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Abstract 

Cells show certain asymmetries in morphology and molecular organization, a 

characteristic that is known as cell polarity. Polarity is generally regulated by protein 

complexes and Rho GTPases like Cdc42, Rho or Rac.  Epithelial cells are polarized along 

the apicobasal axis, and this apicobasal polarity influences many cellular processes, 

including cell division. Polarized mitosis in epithelia is controlled by the orientation of 

the mitotic spindle. This is crucial in epithelial cells during development for a correct 

tissue morphogenesis, but also in the adult for maintenance of tissue homeostasis or 

damage repair. The orientation of the spindle is controlled by a protein complex that 

includes NuMA, which mediates pulling from the spindle poles and LGN, which links 

NuMA to the correct regions of the cell cortex. 

Semaphorin-Plexin signaling is a cell-cell communication pathway involved in many 

tissues and processes mainly through regulation of the cytoskeleton and adhesion. It has 

been shown that Plexin-B2 regulates mitotic spindle orientation in kidney epithelial cells 

and that this regulation is relevant for kidney morphogenesis and repair. However, the 

molecular mechanisms through which Plexin-B2 controls spindle orientation are still 

largely unclear. In this work, I demonstrate that Plexin-B2 localizes to cell-cell contacts 

in the kidney epithelium and in epithelial cell lines in 2D and 3D. Furthermore, I show 

that Plexin-B2 remains polarized during mitosis. I add that the basolateral localization of 

Plexin-B2 in the kidney is independent of its ligands, but depends on its intracellular 

juxtamembrane domain in 3D cultures. Furthermore, I show that this region contains a 

unique basolateral targeting motif present in all murine class B plexins and conserved in 

human Plexin-B2. Using CRISPR-Cas genome editing, I confirm that the deletion of 

Plexin-B2 impairs correct lumen formation in epithelial cell cysts. Additionally, I show 

that the lack of Plexin-B2 does not influence growth of these cells, but increases the 

proportion of cells in the S and G2/M phases of the cell cycle and aneuploidy. 

Importantly, I demonstrate that the deletion of Plexin-B2 does not have an effect on the 

normal localization of the spindle regulators LGN and NuMA in 3D cell cultures. 

Therefore, the role of the polarized expression of Plexin-B2 in its control of mitotic 

spindle orientation and its possible connection with mitotic spindle regulators need to 

be further investigated.
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Zusammenfassung 

Zellen weisen Asymmetrien in ihrer Morphologie und molekularen Organisation auf. 

Diese Eigenschaft ist als Zellpolarität bekannt. Polarität wird durch Proteinkomplexe und 

Rho GTPasen wie Cdc42, Rho und Rac reguliert. Epithelzellen sind entlang ihrer 

apicobasalen Achse polarisiert, und diese apicobasale Polarität beeinflusst zahlreiche 

zelluläre Prozesse einschließlich der Zellteilung. Die Polarisierung der Mitose wird in 

Epithelzellen durch die Ausrichtung der Mitosespindel gesteuert. Dies ist sowohl für die 

korrekte Morphogenese epithelialer Gewebe während der Entwicklung entscheidend, 

als auch für die Aufrechterhaltung der Gewebshomöostase und für die 

Gewebereparatur nach einer Schädigung von zentraler Bedeutung. Die Orientierung der 

Mitosespindel wird durch einen Proteinkomplex kontrolliert. Dieser enthält das Protein 

NuMA, das die Übertragung von Zugkräften auf die Spindelpole vermittelt, und das 

Protein LGN, das für die korrekte Lokalisation von NuMA am zellulären Cortex zuständig 

ist. 

Semaphorin-Plexin-Signaling stellt einen Zell-Zell-Kommunikationsweg dar, der in viele 

Gewebe und zellulären Prozesse involviert ist, hauptsächlich über eine Regulation des 

Zytoskeletts und der Adhäsion. Es ist gezeigt worden, dass Plexin-B2 die Orientierung 

der Mitosespindel in Epithelzellen der Niere reguliert, und dass diese Regulation für die 

Nierenmorphogenese und -reparatur von Bedeutung ist. Die molekularen 

Mechanismen, über die Plexin-B2 die Ausrichtung der Mitosespindel kontrolliert, sind 

jedoch weitgehend unklar. In dieser Dissertation zeige ich, dass Plexin-B2 an Zell-Zell-

Kontakten im Nierentubulusepithel und in Nierentubulusepithel-Zelllinien in 2D und 3D 

lokalisiert ist. Des weiteren zeige ich, dass die Plexin-B2-Lokalisation während der 

Mitose polarisiert bleibt. Zudem beschreibe ich, dass die basolaterale Lokalisation von 

Plexin-B2 unabhängig von seinen Liganden ist, und von der intrazellulären 

Juxtamembran-Domäne von Plexin-B2 in 3D-Kulturen abhängt. Darüber hinaus zeige 

ich, dass diese Region ein einzelnes basolaterales Zielmotiv trägt, das in allen murinen 

B-Plexinen enthalten ist und in humanem Plexin-B2 konserviert ist. Mit Hilfe von CRISPR-

Cas Genom-Editierung bestätige ich, dass die Deletion von Plexin-B2 die korrekte 

Lumenbildung in epithelialen Zellzysten beeinträchtigt. Zusätzlich zeige ich, dass das 

Fehlen von Plexin-B2 das Wachstum dieser Zellen nicht beeinträchtigt, aber den Anteil 
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von Zellen in der S- und G2/M-Phase des Zellzyklus und Aneuploidie steigert. 

Insbesondere zeige ich, dass die Deletion von Plexin-B2 keinen Effekt auf die normale 

Lokalisation der Spindelregulatoren LGN und NuMA in 3D Zellkulturen hat. Weitere 

Studien zur Rolle der polarisierten Expression von Plexin-B2 bei der Kontrolle der 

Orientierung der Mitosespindel und zur möglichen Verbindung von Plexin-B2 und 

Mitosespindelregulatoren sind daher notwendig.
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1. Introduction 

1.1. Cell polarity 

A cell is not a simple structure where its components distribute homogenously. Different 

cell types can adopt a variety of shapes (Figure 1) and the same cell type can have 

different shapes at specific times. Besides, their components, such as organelles or 

molecular complexes, are distributed in an organized manner and located to specific 

domains of the cell at certain timepoints, which allows for the specific function of each 

cell type. This asymmetrical shape and unequal distribution of cell components 

constitute patterns of polarity. For instance, epithelial cells and neurons exemplify how 

much cell types can differ from one another (Figure 1). Moreover, migrating and 

non-migrating cells of the same type show that cells can adopt a different organization 

during certain processes. Neurons have a cell body from which a number of processes 

emerge in different directions, namely the axon and the dendrites, with different 

structure and composition (Lodish et al. 2000). Cells in simple epithelia have their apical 

surface facing a lumen or the exterior of the body, their lateral sides in contact with 

other cells and their basal surface facing the extracellular matrix, containing different 

molecules and organelles in each one of these locations (Roignot, Peng, and Mostov 

2013). Migrating cells form lamellipodia and filopodia at their leading edge, while 

retracting their rear edge to drive the movement forward (Ridley et al. 2003).  

 

Figure 1. Polarized cells with different morphologies. Left: migratory cell (Saitakis et al. 2017); center: 

neurons (Seward et al. 2013); right: epithelial cells (Grinberg-Bleyer et al. 2018) 

 

How does this diversity of shapes and polarized composition originate? In yeast, 

establishment of polarity is controlled by the Rho GTPase Cdc42 (Wedlich-Soldner et al. 
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2004). Rho GTPases are proteins belonging to the superfamily of Ras, which are small 

GTPases. They are proteins that act as molecular switches in many signaling processes, 

including cell polarity. They are active when bound to GTP and inactive when bound to 

GDP (Hodge and Ridley 2016). Small GTPases are activated by guanine nucleotide 

exchange factors (GEFs), which stimulate the exchange of GDP for GTP. On the other 

hand, they become inactive through GTPase activating proteins (GAPs), which catalyze 

GTP hydrolysis (Lawson and Ridley 2018). One example of how Cdc42 controls polarity 

in yeast is budding spore formation (Figure 2). In Saccharomyces cerevisiae, budding 

spores are able to break symmetry at a random point (Johnson, Jin, and Lew 2011). The 

effector proteins of Cdc42 called p21-activated kinases (PAKs) bind the scaffold protein 

Bem1, which binds a Cdc42 guanine nucleotide exchange factor (Cdc42GEF) called 

Cdc24 (Bose et al. 2001; Butty et al. 2002). This complex diffuses in the cytoplasm. PAKs 

also bind active Cdc42 at the membrane, where then GDP-Cdc42 will be locally activated 

to GTP-Cdc42 through the activity of Cdc24, recruiting even more PAK-scaffold-GEF 

complexes to this area (Kozubowski et al. 2008). In this way, a stochastic increase in the 

concentration of GTP-Cdc42 somewhere in the yeast cell is able to create a polarity point 

by a self-amplifying positive feedback loop (Chiou, Balasubramanian, and Lew 2017).  

Moreover, in S. cerevisiae, the formin Bni1 is another Cdc42 effector, which 

nucleates actin filaments that form linear bundles anchored to the polarity site (Figure 

2) (Sagot, Klee, and Pellman 2002). These actin bundles allow secretory vesicles to be 

delivered to the polarity site by type V myosins (Pruyne, Schott, and Bretscher 1998). 

These vesicles also carry the exocyst, a plasma membrane tethering complex that 

includes another two Cdc42 effectors (Donovan and Bretscher 2012), which allows the 

fusion of the vesicles with the plasma membrane in order to form the budding spore. 

Therefore, the establishment of a polarity point, the delivery of secretory vesicles and 

their fusion with the plasma membrane are all induced by Cdc42 (Chiou, 

Balasubramanian, and Lew 2017). 
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Figure 2. Generation of a polarity point and delivery of secretory vesicles in S. cerevisiae for budding 

spore formation. Top-left: active Cdc42 is able to induce the formation of a PAK-Bem1-Cdc24 complex by 

a positive feedback loop in the cytoplasm as well as at the cell membrane at the budding point, where 

GTP-Cdc42 accumulates. Right: time course of Cdc42-PAK-Bem1-Cdc24 complex accumulation at the 

polarity site. Bottom-left: Nucleation of actin cables by the formin Bni1 and delivery of secretory vesicles 

containing the exocyst by type V myosins (Chiou, Balasubramanian, and Lew 2017) 

 

In animal cells, there are mainly three complexes involved in the development of 

polarity: Par, Crumbs and Scribble, which mutually regulate each other and scaffold Rho 

GTPases to specific membrane domains where they induce polarization (Campanale, 

Sun, and Montell 2017). In the Par complex, the proteins Par6, Par3 and atypical protein 

kinase C (aPKC) are of particular importance (St Johnston and Ahringer 2010). The Par 

complex establishes the border between the apical and basal domains of epithelial cells 

(Margolis and Borg 2005) and determines the front and rear edges in  migratory cells as 

well as the anterior and posterior poles of the Caenorhabditis elegans embryo  
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(Campanale, Sun, and Montell 2017). The Crumbs complex is required for the generation 

of an apical domain in epithelial cells and it comprises the transmembrane protein 

Crumbs (Crb) and the associated cytoplasmic proteins Pals1 and Pals1-associated tight 

junction protein  (Patj) (Tepass, Theres, and Knust 1990; Wodarz et al. 1995; Straight et 

al. 2004). For the determination of the basolateral plasma membrane domain, a key role 

is played by the Scribble complex, formed by Scribble (Scrib), lethal giant larvae 

homologue (Lgl) and discs-large homologue (Dlg), which have a mutual antagonistic 

relationship with the apical proteins of the Par and Crb complexes (Bilder, Li, and 

Perrimon 2000; Bilder, Schober, and Perrimon 2003; Tanentzapf and Tepass 2003; 

Betschinger, Mechtler, and Knoblich 2003). 

 

1.2. Types of cell polarity 

There are several types of cell polarity. One of them is the front-rear polarity (Figure 3). 

Front-rear polarity plays an essential role in migratory cells in order to achieve 

directional migration. Directional migration is the steady movement of individual cells 

or groups of cells in a specific direction in response to extracellular cues like growth 

factors or chemokines and environmental cues like mechanical forces or the 

extracellular matrix, among others (Lawson and Ridley 2018; Iden and Collard 2008). 

Directional migration is essential for animal tissue morphogenesis, for physiological 

functions and during pathological processes like cancer cell invasion and metastasis 

(Lawson and Ridley 2018; Iden and Collard 2008). Some of these migrating cells originate 

from epithelial cells that have to redistribute during tissue morphogenesis. They 

undergo an epithelial-to-mesenchymal transition (EMT), often involving TGFβ receptors 

and resulting in loss of E-cadherin (Iden and Collard 2008; Rodriguez-Boulan and Macara 

2014). 

Cytoskeletal dynamics are finely controlled by Rho GTPases in migrating cells to 

drive persistent directional movement, in particular by Cdc42, Rac1 and RhoA 

(Machacek et al. 2009). Epithelial cells after EMT and other migratory cells like 

astrocytes and fibroblasts utilize the polarity complexes in order to asymmetrically 

activate Cdc42 and Rac1 at the front edge to generate protrusions in the direction of the 
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movement and RhoA at the rear edge to promote detachment and retraction 

(Campanale, Sun, and Montell 2017). In rat astrocytes, Scribble binds the Cdc42GEF βPix 

at the leading edge and together they promote the activation of Cdc42 locally (Figure 3) 

(Osmani et al. 2006). In fibroblasts and migrating epithelial cells, active Cdc42 locally 

activates aPKC at the leading edge, probably through Par6 (Iden and Collard 2008). 

Furthermore, it has been shown that in persistently migrating epithelial cells, Par3 and 

aPKC form a complex with the Rac1GEF Tiam1 that gets recruited to the leading edge 

and is responsible for the maintenance of the front-rear polarity, the persistence of 

directed migration and the response to chemotactic factors through stabilization of 

microtubules (Pegtel et al. 2007). At the same time, signaling through aPKC downstream 

of Cdc42-Par6 also recruits the E3 ubiquitin ligase Smurf1 at the leading edge, which 

targets the protrusion inhibitor RhoA for degradation, therefore restricting its activity to 

the rear edge (Figure 3) (Wang et al. 2003).  

