the only structure of a CFEM domain currently 

contained in the PDB. The sequence identity and similarity of the CtPth11 CFEM domain 

(A36 – G100) and the one from Csa2 (Y56 – A119) are 18.5% and 33.8%, respectively. 

Considering the short length of the sequence and the presence of eight cysteines, which are a 

characteristic of the CFEM domain, these are very low numbers. In fact, only four more 

residues were found to be identical. It is therefore not particularly unexpected that the MR 

attempts failed, even though trimmed versions of the Csa2 structure and models of the Pth11 

CFEM domain were used. 

Structure solution was achieved via S-SAD, which uses the anomalous scattering originating 

from sulfurs naturally occurring in the protein for structure solution. The high amount of 

cysteines in the CFEM domain is advantageous in this regard, as is the high-symmetry space 

group that allows collection of data with high multiplicity. However, the protein was 

crystallized in a condition containing a high concentration of ammonium sulfate, thus it is hard 

to predict how many heavy atoms sites to expect and the presence of unordered sulfur atoms 

might be unfavorable during the phasing process. Four datasets collected from a single crystal 

were used for solving the structure of the CtPth11 CFEM-domain, using CRANK2120. 

The CtPth11 CFEM domain consists of five α-helices, connected to each other via four disulfide 

bonds (C43 – C83, C47 – C78, C57 – C64, C66 – C99). These are in accordance with the ones of 

the C. albicans Csa2 CFEM domain (PDB: 4Y7S; see Figure 36). CaCsa2 belongs to the Pga7 

family of CFEM proteins and is described to be involved in heme-iron acquisition from 

hemoglobin37. When comparing the structures of both CFEM domains – the one of CtPth11 

and the one of CaCsa2 – four helices align very well. This is reflected by the RMSD of 1.976 Å 

over 509 atoms of the superimposed structures. Only the most N-terminal helix of the CtPth11 

CFEM domain is tilted when compared to the equivalent helix in the CaCsa2 structure. The 

structure of CaCsa2 does not only contain the CFEM domain, but also two additional α-helices, 

of which one is placed N-terminal of the domain and the other one C-terminal. The N-terminal 

helix is involved in ligand binding by being placed over the bound heme molecule like a lid. 
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Accordingly, the ligand binding site of CaCsa2 is proposed to be on top of the CFEM domain, 

where the heme interacts with D80 in the CFEM domain and Y36 from the lid helix37. No other 

features indicating further ligand binding sites can be observed in the structure. 

 

 

Figure 36: Comparison between the CaCsa2 and the CtPth11 CFEM domains 

A) Surface electrostatic potential of the CaCsa2 CFEM domain. The heme molecule is placed on top of the domain 

and buried by a lid formed by an α-helix N-terminally from the CFEM domain. B) Schematic representation of the 

CFEM domain (generated with Protein Imager178). The helices forming the domain are numbered and the 

disulfide bonds are indicated by the connected orange spheres. The arrangement of the disulfide bonds is 

conserved between the two proteins. C) Cartoon representation of the structure of CaCsa2 in complex with 

heme, colored in rainbow scheme (N-terminus blue, C-terminus red). The disulfide bonds are shown in magenta 

and labeled. D) Superposition of the structures of CaCsa2 (colored blue) and the CtPth11 CFEM domain (shown 

in green). The structure of the CFEM domain is conserved; only the most N-terminal α-helix of the domain is 

tilted. 
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In contrast, the structure of the CtPth11 CFEM domain reveals two potential ligand binding 

sites, placed vis-à-vis each other (see chapter 4. 4. 4, Figure 26). The potential binding sites 

are both hydrophobic in their inside; the larger one has some positively charged residues at 

its entrance (K80, K92, K104), the smaller one a negatively charged one (E49). Fragment 

screening revealed that the bound fragments are all located in the larger cavity in the CFEM 

domain (see chapters 4. 4. 5 and 5. 3. 3). Depending on the orientation of F48, the cavities are 

either divided or a tunnel through the molecule is formed. The properties of the tunnel were 

analyzed using MOLEonline179 (see Figure 37). 

 

 

Figure 37: Analysis of the tunnel through the CtPth11 CFEM domain 

A cartoon representation of the CtPth11 CFEM domain in two different orientations is shown (N-terminus blue, 

C-terminus red). The tunnel through the domain depicted as yellow spheres, it was analyzed using MOLEonline179. 

Chain D was chosen for the analysis; F48 is orientated in a way that does not divide the two cavities in the domain. 

A graphical representation of hydrophobicity and diameter along the length of the tunnel is shown in the lower 

part of the figure. The hydrophobicity is shown as a normalized scale that ranges from the most hydrophilic 

residue (E with -1.14) to the most hydrophobic one (I with 1.81), as described by Cid et al.180. 

 

The tunnel through the CtPth11 CFEM domain has a length of 23 Å and is mostly lined by 

hydrophobic residues. The calculation of its diameter – performed on chain D of the 

asymmetric unit – reveals a bottleneck of 1.2 Å, located at F48. This small diameter does not 

suggest that a molecule would fit through the tunnel, as it is almost as small as the van der 

Waals radius of a hydrogen atom (1.09 Å181). However, a change in the placement of the F48 

side chain might widen the tunnel enough to allow some ligands, such as fatty acids, to fit 

through the tunnel. Pth11 is suggested to induce the differentiation of appressoria upon 

sensing either specific plant surface cues or hydrophobicity. This was shown by detection of 

increased appressorium formation of M. grisea on polystyrene and Teflon supplemented with 
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1,16-hexadecanediol (which contains a fatty acid chain), compared to the unsupplemented 

surfaces. The effect could not be observed in M. grisea mutants with a defective pth11 gene44. 

Fatty acids are common components in the plant cuticle182 and the question if these are the 

unknown surface cue that Pth11 senses remains open. Further examination of a possible 

interaction between Pth11 and fatty acid chains via molecular dynamics simulations are 

therefore suggested. 

 

5. 3. 2. Accessibility of the binding cleft 

The structural analysis of the CtPth11 CFEM domain revealed two possible ligand binding sites. 

However, it must be considered that Pth11 does not only consist of the CFEM domain, but 

also has a transmembrane region and a cytoplasmic C-terminal region. The orientation of the 

CFEM domain on the transmembrane region may not allow binding of a ligand at the potential 

binding sites due to limited accessibility. This problem was analyzed by prediction of residue-

residue interactions, using GREMLIN (http://gremlin.bakerlab.org). GREMLIN conducts a 

covariance prediction; the input for which is a multiple sequence alignment. For the positions 

that vary in different proteins following assumption is made: when amino acid X varies, then 

amino acid Y interacting with X will also vary; the amino acids “co-vary”. These residues are 

usually found to interact with each other183. 

The covariance prediction for the N-terminal CFEM domain of CtPth11 and the 

transmembrane part was done using both sequences separately as input. The CFEM domain 

(stretching from V24 – S105) was aligned with 1155 sequences, the GPCR region (L109 – R380) 

with 6529 sequences. When joined, they were aligned with 344 sequences. The cytoplasmic 

C-terminal domain of CtPth11 was not included in the prediction. The contact map generated 

by GREMLIN is shown in Appendix IX, as is the full list of residues predicted to interact with 

each other. In general, many residues with a distance of three to four amino acids between 

each other were predicted to be adjacent, indicating the presence of α-helices. This 

demonstrates the reliability of the prediction, as it reflects the structure of both parts of 

CtPth11 – i. e. the CFEM domain and the transmembrane region. The predicted residue-

residue interactions were used to generate a model of CtPth11 using MODELLER118, which is 

shown in Figure 38. The model structure reveals that both potential bindings sites within the 

CFEM domain are accessible. Following residue pairs were predicted to be neighbors with a 

high probability: K86 – H259, K86 – F176, T90 – F173, and N93 – F173. K86, T90 and N93 are 

part of the most C-terminal α-helix of the CFEM domain. F173 and F176 are located between 

the second and the third α-helix of the transmembrane region; H259 is part of a longer loop 

between the forth and the fifth transmembrane helix. All three residues from the 

transmembrane region of CtPth11 are located on the extracellular side of the transmembrane 

region. Thus, the predicted interactions are indeed possible; they are shown in the model 

structure in Figure 38 B. It should be considered that loop regions and side-chain 

conformations cannot be modeled precisely, leading to unexpectedly long distances between 

interacting residues in the model structure. 
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Figure 38: Model of the CtPth11 CFEM domain and the transmembrane region 

A) The model of the CtPth11 CFEM domain and transmembrane region is shown in two orientations. The protein 

is depicted in cartoon and surface representation; the electrostatic potential of the surface was visualized using 

the APBS Electrostatics plugin in PyMOL. The model exhibits that both potential ligand binding sites are 

accessible. B) The region harboring residues predicted to be neighbors is shown. Interacting residues are shown 

as sticks and connected by dashed lines. 

 

5. 3. 3. Fragment screening against the CtPth11 CFEM domain 

The “resolution revolution” enabled the collection of data with higher and higher resolutions 

using single particle cryo-EM, a method that does not rely on formation of protein 

crystals80,184,185. This has changed the current and future perspectives on the applications of 

X-ray crystallography, which is also reflected by the more recent developments in the field. 

Besides the development of XFELs that allow the acquisition of time-resolved crystallography 

data, the speed of data acquisition at synchrotron beamlines and the applications running 

automated data analysis have extensively improved. X-ray crystallography is thus perfectly 
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suited for structure-based drug-discovery, which has become a commonly used method185. In 

this work, a fragment screen against the CtPth11 CFEM domain was conducted, serving two 

purposes: first, further information on the potential natural ligand of Pth11 should be gained. 

Second, some potential inhibitors, which may be of use for the development of antifungal 

agents for agriculture, may be identified. Fragments contained in the Frag Xtal Screen (Jena 

Bioscience) were used. 

The automatic data analysis pipeline DIMPLE106 was used for the evaluation of the fragment 

screen datasets. 118 records were handled using DIMPLE, 21 of those could not be handled 

by the pipeline. Since the diffraction quality of many crystals was severely compromised by 

the soaking process, DIMPLE can nevertheless be considered a reliable method for rapid 

structure solution of multiple datasets. The pipeline also identifies so called “unmodelled 

blobs” in the electron density maps – i. e. regions of electron density that do not contain any 

structure model. Bound fragments were observed in four datasets, but DIMPLE was able to 

identify unmodelled blobs in only one of them. Manual evaluation of the electron density 

maps of the datasets is therefore considered as necessary. The fragments that were bound 

the CtPth11 CFEM domain are shown in Figure 27. 

The electron densities for fragment 3, fragment 34 and fragment 62 were unambiguous; 

fragment 94 could not be modelled into the electron density in any meaningful way. All 

fragments are placed in the larger cavity of the CFEM domain (see Figure 39). Only few 

interactions are formed between the compounds and residues from the CFEM domain: C66 

and N72 interact with fragment 3; N72, T76 and T95 interact with fragment 34; fragment 62 

does not seem to interact with any residue. In general, the hydrophobic compounds are 

located in the hydrophobic cavity. This is in agreement with the suggestion that Pth11 might 

sense hydrophobicity on the plant surface44.  

 

 

Figure 39: Placement of the bound fragments within the CtPth11 CFEM domain’s cavity 

A) The cartoon and surface representation of the CtPth11 CFEM domain shows that the fragments are all bound 

in the same cavity. The APBS Electrostatics plugin for PyMOL was used to generate the surface representation. 

The cavity, in which the ligands are placed, is hydrophobic, some positively charged residues are placed at its 

entrance. B) An overlay of all three bound fragments in two different orientations. The CFEM domain is shown 

in cartoon representation, the residues interacting with the ligands are depicted as sticks. Dashed lines indicate 

the interactions between protein and fragment.  



  5. Discussion 

117 
 

5. 4. Perspectives on structural proteomics of the fungal cell wall 

The topics covered in this thesis raise excellent opportunities for further research. By 

establishing the cell wall proteome of the thermophilic fungus C. thermophilum, several 

targets for biochemical and structural characterization could be identified. The usefulness of 

proteins originating from C. thermophilum for in vitro studies of fungal cell wall proteins was 

recently described by Vogt et al.10. It has also been demonstrated in this work by 

characterizing the CFEM domain of the GPCR Pth11. The increased stability of C. thermophilum 

proteins compared to their mesophilic counterparts, which was observed in both cases, might 

also be transferable to other targets of interest for characterization. These include Ecm33, 

which is regarded one of the most abundant cell wall proteins and implemented in cell wall 

integrity131,186, as well as Gel1/2 and Kre9, which are both involved in cell wall 

biosynthesis2,142,143. The analysis of the C. thermophilum cell wall proteome also posed 

questions regarding the distinction between GPI-PMPs and GPI-CWPs, as many proteins that 

were expected to be located at the plasma membrane could be identified in cell wall isolates. 

Characterization of Cdc1 may provide further insight into cell wall sorting, turning it into 

another target for future biochemical and structural studies. 

The structures of Awp1A and Awp3A, which were determined in this work, represent a new 

class of C. glabrata adhesins. In contrast to the Epa and Pwp adhesin families, which both have 

a PA14 domain, the cluster VI adhesins Awp1 and Awp3 were shown to contain a right-handed 

parallel β-helix. By generation of a SSN, the presence of this structural motif could also be 

revealed in the cluster V adhesins Awp2 and Awp4. C. glabrata contains a large repertoire of 

adhesins with partially overlapping functions and extensive differences between various 

strains or isolates. The diversity can evolve rapidly due to the high plasticity of the organism's 

genome, a characteristic often observed in pathogens23,27. Accordingly, the characterization 

of the various adhesins in fungal pathogens is a future objective. A reliable classification of 

adhesin families in combination with the characterization of individual members enables the 

prediction of the other proteins contained in the respective families. The foundations for this 

have been established by the characterization of various Epa proteins26,29,30 and in this work. 

In addition, the SSN also revealed the similarity of Awp1/3 to protein families from other 

fungal organisms, thereby allowing the prediction of structures of members of the Iff family 

of adhesins from the pathogen C. albicans or of the bacterial cell surface proteins that are 

included in this network. 

Also the analysis of the structure of the CtPth11 CFEM domain offers new possibilities to gain 

further insight on the protein. The structure reveals a hydrophobic tunnel through the 

molecule, with a bottleneck diameter of 1.2 Å. However, the diameter of the tunnel may be 

enlarged by displacement of side chain of F48, which may allow binding of a fatty acid chain. 

The analysis of this possible interaction using molecular dynamics simulations is therefore 

suggested. The accessibility of the potential ligand binding sites, respectively the tunnel, was 

predicted using the GREMLIN server, which conducts a sequence covariance analysis. The 

predicted residue-residue interactions were used to generate a model of the CFEM domain, 
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placed on the transmembrane region of Pth11 (see Figure 38). In cooperation with Prof. Dr. 

Neil Brown, the presence of the predicted interactions will be verified in F. graminearum 

Pth11 (FGRRES_16221)47. The corresponding interactions in FGRRES_16221 were determined 

using a model of the FgPth11 CFEM domain and transmembrane region, based on the CtPth11 

model. Following residues are thought to interact with each other in FGRRES_16221: K76 – 

H249, K76 – F168, T80 – I165/F168, L79 – I165. These will be mutated to alanine residues in 

the mutation studies. Using the fragment screen, four compounds were identified to bind to 

the CtPth11 CFEM domain. These are fragment 3, 34, 62, and 94 from the Frag Xtal Screen 

(Jena Bioscience). Affinities of the CFEM domain and the compounds should be tested in future 

experiments. In addition, in vivo studies might be conducted to determine, if the fragments 

act as inhibitors for Pth11, a principal contributor to invasive fungal growth in plants. 
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8. Appendices 

8. 1. Appendix I: Classification of C. glabrata adhesins 

Cluster I CAGL0E06644g|Epa1 aaaaaaaaaa Cluster V CAGL0E06600g 
 CAGL0E06666g|Epa2   CAGL0I07293g 
 CAGL0E06688g|Epa3   CAGL0B00154g 
 CAGL0C00110g|Epa6   CAGL0K00110g|Awp2 
 CAGL0C05643g|Epa7   CAGL0H00209g 
 CAGL0C00847g|Epa8   CAGL0I11000g 
 CAGL0A01366g|Epa9   CAGL0J12067g 
 CAGL0A01284g|Epa10   CAGL0F09251g 
 CAGL0L13299g|Epa11   CAGL0L00227g 
 CAGL0M00132g|Epa12   CAGL0B05061g 
 CAGL0L13332g|Epa13   CAGL0F00099g 
 CAGL0L13552g|Epa14a   CAGL0D00143g 
 CAGL0M14300g|Epa14b   CAGL0M00121g|Awp4 
 CAGL0J11968g|Epa15   CAGL0B00110g|Awp828 
 CAGL0F00077g|Epa16   CAGL0B05093g|Awp928 
 CAGL0A00099g|Epa19   CAGL0F00110g|Awp1028 
 CAGL0E00275g|Epa20   CAGL0M00110g|Awp1128 

 CAGL0D06743g|Epa21  Cluster VI CAGL0J02508g|Awp1 
 CAGL0K00170g|Epa22   CAGL0J11902g|Awp3a 
 CAGL0I00220g|Epa23   CAGL0J11935g|Awp3b 

Cluster II CAGL0I10147|Pwp1   CAGL0J01774g 
 CAGL0I10246g|Pwp2   CAGL0J01727g 
 CAGL0I10200g|Pwp3   CAGL0J01800g 
 CAGL0I10362g|Pwp4   CAGL0J02552g 
 CAGL0I10340g|Pwp5   CAGL0J02530g 

 CAGL0M14069g|Pwp6  Cluster VII CAGL0G10219g|Awp12 
 CAGL0I10098g|Pwp7   CAGL0C00825g 

Cluster III CAGL0C00253g   CAGL0C01133g 
 CAGL0E00165g   CAGL0C00803g 
 CAGL0E01661g   CAGL0C00858g 
 CAGL0L10092g   CAGL0C00968g 

 CAGL0K13002g|Aed2  Unclassified CAGL0G04125g 
 CAGL0K13024g|Awp5/Aed1   CAGL0J05159g 
 CAGL0E00231g   CAGL0L09911g 
 CAGL0A04851g   CAGL0G05896g 
 CAGL0H10626g|Awp13   CAGL0C03575g 
 CAGL0G00099g   CAGL0D06226g 
 CAGL0L00157g   CAGL0K10164g 
 CAGL0I00209g   CAGL0M03773g 
 CAGL0J00132g   CAGL0E00187g 
 CAGL0A04873g|Awp1424   CAGL0J11462g 

Cluster IV CAGL0G10175g|Awp6   CAGL0L06424g 
 CAGL0C00209g|Awp7   CAGL0M11726g 
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8. 2. Appendix II: List of fragment screen datasets 

Fragment Nr 
Concentration 

[mM] 
Dataset 
name 

Soaking 
time 

Estimated resolution 
[A] 

J2 50 VR_138 23 h 1.9 

J3 50 VR_139 23 h 1.8 

J4 50 VR_140 23 h 2.5 

J4 50 VR_141 23 h 2.3 

J5 50 VR_142 23 h 2.0 

J1 50 VR_143 ca 10 sec 2.6 

J1 50 VR_144 ca 10 sec 2.5 

J6 100 VR_145 ca 2 min 2.3 

J9 50 VR_146 ca 2 min 2.5 

J9 50 VR_147 ca 4 min 2.4 

J7 50 VR_148 26 h no diffraction 

J8 100 VR_149 26 h 2.8 

J8 100 VR_150 26 h 2.5 

J10 50 VR_151 26 h 2.3 

J13 50 VR_152 26 h 2.4 

J51 100 VR_158 19 h no diffraction 

J61 100 VR_159 19 h no diffraction 

J63 50 VR_160 19 h 1.8 

J37 100 VR_161 ca 50 min 3.8 

J40 100 VR_162 1 h no diffraction 

J41 50 VR_163 1 h 3.0 

J47 100 VR_164 30 min 2.1 

J48 100 VR_165 20 min no diffraction 

J60 100 VR_166 10 min no diffraction 

J49 100 VR_167 ca 20 sec 2.2 

J52 100 VR_168 3 min 2.1 

J58 100 VR_169 5 min 2.7 

J60 100 VR_170 7 min 2.4 

J62 100 VR_171 6 min 2.3 

J65 100 VR_172 3 h 2.5 

J68 50 VR_173 3 h 2.0 

J70 50 VR_174 3 h 2.4 

J71 100 VR_175 3 h no diffraction 

J72 100 VR_176 3 h 2.0 

J33 100 VR_177 10 min 3.5 

J35 100 VR_178 ca 30 sec 2.0 

J32 100 VR_179 10 min no diffraction 

J27 100 VR_180 100 min 2.2 

J28 100 VR_181 100 min 2.0 

J29 100 VR_182 100 min 2.4 

J39 100 VR_183 90 min 2.0 

J32 100 VR_184 90 min no diffraction 

J36 100 VR_185 10 min 3.2 
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J39 100 VR_186 15 min no diffraction 

J46 100 VR_187 25 min 2.2 

J43 100 VR_188 ca 30 min 2.6 

J43 100 VR_189 ca 30 min 2.3 

J42 100 VR_190 ca 30 min 2.6 

J42 100 VR_191 ca 30 min 4.0 

J34 50 VR_192 3 h 2.2 

J73 100 VR_193 3 h 2.2 

J74 50 VR_194 3 h 2.7 

J75 50 VR_195 3 h 2.5 

J76 50 VR_196 3 h 2.9 

J77 50 VR_197 3 h 2.4 

J78 50 VR_198 3 h 2.0 

J80 50 VR_199 3 h 2.3 

J80 50 VR_200 3 h 2.4 

J81 50 VR_201 3 h 2.8 

J16 100 VR_202 ca 5 min 2.0 

J17 100 VR_203 ca 5 min no diffraction 

J18 100 VR_204 ca 30 min 3.5 

J18 100 VR_205 ca 50 min no diffraction 

J26 100 VR_206 ca 1 min 2.5 

J24 100 VR_207 1 h no diffraction 

J25 50 VR_208 1 h no diffraction 

J20 50 VR_209 3 h 2.1 

J21 50 VR_210 3 h 3.2 

J23 100 VR_211 3 h no diffraction 

J27 100 VR_212 3 h no diffraction 

J27 100 VR_213 3 h no diffraction 

J28 100 VR_214 3 h no diffraction 

J31 50 VR_215 3 h low resolution 

J21 50 VR_216 26 h 2.5 

J20 50 VR_217 26 h 2.1 

J64 50 VR_218 19.5 h 2.3 

J63 50 VR_218 19,5 h 2.3 

J34 50 VR_219 24 h 2.1 

J41 50 VR_220 24 h 2.6 

J67 50 VR_221 ca 15 sec 3.3 

J66 100 VR_221 ca 15 sec 2.7 

J69 100 VR_222 ca 30 sec 2.6 

J83 100 VR_223 ca 30 sec not processed 

J84 100 VR_224 ca 10 sec 3.4 

J94 100 VR_225 ca 2 min 2.0 

J94 100 VR_226 ca 1 min 1.9 

J66 100 VR_227 ca 2 h 2.5 

J85 100 VR_228 ca 20 min not processed 

J91 100 VR_229 ca 15 min no diffraction 

J59 100 VR_230 3 h 2.3 
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J61 100 VR_231 3 h 2.5 

J63 50 VR_232 24 h 2.2 

J64 50 VR_233 24 h 2.4 

J86 50 VR_234 3 h 3.6 

J93 100 VR_235 3 h 2.8 

J68 50 VR_236 24 h no diffraction 

J72 100 VR_237 24 h 2.4 

J73 100 VR_238 24 h no diffraction 

J74 50 VR_239 24 h 2.5 

J75 50 VR_240 24 h no diffraction 

J76 50 VR_241 24 h no diffraction 

J76 50 VR_242 24 h not processed 

J77 50 VR_243 24 h 2.9 

J78 50 VR_244 24 h no diffraction 

J80 50 VR_245 24 h 2.8 

J80 50 VR_246 24 h no diffraction 

J84 100 VR_247 ca 1 min 2.0 

J85 100 VR_248 15 min 2.9 

J89 100 VR_249 12 min 3.1 

J87 100 VR_250 20 min 2.8 

J91 100 VR_251 14 min 3.0 

J11 100* VR_252 ca 30 sec 2.6 

J11 100* VR_253 ca 30 sec 2.3 

J12 100* VR_254 ca 30 sec 2.8 

J12 100* VR_255 1 min 2.9 

J22 100* VR_256 23 min not processed 

J14 100* VR_257 ca 30 sec not processed 

J14 100* VR_258 ca 30 sec 2.5 

J14 100* VR_259 ca 10 sec 2.5 

J15 100* VR_260 ca 30 sec no diffraction 

J15 100* VR_261 ca 15 sec 2.3 

J44 100* VR_262 3 min no diffraction 

J44 100* VR_263 ca 10 sec 2.2 

J45 100* VR_264 ca 1 min 2.3 

J45 100* VR_265 ca 15 sec no diffraction 

J79 100* VR_266 ca 2 min 4.0 

J79 100* VR_267 ca 2 min  

J67 100* VR_268 ca 6 min 2.5 

J67 100* VR_269 ca 6 min no diffraction 

J92 50* VR_270 ca 30 sec 2.9 

J90 50* VR_271 ca 10 sec 2.2 

J90 50* VR_272 ca 10 sec 2.5 

J94 100 VR_273 ca 1 min 3.1 

J88 100 VR_274 90 min 2.6 

J38 50 VR_275 3 h 2.2 

J38 50 VR_276 4 h 2.9 

J50 50* VR_277 2 1/2 h 2.4 
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J50 50* VR_278 2 1/2 h Phaser error 

J83 100 VR_285 30 sec 3.0 

J7 50 VR_286 20 min no diffraction 

J22 100* VR_287 10 min 3.7 

J32 100 VR_288 4 min 2.5 

J48 100 VR_289 1 min no diffraction 

J23 100 VR_290 5 min 3.5 

J71 100 VR_291 1 h no diffraction 

J71 100 VR_292 1 h no diffraction 

J31 50 VR_293 1 h no diffraction 

J24 100 VR_294 20 min 2.4 

J48 100 VR_295 1 min 2.7 

J18 100 VR_296 5 min no diffraction 

J37 100 VR_299 15 min 2.7 

J51 100 VR_300 1 h bad diffraction 
* Fragment powder remaining undissolved was centrifuged and the supernatant was used for soaking. 

Fragment number refers to the Frag Xtal Screen from Jena Bioscience. 

 

Fragment ID Fragment SMILES 

1 

 

CC1=CC(=CC=C1)C(=O)NN 

2 

 

C1C2=CC=CC=C2C(=N1)N 

3 

 

CNC(=S)NC1=C(C=C(C=C1)Br)Cl 

4 

 

CC1=NC=CC(=N1)N2CCCCCC2 

5 

 

CCC(C)(CN)N1CCOCC1 

6 

 

C1CCC(C1)NCC2=CC3=C(C=C2)OCO3 

7 

 

O=C(CN1CCCCC1)Nc1ccc2OCOc2c1 



  8. Appendices 

139 
 

8 

 

CC(C)Nc1ccccc\c1=N/C(C)C 

9 

 

O=c1[nH]c2ccc(NCc3ccccn3)cc2[nH]1 

10 

 

NCC(=O)c1ccc(Br)cc1 

11 

 

Fc1ccc(cc1F)C1=NNC2=NCCN2C1 |t:9,12| 

12 

 

OC(C(O)=O)c1cccc(Cl)c1 

13 

 

Cc1cc(CN)n(C)n1 

14 

 CNCc1ccc(Oc2cccnc2)o1 

15 
 CCN(CC)C(=N)C 

16 

 

Brc1ccc(cc1)C(=O)NNC1=NCCC1 |t:12| 

17 

 

CN(C)c1cccc(c1)C(=O)NN 

18 

 

NNC(=O)Cc1ccc(Br)cc1 

19 

 

C1CNC(C1)c1ccc2OCCOc2c1 

20 

 

Nc1[nH]nc(N2CCCC2)c1C#N 
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21 

 

NC(=N)N1CCCCC1 

22 

 

CC1ON=C(C(NCC(F)(F)F)=O)C=1 

23 

 

CC(C1=NOC(NC(CN2CCC(C)CC2)=O)=C1)C 

24 
 

CC(NC(=O)CCC(=O)c1cccs1)c1cccnc1 

25 

 

Cc1cc(C)c(C#N)c(NCCCN2CCOCC2)n1 

26 

 

Cc1nc(N)sc1-c1nccn1C 

27 

 

CC1CC(C)CN(Cc2nc(N)nc(n2)N(C)C)C1 

28 

 

NCCc1cccnc1 

29 

 

NC(=N)c1ccsc1 

30 

 

NCC1OC(C(F)(F)F)CC1 

31 

 

O=C(C1CCCNC1)N1CCCCC1 

32 

 

COC(=O)c1ccc(CN)cc1 

33 

 

NC(=N)c1ccc(cc1)C(F)(F)F 

34 

 

CCOc1nc(NC(N)=N)nc2c(C)cccc12 
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35 
 

Cn1cccc1CNCCc1c[nH]c2ccccc12 

36 

 CNCC1=CC(=CC(=C1)Cl)[N+](=O)[O-] 

37 

 

CNCc1nccn1C 

38 

 

O=C(Cc1cn2ccccc2n1)Nc1ccccc1 

39 

 

O=C(NCC1CCCO1)C1CCCCC1 

40 

 

CC(N(CC1NC(=O)C2=C(C=CC=C2)N=1)C)C1CC1 

41 

 

CN(C)c1ccc(cn1)C(O)=O 

42 

 

Cc1cc(C(=O)Nc2ccncc2)c(C)o1 

43 

 

Cc1nn(C)c(C)c1CC(=O)Nc1ccccn1 

44 

 

CN(C(CC1C2=C(C=CC=C2)C=CN1C(C)=O)=O)C 

45 

 

NCC(O)c1ccc(F)cc1 

46 

 

CC(=O)Nc1cccc(CN)c1 

47 

 

COc1ccc(CN)cc1O 
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48 

 

C(Nc1ccc2OCCOc2c1)c1ccncc1 

49 

 NC(=N)SCc1ccccc1Cl 

50 

 

O=c1[nH]cnc2[nH]c(nc12)N1CCCCC1 

51 
 

CN(C)CCCn1cnc2oc(C)c(C)c2c1=N 

52 

 

CC1CCC(CC1)NC(=O)Cn1ccnc1 

53 

  

54 

 

CC(C)(C)c1cc(CC2(N)COC2)no1 

55 

 

Cc1cccc(c1)C1C[C@@H](O)[C@@H](O)[C@@H]1N 

56 

 

O[C@@H]1CNCCOC1 

57 

  

58 
 

CC(C)c1noc(n1)C1CCCN1 

59 

 

O=C1OCC2CNCCN12 

60 

  

61 

 

NC(=O)c1cccnc1 

62 
 COC(=O)C(CC1=CC=CC=C1)N.Cl 

63 

 

Cn1cnc2n(C)c(=O)[nH]c(=O)c12 
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64 

 

Nc1nc(O)c2[nH]cnc2n1 

65 

 C1=CC(=CC=C1C(=O)O)[N+](=O)[O-] 

66 
 

Oc1nc2cc(Cl)ccc2o1 

67 
 

NCCCCC(O)=O 

68 

 

O=C1NC2NC(=O)NC2N1 

69 

 

C1(C(O)=O)NC(=O)NC(=O)C1N 

70 

 

Cn1cnc(C[C@H](N)C(O)=O)c1 

71 

 

C12N=CN(C)C=1C(N(C)C(=O)N2C)=O 

72 
 

[C@H](N)(CCONC(=N)N)C(=O)O 

73 

 C1C2C(C(S1)CCCCC(=O)O)N=C(N2)N 

74 
 

C(N)C(C1=CC=C(C)C(C)=C1)O 

75 

 

  

76 
 

OC(=O)C1CCC(=O)N1 

77 
 

NC(CCCNC(N)=N)C(O)=O 

78 
 

NCC(=O)NCC(=O)NCC(O)=O 

79 

 

Oc1nc(O)c2nn[nH]c2n1 

80 
 

Cc1cc(NS(=O)(=O)c2ccc(N)cc2)no1 

81 
  

82 

 

Oc1ccc(cc1O)[N+]([O-])=O 
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83 

 

Nc1cccc(c1)-c1cnco1 

84 

 Oc1ccc2[nH]ccc2c1 

85 

 

NC(=O)c1cccc(N)c1 

86 

 

C1CC(CCC1CN)C(=O)O 

87 
 

CSCCC(NC(N)=O)C(O)=O 

88 
 

CN(C)NC(=O)CCC(O)=O 

89 

 

