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Summary 

Natural products derived from cyclodipeptides (CDPs) with a 2,5-diketopiperazine (DKP) skeleton 

comprise an important class of secondary metabolites, especially indole alkaloids derived from 

tryptophan-containing CDPs, which are widespread in fungi, bacteria, and plants. They play vital roles 

in drug discovery and development owing to their significant biological and pharmacological activities. 

In nature, the DKP cores can be generated by two distinct enzyme groups, that is, the nonribosomal 

peptide synthetases (NRPSs) and the aminoacyl tRNA-dependent cyclodipeptide synthases (CDPSs). 

Afterwards, different types of tailoring enzymes, such as cytochrome P450s, FAD-dependent 

oxidoreductases, cyclodipeptide oxidases (CDOs), prenyltransferases (PTs), and methyltransferases 

(MTs) are involved in installing a number of functional groups to the DKP scaffolds, thus generating 

various chemical structures. Although CDPSs belong to a newly defined family of enzymes, a large 

set of CDPSs have been identified. Among them, only several CDPS-associated biosynthetic 

pathways have been functionally characterized. In recent years, huge amounts of microbial genome 

sequences have been released in public databases and revealed numerous silent or cryptic gene 

clusters hiding in their genomes, including those for 2,5-DKPs, indicating great potential for discovery 

of novel metabolites. Therefore, full exploration of these untapped gene clusters could be a promising 

way to expand the chemical range of 2,5-DKPs accessible to the medical industry in the future. 

In the first project, in cooperation with Dr. Huili Yu, eleven CDPSs from Streptomyces strains were 

selected for investigation based on phylogenetic analysis. Their functions were characterized via 

heterologous expression in Escherichia coli. The coding sequences of these CDPSs were individually 

cloned into pET28a (+) vector and overexpressed in soluBL21 host. The fermentation cultures of 

generated transformants were then analyzed by LC-MS. Combined with structural elucidation of 

accumulated products by NMR analysis, nine CDPSs for the assembly of tryptophan-containing 

cyclodipeptides (cWXs) were identified. Therefore, these nine CDP synthases represented new 

members of the CDPS family that are responsible for cWX biosynthesis. Among them, there is one 

cyclo-L-Trp-L-Leu synthase, two cyclo-L-Trp-L-Pro synthases, and three cyclo-L-Trp-L-Trp synthases, 

as well as three unspecific CDPSs producing up to seven products with cyclo-L-Trp-L-Ala or cyclo-L-

Trp-L-Tyr as the major product. Under optimized cultivation conditions, total product yields of 

generated CDPs in the E. coli supernatants reached 46 to 211 mg/L. In recent years, tryptophan-

containing DKPs have received increasing attention due to their promising scaffolds for structural 

modification. Therefore, our study provides a valid experimental basis for further combination of these 

CDPSs with other tailoring enzymes to generate more interesting chemical entities in the field of 

synthetic biology. 

Afterwards, sequence analysis revealed that eight of nine cWX synthase genes identified in the first 

project are surrounded by a putative cytochrome P450 gene. Among them, two CDPS genes, gutA24309 

from Streptomyces monomycini NRRL B-24309 and gutA3589 from Streptomyces varsoviensis NRRL 
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B-3589, are located in the similar gene loci containing four additional genes coding for three 

modification enzymes, i.e., CDO, cytochrome P450, and MT. Heterologous expression of these two 

p450-associated cdps-containing gene clusters in Streptomyces coelicolor led to the identification of 

eight rare and novel C3-guaninyl indole alkaloids, named guanitrypmycins. Expression of different 

gene combinations and precursor feeding experiments proved the biosynthetic steps of 

guanitrypmycins. The CDP skeletons, cyclo-L-Trp-L-Phe and cyclo-L-Trp-L-Tyr assembled by the 

CDPS GutA, will be dehydrogenated merely at the phenylalanyl/tyrosyl side by the CDO Gut(BC) and 

subsequently connected with a guanine moiety by the P450 GutD. Furthermore, the MT GutE governs 

the last modification step to transfer a methyl group to N9′ of the guaninyl residue. Moreover, the non-

enzymatic epimerization of the enzymatic pathway products via keto–enol tautomerism increases the 

structural diversity of guanitrypmycins. In addition, biochemical characterization further confirmed that 

the P450 enzyme GutD functions as the key biocatalyst and catalyzes the unprecedented regio- and 

stereospecific 3-guaninylation at the indole ring of the tryptophanyl moiety. Therefore, this study 

highlights the promise of CDPS-containing pathways as sources of novel biosynthetic transformations 

and natural products. 

In analogy, two cdps-p450-containing operons were identified in Saccharopolyspora antimicrobica via 

genome mining. Heterologous expression, biochemical characterization, together with structural 

elucidation proved that the two P450 enzymes TtpB1 and TtpB2 catalyze distinct regio- and 

stereospecific dimerizations of cyclo-L-Trp-L-Trp, which are differing from those previously reported in 

bacteria. TtpB1 represents the first bacterial P450 that catalyzes the stereospecific C3 (sp3)–C3′ (sp3) 

bond formation between two monomers, both from the opposite side of H-11/H-11′, while TtpB2 is 

characterized as the first P450 to mainly catalyze the unusual linkage between C3 (sp3) of a 

hexahydropyrroloindole unit and N1′ of the tryptophanyl moiety of the second monomer from the H-11 

side. Thus, our finding significantly increases the repertoire of DKP-tailoring enzymes. Additionally, in 

comparison with chemical synthesis, this study provides a simple, direct, and efficient approach for 

enzymatic one-step preparation of structurally complex DKP dimers. 
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Zusammenfassung 

Naturstoffe aus Cyclodipeptiden (CDPs) mit einem 2,5-Diketopiperazin (DKP) als Grundgerüst sind 

wichtige Vertreter von Sekundärmetaboliten. Insbesondere Indolalkaloide, die sich von 

tryptophanhaltigen CDPs ableiten, sind weit verbreitet in Bakterien, Pilzen und Pflanzen. Sie spielen 

aufgrund ihrer vielseitigen biologischen und pharmakologischen Aktivitäten eine entscheidende Rolle 

bei der Entwicklung von Arzneistoffen. In der Natur wird das DKP von zwei verschiedenen 

Enzymfamilien gebildet, entweder von nichtribosomalen Peptidsynthetasen oder von aminoacyl-

tRNA-abhängigen Cyclodipeptidsynthasen (CDPSs). Anschließend können diverse Enzyme, z.B. 

FAD-abhängige Oxidoreduktasen, Cytochrom P450, Cyclodipeptidoxidasen (CDOs), 

Methyltransferasen oder Prenyltransferasen das DKP-Grundgerüst durch Einführung verschiedener 

funktioneller Gruppen modifizieren. Hierdurch entsteht eine Vielzahl an chemischen Verbindungen. 

Obwohl CDPSs eine erst kürzlich entdeckte Enzymfamilie darstellen, sind bereits viele 

unterschiedliche Vertreter gefunden worden. Jedoch wurden nur wenige Biosynthesewege inklusive 

modifizierender Enzyme vollständig aufgeklärt. Seit einigen Jahren wächst die Anzahl sequenzierter 

Genome von Mikroorganismen in öffentlichen Datenbanken stetig, sodass etliche nicht aktive oder 

kryptische Gencluster identifiziert werden konnten. Diese Gencluster weisen großes Potential zur 

Entdeckung neuer Sekundärmetabolite einschließlich 2,5-DKPs auf. Daher stellt die vollständige 

Aufklärung solch unerforschter Gencluster einen vielversprechenden Ansatz für die pharmazeutische 

Industrie dar, um das Spektrum an 2,5-DKPs zu erweitern. 

In meinem ersten Projekt, in Zusammenarbeit mit Dr. Huili Yu, haben wir auf Basis phylogenetischer 

Analysen elf CDPSs aus verschiedenen Streptomyces-Stämmen zur genaueren Untersuchung 

ausgewählt. Ihre Funktion konnte durch heterologe Expression in Escherichia coli aufgeklärt werden. 

Hierzu wurden die für die CDPSs kodierenden Genabschnitte einzeln in den pET28a (+)-Vektor 

kloniert und anschließend im E. coli soluBL21 Host überexprimiert. Danach wurden die 

Transformanten in Flüssigmedium kultiviert, extrahiert und deren Produkte per LC-MS und NMR-

Analyse strukturell aufklärt. Dabei haben wir neun CDPSs für die Synthese tryptophanhaltiger 

Cyclodipeptide (cWXs) identifiziert. Dementsprechend handelt es sich bei diesen neun CDPSs um 

neue Mitglieder der CDPS-Familie, die die Biosynthese tryptophanhaltiger CDPs katalysieren. 

Genauer gesagt handelt es sich um eine cyclo-L-Trp-L-Leu-Synthase, zwei cyclo-L-Trp-L-Pro-

Synthasen, drei cyclo-L-Trp-L-Trp-Synthasen sowie drei unspezifische CDPSs, die als Hauptprodukt 

cyclo-L-Trp-L-Ala oder cyclo-L-Trp-L-Phe bilden. Unter optimierten Kultivierungsbedingungen konnten 

wir Ausbeuten von 46 - 211 mg/L erzielen. In letzter Zeit ist den tryptophanhaltigen DKPs vermehrte 

Aufmerksamkeit zuteil geworden, da ihr Grundgerüst ein vielversprechender Vorläufer für strukturelle 

Modifizierungen ist. Unsere Arbeit bietet daher eine valide, experimentelle Basis für die synthetische 

Biologie, um durch Kombinationen mit anderen nachgeschalteten Enzymen weitere interessante 

Verbindungen zu generieren. 
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Nach erfolgreichem Abschluss des ersten Projekts konnte ich durch weitergehende Sequenzanalysen 

der für cWX Synthasen kodierenden Gene bei acht von neun Genen jeweils ein Gen in unmittelbarer 

Nachbarschaft finden, welches mutmaßlich für Cytochrom P450-Enzyme kodiert. Hierbei habe ich 

mich auf zwei Gencluster aus Streptomyces monomycini NRRL B-24309 bzw. Streptomyces 

varsoviensis NRRL B-3589 konzentriert. Die beiden CDPS-Gene gutA24309 bzw. gutA3589 sind von vier 

weiteren Genen, die für drei Enzyme kodieren, umgeben  ̶  nämlich einer Cyclodipeptidoxidase, einem 

Cytochrom P450 und einer Methyltransferase. Nach heterologer Expression dieser biosynthetischen 

Gencluster in Streptomyces coelicolor konnte ich acht außergewöhnliche und neue Guanitrypmycine 

strukturell aufklären, welche an Position C3 des Tryptophanrestes guanyliert sind. Durch 

unterschiedliche Kombinationen der einzelnen Gene sowie Zufütterungsversuche konnte ich die 

einzelnen Schritte der Guanitrypmycin-Biosynthese entschlüsseln. Das von der CDPS GutA gebildete 

CDP wird im ersten Schritt durch die CDO Gut(BC) am Phenylalanin- bzw. am Tyrosinrest oaxidiert. 

oxidiert. Danach überträgt das P450 GutD ein Guanin auf den Tryptophanrest und anschließend wird 

der Stickstoff an Position 9′ des Guaninrestes durch die Methyltransferase GutE methyliert. Darüber 

hinaus wird das Spektrum der Guanitrypmycine durch nicht-enzymatische Epimerisierung in Form 

einer Keto-Enol-Tautomerie erweitert. Anhand weiterführender biochemischer Untersuchungen 

konnte die Funktion des Cytochrom P450 GutD als Schlüsselkatalysator dieser bisher beispiellosen, 

regio- und stereoselektiven 3α-Guanylierung des Tryptophanrestes bestätigt werden. Diese Arbeit 

unterstreicht, wie aussichtsreich CDPSs beinhaltende Biosynthesewege als Quelle neuer 

biochemischer Reaktionen und der damit verbundenen Entdeckung unbekannter Naturstoffe sind. 

In gleicher Herangehensweise habe ich zwei weitere CDPSs in Saccharopolyspora antimicrobica 

mittels Genomanalyse entdeckt, die mit P450s zusammen lokalisiert sind. Durch heterologe 

Expression, biochemische Untersuchung und LC-MS und NMR-gestützter Strukturaufklärung konnte 

ich beweisen, dass die zwei P450s TtpB1 und TtpB2 die regio- und stereospezifische Dimerisierung 

zweier cyclo-L-Trp-L-Trp katalysieren. Diese Art der Dimerisierung war zuvor nicht in Bakterien 

bekannt. TtpB1 ist das erste identifizierte P450, welches eine stereospezifische C3 (sp3)–C3′ (sp3) 

Bindung verknüpft, jeweils gegenüber zu H-11 bzw. H-11′. TtpB2 ist hingegen das erste P450, welches 

eine ungewöhnliche Bindung zwischen dem C3 (sp3) der Hexahydro-Pyrroloindoleinheit und dem N1′ 

des Tryptophanrestes einfügt. Hiermit konnte ich das Repertoire an DKP-modifizierenden Enzymen 

signifikant erweitern und darüber hinaus einen einfachen, direkten und effizienten Weg zur 

enzymatisch kontrollierten Synthese für synthetisch schwer zugängliche DKP-Dimere aufzeigen. 
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1 Introduction 

1.1 Actinobacteria: the most prolific source of natural products 

Actinobacteria, also known as actinomycetes, are filamentous gram-positive bacteria and constitute 

one of the largest bacterial phyla in nature. Similar to the filamentous fungi, many actinobacteria can 

produce a mycelium, and many of these mycelial actinobacteria reproduce by sporulation.1 Therefore, 

they were originally recognized as a transitional form between fungi and bacteria. In general, 

actinobacteria have a high guanine-plus-cytosine (G+C) content in their genomes (commonly ranging 

from 51% to over 70%).2 As free-living microbes, actinobacteria are widely distributed in diverse 

natural habitats, including soil environments, marine and freshwater systems.3 Actinobacteria play 

critical roles in helping to sustain ecosystems and are implied as important contributors to the global 

carbon cycle through the breakdown of plant biomass into simple sugars.4 They are also capable of 

mediating community dynamics by producing a range of small molecules.4  

On the other hand, actinobacteria have made the most significant contribution in the field of 

biotechnology as the versatile producers of chemically diverse and biologically active natural products 

(NPs) with broad applications in medicine, agriculture, and environment.5 They are known as the most 

important source of antibiotics.6 Notably, approximately two-thirds of clinically used antibiotics of 

natural origin are produced by actinobacteria, predominantly by Streptomyces.7 Different classes of 

actinobacteria-derived antibiotics are used as human drugs ranging from macrolides (erythromycin8), 

tetracyclines9, ansamycins (rifamycins10), amphenicols (chloramphenicol11), aminoglycosides 

(kanamycin12, streptomycin12), glycopeptides (vancomycin13, teichoplanin14), lipopeptides 

(daptomycin15), to oxazolidinones (cycloserine16) (Figure 1). In addition to these useful antibiotics, 

actinobacteria are also efficient producers of numerous bioactive substances with important antifungal, 

anticancer, insecticidal, immunosuppressive and enzyme inhibition activities, including various 

polyketides, peptides, alkaloids, terpenoids, and saccharides.17 As shown in Figure 2, nikkomycin, a 

uridine-based nucleoside-peptide originally isolated from Streptomyces tendae, is a potential 

antifungal agent which competitively inhibits the chitin synthesis in fungi.18 Salinosporamide A, a 

proteasome inhibitor from the marine actinobacterial strain Salinispora tropica, displays remarkable in 

vitro cytotoxicity toward a variety of cancer cell lines. Currently, it undergoes Phase II human clinical 

trials for the treatment of multiple myeloma.19 Avermectins are a novel class of macrocyclic lactones 

produced by Streptomyces avermitilis, which are generally used as pesticides for the treatment of 

insect pests and parasitic worms.20 Rapamycin has immunosuppressive properties by targeting 

mTORC1, a ubiquitous kinase-containing complex promoting cell growth and proliferation.21  

Nowadays, there is urgent need for new antibiotics and bioactive metabolites due to the emergence 

of multidrug-resistant pathogens.22 It is believed that chemical diversity from actinobacterial natural 

products will continue to play important roles in the future drug discovery and development.23  
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Figure 1 Examples of clinically used antibiotics originated from actinobacteria. 

 

Figure 2 Examples of the bioactive substances isolated from actinobacteria. 

1.2 Genome mining for novel secondary metabolites from actinobacteria 

The discovery of streptomycin from Streptomyces griseus has triggered the search for new antibiotics 

from actinomycetes.24 Since then, multiple new classes of antibiotics were discovered and introduced 

over the following two decades, so called the “golden era” of antibiotics.25 However, in the 1980s, 

owing to the repeated isolation of actinobacteria and the frequent rediscovery of known compounds 

thereof, the discovery of new compounds through the traditional bioactivity-guided screening strategy 

became more and more difficult.26 Whereas, at the beginning of the 21st century, the rapid 

developments in sequencing technologies and bioinformatic approaches revealed that the ability of 

actinobacteria to synthesize novel bioactive natural products had been far underestimated.17 Typically, 

the encoding genes for the enzymes that synthesize a specific NP are located in a constitute region 

on the microbial chromosome, so-called biosynthetic gene cluster (BGC). Bioinformatic analysis 

shows that each actinobacterial genome has 20 − 40 BGCs, much more than previously isolated NPs 

thereof.27 For instance, the model actinomycete Streptomyces coelicolor, which has been extensively 
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studied for more than 70 years, was well known to produce five compounds. However, the analysis of 

its complete genome sequence revealed the presence of 18 additional putative BGCs related to 

secondary metabolite (SM) biosynthesis. Most of them have been characterized by now.28 In general, 

the majority of BGCs appear “silent” or express very poorly under normal laboratory conditions in their 

natural host.29 Therefore, a range of strategies, e.g., genome mining, have been developed to identify 

these cryptic BGCs, thereby gaining access to novel lead compounds.30 This has given birth to the 

new, so-called field of genomics-driven natural product discovery, which complements the traditional 

approaches.31. 

1.2.1 Genome mining 

The term “genome mining” refers to the utilization of genomic information for the discovery of novel 

processes, targets, and products. It involves bioinformatic analysis and identification of unknown 

BGCs in the target genomes,32 sequence analysis of the encoding genes, and the experimental 

identification of the products synthesized by these BGCs (Figure 3A).33 Therefore, the prediction and 

selection of uncharacterized BGCs by bioinformatic methods is always the high priority for genome 

mining of novel NPs.34 Since the rapid development of next generation sequencing (NGS) 

technologies has allowed to acquire the genomic data in a faster and cheaper way, a huge number of 

genome sequences are deposed and accessible in the public databases.32 Currently, the basic 

strategy to find and identify novel BGCs is to target signature genes responsible for a specific NP 

biosynthesis by comparative analysis.35 Several computational tools have been developed to analyze 

and functionally annotate the draft genome sequences. One representative tool is the widely used web 

software “antibiotics and Secondary Metabolite Analysis SHell” (antiSMASH).36 This platform provides 

a rapid identification and annotation of BGCs in microbial genomes and prediction of their putative 

corresponding metabolic products by comparison to the known BGCs, in turn, identifying new 

biosynthetic pathways. “Genome neighborhood networks” (GNNs) as a high-throughput approach, 

facilitates the discovery of uncharacterized metabolic pathways by large-scale visualization and 

analysis of the genome context.37 This analysis tool is the extended variants of sequence similarity 

networks (SNNs), thereby enabling the prediction of both the in vitro enzymatic activities and in vivo 

metabolic functions. For targeted genome mining, these computational tools are powerful to analyze 

the cryptic BGCs and give important insights into the structural features of their potential product(s).38 

In order to activate these intriguing and cryptic gene clusters and trigger the corresponding SM 

overproduction, multiple new strategies have been developed to reveal the chemical potential of 

actinomycetes in recent years. Generally, these strategies fall into two broad categories: pleiotropic 

and pathway-specific approaches.31 The pleiotropic approaches may influence and activate the 

expression of more than one gene or gene cluster. Such approaches include growth condition 

optimization, co-cultivation with other microorganisms sharing the common ecological niches, addition 

of chemical elicitors, ribosome engineering, as well as manipulation of global regulators thereby 

initiating global changes in the regulation (Figure 3B).29, 39-42 In contrast to pleiotropic approaches, 

pathway-specific strategies enable a more targeted approach to mine novel NPs with a higher degree 

of control and predictability.31 Currently, two main approaches for the induction of a candidate BGC 
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expression have been proven effective, i.e., (i) genetic manipulation in the native host, such as 

overexpression of the pathway-specific activator genes, the replacement of the native promoters with 

strong and inducible promoters, and inactivation of the negative regulatory genes; and (ii) heterologous 

expression of the interested BGCs in well-studied hosts (Figure 3C).31, 43-45 

 

Figure 3 Genome mining approach for natural product discovery in actinobateria. 
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1.2.2 Manipulation of pathway-specific regulatory genes 

The biosynthesis of SMs in actinobacteria is stringently controlled by complex regulatory networks 

with multiple level regulators, including global regulators and pathway-specific regulators.46-48 The 

global regulators always regulate more than one metabolic pathways and may not directly affect any 

specific BGC, while pathway-specific regulators are mainly involved in the biosynthesis of a specific 

metabolite.49 Comprehensive analysis revealed that there are one or more putative regulatory genes 

located inside each BGC, encoding so-called pathway-specific regulators (PSRs), together with the 

backbone and resistance genes.26, 32, 50 Therefore, these encoded transcription regulators, also named 

“cluster-situated regulators” (CSRs), act either as an activator or a repressor to affect the production 

of the respective metabolite by directly controlling the transcriptional initiation of a neighboring gene 

within the gene cluster.49, 51 In general, the repressors bind to the promoter region, thereby preventing 

the RNA polymerase from starting the gene transcription.52, 53 In contrast, most activators bind to the 

upstream region of the transcriptional promoter, helping recruit the RNA polymerase to start or 

accelerate the transcription.52, 54 Thus, overexpression of activators or deletion of repressors are the 

straightforward and promising approaches to activate the cryptic BGCs of interest in the genomic-

driven era.  

The SARP (Streptomyces antibiotic regulatory proteins) family and the LAL (large ATP-binding 

regulators of the LuxR family) family are two widely recognized families of pathway-specific activators 

in actinobateria.55, 56 Recently, several clusters have been reported to wake up by inducing the 

expression of these positive regulators. A common strategy is to replace the natural promoter with a 

strong inducible or constitutive promoter. For example, a giant type I PKS gene cluster, spanning 

nearly 150 kb, was activated by insertion of the strong constitutive ermE* promoter in front of a LAL 

regulator in the genome of Streptomyces ambofaciens, leading to the discovery of the unusual 

glycosylated macrolide stambomycins.57 In contrast, the TetR (tetracycline repressor protein) family 

usually belong to the transcriptional repressors, which can repress the expression of their own genes 

as well as that of other genes.29, 58, 59 Knocking out calR3, encoding for a TetR family repressor in 

Streptomyces chartreusis NRRL 3882, led to the significantly increased production of calcimycin and 

its intermediate cezomycin.60 

Very recently, novel approaches, e.g., the CRISPR-Cas (Clustered regularly interspaced short 

palindromic repeat-CRISPR-associated protein) dependent genome editing system, have been 

developed to efficiently manipulate the regulatory genes.61 Nevertheless, in most cases, the complex 

mechanisms of regulatory networks in actinobacteria are still poorly explored.46 Hence, a better 

understanding of their regulatory networks in the future would greatly promote the discovery of new 

actinobacterial metabolites. 

1.2.3 Heterologous expression 

Heterologous expression in well-characterized hosts has been proven to be a powerful approach to 

activate BGCs and discover the corresponding products.62, 63 Principally, this approach relies on 

efficient cloning of intact BGCs into suitable expression vectors.64 The typical workflow for 
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heterologous expression of BGCs derived from actinobacteria is shown in Figure 4. After DNA 

isolation from the native producers, BGCs of interest are usually captured from genomic DNA libraries, 

which are constructed by using cosmid, fosmid, bacterial artificial chromosome (BAC), or phage 

artificial chromosome (PAC) vectors.62, 65-69 However, this method always requires highly efficient 

screening assays afterwards. Alternatively, the desired BGCs can be directly cloned from the 

chromosomal DNA of the actinomycetes. Direct Pathway Cloning (DiPaC) is an efficient strategy for 

cloning small- and mid-size BGCs by using the long-amplification polymerase chain reaction (PCR) to 

obtain the linear DNA fragments, followed by in vitro DNA assembly with the vector via sequence- and 

ligation-independent cloning (SLIC) or Gibson assembly.70, 71 In addition, several methods based on 

in vivo homologous recombination have been developed for direct cloning of large-size BGCs, such 

as linear-linear homologous recombination (LLHR), linear-circular homologous recombination (LCHR) 

in E. coli, exonuclease combined with RecET recombination (ExoCET), Cas9-assisted targeting of 

chromosome segments (CATCH), as well as transformation-associated recombination (TAR) cloning 

in Saccharomyces cerevisiae.72-77 These powerful cloning methods have highly accelerated the 

process of NP discovery and greatly contributed to the research on NP biosynthesis.  

 

Figure 4 Typical workflow for heterologous expression of gene clusters from actinobacteria. 

Once the candidate BGC is determined and cloned, it needs to be transferred into the heterologous 

host. Selection of a reliable host is an essential component to ensure the robust expression of BGCs. 

Generally, the optimized host should have an abundance of natural product precursors and a 

promiscuous transcriptional machinery for the efficient transcription of various BGCs, e.g., regulatory 

elements, promoters, and ribosome binding sites.78, 79 Moreover, a suitable host organism should 

possess the following features: simplicity of use, excellent growth characteristics, and a plethora of 

readily accessible genetic tools.80 For efficient expression of BGCs derived from actinobacteria, 
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several optimized Streptomyces strains have been developed as hosts. Streptomyces coelicolor, 

Streptomyces lividans and Streptomyces albus are the most widely used laboratory strains.81-84 They 

are closely related species and exhibit a similar codon usage with the BGC’s native holders, therefore 

they could provide a higher translational efficiency.85 Additionally, these strains have a relative clear 

background by removing endogenous genes, thereby providing a better detection of new produced 

compounds.86 E. coli could also serve as a viable option for heterologous expression with a rapid 

growth rate and easier genetic manipulation.87 The utility of E. coli as hosts for overproduction of many 

biological products is also established.88, 89 Nevertheless, due to lack of some necessary biosynthetic 

components or substrates, some important modifications and improvements are usually required in E. 

coli strains before heterologous expression.90  

Once transferred, the stability of the exogenous BGCs inside the heterologous host is crucial for the 

sustainable accumulation of the product(s).78 Basically, the foreign BGCs can be either kept on a stable 

host-compatible and replicative plasmid or integrated into the chromosome. For plasmid-based 

overexpression, the intact BGCs can be maintained in a single plasmid or multiple plasmids with 

individually coding regions in cis.78 In comparison, the genomic integration of a target BGC within the 

heterologous host is a much more stable option for successful expression. In Streptomyces hosts, 

site-specific recombination is the widespread strategy to achieve chromosomal integration.91 

Afterwards, the new metabolites can be identified by comparing the changes of the metabolite profiles, 

usually via high-performance liquid chromatography (HPLC). Furthermore, large-scale fermentation 

and chemical extraction of cultures lead to isolation and subsequent structural elucidation of the new 

compounds by 1D and 2D NMR spectroscopy. Sometimes, even though the expression of BGCs is 

successful, the yields may remain stuck at low level. Given the requirement for high titers of production, 

some additional approaches, such as refactoring of essential clusters with promoter exchange and 

insertion of regulatory regions, are performed to modify the expression constructs.31, 78 

Very recently, dozens of cryptic BGCs from actinobacteria have been successfully overexpressed in 

different systems, thereby diverse novel compounds with potential bioactivities were obtained.62 

Metagenomics reveals that uncultivated organisms including actinobacteria could be a rich source of 

cryptic BGCs for special metabolites.92 As a result, a big challenge for the future is how to exploit these 

untapped potentials to gain more bioactive NPs. It is expected that innovative heterologous expression 

systems and novel genome mining strategies, combined with synthetic biotechnology can promote the 

discovery of novel scaffolds from diverse natural resources and broaden our knowledge about new 

biosynthetic mechanisms.31, 62 

1.3 2,5-Diketopiperazines 

2,5-diketopiperazines (2,5-DKPs), the smallest class of cyclic peptides, are achieved by the 

condensation of two -amino acids. They are heterocyclic compounds and characterized by a central 

diketopiperazine (DKP) ring. The general core of 2,5-DKPs is shown in Figure 5A. Substitution of side 

chain groups R1 and R2 with different types of amino acids will generate the simplest cyclodipeptides 

(CDPs). Their central scaffold, the six membered ring, can be then modified by various substitutions 

and different stereochemistry. 
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Figure 5 General structure of 2,5-DKPs (A) and examples of bioactive DKPs and derivatives (B) 

2,5-DKPs are ubiquitous in nature and often found as side products of polypeptides, especially during 

the production process of food and beverages.93 They also constitute a large class of SMs obtained 

from fungi, bacteria, plants, and mammals.94 Despite the increasing number of isolated and 

characterized DKPs in recent years, their physiological roles in the producing organisms have yet to 

be investigated. In some cases, they are reported to be capable of activating or inhibiting LuxR-type 

proteins in N-acylated L-homoserine lactone (AHL) biosensor strains, thus suggesting that they are 

potentially involved in the biochemical communication as a new class of Quorum sensing (QS) 

molecules for interspecies or even interkingdom signaling.95 

In recent years, CDPs and their derivatives DKPs have attracted an increasing interest due to their 

important and diverse biological and potential pharmacological properties, including antibacterial, 

antifungal, antiviral, antitumor, and immunosuppressive effects.96 Representatives of bioactive DKPs 

are shown in Figure 5B. cyclo-L-Phe-L-Pro and cyclo-L-Phe-trans-4-OH-L-Pro show antifungal 

activities.97 Phenylahistin, produced by Aspergillus ustus, shows an inhibitory effect on the cell cycle 

progression.98 Plinabulin (BPI-2358), the derivative of phenylahistin, is in a world-wide Phase III clinical 

trial for non-small cell lung cancer treatment. Gliotoxin is an immunosuppressive cytotoxin, which has 

been isolated from several fungal species, such as Aspergillus fumigatus.99 Bicyclomycin exhibits 

activities against a broad spectrum of gram-negative bacteria and is currently used as a commercial 

antibiotic to treat diarrhea in Japan.100 Nocardioazine A, originally isolated from a marine-derived 

actinobacterial strain, shows inhibitory activity against the membrane protein efflux pump P-

glycoprotein, which is overexpressed in many multidrug resistant cancer cells.101 Tadalafil, achieved 

via chemical synthesis, is used to treat male erectile dysfunction.102 

The DKP scaffolds can be easily obtained from -amino acids by conventional methodology.103 In 

recent years, the synthesis of 2,5-DKPs via solid-phase intramolecular cyclization has been the most 

utilized method, which is useful for the construction of chemical libraries for drug lead discovery.104 In 

nature, the 2,5-DKP scaffolds are synthesized by two different types of enzymes, the nonribosomal 

peptide synthetases (NRPSs) and the cyclodipeptide synthases (CDPSs). Furthermore, the tailoring 

enzymes introduce specific modifications to the DKP cores and (or) the side chains to generate more 

complex DKP-containing NPs. 
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1.3.1 DKP scaffolds from NRPS pathways 

So far, most of the DKP-scaffold containing NPs are biosynthesized by the dedicated NRPSs.105 A 

large number of DKP derivatives from different families, including indole diketopiperazine alkaloids 

(indole DKPs, such as acetylaszonalenin106 and fumitremorgin B107), ergot alkaloids (such as 

ergotamine108), epidithiodioxopiperazines (ETPs, such as gliotoxin109 and sirodesmin110), dimerumic 

acid (such as erythrochelin111 and coprogens112) and thaxtomin113, are products of NRPS-dependent 

pathways (Figure 6). 

 

Figure 6 Examples of DKP derivatives synthesized by NRPS pathways. 