 

Figure 3. Front-rear polarity in migratory cells. For details, see text (Campanale, Sun, and Montell 2017) 
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Another type of polarity is planar cell polarity. Planar cell polarity (PCP) is the 

collective orientation of cells along an axis orthogonal to the apical-basal axis within the 

epithelial plane (Devenport 2014; Campanale, Sun, and Montell 2017). The PCP 

machinery is not only relevant in epithelial cells, but also in some mesenchymal cell 

types during development, where it plays a role in migration and intercalation (Simons 

and Mlodzik 2008). Communication between cells is essential in order to establish  and 

coordinate PCP (Devenport 2014). PCP was found to be important for the correct 

orientation of cuticular structures in Drosophila (Gubb and García-Bellido 1982) and of 

ommatidia in the insect retina (Lawrence and Shelton 1975). PCP is also important in 

vertebrates as it is required for several developmental processes like convergent 

extension movements during gastrulation (Tada and Smith 2000; Wallingford et al. 

2000; Jessen et al. 2002; Simons et al. 2005) and neural tube closure (Kibar et al. 2001; 

Curtin et al. 2003; Nishimura, Honda, and Takeichi 2012), orientation of hair follicles in 

the mammalian epidermis (Guo, Hawkins, and Nathans 2004), ciliary beating in the 

trachea and in the brain ventricles (Vladar et al. 2012; Tissir et al. 2010), mammalian hair 

cell patterning in the inner ear (Montcouquiol et al. 2003; Curtin et al. 2003), lung 

branching (Yates et al. 2010) and oriented cell division (Gong, Mo, and Fraser 2004), 

among other. Defects in PCP have also been associated with human disease. For 

example, mutations in PCP genes have been found in neural tube defects (Nikolopoulou 

et al. 2017; Beaumont et al. 2019; Kibar et al. 2007) and heart malformations (Qiao et 

al. 2016). PCP has also been linked to glomerular disease (Papakrivopoulou et al. 2018) 

and chronic obstructive pulmonary disease (Poobalasingam et al. 2017). Furthermore, 

there are studies showing the implications of PCP proteins in cancer (VanderVorst et al. 

2018; Daulat and Borg 2017). 

This type of polarity relies on two evolutionarily conserved systems that act in 

parallel: the “core” and the “Fat/Dachsous” PCP pathways (Thomas and Strutt 2012). 

These two systems seem to influence planar polarity independently of each other 

(Lawrence, Struhl, and Casal 2007). A shared feature of both is the antagonism of two 

complexes that locate at opposite poles of the cell (Devenport 2014). The “core” 

pathway consists of the transmembrane proteins Frizzled (Fz), Van Gogh (Vang, also 

known as Strabismus, Vangl in vertebrates) and Flamingo (Fmi, also known as Starry 
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night, in vertebrates known as CELSR), in addition to the cytoplasmic proteins Prickle 

(Pk), Dishevelled (Dsh, Dvl in mammals) and Diego (Dgo, in vertebrates ANKRD6, also 

known as Diversin) (Adler 2002; Strutt 2003; Veeman, Axelrod, and Moon 2003; Klein 

and Mlodzik 2005; Wang and Nathans 2007; Simons and Mlodzik 2008). On one side of 

the cell localize the proteins Fz, Dsh and Dgo, while on the other reside Vang and Pk 

(Figure 4); Fmi localizes to both sides and forms homodimeric bridges between 

neighbouring cells (Usui et al. 1999; Axelrod 2001; Feiguin et al. 2001; Shimada et al. 

2001; Tree et al. 2002; Bastock, Strutt, and Strutt 2003). Fz and Dsh are the main PCP 

signaling proteins, which potentially act through Rho GTPases like Cdc42 and the Rho-

associated Kinase ROCK (Wallingford 2012), while the other PCP factors regulate Fz-Dsh 

complex localization and activity (Simons and Mlodzik 2008). 

Figure 4. Components of the “core” planar cell polarity pathway. For details, see text (Devenport 2014) 

 

The “Fat/Dachsous” pathway is composed of the atypical large protocadherins 

Fat (Ft) and Dachsous (Ds), as well as the Golgi-associated transmembrane kinase 

Four-jointed (Fj) (Matis and Axelrod 2013). Ft and Ds bind heterotypically between 

neighbouring cells (Matakatsu and Blair 2004). Fj regulates the activity of Ds and its 

binding to Ft. It phosphorylates the extracellular domain of Ft, which increases its affinity 

for Ds, while it also phosphorylates the extracellular region of Ds, decreasing its affinity 

for Ft (Simon et al. 2010; Brittle et al. 2010). Since, Fj is expressed in a gradient in many 

tissues, this results in the polarized distribution of active Ft and Ds to opposite sides of 

the cell (Simon 2004). 
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 For a long time, an upstream global cue has been searched that could orient the 

asymmetric localization of the “core” PCP molecules along an entire tissue. Molecules 

that distribute in a gradient throughout the tissue are good candidates. The 

“Fat/Dachsous” pathway has been proposed to fulfil this function, as Ds and Fj are 

expressed in opposing gradients in the D.melanogaster imaginal eye disc and pupal wing 

(Yang, Axelrod, and Simon 2002; Ma et al. 2003). On the other hand, Fz molecules act as 

Wnt receptors (Bhanot et al. 1996). Wnt proteins are important signaling molecules that 

are involved in the specification of primary body axes and cell fate, among other 

processes, and are frequently found in gradients during development in tissues that 

exhibit PCP (Sokol 2015). Therefore, they have also been proposed as upstream cues for 

PCP (Wu et al. 2013; Chu and Sokol 2016). Lastly, mechanical forces, like flow of liquid 

or tissue strain, have been suggested as potential global upstream cues for PCP as well 

(Chien et al. 2015; Guirao et al. 2010). 

Mitosis is a key process during development, as well as in the adult animal, and 

asymmetric cell division is another example of a polarized process (Richardson and 

Portela 2017). Asymmetric cell division is determined by the unequal distribution of 

extrinsic or intrinsic factors after mitosis (Campanale, Sun, and Montell 2017; Chen, 

Fingerhut, and Yamashita 2016). Mitotic spindle orientation plays a key role in achieving 

asymmetric cell division (Morin and Bellaïche 2011). During development, asymmetric 

cell division positions certain cells at specific locations (Knoblich 2001). This can 

determine embryonic axis, as in the first division of the C. elegans embryo, which 

determines the anterior-posterior axis (Sulston et al. 1983). It can also specify cell fate, 

contributing to the cellular diversity observed in the developed organism and it is 

important in order to give the organs their correct shape during development (Gillies 

and Cabernard 2011). In the adult, in particular in epithelia, asymmetric cell divisions 

are important to ensure maintenance of tissue homeostasis. Its disruption could lead to 

tissue degeneration, hyperplasia or cancer (Chen, Fingerhut, and Yamashita 2016). In 

the context of epithelia, an asymmetric cell division produces one stem cell and one non-

stem cell, while a symmetric cell division gives either two non-stem cells or two stem 

cells (Yang, Plikus, and Komarova 2015).  
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In the early C. elegans embryo, besides defining the anterior-posterior axis, 

asymmetric cell division occurs to segregate the somatic (originated from the AB cell) 

and germ (originated from the P1 cell) lineages (Campanale, Sun, and Montell 2017; 

Knoblich 2001).  The AB cell fate is established by the accumulation of the zinc-finger 

proteins MEX-5 AND MEX-6 (Schubert et al. 2000), while large cytoplasmic 

ribonucleoprotein particles called P-granules segregate to the P1 cell, even though their 

segregation to the posterior cell is not required for germline determination (Gallo et al. 

2010). It was in this context that the Par proteins were discovered (Kemphues et al. 

1988). 

For the segregation of MEX-5 and MEX-6, as well as the P-granules in the C. 

elegans embryo, an anterior complex (aPar) and a posterior complex (pPar) are 

established (Figure 5). The first is formed by the proteins Par3, Par6 and aPKC (Etemad-

Moghadam, Guo, and Kemphues 1995; Hung and Kemphues 1999; Tabuse et al. 1998), 

while the second is composed mainly of the proteins Par1 and Par2 (Guo and Kemphues 

1995; Boyd et al. 1996). At the time of fertilization, the sperm-derived microtubule 

organizing center (MTOC) is delivered to the zygote in an area that will be the future 

posterior pole (Campanale, Sun, and Montell 2017). It spawns microtubules that protect 

Par2 from aPKC phosphorylation, which leads to the recruitment of Par1 and Par2 from 

the cytoplasm to the cortex near the centrosome. There, Par1 and Par2 antagonize the 

anterior complex (Motegi et al. 2011). Non-muscle myosin contractions at the anterior-

posterior boundary controlled by Par4 promote the flow of the aPar, as well as MEX-5 

and MEX-6 proteins to the anterior pole (Cuenca et al. 2003; Munro, Nance, and Priess 

2004). In addition, Par5 inhibits cortical localization of the anterior complex proteins in 

the posterior pole (Morton et al. 2002). 
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Figure 5. Anterior-posterior axis determination in the C. elegans zygote. For details, see text (Campanale, 

Sun, and Montell 2017) 

 

During the development of the nervous system in Drosophila, neuroblasts divide 

perpendicularly to the neuroectoderm to generate a small differentiating ganglion 

mother cell, which is placed further deep in the tissue, while retaining a self-renewing 

neuroblast (Figure 6) (Gillies and Cabernard 2011). In this case, asymmetric cell division 

is determined by the segregation of cell fate determinants like Miranda, Prospero, 

Numb, Partner of Numb and Brain Tumor (Spana and Doe 1995; Lee et al. 2006; Lu et al. 

1998). Mitotic spindle orientation is critical to ensure this asymmetric cell division 

(Cabernard and Doe 2009). 

Drosophila neuroblasts inherit the apical Par complex from the neuroectoderm 

epithelial cells (Campanale, Sun, and Montell 2017). At the start of asymmetric cell 

division, the kinase Aurora A (AurA) phosphorylates Par6 which activates aPKC (Figure 

6). This allows the formation of Baz-Par6-aPKC complex (Wirtz-Peitz, Nishimura, and 

Knoblich 2008). Baz (the Drosophila homologue of Par3) then fixes Inscuteable (Insc), 

which recruits Pins (Yu et al. 2000; Schaefer et al. 2000), a protein belonging to the 

mitotic spindle orientation machinery, discussed further below (see section 1.4).  
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Figure 6. Asymmetric cell division during the development of the nervous system in Drosophila. For 

details, see text 

 

Lastly, cells can also be polarized in the apical-basal axis, a form of polarity in 

which this work focuses. Apicobasal polarity is a defining characteristic of epithelial cells 

(Campanale, Sun, and Montell 2017; Rodriguez-Boulan and Macara 2014). It consists on 

the establishment of distinct opposing cortical domains, named apical and basolateral, 

with different protein and lipid composition, separated by adherens junctions and 

occluding junctions (named tight junctions in vertebrates and septate junctions in 

invertebrates), which maintain the identity of each membrane domain (Roignot, Peng, 

and Mostov 2013). Adherens junctions provide cohesion to the epithelial sheet by 

keeping neighbouring epithelial cells firmly attached to each other, while occluding 

junctions form a barrier that blocks the diffusion of molecules between epithelial cells 

and restricts the free movement of membrane components between the apical and 

basolateral domains (Riga, Castiglioni, and Boxem 2020). Apicobasal polarity also 

includes a number of processes that occur aligned to the axis defined by these distinct 

cortical domains, such as directed vesicle trafficking and secretion, endocytosis or 
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response to stimuli (Worzfeld and Schwaninger 2016). This kind of polarity is controlled 

by an epithelial polarity program that includes polarity protein complexes, differential 

protein targeting, membrane lipid regulators and the cytoskeleton (Rodriguez-Boulan 

and Macara 2014). 

Apicobasal polarity plays a crucial role in many functions of epithelial cells, like 

epithelial barrier function, tissue morphogenesis, asymmetric cell division and cell 

migration (Wilson 2011). It has been shown to regulate the Hippo pathway, a 

proliferation inhibitor pathway that plays a crucial role in epithelial homeostasis 

(Genevet and Tapon 2011). Apicobasal polarity is important for the correct targeting of 

proteins during epithelial morphogenesis. For example, in renal tubule epithelial cells, 

the epithelial sodium channel, the cystic fibrosis chloride transporter, the 

sodium-potassium antiporter, the proton ATPase and the aquaporin 2 water channel are 

located at the apical membrane, while the sodium-potassium ATPase, the 

chloride-bicarbonate cotransporter AE1, the sodium-potassium-chloride cotransporter 

NKCC1 and the epithelial growth factor receptor (EGFR) localize at the basal membrane 

(Wilson 2011). Disrupted apicobasal polarity has been associated with human disease. 

The loss of apicobasal polarity can produce hyperproliferation by inhibition of the Hippo 

pathway (Genevet and Tapon 2011). This has also been observed in human cancer, 

where it is associated with disease progression (Lo, Hawrot, and Georgiou 2012). In the 

kidney, the incorrect sorting of transporters, channels and receptors to the wrong 

membrane domain has been implicated in several diseases like Autosomal Dominant 

Polycystic Kidney Disease (Wilson 2011). 

Apicobasal polarization starts upon formation of epithelial cell-cell contacts and 

cell-matrix interaction (Roignot, Peng, and Mostov 2013). Cell-cell adhesion molecules 

like E-cadherin or nectin and cell-matrix adhesion proteins like integrins start receptor-

mediated signaling that recruits polarity proteins (Worzfeld and Schwaninger 2016; 

Rodriguez-Fraticelli and Martin-Belmonte 2014). Then, polarity proteins interact with 

each other to help with the maturation of the junctional complexes and the 

maintenance of polarity (Roignot, Peng, and Mostov 2013). The correct targeting of 

polarity complexes to the apical or basolateral membrane domains depends on their 

mutual antagonism (Rodriguez-Boulan and Macara 2014; Roignot, Peng, and Mostov 
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2013; Riga, Castiglioni, and Boxem 2020). The apical domain is defined by the Par and 

Crumbs complexes, while the basolateral domain is defined by the Scribble complex 

(Figure 7). 

For the generation of distinct membrane domains, Par3 is recruited first apically 

(Figure 7) through an unknown mechanism (Riga, Castiglioni, and Boxem 2020), 

although in Drosophila a dynein-dependent transport of Par3 to the site of adherens 

junction formation has been shown (Harris and Peifer 2005). Then, Par3 interacts with 

nectins at the developing adherens junctions, where it recruits afadin (an F-actin and 

nectin binding protein) and together regulate the formation of adherens junctions 

(Ooshio et al. 2007). Par3 at the apical-lateral border also controls tight junction 

formation through Rac1 by inhibiting its GEF Tiam1 (Figure 7) (Chen and Macara 2005). 