NC(=O)c1ccc(O)cc1 

90 

 

Oc1ccc([N+]([O-])=O)c2cccnc12 

91 

 

CC(=O)N1CCC[C@H]1C(O)=O |r| 

92 

 

Oc1cc(cc(c1O)[N+]([O-])=O)[N+]([O-])=O 

93 
 

Oc1nc2cc(c(cc2nc1O)[N+]([O-])=O)[N+]([O-])=O 

94 

 

NS(=O)(=O)c1ccc(Cl)s1 

95 

 

NC(=O)C1CCOC1 

96 

 

ONC(=O)C12CCC(CC1)C2 
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8. 3. Appendix III: DIMPLE script 

#!/bin/bash -f 
# 
# usage: SLS_to_pandda.sh pdbin rfree-in out_dir 
# 
# 
if [[ "$1" != "" && -f $1 ]]; then 
    pdb_ref=$1 
    echo "### Assign PDB reference structure to "$pdb_ref 
else 
    echo "Please give reference pdb structure !" 
    echo "usage: SLS_to_pandda.sh pdbin rfree-in out_dir" && exit 
fi 
# 
if [[ "$2" != "" && -f $2 ]]; then 
    rfree_ref=$2 
    echo "### Assign FreeR_flag reference mtz file to "$rfree_ref 
else 
    echo "No R-free flag reference mtz file given ! This file has to have a colum FreeR_flag." 
    echo "usage: SLS_to_pandda.sh pdbin rfree-in out_dir" && exit 
fi 
# 
if [[ "$3" != "" ]]; then 
    outdir=$1 
else 
    outdir=aimless_dirs 
fi 
# 
echo "### Set output directory to "$outdir 
# 
# The next line finds all successfully generated XDS_ASCII.HKL 
#       in the gopy subdirs as generated by SLS pipeline 
# 
FILES=`find . -type f -wholename "*/*/gopy/XDS_ASCII.HKL"` 
#FILES=`find . -type f -wholename "*/*/manual_XDS/XDS_ASCII.HKL"` 
# 
[ -e $outdir ]          && /bin/rm -rf $outdir 
# 
## 
mkdir $outdir 
# 
# 
for xdsfile in $FILES; do 
    xdspath=`dirname $xdsfile` 
    dataset_prefix=`echo $xdspath | sed 's/\.\/\([A-Z,a-z,0-9,\_,\-]*\).*/\1/'` 
    outputs_prefix=$outdir/$dataset_prefix 
    # 
    echo "Dataset "$dataset_prefix" found: data under "$xdspath 
    mkdir ${outputs_prefix} 
    srun pointless -copy    XDSIN $xdsfile HKLOUT ${outputs_prefix}/XDS_ASCII.mtz\ 
              | tee ${outputs_prefix}/${dataset_prefix}.pointless.log \ 
 && aimless --no-input HKLIN ${outputs_prefix}/XDS_ASCII.mtz HKLOUT 
${outputs_prefix}/${dataset_prefix}.aimless.mtz \ 
                     | tee ${outputs_prefix}/${dataset_prefix}.aimless.log \ 
 && dimple  --hklout ${dataset_prefix}.dimple.mtz --xyzout ${dataset_prefix}.dimple.pdb -R $rfree_ref 
${outputs_prefix}/${dataset_prefix}.aimless.mtz $pdb_ref ${outputs_prefix} \ 
                     | tee ${outputs_prefix}/${dataset_prefix}.dimple.log >& 
${outputs_prefix}/${dataset_prefix}.SLS_to_pandda.log &    
done 
# 
Exit 
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8. 4. Appendix IV: TSA – Awp1A 
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8. 5. Appendix V: ITC measurements of Awp3A and α-1,6-mannobiose 

 
100 µM Awp3A 

1 mM α-1,6-mannobiose 

 
100 µM Awp3A 

10 mM α-1,6-mannobiose 

 

 
50 µM Awp3A 

10 mM α-1,6-mannobiose 
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8. 6. Appendix VI: Glycan Array results 

8. 6. 1. Awp1A (5 µg/mL) – Anti-His-488 (5 µg/mL) 

 

 

Chart 
ID 

Sample (conc.)  Secondary (conc.) Barcode#  Slide # Request # Date Initials 
Average 
RFU StDev %CV 

1 Gala-Sp8 58 6 11 

2 Glca-Sp8 48 2 5 

3 Mana-Sp8 66 6 9 

4 GalNAca-Sp8 81 13 16 

5 GalNAca-Sp15 65 2 3 

6 Fuca-Sp8 16 28 175 

7 Fuca-Sp9 80 6 8 

8 Rhaa-Sp8 58 5 9 

9 Neu5Aca-Sp8 81 3 3 

10 Neu5Aca-Sp11 54 2 4 

11 Neu5Acb-Sp8 83 26 32 

12 Galb-Sp8 55 3 5 

13 Glcb-Sp8 59 6 10 

14 Manb-Sp8 51 14 27 

15 GalNAcb-Sp8 11 21 194 

16 GlcNAcb-Sp0 66 10 15 

17 GlcNAcb-Sp8 46 20 43 

18 GlcN(Gc)b-Sp8 82 5 6 

19 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3)GalNAca-Sp8 70 2 2 

20 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3)GalNAc-Sp14 71 5 7 

21 GlcNAcb1-6(GlcNAcb1-4)(GlcNAcb1-3)GlcNAc-Sp8 70 6 8 

22 6S(3S)Galb1-4(6S)GlcNAcb-Sp0 94 6 6 

23 6S(3S)Galb1-4GlcNAcb-Sp0 96 9 9 

24 (3S)Galb1-4(Fuca1-3)(6S)Glc-Sp0 217 14 6 

25 (3S)Galb1-4Glcb-Sp8 32 6 20 

26 (3S)Galb1-4(6S)Glcb-Sp0 43 7 16 

27 (3S)Galb1-4(6S)Glcb-Sp8 58 6 11 

28 (3S)Galb1-3(Fuca1-4)GlcNAcb-Sp8 59 7 12 

29 (3S)Galb1-3GalNAca-Sp8 70 4 6 
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30 (3S)Galb1-3GlcNAcb-Sp0 52 9 17 

31 (3S)Galb1-3GlcNAcb-Sp8 66 5 7 

32 (3S)Galb1-4(Fuca1-3)GlcNAc-Sp0  63 3 4 

33 (3S)Galb1-4(Fuca1-3)GlcNAc-Sp8 73 2 2 

34 (3S)Galb1-4(6S)GlcNAcb-Sp0 62 1 2 

35 (3S)Galb1-4(6S)GlcNAcb-Sp8 79 3 4 

36 (3S)Galb1-4GlcNAcb-Sp0 58 2 3 

37 (3S)Galb1-4GlcNAcb-Sp8 22 18 81 

38 (3S)Galb-Sp8 38 4 10 

39 (6S)(4S)Galb1-4GlcNAcb-Sp0 19 18 98 

40 (4S)Galb1-4GlcNAcb-Sp8 47 11 24 

41 (6P)Mana-Sp8 14 6 45 

42 (6S)Galb1-4Glcb-Sp0 66 15 23 

43 (6S)Galb1-4Glcb-Sp8 38 2 5 

44 (6S)Galb1-4GlcNAcb-Sp8 38 1 3 

45 (6S)Galb1-4(6S)Glcb-Sp8 44 3 7 

46 Neu5Aca2-3(6S)Galb1-4GlcNAcb-Sp8 56 2 3 

47 (6S)GlcNAcb-Sp8 56 4 6 

48 Neu5,9Ac2a-Sp8 57 4 7 

49 Neu5,9Ac2a2-6Galb1-4GlcNAcb-Sp8 28 7 25 

50 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 27 1 3 

51 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp13 28 2 6 

52 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 31 4 13 

53 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp13 26 4 16 

54 
Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp12 32 1 3 

55 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 27 3 10 

56 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Man-a1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 33 2 6 

57 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp24 60 4 6 

58 Fuca1-2Galb1-3GalNAcb1-3Gala-Sp9 46 2 4 

59 Fuca1-2Galb1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp9 35 2 7 

60 Fuca1-2Galb1-3(Fuca1-4)GlcNAcb-Sp8 20 13 67 

61 Fuca1-2Galb1-3GalNAca-Sp8 35 1 2 

62 Fuca1-2Galb1-3GalNAca-Sp14 16 15 98 

63 Fuca1-2Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 42 4 9 

64 Fuca1-2Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp9 31 1 3 

65 Fuca1-2Galb1-3GlcNAcb1-3Galb1-4Glcb-Sp8 36 7 19 

66 Fuca1-2Galb1-3GlcNAcb1-3Galb1-4Glcb-Sp10 31 3 10 

67 Fuca1-2Galb1-3GlcNAcb-Sp0 56 2 3 

68 Fuca1-2Galb1-3GlcNAcb-Sp8 32 10 31 

69 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 53 3 6 

70 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-
3)GlcNAcb-Sp0 50 3 7 

71 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb-Sp0 53 5 10 

72 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb-Sp8 39 1 1 

73 Fuca1-2Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 28 2 9 

74 Fuca1-2Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 36 3 8 

75 Fuca1-2Galb1-4GlcNAcb-Sp0 41 3 8 

76 Fuca1-2Galb1-4GlcNAcb-Sp8 49 4 8 

77 Fuca1-2Galb1-4Glcb-Sp0 28 13 47 

78 Fuca1-2Galb-Sp8 53 1 2 

79 Fuca1-3GlcNAcb-Sp8 44 6 13 

80 Fuca1-4GlcNAcb-Sp8 65 5 8 

81 Fucb1-3GlcNAcb-Sp8 49 3 6 

82 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb-Sp0 57 1 2 

83 GalNAca1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb-Sp0 66 3 4 

84 (3S)Galb1-4(Fuca1-3)Glcb-Sp0 37 5 15 

85 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 37 3 8 
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86 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp8 24 13 53 

87 GalNAca1-3(Fuca1-2)Galb1-4Glcb-Sp0 27 4 16 

88 GlcNAcb1-3Galb1-3GalNAca-Sp8 63 3 4 

89 GalNAca1-3(Fuca1-2)Galb-Sp8 32 5 14 

90 GalNAca1-3(Fuca1-2)Galb-Sp18 46 4 9 

91 GalNAca1-3GalNAcb-Sp8 73 6 8 

92 GalNAca1-3Galb-Sp8 53 18 33 

93 GalNAca1-4(Fuca1-2)Galb1-4GlcNAcb-Sp8 72 4 5 

94 GalNAcb1-3GalNAca-Sp8 63 5 9 

95 GalNAcb1-3(Fuca1-2)Galb-Sp8 64 3 4 

96 GalNAcb1-3Gala1-4Galb1-4GlcNAcb-Sp0 88 13 15 

97 GalNAcb1-4(Fuca1-3)GlcNAcb-Sp0 85 16 18 

98 GalNAcb1-4GlcNAcb-Sp0 207 9 4 

99 GalNAcb1-4GlcNAcb-Sp8 93 27 29 

100 Gala1-2Galb-Sp8 34 5 13 

101 Gala1-3(Fuca1-2)Galb1-3GlcNAcb-Sp0 32 3 9 

102 Gala1-3(Fuca1-2)Galb1-3GlcNAcb-Sp8 40 5 12 

103 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb-Sp0 41 3 8 

104 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb-Sp8 54 1 2 

105 Gala1-3(Fuca1-2)Galb1-4GlcNAc-Sp0 40 2 4 

106 Gala1-3(Fuca1-2)Galb1-4Glcb-Sp0 42 3 7 

107 Gala1-3(Fuca1-2)Galb-Sp8 44 4 9 

108 Gala1-3(Fuca1-2)Galb-Sp18 63 9 15 

109 Gala1-4(Gala1-3)Galb1-4GlcNAcb-Sp8 78 15 19 

110 Gala1-3GalNAca-Sp8 65 2 3 

111 Gala1-3GalNAca-Sp16 37 4 12 

112 Gala1-3GalNAcb-Sp8 33 1 4 

113 Gala1-3Galb1-4(Fuca1-3)GlcNAcb-Sp8 32 2 5 

114 Gala1-3Galb1-3GlcNAcb-Sp0 29 4 14 

115 Gala1-3Galb1-4GlcNAcb-Sp8 51 5 10 

116 Gala1-3Galb1-4Glcb-Sp0 37 3 9 

117 Gala1-3Galb1-4Glc-Sp10 40 6 14 

118 Gala1-3Galb-Sp8 44 3 6 

119 Gala1-4(Fuca1-2)Galb1-4GlcNAcb-Sp8 56 2 4 

120 Gala1-4Galb1-4GlcNAcb-Sp0 36 3 9 

121 Gala1-4Galb1-4GlcNAcb-Sp8 66 4 6 

122 Gala1-4Galb1-4Glcb-Sp0 41 3 7 

123 Gala1-4GlcNAcb-Sp8 41 12 29 

124 Gala1-6Glcb-Sp8 24 8 35 

125 Galb1-2Galb-Sp8 42 1 3 

126 Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 38 2 4 

127 Galb1-3GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 32 5 15 

128 Galb1-3(Fuca1-4)GlcNAc-Sp0  35 4 11 

129 Galb1-3(Fuca1-4)GlcNAc-Sp8  48 9 18 

130 Fuca1-4(Galb1-3)GlcNAcb-Sp8 41 5 11 

131 Galb1-4GlcNAcb1-6GalNAca-Sp8 55 2 3 

132 Galb1-4GlcNAcb1-6GalNAc-Sp14 45 3 7 

133 GlcNAcb1-6(Galb1-3)GalNAca-Sp8  49 3 6 

134 GlcNAcb1-6(Galb1-3)GalNAca-Sp14 31 8 25 

135 Neu5Aca2-6(Galb1-3)GalNAca-Sp8 43 4 10 

136 Neu5Aca2-6(Galb1-3)GalNAca-Sp14 29 3 9 

137 Neu5Acb2-6(Galb1-3)GalNAca-Sp8 39 3 6 

138 Neu5Aca2-6(Galb1-3)GlcNAcb1-4Galb1-4Glcb-Sp10 32 3 9 

139 Galb1-3GalNAca-Sp8 34 8 24 

140 Galb1-3GalNAca-Sp14 31 1 3 

141 Galb1-3GalNAca-Sp16 88 4 4 

142 Galb1-3GalNAcb-Sp8 37 2 7 

143 Galb1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp0 34 2 6 

144 Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 39 2 5 

145 Galb1-3GalNAcb1-4Galb1-4Glcb-Sp8 56 1 2 

146 Galb1-3Galb-Sp8 40 3 9 
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147 Galb1-3GlcNAcb1-3Galb1-4GlcNAcb-Sp0 21 5 21 

148 Galb1-3GlcNAcb1-3Galb1-4Glcb-Sp10 27 1 5 

149 Galb1-3GlcNAcb-Sp0 38 3 8 

150 Galb1-3GlcNAcb-Sp8 33 2 5 

151 Galb1-4(Fuca1-3)GlcNAcb-Sp0 47 5 10 

152 Galb1-4(Fuca1-3)GlcNAcb-Sp8 49 3 5 

153 Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 54 2 4 

154 
Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-
Sp0 30 1 3 

155 Galb1-4(6S)Glcb-Sp0 45 2 5 

156 Galb1-4(6S)Glcb-Sp8 55 1 2 

157 Galb1-4GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp8 21 12 57 

158 Galb1-4GalNAcb1-3(Fuca1-2)Galb1-4GlcNAcb-Sp8 44 4 8 

159 Galb1-4GlcNAcb1-3GalNAca-Sp8 19 20 107 

160 Galb1-4GlcNAcb1-3GalNAc-Sp14 31 3 10 

161 Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 47 3 5 

162 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 31 3 8 

163 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 32 14 42 

164 Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 45 2 3 

165 Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp8 34 1 3 

166 Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp8 45 2 5 

167 Galb1-4GlcNAcb1-6(Galb1-3)GalNAc-Sp14 61 1 1 

168 Galb1-4GlcNAcb-Sp0 55 3 5 

169 Galb1-4GlcNAcb-Sp8 28 5 16 

170 Galb1-4GlcNAcb-Sp23 27 4 16 

171 Galb1-4Glcb-Sp0 32 3 8 

172 Galb1-4Glcb-Sp8 26 2 9 

173 GlcNAca1-3Galb1-4GlcNAcb-Sp8 39 3 7 

174 GlcNAca1-6Galb1-4GlcNAcb-Sp8 36 1 4 

175 GlcNAcb1-2Galb1-3GalNAca-Sp8 52 2 3 

176 GlcNAcb1-6(GlcNAcb1-3)GalNAca-Sp8 35 2 6 

177 GlcNAcb1-6(GlcNAcb1-3)GalNAca-Sp14 32 1 4 

178 GlcNAcb1-6(GlcNAcb1-3)Galb1-4GlcNAcb-Sp8 49 1 2 

179 GlcNAcb1-3GalNAca-Sp8 59 6 11 

180 GlcNAcb1-3GalNAca-Sp14 14 17 124 

181 GlcNAcb1-3Galb-Sp8 28 7 24 

182 GlcNAcb1-3Galb1-4GlcNAcb-Sp0 17 15 86 

183 GlcNAcb1-3Galb1-4GlcNAcb-Sp8 33 1 4 

184 GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 20 10 47 

185 GlcNAcb1-3Galb1-4Glcb-Sp0 40 3 8 

186 GlcNAcb1-4-MDPLys 36 2 5 

187 GlcNAcb1-6(GlcNAcb1-4)GalNAca-Sp8 71 2 3 

188 GlcNAcb1-4Galb1-4GlcNAcb-Sp8 58 4 8 

189 GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-Sp8 32 1 4 

190 GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-Sp8 33 1 2 

191 GlcNAcb1-4GlcNAcb1-4GlcNAcb-Sp8 38 1 2 

192 GlcNAcb1-6GalNAca-Sp8 80 3 4 

193 GlcNAcb1-6GalNAca-Sp14 36 1 1 

194 GlcNAcb1-6Galb1-4GlcNAcb-Sp8 47 2 3 

195 Glca1-4Glcb-Sp8 33 1 4 

196 Glca1-4Glca-Sp8 42 5 13 

197 Glca1-6Glca1-6Glcb-Sp8 29 7 23 

198 Glcb1-4Glcb-Sp8 34 2 6 

199 Glcb1-6Glcb-Sp8 29 1 3 

200 G-ol-Sp8 31 6 18 

201 GlcAa-Sp8 40 2 5 

202 GlcAb-Sp8 40 6 16 

203 GlcAb1-3Galb-Sp8 55 2 3 

204 GlcAb1-6Galb-Sp8 50 1 1 

205 KDNa2-3Galb1-3GlcNAcb-Sp0 53 2 3 

206 KDNa2-3Galb1-4GlcNAcb-Sp0 36 2 5 
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207 Mana1-2Mana1-2Mana1-3Mana-Sp9 22 10 46 

208 Mana1-2Mana1-6(Mana1-2Mana1-3)Mana-Sp9 30 2 6 

209 Mana1-2Mana1-3Mana-Sp9 24 11 48 

210 
Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 37 2 5 

211 Mana1-6(Mana1-3)Mana-Sp9 47 4 8 

212 Mana1-2Mana1-2Mana1-6(Mana1-3)Mana-Sp9 36 1 3 

213 Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 35 2 6 

214 Mana1-6(Mana1-3)Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 40 1 1 

215 Manb1-4GlcNAcb-Sp0 40 1 2 

216 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 34 1 2 

217 (3S)Galb1-4(Fuca1-3)(6S)GlcNAcb-Sp8  73 5 7 

218 Fuca1-2(6S)Galb1-4GlcNAcb-Sp0 36 6 17 

219 Fuca1-2Galb1-4(6S)GlcNAcb-Sp8 40 5 13 

220 Fuca1-2(6S)Galb1-4(6S)Glcb-Sp0 54 8 15 

221 Neu5Aca2-3Galb1-3GalNAca-Sp8 46 2 4 

222 Neu5Aca2-3Galb1-3GalNAca-Sp14 38 2 5 

223 GalNAcb1-4(Neu5Aca2-8Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 37 3 7 

224 GalNAcb1-4(Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 39 2 6 

225 Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3Galb1-4Glcb-Sp0 35 1 4 

226 GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 41 1 3 

227 Neu5Aca2-8Neu5Aca2-8Neu5Aca-Sp8 34 1 2 

228 GalNAcb1-4(Neu5Aca2-3)Galb1-4GlcNAcb-Sp0 40 8 19 

229 GalNAcb1-4(Neu5Aca2-3)Galb1-4GlcNAcb-Sp8 29 2 8 

230 GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 33 2 6 

231 Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 34 2 6 

232 Neu5Aca2-6(Neu5Aca2-3)GalNAca-Sp8 46 2 4 

233 Neu5Aca2-3GalNAca-Sp8 59 3 4 

234 Neu5Aca2-3GalNAcb1-4GlcNAcb-Sp0 42 1 1 

235 Neu5Aca2-3Galb1-3(6S)GlcNAc-Sp8 50 3 5 

236 Neu5Aca2-3Galb1-3(Fuca1-4)GlcNAcb-Sp8 55 1 1 

237 Neu5Aca2-3Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 46 2 5 

238 Neu5Aca2-3Galb1-4(Neu5Aca2-3Galb1-3)GlcNAcb-Sp8 37 1 3 

239 Neu5Aca2-3Galb1-3(6S)GalNAca-Sp8 32 6 20 

240 Neu5Aca2-6(Neu5Aca2-3Galb1-3)GalNAca-Sp8 31 2 7 

241 Neu5Aca2-6(Neu5Aca2-3Galb1-3)GalNAca-Sp14 38 1 4 

242 Neu5Aca2-3Galb-Sp8 36 2 5 

243 Neu5Aca2-3Galb1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp0 38 1 2 

244 Neu5Aca2-3Galb1-3GlcNAcb1-3Galb1-4GlcNAcb-Sp0 35 1 1 

245 Fuca1-2(6S)Galb1-4Glcb-Sp0 63 5 8 

246 Neu5Aca2-3Galb1-3GlcNAcb-Sp0 64 2 3 

247 Neu5Aca2-3Galb1-4(6S)GlcNAcb-Sp8 65 2 3 

248 Neu5Aca2-3Galb1-4(Fuca1-3)(6S)GlcNAcb-Sp8 39 7 18 

249 
Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-
3)GlcNAcb-Sp0 41 8 20 

250 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 28 2 6 

251 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb-Sp8 35 5 14 

252 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb-Sp8 34 1 2 

253 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4GlcNAcb-Sp8 57 2 3 

254 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 35 1 4 

255 Neu5Aca2-3Galb1-4GlcNAcb-Sp0 51 2 4 

256 Neu5Aca2-3Galb1-4GlcNAcb-Sp8 59 3 5 

257 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 42 1 3 

258 Fuca1-2Galb1-4(6S)Glcb-Sp0 46 1 3 

259 Neu5Aca2-3Galb1-4Glcb-Sp0 42 6 13 

260 Neu5Aca2-3Galb1-4Glcb-Sp8 38 2 6 

261 Neu5Aca2-6GalNAca-Sp8 24 11 47 

262 Neu5Aca2-6GalNAcb1-4GlcNAcb-Sp0 26 2 8 

263 Neu5Aca2-6Galb1-4(6S)GlcNAcb-Sp8 36 2 7 

264 Neu5Aca2-6Galb1-4GlcNAcb-Sp0 32 3 9 

265 Neu5Aca2-6Galb1-4GlcNAcb-Sp8 58 2 4 
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266 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-
Sp0 54 2 3 

267 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 37 0 0 

268 Neu5Aca2-6Galb1-4Glcb-Sp0 52 2 4 

269 Neu5Aca2-6Galb1-4Glcb-Sp8 44 1 2 

270 Neu5Aca2-6Galb-Sp8 54 1 3 

271 Neu5Aca2-8Neu5Aca-Sp8 43 2 5 

272 Neu5Aca2-8Neu5Aca2-3Galb1-4Glcb-Sp0 32 3 8 

273 Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 37 7 19 

274 Neu5Acb2-6GalNAca-Sp8 32 1 4 

275 Neu5Acb2-6Galb1-4GlcNAcb-Sp8 41 6 14 

276 Neu5Gca2-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 39 1 1 

277 Neu5Gca2-3Galb1-3GlcNAcb-Sp0 38 3 8 

278 Neu5Gca2-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 49 3 7 

279 Neu5Gca2-3Galb1-4GlcNAcb-Sp0 44 1 2 

280 Neu5Gca2-3Galb1-4Glcb-Sp0 68 2 3 

281 Neu5Gca2-6GalNAca-Sp0 58 3 4 

282 Neu5Gca2-6Galb1-4GlcNAcb-Sp0 44 3 6 

283 Neu5Gca-Sp8 48 3 7 

284 Neu5Aca2-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 29 2 7 

285 Galb1-3GlcNAcb1-3Galb1-3GlcNAcb-Sp0 27 1 2 

286 Galb1-4(Fuca1-3)(6S)GlcNAcb-Sp0  102 7 7 

287 Galb1-4(Fuca1-3)(6S)Glcb-Sp0 84 4 5 

288 Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 36 2 6 

289 Galb1-4GlcNAcb1-3Galb1-3GlcNAcb-Sp0 32 4 12 

290 Neu5Aca2-3Galb1-3GlcNAcb1-3Galb1-3GlcNAcb-Sp0        27 2 6 

291 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-3GlcNAcb-Sp0 31 1 3 

292 4S(3S)Galb1-4GlcNAcb-Sp0 63 4 7 

293 (6S)Galb1-4(6S)GlcNAcb-Sp0 75 4 5 

294 (6P)Glcb-Sp10 36 3 9 

295 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-3)GalNAca-Sp14 102 3 3 

296 Galb1-3Galb1-4GlcNAcb-Sp8 39 2 6 

297 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 30 1 2 

298 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3)Galb1-4GlcNAc-Sp0 36 1 1 

299 GlcNAcb1-6(Galb1-4GlcNAcb1-3)Galb1-4GlcNAc-Sp0 32 1 4 

300 Galb1-4GlcNAca1-6Galb1-4GlcNAcb-Sp0 34 3 7 

301 Galb1-4GlcNAcb1-6Galb1-4GlcNAcb-Sp0 38 1 2 

302 GalNAcb1-3Galb-Sp8 54 2 3 

303 GlcAb1-3GlcNAcb-Sp8 51 2 4 

304 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp12 29 1 3 

305 GlcNAcb1-3Man-Sp10 42 2 4 

306 GlcNAcb1-4GlcNAcb-Sp10 40 2 5 

307 GlcNAcb1-4GlcNAcb-Sp12 34 2 4 

308 MurNAcb1-4GlcNAcb-Sp10 34 2 5 

309 Mana1-6Manb-Sp10 49 4 7 

310 Mana1-6(Mana1-3)Mana1-6(Mana1-3)Manb-Sp10 56 3 6 

311 Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Mana-Sp9 24 1 3 

312 Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Mana-Sp9 25 1 6 

313 Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-3)GalNAca-Sp14 25 1 5 

314 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 26 2 9 

315 
Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 25 2 6 

316 Neu5Aca2-8Neu5Acb-Sp17 55 1 1 

317 Neu5Aca2-8Neu5Aca2-8Neu5Acb-Sp8 35 3 10 

318 Neu5Gcb2-6Galb1-4GlcNAc-Sp8 82 7 8 

319 
Galb1-3GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp19 87 1 1 

320 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 24 0 0 
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321 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 22 1 4 

322 
Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 29 1 5 

323 Neu5,9Ac2a2-3Galb1-3GlcNAcb-Sp0 32 1 2 

324 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-3GlcNAcb-Sp0 33 1 2 

325 Neu5Aca2-3Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 39 4 9 

326 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 30 1 3 

327 Gala1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 35 1 3 

328 GalNAcb1-3Gala1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 27 1 3 

329 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 27 1 5 

330 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 30 2 7 

331 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-6(Neu5Aca2-3Galb1-3)GalNAc-Sp14 47 7 14 

332 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 28 3 11 

333 GlcNAca1-4Galb1-4GlcNAcb-Sp0 31 5 16 

334 GlcNAca1-4Galb1-3GlcNAcb-Sp0 43 9 20 

335 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 35 1 1 

336 
GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-
Sp0 73 3 3 

337 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 38 2 4 

338 GlcNAca1-4Galb1-3GalNAc-Sp14 31 5 15 

339 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 30 1 4 

340 Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 29 2 8 

341 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6Manb1-4GlcNAcb1-4GlcNAc-Sp12 27 0 0 

342 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3Manb1-4GlcNAcb1-4GlcNAc-Sp12 26 1 2 

343 Galb1-4GlcNAcb1-2Mana1-3Manb1-4GlcNAcb1-4GlcNAc-Sp12 25 4 14 

344 Galb1-4GlcNAcb1-2Mana1-6Manb1-4GlcNAcb1-4GlcNAc-Sp12 20 1 7 

345 Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 27 1 5 

346 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 42 4 9 

347 
Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp22 36 2 5 

348 
Galb1-3GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp22 36 2 7 

349 (6S)GlcNAcb1-3Galb1-4GlcNAcb-Sp0 45 3 6 

350 KDNa2-3Galb1-4(Fuca1-3)GlcNAc-Sp0 46 1 2 

351 KDNa2-6Galb1-4GlcNAc-Sp0 37 1 3 

352 KDNa2-3Galb1-4Glc-Sp0 36 3 8 

353 KDNa2-3Galb1-3GalNAca-Sp14 45 5 10 

354 
Fuca1-2Galb1-3GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 63 2 3 

355 
Fuca1-2Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 59 1 2 

356 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAb-Sp20 72 3 4 

357 
Gala1-3Galb1-4GlcNAcb1-2Mana1-6(Gala1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 53 5 9 

358 Galb1-4GlcNAcb1-2Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 32 1 3 

359 
Fuca1-4(Galb1-3)GlcNAcb1-2Mana1-6(Fuca1-4(Galb1-3)GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 68 7 11 

360 Neu5Aca2-6GlcNAcb1-4GlcNAc-Sp21 42 3 7 

361 Neu5Aca2-6GlcNAcb1-4GlcNAcb1-4GlcNAc-Sp21 42 4 9 

362 Galb1-4(Fuca1-3)GlcNAcb1-6(Fuca1-2Galb1-4GlcNAcb1-3)Galb1-4Glc-Sp21 36 1 3 

363 
Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-4(Galb1-4GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 31 1 4 

364 
GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 43 1 3 

365 
Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 45 4 8 

366 
Gala1-3Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Gala1-3Galb1-4(Fuca1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 54 6 11 

367 
GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 32 1 4 
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368 
Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-2Manα1-6(Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-
2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp20 40 4 9 

369 
Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-2Mana1-3(Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 48 6 12 

370 Neu5Aca2-3Galb1-4GlcNAcb1-3GalNAc-Sp14 19 1 6 

371 Neu5Aca2-6Galb1-4GlcNAcb1-3GalNAc-Sp14 31 1 4 

372 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3GalNAca-Sp14 51 6 11 

373 
GalNAcb1-4GlcNAcb1-2Mana1-6(GalNAcb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAc-Sp12 56 5 9 

374 Galb1-3GalNAca1-3(Fuca1-2)Galb1-4Glc-Sp0 16 6 36 

375 Galb1-3GalNAca1-3(Fuca1-2)Galb1-4GlcNAc-Sp0 21 1 5 

376 Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glcb-Sp0 22 3 11 

377 Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21  22 3 15 

378 Galb1-4GlcNAcb1-6(Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-3)Galb1-4Glc-Sp21 23 7 32 

379 Galb1-4(Fuca1-3)GlcNAcb1-6(Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-3)Galb1-4Glc-Sp21 23 1 4 

380 Galb1-3GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21  10 10 93 

381 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-4(Galb1-
4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 22 1 4 

382 
GlcNAcb1-2Mana1-6(GlcNAcb1-4(GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-
Sp21 13 8 65 

383 Fuca1-2Galb1-3GalNAca1-3(Fuca1-2)Galb1-4Glcb-Sp0 36 6 18 

384 Fuca1-2Galb1-3GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 20 9 43 

385 Galb1-3GlcNAcb1-3GalNAca-Sp14 18 9 50 

386 GalNAcb1-4(Neu5Aca2-3)Galb1-4GlcNAcb1-3GalNAca-Sp14 25 1 4 

387 GalNAca1-3(Fuca1-2)Galb1-3GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 17 3 19 

388 
Gala1-3Galb1-3GlcNAcb1-2Mana1-6(Gala1-3Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp19 57 6 10 

389 
Gala1-3Galb1-3(Fuca1-4)GlcNAcb1-2Mana1-6(Gala1-3Galb1-3(Fuca1-4)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp19 79 1 1 