NRPSs are long-studied, modular multidomain enzyme complexes and widely spread in fungi and 

bacteria. A typical NRPS module comprises three essential domains: the adenylation (A) domain, the 

peptidyl carrier protein (PCP) domain (also called thiolation (T) domain) and the condensation (C) 

domain, for the incorporation of one amino acid to the peptide product (Figure 7A).114 The initial step 

of the biosynthesis of nonribosomal peptides is performed by the A domain, which is responsible for 

the substrate recognition and activation via adenylation, thus resulting in an aminoacyl-AMP 

intermediate. The activated intermediate is then transferred onto the 4′-phosphopantetheine (PP) arm 

of the PCP domain via a thioester linkage. The C domain catalyzes the peptide bond formation 

between the current amino acyl unit and the peptidyl chain that is tethered to the adjacent upstream 

PCP domain, hereby elongating the growing peptide chain. The chain elongation is terminated by the 

action of the fourth essential NRPS catalytic unit, the thioesterase (TE) domain, which catalyzes the 

product release by either hydrolysis or macrocyclization.115 In this assemble line, the number and the 

order of modules in the NRPSs matches those of amino acids in the final peptide product.116 In addition 

to the proteinogenic amino acids, NRPSs can also catalyze the incorporation of a broad range of non-

proteinogenic amino acid building blocks, e.g., D-amino acids and -hydroxy acids, to generate 

complex scaffold architectures.117 

For the synthesis of DKP scaffolds, the dedicated NRPSs lack the C-terminal TE domain, which is 

replaced by the condensation-like (CT) domain (Figure 7B). It is suggested that the terminal CT domain 

could be responsible for the cyclization of the dipeptide to form the diketopiperazine structure, thereby 
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releasing the peptide from NRPS assemble line.118 CDPs synthesized by NRPSs can be further 

modified by the tailoring enzymes, usually encoded by genes that are clustered with the NRPS genes, 

to generate the final diketopiperazine metabolites.119 Various chemical transformations ranging from 

prenylation to dehydrogenation, hydroxylation or methylation have been found in NRPS pathways to 

modify the DKP skeletons.96 

 

Figure 7 Examples of NRPS assembly lines. 

In a few cases, the DKP scaffolds were generated through the premature release of NRPS-tethered 

dipeptidyl-thioester intermediates during the chain elongation process. For instance, cyclo-(D-Phe-L-

Pro) was observed as a dipeptide intermediate during the biosynthesis of gramicidin S and tyrocidine 

A in Bacillus brevis.120 Cyclomarazines A and B were characterized during the biosynthesis of 

cyclomarin in Salinispora arenicola CNS-205.121 It was proposed that the formation of the truncated 

cyclomarazine DKPs is catalyzed by the type II TE, which hydrolyze the incompletely processed 

dipeptide, or via a nonenzymatic process because of the ineffective catalysis by the third module of 

the NRPS CymA.121  

1.3.2 DKP scaffolds from CDPS pathways 

In contrast to NRPSs, CDPSs are a newly defined family of enzymes that directly hijack the aminoacyl-

tRNAs (aa-tRNAs) from the primary metabolism as substrates to form the DKP scaffolds. The first 

member of this family, AlbC, which catalyzes the formation of cyclo-L-Phe-L-Leu, was characterized in 

Streptomyces noursei in 2002.122 To date, more than 120 CDPSs have been characterized, including 

more than 40 members in the past two years.123 Over 75 different cyclodipeptides have been 

assembled by CDPSs, consisting of 18 of the 20 proteinogenic amino acids. Very recently, CDPSs 

have been also demonstrated to incorporate non-canonical amino acids (ncAAs) to produce non-

canonical 2,5-DKPs. Compared with NRPSs, CDPSs are small enzymes (∼30 kDa) typically with 200 

- 300 amino acid residues.124 The majority of CDPSs have been identified from bacteria, especially 

from actinobacteria.123 Only a few cases were distributed in eukaryotes with one enzyme from the sea 
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anemone Nematostella vectensis.125  

 

Figure 8 The proposed catalytic mechanism of CDPSs for cyclodipeptide biosynthesis.96 

The available crystallographic structures of three CDPSs, AlbC (PDB 3OQV), Rv2275 (PDB 2X9Q) 

and YvmC (PDB 3OQH), provide insights into the catalytic mechanism of the CDP formation.126-128 

Their monomeric protein possesses a common compact  fold and a conserved Rossmann-fold 

domain.128 Although displaying only about 15% sequence similarities, the mentioned three CDPSs 

share high degree of structural similarity to the catalytic domains of class- Ic aminoacyl-tRNA 

synthetases (aaRSs), i.e., the Rossmann-fold subdomain and a helical connective polypeptide 1 (CP1) 

subdomain.96 In addition, all CDPSs possess two surface-accessible pockets for the substrate 

selection and catalysis: pocket 1 (P1), which is corresponding to the aminoacyl binding pocket in class-

Ic aaRSs, and pocket 2 (P2), which is missing in the aaRSs.123 It was proposed that CDPSs use a 

sequential ping-pong mechanism to achieve the synthesis of cyclodipeptides (Figure 8).129 Following 

the recognition of the first substrate, the catalytic step initials with the binding of the first aa-tRNA to 

the CDPSs and the subsequent transfer of the aminoacyl group to the conserved serine residue of P1 

to form an acyl-enzyme intermediate. Then, the resulted intermediate reacts with the aminoacyl moiety 

of the second aa-tRNA to form a dipeptidyl intermediate, which will further undergo intramolecular 
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cyclization, leading to the formation of the second peptide bond and the yield of final CDP product.96 

It is noteworthy that most of the CDPSs exhibit some promiscuity with respect to the recognition of the 

aa-tRNA substrates, thus producing a series of CDP products. Several CDPS-derived NPs have been 

characterized to date, including albonoursin from S. noursei,122 pulcherrimin from Bacillus subtilis,130 

mycocyclosin from Mycobacterium tuberculosis,131 nocazines from Nocardiopsisi dassonvillei,132 and 

bicyclomycin from Streptomyces sapporonensis (Figure 9).133, 134  

 

Figure 9 Examples of DKPs generated by CDPS pathways. 

1.4 Tailoring enzymes in CDPS-dependent pathways 

Similar to most NPs from microorganisms, the enzymes modifying the assembled DKP-scaffolds can 

be found in nearly all of the putative NRPS- or CDPS-associated gene clusters. Genes coding for 

multiple types of tailoring enzymes from different families have been found close to the respective 

CDPS gene in the available genome databases. These putative modification enzymes include 

cytochrome P450s (P450s), -ketoglutarate/Fe2+-dependent dioxygenases (-KGDs), flavin-

containing oxidoreductases, /-hydrolases, prenyltransferases (PTs) and methyltransferases (MTs), 

cyclases, and ligases. Once the DKP scaffolds are synthesized, various types of chemical 

transformations can be introduced on the CDP ring core and amino acid residues by associated 

tailoring enzymes, generating diverse DKP-containing compounds.  

1.4.1 Cytochrome P450s 

Cytochrome P450s (P450s) are a superfamily of heme-dependent monooxygenases. They are widely 

called as monooxygenases because they are able to catalyze the scission of dioxygen (O2), leading 

to the insertion of one oxygen atom into the substrate, whereas the other one is reduced to water.135 

The P450 enzymes were named for the maximum absorbance of the heme (the Soret peak) in the 

ferrous-CO-bound complex at 450 nm.136, 137 P450s are the most versatile biocatalysts in nature and 

widely distributed throughout all life kingdoms, from archaea, prokaryotes, to eukaryotes.138 In addition 

to their well-known roles in human health, such as xenobiotic detoxification, steroid biosynthesis and 

drug metabolism, P450s also play significant roles in the biosynthesis of NPs.139 

1.4.1.1 The P450 catalytic cycle 

The catalytic core of P450s is composed of a conserved four helix (D, E, I, and L helices) bundle, 

forming a trigonal prism-shaped structure.140 P450s involved in natural product assembly and tailoring 
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reactions exhibit diverse sequences and structures and lack conserved sequence motifs.139 To date, 

most of the structurally defined P450 proteins associated with NP biosynthesis originate from 

actinomycetes, especially form Streptomyces species, with sequence identities less than 43%.141 The 

cysteine (Cys) residue is the only absolutely conserved residue among all members of P450 family, 

serving as the heme iron ligand located at the N-terminal end of a helix. A conserved G347XXXC351 

motif (residue numbering according to the EryF sequence) in the heme-binding loop harboring the Cys 

residue is found in bacterial P450s.141  

The currently accepted catalytic mechanism for P450s (in this case for the normal hydroxylation 

reaction) employs a sophisticated, multi-step catalytic cycle involving a range of transient 

intermediates (Figure 10).142 (i) The catalytic cycle starts from the substrate-free resting state. In 

addition to the conserved Cys residue and four nitrogen atoms of the porphyrin (Por) ring, one water 

molecule is coordinated to the ferric heme-iron (FeIII) as the sixth ligand. (ii) The substrate (R–H) binds 

to the active site and displaces the water ligand, resulting in a substrate-bound ferric complex with the 

shift of the low-spin ferric state to high-spin one. (iii) A single electron is transferred from a redox 

partner and reduces the ferric (FeIII) state to the ferrous (FeII) state. (iv) Then, one molecular oxygen 

binds to the ferrous heme iron (FeII) to form the ferrous dioxy [FeII–O2] complex and (v) followed by 

the second electron reduction event from the redox partner to generate a peroxo-ferric [FeII–OO2-] 

intermediate. (vi) This intermediate is protonated to form the ferric hydroperoxy [FeIII–OOH] complex, 

which is also known as Compound 0 (Cpd 0). (vii) The second protonation and further heterolytic 

cleavage of the O–O bond with concurrent release of a water molecule gives rise to the transient and 

highly reactive ferryl-oxo intermediate [FeIV=O], referred as compound I (Cpd I). (viii) Cpd I then 

abstracts a hydrogen atom from the substrate to form the ferryl-hydroxo compound II (Cpd II) with a 

substrate radical. (ix) The radical rebounds the hydroxyl group of Cpd II to form the hydroxylated 

product (R-OH). Dissociation of the monooxygenated product (R-OH) from the active site and the 

rebound of a water molecule as the sixth heme ligand lead to the regeneration of the resting state of 

the P450 enzyme, thus completing the catalytic cycle. It should be noted that some substrate-P450 

complex can directly convert into Cpd 0 by utilizing H2O2 as the sole electron and proton donor, known 

as the peroxide shunt pathway. 

The two electrons required for the heme-FeIII reduction events in this cycle are derived from the 

cofactors NADPH or NADH and transported through the redox partner systems. There are two major 

types of P450 redox systems: (i) Class I is a two-component system, comprised of a flavin adenine 

dinucleotide (FAD)-containing reductase (FdR) along with an iron-sulfur containing ferredoxin (Fdx). 

In this case, the P450 and its redox partners FdR and Fdx are soluble cytoplasmic enzymes, which 

are usually present in most bacterial and mitochondrial P450s. (ii) The Class II P450 system has a 

single FAD- and flavin mononucleotide (FMN)-containing reductase, referred to cytochrome P450 

reductase (CPR), as redox partner. In this class, both the P450 and its partner are membrane-bound 

enzymes, which are mainly found in eukaryotic organisms.143 
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Figure 10 The P450 catalytic cycle with hydroxylation as an example. 

1.4.1.2 P450-mediated diverse reactions in natural product biosynthesis 

In addition to the initial assembled building blocks, the structural complexity of natural products mainly 

arises from post-decorating enzymes to highly functionalize the skeletons with a set of chemical 

transformations. Among them, P450s are one of the most utilized and talented enzymes that catalyze 

a great variety of reactions to modify diverse NP scaffolds (Figure 11).139 

The well-known reactions catalyzed by P450s in NP biosynthesis are C–H or N–H bond hydroxylation 

and C=C double bond epoxidation. Notably, over two-thirds of the characterized P450s from 

Streptomyces catalyze hydroxylations.139 P450s for these oxidative reactions exhibit high regio- and 

stereoselectivity, resulting in the rigid order of the biosynthetic steps. Recently, several P450s have 

been characterized as multifunctional enzymes that can catalyze a sequential hydroxylation and 

epoxidation reactions.50, 144 For instance, MycG is capable of catalyzing two consecutive oxidation 

reactions on the 16-membered ring macrolide to generate mycinamicin V and mycinamicin II, 

respectively.144 TamI, together with the FAD-dependent oxidase TamL as the partner, catalyzes 

multiple oxidative steps in a defined order, including C10 hydroxylation, C11/C12 epoxidation, and C18 

hydroxylation in tirandamycin biosynthetic pathway.145  
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Figure 11 Diverse transformations catalyzed by P450s in natural product biosynthesis. 

The P450-mediated common transformations like hydroxylation and epoxidation, do not significantly 

alter or affect the substrate skeletons. Whereas, some other unusual or intriguing chemical reactions 

performed by P450s may lead to dramatic structural modifications.138 A broad range of unique P450 

reactions leading to skeleton construction or structure re-shaping, such as bond coupling, cleavage, 

and migration, have attracted much more attention recently.138 

The biaryl axis is the central structural element in a large number of structurally attractive and 

biologically important chemical entities.146 Nevertheless, phenol coupling usually requires complex 

steps and is difficult to achieve via chemical synthesis due to the high challenges for controlling the 

linkage of two monomers and the configuration of the biaryl axis at the same time.146, 147 It has been 

reported that many P450 enzymes are capable of catalyzing aromatic coupling reactions. For instance, 

the well-known and studied P450 enzyme StaP (CYP245A1) catalyzes an intramolecular C–C bond 

formation, leading to the generation of the indolocarbazole core in staurosporine biosynthesis.148-150 

An indole cation radical mechanism was proposed for the StaP catalyzed aryl–aryl coupling reaction 

(Scheme 1A). In addition to intramolecular aromatic coupling, P450s have been identified to possess 

the capability of mediating intermolecular aryl ring coupling as well. During the pigment biosynthesis 

in S. coelicolor A3(2), two P450 homologues CYP158A1 and CYP158A2, sharing 61% sequence 

identity, catalyze the polymerization of flaviolin but with different product profiles (Scheme 1B).148, 151 

An even more challenging aromatic coupling reaction is performed by the P450 enzyme HmtS in the 

biosynthesis of himastatin, which takes two bulky monomers as the substrate (Scheme 1C).152 In 

recent years, an increasing number of P450s have been reported to catalyze C−C linkage reaction, 

leading to ring formation. As a result, the structural “phenotype”, such as the shape, configuration and 

rigidity of the given substrate, can be significantly changed, which play important roles in constructing 

the skeletons of NPs.138 A striking example is known as VrtK that represents the first P450 capable of 
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catalyze terpene cyclization (Scheme 2A).153  

 

Scheme 1 Examples of P450-mediated intra- and intermolecular aryl–aryl coupling reactions. 

Besides the C–C crosslinking reactions, some P450s are also characterized to catalyze C–N bond 

and C–S bond formation. It is widely acknowledged that the C–N bond formation is achieved by the 

oxidative formation of an electrophilic functional group, which can subsequently be attacked by the 

nitrogen atom.139 Notably, in the biosynthesis of thaxtomin, the unique P450 TxtE nitrates the free L-

tryptophan at the C4 position to afford a C–N linkage in the presence of O2 and NO from L-arginine 

(Scheme 2B).135 During griseoviridin biosynthesis, the cytochrome P450 monooxygenase SgvP is 

involved in a special C–S bond formation through the direct coupling of the free SH group, leading to 

the formation of a nine-membered thioene-containing lactone ring (Scheme 2C).154 Interestingly, some 

P450-mediated uncommon reactions including decarboxylation, C–C bond cleavage or migration, can 

result in a range of skeleton construction reactions, like ring opening and contraction, contributing 

significantly to the structural diversity of NPs.138, 155-157 
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Scheme 2 Examples of P450-mediated bond formation reactions. 

1.4.1.3 P450s involved in CDPS-dependent pathways 

In the past years, a large number of CDPSs have been functionally characterized from bacteria, most 

of which are clustered with predicted DKP tailoring genes. However, CDPS-dependent biosynthetic 

pathways remain largely unexplored. Only nine pathways have been fully studied prior to this thesis, 

including five P450-associated ones. The first example is the biosynthetic pathway of mycocyclosin in 

M. tuberculosis. Following the synthesis of cyclo-L-Tyr-L-Tyr by the CDPS Rv2275, the cytochrome 

P450 enzyme CYP121 (Rv2276) catalyzes the intramolecular diaryl C–C coupling reaction to generate 

mycocyclosin.131 The P450 CYP121 showed high substrate specificity, as the oxidative C–C coupling 

was not observed for other aromatic cyclodipeptide substrates. A bi-carbon radical mechanism has 

been postulated for the C–C bond formation based on its crystal structure and biochemical studies 

(Scheme 3A). Another example is the biosynthesis of pulcherrimin acid in B. subtilis. After cyclo-L-

Leu-L-Leu assembled by the CDPS YvmC, the P450 CYP134A1 (CypX) performs two-step N-

hydroxylations and the subsequent dehydrogenation on the DKP ring to yield pulcherriminic acid, 

which is transformed to the red pigment pulcherrimin via non-enzymatic chelation with iron (Scheme 

3B).130 

Three other examples of P450s were identified in 2018. The P450 enzyme BcmD responsible for the 

hydroxylation on the DKP ring was characterized in the biosynthesis of bicyclomycin. The initial cyclo-

L-Ile-L-Leu undergoes a cascade of dehydrogenation and epoxidation reactions by five -

ketoglutarate/Fe2+-dependent dioxygenases and the hydroxylation by BcmD to afford the final bicyclic 

structure (Scheme 3C).133 Yu et al. characterized the novel P450NB5737 responsible for the coupling of 

a guanine moiety with cyclo-L-Trp-L-Trp via C–N linkage via in vivo heterologous expression and in 

vitro biochemical investigation (Scheme 3D).158 This case represents the first example of nucleobase 

modification of a peptide natural product from biosynthetic origin and thereby extends the spectrum of 

transformations mediated by P450s. The third case is NascB, which was identified as a dimerase for 

intermolecular C–C bond formation between two cyclo-L-Trp-L-Pro precursors during the biosynthetic 
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pathway of naseseazine C (Scheme 3E).159 In addition, a whole-cell biocatalysis system was 

developed by incorporating NascB into an engineered E. coli strain, which thereby efficiently created 

30 dimeric naseseazine analogs by using different CDPs as substrates. Very recently, the structures 

of two dimerases, NzeB and NasF5053 involved in the CDPS pathway, were solved via X-ray analysis, 

providing us new insights into the molecular basis for DKP dimerization.160, 161 

 

Scheme 3 Examples of P450s involved in CDPS-dependent pathways. 

1.4.2 Other characterized enzymes in CDPS-dependent pathways 

Cyclodipeptide oxidases (CDOs) represent the first recognized tailoring enzymes in CDPS-containing 

biosynthetic pathways.122 They are composed of two subunits A and B, of which subunit A displays a 
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fairly high degree to nitroreductases and catalyzes the dehydrogenation reaction in the presence of 

flavin as the cofactor.122 In the biosynthesis of albonoursin, AlbA together with AlbB firstly catalyzes 

the ,-dehydrogenation at the phenylalanine residue of cyclo-L-Phe-L-Leu, then installs the second 

C–C double bond at the leucine hemisphere to yield the di-dehydrogenated product (Scheme 4A).122 

The second characterized CDO, consist of the two subunits Ndas_1146 and Ndas_1147, was proven 

to be responsible for the ,-dehydrogenation in the biosynthesis of the nocazine family in N. 

dassonvillei (Scheme 4B).132 

-Ketoglutarate/Fe2+-dependent dioxygenases (-KGDs) are another class of oxidoreductases 

discovered in CDPS pathways. They catalyze a wide range of oxidative transformations and play 

critical roles in biochemical processes.162 Five -KGDs were verified in the biosynthesis of 

bicyclomycin, a commercial antibiotic inhibiting the transcription termination factor rho.133, 134 As 

described in the section1.4.1.3, following the CDP assembled by BcmA, three -KGDs BcmE, BcmC, 

and BcmG successively perform the hydroxylations on three unactivated sp3 carbons. Subsequently, 

another -KGD BcmB catalyzes the desaturation and epoxidation at the leucine hemisphere. Then, 

the next heterocyclization leads to the formation of the O-bridged bicyclo-[4.2.2]piperazinedione ring. 

Finally, a tertiary hydroxyl group installed by the P450 monooxygenase BcmD, and an exo-methylene 

moiety introduced by the remaining -KGD BcmF-catalyzed dehydrogenation, complete the 

biosynthesis of bicyclomycin (Scheme 3C). 

S-Adenosylmethionine (SAM) dependent methyltransferases (MTs) are common tailoring enzymes in 

the biosynthesis of a large member of NPs.163 The introduction of methyl substituents could influence 

the biological activities and physicochemical properties of the generated products.164 The common 

MTs associated with NP biosynthesis catalyze the transmethylation via SN2-like nucleophilic 

substitution, in which a nucleophilic atom from the substrate attacks the electrophilic carbon atom of 

SAM, resulting in the simultaneous breaking of the sulphur-carbon (S–C) bond and the formation of a 

new carbon-nucleophile bond.163, 165 To date, four MTs from cdps gene clusters have been 

characterized. Giessen and co-workers verified that Ndas_1149 catalyzes O-methylation of DKP 

tyrosine residues, and Ndas_1145 is responsible for N- and/or O-methylation of the DKP ring in the 

biosynthetic pathway of nocazine derivatives (Scheme 4B).132 They also reported another MT 

homologue Amir_4628 catalyzing the methylation on one or both DKP nitrogens of cyclo-L-Trp-L-Trp 

(Scheme 4C).166 In 2019, a novel indole C3 methyltransferase from Streptomyces sp. HPH0547 was 

described (Scheme 4D).167 

Prenyltransferases (PTs) are widely spread in nature, leading to a wide range of prenylated NPs with 

important biological activities. So far, various PTs that carry out normal or reverse prenylations on 

different positions of the CDP scaffolds assembled by NRPSs, have been intensively studied.168 The 

phytoene-synthase-like family prenyltransferase DmtC1 capable of the prenylation of an indole 

alkaloid DKP in a CDPS-associated pathway, has been reported very recently.169 DmtC1 catalyzes the 

condensation of a farnesyl diphosphate (FPP) onto the C3 position of the indole ring, thus generating 

the pre-drimentines, which can be subsequently cyclized by the membrane-associated terpene 

cyclase DmtA to give rise to the final drimentines (Scheme 4E) 
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In general, all these mentioned studies definitely expand the spectrum of DKP biosynthetic pathways. 

Yet genomics has revealed much DKP biosynthetic potential remains unexplored. Plenty of predicted 

tailoring enzymes from different families, including glycosyltransferases, acetyltransferases, and 

sulfotransferases are closely associated with CDPSs.170 In the future, exploration of these cryptic 

cdps-containing gene clusters will significantly increase the chemical diversity of 2,5 DKPs and give 

rise to novel biologically active molecules for drug leads.  

 

Scheme 4 Other tailoring enzymes involved in CDPS-dependent pathways. 
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2 Aims of this thesis 

In this thesis, the following issues have been addressed: 

Identification of nine CDPSs for the biosynthesis of tryptophan-containing cyclodipeptides 

from Streptomyces  

CDPSs, mainly found in bacteria, can directly hijack the activated aminoacyl-tRNAs (aa-tRNAs) from 

the ribosomal machinery to produce cyclodipeptides, the simplest representative of 2,5-DKPs. Among 

them, tryptophan-containing DKPs have received an increasing attention due to their promising 

scaffolds for structural modification. In recent years, the number of putative gene coding for CDPSs in 

genomic databases has increased continuously. However, except some cyclo-L-Trp-L-Trp (cWW) 

synthases identified from eight actinomycetes strains, only one CDPS originating from the sea 

anemone Nematostella vectensis was verified to produce several tryptophan-containing CDPs 

including cyclo-L-Trp-L-Leu, cyclo-L-Trp-L-Ala, and cyclo-L-Trp-L-Gly, but with very low product yields 

in E. coli culture. No other types of tryptophan-containing cyclodipeptides have been reported in 

microorganisms prior this project. Hence, the aim of this project is to identify new CDPSs that catalyze 

the formation of cyclodipeptides comprising tryptophan and another amino acid residues from 

actinobacteria. The following experiments were carried out in cooperation with Dr. Huili Yu: 

 Searching CDPS homologues in public databases via blast by using the known actinobacterial 

cWW synthases as probes 

 Phylogenetic analysis and sequence alignments of the candidate CDPSs with the 

characterized ones 

 Cloning and overexpression of the candidate CDPSs in E. coli SoluBL21  

 LC-MS analysis of the cultures of E. coli transformants harboring the CDPS expression 

constructs 

 Isolation and structural elucidation of accumulated CDPs by HR-EIMS and 1H NMR analysis 

 Determination of the product yields of generated CDPs in each E. coli transformant via HPLC 

analysis 

 

Identification and biosynthetic study of novel C3-guaninyl indole alkaloids guanitrypmycins 

CDPS genes are often closely associated with those coding for modification enzymes, such as 

oxidoreductases, cytochrome P450s, cyclodipeptide oxidases (CDOs), prenyltransferases (PTs), and 

methyltransferases (MTs), which significantly expand the diversity of DKP-based natural products. 

Bioinformatic analysis of nine CDPSs that assemble tryptophan-containing CDPs in the first project, 

revealed that two CDPS genes, gut24309 from Streptomyces monomycini NRRL B-24309 and gut3589 

from Streptomyces varsoviensis NRRL B-3589, are located in the similar gene loci containing four 

additional genes coding for three modification enzymes, i.e., CDO, cytochrome P450, and MT. This 
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unique cdps-associated genetic organization, which is distinct from those studied before and has not 

been investigated yet, could be involved in the biosynthesis of novel DKP derivatives. Therefore, it is 

interesting to explore and investigate the possible products of these two gene clusters. The following 

experiments were carried out: 

 Bioinformatic analysis of the two P450s present in gut gene clusters 

 Heterologous expression of CDPS gene gutA24309 in S. coelicolor M1146 with the replicative 

vector pPWW50A to establish the genetic protocol 

 Heterologous expression of the whole gene cluster gut24309 from S. monomycini NRRL B-

24309 

 Large-scale fermentation of the expression tranformants for isolation and structural elucidation 

of the generated 2,5-DKPs guanitrypmycins 

 Expression of different gene combinations of gut24309 and precursors feeding for determination 

of the biosynthetic steps of guanitrypmycins 

 Incubation of guanitrypmycins in the deuterium-enriched condition to prove the non-enzymatic 

process of guanitrypmycins 

 Different gene combination expressions of the second gene cluster gut3589 from S. varsoviensis 

NRRL B-3589 as well as isolation and structural elucidation of other guanitrypmycin derivatives 

 Cultivation of the native strains in different media to validate the productivity of guanitrypmycins 

thereof 

 In vitro biochemical investigation of the P450 GutD3589 as the key C3-guaninyl transferase 

Expanding the spectrum of cytochrome P450s by identification of two distinct dimerases in 

CDPS-dependent pathways  

Dimeric CDPs possess enormous chemical complexity due to the densely functionalized core and 

multiple stereogenic centers in their structures. Taking their biological activities together, dimeric CDPs 

hold significant promise for medicinal chemistry. Since a wide variety of actinobacterial genome 

sequences have been released in the past years, it provides a solid basis for the discovery of novel 

compounds and intriguing enzymes by genome mining. Comprehensive bioinformatic analysis 

revealed the presence of two cdps-p450 operons in Saccharopolyspora antimicrobica. The two 

putative P450s TtpB1 and TtpB2 with sequence identity of 40%, are located in the phylogenetic clade 

near to the known dimerases, which indicate they could be involved in different dimerization substrates 

or/and new patterns. To verify the functions of the candidate genes and gene clusters, the following 

experiments were carried out:  

 Bioinformatic and phylogenetic analysis to identify two cdps-p450 operons 

 Functional proof the two CDPS gene ttpA1 and ttpA2 by heterologously expressed in S. albus 

J1074  
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 Heterologous expression of the two cdps-p450 gene clusters in S. albus J1074 and 

subsequent analysis of the accumulated products by LC-MS 

 Large scale fermentation and isolation of the dimeric DKPs  

 Structural elucidation of the purified products by 1D and 2D NMR 

 Further confirmation of the functions of the two P450s via precursor feeding experiments  

 In vitro biochemical investigation of the two P450s 

 Evaluation of the antibacterial activity of the isolated dimeric DKPs 

 Proposed mechanism for P450-mediated intermolecular coupling reactions 
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3 Results and discussion 

3.1 Identification of nine CDPSs for the biosynthesis of tryptophan-containing 
cyclodipeptides from Streptomyces 

CDPSs belong to a newly characterized enzyme family that catalyze the formation of cyclodipeptides 

by using aminoacyl-tRNA as substrates.96 More than 75 different cyclodipeptides, spanning 18 of the 

20 canonical amino acids, have been identified from the CDPS machinery in the past years.124 Among 

them, tryptophan-containing CDPs have recently gained an increasing attention due to their promising 

scaffolds for structural modification.171, 172 Various enzymatic modifications including prenylation, 

oxidation, methylation, and dehydrogenation, as well as spontaneous rearrangements can occur on 

the electron-rich indole ring of the tryptophanyl moiety to generate diverse chemical complexity.173, 174 

Prior to this thesis, over ten CDPSs have been verified to assemble cWW as the sole product.124, 166, 

175 However, CDPSs synthesizing other types of tryptophan-containing CDPs have not been reported 

in microorganisms. In order to get CDPSs producing cyclodipeptides consisting of tryptophanyl moiety 

and other amino acid residues instead of cWW, we searched in the public databases for the putative 

homologs of the actinobacterial cWW synthases. Subsequently, based on the phylogenetic analysis 

with the known CDPSs, eleven candidates with moderate sequence identities were chosen for further 

investigation (Figure 12).  

For functional proof, the coding region of the candidate CDPSs were amplified from the genomic DNA 

by PCR and cloned into pGEM T easy vector. After confirming sequence integrity, the fragments were 

released and ligated into pET28a (+) vector to generate the expression constructs, which were then 

transformed into E. coli SoluBL21 for gene expression. For CDPS overproduction, the transformants 

were induced with Isopropyl -D-thiogalactopyranoside (IPTG). Afterwards, the cultures were 

extracted with ethyl acetate and then analyzed on LC-MS. In comparison to the culture of E. coli 

harboring the empty vector, the additional peak(s) could be easily detected in those of E. coli 

transformants. Subsequent isolation and structural elucidation of the generated products via HR-EIMS 

and NMR analysis, led to the undoubted identification of the generated cyclodipeptides.  

Three new CDPSs, WP_078950527 from Streptomyces lavendulae NRRL B-2774, WP_019889609 

from Streptomyces purpureus NRRL B-5737, and WP_063768158 from Streptomyces xanthophaeus 

NRRL B-5414, produced cWW as the sole product. WP_078873129 from Streptomyces sp. NRRL S-

1868 and WP_051847149 from Streptomyces sp. NRRL F-5053 could produce cyclo-L-Trp-L-Pro 

(cWP) and cyclo-L-Trp-L-Leu (cWL) as a sole and predominant product, respectively. Two product 

peaks were detected in the transformant harboring WP_052397358 from Streptomyces sp. NRRL F-

5123 with cWP and cWL as the major and minor product. cWP and cyclo-L-Trp-L-Ala (cWA) were the 

major and minor product of WP_078872750 from Streptomyces sp. NRRL S-1868, respectively. The 

transformant with KOG90878 from S. varsoviensis NRRL B-3589 had a similar and complex product 

spectrum as WP_078624487 from S. monomycini NRRL B-24309 with cyclo-L-Trp-L-Phe (cWF) and 
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cyclo-L-Trp-L-Tyr (cWY) as the predominant and five other tryptophan-containing cyclodipeptides as 

minor products (Figure 13). In contrast, the two CDPSs, WP_031028810 from Streptomyces sp. 

NRRL F-5639 and BAU83478 from Streptomyces laurentii DSM41684 were proven to catalyze the 

formation of cyclo-L-Phe-L-Leu (cFL). In this project, six expression constructs were prepared by Dr. 

Huili Yu. This PhD candidate was responsible for other five constructs and performed isolation and 

structural elucidation of the all generated CDPs. 

 

Figure 12 Phylogenetic analysis of CDPSs from actinobacteria. 
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Figure 13 LC-MS analysis of recombinant E. coli strains with empty vector (A) and CDPSs (B-L). 
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To determine the total product yields of these CDPs in E. coli culture, different growth parameters were 

optimized under three induction temperatures (20 ℃, 30 ℃ or 37 ℃) plus two IPTG concentrations 

(0.2 or 0.5mM). Product yields were calculated to be 46 to 211 mg/L via HPLC analysis after cultivation 

for 36 h under the optimized conditions, some of which are much higher than those previously reported. 