Another function of Par3 in the determination of the apical domain is to contribute to 

the difference in membrane lipid composition (Figure 7). While at the basolateral 

membrane, the abundance of PIP3 is increased by the activity of the lipid kinase PI3K on 

PIP2 (Peng et al. 2015), at the apical membrane Par3 recruits the phosphoinositide 

phosphatase PTEN (von Stein et al. 2005; Feng et al. 2008). PTEN converts PIP3 into PIP2 

at the apical membrane, increasing its abundance, which promotes the recruitment of 

annexin 2 first, to which then Cdc42 is recruited (Martin-Belmonte et al. 2007). At the 

apical membrane, Cdc42 is locally activated by Tuba (Figure 7) (Cestra et al. 2005; Bryant 

et al. 2010; Qin et al. 2010) or Dbl3 (Zihni et al. 2014). The Par6-aPKC complex is thought 

to be recruited apically by Cdc42 (Hutterer et al. 2004; Nunes de Almeida et al. 2019). 

On the other hand, it has been shown in Drosophila that dyneins drive the transport of 

Crumbs and its transcripts apically (Li et al. 2008), while being excluded from the 

basolateral membrane by yurt (Laprise et al. 2009). For the correct localization of the 

apical-lateral border, Par3 must be excluded from the interaction with Par6-aPKC at the 

apical membrane (Figure 7), which is achieved by phosphorylation of a conserved serine 

residue of Par3 by aPKC (Nagai-Tamai et al. 2002; Morais-de-Sá, Mirouse, and St 

Johnston 2010). This phosphorylation is however not sufficient to exclude Par3 from a 

complex with Par6-aPKC, being even dispensable in some cell types (Morais-de-Sá, 

Mirouse, and St Johnston 2010) and it further requires association of Par6 with active 

Cdc42 and Crb (Morais-de-Sá, Mirouse, and St Johnston 2010; Nunes de Almeida et al. 
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2019). The binding of the Par6-aPKC cassette to Crb (Figure 7) was at first proposed 

through binding of Par6 to Crb-bound Stardust/Pals1 (Hurd et al. 2003), but later also 

demonstrated through direct binding between Par6 and Crb, an interaction that helps 

both complexes stabilize each other at the apical membrane (Nunes de Almeida et al. 

2019). Also, β1 integrin signaling upon binding to collagen in the extracellular matrix 

induces Rac1 activation, which leads to laminin assembly at the basement membrane 

and definition of the basal side, which orients the direction of apicobasal polarity 

(O’Brien et al. 2001; Yu et al. 2005). Laminin has been shown to regulate apicobasal 

polarity in vivo (Rasmussen, Reddy, and Priess 2012). However, it seems that the Rac1 

regulation of the orientation of apicobasal polarity is cell type-specific and another 

mechanism has been proposed, in which β1 integrins signal through Focal Adhesion 

Kinases (FAK) and p190a (a RhoA GAP) to downregulate RhoA-ROCK signaling (Bryant et 

al. 2014). 

 

Figure 7. Localization and interactions of polarity proteins in the establishment of apicobasal polarity 

and its maintenance. Dashed lines show binding interactions. Solid arrows indicate 

phosphorylation/dephosphorylation. Dashed arrows indicate change in the protein to or from a 

phosphorylated state. For details, see text (Rodriguez-Boulan and Macara 2014) 
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After being established, the maintenance of apicobasal polarity depends on 

reciprocal antagonism and exclusion between apical and basolateral polarity complexes. 

Lgl and the kinase Par1, two proteins that localize at the basolateral membrane, are 

phosphorylated by aPKC (Figure 7), excluding them from the apical domain (Yamanaka 

et al. 2003; Hurov, Watkins, and Piwnica-Worms 2004; Suzuki et al. 2004). In turn, lateral 

Lgl inhibits basolateral localization of Par6-aPKC (Hutterer et al. 2004). Par3 is excluded 

from the basolateral membrane by Par1-mediated phosphorylation of two conserved 

serine residues and subsequent binding to members of the 14-3-3 family of proteins 

(Figure 7), which prevents its membrane association (Benton and St Johnston 2003). 

 

1.3. Epithelial cell polarity 

Epithelial cells appear early during development with the formation of a blastocyst 

(Ziomek and Johnson 1980). They are especially useful for the formation of tissues and 

organs because they have a polarized cytoskeleton that allows them to constrict their 

apical surface, something that is required for morphogenetic processes like gastrulation 

or tubulogenesis (Sawyer et al. 2010) and because they can control the size of their 

lateral sides to adopt either a columnar or a squamous shape (Rodriguez-Boulan and 

Macara 2014). Additionally, epithelial cells during development can orient their mitotic 

spindle in order to increase the amount of a certain population of cells, induce 

differentiation to generate a variety of cell types or give rise to a specific tissue 

architecture required for organ formation (Chen, Fingerhut, and Yamashita 2016; Morin 

and Bellaïche 2011). Another advantage of epithelial cells during development is their 

ability to lose their epithelial characteristics, transition to a mesenchymal phenotype 

and migrate to a different location where they regain the epithelial character (through 

epithelial-to-mesenchymal transition and mesenchymal-to-epithelial transition, 

respectively), for example, during kidney development (Carroll and Das 2011; Lim and 

Thiery 2012). All these capabilities require polarization. Epithelial cell polarity has been 

extensively studied in C. elegans and D. melanogaster (Rodriguez-Boulan and Macara 

2014), but the mechanisms governing tubulogenesis and the de novo formation of 

lumina from a mass of epithelial cells have been mostly studied in cultures of epithelial 

cells embedded in 3D matrices (Overeem, Bryant, and van IJzendoorn 2015). The Madin-
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Darby Canine Kidney (MDCK) cell line is one of the most used models. These cells, when 

cultured in a 3D matrix, form spherical epithelial monolayers surrounding a central 

lumen, named cysts (Montesano, Schaller, and Orci 1991). 

The microtubule cytoskeleton suffers rearrangements during polarization in 

epithelial cells (Rodriguez-Boulan and Macara 2014). In polarizing MDCK cells, the 

centrioles move from an initial position close to the nucleus to directly below the apical 

membrane upon formation of cellular junctions (Buendia et al. 1990). There, the mother 

centriole generates the primary cilium (Figure 8). The primary cilium is a microtubule-

based protrusion present on the surface of many cell types that acts as a hub for 

important signaling pathways (Goetz and Anderson 2010), which include Hedgehog 

(Bangs and Anderson 2017), Wnt (May-Simera and Kelley 2012), transforming growth 

factor β and platelet-derived growth factor receptor α signaling (Christensen et al. 

2017). Also in MDCK cells, it has been shown that most of the microtubules are non-

centrosomal and more stable in comparison with migratory cells, where microtubules 

emanate from the centrosomes and are less stable (Bré, Kreis, and Karsenti 1987). Some 

of this non-centrosomal microtubules anchor their minus ends to the zonula adherens 

and regulate the development of the apical junctional complex (Meng et al. 2008). 

Moreover, E-cadherin is able to stabilize the minus ends of a population of 

non-centrosomal microtubules (Chausovsky, Bershadsky, and Borisy 2000). In epithelial 

cells, cortical microtubules are oriented apicobasally (Figure 8), with their plus ends at 

the basal domain (Gilbert et al. 1991). End-binding protein 1 (EB1) is responsible for the 

localization of kinesin family 17 (KIF17) to microtubule plus ends, which in turn recruits 

APC and together they stabilize the microtubules (Jaulin and Kreitzer 2010). The 

organization of the microtubule cytoskeleton in epithelial cells is responsible for the 

characteristic supranuclear localization of the Golgi apparatus, common recycling 

endosomes (CREs) and apical recycling endosomes (AREs) and for the peripheral 

localization of apical and basolateral sorting endosomes (Figure 8) (Rodriguez-Boulan 

and Macara 2014). In mammary epithelial cells, microtubules that are attached to β1 

integrins at the basal membrane by the activity of the integrin-linked kinase (ILK) deliver 

apical proteins from the basal domain to the apical domain of the membrane (Akhtar 

and Streuli 2013). In the liver, hepatocytes have a unique microtubule organization 
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responsible for the formation of their apical domain interrupting the lateral membrane 

to form bile canaliculi. This special arrangement of epithelial polarity is achieved by high 

activity of Par1. MDCK cells in which Par1 activity is increased show a hepatic-like apical 

domain (Cohen et al. 2004), while hepatocytes with a lowered Par1 activity show 

columnar morphology (Lázaro-Diéguez et al. 2013).  

 

Figure 8. Epithelial polarity. Polarized organization of molecules, organelles and vesicle trafficking in 

epithelial cells (Rodriguez-Boulan and Macara 2014) 
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The actin cytoskeleton also reorganizes in epithelial cells, where it forms unique 

structures like the microvilli (Figure 8) at the apical membrane (Rodriguez-Boulan and 

Macara 2014). The formation of microvilli depends on 4.1 ezrin-radixin-moesin domain-

containing proteins like ezrin in mammals and moesin in flies (Tepass 2009). At adherens 

junctions, the actin cytoskeleton organizes in bundles parallel to the contacting 

membrane (Hirokawa et al. 1983), a rearrangement that is regulated by E-cadherin 

through α-catenin (Drees et al. 2005). In turn, the actin cytoskeleton is involved in the 

formation and maintenance of junctional complexes (Nelson, Drees, and Yamada 2005). 

The perinuclear actin cytoskeleton is regulated by Cdc42 and controls vesicular transport 

from perinuclear endosomes and the trans-Golgi network (Erickson et al. 1996; 

Kroschewski, Hall, and Mellman 1999; Musch et al. 2001).  

Epithelial cells express a high number of plasma membrane proteins that act as 

transporters or receptors, which are expressed with a characteristic apicobasal polarity, 

depending on the function of the tissue (Hediger et al. 2004). Their polarity is 

determined by intracellular sorting at the trans-Golgi network (TGN) and endosomes 

during biosynthetic and recycling routes (Rodriguez-Boulan, Kreitzer, and Müsch 2005). 

The signals for apical sorting are N- and O-glycans in the extracellular domain 

(Scheiffele, Peränen, and Simons 1995; Yeaman et al. 1997), transmembrane domains 

such as that of the influenza haemagglutinin (HA) (Scheiffele, Roth, and Simons 1997), 

glycosyl-phosphatidyl-inositol (GPI) anchors (Lisanti et al. 1989) and motives in the 

intracellular domain (Tai et al. 1999; Takeda, Yamazaki, and Farquhar 2003). GPI anchors 

and proteins with specialized transmembrane sorting domains are believed to be 

preferentially incorporated to vesicles bound for the apical membrane because of their 

affinity to glycosphingolipid-enriched rafts (Simons and Gerl 2010; Puertollano et al. 

1999). Lectins, like galectins 3, 4 and 9 have been shown to be involved in the apical 

targeting of N-glycosilated proteins (Stoops and Caplan 2014). 

On the other hand, basolateral sorting signals are short amino acid sequences in 

the intracellular domain of the proteins, some of them very similar to endocytosis 

motifs, such as the tyrosine (NPxY or YxxØ, being X any amino acid and Ø a big 

hydrophobic amino acid) and dileucine (LL/LI) motifs (Gonzalez and Rodriguez-Boulan 
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2009), which can bind clathrin adaptor proteins. Therefore, basolateral sorting is 

believed to be clathrin-mediated (Deborde et al. 2008; Stoops and Caplan 2014). 

Sorting of apical and basolateral proteins through the biosynthetic, recycling and 

transcytotic routes depends on production of post-Golgi vesicles and their polarized 

trafficking. Fission of apical transport vesicles from the TGN is mediated by dynamin 2 

(Salvarezza et al. 2009), while fission of basolateral vesicles depends on protein kinase D 

(PKD) (Yeaman et al. 2004) and C-terminal-binding protein 1 (CtBP1) (Bonazzi et al. 

2005). Dynamin 2 mediates the production of apical transport vesicles at the level of 

apical recycling endosomes (Thuenauer et al. 2014). The actin and microtubule 

cytoskeletons are implicated in the transport of these vesicles (Rodriguez-Boulan, 

Kreitzer, and Müsch 2005). Microtubule motors (like dyneins and kinesins) are mostly 

implicated in apical trafficking. For example, KIFC3, KIF5B and KIF16B (Noda et al. 2001; 

Jaulin et al. 2007; Perez Bay et al. 2013). Myosin II and myosin VI are involved in 

basolateral transport from the TGN (Müsch, Cohen, and Rodriguez-Boulan 1997; Au et 

al. 2007), while myosin V mediates apical transport from AREs (Roland et al. 2011). 

Vesicle tethering at the apical or basolateral membrane requires the exocyst 

(Oztan et al. 2007), which resides at cell-cell junctions (Grindstaff et al. 1998). 

Additionally, vesicle trafficking is controlled by Rab GTPases. They are a family of small 

GTPases that have been shown to be master regulators of vesicle trafficking from the 

TGN or endosomes (Hutagalung and Novick 2011). Polarity proteins can also play a role 

in vesicle trafficking. E-cadherin vesicle transport in epithelial cells can be influenced by 

Cdc42. In the Drosophila embryo, the loss of Cdc42 blocks apical recycling and 

subsequently causes loss of the integrity of adherens junctions, since E-cadherin 

basolateral delivery depends on AREs (Lock and Stow 2005). Loss of Cdc42 can also cause 

a defect in E-cadherin endocytosis through alterations in the actin dynamics (Leibfried 

et al. 2008). 

Polarity of epithelial cells also influences cell fate. In mouse embryos, cells are 

segregated in a single-layered trophectoderm and an inner cell mass (Johnson 2009). 

Trophectoderm cells have apicobasal polarity, while inner cell mass cells do not have an 

apical membrane (Yamanaka et al. 2006). The trophectoderm will generate the 

placenta, while the inner cell mass will form the proper embryo. These cell fates are 
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determined by the Hippo pathway. In the trophectoderm the Par6-Par3-aPKC complex 

phosphorylates ezrin, which promotes Yap nuclear localization and Cdx2 expression. 

Cdx2 then supresses the pluripotency gene Oct4. However, in the inner cell mass there 

is no apical membrane, thus preventing Yap to localize in the nucleus, which does not 

promote Cdx2 transcription and maintains Oct4 expression (Hirate et al. 2013). 