390 GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 19 3 14 

391 Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 20 1 4 

392 Neu5Aca2-3Galb1-3GlcNAcb1-3GalNAca-Sp14 25 4 18 

393 Fuca1-2Galb1-4GlcNAcb1-3GalNAca-Sp14 34 1 2 

394 Galb1-4(Fuca1-3)GlcNAcb1-3GalNAca-Sp14 36 3 8 

395 GalNAca1-3GalNAcb1-3Gala1-4Galb1-4GlcNAcb-Sp0 20 3 14 

396 
Gala1-4Galb1-3GlcNAcb1-2Mana1-6(Gala1-4Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp19 40 5 12 

397 
Gala1-4Galb1-4GlcNAcb1-2Mana1-6(Gala1-4Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp24 88 4 4 

398 Gala1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 18 4 22 

399 Galb1-3GlcNAcb1-6Galb1-4GlcNAcb-Sp0 32 2 6 

400 Galb1-3GlcNAca1-6Galb1-4GlcNAcb-Sp0 23 10 41 

401 GalNAcb1-3Gala1-6Galb1-4Glcb-Sp8 28 14 48 

402 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)Glcb-Sp21 21 2 10 

403 Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21 15 10 69 

404 Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 42 2 5 

405 Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 28 5 17 

406 Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-3GalNAca-Sp14 24 4 15 

407 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3GalNAca-Sp14 10 7 63 

408 GalNAca1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp0 23 7 32 

409 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3GalNAca-Sp14 45 3 7 

410 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb1-3GalNAc-Sp14 25 4 15 

411 GalNAca1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb1-3GalNAc-Sp14 36 2 5 

412 
Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 72 4 6 

413 
Fuca1-2Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 39 2 4 

414 
GlcNAcb1-2(GlcNAcb1-6)Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-
Sp19 57 4 7 

415 Fuca1-2Galb1-3GlcNAcb1-3GalNAc-Sp14 22 1 4 

416 Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-3GalNAc-Sp14 25 3 13 

417 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-3GalNAc-Sp14 28 5 18 
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418 Gala1-3Galb1-3GlcNAcb1-3GalNAc-Sp14 25 2 9 

419 
Fuca1-2Galb1-3GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 45 6 14 

420 
Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 39 2 4 

421 
Galb1-3GlcNAcb1-6(Galb1-3GlcNAcb1-2)Mana1-6(Galb1-3GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 48 4 7 

422 Galb1-4GlcNAcb1-6(Fuca1-2Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21 19 2 10 

423 Fuca1-3GlcNAcb1-6(Galb1-4GlcNAcb1-3)Galb1-4Glc-Sp21 23 2 8 

424 
GlcNAcb1-2Mana1-6(GlcNAcb1-4)(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-
Sp21 18 2 14 

425 
GlcNAcb1-2Mana1-6(GlcNAcb1-4)(GlcNAcb1-4(GlcNAcb1-2)Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp21 20 2 12 

426 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp21 21 2 10 

427 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(GlcNAcb1-4(GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 15 6 39 

428 
Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp21 17 5 29 

429 
Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-4(Galb1-4GlcNAcb1-
2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 11 4 34 

430 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 20 1 5 

431 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-
4(Galb1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 16 3 18 

432 Galb1-4Galb-Sp10 25 12 48 

433 Galb1-6Galb-Sp10 30 11 38 

434 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb-Sp8 31 2 7 

435 GalNAcb1-6GalNAcb-Sp8 30 2 7 

436 (6S)Galb1-3GlcNAcb-Sp0 39 5 13 

437 (6S)Galb1-3(6S)GlcNAc-Sp0 32 4 13 

438 
Fuca1-2Galb1-4 GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2(Fuca1-2Galb1-
4GlcNAcb1-4)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 41 4 9 

439 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-
4(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 66 4 6 

440 Galb1-4(Fuca1-3)GlcNAcb1-6GalNAc-Sp14 52 4 7 

441 Galb1-4GlcNAcb1-2Mana-Sp0 43 5 12 

442 Fuca1-2Galb1-4GlcNAcb1-6(Fuca1-2Galb1-4GlcNAcb1-3)GalNAc-Sp14 23 2 9 

443 
Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-6(Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-3)GalNAc-
Sp14 26 3 11 

444 
GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-6(GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-
3)GalNAc-Sp14 16 4 27 

445 Neu5Aca2-8Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 95 4 4 

446 GalNAcb1-4Galb1-4Glcb-Sp0 38 7 19 

447 
GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 43 3 7 

448 
Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-2Mana1-6(Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 34 4 11 

449 Neu5Aca2-6Galb1-4GlcNAcb1-6(Fuca1-2Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21 23 2 7 

450 
GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 31 3 11 

451 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 34 3 9 

452 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Neu5Aca2-3Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 19 3 17 

453 
Neu5Aca2-3Galb1-4GlcNAcb1-4Mana1-6(GlcNAcb1-4)(Neu5Aca2-3Galb1-4GlcNAcb1-
4(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 20 1 7 

454 
Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 18 1 5 

455 
Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-3Galb1-4GlcNAcb1-4(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp21 18 1 8 
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456 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Neu5Aca2-6Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 19 2 9 

457 
Neu5Aca2-6Galb1-4GlcNAcb1-4Mana1-6(GlcNAcb1-4)(Neu5Aca2-6Galb1-4GlcNAcb1-
4(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 17 2 14 

458 
Neu5Aca2-6Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 20 3 15 

459 
Neu5Aca2-6Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-6Galb1-4GlcNAcb1-4(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp21 21 2 10 

460 Gala1-3(Fuca1-2)Galb1-3GalNAca-Sp8 38 4 11 

461 Gala1-3(Fuca1-2)Galb1-3GalNAcb-Sp8 61 4 6 

462 Glca1-6Glca1-6Glca1-6Glcb-Sp10 27 4 14 

463 Glca1-4Glca1-4Glca1-4Glcb-Sp10 42 1 3 

464 Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-3)GalNAca-Sp14 24 1 5 

465 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 81 13 16 

466 
Fuca1-2Galb1-3(Fuca1-4)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3(Fuca1-4)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp19 59 2 4 

467 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp24 93 3 3 

468 
Galb1-3GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp21 46 4 8 

469 Neu5Aca2-6Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glcb-Sp21 19 2 10 

470 Neu5Aca2-3Galb1-4GlcNAcb1-2Mana-Sp0 57 4 7 

471 Neu5Aca2-3Galb1-4GlcNAcb1-6GalNAca-Sp14 18 3 20 

472 Neu5Aca2-6Galb1-4GlcNAcb1-6GalNAca-Sp14 36 7 21 

473 Neu5Aca2-6Galb1-4 GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-3)GalNAca-Sp14 21 6 28 

474 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 76 4 6 

475 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 77 4 5 

476 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp19 42 7 18 

477 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 87 4 5 

478 
Neu5Aca2-3Galb1-3GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Neu5Aca2-3Galb1-3GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 30 6 19 

479 Neu5Aca2-6Galb1-4GlcNAcb1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3)Galb1-4Glc-Sp21 16 6 35 

480 Galb1-3GlcNAcb1-6GalNAca-Sp14 17 6 35 

481 Gala1-3Galb1-3GlcNAcb1-6GalNAca-Sp14 20 3 17 

482 Galb1-3(Fuca1-4)GlcNAcb1-6GalNAca-Sp14 39 10 25 

483 Neu5Aca2-3Galb1-3GlcNAcb1-6GalNAca-Sp14 29 1 5 

484 (3S)Galb1-3(Fuca1-4)GlcNAcb-Sp0 45 7 16 

485 
Galb1-4(Fuca1-3)GlcNAcb1-6(Neu5Aca2-6(Neu5Aca2-3Galb1-3)GlcNAcb1-3)Galb1-
4Glc-Sp21 36 2 5 

486 Fuca1-2Galb1-4GlcNAcb1-6GalNAca-Sp14 39 2 6 

487 Gala1-3Galb1-4GlcNAcb1-6GalNAca-Sp14 15 7 49 

488 Galb1-4(Fuca1-3)GlcNAcb1-2Mana-Sp0 49 6 11 

489 Fuca1-2(6S)Galb1-3GlcNAcb-Sp0 27 4 14 

490 Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-6GalNAca-Sp14 21 5 25 

491 Fuca1-2Galb1-4GlcNAcb1-2Mana-Sp0 34 5 14 

492 Fuca1-2Galb1-3(6S)GlcNAcb-Sp0 39 7 19 

493 Fuca1-2(6S)Galb1-3(6S)GlcNAcb-Sp0 44 3 6 

494 Neu5Aca2-6GalNAcb1-4(6S)GlcNAcb-Sp8 25 3 10 

495 GalNAcb1-4(Fuca1-3)(6S)GlcNAcb-Sp8 35 3 10 

496 (3S)GalNAcb1-4(Fuca1-3)GlcNAcb-Sp8 33 5 16 

497 Fuca1-2Galb1-3GlcNAcb1-6(Fuca1-2Galb1-3GlcNAcb1-3)GalNAca-Sp14 42 3 8 

498 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-6GalNAca-Sp14 20 6 32 

499 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(GlcNAcb1-4(GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 19 1 5 

500 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-4)Galb1-4GlcNAcb1-4(Gal 
b1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 18 2 14 

501 Galb1-3GlcNAca1-3Galb1-4GlcNAcb-Sp8  29 4 13 
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502 Galb1-3(6S)GlcNAcb-Sp8  20 7 36 

503 (6S)(4S)GalNAcb1-4GlcNAc-Sp8 32 7 22 

504 (6S)GalNAcb1-4GlcNAc-Sp8  16 6 37 

505 (3S)GalNAcb1-4(3S)GlcNAc-Sp8 38 4 10 

506 GalNAcb1-4(6S)GlcNAc-Sp8  46 1 3 

507 (3S)GalNAcb1-4GlcNAc-Sp8  55 2 3 

508 (4S)GalNAcb-Sp10 35 1 3 

509 Galb1-4(6P)GlcNAcb-Sp0  28 1 4 

510 (6P)Galb1-4GlcNAcb-SP0  16 7 42 

511 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-6GalNAc-Sp14 18 3 18 

512 Neu5Aca2-6Galb1-4GlcNAcb1-2Man-Sp0 19 6 32 

513 Gala1-3Galb1-4GlcNAcb1-2Mana-Sp0 23 3 13 

514 Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana-Sp0 16 8 48 

515 GalNAca1-3(Fuca1-2)Galb1-4 GlcNAcb1-2Mana-Sp0 19 2 10 

516  Galb1-3GlcNAcb1-2Mana-Sp0 46 7 16 

517 Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-6GalNAc-Sp14 21 1 6 

518 Neu5Aca2-3Galb1-3GlcNAcb1-2Mana-Sp0 22 2 10 

519 Gala1-3Galb1-3GlcNAcb1-2Mana-Sp0 25 3 12 

520 GalNAcb1-4GlcNAcb1-2Mana-Sp0 30 1 4 

521 Neu5Aca2-3Galb1-3GalNAcb1-4Galb1-4Glcb-Sp0 9 6 65 

522 
GlcNAcb1-2 Mana1-6(GlcNAcb1-4)(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAc-Sp21 8 7 90 

523 
Galb1-4GlcNAcb1-2 Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 18 2 10 

524 
Galb1-4GlcNAcb1-2 Mana1-6(Galb1-4GlcNAcb1-4)(Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 15 3 17 

525 Fuca1-4(Galb1-3)GlcNAcb1-2 Mana-Sp0 69 2 3 

526 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-2Mana-Sp0 20 1 7 

527 GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3)Galb1-4GlcNAc-Sp0 18 2 10 

528 GalNAca1-3(Fuca1-2)Galb1-3GalNAcb1-3Gala1-4Galb1-4Glc-Sp21 23 1 4 

529 Gala1-3(Fuca1-2)Galb1-3GalNAcb1-3Gala1-4Galb1-4Glc-Sp21 25 1 5 

530 Galb1-3GalNAcb1-3Gal-Sp21 76 6 8 

531 
GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 65 8 13 

532 
GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 22 1 2 

533 
Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6(Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-
2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 15 4 24 

534 
Fuca1-2Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp24 80 5 6 

535 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 49 6 12 

536 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 11 8 80 

537 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 59 6 11 

538 
Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp25 33 2 7 

539 Neu5Gca2-8Neu5Gca2-3Galb1-4GlcNAc-Sp0 30 5 18 

540 Neu5Aca2-8Neu5Gca2-3Galb1-4GlcNAc-Sp0 11 8 69 

541 Neu5Gca2-8Neu5Aca2-3Galb1-4GlcNAc-Sp0 25 1 2 

542 Neu5Gca2-8Neu5Gca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAc-Sp0 15 6 40 

543 Neu5Gca2-8Neu5Gca2-6Galb1-4GlcNAc-Sp0 26 2 9 

544 Neu5Aca2-8Neu5Aca2-3Galb1-4GlcNAc-Sp0 5 2 42 

545 
GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
3Galb1-4GlcNAcb1-2Man a1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp24 82 7 9 

546 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2)Mana1-
6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Mana1-4GlcNAcb1-4GlcNAc-Sp24 57 17 29 

547 
Gala1-3Galb1-4GlcNAcb1-2Mana1-6(Gala1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp24 74 3 5 

548 GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3Galb1-3)GalNAca-Sp14 25 2 8 

549 GalNAcb1-3GlcNAcb-Sp0  17 6 33 
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550 GalNAcb1-4GlcNAcb1-3GalNAcb1-4GlcNAcb-Sp0  26 1 4 

551 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 61 16 26 

552 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 57 10 17 

553 GlcNAb1-3Galb1-3GalNAc-Sp14 20 4 18 

554 Galb1-3GlcNAcb1-6(Galb1-3)GalNAc-Sp14 24 3 15 

555 (3S)GlcAb1-3Galb1-4GlcNAcb1-3Galb1-4Glc-Sp0 22 2 9 

556 (3S)GlcAb1-3Galb1-4GlcNAcb1-2Mana-Sp0 33 3 10 

557 
Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-6(Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 55 13 23 

558 
Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-
6(Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp24 60 6 11 

559 Neu5Aca2-8Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glc-Sp21 29 2 8 

560 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 56 7 12 

561 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 76 17 22 

562 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-
6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp24 82 7 8 

563 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 24 3 14 

564 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 29 2 7 

565 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 25 3 14 

566 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3)GalNAca-Sp14 30 4 14 

567 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 25 4 17 

568 GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 22 3 14 

569 GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 23 1 5 

570 GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3Galb1-4GlcNAcb1-3)GalNAca-Sp14 31 1 4 

571 
Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3)GalNAca-Sp14 30 1 4 

572 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 23 5 23 

573 GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 20 1 3 

574 Galb1-4GlcNAcb1-3Galb1-3GalNAca-Sp14 8 6 70 

575 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 25 5 21 

576 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 30 2 6 

577 Neu5Aca2-6Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 22 1 4 

578 
Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 30 2 6 

579 GlcNAcb1-6(Neu5Aca2-3Galb1-3)GalNAca-Sp14 15 5 34 

580 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3)GalNAca-Sp14 26 1 5 

581 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
6(Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 238 23 10 

582 
Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
6(Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 73 3 3 

583 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 34 2 4 

584 GlcNAcb1-3Fuca-Sp21 30 1 2 

585 Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp21 28 1 2 
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8. 6. 2. Awp1A (50 µg/mL) – Anti-His-488 (50 µg/mL) 

 

 

Chart 
ID 

Sample (conc.)  Secondary (conc.) Barcode#  Slide # Request # Date Initials 
Average 
RFU StDev %CV 

1 Gala-Sp8 44 6 14 

2 Glca-Sp8 39 4 10 

3 Mana-Sp8 55 4 7 

4 GalNAca-Sp8 64 13 21 

5 GalNAca-Sp15 56 3 5 

6 Fuca-Sp8 13 22 174 

7 Fuca-Sp9 64 9 14 

8 Rhaa-Sp8 47 3 5 

9 Neu5Aca-Sp8 62 9 15 

10 Neu5Aca-Sp11 43 3 7 

11 Neu5Acb-Sp8 66 22 32 

12 Galb-Sp8 43 3 6 

13 Glcb-Sp8 51 8 16 

14 Manb-Sp8 44 11 24 

15 GalNAcb-Sp8 34 6 17 

16 GlcNAcb-Sp0 57 8 14 

17 GlcNAcb-Sp8 34 19 56 

18 GlcN(Gc)b-Sp8 66 3 5 

19 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3)GalNAca-Sp8 53 4 8 

20 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3)GalNAc-Sp14 62 3 5 

21 GlcNAcb1-6(GlcNAcb1-4)(GlcNAcb1-3)GlcNAc-Sp8 56 4 7 

22 6S(3S)Galb1-4(6S)GlcNAcb-Sp0 81 6 7 

23 6S(3S)Galb1-4GlcNAcb-Sp0 83 4 5 

24 (3S)Galb1-4(Fuca1-3)(6S)Glc-Sp0 177 13 7 

25 (3S)Galb1-4Glcb-Sp8 24 6 25 

26 (3S)Galb1-4(6S)Glcb-Sp0 31 7 22 

27 (3S)Galb1-4(6S)Glcb-Sp8 46 3 7 

28 (3S)Galb1-3(Fuca1-4)GlcNAcb-Sp8 50 3 6 

29 (3S)Galb1-3GalNAca-Sp8 56 4 6 

30 (3S)Galb1-3GlcNAcb-Sp0 36 8 23 

31 (3S)Galb1-3GlcNAcb-Sp8 53 5 10 

32 (3S)Galb1-4(Fuca1-3)GlcNAc-Sp0  50 2 3 
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33 (3S)Galb1-4(Fuca1-3)GlcNAc-Sp8 59 1 2 

34 (3S)Galb1-4(6S)GlcNAcb-Sp0 51 2 4 

35 (3S)Galb1-4(6S)GlcNAcb-Sp8 67 2 3 

36 (3S)Galb1-4GlcNAcb-Sp0 33 10 32 

37 (3S)Galb1-4GlcNAcb-Sp8 19 15 81 

38 (3S)Galb-Sp8 33 4 11 

39 (6S)(4S)Galb1-4GlcNAcb-Sp0 29 6 22 

40 (4S)Galb1-4GlcNAcb-Sp8 35 5 14 

41 (6P)Mana-Sp8 13 3 21 

42 (6S)Galb1-4Glcb-Sp0 50 9 18 

43 (6S)Galb1-4Glcb-Sp8 28 6 21 

44 (6S)Galb1-4GlcNAcb-Sp8 33 2 5 

45 (6S)Galb1-4(6S)Glcb-Sp8 35 1 4 

46 Neu5Aca2-3(6S)Galb1-4GlcNAcb-Sp8 43 4 10 

47 (6S)GlcNAcb-Sp8 42 2 5 

48 Neu5,9Ac2a-Sp8 41 2 5 

49 Neu5,9Ac2a2-6Galb1-4GlcNAcb-Sp8 19 6 32 

50 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 21 4 19 

51 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp13 19 2 10 

52 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 22 2 9 

53 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp13 22 3 11 

54 
Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp12 24 2 9 

55 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 22 2 10 

56 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Man-a1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 24 1 5 

57 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp24 45 2 5 

58 Fuca1-2Galb1-3GalNAcb1-3Gala-Sp9 37 3 7 

59 Fuca1-2Galb1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp9 27 2 8 

60 Fuca1-2Galb1-3(Fuca1-4)GlcNAcb-Sp8 15 8 58 

61 Fuca1-2Galb1-3GalNAca-Sp8 29 2 7 

62 Fuca1-2Galb1-3GalNAca-Sp14 14 13 92 

63 Fuca1-2Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 34 2 4 

64 Fuca1-2Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp9 24 3 11 

65 Fuca1-2Galb1-3GlcNAcb1-3Galb1-4Glcb-Sp8 28 5 19 

66 Fuca1-2Galb1-3GlcNAcb1-3Galb1-4Glcb-Sp10 26 4 14 

67 Fuca1-2Galb1-3GlcNAcb-Sp0 44 2 5 

68 Fuca1-2Galb1-3GlcNAcb-Sp8 31 8 26 

69 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 40 2 6 

70 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-
3)GlcNAcb-Sp0 39 4 10 

71 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb-Sp0 32 21 65 

72 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb-Sp8 28 3 11 

73 Fuca1-2Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 23 2 10 

74 Fuca1-2Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 25 4 14 

75 Fuca1-2Galb1-4GlcNAcb-Sp0 34 2 6 

76 Fuca1-2Galb1-4GlcNAcb-Sp8 36 2 6 

77 Fuca1-2Galb1-4Glcb-Sp0 21 9 41 

78 Fuca1-2Galb-Sp8 43 4 8 

79 Fuca1-3GlcNAcb-Sp8 32 5 16 

80 Fuca1-4GlcNAcb-Sp8 56 3 4 

81 Fucb1-3GlcNAcb-Sp8 37 2 5 

82 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb-Sp0 46 1 1 

83 GalNAca1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb-Sp0 49 4 7 

84 (3S)Galb1-4(Fuca1-3)Glcb-Sp0 31 4 14 

85 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 30 3 10 

86 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp8 19 9 46 

87 GalNAca1-3(Fuca1-2)Galb1-4Glcb-Sp0 21 5 26 

88 GlcNAcb1-3Galb1-3GalNAca-Sp8 49 2 3 
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89 GalNAca1-3(Fuca1-2)Galb-Sp8 26 4 16 

90 GalNAca1-3(Fuca1-2)Galb-Sp18 37 4 10 

91 GalNAca1-3GalNAcb-Sp8 54 3 6 

92 GalNAca1-3Galb-Sp8 43 10 23 

93 GalNAca1-4(Fuca1-2)Galb1-4GlcNAcb-Sp8 56 4 7 

94 GalNAcb1-3GalNAca-Sp8 53 3 6 

95 GalNAcb1-3(Fuca1-2)Galb-Sp8 46 13 27 

96 GalNAcb1-3Gala1-4Galb1-4GlcNAcb-Sp0 75 10 13 

97 GalNAcb1-4(Fuca1-3)GlcNAcb-Sp0 63 11 18 

98 GalNAcb1-4GlcNAcb-Sp0 179 8 5 

99 GalNAcb1-4GlcNAcb-Sp8 75 24 32 

100 Gala1-2Galb-Sp8 29 4 15 

101 Gala1-3(Fuca1-2)Galb1-3GlcNAcb-Sp0 26 5 21 

102 Gala1-3(Fuca1-2)Galb1-3GlcNAcb-Sp8 33 2 7 

103 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb-Sp0 33 1 2 

104 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb-Sp8 42 3 8 

105 Gala1-3(Fuca1-2)Galb1-4GlcNAc-Sp0 32 3 9 

106 Gala1-3(Fuca1-2)Galb1-4Glcb-Sp0 34 4 12 

107 Gala1-3(Fuca1-2)Galb-Sp8 33 3 9 

108 Gala1-3(Fuca1-2)Galb-Sp18 52 8 16 

109 Gala1-4(Gala1-3)Galb1-4GlcNAcb-Sp8 60 14 23 

110 Gala1-3GalNAca-Sp8 48 1 3 

111 Gala1-3GalNAca-Sp16 29 5 18 

112 Gala1-3GalNAcb-Sp8 28 1 2 

113 Gala1-3Galb1-4(Fuca1-3)GlcNAcb-Sp8 28 1 5 

114 Gala1-3Galb1-3GlcNAcb-Sp0 24 4 16 

115 Gala1-3Galb1-4GlcNAcb-Sp8 38 4 9 

116 Gala1-3Galb1-4Glcb-Sp0 30 3 9 

117 Gala1-3Galb1-4Glc-Sp10 31 7 22 

118 Gala1-3Galb-Sp8 37 2 6 

119 Gala1-4(Fuca1-2)Galb1-4GlcNAcb-Sp8 45 3 6 

120 Gala1-4Galb1-4GlcNAcb-Sp0 29 5 16 

121 Gala1-4Galb1-4GlcNAcb-Sp8 52 3 6 

122 Gala1-4Galb1-4Glcb-Sp0 7 14 212 

123 Gala1-4GlcNAcb-Sp8 33 8 25 

124 Gala1-6Glcb-Sp8 17 7 39 

125 Galb1-2Galb-Sp8 32 6 17 

126 Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 30 2 5 

127 Galb1-3GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 25 3 11 

128 Galb1-3(Fuca1-4)GlcNAc-Sp0  30 5 15 

129 Galb1-3(Fuca1-4)GlcNAc-Sp8  39 8 19 

130 Fuca1-4(Galb1-3)GlcNAcb-Sp8 33 5 15 

131 Galb1-4GlcNAcb1-6GalNAca-Sp8 30 21 69 

132 Galb1-4GlcNAcb1-6GalNAc-Sp14 36 2 5 

133 GlcNAcb1-6(Galb1-3)GalNAca-Sp8  36 4 12 

134 GlcNAcb1-6(Galb1-3)GalNAca-Sp14 25 6 23 

135 Neu5Aca2-6(Galb1-3)GalNAca-Sp8 32 4 12 

136 Neu5Aca2-6(Galb1-3)GalNAca-Sp14 23 2 7 

137 Neu5Acb2-6(Galb1-3)GalNAca-Sp8 33 3 10 

138 Neu5Aca2-6(Galb1-3)GlcNAcb1-4Galb1-4Glcb-Sp10 24 4 18 

139 Galb1-3GalNAca-Sp8 28 3 12 

140 Galb1-3GalNAca-Sp14 24 3 14 

141 Galb1-3GalNAca-Sp16 73 2 2 

142 Galb1-3GalNAcb-Sp8 30 2 5 

143 Galb1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp0 26 1 4 

144 Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 30 1 3 

145 Galb1-3GalNAcb1-4Galb1-4Glcb-Sp8 21 23 113 

146 Galb1-3Galb-Sp8 31 5 15 

147 Galb1-3GlcNAcb1-3Galb1-4GlcNAcb-Sp0 16 1 6 

148 Galb1-3GlcNAcb1-3Galb1-4Glcb-Sp10 18 3 15 

149 Galb1-3GlcNAcb-Sp0 34 3 8 
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150 Galb1-3GlcNAcb-Sp8 24 2 7 

151 Galb1-4(Fuca1-3)GlcNAcb-Sp0 38 5 12 

152 Galb1-4(Fuca1-3)GlcNAcb-Sp8 38 1 3 

153 Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 42 5 11 

154 
Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-
Sp0 23 1 6 

155 Galb1-4(6S)Glcb-Sp0 33 1 3 

156 Galb1-4(6S)Glcb-Sp8 38 1 3 

157 Galb1-4GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp8 20 12 63 

158 Galb1-4GalNAcb1-3(Fuca1-2)Galb1-4GlcNAcb-Sp8 36 4 12 

159 Galb1-4GlcNAcb1-3GalNAca-Sp8 27 5 21 

160 Galb1-4GlcNAcb1-3GalNAc-Sp14 22 2 11 

161 Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 38 2 5 

162 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 26 2 9 

163 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 21 9 45 

164 Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 35 5 14 

165 Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp8 27 2 9 

166 Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp8 36 1 2 

167 Galb1-4GlcNAcb1-6(Galb1-3)GalNAc-Sp14 51 3 6 

168 Galb1-4GlcNAcb-Sp0 40 3 7 

169 Galb1-4GlcNAcb-Sp8 19 9 45 

170 Galb1-4GlcNAcb-Sp23 20 3 15 

171 Galb1-4Glcb-Sp0 27 5 18 

172 Galb1-4Glcb-Sp8 23 2 7 

173 GlcNAca1-3Galb1-4GlcNAcb-Sp8 28 2 7 

174 GlcNAca1-6Galb1-4GlcNAcb-Sp8 27 3 11 

175 GlcNAcb1-2Galb1-3GalNAca-Sp8 41 4 10 

176 GlcNAcb1-6(GlcNAcb1-3)GalNAca-Sp8 27 1 5 

177 GlcNAcb1-6(GlcNAcb1-3)GalNAca-Sp14 24 1 2 

178 GlcNAcb1-6(GlcNAcb1-3)Galb1-4GlcNAcb-Sp8 37 2 7 

179 GlcNAcb1-3GalNAca-Sp8 41 2 5 

180 GlcNAcb1-3GalNAca-Sp14 12 13 115 

181 GlcNAcb1-3Galb-Sp8 22 5 20 

182 GlcNAcb1-3Galb1-4GlcNAcb-Sp0 24 6 25 

183 GlcNAcb1-3Galb1-4GlcNAcb-Sp8 26 2 7 

184 GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 14 4 30 

185 GlcNAcb1-3Galb1-4Glcb-Sp0 29 4 14 

186 GlcNAcb1-4-MDPLys 26 2 9 

187 GlcNAcb1-6(GlcNAcb1-4)GalNAca-Sp8 60 1 2 

188 GlcNAcb1-4Galb1-4GlcNAcb-Sp8 48 3 6 

189 GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-Sp8 26 1 5 

190 GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-Sp8 26 1 4 

191 GlcNAcb1-4GlcNAcb1-4GlcNAcb-Sp8 27 1 5 

192 GlcNAcb1-6GalNAca-Sp8 65 4 6 

193 GlcNAcb1-6GalNAca-Sp14 24 3 11 

194 GlcNAcb1-6Galb1-4GlcNAcb-Sp8 37 2 7 

195 Glca1-4Glcb-Sp8 24 2 10 

196 Glca1-4Glca-Sp8 33 2 6 

197 Glca1-6Glca1-6Glcb-Sp8 23 6 26 

198 Glcb1-4Glcb-Sp8 26 2 8 

199 Glcb1-6Glcb-Sp8 22 4 18 

200 G-ol-Sp8 28 6 20 

201 GlcAa-Sp8 31 2 5 

202 GlcAb-Sp8 30 5 17 

203 GlcAb1-3Galb-Sp8 44 2 4 

204 GlcAb1-6Galb-Sp8 36 3 7 

205 KDNa2-3Galb1-3GlcNAcb-Sp0 40 1 3 

206 KDNa2-3Galb1-4GlcNAcb-Sp0 25 1 4 

207 Mana1-2Mana1-2Mana1-3Mana-Sp9 19 9 45 

208 Mana1-2Mana1-6(Mana1-2Mana1-3)Mana-Sp9 23 1 6 

209 Mana1-2Mana1-3Mana-Sp9 18 6 34 
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210 
Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 29 1 5 

211 Mana1-6(Mana1-3)Mana-Sp9 39 2 6 

212 Mana1-2Mana1-2Mana1-6(Mana1-3)Mana-Sp9 28 2 5 

213 Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 29 2 6 

214 Mana1-6(Mana1-3)Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 22 13 61 

215 Manb1-4GlcNAcb-Sp0 26 2 6 

216 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 24 2 7 

217 (3S)Galb1-4(Fuca1-3)(6S)GlcNAcb-Sp8  55 3 5 

218 Fuca1-2(6S)Galb1-4GlcNAcb-Sp0 30 5 18 

219 Fuca1-2Galb1-4(6S)GlcNAcb-Sp8 32 5 14 

220 Fuca1-2(6S)Galb1-4(6S)Glcb-Sp0 42 3 6 

221 Neu5Aca2-3Galb1-3GalNAca-Sp8 38 2 5 

222 Neu5Aca2-3Galb1-3GalNAca-Sp14 31 3 9 

223 GalNAcb1-4(Neu5Aca2-8Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 27 3 10 

224 GalNAcb1-4(Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 29 2 5 

225 Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3Galb1-4Glcb-Sp0 26 1 5 

226 GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 32 2 5 

227 Neu5Aca2-8Neu5Aca2-8Neu5Aca-Sp8 23 2 8 

228 GalNAcb1-4(Neu5Aca2-3)Galb1-4GlcNAcb-Sp0 32 4 12 

229 GalNAcb1-4(Neu5Aca2-3)Galb1-4GlcNAcb-Sp8 20 4 19 

230 GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 26 2 7 

231 Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 26 1 3 

232 Neu5Aca2-6(Neu5Aca2-3)GalNAca-Sp8 35 2 6 

233 Neu5Aca2-3GalNAca-Sp8 47 3 5 

234 Neu5Aca2-3GalNAcb1-4GlcNAcb-Sp0 33 2 6 

235 Neu5Aca2-3Galb1-3(6S)GlcNAc-Sp8 40 5 11 

236 Neu5Aca2-3Galb1-3(Fuca1-4)GlcNAcb-Sp8 30 17 58 

237 Neu5Aca2-3Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 35 2 6 

238 Neu5Aca2-3Galb1-4(Neu5Aca2-3Galb1-3)GlcNAcb-Sp8 29 1 5 

239 Neu5Aca2-3Galb1-3(6S)GalNAca-Sp8 25 5 20 

240 Neu5Aca2-6(Neu5Aca2-3Galb1-3)GalNAca-Sp8 22 3 12 

241 Neu5Aca2-6(Neu5Aca2-3Galb1-3)GalNAca-Sp14 29 2 6 

242 Neu5Aca2-3Galb-Sp8 27 2 6 

243 Neu5Aca2-3Galb1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp0 29 1 5 

244 Neu5Aca2-3Galb1-3GlcNAcb1-3Galb1-4GlcNAcb-Sp0 28 1 2 

245 Fuca1-2(6S)Galb1-4Glcb-Sp0 51 2 5 

246 Neu5Aca2-3Galb1-3GlcNAcb-Sp0 49 3 5 

247 Neu5Aca2-3Galb1-4(6S)GlcNAcb-Sp8 46 3 5 

248 Neu5Aca2-3Galb1-4(Fuca1-3)(6S)GlcNAcb-Sp8 26 5 18 

249 
Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-
3)GlcNAcb-Sp0 33 5 17 