In summary, three new cWW, one cWL, and two cWP synthases were identified from Streptomyces 

strains. In addition, three CDPSs which can produce cWA or cWY as the major metabolite were also 

characterized. Thus, this study represents rare examples of CDPS family derived from actinobacteria 

that can form various tryptophan-containing cyclodipeptides. Furthermore, this study highlights the 

potential of the microbial machinery for tryptophan-containing cyclodipeptide biosynthesis and 

provides a solid basis for further combination of cdps with other modification genes in synthetic biology. 

For details on this work, please see the publication (section 4.1) 

Jing Liu,* Huili Yu* and Shu-Ming Li (2018). Expanding tryptophan-containing cyclodipeptide 

synthase spectrum by identification of nine members from Streptomyces strains. Applied Microbiology 

and Biotechnology, 102, 4435–4444, DOI: 10.1007/s00253-018-8908-6. (*equal contribution) 

Jing Liu,* Huili Yu* and Shu-Ming Li (2018). Correction to: Expanding tryptophan-containing 

cyclodipeptide synthase spectrum by identification of nine members from Streptomyces strains. 

Applied Microbiology and Biotechnology, 102, 5787-5789. (*equal contribution) 
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3.2 Identification and biosynthetic study of novel C3-guaninyl indole alkaloids 
guanitrypmycins 

The biosynthetic genes that are responsible for a specific natural product tend to cluster in a certain 

region of microbial chromosomes, which means that locating one gene from a biosynthetic pathway 

typically facilitates the discovery of others from the same pathway.176 In analogy, the utilization of 

CDPS-encoding genes as “biosynthetic hooks” is an efficient strategy to identify the genes coding for 

the tailoring enzymes in CDPS-dependent pathways.123 Different types of putative tailoring enzymes, 

such as FAD-dependent oxidoreductases, cytochrome P450s, cyclodipeptide oxidases (CDOs), 

prenyltransferases (PTs), methyltransferases (MTs) and cyclases, are found close to the CDPSs, 

which may significantly expand the diversity of DKP-based natural products. Although hundreds of 

CDPSs have been identified in recent years, only nine CDPS-containing biosynthetic pathways have 

been functionally characterized prior to this thesis, including five P450-asscioatied pathways.124, 176-178 

These include CYP121 for an intramolecular C–C bond formation within one cyclo-L-Tyr-L-Tyr 

molecule,131 CYP134A1 for the aromatization and N-oxide formation of cyclo-L-Leu-L-Leu,130 BcmD 

for installing a tertiary hydroxyl group,133 P450NB5737 for the coupling of guanine with cyclo-L-Trp-L-Trp 

via C–N bond formation,158 as well as NascB for dimerization of cyclo-L-Trp-L-Pro.159 As the most 

versatile biocatalysts in nature, cytochrome P450s play important roles in natural product biosynthesis, 

which encouraged us to investigate more p450-associated cdps-containing gene clusters for 

generation of various DKP derivatives.  

 

Figure 14 Comparative illustration of the gut clusters. 

In the first project, we identified nine new CDPSs that assemble tryptophan-containing cyclodipeptides 

from different Streptomyces strains. Further sequence analysis revealed that two CDPS-coding genes, 

gutA24309 from S. monomycini NRRL B-24309 and gutA3589 from S. varsoviensis NRRL B-3589, are 

located in the similar gene loci containing four more genes coding for three modification enzymes, i.e., 

CDO, cytochrome P450, and MT (Figure 14). Multiple sequence alignments showed that the two P450 

enzymes encompass the conserved motifs as other bacterial P450s, i.e., the G347XXXC351 (referring 

to EryF141) motif in the heme-binding loop and the highly conserved A/Gn-1-Gn-XX-Tn+3 motif in the long 
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I-helix running over the distal surface of the heme in P450 scaffold. Phylogenetic analysis showed that 

the two P450 enzymes are closely located to P450NB5737 from S. purpureus158 and CYP121 from M. 

tuberculosis131 (Figure 15), which catalyze inter- and intramolecular coupling reactions, respectively. 

However, the functions of the P450 candidates from the mentioned clusters cannot be predicted by 

sequence analysis and comparison with known enzymes. In addition, the unique cdps-associated 

genetic organization presented in Figure 14 is distinct from those studied before and has not been 

investigated yet, which could be involved in the biosynthesis of novel DKP derivatives. In this study, 

we identified and characterized the two similar five-gene operons for the formation of unprecedented 

C3-guaninyl DKPs, named guanitrypmycins, whereby P450 catalyzes the unprecedented C–C linkage 

between the indole ring of the CDPs with the nucleobase guanine. 

The corresponding proteins of the two aforementioned gut clusters, share sequence identities between 

79 − 90% on the amino acid level, indicating that they may produce identical or very similar metabolites. 

Thus, the cluster gut24309 was investigated as a representative. Firstly, in order to establish a genetic 

protocol, gutA24309 was amplified from the genomic DNA by PCR and cloned into the replicative vector 

pPWW50A, then transformed into S. coelicolor M1146 for heterologous expression. LC-MS analysis 

revealed that gutA24309 expression strain can produce cWF (1) as the predominant and cWY (2) as the 

trace product, differing clearly from the result obtained from E. coli, which may be caused by different 

expression hosts.  

For functional proof of the BGC, the whole gut24309 cluster was introduced into S. coelicolor. LC-MS 

analysis of the generated transformant harboring gut(ABCDE)24309 revealed the presence of four new 

peaks in two pairs regarding their molecular weights, 3a and 3b, 4a and 4b. 3a and 3b with [M+H]+ 

ions at m/z 495.189±0.005 are 14 Daltons larger than 4a and 4b. While only 4a and 4b were detected 

as the predominant metabolites of the expression transformant with gut(ABCD)24309, indicating the 

methylation performed by the MT enzyme GutE24309. Large-scale fermentation and isolation afforded 

analytically pure compounds. Their structures were subsequently elucidated via detailed interpretation 

of NMR analysis including 1H, 13C APT, COSY, HSQC, HMBC, and NOESY. Both 3a and 3b bear an 

exocyclic C–C double bond at the phenylalanyl side and a methylguaninyl moiety is attached to C-3 

position of cWF (1), thereby forming a hexahydropyrrolo[2,3-b]indole framework. 3a and 3b differ from 

each other merely in the stereochemistry at C-11. H-11 in 3a has an -configuration while 3b has a  

orientation. Comprehensive NMR analysis confirmed that 4a and 4b are demethylated counterparts 

of 3a and 3b, respectively. Due to the C3-guaninyl pyrroloindoline feature, 3a, 3b, 4a, and 4b were 

named herewith guanitrypmycins A1-1, A1-2, B1-1, and B1-2, respectively. Afterwards, the conversion 

of 3a to 3b as well as 4a to 4b was detected during the cultivation process. Incubation of these 

compounds separately in GYM media also confirmed the non-enzymatic transformation. Furthermore, 

to prove the spontaneous conversion formed via keto–enol tautomerism, 3a, 3b, 4a, and 4b were 

incubated in 50% CD3OD in D2O at different pH values. Subsequent LC-MS analysis of the incubation 
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mixtures proved the incorporation of one deuterium atom into 3b and 4b, thereby confirming the 

existence of the keto–enol tautomerism equilibration.  

 

Figure 15 Phylogenetic analysis of P450s investigated in this study (in bold red) and functionally 

characterized P450s from bacteria. 
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The above data proved the enzyme functions in the biosynthesis of guanitrypmycins. GutA24309 

assembles cWF (1), which will be dehydrogenated by Gut(BC)24309 and connected with a guanine 

moiety by GutD24309, finally methylated by GutE24309. The accurate reaction order of Gut(BC)24309 and 

GutD24309 was then determined by expression of different gene combinations together with precursor 

feeding experiments. When gut(AD)24309, gut(ADE)24309, and gut(AE)24309 were expressed in S. 

coelicolor, only slight or nearly no consumption of cWF (1) was observed in the transformants. In the 

transformant with gut(AD)24309, an additional compound 5a, the guaninylated cWF (1), as a minor 

product was detected, along with cWF (1) as the predominant product (ca. 85%). Feeding cWF (1) to 

the gutD24309 transformant led to the formation of 5a in very low yield (ca. 9%). In contrast, the fed 

cWF (8) was completely converted to 4a and 4b. The biosynthetic pathway of guanitrypmycins in S. 

monomycini NRRL B-24309 and their non-enzymatic epimerization is depicted in Scheme 5. Moreover, 

this proposed pathway was also proven by heterologous expression of different gene combinations of 

the gut3589 cluster from S. varsoviensis NRRL B-3589. Since GutA3589 can produce both cWF (1) and 

cWY (2) with a ratio of 2:1 in S. coelicolor M1146, a more complex product spectrum, four chemical 

pairs 3a/3b, 4a/4b, 6a/6b, 7a/7b along with cWF (8) and cWY (9), was detected and obtained from 

this gene cluster (Scheme 5). Our results were further confirmed by a study performed by Shi and co-

workers, in which a complementary strategy for the identification of purincyclamide in Streptomyces 

chrestomyceticus NA4264 was described.179 

To validate the productivity of guanitrypmycins in the native strains, S. monomycini NRRL B-24309 

and S. varsoviensis NRRL B-3589 were cultivated in six different media. S. monomycini can produce 

3a/3b and 4a/4b only in modified R5 medium. In comparison, neither any CDPs nor their derivatives 

could be detected in the extract of S. varsoviensis broth, indicating the gut3589 cluster is totally silent 

in its native host. 

In vivo heterologous expression experiments have proven that GutD catalyzes the key C–C linkage 

between cWF (8)/cWY (9) and guanine during the biosynthesis of guanitrypmycins. To confirm the 

GutD function in vitro, the recombinant GutD3589 was successfully overproduced in S. coelicolor M1146, 

then purified as an N-(His)10-fused protein to near homogeneity, and confirmed on SDS-PAGE (Figure 

16A). The typical absorption maximum of the sodium dithionite reduced FeII-CO complex of GutD3589 

was clearly observed at approximately 450 nm (Figure 16B). The GutD3589 activity was probed by 

using guanine and cWF (8) or cWY (9) as substrates, NADPH, spinach ferredoxin and ferredoxin-

NADP+ reductase as cofactors for electron transport. As expected, 4a and 4b were clearly detected in 

the reaction mixture of cWF (8), while cWY (9) was converted to 7a and 7b.
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Scheme 5 Formation of guanitrypmycins in S. monomycini NRRL B-24309 and S. varsoviensis NRRL B-3589. 
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Figure 16 SDS-PAGE analysis of the purified GutD3589 (A) and the absorption spectra for GutD3589 

and its ferrous-CO complex (B). 

In conclusion, eight C3-guaninyl pyrroloindolines guanitrypmycins were identified from two 

homologous p450-associated cdps-containing gene clusters (gut) in Streptomyces (Scheme 5). 

Heterologous expression of different gene combinations in S. coelicolor proved that the CDP skeleton 

assembled by GutA initiates the biosynthesis of guanitrypmycins. Gut(BC) specifically introduces an 

exocyclic double bond merely to the phenylalanyl/tyrosyl hemisphere, but not the tryptophanyl side. 

Both in vivo expression and in vitro biochemical characterization revealed that the P450 GutD acts as 

the key enzyme and catalyzes the stereospecific coupling of cWF (and cWY) with a guanine moiety 

via C3–C8′ linkage. Furthermore, the MT GutE transfers a methyl group to N9′ of the guaninyl residue 

after P450-catalyzed coupling reaction. Moreover, the non-enzymatic epimerization of 3a and 4a via 

keto–enol tautomerism increases the structural diversity of guanitrypmycins. In summary, this study 

provides an excellent example for the discovery of novel natural products by genome mining and 

exploring the proposed functions of individual biosynthetic enzymes via the heterologous expression 

approach. 

For details on this work, please see the publication (section 4.2) 

Jing Liu, Xiulan Xie, and Shu-Ming Li (2019) Guanitrypmycin biosynthetic pathways imply cytochrome 

P450-mediated regio- and stereospecific guaninyl transfer reactions. Angewandte Chemie 

International Edition, 58, 11534–11540, DOI: 10.1002/anie.201906891.  
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3.3 Expanding the spectrum of cytochrome P450s by identification of two distinct 

dimerases in CDPS-dependent pathways 

Among the tailoring enzymes for the modification of DKPs assembled by CDPSs, P450s have been 

proven to catalyze diverse intriguing chemical transformations.176 In addition to the aforementioned 

second project performed by this PhD candidate, Dr. Huili Yu has in parallel identified five P450 

homologues involved in CDPS-dependent pathways. These include three P450s, P450NB5737 from S. 

pupureus, GutD2774 from S. lavendulae, as well as GutD5414 from S. xanthophaeus, for the formation 

of rare cWW adducts with the nucleobase guanine or hypoxanthine on different positions of the indole 

ring.158, 180, 181 The other two cytochrome P450 enzymes AspB and NasB from Streptomyces sp. NRRL 

S-1868, catalyze two new dimerization patterns of tryptophan-containing cyclodipeptides.182 Dimeric 

DKPs hold significant promise for medicinal chemistry, due to their chemical complexity and interesting 

biological activities. In recent years, great achievements have been obtained in the isolation and 

chemical synthesis of dimeric DKPs. In contrast, only four pathways for the formation of dimeric CDPs 

have been characterized prior to this thesis, i.e., the NRPS-dependent pathway of (+)-

ditryptophenaline in Aspergillus flavus and three CDPS-related ones in bacteria.159, 182, 183 The 

formation of (+)-naseseazine C in Streptomyces sp. CMB-MQ03021  as well as (+)-naseseazine A and 

(+)-aspergilazine A in Streptomyces sp. NRRL-S1868 is catalyzed by P450s via C–C bonds between 

C-5 or C-6 at the benzene ring of one unit and N1 or C3 of another one.159, 182 

With the aim to explore more novel CDP modification enzymes, we analyzed numerous bacterial cdps-

p450-containing clusters by using known proteins as probes. Genome mining revealed the presence 

of two cdps-p450 operons comprising one cdps (ttpA1 or ttpA2) and one (ttpB2) or two P450 genes 

(ttpB1 and ttpC1) in Saccharopolyspora antimicrobica (Figure 17). Multiple sequence alignments 

revealed that the three putative P450s possess the conserved motifs as other bacterial P450 proteins. 

Phylogenetic analysis showed that TtpB1 and TtpB2, with sequence identity of 71% to each other, are 

located near to these characterized cyclodipeptide dimerases NasB, NascB and AspB, while TtpC1 is 

far away from this clade (Figure 15, TtpB1, TtpB2, and TtpC1 investigated in this study are labeled in 

bold blue). Furthermore, TtpB1/TtpB2 share a moderate sequence identities (approximately 40%) with 

the known dimerases. All these features made us curious about their roles in the CDP metabolism.  

 

Figure 17 Genetic organizations of the two ttp gene clusters in S. antimicrobica 

To verify their functions, the candidate genes and gene clusters were heterologously expressed in S. 

albus J1074. Firstly, the two cdps genes, ttpA1 and ttpA2 were cloned into the expression vector 
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pPWW50A and transformed into S. albus J1074. LC-MS analysis of the transformants revealed that 

both two CDPSs can assemble cWW (10) as the sole product. Afterwards, co-expression of ttpA with 

ttpB1 and ttpC1 led to the identification of a new peak 11 with a [M + H]+ ion at m/z 743.309±0.005, 

corresponding well to that of a dimeric cWW. Detailed inspection of the NMR spectra revealed 

compound 11 to be a cWW homodimer with a C3–C3′ linkage from the same side, thereby forming 

two hexahydropyrrolo[2,3-b]indole frameworks. The configurations of the new stereo centers of 11, 

tetratryptomycin A, were determined as 2S, 3S, 2′S, and 3′S (Scheme 6). To further determine which 

P450 is responsible for the formation of 11, ttp(AB)1 and ttp(AC)1 were separately expressed in S. 

albus. The transformant harboring ttp(AB)1 showed the same product profile as that of ttp(ABC)1 by 

comparison of molecular ions, retention time, MS2 pattern and UV spectrum, while the ttp(AC)1 

transformant can only produce the CDPS product cWW (10). Furthermore, feeding 10 into to the ttpB1 

transformant led to the accumulation of 11, whereas no consumption of 10 was observed in the 

transformant harboring ttpC1. This proved that TtpB1, but not TtpC1, is involved in the biosynthesis of 

11 and indicated that the ttp1 cluster comprises just ttpA1 and ttpB1. 

 

Scheme 6 The biosynthetic pathways of tetratryptomycins. 

In analogy, the second gene cluster ttp(AB)2 was also expressed in S. albus. LC-MS analysis revealed 

that the transformant harboring ttp(AB)2 can produce two new cWW dimers 12 and 13 in a ratio of 20 : 

1. Detailed interpretation of the NMR spectra revealed compound 12, tetratryptomycin B, 

encompasses a C3–N1′ connection between the two cWW monomers with a chirality of (2R, 3S) at 

the newly formed stereo centers (Scheme 6). Whereas, compound 13 is a stereoisomer of 11, with a 

C3–C3′ connection of cWW moieties. The newly formed stereo centers in 13 were proven to be (2R, 

3R, 2′S, and 3′S (Scheme 6). As expected, feeding 10 to the transformant with the P450 gene ttpB2 
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led to the detection of peaks 12 and 13 in a similar ratio (20 : 1) as in the ttp(AB)2 transformant, which 

unequivocally proved TtpB2 as the second cWW dimerase from S. antimicrobica. 

To further verify the functions of the two P450s in vitro, TtpB1 and TtpB2 were overproduced in E. coli 

BL21 (DE3) and S. albus, respectively, and purified to near homogeneity as confirmed on SDS-PAGE 

(Figure 18A). The purified recombinant TtpB1 has a brown color and shows an absorption shift from 

420 to 450 nm after treatment with CO and Na2S2O4 (Figure 18B). Incubation of TtpB1 with 10 in the 

presence of the commercial spinach ferredoxin, ferredoxin-NADP+ reductase, and NADPH led to the 

formation of the product peak 11. In the case of TtpB2, under the same condition, 10 was consumed 

to give 12 and 13. However, in the incubation mixture of TtpB1 or TtpB2 with other CDPs including 

cWY, cWF, cWP, cWL, cWA, cWG, cYY, and cyclo-L-Phe-L-Phe (cFF), no product formation was 

detected, proving the high substrate specificity of both P450s. A proposed mechanism involves radical 

mediated intramolecular cyclization and intermolecular addition reactions was postulated for the DKP 

coupling in the biosynthesis of tetratryptomycins (Figure 19). Moreover, the isolated compounds 11 - 

13 were tested for their antibacterial activities against E. coli, B. subtilis, Staphylococcus aureus and 

Pseudomonas aeruginosa. However, no inhibitory activity was observed.  

 

Figure 18 (A) SDS-PAGE analysis of the purified P450s and (B) UV-Vis spectroscopic analysis of 

TtpB1. 
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Figure 19 Proposed mechanism for P450-mediated intermolecular coupling reactions. 

Taking the results together, two cdps-p450-containing operons ttp1 and ttp2 for the dimerization of the 

same CDP cWW were identified in S. antimicrobica via genome mining (Scheme 6). TtpB1 represents 

the first bacterial P450 to catalyze the stereospecific C3 (sp3)–C3′ (sp3) bond formation between two 

CDPs, while TtpB2 is characterized as the first P450 to catalyze not only the unusual C3 (sp3)–N1′ 

linkage, but also the intermolecular C3–C3′ bond formation. It would be interesting to characterize 

more members of this intriguing enzyme group. Total product yields of 11 - 13 in their transformants 

were calculated to be 205, 200 and 9.5 mg/L, respectively. Therefore, our study provides a simple, 

direct, and efficient approach for enzymatic one-step preparation of structurally complex DKP dimers. 

For details on this work, please see the publication (section 4.3) 

Jing Liu, Xiulan Xie and Shu-Ming Li (2020). Increasing cytochrome P450 enzyme diversity by 

identification of two distinct cyclodipeptide dimerases. Chemical Communications, 56, 11042–11045, 

DOI: 10.1039/D0CC04772D. 
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Abstract
Cyclodipeptide synthases (CDPSs) comprise normally 200–300 amino acid residues and are mainly found in bacteria. They
hijack aminoacyl-tRNAs from the ribosomal machinery for cyclodipeptide formation. In this study, nine new CDPS genes from
eight Streptomyces strains were cloned into pET28a vector and expressed in Escherichia coli. Structural elucidation of the
isolated products led to the identification of one cyclo-L-Trp-L-Leu, two cyclo-L-Trp-L-Pro, and three cyclo-L-Trp-L-Trp
synthases. Other three CDPSs produce cyclo-L-Trp-L-Ala or cyclo-L-Trp-L-Tyr as the major cyclodipeptide. Total product yields
of 46 to 211 mg/L E. coli culture were obtained. Our findings represent rare examples of CDPS family derived from
actinobacteria that form various tryptophan-containing cyclodipeptides. Furthermore, this study highlights the potential of the
microbial machinery for tryptophan-containing cyclodipeptide biosynthesis and provides valid experimental basis for further
combination of these CDPS genes with other modification genes in synthetic biology.

Keywords Aminoacyl t-RNA . Diketopiperazine . Cyclodipeptide synthase . Streptomyces . Tryptophan-containing
cyclodipeptide

Introduction

Cyclodipeptides (CDPs) with a 2,5-diketopiperazine (DKP)
skeleton are chemically condensation products of two amino
acids and represent a class of secondary metabolites with sim-
ple scaffold, but different modification possibilities
(Borthwick 2012). A large number of DKP derivatives show
a broad range of biological and pharmacological activities
such as antibacterial, antifungal, antiviral, and immunosup-
pressive activities (Borthwick 2012; Giessen et al. 2013),
which make them attractive molecules for drug discovery
and development. So far, DKP derivatives are mainly isolated
from microorganism including bacteria and fungi. The DKP
scaffold in fungi is usually assembled by bimodular

nonribosomal peptide synthetases (NRPSs) with a typical
polypeptide chain length of 2300 amino acids (Maiya et al.
2006;Walsh 2016; Xu et al. 2014), whereas in bacteria mainly
by tRNA-dependent cyclodipeptide synthases (CDPSs) com-
prising normally 200–300 amino acid residues (Giessen and
Marahiel 2014; Gondry et al. 2009; James et al. 2015;
Moutiez et al. 2017). NRPSs can use both proteinogenic and
non-proteinogenic free amino acids as substrates, while
CDPSs directly hijack the activated aminoacyl-tRNAs (aa-
tRNAs) from the ribosomal machinery for cyclodipeptide for-
mation (Huang et al. 2010).

The DKP scaffold is frequently modified by methylation,
hydroxylation, prenylation, dimerization, and further cycliza-
tion (Borthwick 2012; Giessen et al. 2013; Li 2010; Xu et al.
2014). Among the DKPs, tryptophan-containing CDPs have
received an increasing interest in recent years due to their
promising scaffolds for structural modification (Li 2010; Xu
et al. 2014). The electron-rich indole ring in tryptophanyl
moiety can undergo different enzymatic and spontaneous
modifications and rearrangement like prenylation, oxidation,
methylation, and dehydrogenation to generate increased
chemical complexity (Alkhalaf and Ryan 2015; Walsh 2014).

Since 2005, we have intensively studied prenyltranferases
(PTs) involved in the biosynthesis of indole alkaloids in mi-
croorganisms, especially those for the prenylation of
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tryptophan and tryptophan-containing CDPs (Winkelblech
et al. 2015). The tryptophan-containing CDP PTs catalyzed
regio- and stereospecific prenylations at the indole ring. PTs
for specific prenylation at nearly all the positions of the indole
ring have been characterized (Winkelblech et al. 2015;
Wohlgemuth et al. 2017). Most of these PTs are from ascomy-
cetous fungi and are involved in the modification of CDPs
assembled by NRPSs. In the view of synthetic biology, it
would be of essential importance to combine such PT genes
with the small CDPS genes forming tryptophan-containing
CDPs, especially those for cyclo-L-Trp-L-Pro (cWP), cyclo-
L-Trp-L-Ala (cWA), cyclo-L-Trp-L-Leu (cWL), and cyclo-L-
Trp-L-Trp (cWW). All these CDPs serve as precursors in the
biosynthesis of diverse pharmacologically active compounds
and are very well accepted by microbial PTs (Fan et al. 2015;
Li 2010; Winkelblech et al. 2015).

By the end of July 2016, about 450 putative CDPS genes
were identified by sequence homology search and their num-
ber is increasing steadily (Moutiez et al. 2017). Sixty-five of
these genes have been proven to be responsible for the forma-
tion of different DKPs and about 30 are from actinomycetes
(Brockmeyer and Li 2017; Jacques et al. 2015; James et al.
2015; Moutiez et al. 2017). At least ten of the identified
CDPSs from eight actinomycetes catalyze the formation of
cWW as the sole product (Fig. S1). These include
Amir_4627 from Actinosynnema mirum, NozA, and NcdA
from Nocardiopsis sp. CMB-M0232, whose products had
been isolated and identified (Giessen et al. 2013; James et al.
2015). The products of other known cWW synthases were
identified by LC-MS analysis (Jacques et al. 2015). CDPSs
synthesizing other tryptophan-containing cyclodipeptides
have not been reported in microorganisms. Until now, only
one CDPS originating from the sea anemone Nematostella
vectensis was demonstrated to produce a number of
tryptophan-containing cyclodipeptides like cWL, cWA, cyclo-
L-Trp-L-Phe (cWF), cyclo-L-Trp-L-Met (cWM), and cyclo-L-
Trp-Gly (cWG) with very low product yields of 0.8–1.0 mg/L
in Escherichia coli (Seguin et al. 2011). It is therefore abso-
lutely essential to find new CDPSs for the formation of DKPs
comprising tryptophan and another amino acid.

Materials and methods

Computer-assisted sequence analysis

Protein sequences listed in Figs. 1 and S1 were taken from the
NCBI database (http://www.ncbi.nlm.nih.gov/protein) and
compared with each other by using BLAST programs (http://
blast.ncbi.nlm.nih.gov/). Multiple sequence alignments were
carried out by using the program ClustalW and visualized
with ESPript 3.0 (http://espript.ibcp.fr/ESPript/cgi-bin/
ESPript.cgi) to identify strictly conserved amino acid residues.

The phylogenetic trees in Figs. 1 and S1 were created by
MEGA version 5.0 (http://www.megasoftware.net).

Bacterial strains, plasmids, and culture conditions

pGEM-T Easy used for cloning and pET28a (+) for expres-
sion experiments were obtained from Promega (Mannheim,
Germany) and Novagen (Darmstadt, Germany), respectively.
E. coli DH5α (Invitrogen) was used as host for cloning and
SoluBL21 (Genlantis) for expression experiments. They were
grown at 37 °C in liquid Luria-Bertani (LB) medium (10 g/L
tryptone, 5 g/L yeast extract, and 5 g/L NaCl)) or on solid LB
medium with 1.5% agar (w/v). For selection of recombinant
E. coli strains, 100 μg/mL of ampicillin or 50 μg/mL of kana-
mycin were supplied in the media.

Streptomyces strains listed in Table S1 were kindly provid-
ed by ARS Culture Collection (NRRL) or purchased from
Deutsche Sammlung von Mikroorganismen und Zellkulturen
GmbH (DSMZ). They were maintained at 28 °C in GYM
(4.0 g/L glucose, 4.0 g/L yeast extract, 10.0 g/L malt extract,
15.0 g/L agar, and pH 7.2) or ISP4 medium (10.0 g/L soluble
starch, 1.0 g/L K2HPO4, 1.0 g/L MgSO4 7H2O, 1.0 g/L NaCl,
2.0 g/L (NH4)2SO4, 1.0 g/L CaCO3, 1.0 mL/L trace element
solution, 15.0 g/L agar, and pH 7.2).

Plasmid construction and gene expression in E. coli

Genetic manipulation in E. coli was carried out according to
the protocol by Sambrook and Russell (2001). Isolation of
genomic DNA from Streptomyceswas performed as described
previously (Kieser et al. 2000). The genes encoding CDPSs
were amplified by PCR from genomic DNA by using primers
listed in Table 1 with Phusion® High-Fidelity DNA
Polymerase from New England Biolabs (NEB). The generat-
ed PCR fragments were cloned into pGEM-T Easy vector and
sequenced by SEQLAB (Göttingen, Germany) to confirm se-
quence integrity. After sequencing, the fragments were re-
leased with the appropriate restriction endonucleases from
pGEM-T Easy vector and ligated into pET28a (+) vector,
which was digested with the same enzymes previously. The
generated plasmids (Table 1) were transformed into E. coli
SoluBL21 for gene expression.

For CDPS overproduction, 0.5 mL of 16-h cultures of dif-
ferent expression constructs was used to inoculate 50 mL LB
medium containing 50 μg/mL kanamycin. The cultures were
maintained at 230 rpm and 37 °C to an absorption at 600 nm
of about 0.6. Isopropyl β-D-thiogalactopyranoside (IPTG)
was then added to the cultures to a final concentration of 0.2
or 0.5 mM. The induction was kept at 20, 30, or 37 °C for 20 h
for condition optimization (Table S2) or for 36 h for quantifi-
cation. One milliliter of culture was extracted with one volume
of ethyl acetate for three times. The organic phases were com-
bined and evaporated, and the residues were afterward
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dissolved in 40 μL of methanol. Five microliters of such sam-
ples were taken for LC-MS analysis.

HPLC and LC-MS analyses

The ethyl acetate extracts were analyzed on an Agilent HPLC
1260 series equipped with a photo diode array detector and a
Bruker microTOF QIII mass spectrometer by using the
Agilent Eclipse XDB C18 column (5 μm, 4.6 × 150 mm). A
linear gradient of 5–100% acetonitrile in water, both contain-
ing 0.1% formic acid, in 40 min and a flow rate at 0.25 mL/
min were used. The column was then washed with 100%

acetonitrile containing 0.1% formic acid for 5 min and equil-
ibrated with 5% acetonitrile in water for 5 min. The parame-
ters of the spectrometer were set as following: electrospray
positive ion mode for ionization, capillary voltage with
4.5 kV, collision energy with 8.0 eV.

For quantification, an Agilent HPLC 1200 series equipped
with a photo diode array detector and an identical column
were used. A linear gradient of 10 to 100% acetonitrile in
water without acid in 40 min was followed by 100% acetoni-
trile for 5 min and 10% acetonitrile in water for 5 min. The
flow rate was 0.5 mL/min. The absorption at 280 nmwas used
for quantification.

Fig. 1 Phylogenetic analysis of CDPSs from actinobacteria. The main CDPS products are given in parenthesis. Enzymes investigated in this study are
highlighted in red
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Isolation and structural elucidation of generated
cyclodipeptides

For structural elucidation of the accumulated CDPs, E. coli
SoluBL21 cultures carrying the respective expression con-
structs were prepared under the best tested conditions
(Table S2) and extracted with ethyl acetate. The CDPs were
then isolated on an Agilent HPLC 1260 series equipped with a
photo diode array detector by using a semi-preparative
Multospher 120 RP-18 column (10 × 250 mm, 5 μm) with
the same solvents and gradient as for quantification. The flow
rate was set to 2.5 mL/min. The obtained products were puri-
fied on the same column with slightly improved gradients, if
necessary. In this study, 5, 3, and 4 mg of cWW were isolated
as white powders from 300 mL E. coli cultures with pHY34,
pHY11, and pHY09, respectively. Thirty milligrams of cWP
and 12 mg of cWL were isolated as white powders from
1000 mL E. coli/pHY107 and E. coli/pJL26, respectively.
From 2000 mL E. coli culture with pJL25, 1.5 mg of cWA,
10 mg of cyclo-L-Trp-L-Tyr (cWY), 5 mg of cWM, 2.5 mg of
cyclo-L-Trp-L-Val (cWV), and 2.5 mg of cWF were obtained
as white powders.

The isolated compounds were subjected to NMR and
MS analyses. 1H NMR spectra (Figs. S2−S9) were record-
ed at room temperature on an ECX-500 spectrometer
(JEOL, Tokyo, Japan). All spectra were processed with
MestReNova 5.2.2 (Metrelab Research, S5 Santiago de
Compostel la , Spain). MS and NMR data of the
cyclodipeptides are provided as Tables S3 and S4.
Interpretation of the NMR and MS data of the isolated
products and comparison with those of known compounds
led to the undoubted identification of the cyclodipeptides.