 

1.4. Mitotic spindle orientation 

Epithelial development, homeostasis and repair require a correct orientation of the cell 

division. This orientation is determined by the position of the mitotic spindle. The mitotic 

spindle is a structure formed by three types of microtubules nucleated from the 

centrosomes. Kinetochore microtubules bind the chromosomes and separate both 

genomes during anaphase. Interpolar microtubules form an antiparallel array that 

positions the mitotic furrow during cytokinesis. Astral microtubules anchor the spindle 

to the cortex (Morin and Bellaïche 2011). 

Some of the processes for which a correct mitotic spindle orientation is necessary 

were mentioned above, for example, for the anterior-posterior axis determination 

during the first division of the C. elegans zygote (Siller and Doe 2009). During the 

development of the neural system in Drosophila, mitotic spindle orientation is critical to 

ensure the asymmetric division of neuroblasts (Morin and Bellaïche 2011). Also in 

mammals, in some tissues like the epidermis, switching the orientation of the mitotic 

spindle during development changes the division mode from symmetric, which is used 

to increase the surface of the epidermis, to asymmetric in order to produce stratification 

and induce differentiation (Xie and Zhou 2017). 

The key components for the determination of the orientation of the mitotic 

spindle have been identified, although new mechanisms are still arising. The mitotic 

spindle gets in position through pulling forces that act on the plus end of the astral 

microtubules exerted by a dynein/dynactin motor complex (Kotak and Gönczy 2013; 

Okumura et al. 2018). In the next paragraphs I will go into detail of how mitotic spindle 

orientation is achieved, using some examples. 
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During the first division of the C. elegans zygote (Figure 9), the mitotic spindle 

aligns with the anterior-posterior axis, but it becomes closer to the posterior pole 

resulting in a big daughter cell and a small daughter cell (Siller and Doe 2009). This shift 

from the center of the zygote is caused by an increased activity of the “force generators” 

at the posterior pole (Grill et al. 2001, 2003). The Par complex formed by Par3, Par6 and 

aPKC locates at the anterior pole, while Par1 and Par2 locate at the posterior pole as 

discussed above. These Par proteins control the posterior accumulation of PI(4)P5-

Kinase (PPK-1) through exclusion from the anterior pole by the casein kinase 1 (CSNK-1) 

(Figure 9), which results in GPR-1/2 (Pins in Drosophila, LGN in vertebrates) 

accumulation at the posterior pole during anaphase (Panbianco et al. 2008). GPR-1/2 is 

excluded from the lateral cortex by LET-99 (Park and Rose 2008). In this way, through 

the Par proteins and LET-99, three cortical domains are established: the anterior 

domain, a lateral domain and a posterior domain (Figure 9) (Krueger et al. 2010).  

 

Figure 9. Alignment of the mitotic spindle with the anterior-posterior axis in the C. elegans zygote. For 

details, see text (Morin and Bellaïche 2011) 
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GPR-1/2 (LGN) binds through its GoLoco domain to GDP-bound Gα anchored at 

the plasma membrane (Figure 10) (Morin and Bellaïche 2011). GPR-1/2 also binds to 

LIN-5 (Mud in Drosophila, NuMA in vertebrates) (Srinivasan et al. 2003), which interacts 

with the dynein/dynactin motor complex, also promoting its localization at the cell 

cortex (Nguyen-Ngoc, Afshar, and Gönczy 2007; Couwenbergs et al. 2007). 

 

Figure 10. Model of mitotic spindle orientation by the Gαi-LGN-NuMA complex. For details, see text. 

Adapted from Bergstralh, Haack, and St Johnston 2013 

 

These proteins do not only position the mitotic spindle aligned to the anterior-

posterior axis, but they can also align it to the apico-basal axis (Figure 11 A). During 

Drosophila development, neuroblasts delaminate from the neuroepithelium and divide 

asymmetrically along their apicobasal axis, to regenerate one neuroblast and produce 

the neurons of the larval nervous system (Kaltschmidt et al. 2000). In these cells, the Par 

complex formed by Baz-Par6-aPKC locates at the apical membrane during interphase 

and early prophase. Baz (Par 3) recruits Inscuteable to the apical membrane 

(Figure 11 A). Then, partner of Inscuteable (Pins, LGN in vertebrates) interacts through 

its GoLoco domain with GDP-bound Gαi and both are recruited to the apical membrane 
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by interaction of Pins with Insc through its tetratricopeptide repeats (TPR)(Yu, Kuo, and 

Jan 2006). Then Pins interacts with Mud (NuMA in vertebrates) at the apical pole also 

through its TPR domain (Bowman et al. 2006; Izumi et al. 2006; Siller, Cabernard, and 

Doe 2006). The apical localization of Mud also requires the adherens junction PDZ 

protein Canoe, which also associates with Pins (Speicher et al. 2008). 

Pins has a linker domain between its GoLoco domain and its TPR domain. 

Through its linker domain, Pins can also control mitotic spindle orientation 

independently from Mud (Johnston et al. 2009). The mitotic spindle anchors to the edge 

of Pins localization: Pins binds to Dlg (Bellaïche et al. 2001), which binds to kinesin-73, a 

plus end microtubule motor (Siegrist and Doe 2005). This Pins linker activity is regulated 

by phosphorylation by the kinase Aurora A (Figure 11 A), which links Pins activity to cell 

cycle (Johnston et al. 2009).  

 Also in vertebrates, Gαi, Pins, NuMA and Dynein are involved in apicobasal 

spindle orientation regulated by Insc (Morin and Bellaïche 2011). In mouse embryonic 

skin progenitors (Figure 11 B), it has been proved that mitotic spindle orientation along 

the apicobasal axis through the signaling cascade formed by mInsc-LGN-Gαi-NuMA-

dynein-dynactin is conserved (Lechler and Fuchs 2005). LGN localizes during interphase 

diffusively in the cytoplasm, but also at the cell cortex. During interphase, NuMA 

localizes in the nucleus, while during mitosis it has been observed at the cell cortex and 

at the mitotic spindle poles (Zhu et al. 2011). During mitosis along the apico-basal axis, 

mInsc, LGN and NuMA are located at the apical domain (Figure 11 B). This localization is 

controlled by β1-integrin and α-catenin (Lechler and Fuchs 2005).  
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Figure 11. Mitotic spindle orientation along the apico-basal axis. Alignment during Drosophila neuroblast 

division (A) and mouse skin basal progenitor cell division (B) (Morin and Bellaïche 2011) 
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In planar cell divisions, like in the vertebrate neuronal progenitors (Figure 12 A), 

LGN and NuMA localize in a ring around the lateral cortex (Peyre et al. 2011). When the 

mitotic spindle forms, it rotates rapidly, until it finally aligns with the epithelial plane and 

locates just under the LGN-NuMA ring. Then, the spindle rotates in this plane until 

anaphase. Overexpression of Gαi, makes LGN localize everywhere in the cell cortex 

making the spindle movements random (Peyre et al. 2011). This suggests that the Pins-

NuMA complex is necessary for planar spindle orientation and at the same time is 

permissive for movement within this plane (Morin and Bellaïche 2011). 

 Planar cell divisions can also be controlled by planar cell polarity (Figure 12 B) so 

that they happen, for example, within the epithelial plane, but also along the anterior-

posterior axis (Morin and Bellaïche 2011). During the Drosophila sensory organ 

precursor cell division (Figure 12 B), a pI cell divides to generate an anterior pIIb cell and 

a posterior pIIa cell (Gho, Bellaïche, and Schweisguth 1999). Mud and Frizzled localize at 

the apical posterior membrane of the pI cell during cell division (Ségalen et al. 2010). 

This apical posterior localization of Mud is regulated by dishevelled, which binds Mud. 

Fz and Dsh signaling positions the Par proteins at the posterior-lateral membrane and 

Gαi and Pins at the anterior-lateral cortex (Bellaïche et al. 2001). 

Baz and Pins are not required for the alignment of the mitotic spindle with the 

anterior-posterior axis (David et al. 2005). However, loss of Pins tilts the spindle to a 

more apico-basal orientation, while Fz and Dsh mutants show a more planar orientation. 

Therefore, Fz and Dsh are responsible for the anterior-posterior orientation of the 

mitotic spindle, however tilting it towards the apico-basal axis. This is countered by the 

activity of Pins (Figure 12 B) (Morin and Bellaïche 2011). 
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Figure 12. Alignment of the mitotic spindle with the epithelial plane. Planar cell polarity-independent 

alignment during vertebrate neuroepithelial progenitor cell division (A) and planar cell polarity-dependent 

orientation during the Drosophila sensory organ precursor cell division (B) (Morin and Bellaïche 2011) 
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In symmetric cell divisions during epithelial development, the daughter cells 

must remain in the epithelial plane. This is done by maintaining the mitotic spindle 

orientation within this plane (Morin and Bellaïche 2011). In dividing MDCK cells, Gαi 

localizes everywhere at the cell cortex. LGN and NuMA, however, localize to the lateral 

membrane (Hao et al. 2010). LGN is phosphorylated by aPKC at the apical domain, which 

increases its affinity for a 14-3-3 protein. This creates a competition between 14-3-3 and 

GDP-bound Gαi for LGN, resulting in the release of LGN from the apical membrane, to 

form a ring-like structure at the lateral cortex (Hao et al. 2010). There, LGN recruits 

NuMA through its TPR domain and NuMA exerts pulling forces on the astral 

microtubules to position the mitotic spindle through the dynein/dynactin motor 

complex, as described previously. 

 

Figure 13. Different mitotic spindle orientation axes during tubular organ morphogenesis 

 

In the mouse kidney in vivo, during postnatal nephron maturation, cell divisions 

in the renal tubular epithelial cells happen mostly in the direction of the renal tubule to 

increase its length without increasing its diameter (Fischer et al. 2006). Here, the 

Fat/Dachsous signaling pathway plays a role. Loss of the Fat4 gene results in mitotic 

spindle misorientation and enlarged tubules. This effect can be even more pronounced 

by removing Vangl2 (Saburi et al. 2008). 
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1.5. Semaphorin-plexin signaling 

Semaphorins are a family of transmembrane, glycosylphosphatidylinositol-bound or 

secreted signaling proteins which were identified as axon guidance molecules (“Unified 

Nomenclature for the Semaphorins/Collapsins. Semaphorin Nomenclature Committee.” 

1999). There are 20 described mammalian semaphorins divided in 5 classes (3-7) (Figure 

14). They are characterized by having a Sema domain through which they interact with 

their receptors (Kolodkin, Matthes, and Goodman 1993). Semaphorins of the class 3 are 

secreted proteins, while semaphorins in the classes 4-6 are transmembrane and 

Semaphorin 7A is linked to the plasma membrane by GPI (Worzfeld and Offermanns 

2014). Some transmembrane and GPI-bound semaphorins can be proteolytically cleaved 

and released, for example Sema4D, Sema5B or Sema7A (Elhabazi et al. 2001; Browne et 

al. 2012; Holmes et al. 2002). Among the vertebrate semaphorins, class 4, 5 and 6 have 

cytoplasmic domains (Gurrapu and Tamagnone 2016) that in some cases have been 

shown to interact with intracellular proteins (Sun et al. 2017). 

 

Figure 14. Semaphorin and plexin families. For details, see text (Worzfeld and Offermanns 2014) 
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Plexins are a family of transmembrane receptors for semaphorins (Tamagnone 

et al. 1999). In vertebrates there are 9 plexins divided in 4 classes (Plexin-A1-4, 

Plexin-B1-3, Plexin-C1 and Plexin-D1) (Figure 14). Plexins also have a Sema domain, 

which they use to bind semaphorins (Worzfeld and Offermanns 2014). Secreted class 3 

semaphorins also interact with neuropilins (Neuropilin-1 and neuropilin-2, abbreviated 

as Nrp1 and Nrp2) (Figure 14) as co-receptors (Chen et al. 1997; Kolodkin et al. 1997; He 

and Tessier-Lavigne 1997). Plexins of the A subfamily are receptors for class 5 and class 

6 semaphorins directly, but also for secreted class 3 semaphorins in necessary 

interaction with neuropilins. Plexins of the B subfamily are receptors for class 4 and class 

5 semaphorins. Plexin-D1 binds Sema3E and Sema4A independently of neuropilins and 

several class 3 semaphorins with neuropilins as co-receptors. Lastly, Plexin-C1 is a 

receptor for Sema7A (Worzfeld and Offermanns 2014). 

Even though semaphorins and plexins were initially described in the context of 

axon guidance (Tamagnone et al. 1999), many roles have been discovered in cell-cell 

communication for a variety of processes. In the nervous system, they play a role in 

synaptic plasticity and neural homeostasis (Pasterkamp and Giger 2009; Pasterkamp 

2012; Koropouli and Kolodkin 2014). In the immune system they are involved in immune 

synapse formation, differentiation and migration (Kumanogoh and Kikutani 2013; 

Takamatsu and Kumanogoh 2012; Potiron et al. 2007). Semaphorin-plexin signaling has 

also been linked to bone remodelling and to osteoblast and osteoclast differentiation 

(Kang and Kumanogoh 2013; Negishi-Koga and Takayanagi 2012). Semaphorins and 

plexins have also been shown to play a role in vascular development, angiogenesis and 

cancer (Gu and Giraudo 2013; Sakurai et al. 2012; Neufeld et al. 2012). Furthermore, 

they have been proposed as therapeutical targets for a variety of diseases, including 

cancer (Tamagnone 2012; Worzfeld and Offermanns 2014; Zhang et al. 2018). Recently, 

Plexin-B2 has been shown to play a role in mitotic spindle orientation in the kidney 

epithelium (Xia et al. 2015), a role that will be discussed further in this section. 

Apart from plexins and neuropilins, semaphorins have been shown to interact 

with other proteins as receptors, for example, Sema7A interacts with β1 integrins 

(Pasterkamp et al. 2003) and in the immune system Sema4A and Sema4D interact with 

T-cell immunoglobulin and mucin domain-containing protein 2 (TIM2) and CD72, 
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respectively (Suzuki, Kumanogoh, and Kikutani 2008). Neural cell adhesion molecule L1 

(L1CAM) has been shown to be part of a semaphorin receptor complex with neuropilin 

(Castellani et al. 2002). Also ErbB2 and MET, which interact with plexins of the B 

subfamily and Plexin-D1, are found in semaphorin receptor complexes (Swiercz, Kuner, 

and Offermanns 2004; Giordano et al. 2002; Casazza et al. 2010). 