250 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 22 2 10 

251 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb-Sp8 25 2 9 

252 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb-Sp8 26 2 7 

253 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4GlcNAcb-Sp8 50 1 3 

254 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 27 2 6 

255 Neu5Aca2-3Galb1-4GlcNAcb-Sp0 42 2 4 

256 Neu5Aca2-3Galb1-4GlcNAcb-Sp8 32 9 29 

257 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 32 2 6 

258 Fuca1-2Galb1-4(6S)Glcb-Sp0 31 3 9 

259 Neu5Aca2-3Galb1-4Glcb-Sp0 32 2 6 

260 Neu5Aca2-3Galb1-4Glcb-Sp8 14 13 99 

261 Neu5Aca2-6GalNAca-Sp8 19 8 41 

262 Neu5Aca2-6GalNAcb1-4GlcNAcb-Sp0 19 3 17 

263 Neu5Aca2-6Galb1-4(6S)GlcNAcb-Sp8 27 3 10 

264 Neu5Aca2-6Galb1-4GlcNAcb-Sp0 26 2 7 

265 Neu5Aca2-6Galb1-4GlcNAcb-Sp8 48 4 8 

266 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-
Sp0 48 1 3 

267 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 30 1 3 
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268 Neu5Aca2-6Galb1-4Glcb-Sp0 40 2 4 

269 Neu5Aca2-6Galb1-4Glcb-Sp8 34 1 3 

270 Neu5Aca2-6Galb-Sp8 41 1 2 

271 Neu5Aca2-8Neu5Aca-Sp8 29 2 6 

272 Neu5Aca2-8Neu5Aca2-3Galb1-4Glcb-Sp0 27 3 10 

273 Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 31 3 11 

274 Neu5Acb2-6GalNAca-Sp8 21 7 32 

275 Neu5Acb2-6Galb1-4GlcNAcb-Sp8 34 5 13 

276 Neu5Gca2-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 31 1 4 

277 Neu5Gca2-3Galb1-3GlcNAcb-Sp0 30 3 9 

278 Neu5Gca2-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 37 2 6 

279 Neu5Gca2-3Galb1-4GlcNAcb-Sp0 34 1 1 

280 Neu5Gca2-3Galb1-4Glcb-Sp0 54 2 3 

281 Neu5Gca2-6GalNAca-Sp0 45 1 3 

282 Neu5Gca2-6Galb1-4GlcNAcb-Sp0 35 2 5 

283 Neu5Gca-Sp8 26 9 35 

284 Neu5Aca2-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 24 1 2 

285 Galb1-3GlcNAcb1-3Galb1-3GlcNAcb-Sp0 26 6 22 

286 Galb1-4(Fuca1-3)(6S)GlcNAcb-Sp0  84 5 6 

287 Galb1-4(Fuca1-3)(6S)Glcb-Sp0 31 33 110 

288 Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 25 3 12 

289 Galb1-4GlcNAcb1-3Galb1-3GlcNAcb-Sp0 27 4 14 

290 Neu5Aca2-3Galb1-3GlcNAcb1-3Galb1-3GlcNAcb-Sp0        20 2 9 

291 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-3GlcNAcb-Sp0 24 1 6 

292 4S(3S)Galb1-4GlcNAcb-Sp0 53 4 7 

293 (6S)Galb1-4(6S)GlcNAcb-Sp0 62 4 6 

294 (6P)Glcb-Sp10 26 1 4 

295 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-3)GalNAca-Sp14 87 1 1 

296 Galb1-3Galb1-4GlcNAcb-Sp8 29 1 3 

297 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 23 2 7 

298 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3)Galb1-4GlcNAc-Sp0 26 2 7 

299 GlcNAcb1-6(Galb1-4GlcNAcb1-3)Galb1-4GlcNAc-Sp0 26 2 9 

300 Galb1-4GlcNAca1-6Galb1-4GlcNAcb-Sp0 28 5 16 

301 Galb1-4GlcNAcb1-6Galb1-4GlcNAcb-Sp0 29 1 2 

302 GalNAcb1-3Galb-Sp8 42 4 8 

303 GlcAb1-3GlcNAcb-Sp8 40 2 4 

304 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp12 21 1 4 

305 GlcNAcb1-3Man-Sp10 32 1 4 

306 GlcNAcb1-4GlcNAcb-Sp10 27 2 7 

307 GlcNAcb1-4GlcNAcb-Sp12 28 1 2 

308 MurNAcb1-4GlcNAcb-Sp10 23 1 4 

309 Mana1-6Manb-Sp10 39 1 2 

310 Mana1-6(Mana1-3)Mana1-6(Mana1-3)Manb-Sp10 41 5 13 

311 Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Mana-Sp9 18 3 14 

312 Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Mana-Sp9 20 2 9 

313 Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-3)GalNAca-Sp14 18 1 5 

314 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 20 1 4 

315 
Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 19 1 7 

316 Neu5Aca2-8Neu5Acb-Sp17 44 2 4 

317 Neu5Aca2-8Neu5Aca2-8Neu5Acb-Sp8 29 4 15 

318 Neu5Gcb2-6Galb1-4GlcNAc-Sp8 58 2 4 

319 
Galb1-3GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp19 64 2 3 

320 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 18 1 3 

321 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 17 2 12 



  8. Appendices 

166 
 

322 
Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 23 2 11 

323 Neu5,9Ac2a2-3Galb1-3GlcNAcb-Sp0 22 2 10 

324 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-3GlcNAcb-Sp0 28 1 4 

325 Neu5Aca2-3Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 31 1 2 

326 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 23 1 2 

327 Gala1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 28 2 5 

328 GalNAcb1-3Gala1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 21 1 5 

329 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 22 2 11 

330 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 24 2 8 

331 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-6(Neu5Aca2-3Galb1-3)GalNAc-Sp14 35 5 14 

332 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 23 2 9 

333 GlcNAca1-4Galb1-4GlcNAcb-Sp0 28 3 11 

334 GlcNAca1-4Galb1-3GlcNAcb-Sp0 34 9 26 

335 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 30 2 5 

336 
GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-
Sp0 66 6 9 

337 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 30 1 3 

338 GlcNAca1-4Galb1-3GalNAc-Sp14 24 2 8 

339 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 23 2 9 

340 Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 22 3 12 

341 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6Manb1-4GlcNAcb1-4GlcNAc-Sp12 19 1 3 

342 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3Manb1-4GlcNAcb1-4GlcNAc-Sp12 19 1 3 

343 Galb1-4GlcNAcb1-2Mana1-3Manb1-4GlcNAcb1-4GlcNAc-Sp12 17 2 10 

344 Galb1-4GlcNAcb1-2Mana1-6Manb1-4GlcNAcb1-4GlcNAc-Sp12 15 4 26 

345 Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 23 1 2 

346 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 33 3 10 

347 
Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp22 31 3 11 

348 
Galb1-3GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp22 28 1 5 

349 (6S)GlcNAcb1-3Galb1-4GlcNAcb-Sp0 36 2 6 

350 KDNa2-3Galb1-4(Fuca1-3)GlcNAc-Sp0 33 1 3 

351 KDNa2-6Galb1-4GlcNAc-Sp0 29 1 2 

352 KDNa2-3Galb1-4Glc-Sp0 25 2 7 

353 KDNa2-3Galb1-3GalNAca-Sp14 35 4 11 

354 
Fuca1-2Galb1-3GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 46 3 6 

355 
Fuca1-2Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 46 4 8 

356 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAb-Sp20 61 4 7 

357 
Gala1-3Galb1-4GlcNAcb1-2Mana1-6(Gala1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 42 3 7 

358 Galb1-4GlcNAcb1-2Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 28 3 10 

359 
Fuca1-4(Galb1-3)GlcNAcb1-2Mana1-6(Fuca1-4(Galb1-3)GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 52 7 13 

360 Neu5Aca2-6GlcNAcb1-4GlcNAc-Sp21 32 2 5 

361 Neu5Aca2-6GlcNAcb1-4GlcNAcb1-4GlcNAc-Sp21 30 3 10 

362 Galb1-4(Fuca1-3)GlcNAcb1-6(Fuca1-2Galb1-4GlcNAcb1-3)Galb1-4Glc-Sp21 29 2 8 

363 
Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-4(Galb1-4GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 24 1 5 

364 
GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 31 2 5 

365 
Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 30 1 2 

366 
Gala1-3Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Gala1-3Galb1-4(Fuca1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 44 11 25 

367 
GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 22 3 13 

368 
Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-2Manα1-6(Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-
2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp20 31 2 5 
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369 
Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-2Mana1-3(Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 36 3 9 

370 Neu5Aca2-3Galb1-4GlcNAcb1-3GalNAc-Sp14 15 4 27 

371 Neu5Aca2-6Galb1-4GlcNAcb1-3GalNAc-Sp14 24 2 10 

372 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3GalNAca-Sp14 42 1 2 

373 
GalNAcb1-4GlcNAcb1-2Mana1-6(GalNAcb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAc-Sp12 46 6 12 

374 Galb1-3GalNAca1-3(Fuca1-2)Galb1-4Glc-Sp0 14 4 32 

375 Galb1-3GalNAca1-3(Fuca1-2)Galb1-4GlcNAc-Sp0 15 3 17 

376 Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glcb-Sp0 19 1 3 

377 Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21  9 6 67 

378 Galb1-4GlcNAcb1-6(Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-3)Galb1-4Glc-Sp21 17 4 22 

379 Galb1-4(Fuca1-3)GlcNAcb1-6(Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-3)Galb1-4Glc-Sp21 17 2 13 

380 Galb1-3GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21  6 6 116 

381 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-4(Galb1-
4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 18 1 3 

382 
GlcNAcb1-2Mana1-6(GlcNAcb1-4(GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-
Sp21 9 3 28 

383 Fuca1-2Galb1-3GalNAca1-3(Fuca1-2)Galb1-4Glcb-Sp0 30 3 10 

384 Fuca1-2Galb1-3GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 14 5 39 

385 Galb1-3GlcNAcb1-3GalNAca-Sp14 14 5 39 

386 GalNAcb1-4(Neu5Aca2-3)Galb1-4GlcNAcb1-3GalNAca-Sp14 20 2 9 

387 GalNAca1-3(Fuca1-2)Galb1-3GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 15 5 30 

388 
Gala1-3Galb1-3GlcNAcb1-2Mana1-6(Gala1-3Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp19 46 1 3 

389 
Gala1-3Galb1-3(Fuca1-4)GlcNAcb1-2Mana1-6(Gala1-3Galb1-3(Fuca1-4)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp19 56 4 6 

390 GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 14 2 14 

391 Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 17 2 10 

392 Neu5Aca2-3Galb1-3GlcNAcb1-3GalNAca-Sp14 15 1 9 

393 Fuca1-2Galb1-4GlcNAcb1-3GalNAca-Sp14 27 5 18 

394 Galb1-4(Fuca1-3)GlcNAcb1-3GalNAca-Sp14 26 4 14 

395 GalNAca1-3GalNAcb1-3Gala1-4Galb1-4GlcNAcb-Sp0 15 3 22 

396 
Gala1-4Galb1-3GlcNAcb1-2Mana1-6(Gala1-4Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp19 29 1 5 

397 
Gala1-4Galb1-4GlcNAcb1-2Mana1-6(Gala1-4Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp24 69 1 2 

398 Gala1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 14 3 19 

399 Galb1-3GlcNAcb1-6Galb1-4GlcNAcb-Sp0 25 3 14 

400 Galb1-3GlcNAca1-6Galb1-4GlcNAcb-Sp0 6 9 172 

401 GalNAcb1-3Gala1-6Galb1-4Glcb-Sp8 21 9 44 

402 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)Glcb-Sp21 18 1 6 

403 Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21 10 5 47 

404 Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 33 5 16 

405 Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 24 3 14 

406 Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-3GalNAca-Sp14 19 1 4 

407 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3GalNAca-Sp14 8 5 68 

408 GalNAca1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp0 17 6 38 

409 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3GalNAca-Sp14 36 1 4 

410 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb1-3GalNAc-Sp14 23 3 13 

411 GalNAca1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb1-3GalNAc-Sp14 31 2 5 

412 
Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 51 3 6 

413 
Fuca1-2Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 32 2 7 

414 
GlcNAcb1-2(GlcNAcb1-6)Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-
Sp19 45 3 7 

415 Fuca1-2Galb1-3GlcNAcb1-3GalNAc-Sp14 17 4 21 

416 Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-3GalNAc-Sp14 17 4 25 

417 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-3GalNAc-Sp14 22 2 10 

418 Gala1-3Galb1-3GlcNAcb1-3GalNAc-Sp14 19 4 22 
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419 
Fuca1-2Galb1-3GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 32 3 10 

420 
Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 31 3 9 

421 
Galb1-3GlcNAcb1-6(Galb1-3GlcNAcb1-2)Mana1-6(Galb1-3GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 36 4 10 

422 Galb1-4GlcNAcb1-6(Fuca1-2Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21 15 1 7 

423 Fuca1-3GlcNAcb1-6(Galb1-4GlcNAcb1-3)Galb1-4Glc-Sp21 16 2 10 

424 
GlcNAcb1-2Mana1-6(GlcNAcb1-4)(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-
Sp21 9 4 39 

425 
GlcNAcb1-2Mana1-6(GlcNAcb1-4)(GlcNAcb1-4(GlcNAcb1-2)Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp21 18 4 25 

426 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp21 16 1 5 

427 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(GlcNAcb1-4(GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 12 5 46 

428 
Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp21 15 4 29 

429 
Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-4(Galb1-4GlcNAcb1-
2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 9 2 23 

430 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 13 3 25 

431 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-
4(Galb1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 11 3 27 

432 Galb1-4Galb-Sp10 15 6 41 

433 Galb1-6Galb-Sp10 22 7 33 

434 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb-Sp8 25 1 2 

435 GalNAcb1-6GalNAcb-Sp8 19 3 15 

436 (6S)Galb1-3GlcNAcb-Sp0 31 4 15 

437 (6S)Galb1-3(6S)GlcNAc-Sp0 28 4 15 

438 
Fuca1-2Galb1-4 GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2(Fuca1-2Galb1-
4GlcNAcb1-4)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 32 2 7 

439 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-
4(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 55 2 4 

440 Galb1-4(Fuca1-3)GlcNAcb1-6GalNAc-Sp14 40 4 10 

441 Galb1-4GlcNAcb1-2Mana-Sp0 32 5 16 

442 Fuca1-2Galb1-4GlcNAcb1-6(Fuca1-2Galb1-4GlcNAcb1-3)GalNAc-Sp14 15 2 16 

443 
Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-6(Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-3)GalNAc-
Sp14 18 2 11 

444 
GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-6(GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-
3)GalNAc-Sp14 12 4 31 

445 Neu5Aca2-8Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 80 3 4 

446 GalNAcb1-4Galb1-4Glcb-Sp0 29 5 19 

447 
GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 34 3 8 

448 
Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-2Mana1-6(Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 26 1 3 

449 Neu5Aca2-6Galb1-4GlcNAcb1-6(Fuca1-2Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21 17 1 3 

450 
GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 25 3 11 

451 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 23 2 8 

452 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Neu5Aca2-3Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 17 3 17 

453 
Neu5Aca2-3Galb1-4GlcNAcb1-4Mana1-6(GlcNAcb1-4)(Neu5Aca2-3Galb1-4GlcNAcb1-
4(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 13 1 10 

454 
Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 15 2 16 

455 
Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-3Galb1-4GlcNAcb1-4(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp21 13 2 19 
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456 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Neu5Aca2-6Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 14 2 14 

457 
Neu5Aca2-6Galb1-4GlcNAcb1-4Mana1-6(GlcNAcb1-4)(Neu5Aca2-6Galb1-4GlcNAcb1-
4(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 12 3 21 

458 
Neu5Aca2-6Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 17 3 16 

459 
Neu5Aca2-6Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-6Galb1-4GlcNAcb1-4(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp21 15 2 14 

460 Gala1-3(Fuca1-2)Galb1-3GalNAca-Sp8 28 5 19 

461 Gala1-3(Fuca1-2)Galb1-3GalNAcb-Sp8 51 2 3 

462 Glca1-6Glca1-6Glca1-6Glcb-Sp10 13 8 66 

463 Glca1-4Glca1-4Glca1-4Glcb-Sp10 37 1 1 

464 Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-3)GalNAca-Sp14 8 9 116 

465 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 64 8 13 

466 
Fuca1-2Galb1-3(Fuca1-4)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3(Fuca1-4)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp19 47 2 5 

467 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp24 70 3 4 

468 
Galb1-3GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp21 35 4 12 

469 Neu5Aca2-6Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glcb-Sp21 16 3 22 

470 Neu5Aca2-3Galb1-4GlcNAcb1-2Mana-Sp0 39 5 13 

471 Neu5Aca2-3Galb1-4GlcNAcb1-6GalNAca-Sp14 12 2 15 

472 Neu5Aca2-6Galb1-4GlcNAcb1-6GalNAca-Sp14 31 6 21 

473 Neu5Aca2-6Galb1-4 GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-3)GalNAca-Sp14 14 2 18 

474 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 48 2 3 

475 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 59 5 8 

476 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp19 36 8 21 

477 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 63 3 5 

478 
Neu5Aca2-3Galb1-3GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Neu5Aca2-3Galb1-3GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 23 7 32 

479 Neu5Aca2-6Galb1-4GlcNAcb1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3)Galb1-4Glc-Sp21 13 6 46 

480 Galb1-3GlcNAcb1-6GalNAca-Sp14 12 3 28 

481 Gala1-3Galb1-3GlcNAcb1-6GalNAca-Sp14 15 4 29 

482 Galb1-3(Fuca1-4)GlcNAcb1-6GalNAca-Sp14 29 7 23 

483 Neu5Aca2-3Galb1-3GlcNAcb1-6GalNAca-Sp14 24 3 13 

484 (3S)Galb1-3(Fuca1-4)GlcNAcb-Sp0 27 16 60 

485 
Galb1-4(Fuca1-3)GlcNAcb1-6(Neu5Aca2-6(Neu5Aca2-3Galb1-3)GlcNAcb1-3)Galb1-
4Glc-Sp21 29 1 2 

486 Fuca1-2Galb1-4GlcNAcb1-6GalNAca-Sp14 15 15 104 

487 Gala1-3Galb1-4GlcNAcb1-6GalNAca-Sp14 13 3 21 

488 Galb1-4(Fuca1-3)GlcNAcb1-2Mana-Sp0 39 9 23 

489 Fuca1-2(6S)Galb1-3GlcNAcb-Sp0 20 5 24 

490 Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-6GalNAca-Sp14 20 5 24 

491 Fuca1-2Galb1-4GlcNAcb1-2Mana-Sp0 26 3 11 

492 Fuca1-2Galb1-3(6S)GlcNAcb-Sp0 35 5 13 

493 Fuca1-2(6S)Galb1-3(6S)GlcNAcb-Sp0 37 3 9 

494 Neu5Aca2-6GalNAcb1-4(6S)GlcNAcb-Sp8 22 3 15 

495 GalNAcb1-4(Fuca1-3)(6S)GlcNAcb-Sp8 26 3 12 

496 (3S)GalNAcb1-4(Fuca1-3)GlcNAcb-Sp8 27 1 5 

497 Fuca1-2Galb1-3GlcNAcb1-6(Fuca1-2Galb1-3GlcNAcb1-3)GalNAca-Sp14 28 1 4 

498 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-6GalNAca-Sp14 17 8 48 

499 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(GlcNAcb1-4(GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 14 2 12 

500 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-4)Galb1-4GlcNAcb1-4(Gal 
b1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 14 2 17 

501 Galb1-3GlcNAca1-3Galb1-4GlcNAcb-Sp8  25 5 20 
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502 Galb1-3(6S)GlcNAcb-Sp8  17 8 47 

503 (6S)(4S)GalNAcb1-4GlcNAc-Sp8 31 10 33 

504 (6S)GalNAcb1-4GlcNAc-Sp8  12 4 36 

505 (3S)GalNAcb1-4(3S)GlcNAc-Sp8 32 1 2 

506 GalNAcb1-4(6S)GlcNAc-Sp8  35 1 4 

507 (3S)GalNAcb1-4GlcNAc-Sp8  41 2 5 

508 (4S)GalNAcb-Sp10 28 2 6 

509 Galb1-4(6P)GlcNAcb-Sp0  10 9 100 

510 (6P)Galb1-4GlcNAcb-SP0  10 2 20 

511 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-6GalNAc-Sp14 14 2 12 

512 Neu5Aca2-6Galb1-4GlcNAcb1-2Man-Sp0 13 3 21 

513 Gala1-3Galb1-4GlcNAcb1-2Mana-Sp0 17 3 15 

514 Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana-Sp0 12 5 40 

515 GalNAca1-3(Fuca1-2)Galb1-4 GlcNAcb1-2Mana-Sp0 13 2 16 

516  Galb1-3GlcNAcb1-2Mana-Sp0 37 4 12 

517 Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-6GalNAc-Sp14 15 1 7 

518 Neu5Aca2-3Galb1-3GlcNAcb1-2Mana-Sp0 14 3 21 

519 Gala1-3Galb1-3GlcNAcb1-2Mana-Sp0 18 3 14 

520 GalNAcb1-4GlcNAcb1-2Mana-Sp0 20 1 5 

521 Neu5Aca2-3Galb1-3GalNAcb1-4Galb1-4Glcb-Sp0 7 4 67 

522 
GlcNAcb1-2 Mana1-6(GlcNAcb1-4)(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAc-Sp21 5 6 132 

523 
Galb1-4GlcNAcb1-2 Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 14 3 21 

524 
Galb1-4GlcNAcb1-2 Mana1-6(Galb1-4GlcNAcb1-4)(Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 13 2 13 

525 Fuca1-4(Galb1-3)GlcNAcb1-2 Mana-Sp0 57 4 7 

526 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-2Mana-Sp0 14 3 24 

527 GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3)Galb1-4GlcNAc-Sp0 23 18 78 

528 GalNAca1-3(Fuca1-2)Galb1-3GalNAcb1-3Gala1-4Galb1-4Glc-Sp21 18 1 7 

529 Gala1-3(Fuca1-2)Galb1-3GalNAcb1-3Gala1-4Galb1-4Glc-Sp21 20 1 7 

530 Galb1-3GalNAcb1-3Gal-Sp21 58 2 4 

531 
GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 61 10 16 

532 
GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 16 1 5 

533 
Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6(Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-
2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 12 5 45 

534 
Fuca1-2Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp24 60 5 8 

535 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 39 6 15 

536 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 7 2 27 

537 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 44 3 8 

538 
Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp25 24 4 17 

539 Neu5Gca2-8Neu5Gca2-3Galb1-4GlcNAc-Sp0 24 3 11 

540 Neu5Aca2-8Neu5Gca2-3Galb1-4GlcNAc-Sp0 7 3 41 

541 Neu5Gca2-8Neu5Aca2-3Galb1-4GlcNAc-Sp0 16 3 21 

542 Neu5Gca2-8Neu5Gca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAc-Sp0 12 4 34 

543 Neu5Gca2-8Neu5Gca2-6Galb1-4GlcNAc-Sp0 18 2 11 

544 Neu5Aca2-8Neu5Aca2-3Galb1-4GlcNAc-Sp0 5 1 10 

545 
GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
3Galb1-4GlcNAcb1-2Man a1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp24 88 5 5 

546 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2)Mana1-
6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Mana1-4GlcNAcb1-4GlcNAc-Sp24 45 10 23 

547 
Gala1-3Galb1-4GlcNAcb1-2Mana1-6(Gala1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp24 56 3 5 

548 GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3Galb1-3)GalNAca-Sp14 19 1 3 

549 GalNAcb1-3GlcNAcb-Sp0  15 4 30 
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550 GalNAcb1-4GlcNAcb1-3GalNAcb1-4GlcNAcb-Sp0  20 2 10 

551 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 43 7 15 

552 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 46 7 16 

553 GlcNAb1-3Galb1-3GalNAc-Sp14 14 4 27 

554 Galb1-3GlcNAcb1-6(Galb1-3)GalNAc-Sp14 16 2 14 

555 (3S)GlcAb1-3Galb1-4GlcNAcb1-3Galb1-4Glc-Sp0 14 3 21 

556 (3S)GlcAb1-3Galb1-4GlcNAcb1-2Mana-Sp0 25 2 7 

557 
Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-6(Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 40 9 22 

558 
Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-
6(Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp24 48 9 20 

559 Neu5Aca2-8Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glc-Sp21 19 2 9 

560 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 40 2 5 

561 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 60 14 24 

562 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-
6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp24 69 6 9 

563 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 20 3 13 

564 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 22 4 17 

565 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 19 3 15 

566 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3)GalNAca-Sp14 26 4 15 

567 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 11 6 56 

568 GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 14 2 15 

569 GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 17 6 37 

570 GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3Galb1-4GlcNAcb1-3)GalNAca-Sp14 25 1 4 

571 
Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3)GalNAca-Sp14 7 10 149 

572 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 16 3 20 

573 GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 15 1 4 

574 Galb1-4GlcNAcb1-3Galb1-3GalNAca-Sp14 6 4 65 

575 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 18 4 22 

576 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 22 1 4 

577 Neu5Aca2-6Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 14 3 18 

578 
Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 25 2 8 

579 GlcNAcb1-6(Neu5Aca2-3Galb1-3)GalNAca-Sp14 11 4 36 

580 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3)GalNAca-Sp14 23 2 8 

581 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
6(Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 213 31 15 

582 
Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
6(Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 61 2 2 

583 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 23 13 55 

584 GlcNAcb1-3Fuca-Sp21 25 1 4 

585 Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp21 10 10 104 

 

  



  8. Appendices 

172 
 

8. 6. 3. Awp3A (5 µg/mL) – Anti-His-488 (5 µg/mL) 

 

 

Chart 
ID 

Sample (conc.)  Secondary (conc.) Barcode#  Slide # Request # Date Initials 
Average 
RFU StDev %CV 

1 Gala-Sp8 58 7 12 

2 Glca-Sp8 49 5 11 

3 Mana-Sp8 66 10 16 

4 GalNAca-Sp8 78 7 9 

5 GalNAca-Sp15 65 2 3 

6 Fuca-Sp8 16 29 183 

7 Fuca-Sp9 83 3 4 

8 Rhaa-Sp8 60 3 5 

9 Neu5Aca-Sp8 82 2 3 

10 Neu5Aca-Sp11 55 5 8 

11 Neu5Acb-Sp8 77 26 33 

12 Galb-Sp8 61 4 6 

13 Glcb-Sp8 70 12 18 

14 Manb-Sp8 61 4 7 

15 GalNAcb-Sp8 52 5 9 

16 GlcNAcb-Sp0 65 7 10 

17 GlcNAcb-Sp8 57 3 5 

18 GlcN(Gc)b-Sp8 68 3 5 

19 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3)GalNAca-Sp8 52 32 62 

20 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3)GalNAc-Sp14 69 3 5 

21 GlcNAcb1-6(GlcNAcb1-4)(GlcNAcb1-3)GlcNAc-Sp8 52 19 36 

22 6S(3S)Galb1-4(6S)GlcNAcb-Sp0 86 6 7 

23 6S(3S)Galb1-4GlcNAcb-Sp0 96 11 11 

24 (3S)Galb1-4(Fuca1-3)(6S)Glc-Sp0 215 14 6 

25 (3S)Galb1-4Glcb-Sp8 38 5 13 

26 (3S)Galb1-4(6S)Glcb-Sp0 46 7 15 

27 (3S)Galb1-4(6S)Glcb-Sp8 46 8 17 

28 (3S)Galb1-3(Fuca1-4)GlcNAcb-Sp8 60 4 7 

29 (3S)Galb1-3GalNAca-Sp8 69 0 0 

30 (3S)Galb1-3GlcNAcb-Sp0 50 7 14 

31 (3S)Galb1-3GlcNAcb-Sp8 69 5 8 

32 (3S)Galb1-4(Fuca1-3)GlcNAc-Sp0  65 2 4 
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33 (3S)Galb1-4(Fuca1-3)GlcNAc-Sp8 74 3 4 

34 (3S)Galb1-4(6S)GlcNAcb-Sp0 58 2 4 

35 (3S)Galb1-4(6S)GlcNAcb-Sp8 78 2 2 

36 (3S)Galb1-4GlcNAcb-Sp0 56 3 6 

37 (3S)Galb1-4GlcNAcb-Sp8 38 11 29 

38 (3S)Galb-Sp8 35 7 19 

39 (6S)(4S)Galb1-4GlcNAcb-Sp0 31 12 38 

40 (4S)Galb1-4GlcNAcb-Sp8 44 11 25 

41 (6P)Mana-Sp8 28 6 22 

42 (6S)Galb1-4Glcb-Sp0 53 2 5 

43 (6S)Galb1-4Glcb-Sp8 38 1 4 

44 (6S)Galb1-4GlcNAcb-Sp8 39 1 3 

45 (6S)Galb1-4(6S)Glcb-Sp8 47 5 11 

46 Neu5Aca2-3(6S)Galb1-4GlcNAcb-Sp8 49 4 7 

47 (6S)GlcNAcb-Sp8 45 16 36 

48 Neu5,9Ac2a-Sp8 55 4 7 

49 Neu5,9Ac2a2-6Galb1-4GlcNAcb-Sp8 36 1 4 

50 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 28 3 11 

51 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp13 26 3 11 

52 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 34 1 3 

53 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp13 27 3 9 

54 
Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp12 31 3 8 

55 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 27 4 14 

56 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Man-a1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 35 1 2 

57 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp24 56 3 5 

58 Fuca1-2Galb1-3GalNAcb1-3Gala-Sp9 48 2 5 

59 Fuca1-2Galb1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp9 34 1 1 

60 Fuca1-2Galb1-3(Fuca1-4)GlcNAcb-Sp8 19 16 82 

61 Fuca1-2Galb1-3GalNAca-Sp8 37 3 8 

62 Fuca1-2Galb1-3GalNAca-Sp14 28 1 5 

63 Fuca1-2Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 42 3 7 

64 Fuca1-2Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp9 34 3 9 

65 Fuca1-2Galb1-3GlcNAcb1-3Galb1-4Glcb-Sp8 32 8 24 

66 Fuca1-2Galb1-3GlcNAcb1-3Galb1-4Glcb-Sp10 37 2 5 

67 Fuca1-2Galb1-3GlcNAcb-Sp0 58 3 4 

68 Fuca1-2Galb1-3GlcNAcb-Sp8 41 2 6 

69 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 48 2 4 

70 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-
3)GlcNAcb-Sp0 50 4 8 

71 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb-Sp0 57 5 9 

72 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb-Sp8 32 10 31 

73 Fuca1-2Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 28 1 3 

74 Fuca1-2Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 32 4 13 

75 Fuca1-2Galb1-4GlcNAcb-Sp0 45 3 6 

76 Fuca1-2Galb1-4GlcNAcb-Sp8 43 9 21 

77 Fuca1-2Galb1-4Glcb-Sp0 35 4 12 

78 Fuca1-2Galb-Sp8 55 1 2 

79 Fuca1-3GlcNAcb-Sp8 44 5 12 

80 Fuca1-4GlcNAcb-Sp8 64 5 8 

81 Fucb1-3GlcNAcb-Sp8 49 3 7 

82 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb-Sp0 56 3 6 

83 GalNAca1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb-Sp0 65 2 3 

84 (3S)Galb1-4(Fuca1-3)Glcb-Sp0 20 18 91 

85 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 40 5 13 

86 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp8 29 1 4 

87 GalNAca1-3(Fuca1-2)Galb1-4Glcb-Sp0 28 4 12 

88 GlcNAcb1-3Galb1-3GalNAca-Sp8 65 2 2 
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89 GalNAca1-3(Fuca1-2)Galb-Sp8 40 2 5 