Results

Phylogenetic analysis of CDPSs

Phylogenetic analysis of known CDPSs from actinomy-
cetes (Fig. S1) revealed that the known cWW synthases
are located close together, with the exception for
WP_016576960 from Streptomyces albulus. CDPSs for
DKPs consisting of aliphatic amino acids like cyclo-L-
Cys-L-Cys (cCC) and cyclo-L-Glu-L-Ala (cEA) and those

Table 1 Information on CDPSs identified in this study

CDPS Accession
number

Protein
length (aa)

Primer sequences (5′-3′) Cloning constructs
in pGEM-T easy

Cloning sites
in pET28a

Expression
constructs

CWWS1D46488 WP_014141671 278 AACATATGCACGACAACGGTCATCGGCCC pHY02 NdeI pHY34
TTGGATCCTTACGTCACCGGCT BamHI

CWWS2D46488 WP_014140974 234 GCCATATGCTGCATCGAACGTCCTT pHY01 NdeI pHY11
TAGGATCCTCACGGCTCGGCGGGCAGTT BamHI

CWWS1NB2774 WP_078950527 265 CATATGACGATCACAGCTGACGCATCATTC pHY72 NdeI pHY82
GGATCCTCAAGCTGCTCGACGCTCAT BamHI

CWWS1NB5737 WP_019889609 239 GCCATATGACTCTCATCGAAGACAC pHY08 NdeI pHY09
GGATCCTCAAGCGGCTCGACGGTCAT BamHI

CWWS1NB5414 WP_063768158 273 CATATGAGGGCGATCACACAGGTGAC pHY77 NdeI pHY83
GGATCCTCAAGCTGCTCGACGCTCAT BamHI

CWPS1NS1868 WP_078873129 241 CATATGAACACTTCCCTCGCTGC pHY103 NdeI pHY107
GAATTCTCAGCGTTCGGCCGCCCGGTC EcoRI

CWLS1NF5053 WP_051847149 243 CATATGTGCGAGGGCGCCGATGTGC pJL03 NdeI pJL26a

GGATCCTCAGGATTCGTCCACCGG BamHI
CWPS1NF5123 WP_052397358 263 CATATGACCAGCAGGACCGAAAC pHY100 NdeI pHY105

GAATTCTCACGGAAGCAGCCGGGGG EcoRI
CWXS1NS1868 WP_078872750 267 CATATGGCCACACACGCCTCCGC pHY101 NdeI pHY106

GAATTCTCACTGCTGCGTCACGTGGTC EcoRI
CWXS1NB3589 KOG90878 255 CATATGGGGGCCCCGCAGCCC pJL02 NdeI pJL25

GGATCCTCACGTCAAGTCCCTTTCTCC BamHI
CWXS1NB24309 WP_078624487 282 GCGCATATGAGTGCATCGCAGGCTGCTG pJL01 NdeI pJL24b

GGATCCTCACGTCACGTCCCCTGC BamHI
CPYS1NF5639 WP_031028810 278 CATATGAACCGCCGCTGTTCCTTCG pJL04 NdeI pJL29

GGATCCTCATGCTCCTGGGGCACTG BamHI
CPYS1D41684 BAU83478 224 CGCATATGAACCAGTTCGACGTGCTGCC pJL05 NdeI pJL30c

GGATCCCCGGACCACGAGGAAGCC BamHI

Restriction sites for cloning are underlined in primer sequences
a The 12 base pairs at the 5′-end of the sequence coding for WP_051847149 were not included in the expression construct pJL26
b The 96 base pairs at the 5′-end of the sequence coding for WP_078624487 were not included in the expression construct pJL24
cAccording to the annotation in database, BAU83478 comprises 484 amino acids and consists of CDPS sequence at its N-terminus and that for a putative
methyltransferase at its C-terminus. The sequence coding for amino acids 1-224 of BAU83478 was cloned into pET28a generating pJL30
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comprising aromatic amino acids such as cyclo-L-Tyr-L-
Tyr (cYY) and cyclo-L-Tyr-L-X (cYX) build their own
groups. To get CDPSs for other tryptophan-containing
DKPs rather than cWW, we searched in databases for
homologs of the actinobacterial cWW synthases and inte-
grated them into Fig. S1 generating Fig. 1. Thirteen can-
didate CDPSs close to cWW and cYY synthases from 11
Streptomyces strains (highlighted in red in Fig. 1) were
selected as investigation objectives.

Overproduction of CDPSs in E. coli and identification
of the products

For functional proof, we established our expression system in
E. coli SoluBL21 by using the two known CDPSs
WP_014141671 and WP_014140974 from Streptomyces
cattleya DSM 46488, termed CWWS1D46488 (cWW synthase

1 from strain DSM 46488) and CWWS2D46488 in this study,
respectively (Fig. 1). After optimization of expression condi-
tions (Table S2), the 20-h-old cultures after induction at 30 °C
with 0.5 mM IPTG for CWWS1D46488 and 0.2 mM for
CWWS2D46488 were extracted with ethyl acetate and then
analyzed on LC-MS. In comparison to the culture of E. coli
harboring the empty vector (Fig. 2a), one additional predom-
inant peak each with the expected [M + H]+ ion at m/z
373.1636 for cWW was detected in E. coli transformants
(Fig. 2b, c). Isolation and structure elucidation of both peaks
with the help of NMR confirmed their integrity as cWW
(Tables S3 and S4, Fig. S2).

In analogy, the other nine candidate genes were individu-
ally cloned into pET28a (+) (Table 1) and expressed in E. coli
SoluBL21 under different optimized conditions (Table S2).
The ethyl acetate extracts of the 20-h cultures were analyzed
on LC-MS. In comparison to that of negative control (Fig. 2a),

Fig. 2 LC-MS analysis of
recombinant E. coli strains with
empty vector (a) or with CDPSs
(b–l). The ethyl acetate extracts
were analyzed on an Agilent
HPLC series 1260 with UVand
mass detections. Absorptions at
280 nm are illustrated in this
figure. The products are predicted
by inspection of their exact [M +
H]+ ions and proven by NMR
analysis after isolation
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the chromatograms of five CDPS transformants showed one
predominant product peak each (Fig. 2d–h). These include
WP_078950527 from Streptomyces lavendulae NRRL B-
2774 (Fig. 2d),WP_019889609 from Streptomyces purpureus
NRRL B-5737 (Fig. 2e), WP_063768158 from Streptomyces
xanthophaeus NRRL B-5414 (Fig. 2f), WP_078873129 from
Strep tomyces sp . NRRL S-1868 (F ig . 2g) , and
WP_051847149 from Streptomyces sp. NRRL F-5053 (Fig.
2h). The products of the first three transformants (Fig. 2d–f)
share the same retention time and [M+H]+ ion with those of
the two known CWWS1D46488 and CWWS2D46488 (Fig. 2b,
c), indicating the presence of cWW. Interpretation of the NMR
andMS data of the isolated peak from the culture with pHY09

(Tables S3 and S4, Fig. S2) confirmed these products to be
cWW (Giessen et al. 2013; Lu et al. 2017). Therefore, these
three enzymes were termed CWWS1NB2774, CWWS1NB5737,
and CWWS1NB5414, respectively (Fig. 3).

For structure elucidation, the products of WP_078873129
(Fig. 2g) andWP_051847149 (Fig. 2h) were isolated from the
bacterial cultures and subjected to NMR and MS analyses
(Tables S3 and S4; Figs. S3 and S4), which proved unequiv-
ocally cWP (Grundmann and Li 2005; He et al. 2013; Kumar
et al. 2014) as the sole product of WP_078873129, termed
hereafter CWPS1NS1868 (Fig. 3). The two products of
WP_051847149 with a ratio of 120:1 were identified as
cWL (Kumar et al. 2014) and cWF (Chu et al. 2011),
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respectively. Due to the significant dominance of cWL, this
enzyme was named as CWLS1NF5053 (Fig. 3).

Two product peaks each were detected in the transformants
withWP_052397358 from Streptomyces sp. NRRLF-5123 (Fig.
2i) and another CDPS WP_078872750 from Streptomyces sp.
NRRL S-1868 (Fig. 2j). One of them was found in both extracts
and identified as cWP by comparison of its retention time and
[M +H]+ ion with those of CWPS1NS1868 product (Fig. 2g).
cWP in the transformant withWP_052397358 contributes about
94% to the total CDPs, and this enzyme was therefore termed
CWPS1NF5123. The minor product of CWPS1NF5123 showed a
[M+H]+ of cWL.Another main product inE. coliwith pHY106
(Fig. 2j) had a [M+H]+ of cWA, which was identified by com-
parison with the product from KOG90878 of Streptomyces
varsoviensis NRRL B-3589 (Fig. 2k). WP_078872750 was
therefore termed CWXS1NS1868.

The transformant with KOG90878 had a similar and
complex product spectrum as WP_078624487 from
Streptomyces monomycini NRRL B-24309 (Fig. 2l).
Two predominant and at least four minor peaks were de-
tected for both cultures at 280 nm. They differ slightly
from each other in the product yields and ratios, especial-
ly those of the two dominant peaks. Product isolation
from the culture with KOG90878 and structural elucida-
tion proved the main peak at 15.4 min to be cWY and the
second major peak as a mixture of cWF and cWW. The
four minor peaks were identified as cWA, cWM, cWV,
and cWL, respectively (Tables S3 and S4; Figs. S5−S9).

KOG90878 and WP_078624487 are therefore responsi-
ble for the formation of at least seven tryptophan-
containing cyclodipeptides and termed CWXS1NB3589

and CWXS1NB24309, respectively (Fig. 3).

Product yields of CDPs

Generally, high product yield is a prerequisite for poten-
tial application in the biotechnology. The product yields
of cWW from E. coli culture at 29 and 42 mg/L were
reported for the known cWW synthases Amir_4627 and
NozA after codon optimization, respectively (Giessen
et al. 2013; James et al. 2015). To prove the productivity
of the recombinant strains, we determined the CDP con-
tents of 36-h-old cultures by HPLC analysis using the
isolated products as standards. As shown in Fig. 4, the
product yields achieved in this study for several enzymes
are much higher than those mentioned above. The product
yields of the five cWW synthases were detected between
46 ± 10 and 104 ± 10 mg/L with the best one for
CWWS1NB2774. The highest product yield of 211 ±
12 mg cWP per liter culture was observed for the culture
with CWPS1NS1868, followed by 120 ± 5 mg cWL in the
culture with CWLS1NF5053. Total product yields between
100 and 140 mg/L were calculated for other four CDPSs.
These data provide a solid basis for further combination
of these CDPS genes with other modification genes in
synthetic biology.
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Discussion

To find candidates for the formation of tryptophan-containing
CDPs, we searched the database by using known cWW
synthases as probes and carried out phylogenetic analysis.
Gene expression and identification of CDP products led to
identification of nine new members for the biosynthesis of
tryptophan-containing CDPs. Inspection the phylogenetic tree
(Fig. 1) revealed that the tryptophan-containing
cyclodipeptide synthases from actinobacteria are located in
two clades. With the exception for cyclo-L-Leu-L-Leu (cLL),
the clade I comprises only cWX synthases, while the members
of clade II are responsible for the formation of not only cWX,
but also cYX and cFX. To prove the diversity of cWX clade II,
we took two genes close to cYX synthases from this clade and
expressed them in E. coli. As shown in Fig. S10,
WP_031028810 from Streptomyces sp. NRRL F-5639 and
BAU83478 from Streptomyces laurentii DSM 41684 were

proven to be responsible for the formation of cyclo-L-Pro-L-
Tyr (cPY). Together with the CDPSs for tryptophan-
containing cyclodipeptide biosynthesis (Figs. 2, 3, and 4),
these results provide evidence that phylogenetic analysis
could be successfully used for prediction and finding of de-
sired CDPS candidates. However, exact CDPS product cannot
be predicted by just phylogenetic analysis. For example, the
13 specific cWW synthases are distributed in two cWX
clades. One of the cWP synthases, CWPS1NF5123 is closer to
CWWS1D46488 than to the second one CWPS1NS1868, which
is again closer to CWXS1NS1868. CWPS1NS1868 and
CWXS1NS1868 share a sequence identity of 62% on the amino
acid level, and the latter produces a mixture of cWP and cWA
with a ratio of 15:7 (Figs. 2 and 4).

Based on crystal structure and mutagenesis experiments,
Moutiez et al. proposed that two pockets of CDPSs are for
aminoacyl-tRNA binding (Jacques et al. 2015; Moutiez et al.
2014a; Moutiez et al. 2014b). It was postulated that P1 is more

Table 2 Amino acid residues of selected CDPSs constituting the two binding pockets

Amino acids constituting
binding pocket P1

Amino acids constituting
binding pocket P2

Reported
product

Predicted
product*

Identified in
this study

AlbC L33 G35 V65 V67 L119 L185 F186 L200 M152 A155 V156 N159 I204 T206 P207 cFL, cFF, cFY
Amir_4627 V33 G35 V65 P67 M119 F184 F185 N199 M152 E155 V156 L159 R203 L205 P206 cWW (Giessen

et al. 2013)
NozA L32 G34 V64 A66 L118 F183 F184 S198 M151 A154 V155 S158 M202 L204 P205 cWW (James

et al. 2015)
NcdA V36 G38 V58 P60 M112 F177 F178 N192 M145 D148 V149 A152 R196 L198 P199 cWW (James

et al. 2015)
WP_016576960 L53 G55 I85 P87 L139 L204 C205 H219 A17 K175 A176 S179 Q223 I225 P226 cWW (Jacques

et al. 2015)
WP_009073312 V26 G28 I58 P60 M112 F177 F178 N192 M145 E148 V149 A152 Q196 L198 P197 cWW (Jacques

et al. 2015)
EPD89497 V29 G31 I61 P63 M115 F180 F181 C195 A148 T151 V152 A155 R199 L201 P198 cWW (Jacques

et al. 2015)
WP_027751606 V25 G27 I57 P59 M111 F176 F177 N191 M144 D147 V148 A151 Q195 L197 P208 cWW (Jacques

et al. 2015)
WP_017537615 V35 G37 I67 P69 M121 F186 F187 N201 M154 E157 V159 A171 R205 L207 P197 cWW (Jacques

et al. 2015)
CWWS1D46488 V77 G79 V109 P111 L164 F229 F230 C242 M197 A200 A201 S204 K246 V248 P249 cWW (Jacques

et al. 2015)
cWW

CWWS2D46488 V27 G29 V59 P61 M113 F178 F179 C193 M146 E149 A150 A153 R197 I199 P200 cWW (Jacques
et al. 2015)

cWW

CWWS1NB2774 L29 G31 V61 A63 L115 F181 F182 A196 M148 H151 F152 S155 V200 M202 P203 cFX cWW
CWWS1NB5737 L28 G30 V60 A62 L114 F180 F181 S195 M147 T150 F151 P154 Q199 I201 P202 cFX cWW
CWWS1NB5414 L35 G37 V67 A69 L121 F187 F188 A200 M154 H157 F158 S161 V204 M206 P207 cFX cWW
CWPS1NS1868 L32 G34 I64 P66 L118 F189 F190 V204 A151 R154 A155 V158 M208 V210 P211 cFX cWP
CWLS1NF5053 L36 G38 V68 A70 L122 F188 L189 S203 M155 S158 F159 G162 M207 A209 Q210 cFX cWL
CWPS1NF5123 L42 G44 V74 P76 L128 L193 L194 A208 A161 S164 V165 G168 K212 I214 D215 cFX cWP
CWXS1NS1868 L43 G45 I75 P77 L129 F205 F206 A220 L162 R165 A166 V169 A224 V226 G227 cFX cWA, cWP
CWXS1NB3589 L30 G32 I62 A64 L116 F193 F194 S208 M149 R152 H153 G156 M212 T214 P215 cFX cWY, cWF,

cWW
CWXS1NB24309 – – I30 A32 L84 F177 F178 S192 M117 I120 H121 G124 L196 T198 P199 cFX cWY, cWF,

cWW

*The products of the CDPSs of interest were predicted in a previous report (in bold) (Jacques et al. 2015) and in this study (in italic) according to the
conserved residues suggested by Jacques et al. (Jacques et al. 2015)
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specific for binding the first aminoacyl-tRNA, and the wider
pocket P2 is responsible for the less specific binding of the
second and often variable aminoacyl-tRNA (Moutiez et al.
2014a; Moutiez et al. 2014b). The amino acid residues of the
two pockets were used for prediction of CDPS products
(Jacques et al. 2015). With the help of the residues in the two
pockets, the functions of the nine tryptophan-containing CDPSs
identified in this study were predicted to be responsible for the
formation of cFX (Table 2) (Jacques et al. 2015). However, as
shown in Figs. 2, 3, and 4, only CWLS1NF5053, CWXS1NB3589,
and CWXS1NB24309 produce cWF as minor or second major
product, with 1, 11, and 22% of total CDPs, respectively. No
cFXwas detected in other CDPS transformants. Comparing the
amino acid residues in pockets 1 and 2 of tryptophan-
containing cyclodipeptide synthases with each other and with
those of cyclo-L-Phe-L-Leu (cFL) synthase AlbC (Table 2) re-
vealed no clear indications for cWX synthases. In a previous
study, we demonstrated that mutation of the related residues in
the pocket P1 did not lead to the desired changes of product
spectrum, but their product yields (Brockmeyer and Li 2017).
This indicates that these prediction tools still need to be opti-
mized by identification of more CDPS structures and amino
acid residues in the binding pockets.

In summary, after confirmation of two known cWW
synthases, we identified three new cWW, one cWL, and two
cWP synthases from Streptomyces, which catalyze the forma-
tion of one predominant DKP. Three additional CDPSs pro-
duce one DKP like cWA or cWY as the major metabolite
(Figs. 2 and 4). These CDPSs are thus ideal candidates for
production of tryptophan-containing CDPs for further modi-
fication by tailoring enzymes like PTs. It should be also men-
tioned that cWV was not reported as CDPS product prior to
this study. Therefore, our results expand significantly the
product spectrum of tryptophan-containing cyclodipeptide
synthases and raise hopes to find other members of this im-
portant enzyme group.
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S3 
 

Table S1 Streptomyces strains used in this study  

Strains Source Cultivation Media 

Streptomyces cattleya DSM 46488 DSMZ GYM 

Streptomyces lavendulae NRRL B-2774 NRRL GYM 

Streptomyces purpureus NRRL B-5737 NRRL ISP4 

Streptomyces xanthophaeus NRRL B-5414 NRRL ISP4 

Streptomyces sp. NRRL S-1868 NRRL ISP4 

Streptomyces sp. NRRL F-5053 NRRL ISP4 

Streptomyces sp. NRRL F-5123 NRRL GYM 

Streptomyces varsoviensis NRRL B-3589 NRRL GYM 

Streptomyces monomycini NRRL B-24309 NRRL GYM 

Streptomyces sp. NRRL F-5639 NRRL ISP4 

Streptomyces laurentii DSM 41684 DSMZ GYM 

DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen 

NRRL: ARS Culture Collection 
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S4 
 

Table S2 The yields (mg/L culture) of the main products of the 11 CDPSs under six different 
conditions 
 

          CDPSs 
Temperature 
-IPTG final conc. 

CWWS1D46488 

(cWW) 

CWWS2D46488 

(cWW) 

CWWS1NB2774 

(cWW) 

CWWS1NB5737 

(cWW) 

CWWS1NB5414 

(cWW) 

20 ℃ - 0.2 mM 77.0 33.7 69.2 18.8 55.1 

20 ℃ - 0.5 mM 88.8 33.7 85.8 24.4 48.8 

30 ℃ - 0.2 mM 88.2 59.1 95.8 41.2 34.3 

30 ℃ - 0.5 mM 95.5 51.8 98.6 63.7 34.5 

37 ℃ - 0.2 mM 81.9 19.5 82.6 9.0 3.4 

37 ℃ - 0.5 mM 89.7 28.5 65.0 11.3 - 

          CDPSs 
 
Temperature 
-IPTG final conc. 

CWPS1NS1868 

(cWP) 

CWPS1NF5123 

(cWP) 

CWXS1NS1868 

(cWA) 

CWLS1NF5053  

(cWL) 

CWXS1NB3589  

(cWY) 

CWXS1NB24309 

(cWY) 

20 ℃ - 0.2 mM 144.9 69.2 69.3 93.9 141.4 51.7 

20 ℃ - 0.5 mM 173.8 85.8 75.5 96.4 111.8 64.7 

30 ℃ - 0.2 mM 131.4 95.8 68.1 104.9 25.8 55.8 

30 ℃ - 0.5 mM 198.2 98.6 74.7 104.2 44.9 54.9 

37 ℃ - 0.2 mM 146.3 82.6 14.7 104.9 94.6 15.5 

37 ℃ - 0.5 mM 128.4 65.0 12.1 84.7 106.1 13.4 
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S5 
 

Table S3 HR-EI-MS data of the CDPS products 

Compound 
Chemical 

Formula 

[M+H]+ 
Deviation (ppm) 

Calculated Measured  

cWA C14H15N3O2 258.1237 258.1224 5.0 

cWY C20H19N3O3 350.1499 350.1495 1.1 

cWM C16H19N3O2S 318.1271 318.1289 -5.7 

cWV C16H19N3O2 286.1550 286.1536 4.9 

cWW C22H20N4O2 373.1659 373.1636 6.2 

cWF C20H19N3O2 334.1550 334.1545 1.5 

cWL C17H21N3O2 300.1707 300.1709 -0.7 

cWP C16H17N3O2 284.1394 284.1417 -8.1 

cFL C15H20N2O2 261.1598 261.1619 -8.0 

59



S6 
 

Table S4 1H NMR data of the isolated cyclodipeptides 
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HN

NH

N
H O

O

2

3
9

4

5

6

7
8

10

13
14

16
11

17
18 19

20

1 12

15

 
cyclo-(L-Trp-L-Leu) (CDCl3) 

HN

N

N
H O

O

2

3
9

4

5

6

7
8

10

13

11

1

14

17

18

19

16
15

12

 
cyclo-(L-Trp-L-Pro) (CDCl3) 

Pos. δH, multi., J [Hz] δH, multi., J [Hz] δH, multi., J [Hz] δH, multi., J [Hz] 
1 
2 
4 
5 
6 
7 
10 
 
11 
12 
14 
15 
17 
 
18 
 
19 
 
20 
21 
22 
23 
24 
25 

10.81, s 
6.61, d, 2.3 
7.35, d, 8.0 
6.95, ddd, 8.0, 7.0, 1.1 
7.04, ddd, 8.1, 7.0, 1.1 
7.28, dt, 8.1, 1.1 
2.71, dd, 14.3, 4.2 
2.20, dd, 14.3, 6.7 
3.87, m 
7.66, d, 2.5 
3.87, m 
7.66, d, 2.5 
2.71, dd, 14.3, 4.2 
2.20, dd, 14.3, 6.7 
- 
- 
6.61, d, 2.3 
- 
10.81, s 
- 
7.28, dt, 8.1, 1.1 
7.04, ddd, 8.1, 7.0, 1.1 
6.95, ddd, 8.0, 7.0, 1.1 
7.35, d, 8.0 

10.90, s 
7.00, d, 2.3 
7.52, dd, 8.0, 1.1 
7.02, ddd, 8.0, 7.0, 1.1 
7.10, ddd, 8.1, 7.0, 1.1 
7.35, dt, 8.1, 1.1 
2.84, dd, 14.5, 5.9 
2.57, m 
4.00, m 
7.90, d, 2.4 
3.89, m 
7.71, d, 2.5 
2.50, m 
1.92, dd, 13.6, 7.1 
- 
- 
6.76, dd, 8.0, 2.0 
- 
7.20a 
7.20a 
7.20a 
6.76, dd, 8.0, 2.0 
- 
- 

8.15, s 
7.11, d, 2.3 
7.63, dd, 8.0, 1.0 
7.15, ddd, 8.0, 7.1, 1.0 
7.23, ddd, 8.2, 7.1, 1.0 
7.39, dt, 8.2, 1.0 
3.49, ddd, 14,7, 3.1, 0.7 
3.21, dd, 14.7, 8.4 
4.32, m 
5.88, s 
3.89, m 
5.86, s 
1.51, m 
1.48, m 
0.98, m 
- 
0.84, d, 6.5 
 
0.81, d, 6.5 
- 
- 
- 
- 
- 

8.55, s 
7.06, d, 2.1 
7.58, dd, 8.0, 1.0 
7.13, ddd, 8.0, 7.0, 1.0 
7.22, ddd, 8.1, 7.0, 1.1 
7.38, dt, 8.1, 1.1 
3.75, ddd, 15.1, 3.8, 1.0 
2.97, dd, 15.1, 10.7 
4.37, ddd, 10.7, 3.8, 1.0 
5.83, s 
4.06, bt, 7.4 
- 
2.31, m 
2.01, m 
1.96, m 
1.89, m 
3.65, m 
3.58, m 
- 
- 
- 
- 
- 
- 
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Table S4 (continued) 

Comp. 

HN

NH

N
H O

O

2

3
9

4

5

6

7
8

10

13
14

16
11

17
12

15

1

 
cyclo-(L-Trp-L-Ala) (CD3OD) 

HN

NH

N
H O

O

2

3
9

4

5

6

7
8

10

13
14

16
11

17

OH

18
19

20

21

22

23 24

1 12

15

 
cyclo-(L-Trp-L-Tyr) (DMSO-d6) 

HN

NH

N
H O

O

2

3
9

4

5

6

7
8

10

13
14

16
11

S
17

18
20

1 12

15

 
cyclo-(L-Trp-L-Met) (CD3OD) 

HN

NH

N
H O

O

2

3
9

4

5

6

7
8

10

13
14

16
11

17
18

19

1
12

15

  
cyclo-(L-Trp-L-Val) (DMSO-d6) 

Pos. δH, multi., J [Hz] δH, multi., J [Hz] δH, multi., J [Hz] δH, multi., J [Hz] 
1 
2 
4 
5 
6 
7 
10 
 
11 
12 
14 
15 
17 
 
18 
19 
20 
22 
23 
24 

- 
7.05, s 
7.58, dt, 8.0, 1.0 
6.97, ddd, 8.0, 7.1, 1.0 
7.05, ddd, 8.1, 7.1, 1.0 
7.30, dt, 8.1, 1.0 
3.44, dd, 14.6, 4.1 
3.12, dd, 14.6, 4.5 
4.25, ddd, 4.5, 4.1, 1.3 
- 
3.67, qd, 7.1, 1.2 
- 
0.32, d, 7.1 
- 
- 
- 
- 
- 
- 
- 

10.90, d, 1.5 
7.00, d, 1.5 
7.51, dd, 7.9, 1.0 
7.02, ddd, 7.9, 7.0, 1.0 
7.09, ddd, 8.1, 7.0, 1.0 
7.34, dt, 8.1, 1.0 
2.83, dd, 14.5, 4.2 
2.49b 
3.97, m 
7.80, d, 2.5 
3.81, m 
7.62, d, 2.6 
2.45b 
1.86, dd, 13.6, 4.5 
- 
6.61, dt, 8.6, 2.0 
6.56, dt, 8.6, 2.0 
6.56, dt, 8.6, 2.0 
6.61, dt, 8.6, 2.0 
9.18, s 

- 
7.04, s 
7.59, dt, 8.0, 1.0 
6.96, ddd, 8.0, 7.0, 1.0 
7.05, ddd, 8.1, 7.0, 1.1 
7.30, dt, 8.1, 1.1 
3.47, dd, 14.7, 3.5 
3.09, dd, 14.7, 4.6 
4.27, ddd, 4.6, 3.5, 1.4 
- 
3.77, ddd, 7.4, 4.7, 1.3 
- 
1.17, m 
0.60, m 
1.63, m 
- 
1.73, s 
- 
- 
- 

10.85, s 
7.11, d, 2.4 
7.63, d, 7.9 
6.97, ddd, 7.9, 7.1, 1.0 
7.05, ddd, 8.1, 7.1, 1.0 
7.32, d, 8.1 
3.24, dd, 14.5, 5.0 
3.11, dd, 14.5, 4.5 
4.17, m 
7.96, s 
3.52, m 
7.87, s 
1.68, m 
- 
0.64, d, 7.1 
0.25, d, 6.8 
- 
- 
- 

a, b: Signals with the same letter overlapping with each other 
The data correspond well to those reported for cWA (Caballero et al. 1998), cWY (Kumar et al. 2014), cWV (He et al. 2013), cWL (Kumar et al. 2014), cWW (Giessen et al. 2013a; Lu et al. 2017), 

cWF (Kumar et al. 2014), and cWP(Grundmann and Li 2005), respectively.
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Fig. S1 Phylogenetic tree of known CDPSs from actinobacteria prior to this study 
(Brockmeyer and Li 2017; Giessen et al. 2013a; Giessen et al. 2013b; Jacques et al. 
2015; James et al. 2015) 
 

 NcdA Nocardiopsis sp. CMB-M0232 (cWW) 

 WP_017537615 Nocardiopsis halophila (cWW) 

 Amir 4627 Actinosynnema mirum DSM 43827 (cWW) 

 WP_009073312 Streptomyces sp. AA4 (cWW) 
 WP_014140974 (CWWS2D46488) Streptomyces cattleya DSM 46488 (cWW) 
 WP_027751606 Streptomyces sp. CNH287 (cWW)  

 EPD89497 Streptomyces sp. HPH0547 (cWW) 
WP_014141671 (CWWS1D46488) Streptomyces cattleya DSM 46488 (cWW) 

 WP_011273511 Corynebacterium jeikeium (cLL) 

 NozA Nocardiopsis sp. CMB-M0232 (cWW)) 

 WP_081578182 Austwickia chelonae (cCC, cCA, cCV) 

 WP_024127498 Streptomyces sp. F12 (cCC) 

 EWM10567 Kutzneria sp. 744 (cCC) 

  WP_009082649 Streptomyces sp. AA4 (cCC) 

  WP_050986820 Streptomyces somaliensis (cCC)) 

 AHI00829 Kutzneria albida DSM 43870 (cCC) 

  WP_015099810 Saccharothrix espanaensis (cCC) 

  WP_039919381 Amycolatopsis azurea (cCC) 

  WP_007028561 Amycolatopsis decaplanina (cCC) 

  WP_015033069 Streptomyces venezuelae (cYY) 

  Rv2275 Mycobacterium tuberculosis H37Rv (cYY) 

   WP_078486728 Streptomyces albulus (cFL, cFF, cFY)  

 AlbC Streptomyces noursei (cFL, cFF, cLL) 

 WP_013152196 Nocardiopsis dassonvillei (cFY) 

 WP_017544375 Nocardiopsis prasina (cFY, cYY) 

 WP_007379823 Streptomyces sviceus (cLV) 

 WP_016576960 Streptomyces albulus (cWW) 

 WP_016572541 Streptomyces albulus (cEA, cES) 

 WP_014985896 Nocardia brasiliensis (cEA) 

 WP_007317485 Gordonia effuse (cEA) 

 CDQ44434 Mycobacterium neoaurum (cEA) 
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Fig. S2 1H NMR spectrum of cyclo-(L-Trp-L-Trp) in DMSO-d6 
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Fig. S3 1H NMR spectrum of cyclo-(L-Trp-L-Pro) in CDCl3 

64



S11 
 

 
Fig. S4 1H NMR spectrum of cyclo-(L-Trp-L-Leu) in CDCl3 
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Fig. S5 1H NMR spectrum of in cyclo-(L-Trp-L-Tyr) in DMSO-d6 
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Fig. S6 1H NMR spectrum of cyclo-(L-Trp-L-Phe) in DMSO-d6  
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Fig. S7 1H NMR spectrum of cyclo-(L-Trp-L-Ala) in CD3OD 
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Fig. S8 1H NMR spectrum of cyclo-(L-Trp-L-Met) in CD3OD 
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Fig. S9 1H NMR spectrum of cyclo-(L-Trp-L-Val) in DMSO-d6
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A) E.coli /
 
pET28a (+)

C)
 
E.coli /

 
pJL29 (WP_031028810)

E)
 
E.coli

 
/ pJL30 (BAU83478)

time [minute]

cFL

cFL

0

8 0 0

0 1 0 2 0 3 0

0

2 5 0 0 0 0

5 0 0 0 0 0

0

2 5 0 0 0 0

5 0 0 0 0 0

0

2 5 0 0 0 0

5 0 0 0 0 0

0

8 0 0

0

8 0 0

[mAU]

[mAU]

[mAU]

B) E.coli /
 
pET28a (+), EIC 261.1598 0.01

D) E.coli / (WP_031028810), EIC 261.1598 0.01

F) E.coli / pJL30 (BAU83478), EIC 261.1598 0.01

 

Fig. S10 LC-MS analysis of recombinant E. coli strains with empty vector (A and B) 
and expression constructs (C-F). Black lines are UV absorptions at 258 nm and the red 
lines refer to extracted positive ion chromatograms (EIC).
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regio- and stereospecific guaninyl transfer reactions 
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Guanitrypmycin Biosynthetic Pathways Imply Cytochrome P450
Mediated Regio- and Stereospecific Guaninyl-Transfer Reactions
Jing Liu, Xiulan Xie, and Shu-Ming Li*

Abstract: Mining microbial genomes including those of
Streptomyces reveals the presence of a large number of
biosynthetic gene clusters. Unraveling this genetic potential
has proved to be a useful approach for novel compound
discovery. Here, we report the heterologous expression of two
similar P450-associated cyclodipeptide synthase-containing
gene clusters in Streptomyces coelicolor and identification of
eight rare and novel natural products, the C3-guaninyl indole
alkaloids guanitrypmycins. Expression of different gene com-
binations proved that the cyclodipeptide synthases assemble
cyclo-l-Trp-l-Phe and cyclo-l-Trp-l-Tyr, which are consec-
utively and regiospecifically modified by cyclodipeptide oxi-
dases, cytochrome P450 enzymes, and N-methyltransferases. In
vivo and in vitro results proved that the P450 enzymes function
as key biocatalysts and catalyze the regio- and stereospecific
3a-guaninylation at the indole ring of the tryptophanyl moiety.
Isotope-exchange experiments provided evidence for the non-
enzymatic epimerization of the biosynthetic pathway products
via keto–enol tautomerism. This post-pathway modification
during cultivation further increases the structural diversity of
guanitrypmycins.