Some migrating cells and axons express simultaneously on their surface 

semaphorins and their respective plexin receptors (Winberg et al. 1998) and autocrine 

Semaphorin-Plexin signaling has been observed (Serini et al. 2003; Catalano et al. 2004). 

Furthermore, “reverse” signaling in which semaphorins act as receptors instead of 

ligands and start intracellular signaling cascades mediated by their cytoplasmic domains 

has been found exclusively for transmembrane semaphorins (Gurrapu and Tamagnone 

2016). One example of this phenomenon can be observed during the trabeculation and 

expansion of the compact layer as part of the myocardium development, in which 

Sema6D reverse signaling recruits and activates the kinase Abelson (Abl), which 

phosphorylates Mena (an actin binding protein, also known as Enabled or VASP), 

promoting its dissociation from Sema6D and enhancing the migration of myocardial cells 

(Toyofuku, Zhang, Kumanogoh, Takegahara, Yabuki, et al. 2004). 

Semaphorin-Plexin “forward” signaling acts through binding of a semaphorin 

dimer with two plexin receptors, each semaphorin interacting with only one plexin 

molecule, which brings them together forming a plexin dimer that becomes activated 

(Janssen et al. 2010). The cytoplasmic portion of plexins has two domains with a 

sequence similar to that of Ras GAPs that fold together to form a GAP-homologous 

domain (Rohm et al. 2000; Hu, Marton, and Goodman 2001). R-Ras and M-Ras 

inactivation was observed upon Semaphorin-Plexin signaling and consequently, Plexins 

were initially proposed as GAPs for R-Ras and M-Ras (Oinuma et al. 2004; Saito et al. 

2009). However, it was later shown that they do not have a GAP activity towards Ras, 

but act in a non-canonical way to inactivate another Rho GTPase, Rap (Wang et al. 2012). 

Between the two sequences homologous to Ras GAPs lies a Rho GTPase-binding domain 

(RBD) that has been shown to bind active Rac1 and the constitutively active Rho GTPase 

Rnd1 (Driessens et al. 2001; Zanata et al. 2002). Even though plexins lack a direct GAP 

activity towards Ras, plexin-mediated inactivation of R-Ras and M-Ras through a 



Introduction 
 

49 
 

mechanism yet unknown requires binding to their semaphorin ligand and interaction 

with Rnd1 or active Rac1 through the RBD (Oinuma et al. 2004; Oinuma, Katoh, and 

Negishi 2004; Wang et al. 2012). However, the GAP activity towards Rap does not need 

binding of a Rho GTPase to the RBD (Wang et al. 2012). 

The GAP-homologous domain of plexins is essential for Semaphorin-Plexin 

signaling, as point mutations in its sequence impair its axonal growth cone collapse 

function (Oinuma et al. 2004; Saito et al. 2009; Sakurai et al. 2010) and in some cases 

even result in the same phenotypic effects as their respective complete knockout 

(Worzfeld et al. 2014). It has been proposed that the inhibition of Ras by Semaphorin-

Plexin signaling could be achieved by sequestering it rather than inactivating it (Sakurai 

et al. 2010), although another possibility would be that plexins interact with a Ras GAP. 

Plexins of the B family also contain a PDZ domain-binding motif, through which they 

interact with Rho GEFs (PDZ-RhoGEF and LARG) that activate RhoA and RhoC (Aurandt 

et al. 2002; Perrot, Vazquez-Prado, and Gutkind 2002; Swiercz et al. 2002). Mutations in 

the GAP-homologous domain of plexins does not impair RhoA activation and conversely, 

deletion of de PDZ domain-binding motif does not affect Ras inactivation (Oinuma et al. 

2004), making these two effector cascades of Semaphorin-Plexin signaling independent 

of each other. Although some of the plexin signaling pathways are shared for several of 

the subclasses, there is also subclass-specific signaling (Jongbloets and Pasterkamp 

2014).  

Semaphorin-Plexin signaling controls integrin-dependent cell migration in a 

variety of cell types (Tamagnone and Comoglio 2004). R-Ras is able to regulate the 

activation of β1 integrins (Zhang et al. 1996). Semaphorin-Plexin signaling has been 

shown to effectively reduce cell migration by inhibiting R-Ras and PI3K-mediated β1 

integrin activation/FAK signaling, for which the GAP-homologous domain of plexins and 

binding of Rnd1 to the RBD are required (Oinuma, Katoh, and Negishi 2006). However, 

promotion of cell migration and integrin signaling by semaphorins and plexins has also 

been observed (Basile, Gavard, and Gutkind 2007; Banu et al. 2006). Therefore, the role 

of Semaphorin-Plexin signaling in integrin-mediated cell adhesion and migration is not 

fully clear. During thymocyte maturation into T-lymphocytes at the thymic cortex, 

precise control of Plexin-D1 expression was shown to promote integrin clustering at the 
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thymocyte surface, while binding of Plexin-D1 to medullary-secreted Sema3E shortened 

the bond lifetime of integrin adhesion, thus constituting yet a different mechanism of 

Semaphorin-Plexin regulation of integrin-mediated cell adhesion and migration (Choi et 

al. 2014). Moreover, Rap has also been demonstrated to activate integrins (Gloerich and 

Bos 2011) and therefore, plexins could mediate integrin adhesion through Rap (Wang et 

al. 2012). 

Rho can induce neurite retraction through its effector ROCK, wich controls local 

actin dynamics (Dickson 2001). It has been shown that plexins of the B family can 

promote axonal growth cone collapse upon binding to their semaphorin ligand through 

PDZ-RhoGEF and LARG-mediated RhoA activation (Swiercz et al. 2002). The interaction 

between class I PDZ domain proteins and the C-terminus of proteins to which they bind 

happens through a conserved K/RxxxGLGF sequence in the PDZ domain and a xS/TxØ 

sequence in its target proteins (Doyle et al. 1996; Taya et al. 2001). In Plexins of the B 

subfamily, the carboxy-terminal VTDL amino acids constitute a PDZ domain binding 

motif (xS/TxØ) through which they interact with the PDZ domains of LARG and 

PDZ-RhoGEF (Aurandt et al. 2002; Perrot, Vazquez-Prado, and Gutkind 2002). 

Importantly, Plexin-B1 does not interact with the type I PDZ domain of Lin-7 (Aurandt et 

al. 2002) and neither Plexin-B1 nor Plexin-B2 interact with the PDZ domain of Tiam1 

(Perrot, Vazquez-Prado, and Gutkind 2002), suggesting that the PDZ domain-binding 

motif of plexins of the B subfamily is specific for the class I PDZ domains of LARG and 

PDZ-RhoGEF. Binding to PDZ-RhoGEF and LARG has been shown to promote membrane 

localization of Plexin-B1 (Swiercz et al. 2002). Furthermore, Plexin-B1 interacts with 

ErbB2, which gets activated upon Sema4D binding to Plexin-B1, inducing ErbB2 

autophosphorylation and phosphorylation of Plexin-B1, which was shown to be 

necessary for Plexin-B1-RhoA-mediated axonal growth cone collapse (Swiercz, Kuner, 

and Offermanns 2004). 

Semaphorin-plexin signaling can be modulated to be able to elicit a variety of 

functions in a time- and space-controlled way. One of the mechanisms to achieve this is 

through co-receptor subunits (Pasterkamp 2012). For example, Sema5A is an attractive 

cue for axons expressing heparan sulphate proteoglycans, but for axons expressing 

chondroitin sulphate proteoglycans it acts as a repulsive signal (Kantor et al. 2004; 
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Hilario et al. 2009). Another mechanism by which one semaphorin or a semaphorin-

plexin pair can mediate different responses is through the “reverse” signaling explained 

above. Semaphorin-Plexin signaling can be timely controlled by regulating receptor 

expression (Pasterkamp 2012). For example, Nrp1 and Nrp2 are transcriptionally 

repressed by the homeobox transcription factors DLX1, DLX2 and NKX2.1 in 

telencephalic interneurons to allow them enter the Sema3A- and Sema3F-expressing 

striatum (Le et al. 2007; Nóbrega-Pereira et al. 2008) or by COUP transcription factor 2 

(COUP-TF2, also known as NR2F2) in mouse PAX-6 positive cells that migrate from the 

caudal ganglionic eminence to the amygdala (Tang et al. 2012). The cellular response to 

semaphorins is also controlled by semaphorin-plexin cis interactions (Pasterkamp 2012). 

Both dorsal root ganglion and sympathetic neurons express Plexin-A4, but repulsion by 

Sema6A only happens in sympathetic axonal growth cones, due to the fact that that 

dorsal root ganglion neurons express Sema6A themselves, which interacts with 

Plexin-A4 in cis, preventing interaction in trans (Haklai-Topper et al. 2010). Another 

example of this phenomenon occurs during hippocampal development. Mossy fibres 

expressing Plexin-A4 can enter the Sema6A-expressing stratum lucidum because 

pyramidal neurons of the stratum lucidum co-express Sema6A with Plexin-A2, which 

interact in cis, inhibiting the interaction in trans between their Sema6A and Plexin-A4 

on mossy fibres (Suto et al. 2007). 

Semaphorin signaling has several functions in the development of the nervous 

system that go beyond its role as an attractive or repulsive molecule (Pasterkamp 2012). 

As stated above, neurons are highly polarized cells that have distinct neurites: the axon 

and the dendrites. During polarization of neurons, axonal identity is specified by high 

levels of cAMP, while dendrite specification is promoted by elevated levels of cGMP 

(Shelly et al. 2010). Sema3A promotes dendrite specification in cooperation with Nrp1 

by reducing the cAMP levels and increasing cGMP (Shelly et al. 2011). Semaphorin-Plexin 

signaling can also control where synapses are formed at the subcellular level by 

regulating the number and shape of dendritic spines in specific neurites (Koropouli and 

Kolodkin 2014). For example, Sema3F controls the distribution and morphology of 

dendritic spines in primary apical dendrites of cortical pyramidal neurons through a 

receptor complex formed by Nrp2 and Plexin-A3 (Tran et al. 2009). Semaphorins have 
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also been implicated in axonal pruning, a process consisting in the withdrawal of axon 

branches that make temporary connections during brain development (Bagri et al. 

2003). 

In the immune system Semaphorin-Plexin signaling plays different roles. Besides 

the above mentioned role of Sema3E and Plexin-D1 in thymocyte maturation, it has 

been shown that Plexin-A1 in cooperation with Nrp1 mediates dendritic cell 

transmigration between lymphatic endothelial cells in response to endothelial-secreted 

Sema3A through regulation of actomyosin contractility (Takamatsu et al. 2010). 

Moreover, Sema4D binding to Plexin-B1 and Plexin-B2 contributes to the adhesion 

between monocytes and endotelial cells (Luque et al. 2015). Semaphorin signaling not 

only plays a role in immune cell migration but also in immune cell-cell communication. 

For example, Sema4D is able to promote the activation of B and T cells and it is linked 

to antibody production and antigen-specific T cell responses (Shi et al. 2000). Sema7A is 

expressed in activated T cells and signals through α1β1 integrins to stimulate monocytes 

and macrophages to produce interleukin 6 (IL-6) and tumor necrosis factor α (TNFα), 

which are proinflammatory cytokines (Suzuki et al. 2007). Moreover, Sema3A, 

expressed in T cells, dendritic cells and some tumor cells, binds to Nrp1-Plexin-A4 on T 

cells to inhibit their proliferation and immune responses (Catalano et al. 2006; 

Yamamoto et al. 2008). 

In the bone, Semaphorin-Plexin signaling is involved in bone remodeling, that 

when altered can cause osteopenia, osteoporosis or osteopetrosis (Kang and 

Kumanogoh 2013). For example, Sema4D-Plexin-B1 signaling inhibits bone 

mineralization and induces osteoclast formation (a cell type specialized in bone 

resorption) (Negishi-Koga et al. 2011). Plexin-A1, stimulated by Sema6D, associates with 

triggering receptor expressed on myeloid cells 2 (Trem-2), which could result in 

promotion of osteoclastogenesis (Takegahara et al. 2006). Sema3A through Nrp1 and 

Plexin-A1 is involved in osteoprotection by simultaneously promoting osteoblast 

differentiation in a Rac1-mediated way and by inhibiting osteoclast precursor migration 

to the bone forming site in a RhoA-dependent manner (Hayashi et al. 2012). 

Semaphorin-Plexin signaling also plays several roles in vasculogenesis. During 

development, Sema3E expressed in the somites signals through Plexin-D1 on 
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endothelial cells of intersomitic vessels to mediate repulsion and restrict vessel growth 

to the intersomitic space (Gu et al. 2005). Sema3E negatively regulates VEGF signaling 

(Gu and Giraudo 2013). For example, during the development of retinal vasculature, 

Sema3E produced by the retinal ganglion cells (RGCs) binds Plexin-D1 expressed on the 

surface of endothelial cells at the front of sprouting blood vessels to inhibit VEGF-

mediated Dll4-Notch signaling (Kim et al. 2011). Semaphorin-Plexin signaling is also 

involved in tumor angiogenesis (Gu and Giraudo 2013). Tumor angiogenesis has been 

shown to be inhibited by Sema3A (Maione et al. 2009; Casazza et al. 2011), Sema3B 

(Varshavsky et al. 2008), Sema3D (Sabag et al. 2012), Sema3E (Sakurai et al. 2010) and 

Sema3F (Bielenberg et al. 2004; Kessler et al. 2004). 

Through its role in tumor angiogenesis or by acting directly on cancer cells, 

Semaphorin-Plexin signaling has been shown to be involved in cancer progression. The 

first observation of this was that Sema3F constitutes a tumor suppressor in lung cancer, 

where it is frequently deleted (Roche et al. 1996; Xiang et al. 1996). In lung cancer cells, 

the highly expressed transcription repressor zinc finger E-box binding homeobox 1 

(ZEB-1) inhibits Sema3F expression (Clarhaut et al. 2009). Sema3F also inhibits tumor 

growth and metastasis in mouse xenografts (Bielenberg et al. 2004). Sema3A through 

Nrp1 inhibits breast cancer migration and invasion in an autocrine manner (Bachelder 

et al. 2003; Pan and Bachelder 2010).  Sema3B is deleted in lung cancer, similarly as 

Sema3F and it is also lost in neuroblastoma (Tomizawa et al. 2001; Nair et al. 2007). 