90 GalNAca1-3(Fuca1-2)Galb-Sp18 48 3 7 

91 GalNAca1-3GalNAcb-Sp8 73 5 7 

92 GalNAca1-3Galb-Sp8 60 2 3 

93 GalNAca1-4(Fuca1-2)Galb1-4GlcNAcb-Sp8 65 4 5 

94 GalNAcb1-3GalNAca-Sp8 63 3 4 

95 GalNAcb1-3(Fuca1-2)Galb-Sp8 67 5 7 

96 GalNAcb1-3Gala1-4Galb1-4GlcNAcb-Sp0 89 16 18 

97 GalNAcb1-4(Fuca1-3)GlcNAcb-Sp0 80 16 19 

98 GalNAcb1-4GlcNAcb-Sp0 209 21 10 

99 GalNAcb1-4GlcNAcb-Sp8 90 24 27 

100 Gala1-2Galb-Sp8 37 6 15 

101 Gala1-3(Fuca1-2)Galb1-3GlcNAcb-Sp0 37 1 2 

102 Gala1-3(Fuca1-2)Galb1-3GlcNAcb-Sp8 37 4 10 

103 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb-Sp0 37 2 5 

104 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb-Sp8 54 4 8 

105 Gala1-3(Fuca1-2)Galb1-4GlcNAc-Sp0 41 2 4 

106 Gala1-3(Fuca1-2)Galb1-4Glcb-Sp0 43 1 3 

107 Gala1-3(Fuca1-2)Galb-Sp8 44 2 5 

108 Gala1-3(Fuca1-2)Galb-Sp18 64 9 14 

109 Gala1-4(Gala1-3)Galb1-4GlcNAcb-Sp8 71 15 21 

110 Gala1-3GalNAca-Sp8 59 1 2 

111 Gala1-3GalNAca-Sp16 32 1 4 

112 Gala1-3GalNAcb-Sp8 38 3 7 

113 Gala1-3Galb1-4(Fuca1-3)GlcNAcb-Sp8 32 3 8 

114 Gala1-3Galb1-3GlcNAcb-Sp0 29 6 22 

115 Gala1-3Galb1-4GlcNAcb-Sp8 41 9 23 

116 Gala1-3Galb1-4Glcb-Sp0 36 3 8 

117 Gala1-3Galb1-4Glc-Sp10 37 2 5 

118 Gala1-3Galb-Sp8 44 2 4 

119 Gala1-4(Fuca1-2)Galb1-4GlcNAcb-Sp8 56 1 2 

120 Gala1-4Galb1-4GlcNAcb-Sp0 35 2 5 

121 Gala1-4Galb1-4GlcNAcb-Sp8 64 2 4 

122 Gala1-4Galb1-4Glcb-Sp0 39 5 12 

123 Gala1-4GlcNAcb-Sp8 49 5 9 

124 Gala1-6Glcb-Sp8 30 3 11 

125 Galb1-2Galb-Sp8 37 4 12 

126 Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 39 3 7 

127 Galb1-3GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 33 2 7 

128 Galb1-3(Fuca1-4)GlcNAc-Sp0  34 11 34 

129 Galb1-3(Fuca1-4)GlcNAc-Sp8  47 9 20 

130 Fuca1-4(Galb1-3)GlcNAcb-Sp8 43 6 13 

131 Galb1-4GlcNAcb1-6GalNAca-Sp8 53 2 3 

132 Galb1-4GlcNAcb1-6GalNAc-Sp14 46 2 4 

133 GlcNAcb1-6(Galb1-3)GalNAca-Sp8  45 6 14 

134 GlcNAcb1-6(Galb1-3)GalNAca-Sp14 31 2 6 

135 Neu5Aca2-6(Galb1-3)GalNAca-Sp8 46 6 14 

136 Neu5Aca2-6(Galb1-3)GalNAca-Sp14 25 4 17 

137 Neu5Acb2-6(Galb1-3)GalNAca-Sp8 41 2 5 

138 Neu5Aca2-6(Galb1-3)GlcNAcb1-4Galb1-4Glcb-Sp10 26 2 8 

139 Galb1-3GalNAca-Sp8 28 8 28 

140 Galb1-3GalNAca-Sp14 29 2 6 

141 Galb1-3GalNAca-Sp16 85 1 2 

142 Galb1-3GalNAcb-Sp8 37 2 6 

143 Galb1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp0 35 1 3 

144 Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 39 3 6 

145 Galb1-3GalNAcb1-4Galb1-4Glcb-Sp8 56 2 3 

146 Galb1-3Galb-Sp8 40 8 20 

147 Galb1-3GlcNAcb1-3Galb1-4GlcNAcb-Sp0 24 2 9 

148 Galb1-3GlcNAcb1-3Galb1-4Glcb-Sp10 28 1 3 

149 Galb1-3GlcNAcb-Sp0 40 3 8 
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150 Galb1-3GlcNAcb-Sp8 35 3 8 

151 Galb1-4(Fuca1-3)GlcNAcb-Sp0 46 7 14 

152 Galb1-4(Fuca1-3)GlcNAcb-Sp8 49 2 4 

153 Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 55 2 3 

154 
Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-
Sp0 33 2 5 

155 Galb1-4(6S)Glcb-Sp0 45 4 8 

156 Galb1-4(6S)Glcb-Sp8 46 1 3 

157 Galb1-4GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp8 33 8 25 

158 Galb1-4GalNAcb1-3(Fuca1-2)Galb1-4GlcNAcb-Sp8 43 4 9 

159 Galb1-4GlcNAcb1-3GalNAca-Sp8 33 2 5 

160 Galb1-4GlcNAcb1-3GalNAc-Sp14 22 9 43 

161 Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 45 2 5 

162 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 27 1 5 

163 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 29 14 48 

164 Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 42 3 8 

165 Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp8 35 2 6 

166 Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp8 46 1 2 

167 Galb1-4GlcNAcb1-6(Galb1-3)GalNAc-Sp14 58 1 2 

168 Galb1-4GlcNAcb-Sp0 54 1 2 

169 Galb1-4GlcNAcb-Sp8 41 5 11 

170 Galb1-4GlcNAcb-Sp23 30 1 5 

171 Galb1-4Glcb-Sp0 29 4 12 

172 Galb1-4Glcb-Sp8 28 2 9 

173 GlcNAca1-3Galb1-4GlcNAcb-Sp8 39 3 8 

174 GlcNAca1-6Galb1-4GlcNAcb-Sp8 34 3 8 

175 GlcNAcb1-2Galb1-3GalNAca-Sp8 53 2 4 

176 GlcNAcb1-6(GlcNAcb1-3)GalNAca-Sp8 36 2 6 

177 GlcNAcb1-6(GlcNAcb1-3)GalNAca-Sp14 32 2 8 

178 GlcNAcb1-6(GlcNAcb1-3)Galb1-4GlcNAcb-Sp8 51 1 2 

179 GlcNAcb1-3GalNAca-Sp8 53 2 4 

180 GlcNAcb1-3GalNAca-Sp14 23 8 36 

181 GlcNAcb1-3Galb-Sp8 34 3 8 

182 GlcNAcb1-3Galb1-4GlcNAcb-Sp0 20 16 78 

183 GlcNAcb1-3Galb1-4GlcNAcb-Sp8 31 2 7 

184 GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 19 5 24 

185 GlcNAcb1-3Galb1-4Glcb-Sp0 31 3 9 

186 GlcNAcb1-4-MDPLys 35 5 16 

187 GlcNAcb1-6(GlcNAcb1-4)GalNAca-Sp8 70 2 3 

188 GlcNAcb1-4Galb1-4GlcNAcb-Sp8 58 2 4 

189 GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-Sp8 32 1 3 

190 GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-Sp8 32 1 2 

191 GlcNAcb1-4GlcNAcb1-4GlcNAcb-Sp8 37 2 5 

192 GlcNAcb1-6GalNAca-Sp8 84 4 5 

193 GlcNAcb1-6GalNAca-Sp14 36 2 4 

194 GlcNAcb1-6Galb1-4GlcNAcb-Sp8 47 5 11 

195 Glca1-4Glcb-Sp8 29 2 5 

196 Glca1-4Glca-Sp8 43 1 3 

197 Glca1-6Glca1-6Glcb-Sp8 33 1 3 

198 Glcb1-4Glcb-Sp8 35 3 9 

199 Glcb1-6Glcb-Sp8 26 10 41 

200 G-ol-Sp8 32 4 12 

201 GlcAa-Sp8 36 3 9 

202 GlcAb-Sp8 35 5 14 

203 GlcAb1-3Galb-Sp8 55 2 3 

204 GlcAb1-6Galb-Sp8 49 2 5 

205 KDNa2-3Galb1-3GlcNAcb-Sp0 52 1 2 

206 KDNa2-3Galb1-4GlcNAcb-Sp0 34 1 1 

207 Mana1-2Mana1-2Mana1-3Mana-Sp9 22 8 37 

208 Mana1-2Mana1-6(Mana1-2Mana1-3)Mana-Sp9 33 2 5 

209 Mana1-2Mana1-3Mana-Sp9 28 5 16 
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210 
Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 36 1 2 

211 Mana1-6(Mana1-3)Mana-Sp9 49 2 5 

212 Mana1-2Mana1-2Mana1-6(Mana1-3)Mana-Sp9 36 1 1 

213 Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 36 1 3 

214 Mana1-6(Mana1-3)Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 40 2 4 

215 Manb1-4GlcNAcb-Sp0 34 5 14 

216 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 34 1 2 

217 (3S)Galb1-4(Fuca1-3)(6S)GlcNAcb-Sp8  73 3 4 

218 Fuca1-2(6S)Galb1-4GlcNAcb-Sp0 39 4 10 

219 Fuca1-2Galb1-4(6S)GlcNAcb-Sp8 41 6 14 

220 Fuca1-2(6S)Galb1-4(6S)Glcb-Sp0 57 6 10 

221 Neu5Aca2-3Galb1-3GalNAca-Sp8 44 1 1 

222 Neu5Aca2-3Galb1-3GalNAca-Sp14 35 3 8 

223 GalNAcb1-4(Neu5Aca2-8Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 32 1 2 

224 GalNAcb1-4(Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 39 1 4 

225 Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3Galb1-4Glcb-Sp0 37 1 3 

226 GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 40 1 1 

227 Neu5Aca2-8Neu5Aca2-8Neu5Aca-Sp8 34 1 4 

228 GalNAcb1-4(Neu5Aca2-3)Galb1-4GlcNAcb-Sp0 48 1 3 

229 GalNAcb1-4(Neu5Aca2-3)Galb1-4GlcNAcb-Sp8 30 1 3 

230 GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 34 2 6 

231 Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 33 1 3 

232 Neu5Aca2-6(Neu5Aca2-3)GalNAca-Sp8 43 2 5 

233 Neu5Aca2-3GalNAca-Sp8 60 3 5 

234 Neu5Aca2-3GalNAcb1-4GlcNAcb-Sp0 41 1 3 

235 Neu5Aca2-3Galb1-3(6S)GlcNAc-Sp8 48 1 1 

236 Neu5Aca2-3Galb1-3(Fuca1-4)GlcNAcb-Sp8 55 2 4 

237 Neu5Aca2-3Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 45 1 2 

238 Neu5Aca2-3Galb1-4(Neu5Aca2-3Galb1-3)GlcNAcb-Sp8 39 3 7 

239 Neu5Aca2-3Galb1-3(6S)GalNAca-Sp8 33 4 13 

240 Neu5Aca2-6(Neu5Aca2-3Galb1-3)GalNAca-Sp8 30 2 6 

241 Neu5Aca2-6(Neu5Aca2-3Galb1-3)GalNAca-Sp14 33 2 7 

242 Neu5Aca2-3Galb-Sp8 32 4 12 

243 Neu5Aca2-3Galb1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp0 35 2 6 

244 Neu5Aca2-3Galb1-3GlcNAcb1-3Galb1-4GlcNAcb-Sp0 35 1 1 

245 Fuca1-2(6S)Galb1-4Glcb-Sp0 62 2 3 

246 Neu5Aca2-3Galb1-3GlcNAcb-Sp0 64 2 3 

247 Neu5Aca2-3Galb1-4(6S)GlcNAcb-Sp8 60 3 5 

248 Neu5Aca2-3Galb1-4(Fuca1-3)(6S)GlcNAcb-Sp8 36 1 4 

249 
Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-
3)GlcNAcb-Sp0 36 5 15 

250 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 35 3 8 

251 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb-Sp8 33 3 11 

252 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb-Sp8 36 3 7 

253 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4GlcNAcb-Sp8 64 3 5 

254 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 34 1 2 

255 Neu5Aca2-3Galb1-4GlcNAcb-Sp0 54 2 3 

256 Neu5Aca2-3Galb1-4GlcNAcb-Sp8 55 4 7 

257 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 42 2 6 

258 Fuca1-2Galb1-4(6S)Glcb-Sp0 45 3 6 

259 Neu5Aca2-3Galb1-4Glcb-Sp0 46 2 4 

260 Neu5Aca2-3Galb1-4Glcb-Sp8 33 9 27 

261 Neu5Aca2-6GalNAca-Sp8 28 6 22 

262 Neu5Aca2-6GalNAcb1-4GlcNAcb-Sp0 19 11 60 

263 Neu5Aca2-6Galb1-4(6S)GlcNAcb-Sp8 32 5 16 

264 Neu5Aca2-6Galb1-4GlcNAcb-Sp0 31 1 4 

265 Neu5Aca2-6Galb1-4GlcNAcb-Sp8 57 2 4 

266 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-
Sp0 54 2 3 

267 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 38 2 5 
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268 Neu5Aca2-6Galb1-4Glcb-Sp0 50 2 4 

269 Neu5Aca2-6Galb1-4Glcb-Sp8 44 2 5 

270 Neu5Aca2-6Galb-Sp8 52 3 5 

271 Neu5Aca2-8Neu5Aca-Sp8 37 2 4 

272 Neu5Aca2-8Neu5Aca2-3Galb1-4Glcb-Sp0 31 4 12 

273 Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 39 6 15 

274 Neu5Acb2-6GalNAca-Sp8 31 2 8 

275 Neu5Acb2-6Galb1-4GlcNAcb-Sp8 48 3 7 

276 Neu5Gca2-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 39 1 1 

277 Neu5Gca2-3Galb1-3GlcNAcb-Sp0 37 4 10 

278 Neu5Gca2-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 48 1 3 

279 Neu5Gca2-3Galb1-4GlcNAcb-Sp0 45 1 1 

280 Neu5Gca2-3Galb1-4Glcb-Sp0 66 3 4 

281 Neu5Gca2-6GalNAca-Sp0 56 2 3 

282 Neu5Gca2-6Galb1-4GlcNAcb-Sp0 45 2 4 

283 Neu5Gca-Sp8 44 2 3 

284 Neu5Aca2-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 30 1 3 

285 Galb1-3GlcNAcb1-3Galb1-3GlcNAcb-Sp0 29 2 6 

286 Galb1-4(Fuca1-3)(6S)GlcNAcb-Sp0  99 3 3 

287 Galb1-4(Fuca1-3)(6S)Glcb-Sp0 82 1 2 

288 Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 36 3 8 

289 Galb1-4GlcNAcb1-3Galb1-3GlcNAcb-Sp0 30 4 12 

290 Neu5Aca2-3Galb1-3GlcNAcb1-3Galb1-3GlcNAcb-Sp0        27 1 5 

291 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-3GlcNAcb-Sp0 31 1 5 

292 4S(3S)Galb1-4GlcNAcb-Sp0 63 3 5 

293 (6S)Galb1-4(6S)GlcNAcb-Sp0 67 1 1 

294 (6P)Glcb-Sp10 33 1 4 

295 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-3)GalNAca-Sp14 106 4 4 

296 Galb1-3Galb1-4GlcNAcb-Sp8 36 4 11 

297 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 27 3 10 

298 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3)Galb1-4GlcNAc-Sp0 34 2 7 

299 GlcNAcb1-6(Galb1-4GlcNAcb1-3)Galb1-4GlcNAc-Sp0 32 2 5 

300 Galb1-4GlcNAca1-6Galb1-4GlcNAcb-Sp0 36 2 4 

301 Galb1-4GlcNAcb1-6Galb1-4GlcNAcb-Sp0 36 1 4 

302 GalNAcb1-3Galb-Sp8 54 1 1 

303 GlcAb1-3GlcNAcb-Sp8 49 1 2 

304 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp12 28 1 5 

305 GlcNAcb1-3Man-Sp10 41 1 3 

306 GlcNAcb1-4GlcNAcb-Sp10 40 1 2 

307 GlcNAcb1-4GlcNAcb-Sp12 33 2 5 

308 MurNAcb1-4GlcNAcb-Sp10 33 5 16 

309 Mana1-6Manb-Sp10 44 3 7 

310 Mana1-6(Mana1-3)Mana1-6(Mana1-3)Manb-Sp10 55 2 4 

311 Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Mana-Sp9 26 1 3 

312 Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Mana-Sp9 25 2 10 

313 Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-3)GalNAca-Sp14 24 2 9 

314 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 26 1 4 

315 
Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 24 1 3 

316 Neu5Aca2-8Neu5Acb-Sp17 57 4 7 

317 Neu5Aca2-8Neu5Aca2-8Neu5Acb-Sp8 30 15 49 

318 Neu5Gcb2-6Galb1-4GlcNAc-Sp8 74 3 4 

319 
Galb1-3GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp19 82 2 3 

320 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 22 1 2 

321 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 23 1 6 
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322 
Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 27 1 5 

323 Neu5,9Ac2a2-3Galb1-3GlcNAcb-Sp0 28 3 10 

324 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-3GlcNAcb-Sp0 33 2 5 

325 Neu5Aca2-3Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 38 2 5 

326 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 30 1 3 

327 Gala1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 35 1 4 

328 GalNAcb1-3Gala1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 27 1 2 

329 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 28 1 2 

330 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 35 2 5 

331 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-6(Neu5Aca2-3Galb1-3)GalNAc-Sp14 41 2 5 

332 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 27 2 7 

333 GlcNAca1-4Galb1-4GlcNAcb-Sp0 34 6 18 

334 GlcNAca1-4Galb1-3GlcNAcb-Sp0 43 1 3 

335 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 34 3 9 

336 
GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-
Sp0 72 5 7 

337 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 35 2 6 

338 GlcNAca1-4Galb1-3GalNAc-Sp14 30 1 5 

339 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 27 1 2 

340 Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 30 5 17 

341 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6Manb1-4GlcNAcb1-4GlcNAc-Sp12 26 2 7 

342 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3Manb1-4GlcNAcb1-4GlcNAc-Sp12 26 2 7 

343 Galb1-4GlcNAcb1-2Mana1-3Manb1-4GlcNAcb1-4GlcNAc-Sp12 24 2 6 

344 Galb1-4GlcNAcb1-2Mana1-6Manb1-4GlcNAcb1-4GlcNAc-Sp12 23 3 15 

345 Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 28 1 5 

346 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 40 2 4 

347 
Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp22 35 1 4 

348 
Galb1-3GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp22 33 2 5 

349 (6S)GlcNAcb1-3Galb1-4GlcNAcb-Sp0 44 2 5 

350 KDNa2-3Galb1-4(Fuca1-3)GlcNAc-Sp0 43 1 2 

351 KDNa2-6Galb1-4GlcNAc-Sp0 38 2 5 

352 KDNa2-3Galb1-4Glc-Sp0 37 3 7 

353 KDNa2-3Galb1-3GalNAca-Sp14 45 2 5 

354 
Fuca1-2Galb1-3GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 65 3 4 

355 
Fuca1-2Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 48 3 6 

356 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAb-Sp20 72 5 7 

357 
Gala1-3Galb1-4GlcNAcb1-2Mana1-6(Gala1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 47 2 3 

358 Galb1-4GlcNAcb1-2Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 31 1 2 

359 
Fuca1-4(Galb1-3)GlcNAcb1-2Mana1-6(Fuca1-4(Galb1-3)GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 62 7 11 

360 Neu5Aca2-6GlcNAcb1-4GlcNAc-Sp21 39 2 5 

361 Neu5Aca2-6GlcNAcb1-4GlcNAcb1-4GlcNAc-Sp21 33 1 2 

362 Galb1-4(Fuca1-3)GlcNAcb1-6(Fuca1-2Galb1-4GlcNAcb1-3)Galb1-4Glc-Sp21 35 2 4 

363 
Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-4(Galb1-4GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 34 1 2 

364 
GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 40 1 3 

365 
Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 41 1 1 

366 
Gala1-3Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Gala1-3Galb1-4(Fuca1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 56 3 6 

367 
GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 31 2 6 

368 
Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-2Manα1-6(Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-
2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp20 36 3 7 
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369 
Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-2Mana1-3(Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 49 3 6 

370 Neu5Aca2-3Galb1-4GlcNAcb1-3GalNAc-Sp14 22 4 16 

371 Neu5Aca2-6Galb1-4GlcNAcb1-3GalNAc-Sp14 26 3 11 

372 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3GalNAca-Sp14 54 4 8 

373 
GalNAcb1-4GlcNAcb1-2Mana1-6(GalNAcb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAc-Sp12 54 3 5 

374 Galb1-3GalNAca1-3(Fuca1-2)Galb1-4Glc-Sp0 23 1 2 

375 Galb1-3GalNAca1-3(Fuca1-2)Galb1-4GlcNAc-Sp0 20 1 5 

376 Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glcb-Sp0 22 2 11 

377 Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21  19 3 15 

378 Galb1-4GlcNAcb1-6(Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-3)Galb1-4Glc-Sp21 26 3 10 

379 Galb1-4(Fuca1-3)GlcNAcb1-6(Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-3)Galb1-4Glc-Sp21 23 1 2 

380 Galb1-3GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21  19 2 11 

381 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-4(Galb1-
4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 22 3 11 

382 
GlcNAcb1-2Mana1-6(GlcNAcb1-4(GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-
Sp21 21 2 11 

383 Fuca1-2Galb1-3GalNAca1-3(Fuca1-2)Galb1-4Glcb-Sp0 26 4 16 

384 Fuca1-2Galb1-3GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 13 8 65 

385 Galb1-3GlcNAcb1-3GalNAca-Sp14 20 4 22 

386 GalNAcb1-4(Neu5Aca2-3)Galb1-4GlcNAcb1-3GalNAca-Sp14 25 5 18 

387 GalNAca1-3(Fuca1-2)Galb1-3GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 14 4 27 

388 
Gala1-3Galb1-3GlcNAcb1-2Mana1-6(Gala1-3Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp19 51 6 11 

389 
Gala1-3Galb1-3(Fuca1-4)GlcNAcb1-2Mana1-6(Gala1-3Galb1-3(Fuca1-4)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp19 78 4 5 

390 GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 19 2 9 

391 Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 21 5 25 

392 Neu5Aca2-3Galb1-3GlcNAcb1-3GalNAca-Sp14 21 1 2 

393 Fuca1-2Galb1-4GlcNAcb1-3GalNAca-Sp14 31 6 21 

394 Galb1-4(Fuca1-3)GlcNAcb1-3GalNAca-Sp14 29 4 12 

395 GalNAca1-3GalNAcb1-3Gala1-4Galb1-4GlcNAcb-Sp0 20 2 9 

396 
Gala1-4Galb1-3GlcNAcb1-2Mana1-6(Gala1-4Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp19 41 1 3 

397 
Gala1-4Galb1-4GlcNAcb1-2Mana1-6(Gala1-4Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp24 87 3 4 

398 Gala1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 19 3 16 

399 Galb1-3GlcNAcb1-6Galb1-4GlcNAcb-Sp0 31 4 12 

400 Galb1-3GlcNAca1-6Galb1-4GlcNAcb-Sp0 17 5 31 

401 GalNAcb1-3Gala1-6Galb1-4Glcb-Sp8 33 4 11 

402 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)Glcb-Sp21 23 2 8 

403 Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21 15 6 41 

404 Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 45 6 14 

405 Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 30 10 33 

406 Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-3GalNAca-Sp14 16 6 42 

407 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3GalNAca-Sp14 11 8 71 

408 GalNAca1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp0 24 4 18 

409 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3GalNAca-Sp14 41 5 12 

410 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb1-3GalNAc-Sp14 25 1 5 

411 GalNAca1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb1-3GalNAc-Sp14 36 3 9 

412 
Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 72 5 7 

413 
Fuca1-2Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 32 6 19 

414 
GlcNAcb1-2(GlcNAcb1-6)Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-
Sp19 58 0 0 

415 Fuca1-2Galb1-3GlcNAcb1-3GalNAc-Sp14 25 6 22 

416 Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-3GalNAc-Sp14 25 1 4 

417 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-3GalNAc-Sp14 29 3 10 

418 Gala1-3Galb1-3GlcNAcb1-3GalNAc-Sp14 25 5 20 
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419 
Fuca1-2Galb1-3GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 36 7 19 

420 
Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 38 2 4 

421 
Galb1-3GlcNAcb1-6(Galb1-3GlcNAcb1-2)Mana1-6(Galb1-3GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 51 2 5 

422 Galb1-4GlcNAcb1-6(Fuca1-2Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21 20 1 7 

423 Fuca1-3GlcNAcb1-6(Galb1-4GlcNAcb1-3)Galb1-4Glc-Sp21 22 1 6 

424 
GlcNAcb1-2Mana1-6(GlcNAcb1-4)(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-
Sp21 17 4 26 

425 
GlcNAcb1-2Mana1-6(GlcNAcb1-4)(GlcNAcb1-4(GlcNAcb1-2)Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp21 10 10 105 

426 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp21 21 1 5 

427 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(GlcNAcb1-4(GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 16 4 22 

428 
Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp21 20 3 13 

429 
Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-4(Galb1-4GlcNAcb1-
2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 17 3 16 

430 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 16 4 23 

431 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-
4(Galb1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 19 3 14 

432 Galb1-4Galb-Sp10 25 5 20 

433 Galb1-6Galb-Sp10 20 10 49 

434 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb-Sp8 32 4 11 

435 GalNAcb1-6GalNAcb-Sp8 22 9 43 

436 (6S)Galb1-3GlcNAcb-Sp0 43 5 12 

437 (6S)Galb1-3(6S)GlcNAc-Sp0 36 3 8 

438 
Fuca1-2Galb1-4 GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2(Fuca1-2Galb1-
4GlcNAcb1-4)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 42 2 6 

439 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-
4(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 65 6 9 

440 Galb1-4(Fuca1-3)GlcNAcb1-6GalNAc-Sp14 50 5 10 

441 Galb1-4GlcNAcb1-2Mana-Sp0 40 3 8 

442 Fuca1-2Galb1-4GlcNAcb1-6(Fuca1-2Galb1-4GlcNAcb1-3)GalNAc-Sp14 27 1 2 

443 
Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-6(Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-3)GalNAc-
Sp14 23 2 11 

444 
GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-6(GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-
3)GalNAc-Sp14 20 3 16 

445 Neu5Aca2-8Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 92 3 3 

446 GalNAcb1-4Galb1-4Glcb-Sp0 43 7 16 

447 
GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 42 1 3 

448 
Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-2Mana1-6(Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 31 3 9 

449 Neu5Aca2-6Galb1-4GlcNAcb1-6(Fuca1-2Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21 26 2 7 

450 
GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 29 1 2 

451 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 32 4 11 

452 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Neu5Aca2-3Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 22 4 20 

453 
Neu5Aca2-3Galb1-4GlcNAcb1-4Mana1-6(GlcNAcb1-4)(Neu5Aca2-3Galb1-4GlcNAcb1-
4(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 18 2 10 

454 
Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 20 1 6 

455 
Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-3Galb1-4GlcNAcb1-4(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp21 18 3 15 
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456 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Neu5Aca2-6Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 18 5 26 

457 
Neu5Aca2-6Galb1-4GlcNAcb1-4Mana1-6(GlcNAcb1-4)(Neu5Aca2-6Galb1-4GlcNAcb1-
4(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 20 2 8 

458 
Neu5Aca2-6Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 21 2 12 

459 
Neu5Aca2-6Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-6Galb1-4GlcNAcb1-4(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp21 19 3 14 

460 Gala1-3(Fuca1-2)Galb1-3GalNAca-Sp8 41 5 11 

461 Gala1-3(Fuca1-2)Galb1-3GalNAcb-Sp8 62 3 4 

462 Glca1-6Glca1-6Glca1-6Glcb-Sp10 26 4 14 

463 Glca1-4Glca1-4Glca1-4Glcb-Sp10 41 1 3 

464 Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-3)GalNAca-Sp14 24 1 6 

465 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 86 13 15 

466 
Fuca1-2Galb1-3(Fuca1-4)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3(Fuca1-4)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp19 63 7 11 

467 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp24 84 6 7 

468 
Galb1-3GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp21 41 7 17 

469 Neu5Aca2-6Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glcb-Sp21 19 2 9 

470 Neu5Aca2-3Galb1-4GlcNAcb1-2Mana-Sp0 53 5 10 

471 Neu5Aca2-3Galb1-4GlcNAcb1-6GalNAca-Sp14 19 3 16 

472 Neu5Aca2-6Galb1-4GlcNAcb1-6GalNAca-Sp14 37 7 18 

473 Neu5Aca2-6Galb1-4 GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-3)GalNAca-Sp14 25 1 5 

474 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 71 3 5 

475 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 70 3 4 

476 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp19 49 4 9 

477 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 84 6 7 

478 
Neu5Aca2-3Galb1-3GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Neu5Aca2-3Galb1-3GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 18 9 52 

479 Neu5Aca2-6Galb1-4GlcNAcb1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3)Galb1-4Glc-Sp21 18 8 43 

480 Galb1-3GlcNAcb1-6GalNAca-Sp14 15 6 39 

481 Gala1-3Galb1-3GlcNAcb1-6GalNAca-Sp14 17 6 35 

482 Galb1-3(Fuca1-4)GlcNAcb1-6GalNAca-Sp14 44 8 19 

483 Neu5Aca2-3Galb1-3GlcNAcb1-6GalNAca-Sp14 29 3 9 

484 (3S)Galb1-3(Fuca1-4)GlcNAcb-Sp0 46 7 16 

485 
Galb1-4(Fuca1-3)GlcNAcb1-6(Neu5Aca2-6(Neu5Aca2-3Galb1-3)GlcNAcb1-3)Galb1-
4Glc-Sp21 35 2 6 

486 Fuca1-2Galb1-4GlcNAcb1-6GalNAca-Sp14 38 2 6 

487 Gala1-3Galb1-4GlcNAcb1-6GalNAca-Sp14 16 3 17 

488 Galb1-4(Fuca1-3)GlcNAcb1-2Mana-Sp0 49 1 3 

489 Fuca1-2(6S)Galb1-3GlcNAcb-Sp0 19 7 38 

490 Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-6GalNAca-Sp14 28 6 20 

491 Fuca1-2Galb1-4GlcNAcb1-2Mana-Sp0 22 13 61 

492 Fuca1-2Galb1-3(6S)GlcNAcb-Sp0 41 8 18 

493 Fuca1-2(6S)Galb1-3(6S)GlcNAcb-Sp0 47 10 22 

494 Neu5Aca2-6GalNAcb1-4(6S)GlcNAcb-Sp8 28 2 7 

495 GalNAcb1-4(Fuca1-3)(6S)GlcNAcb-Sp8 36 3 9 

496 (3S)GalNAcb1-4(Fuca1-3)GlcNAcb-Sp8 38 3 7 

497 Fuca1-2Galb1-3GlcNAcb1-6(Fuca1-2Galb1-3GlcNAcb1-3)GalNAca-Sp14 38 3 9 

498 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-6GalNAca-Sp14 19 1 4 

499 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(GlcNAcb1-4(GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 25 2 7 

500 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-4)Galb1-4GlcNAcb1-4(Gal 
b1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 17 2 10 

501 Galb1-3GlcNAca1-3Galb1-4GlcNAcb-Sp8  26 1 2 
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502 Galb1-3(6S)GlcNAcb-Sp8  27 10 37 