Introduction

The genus Streptomyces has been well known for their
ability to produce numerous compounds with diverse activ-
ities.[1] In recent years, mining the increasing number of
released genome sequences has shown that many more
uncharacterized or silent clusters of secondary metabolites
remain hidden in their genomes.[2] Therefore, various strat-
egies including genetic and cultivation-dependent activation
and heterologous expression have been performed to unlock
these cryptic clusters for novel metabolites.[3] These efforts
have provided deep insights into the unprecedented potential
of Streptomyces to synthesize more metabolites than previ-
ously identified or envisaged.

Natural products derived from cyclodipeptides (CDPs)
with a 2,5-diketopiperazine (DKP) skeleton comprise an
important class of secondary metabolites, in particular indole
alkaloids derived from tryptophan-containing CDPs,[4,5]

which are widespread in fungi, bacteria, and plants.[5–8] In
nature, the CDP core can be generated by two distinct
enzyme groups, that is, the nonribosomal peptide synthetases
(NRPSs)[9] and the aminoacyl tRNA-dependent cyclodipep-
tide synthases (CDPSs).[10, 11] Tailoring enzymes for modifying
the CDP scaffold are usually encoded by genes associated
with the NRPS or CDPS in microorganisms.[12, 13] The CDPS
genes are often located together with those for cytochrome
P450s, oxidoreductases, cyclodipeptide oxidases (CDOs),
prenyltransferases (PTs), and methyltransferases (MTs),[12,14]

which significantly expand the diversity of DKP-based
natural products. Although a large number of CDPSs have
been identified in the last years,[11, 15,16] only nine CDPS-
containing biosynthetic pathways have been functionally
characterized,[14] indicating that much DKP tailoring poten-
tial remains unexplored. As modification enzymes, cyto-
chrome P450s play important roles in natural product
biosynthesis and constitute a large superfamily of heme-
containing oxidases. They catalyze a variety of chemical
reactions, such as hydroxylation, epoxidation, and demethy-
lation.[17, 18] However, only approximately 2.4% of Strepto-
myces-originated P450s are functionally and less than 0.4%
structurally characterized.[19] Interestingly, all five function-
ally characterized P450s in the CDPS-dependent pathways
catalyze intriguing chemical reactions. These include CYP121
for an intramolecular C@C bond formation within one cyclo-
l-Tyr-l-Tyr molecule,[20] CYP134A1 for the aromatization
and N-oxide formation of cyclo-l-Leu-l-Leu,[21] BcmD for
installing a tertiary hydroxyl group[22] (Scheme 1 i), P450NB5737

for a coupling of guanine with cyclo-l-Trp-l-Trp via C@N
bond formation[23] (Scheme 1ii), and NascB for dimerization
of cyclo-l-Trp-l-Pro[24] (Scheme 1 iii). These findings encour-
aged us to investigate P450-associated cdps-containing gene
clusters for the generation of various CDP derivatives.

Herein, we report the characterization of two similar five-
gene operons from Streptomyces coding for CDPS, P450,
CDO, and MT proteins for the formation of unprecedented
C3-guaninyl DKPs—guanitrypmycins, whereby P450 catalyz-
es the vital C@C linkage between indole ring of the CDPs with
the nucleobase guanine. Isotope-exchange experiments
proved that keto–enol tautomerism is responsible for the
non-enzymatic spontaneous epimerization of the pathway
products during the cultivation. Structural elucidation of eight
C3-guaninyl pyrroloindoline alkaloids in Streptomyces coeli-
color transformants confirms the proposed functions of the
biosynthetic enzymes and provides an excellent example for

[*] J. Liu, Prof. S.-M. Li
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Philipps-Universit-t Marburg
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revealing the genetic potential by genome mining and
heterologous expression.

Results and Discussion

Identification of the gut Gene Cluster

In a previous study, we identified nine CDPS genes from
Streptomyces strains, which assemble tryptophan-containing
CDPs.[15] Sequence analysis revealed that eight of them are
surrounded by a putative cytochrome P450 gene. Among
them, two CDPS genes, CWXS1NB24309 (renamed to GutA24309

in this study) in S. monomycini NRRL B-24309 and
CWXS1NB3589 (GutA3589) in S. varsoviensis NRRL B-3589,
are located in the similar gene loci containing four more genes
coding for three modification enzymes, that is, CDO, cyto-
chrome P450, and MT (Figure 1). The corresponding proteins

of the two clusters, termed gut cluster in this study, share
sequence identities between 79–90 % on the amino acid level
(Table S1). It can be therefore speculated that these two
clusters code for identical or very similar natural products.

Prior to this study, two characterized MTs from CDPS-
associated pathways were proven to be responsible for N- or
O-methylation of cyclodipeptides.[12] CDOs comprising two
subunits A and B are flavin-dependent dehydrogenases and

usually use CDPs as substrates for installation of exocyclic C@
C double bonds to the DKP rings.[25,26] Multiple sequence
alignments of the two putative P450 enzymes in the afore-
mentioned gene clusters with other known entries revealed
the presence of the conserved motifs of the bacterial P450
proteins (Figure S1), that is, the G347XXXC351 (referring to
EryF[27]) motif in the heme-binding loop and the highly
conserved A/Gn@1-Gn-XX-Tn+3 motif in the long I-helix
running over the distal surface of the heme in P450 scaffold.[27]

The unique cdps-associated genetic organization presented in
Figure 1, which is distinct from those studied before and has
not been investigated yet, could be involved in the biosyn-
thesis of novel DKP derivatives.

Heterologous Expression of gut24309 Cluster and Structure
Elucidation of Guanitrypmycins

The two mentioned CDPSs produced cyclo-l-Trp-l-Phe
(cWF, 1) and cyclo-l-Trp-l-Tyr (cWY, 2) as main products,
when heterologously expressed in E. coli.[15] Initial attempts
by gene inactivation experiments to find the metabolites
biosynthesized by these clusters in S. monomycini and
S varsoviensis failed, due to the difficult genetic manipulation
in these strains. We thereby turned to heterologous expression
in S. coelicolor M1146 for functional proof of the gene
clusters.[28] To establish a genetic protocol, gutA24309 was
amplified from the genomic DNA by PCR and cloned into the
replicative vector pPWW50A[29] (Strains, primers, and con-
structs are listed in Tables S2–4.) The M1146 cells with
pPWW50A as the control strain and gutA24309 transformant
were cultivated in GYM media at 28 88C for 7 days. The
fermentation broths were extracted with EtOAc and sub-
jected to LC-MS analysis. In comparison to the extract of
M1146 haboring pPWW50A (Figure 2Ai), cWF (1) was
detected as the predominant and cWY (2) as a trace peak in
the extract of the gutA24309 expression strain (Figure 2Aii).
These results differ clearly from those obtained from E. coli,
in which cWY (2) was much higher accumulated than cWF
(1).[15] This is likely due to different expression hosts. Host-
dependent distinct product formation has been observed in
different organisms, even in different Streptomyces hosts. For
example, the fls gene cluster delivers different metabolite
profiles in four different hosts.[30]

After successful confirmation of gutA24309 function, we
cloned the complete gut cluster from S. monomycini in
pPWW50A and introduced them into M1146. The trans-
formants were cultivated and treated as previously described.
LC-MS analysis of the transformant harboring gut-
(ABCDE)24309, which codes for GutA24309 (CDPS), Gut-
(BC)24309 (CDO), GutD24309 (cytochrome P450), and GutE24309

(MT), revealed the presence of four new peaks with similar
UV spectra which correspond to two pairs regarding their
molecular weights, 3a and 3b as well as 4a and 4 b (Fig-
ure 2Aiii). Peaks 3a and 3b with [M++H]+ ions at m/z
495.189: 0.005 are 14 Daltons larger than 4a and 4b with
[M++H]+ ions at m/z 481.173: 0.005 (Figure 2Aiii), indicating
one additional methyl group in the structures of 3a and 3b.
This speculation was confirmed by expression of gut-

Scheme 1. Examples of biosynthetic pathways involving CDPSs and
P450s.

Figure 1. Comparative illustration of the gut clusters.
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(ABCD)24309 without the putative MT gene gutE24309. As
shown in Figure 2Aiv, 4a and 4b were detected as the

predominant metabolites of this transformant. Subsequently,
fermentation of the transformant harboring gut(ABCDE)24309

on an 8 l scale and isolation afforded analytically pure 3a, 3b,
4a, and 4b. Their structures were characterized by detailed
interpretation of NMR data of 3a and 3b including 1H, 13C
APT, COSY, HSQC, HMBC, and NOESY. (See the Support-
ing Information for structure elucidation. NMR data of the
identified compounds are listed in Tables S5–13 and spectra
provided as Figures S3–51.) Both 3a and 3b bear an exocyclic
C@C double bond at the phenylalanyl side and a methylgua-
ninyl moiety is attached to C-3 of cWF (1), thereby forming
a hexahydropyrrolo[2,3-b]indole framework (Scheme 2). The
five 13C signals of the guaninyl residue are found at
approximately 157, 154, 154, 147, and 115 ppm, which is
similar to the data reported previously.[23, 31,32] Very strong
HMBC correlations from H2 to C8’ and from H10 to C8’
support that C-8’ of guanine and C-3 of cWF (1) are
connected via a C@C bond. The key HMBC correlations
from H-11’ of the methyl group to C4’ and C8’ suggest its
attachment to N-9’ of the guaninyl residue. These results
imply the putative functions of the four enzymes. In this
context, the P450 enzyme functions as an unusual guaninyl
transferase and catalyzes the attachment of a guanine moiety
to C-3 of the indole residue via a C@C bond. 3 a and 3 b differ
from each other merely in the stereochemistry at C-11 and
show therefore a slightly different CD spectra (Figures S52
and S53). In the NOESY spectrum of 3a (Figure S8), strong
correlations between H-2 at the indoline ring and H-11’ of the
guaninyl residue as well as H-2 and H-11 at the DKP ring
prove that H-2, H-11’, and H-11 are located at the same side.
In comparison, strong NOE correlation of H-2 with H-11’, but
only very weak correlation between H-2 and H-11 was
observed in the NOESY spectrum of 3b (Figure S14),
indicating different orientations of H-2 and H-11 in the
structure. Based on the fact that 3b is a non-enzymatic
rearrangement product of 3a (see below for details) and
CDPS products from proteinogenic acids have an S-config-
uration, we assigned H-11 in 3a an a- and in 3b a b-
orientation. Due to the C3-guaninyl pyrroloindoline feature,
we named 3a and 3b guanitrypmycin A1-1 and A1-2
(Scheme 2), respectively.

Inspection of the 1H NMR spectra of 4a and 4 b indicated
indeed the absence of the methyl group at the guaninyl
residue of 3a and 3b. However, we did not have sufficient
amounts of 4a and 4b for detailed structure elucidation. We
therefore isolated them from the culture broth of M1146
harboring gut(ABCD)24309 (Figure 2A iv). 4a and 4b isolated
from this strain showed identical 1H NMR spectra to those
from the strain carrying gut(ABCDE)24309. Comprehensive
NMR analysis confirmed that 4a and 4b are demethylated 3a
and 3 b and named herewith guanitrypmycins B1-1 and B1-2,
respectively (Scheme 2). 4a and 4b shared almost the same
CD spectra with their counterparts 3a and 3b, respectively
(Figures S52 and S53). Their configurations were also con-
firmed by interpretation of the NOE correlations of H-2, H-4,
H-10, and H-11 (Figures S20 and S26).

Figure 2. A) HPLC analysis of the S. coelicolor transformants and
B) schematic presentation of the biosynthetic pathway of guanitrypmy-
cins in S. monomycini. [M++H]+ ions with a tolerance range of :0.005
were detected at m/z 334.155 (1), 350.150 (2), 495.189 (3a/3b),
481.1731 (4a/4b), and 483.1888 (5a), respectively.
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Enzymatic and Non-enzymatic Formation of Guanitrypmycins

The identification of the compound pairs 3a/3b and 4a/4b
as products of the transformant with gut(ABCDE)24309 as well
as 4a/4b as those with gut(ABCD)24309 raised the question
about their relationships with each other and to the biosyn-
thetic enzymes. We firstly proved their accumulation during
the cultivation process. As shown in Figure S54, 3 a was
detected as the major peak in the three-day-culture of
gut(ABCDE)24309, whereas 4a was the predominant product
in that of gut(ABCD)24309. The ratios of 3b to 3a and 4b to 4a
increased continuously during the fermentation process. 3b
and 4b were even detected as the predominant products after
9 days, indicating the conversion of 3a to 3b and 4a to 4b.
Incubation of 3a and 3b in GYM media confirmed the non-
enzymatic spontaneous conversion of 3 a to 3b (Figure S55).
Almost the same results were also observed for 4 a and 4b
after incubation in GYM media (Figure S56).

Based on the fact that 3a and 4a have the same
configuration at C11 as cWF (1), and 3 b and 4b are their
epimers at this position, we speculated that 3b and 4b are
stable diastereomers of 3a and 4a, respectively, and formed
via keto–enol tautomerism (Scheme 2). To prove this hypoth-
esis, 3a, 3b, 4a, and 4b were incubated in 50% CD3OD in
D2O at different pH values. The samples were subsequently
subjected to LC-MS analysis (Figures S57–62). As expected
for keto–enol tautomerism,[33] the conversion of 3a to 3b and
4a to 4 b are much easier under alkaline than under acidic
conditions. Incorporation of one deuterium into 3b and 4b
was determined by interpretation of the isotopic peaks of
their [M++H]+ ions. In comparison to those in DMSO with m/z
495.19 and 481.17, the [M++H]+ ions of 3b and 4b are shifted
to m/z 496.20 and 482.18 after treatment with 0.01m NaOH,
respectively. At pH 8.0, the isotope peaks were partially

shifted. Furthermore, the changed isotope pattern of the
[M++H]+ ions of the trace formed 3a (from 3b) and 4a (from
4b) confirmed the existence of the keto–enol tautomerism
equilibration (Figures S57, S58, S60, and S61).

Taking the results together, GutA24309 assembles cWF (1),
which will be dehydrogenated merely at the phenylalaninyl
side by Gut(BC)24309 and connected with a guanine moiety by
GutD24309. GutE24309 governs the last modification step after
guanine attachment (Scheme 2, Figure 2B). However, the
above data cannot give us the accurate reaction order of
Gut(BC)24309 and GutD24309. Therefore, we expressed gut-
(AD)24309, gut(ADE)24309, and gut(AE)24309. Only slight (Figur-
es 2Av, vi) or nearly no consumption of cWF (1) (Fig-
ure 2Avii) was observed in these transformants, indicating
the importance of the exocyclic double bond for further
metabolism. In the transformant with gut(AD)24309, cWF (1)
was detected as the predominant product (ca. 85%) and the
additional peak 5a with a [M++H]+ ion at m/z 483.189: 0.005,
which overlapped with a product of the host strain, as a minor
product (Figure 2Av). Isolation and structure elucidation led
to the identification of 5a as guaninylated cWF (1), named
guanitrypmycin C1-1. Expression of gutD24309 alone did not
result in metabolite changes (Figure 2Aviii). Feeding cWF (1)
to the gutD24309 transformant led to the formation of 5a in low
yield (ca. 9 %) (Figure 2 Aix). In contrast, the fed cWDF (8)
was completely converted to 4 a and 4 b (Figure 2Ax). These
results proved that GutD24309 can use cWF (1) as substrate, but
only with very low efficiency and the product cWDF (8)
generated by Gut(BC)3589 (see below for strain construction)
serves as the natural substrate of GutD24309. Detection of 4a
two days after the feeding of cWDF (8) to the gutD24309

transformant and of 4 b at the end of cultivation confirmed
again the non-enzymatic conversion of 4a to 4b (Figure S63).
The order of the four enzyme reactions in the biosynthesis of

Scheme 2. Formation of guanitrypmycins in S. monomycini NRRL B-24309 and S. varsoviensis NRRL B-3589.

Angewandte
ChemieResearch Articles

11537Angew. Chem. Int. Ed. 2019, 58, 11534 – 11540 T 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

78

http://www.angewandte.org


guanitrypmycins in S. monomycini NRRL B-24309 and their
non-enzymatic epimerization is depicted in Scheme 2.

The proposed pathway in Scheme 2 was also confirmed by
different gene combination expressions of the gene cluster
from S. varsoviensis NRRL B-3589. When gutA3589 was
expressed in S. coelicolor M1146, both cWF (1) and cWY
(2) were detected and presented in a ratio of 2:1 (Figure S64);
hence a more complex product spectrum, four chemical pairs
3a/3b, 4 a/4 b, 6a/6b, 7a/7b along with cWDF (8) and cWDY
(9), was detected from this cluster (Figure S64). Isolation and
structure elucidation confirmed 3a/3b and 4a/4b are the
same as those of the cluster from NRRL B-24309, which are
derived from cWF (1). Two further product pairs, 6a/6b and
7a/7b, are the corresponding products derived from cWY (2),
named guanitrypmycin A2-1/A2-2 and B2-1/B2-2, respective-
ly.

Guanitrypmycins in S. monomycini NRRL B-24309

To validate the productivity for guanitrypmycins, we
performed fermentation of S. monomycini NRRL B-24309
and S. varsoviensis NRRL B-3589 in six different media. LC-
MS analysis revealed the presence of 3a/3b with [M++H]+ ions
at m/z 495.189: 0.005 and 4a/4b with [M++H]+ ions at m/z
481.173: 0.005 only in the fermentation broth of S. mono-
mycini with modified R5 medium (Figure S65). Scaled-up
fermentation of this strain and HPLC-guided purification,
and 1H NMR analysis confirmed unambiguously these prod-
ucts as 3a/3b and 4a/4 b. In comparison, the gut3589 cluster
seemed to be totally silent in S. varsoviensis : neither cWF (1)
or cWY (2), nor their deduced derivatives could be detected
in the extract of S. varsoviensis broth (Figure S66).

Biochemical Characterization of GutD

Our in vivo heterologous expression experiment proved
that GutD catalyzes the key C@C linkage reaction between
cWDF (8)/cWDY (9) and guanine during the biosynthesis of
guanitrypmycins. To verify the GutD function in vitro, we
amplified gutD24309 and gutD3589 from their genomic DNA and
heterologously overexpressed them in E. coli. Unfortunately,
neither GutD24309 nor GutD3589 could be obtained as soluble
proteins. Finally, GutD3589 was successfully overproduced in
S. coelicolor M1146 by using the replicative vector
pPWW50A and purified as an N-(His)10-fused protein to
near homogeneity (Figure S67). The purified recombinant
GutD3589 exhibited a red color and UV absorption maxima at
approiximatly 390 and 420 nm, indicating the presence of
both high- and low-spin states of the enzyme. The first state
could be due to substrate binding in the active site.[34] The
typical absorption maximum of the sodium dithionite reduced
FeII-CO complex was clearly observed at approximately
450 nm (Figure S67).

The GutD3589 activity was probed by using guanine and
cWDF (8) or cWDY (9) as substrates, commercial spinach
ferredoxin, and ferredoxin-NADP+ reductase for electron
transport. The reaction mixtures were analyzed by LC-MS

analysis and the products were identified by comparison of
their retention times and [M++H]+ ions with those from the
S. coelicolor transformants (Figure 3). As shown in Figure 3,
4a and 4b were clearly detected in the reaction mixture of
cWDF (8), while cWDY (9) was converted to 7a and 7b. No
conversion of cWDF (8) and cWDY (9) was observed with
heat-denaturated GutD3589 (Figure 3). The product formation
was strictly dependent on the presence of active recombinant
protein (Figure 3) and cofactors (Figure S68). Negligible
product formation was detected when GTP was used instead
of guanine (data not shown).

Conclusion

In conclusion, genome mining revealed the presence of
two homologous P450-associated cdps-containing gene clus-
ters (gut) in Streptomyces. Eight guanitrypmycins were
identified as C3-guaninyl pyrroloindolines from the trans-
formants harboring the gut24309 and gut3589 gene clusters. Total
product yields ranging from 37 to 58 mg per liter culture were
calculated for the transformants carrying the whole clusters or
lacking the MT gene (Table S14). Testing of guanitrypmycins
with the human ovarian adenocarcinoma cells SK-OV-3
shows almost no cytotoxicity.[35]

Figure 3. LC-MS monitoring of the in vitro assays of GutD3589.
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Expression of different gene combinations proved that the
CDP skeleton assembled by GutA24309 and GutA3589 initiates
the biosynthesis of guanitrypmycins. In S. coelicolor host,
GutA24309 mainly produces cWF (1), whereas cWF (1) and
cWY (2) are products of GutA3589, which serve as DKP
precursors and are further metabolized by the three tailoring
enzymes. Gut(BC) introduce an exocyclic double bond
merely to the phenylalanyl/tyrosyl, but not the tryptophanyl
side, which is distinctly different from the two known CDOs
AlbA/B and Ndas1146/1147 inserting double bonds to both
sides of the DKP rings.[25, 36] Both in vivo expression and in
vitro biochemical characterizations reveal that the P450s
GutD act as key enzymes and subsequently catalyze the
stereospecific coupling of cWDF (and cWDY) with a guanine
moiety via C3–C8’ bond formation. This intriguing reaction is
clearly distinguished from other known P450s, extending the
functional spectrum of P450 tailoring enzymes (Scheme 1).[14]

As listed in the reviews,[12, 37] P450 coding sequences are
predicted in a large number of cdps-containing clusters. It can
be therefore expected that more novel P450-mediated trans-
formations will be uncovered in the near future. Furthermore,
the MTs GutE transfer a methyl group to N9’ of the guaninyl
residue after P450-catalyzed coupling reaction, which is
different from the known MTs in cdps-containing clusters
catalyzing methylation at the DKP skeletons.[25, 38] The three
modification enzymes in the gut cluster, that is, CDO,
cytochrome P450, and MT, catalyze strictly regioselective
tailoring reactions. To the best of our knowledge, this is the
first report on guanitrypmycin structures and functional proof
of biosynthetic genes, especially the P450 enzymes as C3a-
guaninyl transferases for tryptophan-containing CDPs. More-
over, the non-enzymatic epimerization of 3a and 4a via keto–
enol tautomerism increases the structural diversity of guani-
trypmycins. In summary, this study provides an excellent
example for finding novel natural products by genome mining
and exploring the proposed functions of individual biosyn-
thetic enzymes via the heterologous expression approach.
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1. Computer-assisted sequence analysis 

Protein sequences used in this study were taken from the NCBI database 

(http://www.ncbi.nlm.nih.gov/protein) and compared with each other by using 

BLASTP program (http://blast.ncbi.nlm.nih.gov/). Multiple sequence alignments were 

carried out with the program ClustalW and visualized with ESPript 3.2 

(http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) to identify strictly conserved amino 

acid residues.  

2. Bacterial strains, plasmids, and culture conditions 

Bacterial strains and plasmids used in this study are listed in Tables S2 and S3, respectively. 

Liquid or solid Luria-Bertani (LB) medium with agarose was used for cultivation of E. coli and 

100 μg/mL ampicillin, 50μg/mL kanamycin, 50 μg/mL apramycin or 25 μg/mL 

chloramphenicol were used for selection when necessary.  

Streptomyces strains were kindly provided by ARS Culture Collection (NRRL). They were 

maintained in GYM (glucose 4.0 g/L, yeast extract 4.0 g/L, malt extract 10.0 g/L, agar 15.0 g/L, 

pH 7.2) at 28 °C. Streptomyces coelicolor M1146 and the exconjugants were cultured on MS 

media (mannitol 20.0 g/L, soya flour 20.0 g/L, agar 15.0 g/L). For secondary metabolite 

production, S. monomycini and S. varsoviensis were cultivated in modified R5 medium (sucrose 

103.0 g/L, glucose 10.0 g/L, yeast extract 5.0 g/L, MgCl2.6H2O 10.12 g/L, K2SO4 0.25 g/L, 

Difco casaminoacids 0.1 g/L, MOPS 21.0 g/L, trace element solution 2 mL/L, pH 7.2) at 28 °C 

for 7 days.1 

3. Genetic manipulation, PCR amplification, and gene cloning 

Genetic manipulation in E. coli was carried out according to the protocol by Sambrook and 

Russell.2 Isolation of genomic DNA from Streptomyces was performed as described in the 

literature.1 The genes mentioned in this paper were amplified from genomic DNA by using 

primers listed in Table S3 and Phusion® High-Fidelity DNA Polymerase from New England 

Biolabs (NEB). The generated PCR fragments were cloned into pGEM-T Easy vector and 

sequenced to confirm sequence integrity. After sequencing, the fragments were released with 
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the specific restriction endonucleases from pGEM-T Easy vector and ligated into pPWW50A 

vector,3 which was digested with the same enzymes, previously. The generated plasmids (Table 

S4) were transformed into S. coelicolor M1146 for gene expression.  

4. Heterologous expression in S. coelicolor M1146 

The constructed plasmids harboring different genes or gene clusters were firstly transformed 

into non-methylating E. coli ET12567/pUZ8002, which was subjected to conjugation with S. 

coelicolor M1146. The positive conjugants were first selected by the phenotype showing 

apramycin resistance and further confirmed by PCR. For gene expression, S. coelicolor M1146 

recombinant strains were inoculated in GYM liquid media supplied with 50 μg/mL of 

apramycin in 250 mL baffled flask and cultured at 28 °C, 200 rpm for 7 days. 1 mL culture was 

extracted with one volume of ethyl acetate for three times. The organic phases were combined, 

the solvent evaporated and the residue afterward resolved in 50 μL of methanol. 5 μL of such 

samples were taken for LC-MS analysis. 

5. Overproduction and purification of GutD3589 in Streptomyces 

S. coelicolor M1146 harboring pJL40 (gutD3589 in pPWW50A, Table S4) was cultivated in 50 

mL tryptic soy broth (TSB) medium containing 50 μg/mL apramycin for 48 h. 5 mL of this pre-

culture were transferred to 100 mL TSB with 50 μg/mL apramycin in 500 mL conical flasks. 

The cultures were further incubated at 28°C and 200 rpm for 3 days. One liter of such cultures 

were harvested by centrifugation at 4 °C and 4500 rpm for 20 min. The pellets were resuspended 

in lysis buffer (50 mM Tris-HCl, 10 mM imidazole, 300 mM NaCl, pH 8.0) in a ratio of 2 − 5 

mL per gram wet weight. Lysozyme from the chicken egg white was added to a final 

concentration of 1 mg/mL and incubated on ice for 30 min. After sonication, the crude protein 

extract was collected by centrifugation at 13000 rpm and 4 °C for 1 h. One-step purification of 

the recombinant His-tagged protein was performed by using Ni-NTA agarose (Macherey-Nagel, 

Düren, Germany) and eluted with 500 mM imidazole in 50 mM Tris-HCl, 300 mM NaCl buffer 

(pH 8.0). The purified protein was desalted through PD-10 Desalting Column (GE Healthcare, 

USA) according to the manufacturers' protocol and stored in 50 mM Tris-HCl buffer containing 
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15% (v/v) glycerol (pH 7.5) at − 80 °C. GutD3589 concentration was determined on a Nanodrop 

C2000 (Thermo Scientific, Braunschweig, Ger-many) to be 0.3 mg/mL. The purity of the 

obtained protein was proven on a 12% (w/v) SDS-PAGE (Figure S67). 

6. UV-Vis spectroscopic analysis of GutD3589 

To measure the typical absorbance of P450 ferrous-CO complex after reduction, carbon 

monoxide (CO) gas was bubbled into the GutD3589 solution (50 mM Tris-HCl, 15% (v/v) glyc-

erol, pH 7.5) for 2 min. After addition of 0.2 mg/mL of sodium dithionite, a UV-Vis spectrum 

between 360 and 550 nm was recoded on a Multiskan™ GO Microplate Spectropho-tometer 

(Thermo Scientific, Dreieich, Germany). UV-Vis spectra of GutD3589 before and after treatment 

with CO were also taken as controls. The spectra are given in Figure S67. 

7. Enzyme assays of GutD3589 

A standard GutD3589 assay contained 8 μM 8 or 13 μM 9, 3.3 μM GutD3589, 0.11 mM guanine, 

2 mM NADPH, 2 μM spinach ferredoxin (Sigma-Aldrich), 0.1 unit/mL spinach ferredoxin-

NADP+ reductase (Sigma-Aldrich), 100 mM Tris-HCl buffer (pH 8.5) in a total volume of 50 

μL. The reaction was performed at 30 °C for 16 h and then quenched with 50 μL MeOH. After 

centrifugation at 13000 rpm for 10 min, 5 μL of the supernatants were subjected to LC-MS 

analysis. The negative controls with heat-inactivated GutD3589 were performed under the same 

conditions. 

8. LC-MS analysis 

The ethyl acetate extracts were analyzed on an Agilent HPLC 1260 series system equipped with 

a photo diode array detector and a Bruker microTOF QIII mass spectrometer by using a 

Multospher 120 RP-18 column (250x4mm, 5µm, CS-Chromatograpie Service, Langerwehe, 

Germany). A linear gradient of 5 − 100 % acetonitrile in water, both containing 0.1 % formic 

acid, in 40 min and a flow rate at 0.25 mL/min were used. The column was then washed with 

100 % acetonitrile containing 0.1 % formic acid for 5 min and equilibrated with 5 % acetonitrile 

in water for 5 min. The parameters of the mass spectrometer were set as following: electrospray 
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positive ion mode for ionization, capillary voltage with 4.5 kV, collision energy with 8.0 eV. 

9. Isolation of the generated metabolites 

For structural elucidation of the accumulated compounds, different expression transformants 

harboring different genes or gene clusters were cultivated in GYM medium on a large scale (8 

L or more) at 28 °C for 7 days. The supernatants were then collected and extracted with ethyl 

acetate for three times. The EtOAc phases were evaporated to dryness and dissolved in a 1:1 

mixture of CH2Cl2:MeOH and mixed with an appropriate amount of silica gel for normal phase 

silica gel column chromatography, eluted with a gradient elution of CH2Cl2:MeOH in ratios of 

100:2, 100:3, 100:5, 100:10. The products were detected by LC-MS analysis and the target 

compounds were found mainly in the fractions eluted with solvent ratio of 100:10. The fractions 

were further purified on an Agilent HPLC 1260 series equipped with a photo diode array 

detector by using a semi-preparative Agilent ZORBAX Eclipse XDB C18 HPLC column (250 

×9.4 mm, 5µm) to get different products. The flow rate was set to 2.0 mL/min. 3a, 3b, 6a, 6b 

and 8 were purified with a linear gradient of 35% ACN in water, 4a, 4b, 5a, 7a and 9 of 30% 

ACN in water.  

10. Precursor feeding experiments 

Precursor feeding was carried out by using 20 mM stock solutions in DMSO. 25 µL of these 

solutions were added to 50 mL of 2 day-old cultures of Streptomyces transformants in GYM 

media. After cultivation at 28°C for additional 7 days, the metabolites were extracted with 

EtOAc and analyzed on LC-MS. 