Sema3E binds Plexin-D1 promoting its association with ErbB2 and the activation of the 

latter in cancer cells (Casazza et al. 2010). Sema4D promotes tumor growth and 

angiogenesis of head and neck squamous cell carcinomas via Plexin-B1 expressed on 

endothelial cells (Basile et al. 2006). However, tumor angiogenesis is not inhibited in 

mice lacking Plexin-B1, which suggests that other class B plexins could compensate its 

loss (Fazzari et al. 2007). Sema4D has also been shown to trigger invasive growth upon 

binding to Plexin-B1 by activating scatter factor receptors Ron and Met, which induces 

their tyrosine kinase activity towards Plexin-B1 and themselves (Giordano et al. 2002; 

Conrotto et al. 2004). Interestingly, in breast cancer cells, Sema4D signaling through 

Met-associated Plexin-B1 inhibits cell migration, while signaling through ErbB2-

associated Plexin-B1 promotes it (Swiercz, Worzfeld, and Offermanns 2008). Sema5A, 
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whose receptor is Plexin-B3, is upregulated in several types of cancer (Lu et al. 2010; 

Sadanandam et al. 2010). Sema5A, like Sema4D, has been shown to activate Met upon 

binding to Plexin-B3 (Artigiani et al. 2004). Sema6D receptor Plexin-A1 associates with 

VEGF tyrosine kinase receptor 2 (VEGFR-2) in mesothelioma cells (Catalano et al. 2009) 

and Sema6D has been shown to activate VEGFR-2 (Toyofuku, Zhang, Kumanogoh, 

Takegahara, Suto, et al. 2004). This activation promotes the anchorage-independent 

growth of mesiotheloma cells (Catalano et al. 2009). 

Epithelial-to-mesenchymal transition not only happens during development, but 

also in cancer cells, where it increases invasiveness, resistance to drugs and allows 

metastasis (Zhang and Weinberg 2018). Semaphorin signaling has also been linked to 

EMT (Gurrapu and Tamagnone 2019). For example, Sema3A (Maione et al. 2012; Wang 

et al. 2016) and Sema3B (Shahi et al. 2017) have been shown to inhibit EMT. Contrarily, 

Sema3C (Herman and Meadows 2007; Tam et al. 2017; Xu et al. 2017), Sema3E (Rehman 

et al. 2016; Tseng et al. 2011), Sema4A (Rokavec, Horst, and Hermeking 2017; Pan, 

Wang, and Ye 2016), Sema4C (Gurrapu et al. 2018) and Sema7A (Allegra et al. 2012; 

Garcia-Areas et al. 2017; Liu et al. 2018) have been found to promote EMT. Finally, 

Sema5A has been shown to promote (Pan, Zhang, et al. 2013; Pan, Zhu, et al. 2013) and 

inhibit (Saxena et al. 2018) EMT, so its effects could be cell type-specific. 

Semaphorin-Plexin signaling also plays a role in epithelial cells in several 

processes, including polarity. Sema4D and Plexin-B1 have been shown to be expressed 

in mesenchymal-epithelial interfaces in many developing organs, with Plexin-B1 being 

frequently expressed in the epithelium and receiving Sema4D signals from the 

mesenchyma, which in the developing kidney was shown to inhibit epithelial branching 

of the ureteric tips (Korostylev et al. 2008). In Drosophila and zebrafish it has been 

shown that Semaphorin-Plexin signaling is involved in wound repair in epithelia (Yoo et 

al. 2016). Also in Drosophila, migrating follicular epithelial cells express Sema5C in a 

planar polarized manner at the leading edge of the basal membrane, promoting 

collective cell migration required for egg elongation by signaling through Plexin A and 

inhibiting protrusion formation at the rear edge of neighbouring cells (Stedden et al. 

2019). During lung development, Sema3C and Sema3F promote epithelial branching and 

proliferation, while Sema3A signaling reduces the number of terminal pulmonary buds 
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(Kagoshima et al. 2001). Also during lung development, the Grainyhead-like 

transcription factor 2 (Grhl2), which regulates cell-cell adhesion molecule expression, 

also regulates the expression of Sema3B, Sema3C and their receptor Nrp2 (Varma et al. 

2012). During the development of the cornea, Sema3A secreted by the corneal 

fibroblasts induces the membrane expression of E- and N-cadherins in corneal epithelial 

cells (Ko et al. 2010). 

Interestingly, Semaphorin-Plexin signaling has also been shown to control mitotic 

spindle orientation. Sema3B released from the ventricle floor plate and nascent choroid 

plexus controls the apicobasal orientation of mitosis in neuroepithelial progenitors, but 

its loss does not alter apicobasal polarity and instead it is belived to act directly on 

mitotic spindle orientation through the regulation of the actin and microtubule 

cytoskeletons in a LIM kinase-1 (LIMK1)-cofilin- and glycogen-synthase kinase 3β-

collapsin response mediator 2 (CRMP2)-dependent way (Arbeille et al. 2015). A recent 

study from our group has shown that Plexin-B2 plays a role in mitotic spindle orientation 

during kidney development and repair, as well as in MDCK cyst formation (Xia et al. 

2015). In that study, the knockdown of Plexin-B2 by shRNA and siRNA in MDCK cells 

yielded highly misorganized cysts with multiple lumina or with lumina filled with cells. In 

vivo, conditional knockout of Plexin-B2 in renal tubular epithelial cells showed normal 

kidney morphology, which was explained by a compensation mediated by the Plexin-B2 

close homologue Plexin-B1, which is also expressed during development in the kidney. 

However, a Plexin-B1 and Plexin-B2 double conditional knockout showed multi-layered 

kidney tubules. Additionally, as opposed to control mice, Plexin-B2 knockout mice could 

not repair the kidney epithelium after an ischemic injury and developed multi-layered 

tubuli similar to those of Plexin-B1/Plexin-B2 double knockout mice. This result is 

possible because in the adult tubular epithelial cells Plexin-B1 is no longer expressed. 

Moreover, it was shown that the generation of multi-layered kidney tubules and 

abnormal MDCK cysts was the consequence of a shift in the mitotic spindle orientation 

from a position aligned with the epithelial plane to one perpendicular or oblique to it. It 

was also demonstrated that this role of Plexin-B2 in the control of mitotic spindle 

orientation is mediated by the Rho-GTPase Cdc42. The knockdown of Plexin-B2 in MDCK 

cells resulted in decreased activity of Cdc42. Furthermore, the abnormal lumen 
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phenotype of Plexin-B2-depleted MDCK cysts could be rescued by transfection of a 

constitutive active form of Cdc42. However, whether Plexin-B2 controls mitotic spindle 

regulators is still unknown. 

 

1.6. CRISPR/Cas9 genome editing 

In this work the CRISPR/Cas9 genome editing method was used to achieve Plexin-B2 

deletion in kidney cell lines. CRISPR stands for Clustered Regularly Interspaced Short 

Palindromic Repeats. It constitutes an adaptive immune system in archaea and bacteria 

against foreign molecules of DNA (Mojica, Juez, and Rodriguez-Valera 1993; Horvath and 

Barrangou 2010). It is composed of CRISPR-associated genes (Cas), non-coding RNAs and 

an array of palindromic repeats interspaced by variable sequences which have a foreign 

origin (crRNA) (Makarova et al. 2011). The Cas proteins are nucleases that produce 

double strand breaks in the targeted foreign DNA molecules. The crRNA gets processed 

into several units and each short variable fragment directs the Cas nuclease to the target 

DNA (Garneau et al. 2010). 

 

Figure 15. CRISPR/Cas9 system. Schematic of the genomic targeting of the Cas9 nuclease through a 

specific RNA sequence (Ran et al. 2013) 
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This system has been exploited to introduce modifications at desired locations in 

genomic DNA in the laboratory (Figure 15) by expressing a human codon-optimized Cas9 

together with a single-guide RNA (sgRNA), consisting of a 20 nucleotide sequence 

targeted to a specific location of the genomic DNA and a scaffold sequence that interacts 

with the Cas9 (Ran et al. 2013). After the double strand break happens, two possible 

repair mechanisms could be activated. The Non-Homologous End Joining (NHEJ) repair 

mechanism deletes some bases before and after the double strand break and then 

ligates the DNA. With this method, deletions that cause a premature stop codon can be 

introduced to generate gene knockouts (Perez et al. 2008). This was the method used in 

this work. On the other hand, in proliferative cells, if a repair template is supplied, the 

cell could use the Homologous Recombination (HR) method. In this method the cell uses 

a template partially homologous to the damaged sequence to synthetize the damaged 

fragment (Saleh-Gohari and Helleday 2004). This method can be used to introduce 

specific changes in the nucleotide sequence of a gene or to introduce complete genes 

into a genome, like fluorescent proteins (Chen et al. 2011; Ran et al. 2013).



 
 

58 
 



Aim of this study 

59 
 

2. Aim of this study 

The aim of this thesis was to investigate the molecular mechanisms underlying the 

control of mitotic spindle orientation by Plexin-B2.
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3. Materials and Methods 

3.1. Materials 

Mouse lines 

The Sema4B/Sema4D/Sema4G triple-knockout mouse line has been described 

previously (Xia et al. 2015). 

Name Genotype 

Wildtype C57BL/6 wildtype mice 

Sema4BDG triple-Knockout sema4B-/-;sema4D-/-;sema4G-/- 

 

Antibodies 

Name Manufacturer Reference number Dilution 

Anti-armenian hamster-Cy3 Jackson 

ImmunoResearch 

127-165-160 1:200 

Anti-CD100 (Sema4D) eBioscience BMA12 1:200 

Anti-E-cadherin Cell Signaling 3195 1:200 

Anti-E-cadherin Invitrogen 13-1900 1:200 

Anti-Mouse-Alexa Fluor 555 Invitrogen A-21424 1:200 

Anti-Plexin-B2 eBioscience eBio3E7 1:500 

Anti-Plexin-B2 R&D Systems AF6836 1:1000 

Anti-Rabbit-Alexa Fluor 488 Invitrogen A-11008 1:200 

Anti-Rabbit-HRP Bio-Rad 1706515 1:5000 

Anti-Rat-Alexa Fluor 488 Invitrogen A-11006 1:200 

Anti-Rat-Alexa Fluor 555 Invitrogen A-21434 1:200 

Anti-Sheep-HRP Bio-Rad 172-1017 1:5000 

Anti-ZO-1 Invitrogen 61-7300 1:200 

Anti-ZO-1 Millipore MABT11 1:200 

Anti-α-Tubulin Cell Signaling 2125 1:1000 

Anti-β-catenin BD Biosciences 610153 1:200 
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Devices 

Device Manufacturer 

AE200 Mettler Toledo 

AxioObserver.Z1 Zeiss 

Axiovert 25 Zeiss 

B6 Heraeus 

Biofuge Pico Heraeus 

Biofuge Stratos Heraeus 

BioPhotometer 6131 Eppendorf 

CSU-X1 Yokogawa 

Eclipse Ti Nikon 

Evolve 512 EMCCD camera Teledyne Photometrics 

FACSCanto II 3L BD Biosciences 

FlexCycler2 Analytik Jena 

Gel Documentation System PEQLAB 

Heracell 1500 Heraeus 

Herasafe Heraeus 

L610 D Sartorius 

Labofuge 400 Heraeus 

Labogaz 206 Campingaz 

LSM 700 Zeiss 

MaxQ 4000 Thermo Scientific 

Mi5 Processor Jet X-Ray 

MicroPulser Bio-Rad 

Micro Star 17R VWR 

Mini-PROTEAN Tetra Vertical Electrophoresis Cell Bio-Rad 

Nanodrop 1000 Thermo Scientific 

PowerPac 300 Bio-Rad 

RH Digital IKA 

RM5 Cat 

S20 SevenEasy Mettler Toledo 

Sorvall RC-5B Plus DuPont 

Standard Power Pack P25 T Biometra 

Thermomixer C Eppendorf 

UV-transilluminator PEQLAB 

Varioklab 135 S HP Medizintechnik 

Vortex-Genie 2 Scientific Industries 

CM3050 S Leica 

IQ5 Bio-Rad 
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Chemicals and reagents 

Name Manufacturer 

Acetic acid Carl Roth 

Agarose Carl Roth 

Alcaline phosphatase Fermentas 

Alcaline phosphatase buffer Fermentas 

Ammonium persulfate Merck 

Bovine serum albumin (BSA) Carl Roth 

Calcium chloride Carl Roth 

Chloroform Carl Roth 

Crystal violet Carl Roth 

4’,6-diamidino-2-phenylindole (DAPI) Sigma Aldrich 

Disodium phosphate Carl Roth 

Ethylenediaminetetracetic acid (EDTA) Carl Roth 

Ethanol Carl Roth 

Ethidium bromide Sigma Aldrich 

Fetal Calf Serum (FCS) Invitrogen 

Fluorescence Mounting Medium Dako, Agilent 

GeneRuler 1 Kb DNA ladder Fermentas 

GeneRuler 100 bp plus DNA ladder Fermentas 

Glutaraldehyde Carl Roth 

Glycine Carl Roth 

Isopropanol Carl Roth 

6X Loading dye Fermentas 

Milk powder Carl Roth 

NEBuffer 2 NEB 

PageRuler Plus Prestained Fermentas 

Phosphate buffered saline (PBS) Capricorn Scientific 

Pepton/trypton Carl Roth 

Paraformaldehyde (PFA) Carl Roth 
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PeqGOLD TriFast VWR 

Phenol/chloroform/isoamyl alcohol Carl Roth 

Potassium acetate Carl Roth 

Proteinase K Thermo Scientific 

RNase A Sigma Aldrich 

Rotiphorese Gel 30 Carl Roth 

Sodium acetate Carl Roth 

Sodium dodecyl sulfate (SDS) Carl Roth 

Sodium chloride Carl Roth 

Sodium hydrogen phosphate Carl Roth 

Sodium hydroxide Carl Roth 

Sucrose Carl Roth 

T4 DNA ligase Thermo Scientific 

T7E1 endonuclease NEB 

10X T4 DNA ligase buffer Thermo Scientific 

Tetramethylethylenediamine (TEMED) Carl Roth 

Tissue-Tek  OCT compound Sakura 

Tris Carl Roth 

Triton X 100 Carl Roth 

Tween 20 AppliChem 

Yeast extract Carl Roth 

 

Cell culture 

Product Manufacturer 

N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) Sigma Aldrich 

Calcium chloride Carl Roth 

Dimethyl sulfoxide (DMSO) Carl Roth 

Dulbecco’s modified Eagle medium (DMEM) Capricorn Scientific 

Dulbecco’s modified Eagle medium/Nutrient mixture F12 

(DMEM/F12) 

Gibco 
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Fetal calf serum (FCS) Invitrogen 