503 (6S)(4S)GalNAcb1-4GlcNAc-Sp8 27 11 39 

504 (6S)GalNAcb1-4GlcNAc-Sp8  13 8 61 

505 (3S)GalNAcb1-4(3S)GlcNAc-Sp8 39 5 14 

506 GalNAcb1-4(6S)GlcNAc-Sp8  45 2 4 

507 (3S)GalNAcb1-4GlcNAc-Sp8  55 4 7 

508 (4S)GalNAcb-Sp10 31 2 8 

509 Galb1-4(6P)GlcNAcb-Sp0  29 2 6 

510 (6P)Galb1-4GlcNAcb-SP0  11 6 54 

511 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-6GalNAc-Sp14 18 3 14 

512 Neu5Aca2-6Galb1-4GlcNAcb1-2Man-Sp0 20 1 5 

513 Gala1-3Galb1-4GlcNAcb1-2Mana-Sp0 22 4 16 

514 Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana-Sp0 14 6 41 

515 GalNAca1-3(Fuca1-2)Galb1-4 GlcNAcb1-2Mana-Sp0 15 5 32 

516  Galb1-3GlcNAcb1-2Mana-Sp0 50 4 7 

517 Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-6GalNAc-Sp14 16 6 37 

518 Neu5Aca2-3Galb1-3GlcNAcb1-2Mana-Sp0 21 2 11 

519 Gala1-3Galb1-3GlcNAcb1-2Mana-Sp0 23 1 4 

520 GalNAcb1-4GlcNAcb1-2Mana-Sp0 29 1 4 

521 Neu5Aca2-3Galb1-3GalNAcb1-4Galb1-4Glcb-Sp0 12 5 42 

522 
GlcNAcb1-2 Mana1-6(GlcNAcb1-4)(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAc-Sp21 16 5 30 

523 
Galb1-4GlcNAcb1-2 Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 19 1 5 

524 
Galb1-4GlcNAcb1-2 Mana1-6(Galb1-4GlcNAcb1-4)(Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 14 4 30 

525 Fuca1-4(Galb1-3)GlcNAcb1-2 Mana-Sp0 58 6 11 

526 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-2Mana-Sp0 18 3 15 

527 GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3)Galb1-4GlcNAc-Sp0 16 4 23 

528 GalNAca1-3(Fuca1-2)Galb1-3GalNAcb1-3Gala1-4Galb1-4Glc-Sp21 22 2 10 

529 Gala1-3(Fuca1-2)Galb1-3GalNAcb1-3Gala1-4Galb1-4Glc-Sp21 28 1 2 

530 Galb1-3GalNAcb1-3Gal-Sp21 75 6 8 

531 
GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 60 10 17 

532 
GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 18 11 63 

533 
Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6(Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-
2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 10 4 39 

534 
Fuca1-2Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp24 81 5 6 

535 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 42 6 14 

536 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 6 4 62 

537 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 63 6 9 

538 
Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp25 30 3 10 

539 Neu5Gca2-8Neu5Gca2-3Galb1-4GlcNAc-Sp0 30 2 5 

540 Neu5Aca2-8Neu5Gca2-3Galb1-4GlcNAc-Sp0 8 5 60 

541 Neu5Gca2-8Neu5Aca2-3Galb1-4GlcNAc-Sp0 22 1 4 

542 Neu5Gca2-8Neu5Gca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAc-Sp0 18 2 10 

543 Neu5Gca2-8Neu5Gca2-6Galb1-4GlcNAc-Sp0 23 1 4 

544 Neu5Aca2-8Neu5Aca2-3Galb1-4GlcNAc-Sp0 11 4 39 

545 
GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
3Galb1-4GlcNAcb1-2Man a1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp24 85 18 21 

546 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2)Mana1-
6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Mana1-4GlcNAcb1-4GlcNAc-Sp24 54 13 24 

547 
Gala1-3Galb1-4GlcNAcb1-2Mana1-6(Gala1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp24 73 9 12 

548 GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3Galb1-3)GalNAca-Sp14 23 2 8 

549 GalNAcb1-3GlcNAcb-Sp0  21 8 38 
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550 GalNAcb1-4GlcNAcb1-3GalNAcb1-4GlcNAcb-Sp0  23 4 15 

551 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 56 5 8 

552 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 59 10 18 

553 GlcNAb1-3Galb1-3GalNAc-Sp14 14 9 68 

554 Galb1-3GlcNAcb1-6(Galb1-3)GalNAc-Sp14 24 1 6 

555 (3S)GlcAb1-3Galb1-4GlcNAcb1-3Galb1-4Glc-Sp0 17 6 37 

556 (3S)GlcAb1-3Galb1-4GlcNAcb1-2Mana-Sp0 29 3 10 

557 
Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-6(Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 50 16 32 

558 
Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-
6(Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp24 56 17 30 

559 Neu5Aca2-8Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glc-Sp21 30 2 5 

560 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 51 6 12 

561 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 74 14 20 

562 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-
6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp24 70 7 9 

563 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 24 12 52 

564 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 25 2 7 

565 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 23 2 9 

566 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3)GalNAca-Sp14 31 6 20 

567 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 23 3 11 

568 GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 22 1 5 

569 GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 23 1 2 

570 GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3Galb1-4GlcNAcb1-3)GalNAca-Sp14 30 1 3 

571 
Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3)GalNAca-Sp14 29 1 5 

572 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 13 7 58 

573 GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 18 3 16 

574 Galb1-4GlcNAcb1-3Galb1-3GalNAca-Sp14 8 5 58 

575 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 24 7 28 

576 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 26 5 18 

577 Neu5Aca2-6Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 21 2 9 

578 
Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 33 4 12 

579 GlcNAcb1-6(Neu5Aca2-3Galb1-3)GalNAca-Sp14 18 1 3 

580 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3)GalNAca-Sp14 26 2 7 

581 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
6(Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 226 14 6 

582 
Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
6(Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 80 4 5 

583 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 34 1 3 

584 GlcNAcb1-3Fuca-Sp21 33 1 2 

585 Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp21 26 2 6 
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8. 6. 4. Awp3A (50 µg/mL) – Anti-His-488 (50 µg/mL) 

 

 

Chart 
ID 

Sample (conc.)  Secondary (conc.) Barcode#  Slide # Request # Date Initials 
Average 
RFU StDev %CV 

1 Gala-Sp8 43 6 13 

2 Glca-Sp8 34 5 15 

3 Mana-Sp8 51 9 17 

4 GalNAca-Sp8 62 11 18 

5 GalNAca-Sp15 51 3 6 

6 Fuca-Sp8 11 20 181 

7 Fuca-Sp9 67 2 3 

8 Rhaa-Sp8 47 2 5 

9 Neu5Aca-Sp8 65 2 3 

10 Neu5Aca-Sp11 41 2 5 

11 Neu5Acb-Sp8 57 20 36 

12 Galb-Sp8 47 4 8 

13 Glcb-Sp8 53 9 17 

14 Manb-Sp8 50 1 2 

15 GalNAcb-Sp8 42 4 9 

16 GlcNAcb-Sp0 52 9 18 

17 GlcNAcb-Sp8 43 7 16 

18 GlcN(Gc)b-Sp8 55 5 9 

19 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3)GalNAca-Sp8 48 11 23 

20 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3)GalNAc-Sp14 61 3 5 

21 GlcNAcb1-6(GlcNAcb1-4)(GlcNAcb1-3)GlcNAc-Sp8 52 8 15 

22 6S(3S)Galb1-4(6S)GlcNAcb-Sp0 77 6 8 

23 6S(3S)Galb1-4GlcNAcb-Sp0 74 10 13 

24 (3S)Galb1-4(Fuca1-3)(6S)Glc-Sp0 166 15 9 

25 (3S)Galb1-4Glcb-Sp8 28 3 11 

26 (3S)Galb1-4(6S)Glcb-Sp0 30 4 14 

27 (3S)Galb1-4(6S)Glcb-Sp8 35 7 19 

28 (3S)Galb1-3(Fuca1-4)GlcNAcb-Sp8 46 3 8 

29 (3S)Galb1-3GalNAca-Sp8 54 3 5 

30 (3S)Galb1-3GlcNAcb-Sp0 37 6 17 

31 (3S)Galb1-3GlcNAcb-Sp8 53 2 4 
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32 (3S)Galb1-4(Fuca1-3)GlcNAc-Sp0  53 3 5 

33 (3S)Galb1-4(Fuca1-3)GlcNAc-Sp8 58 4 6 

34 (3S)Galb1-4(6S)GlcNAcb-Sp0 47 2 4 

35 (3S)Galb1-4(6S)GlcNAcb-Sp8 58 2 3 

36 (3S)Galb1-4GlcNAcb-Sp0 40 2 4 

37 (3S)Galb1-4GlcNAcb-Sp8 28 8 30 

38 (3S)Galb-Sp8 28 6 22 

39 (6S)(4S)Galb1-4GlcNAcb-Sp0 24 9 37 

40 (4S)Galb1-4GlcNAcb-Sp8 36 7 21 

41 (6P)Mana-Sp8 18 4 24 

42 (6S)Galb1-4Glcb-Sp0 43 1 3 

43 (6S)Galb1-4Glcb-Sp8 30 1 3 

44 (6S)Galb1-4GlcNAcb-Sp8 31 2 8 

45 (6S)Galb1-4(6S)Glcb-Sp8 33 4 12 

46 Neu5Aca2-3(6S)Galb1-4GlcNAcb-Sp8 41 5 11 

47 (6S)GlcNAcb-Sp8 35 11 32 

48 Neu5,9Ac2a-Sp8 42 3 7 

49 Neu5,9Ac2a2-6Galb1-4GlcNAcb-Sp8 24 4 19 

50 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 21 4 21 

51 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp13 21 0 0 

52 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 25 1 4 

53 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp13 23 3 14 

54 
Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp12 23 3 11 

55 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 23 1 6 

56 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Man-a1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 28 1 2 

57 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp24 44 1 1 

58 Fuca1-2Galb1-3GalNAcb1-3Gala-Sp9 36 2 5 

59 Fuca1-2Galb1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp9 25 1 5 

60 Fuca1-2Galb1-3(Fuca1-4)GlcNAcb-Sp8 16 12 75 

61 Fuca1-2Galb1-3GalNAca-Sp8 29 4 15 

62 Fuca1-2Galb1-3GalNAca-Sp14 21 4 17 

63 Fuca1-2Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 34 2 6 

64 Fuca1-2Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp9 25 4 16 

65 Fuca1-2Galb1-3GlcNAcb1-3Galb1-4Glcb-Sp8 24 6 27 

66 Fuca1-2Galb1-3GlcNAcb1-3Galb1-4Glcb-Sp10 29 2 6 

67 Fuca1-2Galb1-3GlcNAcb-Sp0 47 2 4 

68 Fuca1-2Galb1-3GlcNAcb-Sp8 32 3 10 

69 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 41 1 3 

70 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-
3)GlcNAcb-Sp0 36 4 11 

71 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb-Sp0 44 1 3 

72 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb-Sp8 22 6 28 

73 Fuca1-2Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 21 2 8 

74 Fuca1-2Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 23 3 14 

75 Fuca1-2Galb1-4GlcNAcb-Sp0 32 4 12 

76 Fuca1-2Galb1-4GlcNAcb-Sp8 31 6 18 

77 Fuca1-2Galb1-4Glcb-Sp0 26 3 10 

78 Fuca1-2Galb-Sp8 41 3 7 

79 Fuca1-3GlcNAcb-Sp8 31 4 13 

80 Fuca1-4GlcNAcb-Sp8 47 3 6 

81 Fucb1-3GlcNAcb-Sp8 36 4 12 

82 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb-Sp0 43 2 5 

83 GalNAca1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb-Sp0 47 2 5 

84 (3S)Galb1-4(Fuca1-3)Glcb-Sp0 13 11 84 

85 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 35 3 7 

86 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp8 22 5 22 

87 GalNAca1-3(Fuca1-2)Galb1-4Glcb-Sp0 23 1 6 
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88 GlcNAcb1-3Galb1-3GalNAca-Sp8 52 3 5 

89 GalNAca1-3(Fuca1-2)Galb-Sp8 25 5 20 

90 GalNAca1-3(Fuca1-2)Galb-Sp18 35 1 3 

91 GalNAca1-3GalNAcb-Sp8 58 4 8 

92 GalNAca1-3Galb-Sp8 46 5 12 

93 GalNAca1-4(Fuca1-2)Galb1-4GlcNAcb-Sp8 58 2 3 

94 GalNAcb1-3GalNAca-Sp8 46 3 6 

95 GalNAcb1-3(Fuca1-2)Galb-Sp8 52 3 6 

96 GalNAcb1-3Gala1-4Galb1-4GlcNAcb-Sp0 73 11 15 

97 GalNAcb1-4(Fuca1-3)GlcNAcb-Sp0 64 13 20 

98 GalNAcb1-4GlcNAcb-Sp0 164 15 9 

99 GalNAcb1-4GlcNAcb-Sp8 64 19 29 

100 Gala1-2Galb-Sp8 26 4 13 

101 Gala1-3(Fuca1-2)Galb1-3GlcNAcb-Sp0 29 3 11 

102 Gala1-3(Fuca1-2)Galb1-3GlcNAcb-Sp8 29 3 12 

103 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb-Sp0 31 1 3 

104 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb-Sp8 40 3 8 

105 Gala1-3(Fuca1-2)Galb1-4GlcNAc-Sp0 32 1 4 

106 Gala1-3(Fuca1-2)Galb1-4Glcb-Sp0 35 2 6 

107 Gala1-3(Fuca1-2)Galb-Sp8 32 3 10 

108 Gala1-3(Fuca1-2)Galb-Sp18 49 8 16 

109 Gala1-4(Gala1-3)Galb1-4GlcNAcb-Sp8 53 15 28 

110 Gala1-3GalNAca-Sp8 42 2 5 

111 Gala1-3GalNAca-Sp16 27 1 5 

112 Gala1-3GalNAcb-Sp8 27 3 12 

113 Gala1-3Galb1-4(Fuca1-3)GlcNAcb-Sp8 27 2 7 

114 Gala1-3Galb1-3GlcNAcb-Sp0 21 4 19 

115 Gala1-3Galb1-4GlcNAcb-Sp8 29 6 20 

116 Gala1-3Galb1-4Glcb-Sp0 28 3 11 

117 Gala1-3Galb1-4Glc-Sp10 27 1 4 

118 Gala1-3Galb-Sp8 37 3 7 

119 Gala1-4(Fuca1-2)Galb1-4GlcNAcb-Sp8 43 2 4 

120 Gala1-4Galb1-4GlcNAcb-Sp0 29 2 8 

121 Gala1-4Galb1-4GlcNAcb-Sp8 49 2 3 

122 Gala1-4Galb1-4Glcb-Sp0 27 3 12 

123 Gala1-4GlcNAcb-Sp8 34 6 17 

124 Gala1-6Glcb-Sp8 25 2 7 

125 Galb1-2Galb-Sp8 30 4 15 

126 Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 28 2 8 

127 Galb1-3GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 27 2 9 

128 Galb1-3(Fuca1-4)GlcNAc-Sp0  25 7 27 

129 Galb1-3(Fuca1-4)GlcNAc-Sp8  36 11 32 

130 Fuca1-4(Galb1-3)GlcNAcb-Sp8 33 4 13 

131 Galb1-4GlcNAcb1-6GalNAca-Sp8 38 3 7 

132 Galb1-4GlcNAcb1-6GalNAc-Sp14 32 2 6 

133 GlcNAcb1-6(Galb1-3)GalNAca-Sp8  31 7 21 

134 GlcNAcb1-6(Galb1-3)GalNAca-Sp14 24 1 5 

135 Neu5Aca2-6(Galb1-3)GalNAca-Sp8 37 9 24 

136 Neu5Aca2-6(Galb1-3)GalNAca-Sp14 21 2 10 

137 Neu5Acb2-6(Galb1-3)GalNAca-Sp8 32 3 8 

138 Neu5Aca2-6(Galb1-3)GlcNAcb1-4Galb1-4Glcb-Sp10 18 5 25 

139 Galb1-3GalNAca-Sp8 19 5 29 

140 Galb1-3GalNAca-Sp14 23 2 10 

141 Galb1-3GalNAca-Sp16 71 3 4 

142 Galb1-3GalNAcb-Sp8 28 1 2 

143 Galb1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp0 25 1 4 

144 Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 29 1 4 

145 Galb1-3GalNAcb1-4Galb1-4Glcb-Sp8 39 3 7 

146 Galb1-3Galb-Sp8 28 4 13 

147 Galb1-3GlcNAcb1-3Galb1-4GlcNAcb-Sp0 19 2 9 

148 Galb1-3GlcNAcb1-3Galb1-4Glcb-Sp10 19 3 15 
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149 Galb1-3GlcNAcb-Sp0 27 3 11 

150 Galb1-3GlcNAcb-Sp8 27 2 8 

151 Galb1-4(Fuca1-3)GlcNAcb-Sp0 33 6 17 

152 Galb1-4(Fuca1-3)GlcNAcb-Sp8 38 2 4 

153 Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 44 5 11 

154 
Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-
Sp0 21 1 5 

155 Galb1-4(6S)Glcb-Sp0 32 1 4 

156 Galb1-4(6S)Glcb-Sp8 33 2 7 

157 Galb1-4GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp8 24 6 25 

158 Galb1-4GalNAcb1-3(Fuca1-2)Galb1-4GlcNAcb-Sp8 33 3 10 

159 Galb1-4GlcNAcb1-3GalNAca-Sp8 27 2 9 

160 Galb1-4GlcNAcb1-3GalNAc-Sp14 17 7 40 

161 Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 35 1 4 

162 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 20 2 12 

163 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 20 8 38 

164 Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 35 2 6 

165 Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp8 25 1 4 

166 Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp8 35 2 6 

167 Galb1-4GlcNAcb1-6(Galb1-3)GalNAc-Sp14 44 3 6 

168 Galb1-4GlcNAcb-Sp0 39 2 5 

169 Galb1-4GlcNAcb-Sp8 27 4 15 

170 Galb1-4GlcNAcb-Sp23 21 2 8 

171 Galb1-4Glcb-Sp0 19 5 23 

172 Galb1-4Glcb-Sp8 20 6 33 

173 GlcNAca1-3Galb1-4GlcNAcb-Sp8 29 1 5 

174 GlcNAca1-6Galb1-4GlcNAcb-Sp8 26 1 4 

175 GlcNAcb1-2Galb1-3GalNAca-Sp8 42 3 7 

176 GlcNAcb1-6(GlcNAcb1-3)GalNAca-Sp8 25 4 16 

177 GlcNAcb1-6(GlcNAcb1-3)GalNAca-Sp14 21 1 5 

178 GlcNAcb1-6(GlcNAcb1-3)Galb1-4GlcNAcb-Sp8 38 1 3 

179 GlcNAcb1-3GalNAca-Sp8 39 1 1 

180 GlcNAcb1-3GalNAca-Sp14 19 7 37 

181 GlcNAcb1-3Galb-Sp8 27 5 19 

182 GlcNAcb1-3Galb1-4GlcNAcb-Sp0 16 10 65 

183 GlcNAcb1-3Galb1-4GlcNAcb-Sp8 23 3 15 

184 GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 16 3 21 

185 GlcNAcb1-3Galb1-4Glcb-Sp0 23 1 6 

186 GlcNAcb1-4-MDPLys 27 4 13 

187 GlcNAcb1-6(GlcNAcb1-4)GalNAca-Sp8 58 1 1 

188 GlcNAcb1-4Galb1-4GlcNAcb-Sp8 44 2 4 

189 GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-Sp8 23 1 4 

190 GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-4GlcNAcb1-Sp8 25 1 4 

191 GlcNAcb1-4GlcNAcb1-4GlcNAcb-Sp8 28 2 6 

192 GlcNAcb1-6GalNAca-Sp8 68 6 9 

193 GlcNAcb1-6GalNAca-Sp14 26 1 4 

194 GlcNAcb1-6Galb1-4GlcNAcb-Sp8 36 1 4 

195 Glca1-4Glcb-Sp8 21 1 5 

196 Glca1-4Glca-Sp8 31 3 10 

197 Glca1-6Glca1-6Glcb-Sp8 25 1 4 

198 Glcb1-4Glcb-Sp8 25 1 5 

199 Glcb1-6Glcb-Sp8 20 8 41 

200 G-ol-Sp8 28 3 11 

201 GlcAa-Sp8 30 2 5 

202 GlcAb-Sp8 26 3 12 

203 GlcAb1-3Galb-Sp8 39 2 6 

204 GlcAb1-6Galb-Sp8 33 2 7 

205 KDNa2-3Galb1-3GlcNAcb-Sp0 36 1 4 

206 KDNa2-3Galb1-4GlcNAcb-Sp0 25 1 2 

207 Mana1-2Mana1-2Mana1-3Mana-Sp9 20 8 39 

208 Mana1-2Mana1-6(Mana1-2Mana1-3)Mana-Sp9 25 2 9 
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209 Mana1-2Mana1-3Mana-Sp9 22 4 20 

210 
Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 28 3 9 

211 Mana1-6(Mana1-3)Mana-Sp9 39 1 2 

212 Mana1-2Mana1-2Mana1-6(Mana1-3)Mana-Sp9 28 1 2 

213 Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 28 1 3 

214 Mana1-6(Mana1-3)Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 27 2 6 

215 Manb1-4GlcNAcb-Sp0 24 3 14 

216 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 22 1 6 

217 (3S)Galb1-4(Fuca1-3)(6S)GlcNAcb-Sp8  56 6 11 

218 Fuca1-2(6S)Galb1-4GlcNAcb-Sp0 27 1 5 

219 Fuca1-2Galb1-4(6S)GlcNAcb-Sp8 30 3 12 

220 Fuca1-2(6S)Galb1-4(6S)Glcb-Sp0 43 2 5 

221 Neu5Aca2-3Galb1-3GalNAca-Sp8 35 2 6 

222 Neu5Aca2-3Galb1-3GalNAca-Sp14 30 2 6 

223 GalNAcb1-4(Neu5Aca2-8Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 22 1 2 

224 GalNAcb1-4(Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 31 3 8 

225 Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3Galb1-4Glcb-Sp0 25 2 9 

226 GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 29 1 5 

227 Neu5Aca2-8Neu5Aca2-8Neu5Aca-Sp8 24 1 5 

228 GalNAcb1-4(Neu5Aca2-3)Galb1-4GlcNAcb-Sp0 39 4 10 

229 GalNAcb1-4(Neu5Aca2-3)Galb1-4GlcNAcb-Sp8 18 5 27 

230 GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 25 2 10 

231 Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glcb-Sp0 26 2 6 

232 Neu5Aca2-6(Neu5Aca2-3)GalNAca-Sp8 33 2 5 

233 Neu5Aca2-3GalNAca-Sp8 44 3 7 

234 Neu5Aca2-3GalNAcb1-4GlcNAcb-Sp0 30 1 2 

235 Neu5Aca2-3Galb1-3(6S)GlcNAc-Sp8 40 1 2 

236 Neu5Aca2-3Galb1-3(Fuca1-4)GlcNAcb-Sp8 40 3 8 

237 Neu5Aca2-3Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 33 1 4 

238 Neu5Aca2-3Galb1-4(Neu5Aca2-3Galb1-3)GlcNAcb-Sp8 26 1 4 

239 Neu5Aca2-3Galb1-3(6S)GalNAca-Sp8 24 3 13 

240 Neu5Aca2-6(Neu5Aca2-3Galb1-3)GalNAca-Sp8 20 4 23 

241 Neu5Aca2-6(Neu5Aca2-3Galb1-3)GalNAca-Sp14 24 2 7 

242 Neu5Aca2-3Galb-Sp8 25 4 17 

243 Neu5Aca2-3Galb1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp0 29 1 2 

244 Neu5Aca2-3Galb1-3GlcNAcb1-3Galb1-4GlcNAcb-Sp0 28 1 2 

245 Fuca1-2(6S)Galb1-4Glcb-Sp0 48 3 7 

246 Neu5Aca2-3Galb1-3GlcNAcb-Sp0 51 2 3 

247 Neu5Aca2-3Galb1-4(6S)GlcNAcb-Sp8 41 3 7 

248 Neu5Aca2-3Galb1-4(Fuca1-3)(6S)GlcNAcb-Sp8 27 2 7 

249 
Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-
3)GlcNAcb-Sp0 30 5 18 

250 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 25 1 2 

251 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb-Sp8 23 5 21 

252 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb-Sp8 27 3 12 

253 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4GlcNAcb-Sp8 49 2 4 

254 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 26 2 6 

255 Neu5Aca2-3Galb1-4GlcNAcb-Sp0 39 1 2 

256 Neu5Aca2-3Galb1-4GlcNAcb-Sp8 40 3 7 

257 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 31 1 3 

258 Fuca1-2Galb1-4(6S)Glcb-Sp0 31 1 4 

259 Neu5Aca2-3Galb1-4Glcb-Sp0 35 4 10 

260 Neu5Aca2-3Galb1-4Glcb-Sp8 21 4 18 

261 Neu5Aca2-6GalNAca-Sp8 19 6 33 

262 Neu5Aca2-6GalNAcb1-4GlcNAcb-Sp0 14 7 48 

263 Neu5Aca2-6Galb1-4(6S)GlcNAcb-Sp8 24 4 15 

264 Neu5Aca2-6Galb1-4GlcNAcb-Sp0 23 4 15 

265 Neu5Aca2-6Galb1-4GlcNAcb-Sp8 44 2 4 

266 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-
Sp0 46 3 6 
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267 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 29 2 6 

268 Neu5Aca2-6Galb1-4Glcb-Sp0 41 1 3 

269 Neu5Aca2-6Galb1-4Glcb-Sp8 31 2 6 

270 Neu5Aca2-6Galb-Sp8 37 2 6 

271 Neu5Aca2-8Neu5Aca-Sp8 26 1 5 

272 Neu5Aca2-8Neu5Aca2-3Galb1-4Glcb-Sp0 22 1 6 

273 Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 30 7 24 

274 Neu5Acb2-6GalNAca-Sp8 22 4 19 

275 Neu5Acb2-6Galb1-4GlcNAcb-Sp8 38 1 2 

276 Neu5Gca2-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 29 1 3 

277 Neu5Gca2-3Galb1-3GlcNAcb-Sp0 27 4 16 

278 Neu5Gca2-3Galb1-4(Fuca1-3)GlcNAcb-Sp0 37 1 4 

279 Neu5Gca2-3Galb1-4GlcNAcb-Sp0 35 1 4 

280 Neu5Gca2-3Galb1-4Glcb-Sp0 51 2 5 

281 Neu5Gca2-6GalNAca-Sp0 42 2 5 

282 Neu5Gca2-6Galb1-4GlcNAcb-Sp0 32 2 6 

283 Neu5Gca-Sp8 33 3 8 

284 Neu5Aca2-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 22 1 2 

285 Galb1-3GlcNAcb1-3Galb1-3GlcNAcb-Sp0 20 1 5 

286 Galb1-4(Fuca1-3)(6S)GlcNAcb-Sp0  74 6 8 

287 Galb1-4(Fuca1-3)(6S)Glcb-Sp0 55 4 7 

288 Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 27 2 6 

289 Galb1-4GlcNAcb1-3Galb1-3GlcNAcb-Sp0 24 2 9 

290 Neu5Aca2-3Galb1-3GlcNAcb1-3Galb1-3GlcNAcb-Sp0        21 0 0 

291 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-3GlcNAcb-Sp0 26 2 7 

292 4S(3S)Galb1-4GlcNAcb-Sp0 51 4 7 

293 (6S)Galb1-4(6S)GlcNAcb-Sp0 59 3 5 

294 (6P)Glcb-Sp10 23 2 6 

295 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-3)GalNAca-Sp14 80 4 4 

296 Galb1-3Galb1-4GlcNAcb-Sp8 24 2 9 

297 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 20 1 4 

298 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3)Galb1-4GlcNAc-Sp0 23 1 4 

299 GlcNAcb1-6(Galb1-4GlcNAcb1-3)Galb1-4GlcNAc-Sp0 24 3 12 

300 Galb1-4GlcNAca1-6Galb1-4GlcNAcb-Sp0 29 3 11 

301 Galb1-4GlcNAcb1-6Galb1-4GlcNAcb-Sp0 30 2 6 

302 GalNAcb1-3Galb-Sp8 44 3 8 

303 GlcAb1-3GlcNAcb-Sp8 36 1 3 

304 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp12 20 1 3 

305 GlcNAcb1-3Man-Sp10 31 1 3 

306 GlcNAcb1-4GlcNAcb-Sp10 30 1 2 

307 GlcNAcb1-4GlcNAcb-Sp12 26 1 4 

308 MurNAcb1-4GlcNAcb-Sp10 23 2 8 

309 Mana1-6Manb-Sp10 34 2 6 

310 Mana1-6(Mana1-3)Mana1-6(Mana1-3)Manb-Sp10 36 2 6 

311 Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Mana-Sp9 21 2 7 

312 Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Mana-Sp9 18 3 15 

313 Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-3)GalNAca-Sp14 19 1 4 

314 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 22 1 5 

315 
Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp12 20 1 3 

316 Neu5Aca2-8Neu5Acb-Sp17 44 2 4 

317 Neu5Aca2-8Neu5Aca2-8Neu5Acb-Sp8 27 2 9 

318 Neu5Gcb2-6Galb1-4GlcNAc-Sp8 54 2 4 

319 
Galb1-3GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp19 59 3 5 

320 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 17 1 7 

321 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 16 4 24 
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322 
Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 18 2 11 

323 Neu5,9Ac2a2-3Galb1-3GlcNAcb-Sp0 23 2 10 

324 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-3GlcNAcb-Sp0 24 1 5 

325 Neu5Aca2-3Galb1-3(Fuca1-4)GlcNAcb1-3Galb1-3(Fuca1-4)GlcNAcb-Sp0 28 2 8 

326 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 23 1 4 

327 Gala1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 23 1 5 

328 GalNAcb1-3Gala1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 21 2 7 

329 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 20 1 2 

330 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 26 3 13 

331 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-6(Neu5Aca2-3Galb1-3)GalNAc-Sp14 29 1 3 

332 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 19 2 8 

333 GlcNAca1-4Galb1-4GlcNAcb-Sp0 22 5 22 

334 GlcNAca1-4Galb1-3GlcNAcb-Sp0 31 2 7 

335 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4Glcb-Sp0 25 2 6 

336 
GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb-
Sp0 65 3 4 

337 GlcNAca1-4Galb1-4GlcNAcb1-3Galb1-4GlcNAcb-Sp0 28 2 8 

338 GlcNAca1-4Galb1-3GalNAc-Sp14 22 2 9 

339 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 22 1 6 

340 Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 19 4 21 

341 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6Manb1-4GlcNAcb1-4GlcNAc-Sp12 19 1 3 

342 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3Manb1-4GlcNAcb1-4GlcNAc-Sp12 19 1 3 

343 Galb1-4GlcNAcb1-2Mana1-3Manb1-4GlcNAcb1-4GlcNAc-Sp12 20 2 10 

344 Galb1-4GlcNAcb1-2Mana1-6Manb1-4GlcNAcb1-4GlcNAc-Sp12 17 2 12 

345 Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 24 3 11 

346 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 29 2 5 

347 
Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp22 28 2 9 

348 
Galb1-3GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp22 26 1 4 

349 (6S)GlcNAcb1-3Galb1-4GlcNAcb-Sp0 35 2 5 

350 KDNa2-3Galb1-4(Fuca1-3)GlcNAc-Sp0 29 2 6 

351 KDNa2-6Galb1-4GlcNAc-Sp0 28 1 5 

352 KDNa2-3Galb1-4Glc-Sp0 25 2 7 

353 KDNa2-3Galb1-3GalNAca-Sp14 31 2 5 

354 
Fuca1-2Galb1-3GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 45 3 6 

355 
Fuca1-2Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 36 3 7 

356 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAb-Sp20 54 5 10 

357 
Gala1-3Galb1-4GlcNAcb1-2Mana1-6(Gala1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp20 36 1 3 

358 Galb1-4GlcNAcb1-2Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 26 1 2 

359 
Fuca1-4(Galb1-3)GlcNAcb1-2Mana1-6(Fuca1-4(Galb1-3)GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 51 6 12 

360 Neu5Aca2-6GlcNAcb1-4GlcNAc-Sp21 31 2 6 

361 Neu5Aca2-6GlcNAcb1-4GlcNAcb1-4GlcNAc-Sp21 24 1 2 

362 Galb1-4(Fuca1-3)GlcNAcb1-6(Fuca1-2Galb1-4GlcNAcb1-3)Galb1-4Glc-Sp21 27 1 4 

363 
Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-4(Galb1-4GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 24 1 6 

364 
GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 28 1 2 

365 
Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 28 1 3 

366 
Gala1-3Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Gala1-3Galb1-4(Fuca1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 43 3 7 

367 
GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 23 1 5 

368 
Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-2Manα1-6(Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-
2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp20 24 3 11 
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369 
Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-2Mana1-3(Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 34 5 13 

370 Neu5Aca2-3Galb1-4GlcNAcb1-3GalNAc-Sp14 11 2 21 

371 Neu5Aca2-6Galb1-4GlcNAcb1-3GalNAc-Sp14 19 4 24 

372 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-3GalNAca-Sp14 41 3 6 

373 
GalNAcb1-4GlcNAcb1-2Mana1-6(GalNAcb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAc-Sp12 41 4 9 

374 Galb1-3GalNAca1-3(Fuca1-2)Galb1-4Glc-Sp0 16 2 9 

375 Galb1-3GalNAca1-3(Fuca1-2)Galb1-4GlcNAc-Sp0 12 1 7 

376 Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glcb-Sp0 16 1 8 

377 Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21  15 4 27 

378 Galb1-4GlcNAcb1-6(Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-3)Galb1-4Glc-Sp21 22 2 9 

379 Galb1-4(Fuca1-3)GlcNAcb1-6(Fuca1-4(Fuca1-2Galb1-3)GlcNAcb1-3)Galb1-4Glc-Sp21 20 2 8 

380 Galb1-3GlcNAcb1-3Galb1-4(Fuca1-3)GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21  15 2 11 

381 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-4(Galb1-
4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 17 2 14 