11. Heterologous expression of gut3589 cluster in S. coelicolor and identification of 

metabolites derived from cWF (1) and cWY (2) 

When gutA3589 was expressed in S. coelicolor M1146, cWF (1) and cWY (2) in a ratio of 2:1 

were detected (Figure S64). Therefore, we expected a more complex product spectrum from 

this cluster. Indeed, expression of the whole cluster gut(ABCDE)3589 led to the accumulation of 

at least 12 products including four pairs 3a/3b, 4a/4b, 6a/6b, and 7a/7b (Figure S64). Isolation 
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and structure elucidation confirmed the same products 3a/3b and 4a/4b as those of the cluster 

from NRRL B-24309, which are derived from cWF (1). The two product pairs 6a/6b and 7a/7b 

are the corresponding products derived from cWY (2), named guanitrypmycin A2-1/A2-2 and 

B2-1/B2-2, respectively (Scheme 2). The configurations of 6a, 6b and 7a were determined by 

interpretation of NOE correlations and comparison of their CD spectra with those of 3a, 3b, 4a, 

and 4b (Figure S52 and S53). Expression of the cluster lacking the putative MT gene gutE3589 

resulted in the formation of 4a/4b and 7a/7b, but not the methylated products 3a/3b and 6a/6b 

(Figure S64). Significant amount of cWY (2), but not cWF (1) was detected in both 

transformants with gut(ABCDE)3589 and gut(ABCD)3589 indicates that cWF (1) is more 

effectively used by the tailoring enzymes. Detection of cW∆F (8) and cW∆Y (9) in both 

transformants provides additional evidence that CDO reaction takes places before that of P450 

(Scheme 2). This was also confirmed by expression of gut(AD)3589, gut(ADE)3589, gut(ABC)3589
,, 

and gut(AE)3589. Expression of gut(ABC)3589 accumulated cWF (1), cWY (2), cW∆F (8), and 

cW∆Y (9) in a ratio of 2.3:1.2:0.7:1.0, whereas almost no consumption of cWF (1) and cWY 

(2) was detected in other transformants (Figures S64). Precursor feeding to the gutD3589 

transformant revealed that cW∆F (8) and cW∆Y (9) were converted to 4a/4b and 7a/7b, 

respectively, while no changes were detected after feeding with cWF (1) and cWY (2) (Figures 

64). 

12. Determination of product yields for 3a, 3b, 4a, and 4b in Streptomyces 

transformants 

An Agilent HPLC 1200 series equipped with a photo diode array detector and an Agilent 

Eclipse XDB C18 column (5µm, 4.6 × 150 mm) were used for quantification. A linear gradient 

of 10 to 100% acetonitrile in water in 40 min was followed by 100% acetonitrile for 5 min and 

then 10% acetonitrile in water for 5 min. The flow rate was set to 0.5 mL/min. The absorption 

at 288 nm was used for quantification. 1 mL culture of M1146 transformants was extracted with 

1 mL ethyl acetate for 3 times. The organic phases were combined and evaporated to dryness. 

The residues were dissolved in 100 μL of methanol and 20 μL were analyzed on HPLC. The 

isolated products were used as authentic standards for quantification. 
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13. NMR analysis 

All the purified compounds were dissolved in DMSO-d6 for NMR analysis. NMR experiments 

were performed at 300K on a Bruker AVIII spectrometer (500 MHz) equipped with a 5 mm 

BBO cryo probe Prodigy with z-gradient. All spectra were processed with MestReNova 5.2.2 

(Metrelab Research, S5 Santiago de Compostella, Spain). NMR spectra and data of the 

identified compounds are provided as Figures S3 - S51 and Tables S5 – S13, respectively.  

14. Circular dichroism (CD) spectroscopic analysis 

CD spectra were taken on a J-815 CD spectrometer (Jasco Deutschland GmbH, Pfungstadt, 

Germany). The samples were dissolved in methanol and measured in the range of 200–400 nm 

by using a 1 mm path length quartz cuvette (Hellma Analytics, Müllheim, Germany). The CD 

spectra are given in Figures S52 - S53. 

15. Physiochemical properties of the compounds described in this study 

Guanitrypmycin A1-1 (3a): 12 mg, light yellow powder; CD (MeOH) λ max (∆ε) 293 (+69.9), 

250 (-10.7), 229 (+64.2), 214 (+84.7) nm; HRMS (m/z): (ESI/[M + H]+) calcd. for C26H23N8O3, 

495.1888, found 495.1912. 

Guanitrypmycin A1-2 (3b): 13 mg, light yellow powder; CD (MeOH) λ max (∆ε) 294 (+58.2), 

265 (+36.5), 246 (-72.9), 230 (+14.5); HRMS (m/z): (ESI/[M + H]+) calcd. for C26H23N8O3, 

495.1888, found 495.1918.  

Guanitrypmycin B1-1 (4a): 8 mg, light yellow powder; CD (MeOH) λ max (∆ε) 295 (+64.8), 

248 (-17.6), 227 (+48.9), 213 (+77.1) nm; HRMS (m/z): (ESI/[M + H]+) calcd. for C25H21N8O3, 

481.1731, found 481.1755. 

Guanitrypmycin B1-2 (4b): 10 mg, light yellow powder; CD (MeOH) λ max (∆ε) 298 (+45.1), 

267 (+10.8), 245 (-82.4), 230 (-38.3); HRMS (m/z): (ESI/[M + H]+) calcd. for C25H21N8O3, 

481.1731, found 481.1761. 

Guanitrypmycin C1-1 (5a): 8 mg, light yellow powder; HRMS (m/z): (ESI/[M + H]+) calcd. for 

C25H23N8O3, 483.1888, found 483.1901. 

Guanitrypmycin A2-1 (6a): 3 mg, light yellow powder; CD (MeOH) λ max (∆ε) 304 (+22.8), 
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252 (-10.9), 215 (+29.5), 206 (-1.5) nm; HRMS (m/z): (ESI/[M + H]+) calcd. for C26H23N8O4, 

511.1837, found 511.1848. 

Guanitrypmycin A2-2 (6b): 5 mg, light yellow powder; HRMS (m/z): (ESI/[M + H]+) calcd. 

for C26H23N8O4, 511.1837, found 511.1861. 

Guanitrypmycin B2-1 (7a): 4 mg, light yellow powder; CD (MeOH) λ max (∆ε) 304 (+31.2), 

250 (-16.2), 217 (+41.6), 204 (+5.9) nm; HRMS (m/z): (ESI/[M + H]+) calcd. for C25H21N8O4, 

497.1680, found 497.1704. 

16. Structural elucidation  

The structures of the isolated products were elucidated by comprehensive interpretation of their 

UV (Figure S2), NMR (Tables S5−13 and Figures S3−51), and CD spectra (Figures S52 and 

S53). The didehydro products of CDO24309/3589, cWF (8) and cWF (9), were identified by 

comparing their 1H NMR data with those of cWF (1) and cWY (2). The signals of the three 

coupling protons at H-14 and H-17 of 1 and 2 disappeared in the spectra of 8 and 9. Instead, an 

olefinic singlet was observed at approx. 6.2 ppm. This proton has a resonance at approx. 6.7 

ppm in the spectra of 3a, 3b, 4a, 4b, 6a, 6b, and 7a. The characteristic 13C signals of the 

guaninyl residue were found at approx. 157, 154, 154, 147, and 115 ppm.4 For the typical 

hexahydropyrrolo [2, 3-b] indole framework in guanitrypmycins, the ring formation between 

H-2 and N-12 resulted in the destroying the aromatic characters of the five-membered ring, so 

that the signal of H-2 was upfield shifted from approx. 7.0 to 5.9 −6.3 ppm. The signal of C-2 

was upfield shifted from approx. 125 to 80 ppm and C-3 from 110 to 55 ppm. The connections 

and configurations of the structural elements were confirmed by interpretation of the key 

correlations in the HMBC and NOESY spectra (Tables S5-13). Figures S52 and S53 showed 

almost the same CD spectra for compounds with the same configuration. 
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        Table S1. Comparison of CDPS-containing gene clusters in two Streptomyces strains. 

 

 

S. monomycini NRRL B-24309  S. varsoviensis NRRL B-3589  Sequence 

identity Accession No. Size 

(aa) 

Gut 

protein 

Putative function Accession No. 

 

Size 

(aa) 

Gut 

protein  

Putative function 

WP_030022365.1 110  hypothetical protein WP_030877678.1 276  inositol 

monophosphatase 

 

WP_078624485.1 126  divalent cation tolerance 

protein CutA 

WP_037963123.1 474  NAD(P)/FAD-dependent 

oxidoreductase 

 

No protein_id  310  hypothetical protein WP_030877674.1 126  hypothetical protein  

WP_078624486.1 231 GutE24309 SAM-dependent 

methyltransferase 

WP_078645497.1  229 GutE3589 SAM-dependent 

methyltransferase 

86% 

WP_078624487.1 282 GutA24309 cyclodipeptide synthase, 

CDPS 

WP_078645499.1  305 GutA3589 cyclodipeptide synthase, 

CDPS 

82% 

WP_050502760.1 411 GutD24309 cytochrome P450 WP_048832742.1  415 GutD3589 cytochrome P450 87% 

WP_033038824.1 158 GutB24309 cyclodipeptide oxidase, 

CDO subunit A 

WP_048832786.1  175 GutB3589 cyclodipeptide oxidase, 

CDO subunit A 

90% 

WP_050502761.1 114 GutC24309 cyclodipeptide oxidase, 

CDO subunit B 

WP_014908976.1  95 GutC3589 cyclodipeptide oxidase, 

CDO subunit B 

79% 

WP_078624488.1 246  hypothetical protein WP_030877658.1 490  DNA-3-methyladenine 

glycosylase 

 

WP_050502762.1 162  glutamylcyclotransferase WP_030877655.1 167  DNA methyltransferase  

WP_050502763.1 338  adenosine deaminase WP_048832744.1 464  hypothetical protein  
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Table S2. Bacterial strains used in this study.  

 

Strains Source Cultivation Media 

E. coli DH5α (for cloning) Invitrogen LB 

E. coli ET12567/pUZ8002 5 LB 

Streptomyces varsoviensis NRRL B-3589 NRRL GYM 

Streptomyces monomycini NRRL B-24309 NRRL GYM 

Streptomyces coelicolor M1146 5 MS 

NRRL: Agricultural Research Service (ARS) Culture Collection 

LB medium: tryptone10.0 g/L, yeast Extract 5.0 g/L, NaCl 10.0 g/L. 

GYM medium: glucose 4.0 g/L, yeast extract 4.0 g/L, malt extract 10.0 g/L, pH 7.2. 

MS medium: mannitol 20.0 g/L, soya flour 20.0 g/L, agar 15.0 g/L, pH 7.2. 
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Table S3. Gene amplification and cloning. 

 

Gene Primer sequences (5’-3’) 
Cloning sites 

for pPWW50A 

Cloning 

constructs 

gutA24309 GCGCATATGAGTGCATCGCAGGCTGCTG 

GGATCCTCACGTCACGTCCCCTGC 

NdeI 

BamHI 

pJL31 

 

gutD24309 CATATGAGCGGACGGCCTCCCGGC 

GGATCCTCACCAGAGCACCGGCAGG 

NdeI 

BamHI 

pJL36 

 

gutE24309 GGATCCTGTCATTCCTGCGGATCGTCGC 

ACTAGTTCACCCGGAGCGATCCGGA 

BamHI  

SpeI 

pJL34 

 

gut(AD)24309 GCGCATATGAGTGCATCGCAGGCTGCTG 

GGATCCTCACCAGAGCACCGGCAGG 

NdeI 

BamHI 

pJL35 

gut(ABCD) 24309 GCGCATATGAGCACGAACAACAGTTACTTC 

GGATCCTCACCAGAGCACCGGCAGG 

NdeI 

BamHI 

pJL33 

 

gutA35809 CATATGGGGGCCCCGCAGCCC 

GGATCCTCACGTCAAGTCCCTTTCTCC 

NdeI 

BamHI 

pJL32 

 

gut(BC)35809 GTGGATCCATGAGCCGCCAGGAGCGCAC 

ACTAGTTCAGGCGGGCGGGCGGG 

BamHI  

SpeI 

pJL41 

 

gutD35809 GCATATGAACGCACAGTCCGCGACGGGC 

CGGATCCTCACCAGAGCACCGGCAGGCG 

NdeI 

BamHI 

pJL40 

 

gutE35809 GGATCCGTCGCGGCCTGTCACTCAC 

ACTAGTCTAGGCGCGGTTGCCGTC 

BamHI  

SpeI 

pJL38 

 

gut(AD)35809 CATATGGGGGCCCCGCAGCCC 

CGGATCCTCACCAGAGCACCGGCAGGCG 

NdeI 

BamHI 

pJL39 

gut(ABCD)35809 CATATGGGGGCCCCGCAGCCCACTGTC 

GGATCCTCAGGCGGGCGGGCGGGG 

NdeI 

BamHI 

pJL37 

Restriction sites for cloning are underlined in the primer sequences.
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Table S4. Expression constructs in pPWW50A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expression 

constructs 
Genes to be expressed 

Fragments from 

cloning vectors 

pJL51 gutA24309 pJL31 

pJL53 gut(ABCDE)24309 pJL33+pJL34 

pJL54 gut(ABCD)24309 pJL33 

pJL55 gut(AD)24309 pJL35 

pJL56 gutD24309 pJL36 

pJL57 gutAE24309 pJL31+pJL34 

pJL58 gutADE24309 pJL34+pJL35 

pJL52 gutA35809 pJL32 

pJL59 gut(ABCDE)35809 pJL37+ pJL38 

pJL60 gut(ABCD)35809 pJL37 

pJL61 gut(AD)35809  pJL39 

pJL62 gutD35809 pJL40 

pJL63 gut(ABC)35809 pJL32+ pJL41 

pJL64 gut(AE)35809 pJL32+ pJL38 

pJL65 gut(ADE)35809 pJL38+pJL39 
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Table S5. NMR data of guanitrypmycin A1-1 (3a). 

a only related correlations for determination of configuration are listed.

 

Pos. δ 
C  δ 

H, multi., J in Hz 1H-1H COSY HMBC 
NOESY(key correlations)a 
(s: strong; m: medium; w: weak) 

1 - not observed - -  

2 80.8 5.93, s - C-3, 8, 10, 11, 8  ́ H-10w,10wm11  ́s 

3 55.6 - - -  

4 122.6 6.83, d, 7.3 H-5 C-3, 6, 8 H-10w, 10m  ́w 

5 118.4 6.64, t, 7.4 H-4, 6 C-7, 9  

6 129.3 7.10, t, 7.7 H-5, 7 C-4, 8  

7 109.6 6.87, d, 7.9 H-6 C-4, 5, 9  

8 148.9 - - -  

9 129.7 - - -  

10 
39.9 

3.82, dd, 12.3, 6.1 H-11, 10 C-2, 3, 8  ́ H-2 w, 4 w, 10s, s 

10 2.01, t, 11.9 H-11, 10 C-3, 9, 11, 16, 8  ́ H-2 w, 4 m, 10s, 11 m 

11 57.6 4.76, dd, 11.4, 6.2 1010 C-10, 16 H-2 m, 10s, 10m 

13 160.2 - - -  

14 128.3 - - -  

15 - 10.12, s - C-11, 13, 14, 16  

16 167.0 - - -  

17 116.1 6.75, s - C-13, 19, 23  

18 133.4 - - -  

19 129.6 7.56, d, 7.6 H-20 C-17, 21, 23  

20 128.7 7.39, t, 7.6 H-19, 21 C-18, 22  

21 128.3 7.30, t, 7.3 H-20, 22 C-19, 23  

22 128.7 7.39, t, 7.6 H-21, 23 C-18, 20  

23 129.6 7.56, d, 7.6 H-22 C-17, 19, 21  

1  ́ - 10.68, d, 5.4  - C-5  ́  

2  ́ 153.9 - - -  

4  ́ 153.8 - - -  

5  ́ 114.6 - - -  

6  ́ 156.7 - - -  

8  ́ 146.1 - - -  

10  ́ - 6.58, s - -  

11  ́ 29.3 3.02, s - C-4 ,́ 8  ́ H-2 s, 4 m 

97



S16 
 

Table S6. NMR data of guanitrypmycin A1-2 (3b). 

a only related correlations for determination of configuration are listed.

 

Pos. δ 
C  δ 

H, multi., J in Hz 1H-1H COSY HMBC 
NOESY(key correlations)a 

(s: strong; m: medium; w: weak ) 

1 - 7.16, s - -  

2 78.3 6.01, d, 1.2 - C-11, 8, 9, 8  ́ H-11 (w), 11  ́(s) 

3 55.0 - - -  

4 123.9 6.98, d, 7.3 H-5 C-6, 8 H-10 (m) (w)  ́(w) 

5 118.6 6.66, t, 7.4 H-4, 6 C-7, 9  

6 129.5 7.09, t, 7.6 H-5, 7 C-4, 8  

7 108.7 6.65, d, 7.8 H-6 C-5, 9  

8 150.8 - - -  

9 127.8 - - -  

10 
40.8 

3.51, t, 12.4  H-11, 10 C-3, 9, 16, 8  ́ H-10(s), 11 (m) 

10 2.71, dd, 12.9, 6.0 H-11, 10 C-2, 9 H-4 (m), 10(s), 11 (s) 

11 56.3 4.34, dd, 11.9, 6.0 1010 C-16 H-2 (w), 4 (w), 10 (m), 10 (s) 

13 158.1 - - -  

14 127.7 - - -  

15 - 10.07, s  - -  

16 166.3 - - -  

17 115.4 6.75, s - C-13, 19, 23  

18 133.3 - - -  

19 129.4 7.52, d, 7.6 H-20 C-17, 21, 23  

20 128.6 7.39, t, 7.7 H-19, 21 C-18, 22  

21 128.1 7.30, t, 7.4 H-20, 22 C-19, 23  

22 128.6 7.39, t, 7.7 H-21, 23 C-18, 20  

23 129.4 7.52, d, 7.6 H-22 C-17, 19, 21  

1  ́ - 10.58, s - -  

2  ́ 153.6 - - -  

4  ́ 153.6 - - -  

5  ́ 114.4 - - -  

6  ́ 156.7 - - -  

8  ́ 147.8 - - -  

10  ́ - 6.48, s - -  

11  ́ 28.3 3.13, s - C-4 ,́ 8  ́ H-2 (s), 4 (w) 
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Table S7. NMR data of guanitrypmycin B1-1 (4a). 

a only related correlations for determination of configuration are listed.

 

Pos. δ 
C  δ 

H, multi., J in Hz 1H-1H COSY HMBC 
NOESY (key correlations)a 
( s: strong; m: medium; w: weak) 

1 - 7.05, s H-2 C-3, 9  

2 81.3 6.32, s H-1 - H-11 (m), 10(m), 10(w) 

3 56.0 - - -  

4 122.9 7.03, d, 7.4 H-5 C-3, 6, 8 H-10(w)10 (m) 

5 117.9 6.60, t, 7.1 H-4, 6, C-7, 9  

6 128.7 7.04, t, 7.2 H-5, 7 C-4, 8  

7 109.7 6.61, d, 7.6 H-6 C-5, 9  

8 148.4 - - -  

9 130.3 - - -  

10 
39.2 

3.37, dd, 13.2, 6.5 H-11, 10 C-2, 3, 8  ́ H-2 (m), 4 (w), 10(s)(s) 

10 2.10, t, 12.2 H-11, 10 C-3, 9, 16, 8  ́ H-2 (w), 4 (m), 10(s)11 (m) 

11 57.7 4.60, dd, 11.7, 6.8 1010 C-10, 16 H-2 (m), 10(s), 10m 

13 160.4 - - -  

14 128.4 - - -  

15 - 10.15, s  - -  

16 167.0 - - -  

17 116.3 6.77, s - C-13, 19, 23  

18 133.5 - - -  

19 129.6 7.55, d, 7.6 H-20 C-17, 21, 23  

20 128.7 7.39, t, 7.5 H-19, 21 C-18, 22  

21 128.4 7.30, t, 7.4 H-20, 22 C-19, 23  

22 128.7 7.39, t, 7.5 H-21, 23 C-18, 20  

23 129.6 7.55, d, 7.6 H-22 C-17, 19, 21  

1  ́ - 10.66, s  - -  

2  ́ 154.0 - - -  

4  ́ 153.7 - - -  

5  ́ 115.8 - - -  

6  ́ 156.8 - - -  

8  ́ 146.9 - - -  

9  ́ - 12.60, s - -  

10  ́ - 6.43, s - -  
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Table S8. NMR data of guanitrypmycin B1-2 (4b). 

a only related correlations for determination of configuration are listed.

 

Pos. δ 
C  δ 

H, multi., J in Hz 1H-1H COSY HMBC 
NOESY (key correlations)a 
(s: strong; m: medium; w: weak) 

1 - 6.87, s - C-3, 9  

2 79.1 6.24, s - - H-10w 

3 55.3 - - -  

4 124.3 7.34, d, 7.3 H-5 C-3, 6, 8 H-10w, 10m, 11 w 

5 117.9 6.61, t, 7.2 H-4, 6, C-7, 9  

6 129.0 6.98, t, 7.4 H-5, 7 C-4, 8  

7 108.8 6.54, d, 7.7 H-6 C-5, 9  

8 150.1 - - -  

9 128.3 - - -  

10 
40.6 

2.66, t, 12.0 H-11, 10 C-3, 9, 11, 16, 8  ́ H-2 w, 4 w, 10(s)m 

10 2.91, dd, 11.9, 5.9 H-11, 10 - H-4 m, 10ss 

11 57.9 4.30, dd, 11.1, 5.9 1010 C-10, 16 H-4 w, 10m, 10s 

13 158.1 - - -  

14 128.0 - - -  

15 - 10.04, s  - -  

16 166.1 - - -  

17 115.1 6.70, s - C-13, 16, 19, 23  

18 133.5 - - -  

19 129.4 7.47, d, 7.4 H-20 C-17, 21, 23  

20 128.7 7.34, t, 7.3 H-19, 21 C-18, 22  

21 128.1 7.25, t, 7.0 H-20, 22 C-19, 23  

22 128.7 7.34, t, 7.3 H-21, 23 C-18, 20  

23 129.4 7.47, d, 7.4 H-22 C-17, 19, 21  

1  ́ - 10.57, s  - -  

2  ́ 153.7 - - -  

4  ́ 153.6 - - -  

5  ́ 115.3 - - -  

6  ́ 156.7 - - -  

8  ́ 148.0 - - -  

9  ́ - 12.46, s  - -  

10  ́ - 6.35, s - -  
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Table S9. NMR data of guanitrypmycin C1-1 (5a). 

a only related correlations for determination of configuration are listed.

 

Pos. δ 
C  δ 

H, multi., J in Hz 1H-1H COSY HMBC 
NOESY (key correlations)a 
(s: strong; m: medium; w: weak) 

1 - 6.98, d, 3.7 H-2 C-3, 8, 9  

2 81.2 6.20, d, 3.6 H-1 C-8, 8  ́ H-11 (m), 10 (w), 10 (w) 

3 56.2 - - -  

4 122.6 6.92, d, 7.4 H-5 C-6, 8 H-10(w)10 (m), 11 (w) 

5 117.6 6.57, t, 7.5 H-4, 6, C-7, 9  

6 128.7 7.02, t, 7.7 H-5, 7 C-4, 8  

7 109.4 6.60, d, 7.9 H-6 C-5, 9  

8 148.4 - - -  

9 130.3 - - -  

10 
38.8 

3.27, dd, 12.7, 6.5 H-11, 10 C-2, 3, 8  ́ H-2 (w), 10s(m) 

10 1.93, t, 12.0 H-11, 10 C-3, 9, 11, 16, 8  ́ H-2 (w), 4 (m), 10s11 (m) 

11 58.2 4.40, dd, 11.0, 6.5 1010 C-10 H-2 (m), 10(m), 10m 

13 167.2 - - -  

14 55.6 4.44, t, 5.2 1717 C-13, 17, 18  

15 - 8.00, s - C-11, 13, 14, 17  

16 169.6  - -  

17 
34.3 

3.16, dd, 14.1, 5.7 H-14, 17 C-13, 18, 19, 23  

17 3.03, dd, 14.5, 5.4 H-14, 17 C-13, 18, 19, 23  

18 137.5 -  -  

19 130.3 7.34, d, 7.4 H-20 C-17, 21, 23  

20 128.0 7.21, t, 7.5 H-19, 21 C-18, 22  

21 126.3 7.16, t, 7.3 H-20, 22 C-19, 23  

22 128.0 7.21, t, 7.5 H-21, 23 C-18, 20  

23 130.3 7.34, d, 7.4 H-22 C-17, 19, 21  

1  ́ - 10.51, s - -  

2  ́ 153.8 - - -  

4  ́ 153.6 - - -  

5  ́ 115.7 - - -  

6  ́ 156.6 - - -  

8  ́ 146.7 - - -  

9  ́ - 12.51, s - -  

10  ́ - 6.36, s - -  
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Table S10. NMR data of guanitrypmycin A2-1 (6a). 

a only related correlations for determination of configuration are listed.

 

Pos. δ 
C  δ 

H, multi., J in Hz 1H-1H COSY HMBC 
NOESY (key correlations)a 
(s: strong; m: medium; w: weak) 

1 - 7.24, d, 3.6 H-2 C-2, 3, 8, 9  

2 80.6 5.90, d, 3.6 H-1 C-3, 8, 10, 11, 8  ́ H-11 (m), 11 ́s 

3 55.6 - - -  

4 122.5 6.83, d, 7.3 H-5 C-3, 6, 8 H-10m, 10m, 11 ́w 

5 118.3 6.62, td, 7.5, 0.9 H-4, 6, C-7, 9  

6 129.2 7.10, td, 7.8, 1.2 H-5, 7 C-4, 8  

7 109.5 6.66, d, 8.0 H-6 C-5, 9  

8 148.9 - - -  

9 129.7 - - -  

10 
39.8 

3.79, dd, 12.3, 6.2  H-11, 10 C-2, 3, 8  ́ H-4 m, 10 ss 

10 1.99, t, 11.9 H-11, 10 C-3, 9, 11, 16, 8  ́ H-4 s, 10 sm 

11 57.5 4.68, dd, 11.4, 6.2 1010 C-10, 16 H-2 m, 10s, 10m 

13 160.8 - - -  

14 125.7 - - -  

15 - 9.99, s - -  

16 166.8 - - -  

17 117.0 6.68, s - C-13, 19, 23  

18 124.2 - - -  

19 131.4 7.43, d, 8.7 H-20 C-17, 21, 23  

20 115.6 6.79, d, 8.7 H-19 C-18, 22  

21 157.9 not observed  -  

22 115.6 6.79, d, 8.7 H-23 C-18, 20  

23 131.4 7.43, d, 8.7 H-22 C-17, 19, 21  

1  ́ - not observed - -  

2  ́ 153.8 - - -  

4  ́ 153.7 - - -  

5  ́ 114.6 - - -  

6  ́ 156.7 - - -  

8  ́ 146.1 - - -  

10  ́ - 6.56, s - -  

11  ́ 29.2 3.01, s  C-4 ,́ 8  ́ H-2 s, 4 w 
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Table S11. NMR data of guanitrypmycin A2-2 (6b). 

a only related correlations for determination of configuration are listed.

 

Pos. δ 
C  δ 

H, multi., J in Hz 1H-1H COSY HMBC 
NOESY (key correlations)a 
(s: strong; m: medium; w: weak) 

1 - 7.14, s H-2 C-2, 3  

2 78.3 5.99, d, 1.5 H-1 C-3, 8, 9, 11, 8  ́ H-11 (w), 11 ́s 

3 55.0 - - -  

4 123.9 6.97, d, 7.6 H-5 C-3, 6, 8 H-10w, 10s, 11 ́w 

5 108.7 6.64, t, 7.2 H-4, 6, C-7, 9  

6 129.5 7.08, t, 7.7 H-5, 7 C-4, 8  

7 119.0 6.65, d, 7.6 H-6 C-5, 9  

8 150.8 - - -  

9 127.8 - - -  

10 
40.9 

3.50, t, 12.5 H-11, 10 C-3, 9, 11, 16, 8  ́ H-4 w, 10 sm 

10 2.69, dd, 12.8, 6.1 H-11, 10 C-2, 9 H-4 s, 10 ss 

11 56.2 4.29, dd, 11.9, 6.0 1010 C-16 H-2 (w), 10m, 10s 

13 158.7 - - -  

14 125.3 - - -  

15 - 9.92, s - -  

16 166.2 - - -  

17 114.5 6.67, s - C-13, 19, 23  

18 124.1 - - -  

19 131.2 7.39, d, 8.7 H-20 C-17, 21, 23  

20 115.6 6.78, d, 8.7 H-19 C-18, 22  

21 157.8 -  -  

22 115.6 6.78, d, 8.7 H-23 C-18, 20  

23 131.2 7.39, d, 8.7 H-22 C-17, 19, 21  

1  ́ - not observed - -  

2  ́ 153.7 - - -  

4  ́ 153.6 - - -  

5  ́ 114.4. - - -  

6  ́ 156.8 - - -  

8  ́ 147.8 - - -  

10  ́ - 6.50, s - -  

11  ́ 28.2 3.12, s  C-4 ,́ 8  ́ H-2 s, 4 w 
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Table S12. NMR data of guanitrypmycin B2-1 (7a). 

a only related correlations for determination of configuration are listed.

 

Pos. δ 
C  δ 

H, multi., J in Hz HMBC 
NOESY (key correlations)a 
(s: strong; m: medium; w: weak) 

1 - 6.98, s C-3, 9,   

2 81.1 6.27, s - H-11 (m), 10(w) 

3 55.9 - -  

4 122.9 7.03, d, 7.4 C-3, 6 H-10w, 10m 

5 117.9 6.60, t, 7.2 C-7, 9  

6 128.9 7.04, t, 7.2 C-4, 8  

7 109.6 6.60, d, 7.8 C-5, 9  

8 148.4 - -  

9 130.3 - -  

10 
39.2 

3.33, dd, 13.2, 6.2 - H-2 w, 4 w, 10ss 

10 2.1, t, 12.4 C-8  ́ H-2 w, 4 m, 10sm 

11 57.5 4.53, dd, 11.4, 6.4 C-10, 16 H-2 m, 10s, 10m 

13 160.9 - -  

14 125.7 - -  

15 - 9.96, s -  

16 166.9 - -  

17 117.2 6.70, s C-13, 19, 23  

18 124.2 - -  

19 131.4 7.41, d, 8.6 C-17, 21, 23  

20 115.6 6.78, d, 8.7 C-18, 22, 21  

21 157.9 not observed -  

22 115.6 6.78, d, 8.7 C-18, 20, 21  

23 131.4 7.41, d, 8.6 C-17, 19, 21  

1  ́ - 10.54, s -  

2  ́ 154.0 - -  

4  ́ 153.5 - -  

5  ́ 115.8 - -  

6  ́ 156.7 - -  

8  ́ 147.0 - -  

9  ́ - 12.56, s -  

10  ́ - 6.35, s -  
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Table S13. 1H NMR data of cWF (8) and cWY (9). 

 

 

 

   

Pos. δ 
H, multi., J in Hz δ 

H, multi., J in Hz 

1 10.83, s 10.82, d, 1.3 

2 7.01, s 7.01, d, 1.5 

4 7.54, dd, 7.0, 1.7 7.54, dd, 7.2, 1.6 

5 7.00, td, 6.8, 1.5 6.99, td, 7.1, 1.5 

6 7.04, td, 7.0, 1.6 7.03, td, 7.0, 1.6 

7 7.16, dd, 6.9, 1.7 7.18, dd, 7.1, 1.7 

10 3.38, dd, 14.4, 3.6 3.34, dd, 14.4, 4.0 

 3.03, dd, 14.4, 4.6 3.03, dd, 14.5, 4.7 

11 4.27, dd, 7.0, 3.8 4.23, dd, 7.2, 4.2 

12 8.34, d, 2.0 8.22, d, 2.0 

15 9.34, s 9.18, s 

17 6.20, s 6.17, s 

19 6.58, dd, 7.1, 2.1 6.54, m 

20 7.12, m 6.54, m 

21 7.12, m not observed 

22 7.12, m 6.54, m 

23 6.58, dd, 7.1, 2.1 6.54, m 
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Table S14. Products yields (mg/L culture) of the four transformants cultivated in 

GMY media at 28°C for 7 days. 

 
        main 

products 
M1146 
harboring 

3a 3b 4a 4b total yields 

gut(ABCDE)24309 11.7 16.8 1.2 7.3 37.0 

gut(ABCD)24309 - - 17.9 40.3 58.2 

gut(ABCDE)3589 10.7 22.3 3.5 4.9 41.4 

gut(ABCD)3589 - - 23.2 27.0 50.2 
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G347XXXC351 

 

Figure S1. Sequence alignments of P450s from this study and structurally solved 

natural product P450s from bacteria. 