Lipofectamine LTX Thermo Scientific 

Matrigel Corning 

Millex-HV 33 mm PVDF filters of 0,45 µm pore size Merck 

Minimum essential medium (MEM) Gibco 

µ-slide 8 well Ibidi 

OptiMEM Thermo Scientific 

Penicillin/Streptomycin Capricorn Scientific 

Phosphate buffered saline (PBS) Capricorn Scientific 

Plus Reagent Thermo Scientific 

Polybrene Sigma Aldrich 

Puromycin Invitrogen 

SiR-Tubulin Spirochrome 

Trypsin-EDTA Capricorn Scientific 

 

Restriction enzymes and buffers 

Name Manufacturer 

BamHI buffer Fermentas 

Buffer O Fermentas 

Buffer R Fermentas 

DraI Fermentas 

Eco47III Fermentas 

NotI Fermentas 

SalI Fermentas 
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PCR reagents 

Name Manufacturer 

dNTP Mix (10 mM each) Thermo Scientific 

5X GC buffer (Contains MgCl2) Thermo Sientific 

iQ SYBR Green Supermix Bio-Rad 

10X Long PCR buffer with 15 mM MgCl2 Thermo Scientific 

Long PCR enzyme mix, 5 U/µl Thermo Scientific 

Magnesium chloride Fermentas 

Nuclease-free water Fermentas 

Phusion Hot Start II polymerase Thermo Scientific 

Random hexamer primer Thermo Scientific 

RevertAid Reverse Transcriptase Thermo Scientific 

RiboLock RNase inhibitor Thermo Scientific 

5X RT buffer Thermo Scientific 

SYBR Green Supermix Bio-Rad 

10X Taq Buffer + KCl - MgCl2 Fermentas 

Taq DNA polymerase Fermentas 
 

Kits 

Name Manufacturer 

NucleoSpin Gel and PCR clean-up Macherey-Nagel 

Propidium Iodide Flow Cytometry kit Abcam 

QIAamp MinElute Virus Spin kit Qiagen 

RNeasy Mini Kit Qiagen 

TURBO DNA-free Kit Thermo Scientific 
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Vectors and plasmids 

Name Description 

pcDNA3-3Xmyc-Plexin-B2 Non-viral, triple myc-tagged mouse 

Plexin-B2 mammalian expression plasmid 

pEGFP-C1-LGN Non-viral, EGFP-tagged chicken LGN 

mammalian expression plasmid 

pEGFP-N1 Non-viral mammalian expression vector 

for C-terminal tagging of proteins with 

EGFP 

pLNCX2 Retroviral expression vector by Clontech 

(Takara) 

pLV-EGFP-hNuMA VectorBuilder ID: VB171110-1111fye. 

Lentiviral, EGFP-tagged human NuMA 

mammalian expression plasmid 

pSpCas9(BB)-2A-GFP (PX458) Non-viral, CRISPR S. pyogenes Cas9 and 

2A-GFP mammalian expression plasmid 

with cloning backbone for sgRNA 

pSpCas9(BB)-2A-Puro (PX459 v2.0) Non-viral, CRISPR S. pyogenes Cas9 and 

2A-Puro mammalian expression plasmid 

with cloning backbone for sgRNA 

pWPXL-H2B-mCherry Lentiviral mCherry-tagged histone H2B 

mammalian expression plasmid 

pWPXL-Tubulin-mCherry Lentiviral mCherry-tagged Tubulin 

mammalian expression plasmid 

PX459_mPB2_65 Non-viral, CRISPR S. pyogenes Cas9, 

2A-Puro and mouse Plexin-B2 sgRNA 65 

mammalian expression plasmid 

PX459_mPB2_125 Non-viral, CRISPR S. pyogenes Cas9, 

2A-Puro and mouse Plexin-B2 sgRNA 125 

mammalian expression plasmid 
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PX459_mPB2_227 Non-viral, CRISPR S. pyogenes Cas9, 

2A-Puro and mouse Plexin-B2 sgRNA 227 

mammalian expression plasmid 

PX459_mPB2_260 Non-viral, CRISPR S. pyogenes Cas9, 

2A-Puro and mouse Plexin-B2 sgRNA 260 

mammalian expression plasmid 

 

Primers and oligos 

Name Sequence 

sgRNA_mPB2_65_fwd CACCGTGCGGAAACTCTCCGGCTTT 

sgRNA_mPB2_65_rev AAACAAAGCCGGAGAGTTTCCGCAC 

sgRNA_mPB2_125_fwd AAACCGACATACACCACACCTGTGC 

sgRNA_mPB2_125_rev CACCGCACAGGTGTGGTGTATGTCG 

sgRNA_mPB2_227_fwd AAACCAATGGGTGGTGTGCACTTC 

sgRNA_mPB2_227_rev CACCGAAGTGCACACCACCCATTG 

sgRNA_mPB2_260_fwd CACCGTGTCAGTGAGCACCGCTTCG 

sgRNA_mPB2_260_rev AAACCGAAGCGGTGCTCACTGACAC 

T7_mPB2_uni_rev_1 CCAGCAGGCAGCAAATGGAG 

T7_mPB2_uni_fwd_1 TCCGGCCATCTCTGCTGAAG 

AfeI_NotI_mPB2_fwd AAAAGCGCTGCGGCCGCATGGCTCTGCCACTCTGGGCC 

SalI_mPB2ΔC2_rev AAAGTCGACGCCACCAAGTGCCACACGCG 

SalI_mPB2ΔRBDC2_rev AAAGTCGACGCGGCATCGATCCCTTCATCCTG 

SalI_mPB2ΔC1RBDC2_rev AAAGTCGACGCCCGCCGTGACTCAGGGATGT 

NotI_EGFP_for ATATATGCGGCCGCATGGTGAGCAAGGGCGAGGA 

SalI_cLGN1_rev ATATATGTCGACTCAGCTAGAACTTGGTCCTTTAATAG 

Probe64_for CTGCCAGGGTGGTCGTTA 

Probe64_rev ACCTCCTTGGACGTGGCTA 

Probe89_for CAAACACCAGGTGGAAAAGG 

Probe89_rev GCCTGTGTCATTGAGGGTGT 
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Bacterial culture 

Name Manufacturer 

Ampicillin Carl Roth 

Agar Carl Roth 

ElectroMAX DH10B Cells Invitrogen 

Kanamycin Carl Roth 

 

Buffers, solutions and media 

All buffers, solutions and media were prepared with double distilled water. Lysogeny 

Broth medium was autoclaved before use. 

Name Components 

Lysogeny Broth (LB) bacterial growth 

medium 

5 g/l yeast extract 

10 g/l trypton 

10 g/l NaCl 

LB agar 15 g/l agar in LB medium 

Buffer S1 50 mM tris pH 8,0 

10 mM EDTA 

0,1 mg/ml RNase A 

Buffer S2 0,2 M NaOH 

1 % SDS 

Buffer S3 3 M sodium acetate pH 5,5 

TE buffer 10 mM tris pH 8,0 

1 mM EDTA pH 8,0 

Lysis buffer 10 mM tris pH 7,7 

10 mM EDTA pH 8,0 

10 mM NaCl 

0,5 % sarkosyl 

Ethanol-NaCl mix 10 ml of 99,8 % ethanol 

150 µl of 5 M NaCl 

Quenching medium 50 % FCS in cell culture medium 
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2X freezing medium 20 % DMSO in cell culture medium 

4X Laemmli buffer 286 mM tris 

10 mM EDTA 

28 % glycerol 

5,7 % SDS 

0,35 % bromophenol blue 

0,47 % β-mercaptoethanol 

 

4X separation gel buffer 1,5 M tris pH 8,8 

0,4 % SDS 

4X stacking gel buffer 0,5 M tris pH 6,8 

0,4 % SDS 

Electrophoresis buffer 25 mM tris pH 8,3 

192 mM glycine 

0,1 % SDS 

Transfer buffer 25 mM tris 

192 mM glycine 

10 % methanol 

0,2 % SDS 

Tris-buffered saline with Tween (TBS-T) 20 mM tris pH 7,5 

500 mM NaCl 

1 % Tween 20 

2X BBS buffer 0,05 M BES 

0,28 M NaCl 

1,5 mM Na2HPO4 

 

Sequencing 

For sequencing of plasmids, Macrogen and SeqLab services were used. 
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Software and algorithms 

Data obtained from flow cytometry was analysed and presented with FACSDiva from BD 

Biosciences. Microscopy images were processed using Fiji (ImageJ). DNA sequence 

alignments against databases were done using Blastn, DNA and protein pairwise 

sequence alignments were done using Serial Cloner and multiple protein sequence 

alignments were done using Clustal Omega. Design of PCRs, restriction digests and 

cloning of plasmids was done using Serial Cloner. 

 

3.2. Methods 

3.2.1. Immunofluorescence staining of murine tissue 

Kidneys taken from euthanized adult mice or whole embryos were immediately washed 

after extraction with phosphate buffered saline (PBS) and fixed by fully submerging 

them in 0,2 % Paraformaldehyde (PFA) overnight without movement. In order to 

cryoprotect the specimens, they were subsequently transferred to a 30 % sucrose 

solution where they stayed overnight without agitation. The tissue was frozen down by 

carefully placing it on dry ice covered with aluminium foil. Afterwards, it was wrapped 

in plastic paraffin film and aluminium foil and stored at -80 °C until the time it was cut. 

To make sections from the tissue, a cryostat was used. A cutting blade and a clean 

anti-roll plate were put in place and the chamber was allowed to cool down to the 

desired temperature. After reaching it, the frozen tissue was introduced in the chamber 

and allowed to warm up for 20 minutes. A few drops of OCT compound were added to 

the specimen stage and the tissue was placed on top, partially embedded in the OCT 

compound. The OCT compound was allowed to solidify. Individual kidneys and whole 

embryos were cut taking longitudinal sections of 35 µm of thickness, which were 

collected on slides. The sections were left to dry for 30 minutes at room temperature 

and then stored at -80 °C until the moment they were stained. 

To stain the specimens, the sections were first allowed to dry for 30 minutes at 

room temperature. The tissue was further fixed by submerging the slides with the 

sections in 4 % ice-cold PFA for 10 minutes. PFA was inactivated by washing twice with 
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50 mM ice-cold glycine in PBS for 5 minutes each time. The slides were then washed 

with ice-cold PBS for 5 minutes. The tissue was permeabilized for 10 minutes with 0,2 % 

Triton X-100 in ice-cold PBS (PBS-T). Blocking was performed for 1 hour at room 

temperature with ice-cold PBS-T containing 4 % fetal calf serum (FCS). The slides were 

incubated with primary antibody overnight at 4 °C in PBS-T containing 2 % FCS. Next, 

they were washed 3 times, for 10 minutes each time, with ice-cold PBS containing 1 % 

FCS. Binding of secondary antibody was achieved by incubation for 1 hour at room 

temperature in ice-cold PBS containing 1,5 % FCS and 4’,6-diamidino-2-phenylindole 

(DAPI). After that, the slides were washed for 10 minutes with ice-cold PBS containing 

1 % FCS. Then, they were washed twice, for 10 minutes each time, with ice-cold PBS. 

Mounting was done placing glass coverslips over the tissue using a few drops of Dako 

mounting medium and the preparations were stored at 4 °C. 

Genotype Primary antibodies Secondary antibodies 

Wild type (adults and embryos) Plexin-B2 (Hamster) Anti-hamster-Cy3 

 E-cadherin (Rabbit) Anti-rabbit-Alexa Fluor 488 

Wild type (adults and embryos) Plexin-B2 (Hamster) Anti-hamster-Cy3 

 ZO-1 (Rabbit) Anti-rabbit-Alexa Fluor 488 

Wild type Sema4D (Rat) Anti-rat-Alexa Fluor 555 

Sema4B-/-;sema4D-/-;sema4G-/- Plexin-B2 (Hamster) Anti-hamster-Cy3 

 E-cadherin (Rabbit) Anti-rabbit-Alexa Fluor 488 

Sema4B-/-;sema4D-/-;sema4G-/- Plexin-B2 (Hamster) Anti-hamster-Cy3 

 Anti-ZO-1 (Rabbit) Anti-rabbit-Alexa Fluor 488 

Table 1. Immunofluorescence stainings of murine tissue 

 

The images were taken using the LSM 700 confocal microscope and then 

processed using Fiji. 
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3.2.2. Cell culture 

2D cell culture 

All culture media are supplemented with 10 % FCS and 1 % penicillin-streptomycin. 

Name Source, culture medium References 

MDCK II Dog kidney, MEM (Hansson, Simons, and van Meer 

1986) 

mIMCD-3 Mouse kidney, DMEM/F12 (Rauchman et al. 1993) 

PT67 Mouse embryonic fibroblasts, DMEM  (Miller and Chen 1996) 

HEK293T Human embryonic kidney, DMEM  (DuBridge et al. 1987) 

Table 2. Cell lines used in the study with their origin, culture medium and bibliographic reference  

 

In order to keep the different cell lines in culture, they were incubated with their 

corresponding cell culture medium in T25 flasks at 37 °C and 5 % CO2. Each cell line was 

inspected every day using a bright-field microscope and split whenever the cells reached 

80 % – 90 % confluence. The number of cells seeded after splitting was adjusted so that 

the cells would be split every other day. For that, the cell culture medium was first 

aspirated and the cells were washed with 5 ml of 37 °C PBS. Following the removal of 

the PBS, 1 ml of trypsin-EDTA was added and the cells were incubated until full 

detachment at 37 °C and 5 % CO2. When the cells were completely detached and singled 

out, verified by observation under the bright-field microscope, they were resuspended 

in cell culture medium and counted using a Neubauer chamber. Finally, the desired 

amount of cells was added to a new T25 flask, diluted in cell culture medium to a final 

volume of 5 ml and incubated at 37 °C and 5 % CO2. 