382 
GlcNAcb1-2Mana1-6(GlcNAcb1-4(GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-
Sp21 14 1 4 

383 Fuca1-2Galb1-3GalNAca1-3(Fuca1-2)Galb1-4Glcb-Sp0 20 5 26 

384 Fuca1-2Galb1-3GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 7 3 37 

385 Galb1-3GlcNAcb1-3GalNAca-Sp14 17 6 34 

386 GalNAcb1-4(Neu5Aca2-3)Galb1-4GlcNAcb1-3GalNAca-Sp14 17 5 31 

387 GalNAca1-3(Fuca1-2)Galb1-3GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb-Sp0 12 4 32 

388 
Gala1-3Galb1-3GlcNAcb1-2Mana1-6(Gala1-3Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp19 38 3 9 

389 
Gala1-3Galb1-3(Fuca1-4)GlcNAcb1-2Mana1-6(Gala1-3Galb1-3(Fuca1-4)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp19 59 2 3 

390 GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 12 4 39 

391 Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 15 3 21 

392 Neu5Aca2-3Galb1-3GlcNAcb1-3GalNAca-Sp14 15 1 8 

393 Fuca1-2Galb1-4GlcNAcb1-3GalNAca-Sp14 21 6 26 

394 Galb1-4(Fuca1-3)GlcNAcb1-3GalNAca-Sp14 21 2 8 

395 GalNAca1-3GalNAcb1-3Gala1-4Galb1-4GlcNAcb-Sp0 14 3 25 

396 
Gala1-4Galb1-3GlcNAcb1-2Mana1-6(Gala1-4Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp19 29 3 10 

397 
Gala1-4Galb1-4GlcNAcb1-2Mana1-6(Gala1-4Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp24 65 4 6 

398 Gala1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 13 1 8 

399 Galb1-3GlcNAcb1-6Galb1-4GlcNAcb-Sp0 23 2 8 

400 Galb1-3GlcNAca1-6Galb1-4GlcNAcb-Sp0 14 5 34 

401 GalNAcb1-3Gala1-6Galb1-4Glcb-Sp8 24 3 13 

402 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)Glcb-Sp21 19 1 4 

403 Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21 12 5 45 

404 Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 34 7 22 

405 Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 21 5 24 

406 Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-3GalNAca-Sp14 12 3 27 

407 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3GalNAca-Sp14 7 2 27 

408 GalNAca1-3GalNAcb1-3Gala1-4Galb1-4Glcb-Sp0 22 2 8 

409 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3GalNAca-Sp14 31 2 8 

410 Gala1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb1-3GalNAc-Sp14 18 3 18 

411 GalNAca1-3(Fuca1-2)Galb1-4(Fuca1-3)GlcNAcb1-3GalNAc-Sp14 26 3 12 

412 
Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 51 3 5 

413 
Fuca1-2Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 24 4 15 

414 
GlcNAcb1-2(GlcNAcb1-6)Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-
Sp19 45 1 3 

415 Fuca1-2Galb1-3GlcNAcb1-3GalNAc-Sp14 17 6 33 

416 Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-3GalNAc-Sp14 13 4 28 

417 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-3GalNAc-Sp14 19 5 26 

418 Gala1-3Galb1-3GlcNAcb1-3GalNAc-Sp14 20 3 16 
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419 
Fuca1-2Galb1-3GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 30 5 16 

420 
Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 29 3 10 

421 
Galb1-3GlcNAcb1-6(Galb1-3GlcNAcb1-2)Mana1-6(Galb1-3GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 32 5 15 

422 Galb1-4GlcNAcb1-6(Fuca1-2Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21 15 1 8 

423 Fuca1-3GlcNAcb1-6(Galb1-4GlcNAcb1-3)Galb1-4Glc-Sp21 16 2 11 

424 
GlcNAcb1-2Mana1-6(GlcNAcb1-4)(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-
Sp21 11 4 39 

425 
GlcNAcb1-2Mana1-6(GlcNAcb1-4)(GlcNAcb1-4(GlcNAcb1-2)Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp21 5 7 147 

426 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp21 16 2 11 

427 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(GlcNAcb1-4(GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 13 4 31 

428 
Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp21 23 17 74 

429 
Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-4(Galb1-4GlcNAcb1-
2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 11 3 27 

430 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 12 2 17 

431 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-
4(Galb1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 14 1 7 

432 Galb1-4Galb-Sp10 18 5 25 

433 Galb1-6Galb-Sp10 19 10 52 

434 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb-Sp8 22 3 13 

435 GalNAcb1-6GalNAcb-Sp8 17 5 29 

436 (6S)Galb1-3GlcNAcb-Sp0 32 10 32 

437 (6S)Galb1-3(6S)GlcNAc-Sp0 30 3 10 

438 
Fuca1-2Galb1-4 GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2(Fuca1-2Galb1-
4GlcNAcb1-4)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 31 4 11 

439 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-
4(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 48 6 13 

440 Galb1-4(Fuca1-3)GlcNAcb1-6GalNAc-Sp14 35 3 7 

441 Galb1-4GlcNAcb1-2Mana-Sp0 28 2 6 

442 Fuca1-2Galb1-4GlcNAcb1-6(Fuca1-2Galb1-4GlcNAcb1-3)GalNAc-Sp14 17 1 5 

443 
Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-6(Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-3)GalNAc-
Sp14 16 4 26 

444 
GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-6(GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-
3)GalNAc-Sp14 13 3 26 

445 Neu5Aca2-8Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp0 67 7 10 

446 GalNAcb1-4Galb1-4Glcb-Sp0 30 5 15 

447 
GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 34 4 10 

448 
Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-2Mana1-6(Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 22 2 11 

449 Neu5Aca2-6Galb1-4GlcNAcb1-6(Fuca1-2Galb1-3GlcNAcb1-3)Galb1-4Glc-Sp21 18 1 5 

450 
GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-2Mana1-6(GalNAca1-3(Fuca1-2)Galb1-
3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp22 25 1 2 

451 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 23 2 8 

452 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Neu5Aca2-3Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 15 2 12 

453 
Neu5Aca2-3Galb1-4GlcNAcb1-4Mana1-6(GlcNAcb1-4)(Neu5Aca2-3Galb1-4GlcNAcb1-
4(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 12 1 12 

454 
Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 14 2 12 

455 
Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-3Galb1-4GlcNAcb1-4(Neu5Aca2-3Galb1-4GlcNAcb1-2)Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp21 12 6 47 



  8. Appendices 

193 
 

456 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Neu5Aca2-6Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 13 2 17 

457 
Neu5Aca2-6Galb1-4GlcNAcb1-4Mana1-6(GlcNAcb1-4)(Neu5Aca2-6Galb1-4GlcNAcb1-
4(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 14 4 26 

458 
Neu5Aca2-6Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp21 17 1 6 

459 
Neu5Aca2-6Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
4)(Neu5Aca2-6Galb1-4GlcNAcb1-4(Neu5Aca2-6Galb1-4GlcNAcb1-2)Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp21 14 2 14 

460 Gala1-3(Fuca1-2)Galb1-3GalNAca-Sp8 26 3 10 

461 Gala1-3(Fuca1-2)Galb1-3GalNAcb-Sp8 49 5 10 

462 Glca1-6Glca1-6Glca1-6Glcb-Sp10 20 6 30 

463 Glca1-4Glca1-4Glca1-4Glcb-Sp10 30 2 7 

464 Neu5Aca2-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-3)GalNAca-Sp14 15 2 13 

465 
Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 64 8 12 

466 
Fuca1-2Galb1-3(Fuca1-4)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3(Fuca1-4)GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp19 53 4 7 

467 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp24 61 7 12 

468 
Galb1-3GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-3GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAcb-Sp21 38 2 6 

469 Neu5Aca2-6Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3)Galb1-4Glcb-Sp21 15 1 9 

470 Neu5Aca2-3Galb1-4GlcNAcb1-2Mana-Sp0 40 7 16 

471 Neu5Aca2-3Galb1-4GlcNAcb1-6GalNAca-Sp14 11 4 42 

472 Neu5Aca2-6Galb1-4GlcNAcb1-6GalNAca-Sp14 25 6 24 

473 Neu5Aca2-6Galb1-4 GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-3)GalNAca-Sp14 17 1 8 

474 
Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 45 1 2 

475 
Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 50 1 3 

476 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp19 40 3 8 

477 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 59 6 10 

478 
Neu5Aca2-3Galb1-3GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Neu5Aca2-3Galb1-3GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp21 12 4 37 

479 Neu5Aca2-6Galb1-4GlcNAcb1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-3)Galb1-4Glc-Sp21 15 6 41 

480 Galb1-3GlcNAcb1-6GalNAca-Sp14 12 6 48 

481 Gala1-3Galb1-3GlcNAcb1-6GalNAca-Sp14 11 3 30 

482 Galb1-3(Fuca1-4)GlcNAcb1-6GalNAca-Sp14 32 9 27 

483 Neu5Aca2-3Galb1-3GlcNAcb1-6GalNAca-Sp14 21 1 6 

484 (3S)Galb1-3(Fuca1-4)GlcNAcb-Sp0 29 7 23 

485 
Galb1-4(Fuca1-3)GlcNAcb1-6(Neu5Aca2-6(Neu5Aca2-3Galb1-3)GlcNAcb1-3)Galb1-
4Glc-Sp21 27 2 7 

486 Fuca1-2Galb1-4GlcNAcb1-6GalNAca-Sp14 26 2 9 

487 Gala1-3Galb1-4GlcNAcb1-6GalNAca-Sp14 11 3 29 

488 Galb1-4(Fuca1-3)GlcNAcb1-2Mana-Sp0 38 4 10 

489 Fuca1-2(6S)Galb1-3GlcNAcb-Sp0 13 3 27 

490 Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-6GalNAca-Sp14 20 5 27 

491 Fuca1-2Galb1-4GlcNAcb1-2Mana-Sp0 14 8 54 

492 Fuca1-2Galb1-3(6S)GlcNAcb-Sp0 31 4 12 

493 Fuca1-2(6S)Galb1-3(6S)GlcNAcb-Sp0 37 11 31 

494 Neu5Aca2-6GalNAcb1-4(6S)GlcNAcb-Sp8 21 6 29 

495 GalNAcb1-4(Fuca1-3)(6S)GlcNAcb-Sp8 23 4 19 

496 (3S)GalNAcb1-4(Fuca1-3)GlcNAcb-Sp8 21 6 29 

497 Fuca1-2Galb1-3GlcNAcb1-6(Fuca1-2Galb1-3GlcNAcb1-3)GalNAca-Sp14 25 2 7 

498 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb1-6GalNAca-Sp14 14 2 11 

499 
GlcNAcb1-6(GlcNAcb1-2)Mana1-6(GlcNAcb1-4)(GlcNAcb1-4(GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 20 2 11 

500 
Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-4)Galb1-4GlcNAcb1-4(Gal 
b1-4GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 13 2 19 

501 Galb1-3GlcNAca1-3Galb1-4GlcNAcb-Sp8  19 4 19 
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502 Galb1-3(6S)GlcNAcb-Sp8  23 8 34 

503 (6S)(4S)GalNAcb1-4GlcNAc-Sp8 20 5 25 

504 (6S)GalNAcb1-4GlcNAc-Sp8  11 5 49 

505 (3S)GalNAcb1-4(3S)GlcNAc-Sp8 29 7 25 

506 GalNAcb1-4(6S)GlcNAc-Sp8  34 2 4 

507 (3S)GalNAcb1-4GlcNAc-Sp8  39 2 5 

508 (4S)GalNAcb-Sp10 24 2 6 

509 Galb1-4(6P)GlcNAcb-Sp0  16 1 6 

510 (6P)Galb1-4GlcNAcb-SP0  8 3 34 

511 GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-6GalNAc-Sp14 12 2 16 

512 Neu5Aca2-6Galb1-4GlcNAcb1-2Man-Sp0 15 2 14 

513 Gala1-3Galb1-4GlcNAcb1-2Mana-Sp0 17 3 16 

514 Gala1-3(Fuca1-2)Galb1-4GlcNAcb1-2Mana-Sp0 13 7 56 

515 GalNAca1-3(Fuca1-2)Galb1-4 GlcNAcb1-2Mana-Sp0 11 3 23 

516  Galb1-3GlcNAcb1-2Mana-Sp0 35 2 7 

517 Gala1-3(Fuca1-2)Galb1-3GlcNAcb1-6GalNAc-Sp14 12 4 37 

518 Neu5Aca2-3Galb1-3GlcNAcb1-2Mana-Sp0 12 2 12 

519 Gala1-3Galb1-3GlcNAcb1-2Mana-Sp0 14 1 4 

520 GalNAcb1-4GlcNAcb1-2Mana-Sp0 18 2 12 

521 Neu5Aca2-3Galb1-3GalNAcb1-4Galb1-4Glcb-Sp0 10 3 33 

522 
GlcNAcb1-2 Mana1-6(GlcNAcb1-4)(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAc-Sp21 12 3 28 

523 
Galb1-4GlcNAcb1-2 Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 14 3 20 

524 
Galb1-4GlcNAcb1-2 Mana1-6(Galb1-4GlcNAcb1-4)(Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAc-Sp21 11 3 31 

525 Fuca1-4(Galb1-3)GlcNAcb1-2 Mana-Sp0 44 9 19 

526 Neu5Aca2-3Galb1-4(Fuca1-3)GlcNAcb1-2Mana-Sp0 12 2 17 

527 GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3)Galb1-4GlcNAc-Sp0 12 3 22 

528 GalNAca1-3(Fuca1-2)Galb1-3GalNAcb1-3Gala1-4Galb1-4Glc-Sp21 17 1 6 

529 Gala1-3(Fuca1-2)Galb1-3GalNAcb1-3Gala1-4Galb1-4Glc-Sp21 17 3 17 

530 Galb1-3GalNAcb1-3Gal-Sp21 50 2 3 

531 
GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 51 10 19 

532 
GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 12 7 63 

533 
Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6(Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-
2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 8 4 46 

534 
Fuca1-2Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp24 57 4 6 

535 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 32 5 16 

536 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 6 2 39 

537 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 40 4 9 

538 
Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp25 25 4 17 

539 Neu5Gca2-8Neu5Gca2-3Galb1-4GlcNAc-Sp0 23 2 8 

540 Neu5Aca2-8Neu5Gca2-3Galb1-4GlcNAc-Sp0 7 3 46 

541 Neu5Gca2-8Neu5Aca2-3Galb1-4GlcNAc-Sp0 18 3 16 

542 Neu5Gca2-8Neu5Gca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAc-Sp0 15 1 9 

543 Neu5Gca2-8Neu5Gca2-6Galb1-4GlcNAc-Sp0 19 1 3 

544 Neu5Aca2-8Neu5Aca2-3Galb1-4GlcNAc-Sp0 7 2 25 

545 
GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3Galb1-4GlcNAcb1-2)Mana1-6(GlcNAcb1-
3Galb1-4GlcNAcb1-2Man a1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp24 66 12 18 

546 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2)Mana1-
6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Mana1-4GlcNAcb1-4GlcNAc-Sp24 38 8 22 

547 
Gala1-3Galb1-4GlcNAcb1-2Mana1-6(Gala1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-
4GlcNAcb1-4GlcNAc-Sp24 52 7 14 

548 GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3Galb1-3)GalNAca-Sp14 17 2 12 

549 GalNAcb1-3GlcNAcb-Sp0  14 4 32 
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550 GalNAcb1-4GlcNAcb1-3GalNAcb1-4GlcNAcb-Sp0  17 3 16 

551 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 39 5 14 

552 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp25 42 8 19 

553 GlcNAb1-3Galb1-3GalNAc-Sp14 8 5 64 

554 Galb1-3GlcNAcb1-6(Galb1-3)GalNAc-Sp14 17 5 29 

555 (3S)GlcAb1-3Galb1-4GlcNAcb1-3Galb1-4Glc-Sp0 11 3 23 

556 (3S)GlcAb1-3Galb1-4GlcNAcb1-2Mana-Sp0 17 4 25 

557 
Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-6(Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 36 11 29 

558 
Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-
6(Galb1-3GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp24 39 9 23 

559 Neu5Aca2-8Neu5Aca2-3Galb1-3GalNAcb1-4(Neu5Aca2-3)Galb1-4Glc-Sp21 21 1 7 

560 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 35 5 15 

561 
GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 56 9 16 

562 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-
6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAcb-Sp24 57 6 11 

563 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAb1-2)Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-6)GlcNAcb-Sp24 14 4 29 

564 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 19 4 19 

565 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 15 2 12 

566 
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3)GalNAca-Sp14 25 3 11 

567 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 15 3 20 

568 GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 15 2 13 

569 GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 17 1 8 

570 GlcNAcb1-3Galb1-4GlcNAcb1-6(GlcNAcb1-3Galb1-4GlcNAcb1-3)GalNAca-Sp14 21 1 3 

571 
Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Neu5Aca2-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3)GalNAca-Sp14 21 2 7 

572 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 10 5 53 

573 GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3GalNAca-Sp14 12 4 32 

574 Galb1-4GlcNAcb1-3Galb1-3GalNAca-Sp14 5 2 43 

575 Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 16 5 32 

576 Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 17 2 10 

577 Neu5Aca2-6Galb1-4GlcNAcb1-6(Galb1-3)GalNAca-Sp14 15 1 5 

578 
Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 24 4 18 

579 GlcNAcb1-6(Neu5Aca2-3Galb1-3)GalNAca-Sp14 11 2 18 

580 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Neu5Aca2-6Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb1-3)GalNAca-Sp14 18 5 25 

581 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
6(Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 196 19 9 

582 
Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
6(Neu5Aca2-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 58 2 4 

583 
Neu5Aca2-6Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-
4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 23 2 7 

584 GlcNAcb1-3Fuca-Sp21 23 1 4 

585 Galb1-3GalNAcb1-4(Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3)Galb1-4Glcb-Sp21 18 1 8 
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8. 7. Appendix VII: PDBe Fold search for Awp3A 
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8. 8. Appendix VIII: Predicted glycosylation sites in Awp1 

##gff-version 2 

##source-version NetOGlyc 4.0.0.13 

##date 20-2-14 

##Type Protein 

#seqname source feature start end score strand frame comment 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 2 2 0.0474092 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 5 5 0.0206563 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 14 14 0.0349508 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 18 18 0.0947298 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 23 23 0.0324545 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 25 25 0.334385 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 26 26 0.10867 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 28 28 0.0960115 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 32 32 0.0572995 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 38 38 0.0899525 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 41 41 0.0507403 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 42 42 0.0752175 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 44 44 0.0555112 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 49 49 0.0264627 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 62 62 0.270531 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 63 63 0.215746 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 65 65 0.111394 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 67 67 0.20345 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 75 75 0.182778 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 78 78 0.112795 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 80 80 0.231035 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 84 84 0.167706 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 85 85 0.16876 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 86 86 0.198553 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 88 88 0.306797 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 90 90 0.162227 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 92 92 0.135444 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 96 96 0.370059 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 98 98 0.225932 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 100 100 0.233292 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 103 103 0.190258 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 104 104 0.105821 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 111 111 0.130017 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 118 118 0.0658696 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 120 120 0.0429707 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 122 122 0.025517 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 124 124 0.0253782 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 128 128 0.158607 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 130 130 0.101523 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 132 132 0.0958882 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 133 133 0.0555037 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 134 134 0.0655286 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 135 135 0.0834856 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 142 142 0.0902631 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 146 146 0.0938189 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 148 148 0.0897877 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 153 153 0.12575 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 156 156 0.108738 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 158 158 0.176642 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 162 162 0.397331 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 164 164 0.147972 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 169 169 0.244889 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 172 172 0.413194 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 173 173 0.331418 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 176 176 0.101528 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 182 182 0.147715 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 190 190 0.0815793 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 196 196 0.0308309 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 198 198 0.0326156 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 201 201 0.103725 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 203 203 0.196986 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 222 222 0.165715 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 226 226 0.146127 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 227 227 0.352403 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 228 228 0.166187 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 229 229 0.117982 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 235 235 0.512886 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 238 238 0.291915 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 254 254 0.600399 . . #POSITIVE 
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SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 257 257 0.350422 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 258 258 0.680968 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 260 260 0.462802 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 262 262 0.703792 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 265 265 0.632744 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 267 267 0.792522 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 271 271 0.537528 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 273 273 0.916835 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 274 274 0.8811 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 279 279 0.332395 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 292 292 0.5 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 297 297 0.539974 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 299 299 0.690481 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 307 307 0.468967 . .  

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 318 318 0.806975 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 321 321 0.682005 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 326 326 0.966148 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 327 327 0.918819 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 328 328 0.95372 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 330 330 0.931663 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 332 332 0.979644 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 333 333 0.948497 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 334 334 0.975229 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 338 338 0.986949 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 339 339 0.917258 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 340 340 0.965553 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 344 344 0.982516 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 345 345 0.888577 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 346 346 0.937962 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 350 350 0.982434 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 351 351 0.893938 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 352 352 0.940061 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 356 356 0.983089 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 357 357 0.891346 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 358 358 0.935663 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 362 362 0.980239 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 363 363 0.890119 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 364 364 0.93364 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 368 368 0.981892 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 369 369 0.886518 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 370 370 0.929268 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 374 374 0.981733 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 375 375 0.871627 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 376 376 0.928963 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 380 380 0.980455 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 381 381 0.878075 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 382 382 0.929186 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 386 386 0.981266 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 387 387 0.881276 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 388 388 0.929819 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 392 392 0.979766 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 393 393 0.878199 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 394 394 0.928535 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 398 398 0.978503 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 399 399 0.869696 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 400 400 0.925009 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 404 404 0.980148 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 405 405 0.873972 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 406 406 0.923783 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 410 410 0.980493 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 411 411 0.880639 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 412 412 0.929349 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 416 416 0.979767 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 417 417 0.880406 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 418 418 0.924733 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 422 422 0.979832 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 423 423 0.884471 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 424 424 0.923612 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 428 428 0.980608 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 429 429 0.882493 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 430 430 0.923458 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 434 434 0.978974 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 435 435 0.868393 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 436 436 0.923986 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 440 440 0.980005 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 441 441 0.87255 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 442 442 0.922715 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 446 446 0.969655 . . #POSITIVE 
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SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 447 447 0.868473 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 448 448 0.947537 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 452 452 0.976897 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 453 453 0.954395 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 458 458 0.960711 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 459 459 0.878447 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 460 460 0.937865 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 464 464 0.973509 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 465 465 0.93421 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 466 466 0.97519 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 472 472 0.903062 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 476 476 0.964996 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 477 477 0.869721 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 478 478 0.95073 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 481 481 0.956826 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 483 483 0.939565 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 487 487 0.97397 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 488 488 0.928628 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 489 489 0.973262 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 490 490 0.950894 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 493 493 0.990194 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 494 494 0.976391 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 496 496 0.975136 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 499 499 0.987951 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 500 500 0.988891 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 501 501 0.992027 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 503 503 0.991491 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 505 505 0.994624 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 506 506 0.984542 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 508 508 0.966405 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 511 511 0.98689 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 512 512 0.981603 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 513 513 0.99213 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 515 515 0.991315 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 517 517 0.994951 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 518 518 0.984159 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 520 520 0.971848 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 523 523 0.972378 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 524 524 0.969729 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 525 525 0.990149 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 527 527 0.97241 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 529 529 0.987762 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 530 530 0.968146 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 532 532 0.923461 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 533 533 0.975793 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 535 535 0.963124 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 536 536 0.972926 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 537 537 0.976463 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 541 541 0.879796 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 542 542 0.853951 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 546 546 0.82925 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 549 549 0.94059 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 550 550 0.933681 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 552 552 0.883382 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 557 557 0.990777 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 558 558 0.946093 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 559 559 0.953479 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 564 564 0.959828 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 565 565 0.9663 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 566 566 0.968567 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 648 648 0.956568 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 652 652 0.92966 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 656 656 0.980694 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 663 663 0.950719 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 665 665 0.901281 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 671 671 0.9297 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 673 673 0.9215 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 674 674 0.968207 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 675 675 0.939822 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 677 677 0.939957 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 684 684 0.922094 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 689 689 0.935541 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 694 694 0.921681 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 704 704 0.953968 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 714 714 0.93509 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 727 727 0.904215 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 729 729 0.93806 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 732 732 0.894278 . . #POSITIVE 
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SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 738 738 0.874486 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 745 745 0.88941 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 751 751 0.982921 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 753 753 0.851239 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 755 755 0.932913 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 765 765 0.952878 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 767 767 0.898677 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 769 769 0.950579 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 771 771 0.95853 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 773 773 0.878874 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 779 779 0.899936 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 782 782 0.96499 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 793 793 0.852128 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 795 795 0.893325 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 798 798 0.973699 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 799 799 0.938209 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 803 803 0.985727 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 810 810 0.953561 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 811 811 0.95624 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 813 813 0.973935 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 815 815 0.989972 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 822 822 0.979175 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 824 824 0.97369 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 825 825 0.988112 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 826 826 0.986838 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 829 829 0.991146 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 830 830 0.99374 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 836 836 0.970364 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 840 840 0.93823 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 844 844 0.821688 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 845 845 0.636551 . . #POSITIVE 

SEQUENCE netOGlyc-4.0.0.13 CARBOHYD 851 851 0.0973235 . .  
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8. 9. Appendix IX: GREMLIN contact map and residue-residue interactions 

 

 

i j gene i_id j_id r_sco s_sco prob I_prob 

61 64 A 61_T 64_E 0.132 3.022 0.999 N/A 

217 221 B 132_F 136_F 0.118 2.696 0.996 N/A 

242 247 B 157_G 162_L 0.114 2.597 0.995 N/A 

289 337 B 204_V 252_L 0.113 2.589 0.995 N/A 

63 236 AB 63_K 151_H 0.103 2.339 0.986 0.954 

234 237 B 149_Q 152_D 0.101 2.31 0.985 N/A 

34 41 A 34_C 41_C 0.097 2.209 0.978 N/A 

243 246 B 158_N 161_I 0.097 2.205 0.978 N/A 

175 212 B 90_F 127_N 0.094 2.154 0.973 N/A 

45 48 A 45_S 48_L 0.092 2.108 0.969 N/A 

189 192 B 104_F 107_K 0.091 2.084 0.966 N/A 

246 250 B 161_I 165_V 0.091 2.066 0.963 N/A 

187 190 B 102_R 105_P 0.089 2.029 0.958 N/A 

204 261 B 119_T 176_W 0.088 2.007 0.955 N/A 

63 153 AB 63_K 68_F 0.087 1.994 0.953 0.873 

185 190 B 100_Y 105_P 0.087 1.987 0.952 N/A 

187 192 B 102_R 107_K 0.087 1.976 0.950 N/A 

185 189 B 100_Y 104_F 0.086 1.963 0.947 N/A 

70 74 A 70_N 74_Y 0.085 1.937 0.942 N/A 

227 231 B 142_G 146_T 0.085 1.936 0.942 N/A 

122 335 B 37_N 250_P 0.085 1.931 0.941 N/A 

67 153 AB 67_T 68_F 0.085 1.93 0.941 0.847 

223 241 B 138_C 156_C 0.084 1.916 0.938 N/A 

218 242 B 133_A 157_G 0.084 1.911 0.937 N/A 

275 279 B 190_L 194_K 0.081 1.852 0.923 N/A 

253 257 B 168_A 172_A 0.08 1.833 0.918 N/A 

197 265 B 112_L 180_L 0.078 1.782 0.902 N/A 

184 189 B 99_F 104_F 0.077 1.752 0.892 N/A 

179 205 B 94_G 120_L 0.076 1.735 0.886 N/A 

45 52 A 45_S 52_A 0.073 1.658 0.854 N/A 

157 233 B 72_T 148_W 0.072 1.65 0.850 N/A 

258 289 B 173_Y 204_V 0.072 1.646 0.848 N/A 

117 176 B 32_W 91_F 0.072 1.633 0.842 N/A 

187 191 B 102_R 106_A 0.071 1.617 0.834 N/A 

185 192 B 100_Y 107_K 0.07 1.594 0.821 N/A 
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142 155 B 57_L 70_D 0.07 1.593 0.821 N/A 

178 255 B 93_R 170_G 0.07 1.588 0.818 N/A 

285 337 B 200_M 252_L 0.069 1.585 0.816 N/A 

174 255 B 89_R 170_G 0.069 1.565 0.805 N/A 

185 188 B 100_Y 103_V 0.068 1.548 0.795 N/A 

214 218 B 129_S 133_A 0.068 1.545 0.793 N/A 

146 152 B 61_K 67_P 0.066 1.514 0.774 N/A 

70 150 AB 70_N 65_F 0.066 1.498 0.763 0.536 

152 155 B 67_P 70_D 0.065 1.494 0.761 N/A 

188 192 B 103_V 107_K 0.064 1.46 0.737 N/A 

120 124 B 35_L 39_F 0.062 1.423 0.709 N/A 

45 130 AB 45_S 45_A 0.062 1.42 0.707 0.46 

81 315 AB 81_K 230_K 0.062 1.413 0.702 0.453 

201 261 B 116_I 176_W 0.062 1.407 0.697 N/A 

245 308 B 160_N 223_T 0.061 1.386 0.680 N/A 

81 147 AB 81_K 62_D 0.06 1.371 0.668 0.412 

68 92 AB 68_T 7_T 0.06 1.362 0.661 0.403 

215 250 B 130_F 165_V 0.059 1.351 0.652 N/A 

210 217 B 125_V 132_F 0.059 1.35 0.651 N/A 

103 343 B 18_L 258_L 0.058 1.332 0.635 N/A 

210 214 B 125_V 129_S 0.058 1.323 0.628 N/A 

43 55 A 43_C 55_C 0.057 1.31 0.616 N/A 

32 48 A 32_S 48_L 0.057 1.308 0.615 N/A 

28 279 AB 28_A 194_K 0.057 1.289 0.598 0.333 

147 312 B 62_D 227_N 0.056 1.288 0.597 N/A 

249 301 B 164_W 216_L 0.056 1.287 0.596 N/A 

206 210 B 121_V 125_V 0.056 1.284 0.593 N/A 

304 307 B 219_I 222_F 0.056 1.278 0.588 N/A 

18 24 A 18_P 24_C 0.056 1.273 0.584 N/A 

74 150 AB 74_Y 65_F 0.055 1.265 0.576 0.311 

269 278 B 184_A 193_K 0.054 1.242 0.555 N/A 

187 193 B 102_R 108_S 0.054 1.242 0.555 N/A 

42 335 AB 42_I 250_P 0.054 1.24 0.554 0.289 

175 179 B 90_F 94_G 0.054 1.237 0.551 N/A 

246 320 B 161_I 235_L 0.054 1.232 0.546 N/A 

181 335 B 96_I 250_P 0.054 1.225 0.540 N/A 

203 207 B 118_W 122_F 0.054 1.221 0.536 N/A 

121 183 B 36_S 98_L 0.053 1.218 0.533 N/A 

102 243 B 17_I 158_N 0.053 1.214 0.530 N/A 

99 124 B 14_I 39_F 0.053 1.213 0.529 N/A 

310 317 B 225_T 232_I 0.053 1.211 0.527 N/A 

184 188 B 99_F 103_V 0.053 1.211 0.527 N/A 

188 191 B 103_V 106_A 0.053 1.204 0.520 N/A 

215 337 B 130_F 252_L 0.053 1.201 0.518 N/A 

228 239 B 143_L 154_G 0.052 1.197 0.514 N/A 

205 353 B 120_L 268_S 0.052 1.197 0.514 N/A 

169 332 B 84_L 247_V 0.052 1.19 0.508 N/A 

315 329 B 230_K 244_D 0.052 1.189 0.507 N/A 

83 219 AB 83_D 134_V 0.052 1.176 0.495 0.236 

349 352 B 264_P 267_L 0.051 1.174 0.493 N/A 

55 60 A 55_C 60_C 0.051 1.174 0.493 N/A 

62 233 AB 62_I 148_W 0.051 1.173 0.492 0.233 

184 190 B 99_F 105_P 0.051 1.171 0.490 N/A 

182 262 B 97_I 177_L 0.051 1.167 0.486 N/A 

106 295 B 21_F 210_I 0.051 1.165 0.484 N/A 

189 193 B 104_F 108_S 0.051 1.163 0.483 N/A 

208 262 B 123_N 177_L 0.051 1.155 0.475 N/A 

344 349 B 259_L 264_P 0.051 1.152 0.472 N/A 

219 267 B 134_V 182_F 0.05 1.152 0.472 N/A 

164 169 B 79_F 84_L 0.05 1.151 0.471 N/A 

145 149 B 60_S 64_W 0.05 1.151 0.471 N/A 

181 326 B 96_I 241_I 0.05 1.147 0.468 N/A 

59 165 AB 59_E 80_A 0.05 1.146 0.467 0.213 

252 270 B 167_A 185_L 0.05 1.145 0.466 N/A 

286 341 B 201_M 256_R 0.05 1.141 0.462 N/A 

337 340 B 252_L 255_F 0.05 1.138 0.459 N/A 

221 224 B 136_F 139_Q 0.05 1.137 0.459 N/A 

99 109 B 14_I 24_V 0.049 1.124 0.447 N/A 

248 316 B 163_A 231_D 0.049 1.124 0.447 N/A 

29 265 AB 29_I 180_L 0.049 1.124 0.447 0.197 

344 352 B 259_L 267_L 0.049 1.122 0.445 N/A 

182 187 B 97_I 102_R 0.049 1.119 0.442 N/A 

197 201 B 112_L 116_I 0.049 1.119 0.442 N/A 

189 198 B 104_F 113_G 0.049 1.115 0.438 N/A 

313 316 B 228_P 231_D 0.049 1.113 0.437 N/A 

168 220 B 83_L 135_L 0.049 1.111 0.435 N/A 

208 236 B 123_N 151_H 0.048 1.103 0.428 N/A 

268 271 B 183_P 186_M 0.048 1.096 0.421 N/A 
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127 260 B 42_F 175_L 0.048 1.093 0.418 N/A 