A/Gn-1 Gn-XX-Tn+3 

G347XXXC351 
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Figure S2. UV spectra of the isolated products obtained from LC-MS 

analysis. 
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Figure S3. 1H NMR spectrum of guanitrypmycin A1-1 (3a). 
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Figure S4. 13C APT NMR spectrum of guanitrypmycin A1-1 (3a). 
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Figure S5. 1H-1H COSY spectrum of guanitrypmycin A1-1 (3a). 
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Figure S6. HSQC spectrum of guanitrypmycin A1-1 (3a). 
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Figure S7. HMBC spectrum of guanitrypmycin A1-1 (3a). 
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Figure S8. NOESY spectrum of guanitrypmycin A1-1 (3a). 
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Figure S9. 1H NMR spectrum of guanitrypmycin A1-2 (3b). 
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Figure S10. 13C NMR spectrum of guanitrypmycin A1-2 (3b). 
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Figure S11. 1H-1H COSY spectrum of guanitrypmycin A1-2 (3b). 

117



S36 
 

 

Figure S12. HSQC spectrum of guanitrypmycin A1-2 (3b). 
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Figure S13. HMBC spectrum of guanitrypmycin A1-2 (3b). 
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Figure S14. NOESY spectrum of guanitrypmycin A1-2 (3b). 
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Figure S15. 1H NMR spectrum of guanitrypmycin B1-1 (4a). 
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Figure S16. 13C APT NMR spectrum of guanitrypmycin B1-1 (4a). 
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Figure S17. 1H-1H COSY spectrum of guanitrypmycin B1-1 (4a). 
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Figure S18. HSQC spectrum of guanitrypmycin B1-1 (4a)  
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Figure S19. HMBC spectrum of guanitrypmycin B1-1 (4a). 
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Figure S20. NOESY spectrum of guanitrypmycin B1-1 (4a). 
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Figure S21. 1H NMR spectrum of guanitrypmycin B1-2 (4b). 
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Figure S22. 13C APT NMR spectrum of guanitrypmycin B1-2 (4b).  
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Figure S23. 1H-1H COSY spectrum of guanitrypmycin B1-2 (4b). 
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Figure S24. HSQC spectrum of guanitrypmycin B1-2 (4b). 
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Figure S25. HMBC spectrum of guanitrypmycin B1-2 (4b). 
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Figure S26. NOESY spectrum of guanitrypmycin B1-2 (4b). 
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Figure S27. 1H NMR spectrum of guanitrypmycin C1-1 (5a). 
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Figure S28. 13C APT NMR spectrum of guanitrypmycin C1-1 (5a). 
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Figure S29. 1H-1H COSY spectrum of guanitrypmycin C1-1 (5a). 
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Figure S30. HSQC spectrum of guanitrypmycin C1-1 (5a). 
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Figure S31. HMBC spectrum of guanitrypmycin C1-1 (5a). 
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Figure S32. NOESY spectrum of guanitrypmycin C1-1 (5a). 
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Figure S33. 1H NMR spectrum of guanitrypmycin A2-1 (6a). 
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Figure S34. 13C APT NMR spectrum of guanitrypmycin A2-1 (6a). 
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Figure S35. 1H-1H COSY spectrum of guanitrypmycin A2-1 (6a). 
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Figure S36. HSQC spectrum of guanitrypmycin A2-1 (6a). 
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Figure S37. HMBC spectrum of guanitrypmycin A2-1 (6a). 
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Figure S38. NOESY spectrum of guanitrypmycin A2-1 (6a). 
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Figure S39. 1H NMR spectrum of guanitrypmycin A2-2 (6b). 
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Figure S40. 13C APT NMR spectrum of guanitrypmycin A2-2 (6b). 
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Figure S41. 1H-1H COSY spectrum of guanitrypmycin A2-2 (6b). 
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Figure S42. HSQC spectrum of guanitrypmycin A2-2 (6b). 
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Figure S43. HMBC spectrum of guanitrypmycin A2-2 (6b). 
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Figure S44. NOESY spectrum of guanitrypmycin A2-2 (6b). 
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Figure S45. 1H NMR spectrum of guanitrypmycin B2-1 (7a). 
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Figure S46. 13C APT NMR spectrum of guanitrypmycin B2-1 (7a). 
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Figure S47. HSQC spectrum of guanitrypmycin B2-1 (7a). 
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Figure S48. HMBC spectrum of guanitrypmycin B2-1 (7a). 
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Figure S49. NOESY spectrum of guanitrypmycin B2-1 (7a). 
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Figure S50. 1H NMR spectrum of cWF (8). 
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Figure S51. 1H NMR spectrum of cWY (9). 
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Figure S52. CD spectra of 3a, 4a, 6a, and 7a in MeOH. 

 

 

 

 

Figure S53. CD spectra of 3b and 4b in MeOH. 
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Figure S54. Time-dependent product formation of S. coelicolor M1146 transformants 

cultivated in GYM media at 28°C. UV absorptions at 288 nm are illustrated. 
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Figure S55. LC-MS analysis for determination of the stability of 3a and 3b in GYM 

media. The solutions were incubated at 28 ℃ for 8 days. 
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Figure S56. LC-MS analysis for determination of the stability of 4a and 4b in GYM 

media. The solutions were incubated at 28 ℃ for 8 days.
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Figure S57. LC-MS analysis of 3a and 3b after incubation in CD3OD/D2O (1:1, pH 

8.0) for 12 h. 
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Figure S58. LC-MS analysis of 3a and 3b after incubation in CD3OD/D2O (1:1) with 

0.01M NaOH for 16 h. 
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Figure S59. LC-MS analysis of 3a and 3b after incubation in CD3OD/D2O (1:1) with 

0.01M HCl for 12 h.
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Figure S60. LC-MS analysis of 4a and 4b after incubation in CD3OD/D2O (1:1, pH 

8.0) for 12 h. 

165



S84 
 

 

Figure S61. LC-MS analysis of 4a and 4b after incubation in CD3OD/D2O (1:1) with 

0.01M NaOH for 16 h.
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Figure S62. LC-MS analysis of 4a and 4b after incubation in CD3OD/D2O (1:1) with 

0.01M HCl for 12 h.
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Figure S63. Time-dependent product formation in S. coelicolor M1146 harboring 

gutD24309 after feeding with cWF (8). UV absorptions at 288 nm are illustrated.  
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Figure S64. Schematic presentation of the biosynthetic pathway of guanitrypmycins in 

S. varsoviensis (A) and HPLC analysis of the Str. coelicolor transformants (B). UV 

absorptions at 288 nm are illustrated. [M+H]+ ions, with a tolerance range of ±0.005, 

were detected at m/z 334.155 (1), 350.150 (2), 495.189 (3a/3b), 481.173 (4a/4b), 

511.184 (6a/6b), 497.168 (7a/7b), 332.139 (8), and 348.134 (9), respectively.  
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Figure S65. LC-MS analysis of metabolite profile of S. monomycini NRRL B-24309. 
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Figure S66. LC-MS analysis of metabolite profile of S. varsoviensis NRRL 

B-3589.  
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B) 

 

Figure S67.  SDS-PAGE analysis of the purified GutD3589 (A) and the absorption 

spectra for GutD3589 and its ferrous-CO complex (B). 
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Figure S68. LC-MS analysis of enzyme assays of GutD3589. (i) in vitro GutD3589 full 

assay, (ii) without cW∆F (8), (iii) without guanine, (iv) without ferredoxin and 

reductase, and (v) without NADPH.  
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Increasing cytochrome P450 enzyme diversity by
identification of two distinct cyclodipeptide
dimerases†

Jing Liu,a Xiulan Xieb and Shu-Ming Li *a

Genome mining revealed the presence of two cdps-p450 operons

in Saccharopolyspora antimicrobica. Heterologous expression, bio-

chemical characterisation and structure elucidation proved that the

two P450 enzymes catalyse distinct regio- and stereospecific

dimerizations of cyclo-(L-Trp-L-Trp), which significantly expands

the repertoire of diketopiperazine-tailoring enzymes. TtpB1 connects

the monomers via C3–C30, both from the opposite side of H-11/H-110,

while TtpB2 is characterised as the first P450 to mainly catalyse the

unusual linkage between N10 and C3 from the H-11 side.

Derivatives of cyclodipeptides (CDPs), the smallest cyclic pep-
tides with a representative 2,5-diketopiperazine (DKP) hetero-
cycle, comprise a large class of bioactive molecules.1 Despite
the structural simplicity, their privileged structural core makes
them attractive scaffolds for drug discovery and development.2–4

In nature CDPs are assembled by either nonribosomal peptide
synthetases (NRPSs), mostly in fungi5 or cyclodipeptide synthases
(CDPSs), usually in bacteria.6,7 Different tailoring enzymes are
afterwards involved in installing a number of functional groups,
thus generating various chemical structures.1,8,9 Among these
modification enzymes, P450s were proven to catalyse diverse
intriguing chemical transformations.8,10 With the aim to explore
novel modification enzymes, we recently identified seven P450s
for the modification of DKPs assembled by CDPSs. These enzymes
catalyse unprecedented coupling reactions with nucleobases11–13

or cyclodipeptide dimerizations.14

Dimeric CDPs possess enormous chemical complexity owing
to the densely functionalized core and multiple stereogenic
centres in their structures.15 Taking their biological activities

together, dimeric CDPs hold significant promise for medicinal
chemistry. In recent years, a large number of dimeric DKP
alkaloids have been identified from nature, mainly from fungi of
the genera Aspergillus and Penicillium.3 Meanwhile, great efforts
have been made for the chemical synthesis of dimeric DKPs,
e.g. epidithiodiketopiperazines,16 (+)-11,110-dideoxyverticillin A,17

(+)-WIN 64821,18 (�)-ditryptophenaline,18 and (+)-naseseazines A
and B.19 These synthetic procedures imply usually multiple steps.
Protected amino acids were used as reactants and metal salts like
CoCl(PPh3)3 or AgSbF6 as coupling reagents.

In contrast to the achievements obtained in isolation and
chemical synthesis, only four pathways for the formation
of dimeric CDPs are characterised to date, i.e. the NRPS-
dependent pathway of (�)-ditryptophenaline in Aspergillus
flavus20 (Scheme S1, ESI†) and three CDPS-related ones in
bacteria. The formation of (�)-naseseazine C in Streptomyces
sp. CMB-MQ03021 as well as (+)-naseseazine A and (�)-aspergilazine
A in Streptomyces sp. NRRL-S186814 is catalysed by P450s via C–C
bonds between C-5 or C-6 at the benzene ring of one unit and N1 or
C3 of another one (Scheme S1, ESI†).

A huge number of released actinobacteria genome
sequences provide a solid basis for the discovery of novel
compounds and intriguing enzymes by genome mining.22 To
expand the spectrum of CDP modification enzymes, we ana-
lysed different bacterial cdps-p450-containing clusters by using
known proteins as probes. The two clusters comprising one
cdps (ttpA1 or ttpA2, Fig. S1, ESI†) and one (ttpB2) or two P450
genes (ttpB1 and ttpC1, Fig. 1A and Table S1, ESI†) raised our
interest, because the two putative P450s TtpB1 and TtpB2, with
sequence identity of 71% to each other, are located in the
phylogenetic tree near to the known enzymes NasB, NascB and
AspB (Fig. S2, ESI†), which catalyse the dimerization of cWP or
the connection of cWP with cWA.14,21 TtpC1 is located phylo-
genetically out of this clade. Multiple sequence alignments of
the three aforementioned P450 enzymes with other known
entries revealed the presence of the conserved motifs for
bacterial P450 proteins (Fig. S3, ESI†), i.e. the G347XXXC351

(referring the number of EryF23) motif in the heme-binding
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loop and the highly conserved A/Gn�1-Gn-XX-Tn+3 motif in the
long I-helix running over the distal surface of the heme in the
P450 scaffold.23 The moderate sequence identities of approximately
40% between TtpB1/TtpB2 and the known dimerization enzymes
indicate different dimerization substrates or/and patterns, which
made us curious about their roles in CDP metabolism.

To verify their functions, the candidate genes and gene
clusters were heterologously expressed in Streptomyces albus
J1074.24 Firstly, the sequences of ttpA1 and ttpA2 were amplified
by PCR from the genomic DNA of DSM 45119, cloned into the
expression vector pPWW50A25 and transformed into S. albus
J1074 (Tables S2 and S3, ESI†). The obtained transformants
were then cultivated in modified R5 media at 28 1C for 7 days,
extracted with EtOAc and analysed on LC-MS. Compared to
J1074 harbouring the pPWW50A vector (Fig. 2A), the sole
product peak 1 with the same retention time and [M + H]+

ion at m/z 373.166 � 0.005 was detected in both transformants
(Fig. 2B and J). 1 was identified as cWW by comparison with an
authentic standard, confirming that both TtpA1 and TtpA2
function as cWW synthases. Two CDPS copies for the same
product have also been reported previously.26,27

After proof of the CDPS function, ttpA1 was cloned together
with ttpB1 and ttpC1 into pPWW50A and expressed in J1074.
LC-MS analysis of the culture of the ttp(ABC)1 transformant
revealed the presence of one product peak 2 with a [M + H]+ ion
at m/z 743.309 � 0.005 (Fig. 2C), corresponding well to that of a
dimeric cWW. Large scale fermentation and isolation afforded
analytically pure 2. Interpretation of the NMR data including
1H, 13C, 1H–1H COSY, HSQC and HMBC indicated the presence
of two identical cWW units (see ESI† for details; NMR data are
given in ESI,† and NMR spectra as Fig. S4–S27, ESI†). Detailed
inspection of the NMR spectra confirmed 2 to be a homodimer
with a C3–C30 bond from the same side (Fig. 1B). This linkage
results thereby in the formation of two hexahydropyrrolo[2,3-
b]indole frameworks. Thus, the signal of H-2/H-2 0 is up-field
shifted from approx. 7.0 to 5.1 ppm. The signal of C-2/C-20 is
up-field shifted from approx. 124 to 77 ppm and C-3/C-30 from
109 to 59 ppm. Key correlations from H-2/H-2 0 to C-3/C-30, from
H-10 to C-30 and from H-100 to C-3 were observed in the HMBC
spectrum (Fig. S8, ESI†). In its NOESY spectrum, strong NOE

correlations between H-2 and H-10b suggested that these pro-
tons are located at the same side of the five-membered rings
(Fig. S9, ESI†). Due to the cis-fused ring system and the NMR
data featuring two identical cWW units, the configurations of
the new stereo centres were determined as 2S, 3S, 20S, and 30S
(Fig. 1B). As its structure features four tryptophan residues,
2 was named tetratryptomycin A.

To verify which P450 is responsible for the formation of
tetratryptomycin A (2), we expressed ttp(AB)1 and ttp(AC)1
separately. LC-MS analysis of the fermentation culture of the
ttp(AB)1 transformant showed the same product profile as that
of ttp(ABC)1 (Fig. 2D), with identical molecular ion, retention
time, MS2 pattern and UV spectrum. In comparison, only the
CDPS product 1 was detected in the ttp(AC)1 transformant
(Fig. 2E). To further confirm that TtpB1, but not TtpC1, is
responsible for the dimerization, the coding sequences of ttpB1
and ttpC1 were cloned in pPWW50A and expressed in J1074,
respectively. Expression of ttpB1 and ttpC1 alone did not result
in the formation of any new metabolites by comparison with
J1074 harbouring pPWW50A (Fig. 2F and H). Feeding 1 into
the two-day old culture of the ttpB1 transformant at the final
concentration of 100 mM led to the accumulation of 2 (Fig. 2G),
whereas no consumption of 1 was observed in the ttpC1
transformant (Fig. 2I). This proved that TtpC1 is not involved
in the metabolism of 1 and indicated that the ttp1 cluster
comprises just ttpA1 and ttpB1. The second duplicate P450 gene
without any function has also been reported in the biosynthetic
gene cluster of venezuelaene.28 Taking all of the above results
together, TtpB1 functions as a regio- and stereospecific C3–C30

Fig. 1 (A) Genetic organizations of the two ttp gene clusters and (B) the
biosynthetic pathways of tetratryptomycins.

Fig. 2 HPLC analysis of the extracts of S. albus transformants.
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dimerase, generating a dimeric DKP connecting from the
opposite side of H-11/H-110 of the cWW residues.

In analogy, ttpA2 and ttpB2 from the second gene cluster were
also cloned into pPWW50A and expressed in J1074. LC-MS
analysis of the transformant harbouring ttp(AB)2 revealed the
presence of two new peaks 3 and 4 in a ratio of 20 : 1 with the
same [M + H]+ ions at m/z 743.309 � 0.005 (Fig. 2K), also
indicating the formation of cWW dimers. For structure elucida-
tion, 3 and 4 were isolated and subjected to NMR analysis.
Detailed interpretation of the NMR spectra of 3 revealed a
C3–N10 connection between the two cWW moieties. Key correla-
tion from H-20 to C-3 was clearly observed in its HMBC spectrum
(Fig. S14, ESI†). As expected for the formed hexahydropyrrolo[2,3-
b]indole framework, the signals of H-2, C-2 and C-3 were shifted
from approx. 7.0, 124 and 109 ppm to 5.8, 81 and 73 ppm,
respectively. In the NOESY spectrum of 3 (Fig. S15, ESI†), correla-
tions of H-20 at the indole ring of one cWW unit with H-10a and
H-11 as well as H-2 and H-11 of another monomer were observed,
suggesting that these protons are located on the same side. In
comparison to that of 2, the CD spectrum of 3 showed two
opposite Cotton effects at 245–250 and 300–310 nm (Fig. S28,
ESI†), supporting the suggested configuration. Therefore, 3 carries
a chirality of (2R, 3S) at the newly formed stereo centres and was
named as tetratryptomycin B (Fig. 1B).

For structure elucidation, the NMR spectra of the minor
product 4 were obtained in both DMSO-d6 and CD3CN. Inspec-
tion of its 1H and 13C NMR spectra in DMSO-d6 at 300 K
revealed the presence of two very similar cWW moieties with
a hexahydropyrrolo[2,3-b]indole framework each, indicating a
C3–C30 connection of cWW moieties and the presence of a
stereoisomer of 2. The proton signals overlapped strongly with
each other and the signals for aromatic protons were mostly
detected with poor resolution. Nevertheless, key correlation
from H-2 of one to C-30 of another cWW unit can be clearly
detected in the HMBC spectrum (Fig. S20, ESI†). The config-
urations of 4 at the newly formed stereo centres were proven to
be (2R, 3R, 20S, and 30S) by detection of the key NOE correla-
tions between H-2 and H-11, H-2 and H-10a, H-20 and H-100b
and H-2 and H-20 (Fig. S21, ESI†). 4 was named herewith
tetratryptomycin C. Obtaining the 1H NMR spectrum of 4 in
CD3CN at 310 K led to a much better resolution, which fulfilled
a full signal assignment and verified the suggested structure
(Fig. 1B). For further proof of the dimerization reaction cata-
lysed by TtpB2, its coding sequence was cloned into pPWW50A
and expressed in J1074. LC-MS analysis proved that neither 1
nor other products were detected in the ttpB2 transformant
(Fig. 2L). As expected, feeding 1 to the transformant led to the
detection of tetratryptomycins B and C in a similar ratio (20 : 1) as
in the ttp(AB)2 transformant (Fig. 2M). This unequivocally proved
TtpB2 as the second cWW dimerase from S. antimicrobica.

To further confirm the function of the two P450s in vitro,
we cloned and expressed ttpB1 and ttpB2 in Escherichia coli.
Unfortunately, only TtpB1 was obtained as a soluble protein
and used for enzyme assays (Fig. S29, ESI†). With the replicative
vector pPWW50A, TtpB2 can be successfully overproduced in
S. albus J1074 and purified as an N-(His)10-fused protein to near

homogeneity, but only with a very low yield (0.05 mg L�1

culture, Fig. S29, ESI†). The purified recombinant TtpB1 is
brown in colour and shows an absorption shift from 420 to
450 nm after treatment with CO and Na2S2O4, indicating the
presence of an active cytochrome P450 enzyme (Fig. S30, ESI†).
Incubation of TtpB1 with 1 in the presence of the commercial
spinach ferredoxin, ferredoxin-NADP+ reductase and NADPH
led to the clear detection of 2. Nearly 20% conversion of 1
(500 mM) was achieved after incubation with 7 mM TtpB1 at
30 1C for 30 min (Fig. S31A, ESI†). The reaction of TtpB1
followed the Michaelis–Menten kinetics (Fig. S32, ESI†). The
KM and kcat values were determined to be 50.8 mM and
0.26 min�1, respectively. Due to the low protein concentration,
we incubated 1.1 mM TtpB2 with 1 at 50 mM for 12 h. 25% of 1
was converted under this condition, mainly to 3. The product 4
was only detected in the extracted ion chromatogram by LC-MS
analysis (Fig. S31B, ESI†). In comparison, approx. 95% of 1
was consumed by 5 mM TtpB1 under the same conditions
(Fig. S31A, ESI†). The very low concentration of TtpB2 solution
prevented us from performing the CO difference experiment
and the determination of the kinetic parameters. No consump-
tion of 1 was detected with boiled TtpB1 and TtpB2 and without
redox partners or cofactors. Incubation of the recombinant
TtpB1 or TtpB2 with other CDPs including cWY, cWF, cWP,
cWL, cWA, cWG, cYY and cFF did not lead to any product
formation (data not shown), proving the high substrate speci-
ficity of both P450s. Absorption shift from 420 to 390 nm was
only detected in the UV-Visible spectrum of TtpB1 with cWW,
but not in those with other CDPs mentioned above due to the
absence of enzyme-substrate binding events (Fig. S33, ESI†).

Taking the results together, the P450 TtpB1 catalyses a regio-
and stereoselective cWW dimerization, generating the C3–C30

homodimer 2. TtpB2 is responsible for the formation of the
dimer 3 via a C–N bond as a major product and another C3–C30

homodimer 4 as a minor product. It should be mentioned that
both the cWW units in 2 have the same configuration at the
newly formed stereo centres, while the opposite configuration
was observed for one of the cWW units at the corresponding
positions in 4. Recently, Tian et al. proposed that the formation
of the DKP dimer naseseazine C by NascB implies a radical-
mediated intramolecular cyclization and intermolecular addi-
tion reactions.21 Similarly, we postulated that the DKP coupling
in the biosynthesis of tetratryptomycins begins with the for-
mation of a N1� radical (Fig. 3). Direct intermolecular coupling
with the second cWW at C3 would result in a fused pyrroloindo-
line ring system in 3. In the cases of 2 and 4 with a C3–C30

connection, radical migration from N1 to C3 is plausible,
before the second cWW is attacked at C30. Solving the crystal
structures of such P450 enzymes in the future would provide
new insights into the reaction mechanisms.

Total product yields of 2 in the J1074 transformant harbour-
ing ttp(AB)1 and 3 and 4 in the transformant with ttp(AB)2 were
calculated to be 205, 200 and 9.5 mg L�1, respectively. In
comparison to chemical synthesis, which usually requires
complex procedures, our finding provides an efficient approach
to afford dimeric DKPs in a direct manner. Therefore, these
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transformants can be considered as excellent hosts for large-
scale production of dimeric tetratryptomycins. Notably, none of
the tetratryptomycins were detected in S. antimicrobica cultures
(Fig. S34, ESI†), indicating the presence of two silent gene
clusters in the native host. 2–4 were tested for their antibacter-
ial activities against E. coli ATCC 25922 and K-12, Bacillus
subtilis NCIB 3610, Staphylococcus aureus ATCC 29213 and
Pseudomonas aeruginosa ATCC 27853.29 Unfortunately, no inhi-
bitory activity was observed.

In summary, we identified two cdps-p450-containing oper-
ons ttp1 and ttp2 in one bacterial strain for dimerization of the
same CDP cWW via genome mining. The two P450s catalyse
distinct coupling patterns differing from those previously
reported in actinobacteria. Thus, our finding significantly
increases the P450 repertoire for CDP modifications. As far as
we know, TtpB1 represents the first bacterial P450 catalysing
stereospecific C3 (sp3)–C30 (sp3) bond formation between two
CDPs, while TtpB2 is characterised as the first P450 to catalyse
not only the unusual linkage of C3 (sp3) of a hexahydropyrro-
loindole unit to N10 of the tryptophanyl moiety of the second
diketopiperazine unit, but also the intermolecular C3–C30 bond
formation. Therefore, our study provides a simple, direct and
efficient approach for enzymatic one-step preparation of struc-
turally complex DKP dimers and expands the classical chemical
methods. Interestingly, for all the studied CDP-related dimer-
ization gene clusters (Scheme S1, ESI† and Fig. 1A), there exist
at least two similar cdps-p450 operons in one native strain,
which generate different dimeric CDPs. It could be speculated
that the copies of these two-gene operons may come from a
common ancestor and become functionalized after horizontal
gene transfer in the evolutionary process, for various dimeric
CDP derivatives with different linkage patterns and/or stereo-
chemistry. It would be interesting to characterise more mem-
bers of this intriguing enzyme group.
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Experimental Procedures  

1. Computer-assisted sequence analysis 

The gene and protein sequences used in this study were obtained from NCBI databases  

(http://www.ncbi.nlm.nih.gov). Protein sequences were compared with each other by using 

BLASTP program (http://blast.ncbi.nlm.nih.gov/). The phylogenetic tree of P450s showing in Fig. 

S2 was created by MEGA version 7.0 (http://www.megasoftware.net). Protein sequence 

alignments were performed with the program ClustalW and visualized with ESPript 3.0 

(http://endscript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) to identify strictly conserved amino acid 

residues (Fig. S1 and S3).  

2. Bacterial strains, plasmids, and growth conditions 

Strains and plasmids used in this study are listed in Tables S2 and Table S3, respectively. 

Recombinant E. coli strains were cultivated in liquid or on solid Luria-Bertani (LB) medium with 

100 µg/mL ampicillin, 50 µg/mL kanamycin, 50 µg/mL apramycin or 25 µg/mL chloramphenicol, 

when necessary.  

Saccharopolyspora antimicrobica DSM 45119 was purchased from the Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DSMZ). Streptomyces albus J10741 was kindly gifted by Prof. 

Luzhetskyy (Saarland University). S. albus J1074 and the generated exconjugants were 

maintained on MS plates (mannitol 20.0 g/L, soya flour 20.0 g/L, agar 20.0 g/L) at 28 °C for 

sporulation. For secondary metabolite production, S. albus J1074 transformants were cultivated 

in liquid modified R5 medium (sucrose 103.0 g/L, glucose 10.0 g/L, yeast extract 5.0 g/L, 

MgCl2·6H2O 10.12 g/L, K2SO4 0.25 g/L, Difco casaminoacids 0.1 g/L, MOPS 21.0 g/L, trace 

element solution 2 mL/L, pH 7.2) at 28 °C for 7 days. 

3. Genetic manipulation, PCR amplification, and gene cloning 

Genetic manipulation in E. coli was performed according to the protocol by Green and Sambrook.2 

Isolation of genomic DNA from actinomycetes was carried out as described in the literature.3 The 

cdps and p450 genes were amplified by PCR from genomic DNA of S. antimicrobica DSM 45119 

by using primers listed in Table S3 and Phusion® High-Fidelity DNA Polymerase from New 

England Biolabs (NEB). The generated PCR fragments were cloned into pGEM-T Easy vector 

and the sequence integrity was confirmed by sequencing. Subsequently, the fragments were 

released with restriction endonucleases from pGEM-T Easy and ligated into pPWW50A4 or 

pET28a (+) vector, which were digested with the same enzymes, previously. The 
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generated constructs (Table S3) were transformed into S. albus J1074 or E. coli BL21 

(DE3) for gene expression. 

4. Heterologous gene expression in Streptomyces albus J1074 

The constructed plasmids harbouring different genes or gene clusters were firstly transformed 

into the non-methylating E. coli ET12567/pUZ8002, then conjugated with S. albus J1074. The 

positive conjugants were firstly selected by the phenotype showing apramycin resistance and 

further confirmed by PCR. The spores of the S. albus J1074 transformants were inoculated into 

50 mL of modified R5 liquid media supplied with 50 µg/mL of apramycin in 250 mL baffled flasks 

and cultured at 28 °C and 200 rpm for 7 days. 1 mL of the cultures was extracted with the same 

volume of ethyl acetate for three times. The organic phases were combined, evaporated, and the 

dried residues were afterwards dissolved in 400 µL of methanol. 5 µL of such samples were 

subjected to LC-MS for analysis.  

5. Overproduction and purification of P450s in E. coli and Streptomyces 
For the purification of TtpB1, pJL80 was transformed into E. coli BL21 (DE3). The recombinant E. 

coli cells were cultivated for 16 h in 50 mL LB media supplied with 50 µg/mL kanamycin as 

preculture. 5 mL of the preculture were transferred into 500 mL LB media (with 50 µg/mL 

kanamycin) in 2 L-Erlenmeyer flasks and grew at 37 °C and 230 rpm to an absorption of 0.6 at 

600 nm. The gene expression was induced with 0.1 mM IPTG at 16 °C for 20 h. The bacterial 

cultures were harvested by centrifugation (4,500 rpm, 20 min, 4 °C) and the cells were 

resuspended in lysis buffer (50 mM Tris-HCl, 10 mM imidazole, 300 mM NaCl, pH 8.0) with 2–5 

mL/g wet weight. Lysozyme from the chicken egg white was added to the mixture at a final 

concentration of 1 mg/mL, which was incubated on ice for 30 min. The cells were then lysed by 

sonication on ice. Cell debris was removed by centrifugation at 13,000 rpm and 4 °C for 30 min. 

One-step purification of the recombinant His6-tagged protein was performed by using Ni-NTA 

agarose (Macherey-Nagel, Düren, Germany) according to the manufacturer’s instruction. The 

storage buffer was changed to 50 mM Tris-HCl (pH 7.5) containing 15 % (v/v) glycerol through a 

PD-10 column (GE Healthcare, Freiburg, Germany), which had been equilibrated with the same 

buffer. The obtained protein was stored frozen at -80 °C.  

S. albus J1074 harbouring pJL84 (ttpB2 in pPWW50A, Table S3) was cultivated in 50 mL tryptic 

soy broth (TSB) medium containing 50 µg/mL apramycin for 48 h as preculture. 5 mL of this pre-

culture were transferred to 100 mL TSB with 50 µg/mL apramycin in 500 mL conical flasks. The 

cultures were further incubated at 28°C and 200 rpm for 3 days. Two litres of such cultures were 

harvested by centrifugation at 4 °C and 4,500 rpm for 20 min. The protein was purified as 
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described for E. coli cells.  

The concentrations of TtpB1 and TtpB2 were determined on a Nanodrop C2000 (Thermo 

Scientific, Braunschweig, Germany) to be 0.65 mg/L and 0.05 mg/L culture, respectively. The 

purity of the recombinant P450s was proven by 12 % (w/v) SDS-PAGE (Fig. S29). 

6. UV-Vis spectroscopic analysis of TtpB1  

To measure the typical absorbance of P450 ferrous CO complex after reduction, carbon 

monoxide gas was bubbled into the TtpB1 solution (14 µM in 50 mM Tris-HCl containing 15% (v/v) 

glycerol, pH 7.5) for 2 min. After addition of 0.2 g/mL of sodium dithionite, a UV-Vis spectrum 

between 350 and 550 nm was taken on a Multiskan™ GO Microplate Spectrophotometer (Thermo 

Scientific, Dreieich, Germany). UV-Vis spectra of a protein sample without any treatment and 

another one only bubbled with CO were taken as controls. The spectra of TtpB1 is given in Fig. 

S30. 

7. In vitro assays of P450s  

cWW (1, 500 µM) was first assayed with 7 µM TtpB1, 5 mM NADPH, 2 µM spinach ferredoxin 

(Sigma-Aldrich), 0.1 unit/mL spinach ferredoxin-NADP+ reductase (Sigma-Aldrich), 50 mM Tris-

HCl buffer (pH 7.5) in a total volume of 50 µL at 30 °C for 30 min. Afterwards, 50 µM of 1 was 

incubated with 5 µM TtpB1 or 1.1 µM TtpB2 for 12 h. The reactions were quenched with 50 µL 

ice-cold MeOH. After centrifugation at 13,000 rpm for 5 min, 5 µL of the supernatants were 

subjected to LC-MS analysis. Incubations with heat-inactivated P450s, without ferredoxin, 

ferredoxin reductase, or NADPH were used as negative controls. 

8. Determination of kinetic parameters for TtpB1  

For determination of the kinetic parameters of TtpB1 towards cWW (1), the reaction mixtures (50 

µL) contained 7 µM TtpB1, 5 mM NADPH, 2 µM spinach ferredoxin (Sigma-Aldrich), 0.1 unit/mL 

spinach ferredoxin-NADP+ reductase (Sigma-Aldrich), 50 mM Tris-HCl buffer (pH 7.5) and 1 at 

final concentrations of 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, and 0.4 mM. The reactions were carried out 

at 30 °C for 30 min and terminated by addition of 50 µL ice-cold MeOH. After removal of proteins 

by centrifugation, 50 µL of the supernatants were subjected to HPLC analysis. 

The analysis was carried out on an Agilent HPLC 1200 series equipped with a photo diode array 

detector and an Eclipse XDB C18 column (5 µm, 4.6 x 150 mm). A linear gradient of 5 to 100% 

acetonitrile in water (0.1% formic acid) in 20 min was followed by 100% acetonitrile for 5 min and 

5% acetonitrile in water for 5 min. The flow rate was set to 0.5 mL/min. Absorptions at 280 nm 

were illustrated in this study. The KM and kcat were proceeded with GraphPad Prism 8 (Fig. S32). 
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9. LC-MS analysis 

LC-MS analysis was performed on an Agilent HPLC 1260 series system equipped with a photo 

diode array detector and a microTOF QIII mass spectrometer (Bruker, Bremen, Germany) by 

using a Multospher 120 RP-18 column (250 x 2 mm, 5 µm, CS-Chromatographie Service GmbH). 

For secondary metabolite analysis, a linear gradient of 5 – 100 % acetonitrile in water, both 

containing 0.1 % formic acid, in 40 min and a flow rate at 0.25 mL/min were used. The column 

was then washed with 100 % acetonitrile containing 0.1 % formic acid for 5 min and equilibrated 

with 5 % acetonitrile in water for 5 min. For enzyme assay analysis, a linear gradient of 5 – 100 % 

acetonitrile in water in 10 min was used, and the column was then washed and equilibrated as 

described as the former method. The parameters of the mass spectrometer were set as following: 

electrospray positive ion mode for ionization, capillary voltage with 4.5 kV, collision energy with 

8.0 eV. 

10. Isolation of generated metabolites from S. albus J1074 transformants 

For structural elucidation of the accumulated compounds, the S. albus J1074 transformants 

harbouring ttp(ABC)1 and ttp(AB)2 were fermented in modified R5 medium on a large scale (4 L) 

at 28 °C for 7 days. The cultures were extracted with equal volume of ethyl acetate for three times. 

The organic phases were combined and evaporated to dryness. The extracts were applied to a 

silica gel column and eluted with a gradient CH2Cl2: MeOH in ratios of 100:2, 100:3, 100:5, 100:10. 

The target compounds 2 and 4 were mainly found in the fractions eluted with CH2Cl2: MeOH of 

100:5 and 3 in 100:10, respectively. These fractions were further purified on an Agilent HPLC 

1260 series equipped with a photo diode array detector by using a semi-preparative Agilent 

ZORBAX Eclipse XDB C18 HPLC column (9.4 x 250 mm, 5 µm) with 55 % ACN in water as 

solvent. The flow rate was set to 2.0 mL/min.  

11. Precursor feeding experiments 

Precursor feeding was carried out by using 20 mM cWW in DMSO. 150 µL of this solution were 

added to 30 mL of 2 day-old cultures of Streptomyces transformants in modified R5 media. After 

cultivation at 28°C for additional 7 days, the metabolites were extracted with EtOAc and analysed 

on LC-MS. 

12. Determination of production yields of cWW dimers in Streptomyces 
transformants 

An Agilent HPLC 1200 series equipped with a photo diode array detector and an Agilent Eclipse 

XDB C18 column (5 µm, 4.6 × 150 mm) were used for quantification. A linear gradient of 10 to 

100 % acetonitrile in water in 40 min was followed by 100 % acetonitrile for 5 min and then 10 % 
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acetonitrile in water for 5 min. The flow rate was set to 0.5 mL/min. The absorption at 280 nm was 

used for quantification. To ensure complete extraction of cWW dimers from mycelia, precipitants 

and supernatants, 1 mL whole culture of S. albus J1074 transformants was extracted with 1 mL 

ethyl acetate for three times. The organic phases were combined and evaporated to dryness. The 

residues were dissolved in 200 µL of methanol and 100 µL were analysed on HPLC. The isolated 

products were used as authentic standards for quantification. 

13. NMR analysis 
The NMR spectra of the purified compounds 2 and 3 were recorded on a JOEL ECA-500 MHz 

spectrometer (JEOL, Tokyo, Japan) in DMSO-d6. The NMR spectra of compound 4 in DMSO-d6 

were taken at 300 K on a Bruker AVIII spectrometer (500 MHz) equipped with a 5 mm cryo BBO 

probe Prodigy. To obtain a better NMR signal resolution, the 1H NMR of 4 was also recorded in 

acetonitrile-d3 at 273 K, 300 K, 310 K, and 320 K on a Bruker HD AVII spectrometer (500 MHz) 

equipped with a cryo BBO probe Prodigy. The 13C and HSQC NMR spectra of 4 were then taken 

at the best found temperature 310 K on the same equipment. 

All spectra were processed with MestReNova 5.2.2 (Metrelab Research, S5 Santiago de 

Compostella, Spain). The NMR data of the identified compounds are listed as physiochemical 

properties and the spectra are provided in Fig. S4 – S27. 

14. The physiochemical properties of the identified compounds 

Tetratryptomycin A (2): 30 mg, light yellow powder; slightly soluble in modified R5 media (approx. 

20 mg/L); CD (MeOH) λmax (∆ε) 306 (-18.4), 269 (-4.8), 249 (-29.4), 227 (+13) nm; HRMS (m/z): 

(ESI/[M+H]+) calcd. for C44H38N8O4, 743.3089, found 743.3090. 1H NMR (DMSO-d6, 500 MHz) δ 

10.68 (s, 2H, H-20 and H-20′), 7.66 (s, 2H, H-15 and H-15′), 7.55 (d, J = 7.8 Hz, 2H, H-25 and H-

25′), 7.38 (d, J = 8.1 Hz, 2H, H-22 and H-22′), 7.19 (d, J = 7.4 Hz, 2H, H-4 and H-4′), 7.07 (s, 2H, 

H-19 and H-19′), 7.06 (t, J = 8.1 Hz, 2H, H-23 and H-23′), 7.04 (t, J = 7.8 Hz, 2H, H-6 and H-6′), 

6.96 (t, J = 7.8 Hz, 2H, H-24 and H-24′), 6.67 (s, 2H, H-1 and H-1′), 6.66 (t, J = 7.4 Hz, 2H, H-5 

and H-5′), 6.57 (d, J = 7.8 Hz, 2H, H-7 and H-7′), 5.10 (s, 2H, H-2 and H-2′), 4.34 (t, J = 5.0 Hz, 

2H, H-14 and H-14′), 3.82 (dd, J = 12.1, 5.9 Hz, 2H, H-11 and H-11′), 3.25 (dd, J = 15.0, 5.7 Hz, 

2H, H-17α and H-17′α), 3.04 (dd, J = 15.0, 5.7 Hz, 2H, H-17β and H-17′β), 2.35 (dd, J = 12.3, 5.9 

Hz, 2H, H-10α and H-10′α), 2.25 (t, J = 11.9 Hz, 2H, H-10β and H-10′β). 13C NMR (DMSO-d6,125 

MHz) δ 168.1 (C-16 and C-16′), 165.4 (C-13 and C-13′), 151.0 (C-8 and C-8′), 136.0 (C-21 and 

C-21′), 129.1 (C-6 and C-6′), 127.5 (C-26 and C-26′), 127.0 (C-9 and C-9′), 124.6 (C-4 and C-4′), 

123.7 (C-19 and C-19′), 120.9 (C-23 and C-23′), 118.4 (C-25 and C-25′), 118.2 (C-24 and C-24′), 

117.4 (C-5 and C-5′), 111.4 (C-22 and C-22′), 109.3 (C-18 and C-18′), 108.7 (C-7 and C-7′), 77.2 
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(C-2 and C-2′), 58.7 (C-3 and C-3′), 57.8 (C-11 and C-11′), 55.0 (C-14 and C-14′), 36.2 (C-10 and 

C-10′), 25.4 (C-17 and C-17′).  

Tetratryptomycin B (3): 40 mg, light yellow powder; slightly soluble in modified R5 media (approx. 

20 mg/L); CD (MeOH) λmax (∆ε) 300 (+11.4), 268 (-5.34), 245 (+4.8), 240 (+7.0), 229 (+47.0), 214 

(-66.5) nm; HRMS (m/z): (ESI/[M+H]+) calcd. for C44H38N8O4, 743.3089, found 743.3119. 1H NMR 

(DMSO-d6, 500 MHz) δH 10.95 (s, 1H, H-20′), 10.86 (s, 1H, H-20), 8.10 (s, 1H, H-15′), 7.94 (s, 1H, 

H-15), 7.62 (d, J = 1.9 Hz, 1H, H-12′), 7.58 (d, J = 7.5 Hz, 1H, H-25), 7.54 (d, J = 7.7 Hz, 1H, H-

25′), 7.38 (d, J = 8.0 Hz, 1H, H-22′), 7.34 (d, J = 8.0 Hz, 1H, H-22), 7.28 (s, 1H, H-19), 7.24 (d, J 

= 7.8 Hz, 1H, H-4′), 7.19 (d, J = 3.6 Hz, 1H, H-1), 7.15 - 7.06 (m, 4H, H-6, H-23, H-23′ and H-24′), 

6.99 (t, J = 7.5 Hz, H-24), 6.95 (t, J = 7.8 Hz, 1H, H-5′), 6.88 (t, J = 7.8 Hz, 1H, H-6′), 6.88 (s, 1H, 

H-19′), 6.73 (d, J = 7.5 Hz, 1H, H-4), 6.70 (d, J = 7.8 Hz, 1H, H-7), 6.54 (d, J = 7.8 Hz, 1H, H-7′), 

6.53 (t, J = 7.5 Hz, 1H, H-5), 6.47 (s, 1H, H-2′), 5.82 (d, J = 3.6 Hz, 1H, H-2), 4.67 (dd, J = 13.9, 

5.9 Hz, 1H, H-11), 4.39 (t, J = 5.1 Hz, 1H, H-14), 4.04 (m, 1H, H-14′), 3.71 (m, 1H, H-11′), 3.48 

(dd, J = 14.6, 5.9 Hz, 1H, H-10α), 3.39 (dd, J = 15.4, 5.1 Hz, 1H, H-17α), 3.08 – 2.98 (m, 2H, H-

17β and H-17′β), 2.85 (dd, J = 14.1, 4.4 Hz, 1H, H-17′α), 2.64 (dd, J = 14.0, 3.3 Hz, 1H, H-10′α), 

2.23 (t, J = 14.2, Hz, 1H, H-10β), 1.27 (dd, J = 14.0, 9.6 Hz, 1H, H-10′β). 13C NMR (DMSO-d6,125 

MHz) δ 169.2 (C-16), 167.8 (C-13), 166.8 (C-16′), 166.6 (C-13′), 148.0 (C-8), 136.0 (C-21), 136.0 

(C-21′), 135.0 (C-8′), 129.6 (C-6), 129.2 (C-9′), 128.6 (C-9), 127.7 (C-26′), 127.3 (C-26), 124.8 

(C-19′), 124.7 (C-2′), 124.1 (C-19), 122.2 (C-4), 121.0 (C-6′), 120.9 (C-23′), 120.8 (C-23), 119.2 

(C-5′), 119.0 (C-25′), 118.6 (C-4′), 118.5 (C-24′), 118.4 (C-25), 118.3 (C-24), 118.1 (C-5), 111.8 

(C-7′), 111.5 (C-22′), 111.3 (C-22), 110.0 (C-7), 109.5 (C-18), 109.1 (C-3′), 108.6 (C-18′), 81.4 

(C-2), 73.4 (C-3), 57.4 (C-11), 55.4 (C-14′), 55.2 (C-14), 54.5 (C-11′), 39.1 (C-10), 30.2 (C-10′), 

29.8 (C-17′), 24.4 (C-17).  

Tetratryptomycin C (4): 10 mg, light yellow powder; slightly soluble in modified R5 media (approx. 

20 mg/L); CD (MeOH) λmax (∆ε) 267 (-75.4), 216 (-2.7), 242 (+14.3), 224 (-1.4), 219 (+2.2) nm; 

HRMS (m/z): (ESI/[M+H]+) calcd. for C44H38N8O4, 743.3089, found 743.3113. 1H NMR (DMSO-d6, 

500 MHz) δ 10.81 (br s, 1H, H-20), 10.73 (br s, 1H, H-20′), 7.95 (br s, 1H, H-15′), 7.63 (d, J = 7.6 

Hz 1H, H-25′), 7.60 (s, 1H, H-15), 7.58 (d, J = 7.8 Hz 1H, H-25), 7.33 (d, J = 7.9 Hz, 1H, H-22), 

7.28 (d, J = 7.5 Hz, 1H, H-22′), 7.19 (s, 1H, H-19), 7.15 (s, 1H, H-19′), 7.08 (t, J = 7.9 Hz, 1H, H-

23), 7.02 – 6.93 (m, 5H, H-6, H-6′, H-23′, H-24 and H-24′ ), 6.45 (m, 6H, H-4, H-4′, H-5, H-5′, H-

7 and H-7′), 5.37 (br s, 1H, H-2), 5.13 (br s, 1H, H-2′), 4.35 (m, 1H, H-14′), 4.29 (m, 1H, H-14), 

4.07 (m, 1H, H-11), 3.77 (m, 1H, H-11′), 3.36 (m, 1H, H-17α), 3.24 - 3.16 (m, 2H, H-17′α and H-

17′β), 2.96 (dd, J = 14.4, 6.7 Hz, 1H, H-17β), 2.37 (m, 1H, H-10′α), 2.27 (dd, J = 13.0, 6.3 Hz, 1H, 
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H-10α), 1.76 (t, J = 11.8 Hz, 1H, H-10′β), 1.07 (m, 1H, H-10β). 13C NMR (DMSO-d6, 125 MHz) δ 

169.6 (C-16), 168.6 (C-13), 167.0 (C-16′), 164.7 (C-13′), 151.2 (C-8), 148.9 (C-8′), 136.1 (C-21), 

135.9 (C-21′), 130.0 (C-9), 128.9 (C-6), 128.5 (C-6′), 127.6 (C-26′), 127.5 (C-9′), 127.1 (C-26), 

124.4 (C-19′), 124.2 (C-19), 123.8 (C-4), 123.7 (C-4′), 120.9 (C-23), 120.8 (C-23′), 118.9 (C-25′), 

118.3 (C-25), 118.3 (C-24′), 118.3 (C-24), 117.5 (C-5), 117.4 (C-5′), 111.4 (C-22′), 111.4 (C-22), 

109.5 (C-18), 108.9 (C-18′), 108.8 (C-7), 108.3 (C-7′), 78.1 (C-2′), 76.0 (C-2), 59.8 (C-3), 59.6 (C-

3′), 57.3 (C-11′), 57.2 (C-11), 55.7 (C-14′), 55.4 (C-14), 38.6 (C-10′), 34.5 (C-10), 26.8 (C-17′), 

24.3 (C-17). 1H NMR (acetonitrile-d3, 500 MHz, 310 K) δ 9.68 (br s, 1H, H-20), 9.19 (br s, 1H, H-

20′), 7.65 (d, J = 8.0 Hz, 1H, H-25′), 7.63 (d, J = 8.0 Hz, 1H, H-25), 7.41 (d, J = 8.0 Hz, 1H, H-

22′), 7.39 (d, J = 7.9 Hz, 1H, H-22), 7.18 – 7.14 (m, 3H, H-19, H-23′ and H-23), 7.11 – 7.04 (m, 

5H, H-6, H-6′, H-19′, H-24′ and H-24), 6.58 – 6.51 (m, 6H, H-4, H-4′, H-5, H-5′, H-7 and H-7′), 

6.45 (s, 1H, H-15′), 6.03 (s, 1H, H-15), 5.65 (br s, 1H, H-1), 5.47 (s, 1H, H-2), 5.23 (br s, 1H, H-

1′), 5.12 (s, 1H, H-2′), 4.39 (t, J = 4.6 Hz,1H, H-14′), 4.36 (dd, J = 8.0, 4.9 Hz, 1H, H-14), 4.18 (t, 

J = 8.2 Hz, 1H, H-11), 3.78 (dd, J = 12.0, 5.4 Hz, 1H, H-11′), 3.47 (dd, J = 15.0, 4.5 Hz, 1H, H-

17α), 3.36 (dd, J = 14.8, 5.0 Hz, 1H, H-17′α), 3.49 (dd, J = 15.0, 4.2 Hz, 1H, H-17′β), 3.11 (dd, J 

= 15.2, 7.6 Hz, 1H, H-17β), 2.42 – 2.38 (m, 2H, H-10′α  and H-10α), 1.73 (t, J = 12.0 Hz, 1H, H-

10′β), 1.31 (m, 1H, H-10β). 13C NMR (acetonitrile-d3, 125 MHz, 310 K) δ 169.3 (C-16), 168.8 (C-

13), 166.6 (C-16′), 164.8 (C-13′), 151.1 (C-8), 148.8 (C-8′), 136.6 (C-21), 136.4 (C-21′), 130.3 (C-

9), 129.2 (C-6), 128.8 (C-6′), 127.9 (C-9′), 127.8 (C-26′), 127.3 (C-26), 124.5 (C-4), 124.2 (C-4′), 

124.0 (C-19), 123.9 (C-19′), 121.7 (C-23), 121.6 (C-23′), 119.1 (C-24), 119.1 (C-24′), 118.9 (C-

25′), 118.7 (C-5), 118.5 (C-5′), 118.4 (C-25), 111.7 (C-22′), 111.5 (C-22), 109.3 (C-18), 109.3 (C-

18′), 109.3 (C-7), 108.8 (C-7′), 78.9 (C-2′), 76.5 (C-2), 60.1 (C-3), 60.0 (C-3′), 57.4 (C-11′), 57.3 

(C-11), 56.5 (C-14′), 55.4 (C-14), 39.0 (C-10′), 35.0 (C-10), 27.9 (C-17′), 25.2 (C-17). 
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Supplementary Tables 

Table S1. Comparison of CDPSs and P450s from the two clusters in Saccharopolyspora 
antimicrobica DSM 45119 

ttp cluster 1 ttp cluster 2 
Sequence 
identity (%) Protein Accession No. 

Length 
(aa) 

Protein Accession No. 
Length 

(aa) 

TtpA1 WP_093145978.1 257 TtpA2 WP_093145813.1 254 80 

TtpB1 WP_121505431.1 400 TtpB2 WP_170210414.1 400 71 

TtpC1 WP_143121525.1 412    
31 to TtpB1 
39 to TtpB2 
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Table S2. Bacterial strains used in this study 

Strain Source Cultivation media 

E. coli DH5α Invitrogen LB 

E. coli BL21(DE3) Novagen LB 

E. coli ET12567/pUZ8002 5 LB 

Streptomyces albus J1074 1 MS 

Saccharopolyspora antimicrobica DSM 45119 DSMZ modified R5 

DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen 

LB medium: tryptone 10.0 g/L, yeast extract 5.0 g/L, NaCl 10.0 g/L. 

Modified R5 medium: sucrose 103.0 g/L, glucose 10.0 g/L, yeast extract 5.0 g/L, MgCl2.6H2O 10.12 g/L, K2SO4 0.25 g/L, Difco 

casaminoacids 0.1 g/L, MOPS 21.0 g/L, trace element solution 2 mL/L, pH 7.2. 

MS medium: mannitol 20.0 g/L, soya flour 20.0 g/L, agar 20.0 g/L. 
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Table S3. Cloning and expression constructs used in this study 

Gene Primer sequences (5’-3’) 
Cloning 
constructs 

Expression  
vector Cloning sites  Expression 

constructs 
ttpA1 CATATGCCACCCACGCCTACCACTG 

GGATCCTCACGCGGTGCTGGCTCGTC 
pJL66 
 

pPWW50A NdeI/BamHI 
 

pJL75 
 

ttp(ABC)1 CATATGCCACCCACGCCTACCACTG 
GGATCC TCACGCGGTGCTGGCTCGTC 

pJL67 
 

pPWW50A NdeI/BamHI 
 

pJL76 
 

ttp(AB)1 CATATGCCACCCACGCCTACCACTG  
GGATCC CTACCAGCTCACGGGAAGGGC 

pJL68 
 

pPWW50A NdeI/ BamHI  
 

pJL77 
 

ttp(AC)1 CATATGCCACCCACGCCTACCACTG 
GGATCCTCACGCGGTGCTGGCTCGTC 
AGATCTGTGCCACCAGACAACGAGGCG 
ACTAGTTCACCAGCTGACGGGGAGCTG 

pJL66 
 
pJL67 
 

pPWW50A NdeI/BamHI 
 
BglII/SpeI 

 
pJL78 

ttpB1 CATATGTTCGCCATCGACGACATCCCG  
GGATCC CTACCAGCTCACGGGAAGGGC 

pJL70 
 

pPWW50A NdeI/BamHI 
 

pJL79 
 

ttpB1 CATATGTTCGCCATCGACGACATCCCG  
GGATCC CTACCAGCTCACGGGAAGGGC 

pJL70 
 

pET28a (+) NdeI/BamHI 
 

pJL80 
 

ttpC1 CATATGCCACCAGACAACGAGGCG 
GGATCCTCACGTCAAGTCCCTTTCTCC 

pJL71 
 

pPWW50A NdeI/BamHI 
 

pJL81 
 

ttpA2 CATATGCATTCCACGTGTATCGACCGAG 
GGATCCTCACTGGACAGCATCGTTCCCCC 

pJL72 
 

pPWW50A NdeI/BamHI 
 

pJL82 
 

ttp(AB)2 CATATGCATTCCACGTGTATCGACCGAG  
GGATCC CTACCAGGTGACGGGCAGGG 

pJL73 
 

pPWW50A NdeI/BamHI 
 

pJL83 
 

ttpB2 CATATGCTGTCCAGTGATCAGATCCCGG  
GGATCC CTACCAGGTGACGGGCAGGG 

pJL74 
 

pPWW50A NdeI/BamHI 
 

pJL84 
 

Restriction sites for cloning are underlined in the primer sequences. Cloning constructs are based on pGEM T Easy vector 
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Supplementary Scheme 

 

 

Scheme S1 Known biosynthetic pathways of CDP dimers in Aspergillus flavus (A) and 

Streptomyces species (B and C)
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Supplementary Figures 

 

Fig. S1 Alignments of CDPSs from bacteria. Amir_4627,6 NozA,7 NcdA,7 

WP_016576960,8 EPD89497.1,8,9 CWWS1D46488,10 CWWS2D46488,10 CWWS1NB5737,10
 

CWPS1NF5123,10
 AspA,11 NasA,11 GutA3589,12 GutA24309

12
 and CWLS1NF5053

10 have been 

characterised as tryptophan-containing CDP synthases.
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Fig. S2 Phylogenetic analysis of P450s investigated in this study (in bold red) and 

functionally characterised P450s from bacteria. GutD2774,13 GutD5414,13 GutD24309,12 

GutD3589,12 P4505737,13 CYP121,14 NasB,11 NascB,15 AspB,11 CYP134A116 and BcmD17 

are members of the CDPS-related pathways. HtmS18 and ClpS19 are involved in the 

biosynthesis of himastatin and chloptosin, respectively. Other enzymes are structurally 

characterised natural product P450s mentioned in the review by Podust et al.20 The 

protein sequences were downloaded from NCBI database.  
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Fig. S3 Alignments of CDP dimerization P450s from bacteria. The origins of the enzymes 

were mentioned in the legend to Fig. S2. 

A/Gn-1-Gn-XX-Tn+3 

G347XXXC351 
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Fig. S4 1H NMR spectrum of tetratryptomycin A (2) in DMSO-d6 at 300 K (500 MHz).
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Fig. S5 13C NMR spectrum of tetratryptomycin A (2) in DMSO-d6 at 300 K (125 MHz).
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Fig. S6 1H-1H COSY spectrum of tetratryptomycin A (2) in DMSO-d6 at 300 K (500 MHz).
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Fig. S7 HSQC spectrum of tetratryptomycin A (2) in DMSO-d6 at 300 K (500 MHz, 125 MHz).
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Fig. S8 HMBC spectrum of tetratryptomycin A (2) in DMSO-d6 at 300 K (500 MHz, 125 MHz).
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Fig. S9 NOESY spectrum of tetratryptomycin A (2) in DMSO-d6 at 300 K (500 MHz).
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Fig. S10 1H NMR spectrum of tetratryptomycin B (3) in DMSO-d6 at 300 K (500 MHz). 
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Fig. S11 13C NMR spectrum of tetratryptomycin B (3) in DMSO-d6 at 300 K (125 MHz).
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Fig. S12 1H-1H COSY spectrum of tetratryptomycin B (3) in DMSO-d6 at 300 K (500 MHz).
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Fig. S13 HSQC spectrum of tetratryptomycin B (3) in DMSO-d6 at 300 K (500 MHz, 125 MHz).
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Fig. S14 HMBC spectrum of tetratryptomycin B (3) in DMSO-d6 at 300 K (500 MHz, 125 MHz).
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Fig. S15 NOESY spectrum of tetratryptomycin B (3) in DMSO-d6 at 300 K (500 MHz).
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Fig. S16 1H NMR spectrum of tetratryptomycin C (4) in DMSO-d6 at 300 K (500 MHz).
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Fig. S17 13C NMR spectrum of tetratryptomycin C (4) in DMSO-d6 at 300 K (125 MHz).
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Fig. S18 1H-1H COSY spectrum of tetratryptomycin C (4) in DMSO-d6 at 300 K (500 MHz).
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Fig. S19 HSQC spectrum of tetratryptomycin C (4) in DMSO-d6 at 300 K (500 MHz, 125 MHz).
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Fig. S20 HMBC spectrum of tetratryptomycin C (4) in DMSO-d6 at 300 K (500 MHz, 125 MHz).

214



S32 
 

 

Fig. S21 NOSEY spectrum of tetratryptomycin C (4) in DMSO-d6 at 300 K (500 MHz).
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Fig. S22 1H NMR spectrum of tetratryptomycin C (4) in acetonitrile-d3 at 273 K (500 MHz).
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Fig. S23 1H NMR spectrum of tetratryptomycin C (4) in acetonitrile-d3 at 300 K (500 MHz).
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Fig. S24 1H NMR spectrum of tetratryptomycin C (4) in acetonitrile-d3 at 310 K (500 MHz).
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Fig. S25 1H NMR spectrum of tetratryptomycin C (4) in acetonitrile-d3 at 320 K (500 MHz).  
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Fig. S26 13C NMR spectrum of tetratryptomycin C (4) in acetonitrile-d3 at 310 K (125 MHz).  
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Fig. S27 HSQC spectrum of tetratryptomycin C (4) in acetonitrile-d3 at 310 K (500 MHz, 125 MHz).
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Fig. S28 CD spectra of tetratryptomycins.
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Fig. S29 SDS-PAGE analysis of the purified P450s. 
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Fig. S30 UV-Vis spectroscopic analysis of TtpB1.
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Fig. S31 HPLC analysis of the enzyme assays with TtpB1 (A) and TtpB2 (B). 

225



S43 
 

 

0.0 0.1 0.2 0.3 0.4

0

2

4

6

cWW [mM]

V
 [
n
m

o
l.
m

g
-1

.m
in

-1
]

KM = 0.051 mM

kcat =0.264 min-1

 

Fig. S32 Determination of kinetic parameters of TtpB1 for cWW (1). 
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Fig. S33 UV-Vis spectroscopic analysis of TtpB1 with its substrate cWW (A) and other 

CDPs (B). 
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Fig. S34 LC-MS analysis for tetratryptomycin production in S. antimicrobica DSM 

45119. 
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5 Conclusions and future prospects 

In this thesis, several new tryptophan-containing 2,5-DKP derivatives together with some novel 

biosynthetic enzymes have been identified and characterized from CDPS-dependent pathways in 

actinobacterial strains via genome mining and heterologous expression. As thousands of 

actinobacterial genome sequences are available in the public databases, numerous gene clusters 

await to be explored. It is expected that advanced genome mining strategies and tools will strongly 

accelerate the discovery and characterization of novel and interesting biocatalysts as well as 

secondary metabolites from these untapped biosynthetic pathways.  

In the course of searching new CDPSs for the formation of DKPs comprising tryptophan and other 

amino acids, functions of eleven candidate CDPS homologues from Streptomyces strains were 

verified by heterologous expression in E. coli. Particularly, nine of them were characterized to produce 

one or more tryptophan-containing cyclodipeptides, thus expanding the product spectrum of cyclo-L-

Trp-Xaa originated from actinobacteria. The total product yields of these CDPs reached to 46 - 211 

mg/L in E. coli culture, which makes it possible to combine these CDPSs with other modification 

enzymes in the field of synthetic biology in the future. This study also highlights the potential of the 

microbial machinery for tryptophan-containing cyclodipeptide biosynthesis. 

Furthermore, two similar p450-associated cdps-containing gene clusters (gut) from Streptomyces 

strains were identified for the biosynthesis of rare and novel C3-guaninyl indole alkaloids 

guanitrypmycins by heterologous expression in Streptomyces coelicolor M1146. Expression of 

different gene combinations, precursor feeding experiments, combined with biochemical 

characterization proved the biosynthetic steps of guanitrypmycins. It demonstrated that cyclo-L-Trp-L-

Phe and cyclo-L-Trp-L-Tyr initially assembled by the CDPS GutA serve as DKP precursors and are 

further dehydrogenated by cyclodipeptide oxidase Gut(BC) on the phenylalanyl/tyrosyl hemisphere. 

Subsequently, the cytochrome P450 GutD was proven to act as the key biocatalyst and mediate the 

stereospecific coupling of the generated cWF/ cWY with a guanine moiety via C3–C8′ linkage. The 

methyltransferase GutE governs the last modification step to transfer a methyl group to N9′ of the 

guaninyl residue. Moreover, the non-enzymatic epimerization via keto-enol tautomerism further 

increases the structural diversity of guanitrypmycins. Therefore, this study represents an excellent 

example for revealing the untapped genetic potential by genome mining and heterologous expression. 

Inspired by the intriguing chemical transformation performed by the P450 GutD in the biosynthesis of 

guanitrypmycins, we analyzed more bacterial cdps-containing clusters to explore novel modification 

enzymes. Subsequently, two cdps-p450 operons (ttp1 and ttp2) in Saccharopolyspora antimicrobica 

were identified and characterized to produce different cyclo-L-Trp-L-Trp dimers via genome mining. 

Heterologous expression and biochemical characterization revealed that the P450 TtpB1 catalyzes 

stereospecific C3 (sp3)–C3′ (sp3) bond formation between two monomers, both from the opposite side 
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of H-11/H-11′, while TtpB2 mainly connects the monomers via the unusual linkage between N1′ and 

C3 from the H-11 side. As the two P450s catalyze distinct coupling patterns different from those 

previously reported in actinobacteria, this study significantly expands the P450 spectrum for CDP 

modifications and provides a simple and direct approach for enzymatic one-step preparation of 

structurally complex dimeric DKPs. 

For future prospects, the following works can be performed: 

 In the first project, some CDPSs exhibit promiscuity with respect to their substrates, producing 

a range of cyclodipeptide products. Therefore, refactoring these CDPSs with other 

modification enzymes, e.g., different prenyltransferases, would give rise to diverse chemical 

entities. 

 Guanitrypmycins are novel nucleobase-containing DKPs. However, testing of guanitrypmycins 

with the human ovarian adenocarcinoma cell SK-OV-3 showed almost no cytotoxic activity. 

Therefore, further bioactivity assays toward some representative screening models, such as 

various bacterial and fungal strains, as well as different tumor cell lines, are required to explore 

their potential biological and pharmaceutical activities.  

 Determining the crystal structures of the mentioned P450 enzymes would provide insights into 

their catalytic mechanisms. 

 Both of the two P450s TtpB1 and TtpB2 showed high substrate specificity, as the coupling 

reaction was not observed when using other tryptophan-containing or aromatic 

cyclodipeptides as substrates. Thus, further site-directed mutagenesis of the two P450s based 

on their structural information, could make them as versatile biocatalysts for preparation of 

diverse dimeric DKPs. 
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