122 180 B 37_N 95_S 0.048 1.091 0.417 N/A 

163 251 B 78_F 166_A 0.048 1.09 0.416 N/A 

263 291 B 178_L 206_V 0.048 1.09 0.416 N/A 

186 189 B 101_L 104_F 0.047 1.083 0.410 N/A 

171 216 B 86_T 131_F 0.047 1.082 0.409 N/A 

214 281 B 129_S 196_I 0.047 1.074 0.401 N/A 

181 291 B 96_I 206_V 0.047 1.072 0.400 N/A 

94 133 B 9_I 48_T 0.047 1.07 0.398 N/A 

139 321 B 54_A 236_C 0.047 1.066 0.394 N/A 

296 303 B 211_I 218_T 0.047 1.066 0.394 N/A 

147 293 B 62_D 208_V 0.047 1.065 0.393 N/A 

189 195 B 104_F 110_N 0.047 1.063 0.392 N/A 

184 280 B 99_F 195_K 0.046 1.057 0.386 N/A 

245 344 B 160_N 259_L 0.046 1.056 0.386 N/A 

100 316 B 15_A 231_D 0.046 1.056 0.386 N/A 

189 194 B 104_F 109_G 0.046 1.054 0.384 N/A 

129 133 B 44_A 48_T 0.046 1.052 0.382 N/A 

21 24 A 21_A 24_C 0.046 1.05 0.380 N/A 

182 201 B 97_I 116_I 0.046 1.05 0.380 N/A 

185 191 B 100_Y 106_A 0.046 1.05 0.380 N/A 

29 135 AB 29_I 50_V 0.046 1.049 0.379 0.148 

117 214 B 32_W 129_S 0.046 1.048 0.379 N/A 

43 60 A 43_C 60_C 0.046 1.046 0.377 N/A 

142 158 B 57_L 73_M 0.046 1.042 0.373 N/A 

267 288 B 182_F 203_F 0.046 1.042 0.373 N/A 

136 325 B 51_N 240_A 0.046 1.038 0.370 N/A 

18 136 AB 18_P 51_N 0.045 1.037 0.369 0.142 

73 78 A 73_S 78_V 0.045 1.036 0.368 N/A 

16 115 AB 16_V 30_F 0.045 1.026 0.360 0.135 

92 154 B 7_T 69_D 0.045 1.026 0.360 N/A 

161 165 B 76_R 80_A 0.045 1.025 0.359 N/A 

182 185 B 97_I 100_Y 0.045 1.024 0.358 N/A 

89 281 B 4_I 196_I 0.045 1.023 0.357 N/A 

330 348 B 245_V 263_L 0.045 1.023 0.357 N/A 

135 240 B 50_V 155_H 0.045 1.02 0.355 N/A 

127 146 B 42_F 61_K 0.044 1.013 0.349 N/A 

36 153 AB 36_P 68_F 0.044 1.01 0.346 0.127 

174 180 B 89_R 95_S 0.044 1.008 0.344 N/A 

294 298 B 209_M 213_L 0.044 1.008 0.344 N/A 

117 121 B 32_W 36_S 0.044 1.004 0.341 N/A 

218 247 B 133_A 162_L 0.044 0.997 0.335 N/A 

274 284 B 189_N 199_G 0.044 0.996 0.334 N/A 

134 138 B 49_G 53_W 0.044 0.995 0.334 N/A 

330 336 B 245_V 251_C 0.044 0.994 0.333 N/A 

294 297 B 209_M 212_S 0.043 0.99 0.330 N/A 

107 339 B 22_A 254_S 0.043 0.989 0.329 N/A 

297 300 B 212_S 215_R 0.043 0.989 0.329 N/A 

249 253 B 164_W 168_A 0.043 0.985 0.325 N/A 

64 126 AB 64_E 41_F 0.043 0.984 0.325 0.114 

20 24 A 20_C 24_C 0.043 0.984 0.325 N/A 

248 309 B 163_A 224_R 0.043 0.981 0.322 N/A 

105 339 B 20_L 254_S 0.043 0.98 0.321 N/A 

195 314 B 110_N 229_T 0.043 0.979 0.321 N/A 

303 308 B 218_T 223_T 0.043 0.978 0.320 N/A 

111 256 B 26_T 171_I 0.043 0.977 0.319 N/A 

335 342 B 250_P 257_L 0.043 0.972 0.315 N/A 

281 310 B 196_I 225_T 0.043 0.971 0.314 N/A 

98 188 B 13_V 103_V 0.043 0.97 0.313 N/A 

105 109 B 20_L 24_V 0.042 0.969 0.313 N/A 

293 301 B 208_V 216_L 0.042 0.969 0.313 N/A 

221 226 B 136_F 141_I 0.042 0.967 0.311 N/A 

147 233 B 62_D 148_W 0.042 0.966 0.310 N/A 

220 226 B 135_L 141_I 0.042 0.965 0.309 N/A 

197 255 B 112_L 170_G 0.042 0.965 0.309 N/A 

203 351 B 118_W 266_V 0.042 0.965 0.309 N/A 

262 283 B 177_L 198_G 0.042 0.961 0.306 N/A 

67 177 AB 67_T 92_V 0.042 0.961 0.306 0.103 

305 347 B 220_N 262_M 0.042 0.961 0.306 N/A 

255 291 B 170_G 206_V 0.042 0.957 0.303 N/A 

94 98 B 9_I 13_V 0.042 0.956 0.302 N/A 

116 330 B 31_W 245_V 0.042 0.952 0.299 N/A 

61 248 AB 61_T 163_A 0.042 0.951 0.298 0.099 

63 233 AB 63_K 148_W 0.042 0.951 0.298 0.099 

143 334 B 58_G 249_C 0.042 0.948 0.296 N/A 

248 304 B 163_A 219_I 0.041 0.947 0.295 N/A 

93 101 B 8_F 16_V 0.041 0.947 0.295 N/A 

53 57 A 53_T 57_K 0.041 0.946 0.295 N/A 
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62 235 AB 62_I 150_G 0.041 0.945 0.294 0.096 

17 68 A 17_L 68_T 0.041 0.942 0.292 N/A 

275 333 B 190_L 248_I 0.041 0.939 0.289 N/A 

179 209 B 94_G 124_V 0.041 0.939 0.289 N/A 

106 127 B 21_F 42_F 0.041 0.938 0.288 N/A 

33 115 AB 33_K 30_F 0.041 0.936 0.287 0.092 

288 291 B 203_F 206_V 0.041 0.934 0.285 N/A 

31 42 A 31_Q 42_I 0.041 0.932 0.284 N/A 

209 213 B 124_V 128_L 0.041 0.932 0.284 N/A 

102 289 B 17_I 204_V 0.041 0.931 0.283 N/A 

275 326 B 190_L 241_I 0.041 0.931 0.283 N/A 

199 228 B 114_R 143_L 0.041 0.931 0.283 N/A 

64 146 AB 64_E 61_K 0.041 0.931 0.283 0.09 

37 307 AB 37_T 222_F 0.041 0.927 0.280 0.089 

41 241 AB 41_C 156_C 0.041 0.927 0.280 0.089 

42 48 A 42_I 48_L 0.041 0.926 0.279 N/A 

35 77 A 35_D 77_G 0.041 0.926 0.279 N/A 

114 279 B 29_Y 194_K 0.041 0.925 0.279 N/A 

120 176 B 35_L 91_F 0.041 0.925 0.279 N/A 

72 249 AB 72_T 164_W 0.041 0.924 0.278 0.088 

252 301 B 167_A 216_L 0.04 0.923 0.277 N/A 

93 321 B 8_F 236_C 0.04 0.923 0.277 N/A 

273 278 B 188_L 193_K 0.04 0.922 0.276 N/A 

273 307 B 188_L 222_F 0.04 0.918 0.274 N/A 

201 265 B 116_I 180_L 0.04 0.915 0.271 N/A 

215 248 B 130_F 163_A 0.04 0.915 0.271 N/A 

219 304 B 134_V 219_I 0.04 0.915 0.271 N/A 

102 206 B 17_I 121_V 0.04 0.915 0.271 N/A 

169 320 B 84_L 235_L 0.04 0.914 0.271 N/A 

113 256 B 28_A 171_I 0.04 0.912 0.269 N/A 

54 169 AB 54_A 84_L 0.04 0.912 0.269 0.083 

117 124 B 32_W 39_F 0.04 0.912 0.269 N/A 

76 104 AB 76_C 19_R 0.04 0.912 0.269 0.083 

293 312 B 208_V 227_N 0.04 0.909 0.267 N/A 

170 266 B 85_Y 181_P 0.04 0.909 0.267 N/A 

296 320 B 211_I 235_L 0.04 0.909 0.267 N/A 

291 295 B 206_V 210_I 0.04 0.908 0.266 N/A 

165 169 B 80_A 84_L 0.04 0.907 0.265 N/A 

278 282 B 193_K 197_M 0.04 0.902 0.262 N/A 

115 211 B 30_F 126_Y 0.04 0.902 0.262 N/A 

297 308 B 212_S 223_T 0.039 0.901 0.261 N/A 

262 282 B 177_L 197_M 0.039 0.901 0.261 N/A 

45 59 A 45_S 59_E 0.039 0.901 0.261 N/A 

292 296 B 207_A 211_I 0.039 0.899 0.260 N/A 

285 289 B 200_M 204_V 0.039 0.897 0.258 N/A 

41 223 AB 41_C 138_C 0.039 0.897 0.258 0.077 

188 193 B 103_V 108_S 0.039 0.896 0.258 N/A 

246 281 B 161_I 196_I 0.039 0.896 0.258 N/A 

125 134 B 40_G 49_G 0.039 0.895 0.257 N/A 

182 190 B 97_I 105_P 0.039 0.895 0.257 N/A 

45 56 A 45_S 56_V 0.039 0.895 0.257 N/A 

151 155 B 66_V 70_D 0.039 0.894 0.256 N/A 

101 115 B 16_V 30_F 0.039 0.893 0.256 N/A 

84 110 AB 84_S 25_L 0.039 0.892 0.255 0.076 

34 241 AB 34_C 156_C 0.039 0.892 0.255 0.076 

147 156 B 62_D 71_V 0.039 0.891 0.254 N/A 

21 338 AB 21_A 253_P 0.039 0.891 0.254 0.075 

41 349 AB 41_C 264_P 0.039 0.89 0.253 0.075 

206 281 B 121_V 196_I 0.039 0.888 0.252 N/A 

106 279 B 21_F 194_K 0.039 0.888 0.252 N/A 

162 328 B 77_L 243_L 0.039 0.888 0.252 N/A 

131 345 B 46_V 260_R 0.039 0.887 0.251 N/A 

8 89 AB 8_L 4_I 0.039 0.887 0.251 0.074 

203 206 B 118_W 121_V 0.039 0.887 0.251 N/A 

28 52 A 28_A 52_A 0.039 0.886 0.251 N/A 

181 310 B 96_I 225_T 0.039 0.886 0.251 N/A 

116 325 B 31_W 240_A 0.039 0.886 0.251 N/A 

146 308 B 61_K 223_T 0.039 0.886 0.251 N/A 

177 352 B 92_V 267_L 0.039 0.885 0.250 N/A 

330 333 B 245_V 248_I 0.039 0.885 0.250 N/A 

19 131 AB 19_A 46_V 0.039 0.884 0.249 0.073 

170 178 B 85_Y 93_R 0.039 0.881 0.247 N/A 

250 254 B 165_V 169_T 0.039 0.88 0.246 N/A 

180 253 B 95_S 168_A 0.039 0.879 0.246 N/A 

174 204 B 89_R 119_T 0.038 0.878 0.245 N/A 

17 95 AB 17_L 10_G 0.038 0.877 0.244 0.071 

167 252 B 82_M 167_A 0.038 0.877 0.244 N/A 

175 335 B 90_F 250_P 0.038 0.875 0.243 N/A 
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14 229 AB 14_Q 144_F 0.038 0.875 0.243 0.07 

130 134 B 45_A 49_G 0.038 0.875 0.243 N/A 

203 263 B 118_W 178_L 0.038 0.875 0.243 N/A 

147 294 B 62_D 209_M 0.038 0.874 0.242 N/A 

263 288 B 178_L 203_F 0.038 0.873 0.242 N/A 

82 337 AB 82_S 252_L 0.038 0.872 0.241 0.069 

26 354 AB 26_E 269_T 0.038 0.872 0.241 0.069 

179 208 B 94_G 123_N 0.038 0.872 0.241 N/A 

152 281 B 67_P 196_I 0.038 0.87 0.240 N/A 

227 337 B 142_G 252_L 0.038 0.87 0.240 N/A 

28 298 AB 28_A 213_L 0.038 0.869 0.239 0.068 

45 49 A 45_S 49_N 0.038 0.868 0.238 N/A 

271 284 B 186_M 199_G 0.038 0.867 0.238 N/A 

182 192 B 97_I 107_K 0.038 0.866 0.237 N/A 

298 349 B 213_L 264_P 0.038 0.866 0.237 N/A 

33 108 AB 33_K 23_R 0.038 0.866 0.237 0.067 

252 278 B 167_A 193_K 0.038 0.864 0.236 N/A 

243 279 B 158_N 194_K 0.038 0.864 0.236 N/A 

259 280 B 174_D 195_K 0.038 0.863 0.235 N/A 

208 258 B 123_N 173_Y 0.038 0.862 0.234 N/A 

20 60 A 20_C 60_C 0.038 0.86 0.233 N/A 

83 315 AB 83_D 230_K 0.038 0.86 0.233 0.065 

214 311 B 129_S 226_V 0.038 0.86 0.233 N/A 

164 220 B 79_F 135_L 0.038 0.86 0.233 N/A 

91 95 B 6_A 10_G 0.038 0.858 0.232 N/A 

278 328 B 193_K 243_L 0.038 0.858 0.232 N/A 

174 211 B 89_R 126_Y 0.038 0.857 0.231 N/A 

174 178 B 89_R 93_R 0.038 0.856 0.230 N/A 

243 314 B 158_N 229_T 0.037 0.855 0.230 N/A 

319 326 B 234_Q 241_I 0.037 0.854 0.229 N/A 

207 261 B 122_F 176_W 0.037 0.853 0.228 N/A 

34 223 AB 34_C 138_C 0.037 0.852 0.228 0.063 

273 299 B 188_L 214_V 0.037 0.852 0.228 N/A 

7 10 A 7_L 10_L 0.037 0.85 0.226 N/A 

190 193 B 105_P 108_S 0.037 0.85 0.226 N/A 

179 283 B 94_G 198_G 0.037 0.849 0.226 N/A 

125 310 B 40_G 225_T 0.037 0.848 0.225 N/A 

202 205 B 117_Q 120_L 0.037 0.848 0.225 N/A 

70 239 AB 70_N 154_G 0.037 0.848 0.225 0.061 

179 183 B 94_G 98_L 0.037 0.847 0.224 N/A 

237 340 B 152_D 255_F 0.037 0.846 0.224 N/A 

50 254 AB 50_S 169_T 0.037 0.846 0.224 0.061 

92 117 B 7_T 32_W 0.037 0.845 0.223 N/A 

229 321 B 144_F 236_C 0.037 0.845 0.223 N/A 

11 89 AB 11_D 4_I 0.037 0.845 0.223 0.061 

174 262 B 89_R 177_L 0.037 0.845 0.223 N/A 

243 308 B 158_N 223_T 0.037 0.845 0.223 N/A 

176 302 B 91_F 217_K 0.037 0.844 0.223 N/A 

341 349 B 256_R 264_P 0.037 0.844 0.223 N/A 

79 324 AB 79_T 239_S 0.037 0.842 0.221 0.06 

108 270 B 23_R 185_L 0.037 0.842 0.221 N/A 

214 329 B 129_S 244_D 0.037 0.841 0.221 N/A 

101 123 B 16_V 38_L 0.037 0.839 0.219 N/A 

183 187 B 98_L 102_R 0.037 0.839 0.219 N/A 

179 201 B 94_G 116_I 0.037 0.838 0.219 N/A 

199 203 B 114_R 118_W 0.037 0.838 0.219 N/A 

47 226 AB 47_A 141_I 0.037 0.836 0.217 0.058 

99 231 B 14_I 146_T 0.037 0.836 0.217 N/A 

62 148 AB 62_I 63_V 0.037 0.836 0.217 0.058 

226 325 B 141_I 240_A 0.037 0.835 0.217 N/A 

99 130 B 14_I 45_A 0.037 0.834 0.216 N/A 

134 221 B 49_G 136_F 0.037 0.833 0.216 N/A 

92 348 B 7_T 263_L 0.037 0.833 0.216 N/A 

175 183 B 90_F 98_L 0.037 0.833 0.216 N/A 

235 270 B 150_G 185_L 0.036 0.832 0.215 N/A 

56 345 AB 56_V 260_R 0.036 0.83 0.214 0.056 

92 96 B 7_T 11_L 0.036 0.83 0.214 N/A 

110 184 B 25_L 99_F 0.036 0.829 0.213 N/A 

259 266 B 174_D 181_P 0.036 0.828 0.212 N/A 

276 331 B 191_H 246_G 0.036 0.828 0.212 N/A 

106 161 B 21_F 76_R 0.036 0.827 0.212 N/A 

130 227 B 45_A 142_G 0.036 0.827 0.212 N/A 

159 201 B 74_V 116_I 0.036 0.827 0.212 N/A 

256 301 B 171_I 216_L 0.036 0.827 0.212 N/A 

301 316 B 216_L 231_D 0.036 0.826 0.211 N/A 

131 134 B 46_V 49_G 0.036 0.826 0.211 N/A 

319 322 B 234_Q 237_L 0.036 0.825 0.211 N/A 

115 216 B 30_F 131_F 0.036 0.825 0.211 N/A 
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133 227 B 48_T 142_G 0.036 0.825 0.211 N/A 

28 165 AB 28_A 80_A 0.036 0.825 0.211 0.055 

10 89 AB 10_L 4_I 0.036 0.824 0.210 0.055 

294 312 B 209_M 227_N 0.036 0.822 0.209 N/A 

56 82 A 56_V 82_S 0.036 0.822 0.209 N/A 

119 338 B 34_D 253_P 0.036 0.821 0.208 N/A 

209 238 B 124_V 153_H 0.036 0.821 0.208 N/A 

245 297 B 160_N 212_S 0.036 0.82 0.208 N/A 

257 316 B 172_A 231_D 0.036 0.819 0.207 N/A 

92 213 B 7_T 128_L 0.036 0.819 0.207 N/A 

49 251 AB 49_N 166_A 0.036 0.819 0.207 0.053 

158 213 B 73_M 128_L 0.036 0.818 0.206 N/A 

63 234 AB 63_K 149_Q 0.036 0.818 0.206 0.053 

201 205 B 116_I 120_L 0.036 0.818 0.206 N/A 

301 307 B 216_L 222_F 0.036 0.818 0.206 N/A 

107 123 B 22_A 38_L 0.036 0.817 0.206 N/A 

202 261 B 117_Q 176_W 0.036 0.817 0.206 N/A 

112 337 B 27_K 252_L 0.036 0.816 0.205 N/A 

310 318 B 225_T 233_V 0.036 0.815 0.205 N/A 

40 221 AB 40_S 136_F 0.036 0.815 0.205 0.052 

117 295 B 32_W 210_I 0.036 0.814 0.204 N/A 

313 350 B 228_P 265_H 0.036 0.814 0.204 N/A 

200 203 B 115_V 118_W 0.036 0.813 0.203 N/A 

325 331 B 240_A 246_G 0.036 0.812 0.203 N/A 

53 127 AB 53_T 42_F 0.036 0.812 0.203 0.052 

155 350 B 70_D 265_H 0.036 0.812 0.203 N/A 

228 231 B 143_L 146_T 0.036 0.81 0.202 N/A 

172 306 B 87_A 221_Q 0.035 0.81 0.202 N/A 

156 333 B 71_V 248_I 0.035 0.81 0.202 N/A 

116 342 B 31_W 257_L 0.035 0.809 0.201 N/A 

215 222 B 130_F 137_Q 0.035 0.809 0.201 N/A 

246 260 B 161_I 175_L 0.035 0.809 0.201 N/A 

60 66 A 60_C 66_L 0.035 0.807 0.200 N/A 

90 141 B 5_Y 56_I 0.035 0.807 0.200 N/A 

45 273 AB 45_S 188_L 0.035 0.806 0.199 0.05 

222 275 B 137_Q 190_L 0.035 0.805 0.199 N/A 

165 228 B 80_A 143_L 0.035 0.805 0.199 N/A 

100 120 B 15_A 35_L 0.035 0.804 0.198 N/A 

98 126 B 13_V 41_F 0.035 0.803 0.197 N/A 

69 73 A 69_K 73_S 0.035 0.802 0.197 N/A 

127 151 B 42_F 66_V 0.035 0.802 0.197 N/A 

82 342 AB 82_S 257_L 0.035 0.801 0.196 0.049 

78 169 AB 78_V 84_L 0.035 0.8 0.196 0.048 

233 312 B 148_W 227_N 0.035 0.8 0.196 N/A 

91 346 B 6_A 261_R 0.035 0.8 0.196 N/A 

84 184 AB 84_S 99_F 0.035 0.8 0.196 0.048 

168 310 B 83_L 225_T 0.035 0.8 0.196 N/A 

262 288 B 177_L 203_F 0.035 0.799 0.195 N/A 

59 280 AB 59_E 195_K 0.035 0.799 0.195 0.048 

156 321 B 71_V 236_C 0.035 0.799 0.195 N/A 

204 207 B 119_T 122_F 0.035 0.799 0.195 N/A 

42 181 AB 42_I 96_I 0.035 0.798 0.194 0.048 

211 329 B 126_Y 244_D 0.035 0.797 0.194 N/A 

155 243 B 70_D 158_N 0.035 0.796 0.193 N/A 

81 150 AB 81_K 65_F 0.035 0.793 0.192 0.047 

97 146 B 12_A 61_K 0.035 0.793 0.192 N/A 

171 220 B 86_T 135_L 0.035 0.793 0.192 N/A 

73 172 AB 73_S 87_A 0.035 0.792 0.191 0.047 

7 186 AB 7_L 101_L 0.035 0.792 0.191 0.047 

40 128 AB 40_S 43_G 0.035 0.791 0.190 0.046 

318 321 B 233_V 236_C 0.035 0.791 0.190 N/A 

52 165 AB 52_A 80_A 0.035 0.791 0.190 0.046 

22 132 AB 22_L 47_F 0.035 0.791 0.190 0.046 

208 211 B 123_N 126_Y 0.035 0.79 0.190 N/A 

170 259 B 85_Y 174_D 0.035 0.79 0.190 N/A 

263 302 B 178_L 217_K 0.035 0.789 0.189 N/A 

344 355 B 259_L 270_S 0.035 0.789 0.189 N/A 

64 74 A 64_E 74_Y 0.035 0.789 0.189 N/A 

63 151 AB 63_K 66_V 0.035 0.788 0.189 0.046 

144 318 B 59_Q 233_V 0.035 0.788 0.189 N/A 

147 150 B 62_D 65_F 0.035 0.788 0.189 N/A 

29 137 AB 29_I 52_I 0.035 0.787 0.188 0.045 

58 215 AB 58_A 130_F 0.035 0.787 0.188 0.045 

27 218 AB 27_T 133_A 0.034 0.787 0.188 0.045 

275 281 B 190_L 196_I 0.034 0.786 0.188 N/A 

77 144 AB 77_G 59_Q 0.034 0.786 0.188 0.045 

143 159 B 58_G 74_V 0.034 0.786 0.188 N/A 

175 219 B 90_F 134_V 0.034 0.784 0.186 N/A 
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214 310 B 129_S 225_T 0.034 0.784 0.186 N/A 

7 194 AB 7_L 109_G 0.034 0.784 0.186 0.045 

24 43 A 24_C 43_C 0.034 0.784 0.186 N/A 

68 250 AB 68_T 165_V 0.034 0.783 0.186 0.044 

20 293 AB 20_C 208_V 0.034 0.783 0.186 0.044 

58 254 AB 58_A 169_T 0.034 0.783 0.186 0.044 

304 350 B 219_I 265_H 0.034 0.782 0.185 N/A 

281 306 B 196_I 221_Q 0.034 0.782 0.185 N/A 

171 332 B 86_T 247_V 0.034 0.781 0.185 N/A 

14 337 AB 14_Q 252_L 0.034 0.781 0.185 0.044 

62 310 AB 62_I 225_T 0.034 0.781 0.185 0.044 

38 326 AB 38_D 241_I 0.034 0.781 0.185 0.044 

24 41 A 24_C 41_C 0.034 0.78 0.184 N/A 

115 305 B 30_F 220_N 0.034 0.78 0.184 N/A 

177 331 B 92_V 246_G 0.034 0.78 0.184 N/A 

22 267 AB 22_L 182_F 0.034 0.778 0.183 0.043 

18 286 AB 18_P 201_M 0.034 0.778 0.183 0.043 

289 292 B 204_V 207_A 0.034 0.777 0.183 N/A 

58 347 AB 58_A 262_M 0.034 0.776 0.182 0.043 

273 330 B 188_L 245_V 0.034 0.774 0.181 N/A 

33 303 AB 33_K 218_T 0.034 0.774 0.181 0.042 

53 162 AB 53_T 77_L 0.034 0.771 0.179 0.042 

127 172 B 42_F 87_A 0.034 0.771 0.179 N/A 

157 289 B 72_T 204_V 0.034 0.77 0.179 N/A 

178 215 B 93_R 130_F 0.034 0.77 0.179 N/A 

186 192 B 101_L 107_K 0.034 0.77 0.179 N/A 

261 345 B 176_W 260_R 0.034 0.77 0.179 N/A 

97 329 B 12_A 244_D 0.034 0.77 0.179 N/A 

184 187 B 99_F 102_R 0.034 0.768 0.178 N/A 

196 260 B 111_K 175_L 0.034 0.768 0.178 N/A 

71 75 A 71_I 75_M 0.034 0.767 0.177 N/A 

201 204 B 116_I 119_T 0.034 0.765 0.176 N/A 

50 295 AB 50_S 210_I 0.034 0.765 0.176 0.041 

318 322 B 233_V 237_L 0.034 0.765 0.176 N/A 

120 163 B 35_L 78_F 0.034 0.765 0.176 N/A 

247 270 B 162_L 185_L 0.034 0.765 0.176 N/A 

227 237 B 142_G 152_D 0.034 0.764 0.176 N/A 

82 265 AB 82_S 180_L 0.033 0.764 0.176 0.04 

170 223 B 85_Y 138_C 0.033 0.763 0.175 N/A 

58 350 AB 58_A 265_H 0.033 0.763 0.175 0.04 

54 282 AB 54_A 197_M 0.033 0.762 0.174 0.04 

210 242 B 125_V 157_G 0.033 0.762 0.174 N/A 

129 310 B 44_A 225_T 0.033 0.762 0.174 N/A 

266 287 B 181_P 202_F 0.033 0.761 0.174 N/A 

107 343 B 22_A 258_L 0.033 0.761 0.174 N/A 

63 185 AB 63_K 100_Y 0.033 0.761 0.174 0.04 

324 334 B 239_S 249_C 0.033 0.76 0.173 N/A 

146 150 B 61_K 65_F 0.033 0.759 0.173 N/A 

17 202 AB 17_L 117_Q 0.033 0.759 0.173 0.039 

65 175 AB 65_S 90_F 0.033 0.759 0.173 0.039 

189 227 B 104_F 142_G 0.033 0.759 0.173 N/A 

332 351 B 247_V 266_V 0.033 0.758 0.172 N/A 

33 96 AB 33_K 11_L 0.033 0.758 0.172 0.039 

326 341 B 241_I 256_R 0.033 0.758 0.172 N/A 

130 248 B 45_A 163_A 0.033 0.758 0.172 N/A 

259 294 B 174_D 209_M 0.033 0.758 0.172 N/A 

59 116 AB 59_E 31_W 0.033 0.757 0.172 0.039 

81 312 AB 81_K 227_N 0.033 0.757 0.172 0.039 

217 238 B 132_F 153_H 0.033 0.756 0.171 N/A 

29 301 AB 29_I 216_L 0.033 0.755 0.171 0.038 

147 151 B 62_D 66_V 0.033 0.755 0.171 N/A 

59 206 AB 59_E 121_V 0.033 0.755 0.171 0.038 

78 135 AB 78_V 50_V 0.033 0.754 0.170 0.038 

27 92 AB 27_T 7_T 0.033 0.754 0.170 0.038 

178 283 B 93_R 198_G 0.033 0.754 0.170 N/A 

97 235 B 12_A 150_G 0.033 0.754 0.170 N/A 

8 189 AB 8_L 104_F 0.033 0.753 0.170 0.038 

236 270 B 151_H 185_L 0.033 0.752 0.169 N/A 

171 325 B 86_T 240_A 0.033 0.752 0.169 N/A 

64 125 AB 64_E 40_G 0.033 0.752 0.169 0.038 

198 274 B 113_G 189_N 0.033 0.752 0.169 N/A 

222 286 B 137_Q 201_M 0.033 0.752 0.169 N/A 

93 96 B 8_F 11_L 0.033 0.752 0.169 N/A 

74 77 A 74_Y 77_G 0.033 0.751 0.169 N/A 

39 190 AB 39_L 105_P 0.033 0.751 0.169 0.038 

312 338 B 227_N 253_P 0.033 0.751 0.169 N/A 

283 288 B 198_G 203_F 0.033 0.751 0.169 N/A 

28 54 A 28_A 54_A 0.033 0.75 0.168 N/A 



  8. Appendices 

210 
 

185 193 B 100_Y 108_S 0.033 0.75 0.168 N/A 

323 327 B 238_W 242_E 0.033 0.75 0.168 N/A 

349 355 B 264_P 270_S 0.033 0.75 0.168 N/A 

136 163 B 51_N 78_F 0.033 0.748 0.167 N/A 

53 69 A 53_T 69_K 0.033 0.748 0.167 N/A 

72 260 AB 72_T 175_L 0.033 0.747 0.167 0.037 

115 220 B 30_F 135_L 0.033 0.747 0.167 N/A 

134 142 B 49_G 57_L 0.033 0.747 0.167 N/A 

153 275 B 68_F 190_L 0.033 0.746 0.166 N/A 

243 330 B 158_N 245_V 0.033 0.746 0.166 N/A 

124 307 B 39_F 222_F 0.033 0.746 0.166 N/A 

112 255 B 27_K 170_G 0.033 0.746 0.166 N/A 

53 339 AB 53_T 254_S 0.033 0.745 0.166 0.037 

129 173 B 44_A 88_T 0.033 0.745 0.166 N/A 

80 288 AB 80_P 203_F 0.033 0.744 0.165 0.036 

48 52 A 48_L 52_A 0.033 0.744 0.165 N/A 

 