 

3D cell culture 

In order to model a monolayered kidney epithelium, MDCK and mIMCD-3 cells were 

cultured in 3D to generate cysts. These consisted of one layer of cells surrounding an 

empty lumen. These two cell types were able to generate such structures when they 

were cultured embedded in Matrigel. The process of cyst generation was similar for both 
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cell lines, but there were some differences regarding the culture medium, splitting 

technique and the time required until the cysts were formed completely. The day before 

seeding the cells on Matrigel they were split from the T25 flask where they were kept in 

culture to a 6-well plate, seeding 2,5 x105 cells in the case of mIMCD-3 and 0,5 x106 cells 

in the case of MDCK. They were incubated overnight at 37 °C and 5 % CO2 in their 

respective cell culture medium (Table 2). On the next day, a frozen aliquot of Matrigel 

was taken and put on ice for one hour until it thawed. Once the Matrigel had thawed, 

the cells were taken out of the incubator, their medium was aspirated and they were 

washed with 2 ml of PBS. Next, the PBS was removed and 400 µl of trypsin-EDTA were 

added to each well. The cells were then incubated at 37 °C and 5 % CO2 until they 

detached completely from the bottom of the wells. During this time, the next three steps 

were carried out. The bottom of each well of an ibidi µ-slide was covered spreading 6 – 

8 µl of 100 % Matrigel by pipetting and spreading it with the pipette tip. The 8-well 

chambered slide was left on ice to prevent the Matrigel from solidifying. A solution 

containing 3 % Matrigel in cell culture medium was prepared. The cells were taken out 

of the incubator, 1.6 ml of cell culture medium were added to each well and they were 

resuspended and singled out by pipetting up and down several times. The 8-well 

chambered slide was taken away from the ice and left at room temperature for 5 

minutes before seeding. The concentration of cells in each well was calculated by 

counting the cells using a Neubauer chamber under a bright field microscope. The cells 

were diluted in 3 % Matrigel-containing cell culture medium to a concentration of 104 

cells per 250 µl. Next, 250 µl of the cell suspension were added on each of the Matrigel-

coated wells of the 8-well chambered slide, distributing them evenly throughout its 

surface. The 8-well chambered slide was put in the incubator at 37 °C and 5 % CO2. The 

cells were incubated until the day of imaging, exchanging the medium for fresh 3 % 

Matrigel-containing cell culture medium every other day. The cysts were inspected daily 

and they were fully formed after 3-4 days of incubation.  

 

3.2.3. Immunofluorescence staining of 2D and 3D cell cultures 

In order to perform immunofluorescent staining of proteins in mIMCD-3 cells, first they 

were seeded in ibidi µ-slides and cultured until they reached the desired degree of 
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confluence (2D) or until the cysts were formed (3D). Then, cell culture medium was 

removed and the cells were washed with PBS. Fixation was achieved using 4 % PFA for 

20 minutes at room temperature. PFA was removed by washing the cells thrice with PBS. 

Cells were permeabilized with PBS containing 0,2 % triton X-100 and 0,1 % SDS for 10 

minutes at room temperature. Then, they were washed twice with PBS. Blocking was 

performed with PBS containing 3 % BSA during 30 minutes at room temperature. 

Primary antibody was diluted to the desired concentration in the blocking solution 

described for the previous step and was added to the cells, which were incubated 1 hour 

at room temperature. Then, they were washed with PBS and incubated with secondary 

antibody and DAPI in blocking solution for 1 hour at room temperature. Finally, the cells 

were washed once with PBS and kept in PBS until imaging. 

Experiment Primary antibodies Secondary antibodies 

Plexin-B2 and E-cadherin in 

mIMCD-3 cells in 2D and 3D 

Plexin-B2 (Hamster) 

E-cadherin (Rat) 

Anti-hamster-Cy3 

Anti-Rat-Alexa Fluor 488 

Plexin-B2 and ZO-1 in 

mIMCD-3 cells in 2D and 3D 

Plexin-B2 (Hamster) 

ZO-1 (Rat) 

Anti-hamster-Cy3 

Anti-Rat-Alexa Fluor 488 

Lumen formation assay β-catenin (Mouse) Anti-Mouse-Alexa Fluor 555 

 ZO-1 (Rat) Anti-Rat-Alexa Fluor 488 

Table 3. Immunostainings in mIMCD-3 cells growing in 2D and 3D  

 

The LSM 700 confocal microscope was used to take the images that were then 

processed with Fiji. 

 

3.2.4. Generation of fluorophore-labelled protein constructs in viral plasmids 

In order to achieve stable transduction of cell lines, the coding sequences of the proteins 

of interest fused to fluorescent proteins were cloned into viral vectors as described in 

the following sections.  
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PCR and generation of serial deletion mutants of Plexin-B2 

For the generation of the different constructs of Plexin-B2 fused to EGFP, the sequence 

that encodes Plexin-B2 or the different truncated versions were cloned without their 

stop codon into the multiple cloning site (MCS) of the pEGFP-N1 vector. The coding 

sequence of Plexin-B2 was obtained by PCR amplification from a plasmid containing a 

triple-myc-tagged version of Plexin-B2 in the pcDNA3 vector (pcDNA3-3Xmyc-Plexin-B2), 

previously generated in the lab. The 3 units of the myc tag were located after the signal 

peptide of Plexin-B2. The truncated versions of Plexin-B2 were generated by choosing a 

reverse primer that would anneal right before the sequences encoding the functional 

domains to be deleted. The forward primer contained an overhang with the restriction 

site for Eco47III (AfeI), while the reverse primer contained the restriction site for SalI, 

for the later integration of the amplified sequence into pEGFP-N1. Both primers 

contained some additional bases at the 5’ end which help accommodate the polymerase 

during the reaction. 

The reverse primers used were SalI_mPB2ΔC2_rev, SalI_mPB2ΔRBDC2_rev and 

SalI_mPB2ΔC1RBDC2_rev. The forward primer was AfeI_NotI_mPB2_fwd. The PCR 

reaction was run using the FlexCycler2. After pipetting the reaction mixes into the PCR 

tubes, these were immediately placed in the already hot thermocycler, to carry out a 

hot start. The PCR products were purified from the reaction tubes using NucleoSpin gel 

and PCR clean-up kit following the instructions of the manufacturer. Before that, in a 

0,8 % agarose gel containing 0,01 % ethidium bromide, 1 µl of every PCR reaction was 

loaded to verify the correct amplification. The electrophoresis was carried out during 1 

hour at 100 V.  

 

Digest of Plexin-B2 constructs and vector pEGFP-N1 

The PCR products and the vector pEGFP-N1 were digested using Eco47III (AfeI) and SalI, 

in order to make cohesive ends for the insertion of the PCR products (Plexin-B2 wild type 

and serial deletion mutants) into pEGFP-N1. The digest was carried out in a final volume 

of 40 µl containing buffer O, all purified DNA for each PCR product or 1 µg of the 

pEGFP-N1 vector and enough units of each enzyme to achieve full digest at 37 °C in 1 
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hour. After the incubation, the digested DNA was loaded in a 0,8 % agarose gel 

containing 0,01 % ethidium bromide and an electrophoresis was carried out during 1 

hour at 100 V. With the help of a transilluminator, the DNA bands of digested PCR 

products (inserts) and pEGFP-N1 vector were cut out from the gel and the DNA was 

purified using NucleoSpin gel and PCR clean-up kit, following the instructions of the 

manufacturer. The concentration of the purified inserts and vector was measured using 

the Nanodrop 1000 and verified by comparison to the bands of the DNA ladder after an 

agarose gel electrophoresis. 

 

Ligation 

For the ligation of the inserts to the vector, a series of mixes with different vector:insert 

ratios were prepared using the following equation: 

𝑣𝑒𝑐𝑡𝑜𝑟

𝑖𝑛𝑠𝑒𝑟𝑡
=
𝑚(𝑣𝑒𝑐𝑡𝑜𝑟)/𝑙𝑒𝑛𝑔𝑡ℎ(𝑣𝑒𝑐𝑡𝑜𝑟)

𝑚(𝑖𝑛𝑠𝑒𝑟𝑡)/𝑙𝑒𝑛𝑔𝑡ℎ(𝑖𝑛𝑠𝑒𝑟𝑡)
 

The vector:insert ratios used were 1:1, 3:1, 1:3 and 1:6, always using a minimum 

amount of 50-100 ng of vector. Then, the ligase buffer and the T4 DNA ligase were 

added. The final volume for the ligations was 20 µl. Ligations were carried out during 30 

minutes at room temperature and protected from light. 

 

Transformation of electrocompetent bacteria 

Right after the ligation, 5 µl of each reaction were mixed with 50 µl of electrocompetent 

bacteria, pipetted in 1 mm electroporation cuvettes and kept on ice. Then, Lysogeny 

Broth (LB) bacterial growth medium without antibiotics was warmed up to 37 °C. The 

electrocompetent bacteria were transformed with the ligated plasmids containing the 

different Plexin-B2 variants in pEGFP-N1 by electroporation, placing the cuvettes 

between the electrodes of the MicroPulser and passing a pulse of 1,8 kV. Immediately 

after electroporation 1 ml of LB medium was carefully and slowly pipetted into the 

electroporation cuvette and the transformed bacteria were resuspended in it by gently 

pipetting up and down a couple of times. Then, they were transferred to 1,5 ml tubes 
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and incubated at 37 °C for a maximum of 1 hour with shaking. Finally, 100 µl from the 

bacterial precultures were spread on LB agar plates containing kanamycin, for the 

selection of successfully transformed bacteria. These plates were incubated at 37 °C 

overnight and the next day, the formation of single colonies on the plates was verified. 

Some of the colonies were picked and inoculated in 4 ml LB liquid cultures in 15 ml tubes 

containing kanamycin, which were incubated at 37 °C with shaking overnight.  

 

Miniprep 

On the next day, a miniprep protocol to isolate plasmid DNA was carried out: 2 ml of 

each of these overnight liquid cultures were transferred to 2 ml tubes and were spun 

down for 1 minute at 16.000 x g at room temperature. The supernatant was removed 

and the bacterial pellet was resuspended in 200 µl of buffer S1 containing RNase A by 

pipetting up and down several times. Then, 200 µl of buffer S2 were added and the tubes 

were inverted several times for mixing. After that, 200 µl of buffer S3 were added and 

the tubes were again inverted. Then, the tubes were placed on ice, where they were 

chilled for 5 minutes. The samples were centrifuged for 10 minutes at 16.000 x g and 

room temperature. The supernatant was pipetted in fresh 1,5 ml tubes and 0,5 ml of 

phenol/chloroform/isoamyl alcohol were added. The tubes were shaken harsh during 

30 seconds and spun down for 5 minutes at 16.000 x g and room temperature. The upper 

phase containing the DNA was transferred to new 1,5 ml tubes and 0,5 ml of isopropanol 

were added. The tubes were shaken harsh for 30 seconds and stored at -20 °C for 10 

minutes. Then, the samples were centrifuged for 10 minutes at 16.000 x g and room 

temperature. The supernatant was poured off, 0,5 ml of 80 % ethanol were added and 

the tubes were vortexed. The tubes were centrifuged for 5 minutes at 16.000 x g and 

room temperature. The supernatant was poured off and the remaining liquid was 

sucked with a pipette. The pellet was dried by placing the tubes with the lids open in a 

heat block at 56 °C for a couple of minutes. Then, the pellet was resuspended in 50 µl of 

TE buffer. The successful cloning was verified by a test digest with restriction enzymes 

followed by sequencing. 
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Digest of Plexin-B2-EGFP fusion constructs and pLNCX2 

In order to transduce eukaryotic cells with the fluorescently labelled Plexin-B2 

constructs, the sequences encoding the Plexin-B2 variants followed by EGFP were cut 

out from the pEGFP-N1 plasmids and inserted into the viral vector pLNCX2. In order to 

do that, 6 µg of the pEGFP-N1-Plexin-B2 plasmids were cut using NotI and DraI with 

twice the normal amount of enzyme in BamHI buffer (DraI was used to cut the backbone 

in smaller fragments that would allow to clearly identify the fragment corresponding to 

each Plexin-B2 variant fused to EGFP) and 1 µg of pLNCX2 was digested using NotI in a 

final volume of 40 µl with buffer O. Then, the digested DNA was separated using agarose 

gel electrophoresis. The bands corresponding to the Plexin-B2-EGFP fusions and pLNCX2 

were cut from the gel and the DNA was isolated using NucleoSpin gel and PCR clean-up 

kit. 

 

Alkaline phosphatase treatment 

Since the vector was cut using only 1 restriction enzyme, alkaline phosphatase was used 

in order to prevent recircularization during ligation. The following mix was prepared: 

Component Amount per reaction 

Linearized pLNCX2 (6,1 kb) 2 µg (~1 pmol termini) 

10X alkaline phosphatase buffer 2 µl 

FastAP alkaline phosphatase 1 µl 

Nuclease-free water Up to 20 µl 

Table 4. Alkaline phosphatase reaction mix  

 

The reaction was pipetted up and down a few times to mix the components and 

then incubated at 37 °C for 10 minutes. To inactivate the alkaline phosphatase and stop 

the reaction it was incubated at 75 °C for 5 minutes. 
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Ligation and plasmid isolation 

After that, different mixes of insert and vector were prepared for ligation as described 

previously for the cloning of Plexin-B2 constructs into pEGFP-N1. Ligase buffer and the 

enzyme were added and ligation was carried out as described above. The new viral 

plasmids containing the different Plexin-B2 constructs fused to EGFP were transformed 

into bacteria by electroporation. Transformed bacteria were spread on LB agar plates 

containing ampicillin and incubated overnight at 37 °C. Growing single colonies were 

picked to inoculate small liquid LB cultures containing ampicillin that were incubated at 

37 °C with shaking overnight. After that, plasmid DNA was isolated from 2 ml of the 

bacterial cultures following the miniprep protocol described for the cloning of the 

Plexin-B2 variants into pEGFP-N1. Since the sequence of each construct cloned into 

pLNCX2 is flanked by a NotI site, the correct orientation of the insertion was verified by 

a test restriction digest and sequencing. 

 

Cloning of GFP-LGN into pLNCX2 

In order to clone LGN fused to EGFP into a viral vector, it was PCR-amplified from a 

pEGFP-C1-LGN, which contains the sequence for chicken LGN N-terminally fused to 

EGFP, and then inserted in pLNCX2 using the restriction sites of NotI and SalI. The 

template used was pEGFP-C1-LGN. The primers used were NotI_EGFP_for and 

SalI_cLGN1_rev. After the PCR, 1 µl of each reaction was loaded in an agarose gel 

electrophoresis to verify the correct amplification. DNA was purified from the rest of the 

reactions using the NucleoSpin gel and PCR clean-up kit. The isolated PCR product and 

1 µg of pLNCX2 were digested using the restriction enzymes NotI and SalI in buffer O 

during 1 hour at 37 °C. Then, the digested DNA was separated by agarose gel 

electrophoresis as described previously. The bands corresponding to the digested PCR 

product and the digested pLNCX2 vector were cut from the gel and the DNA was isolated 

using the NucleoSpin gel and PCR clean-up kit. After isolation, the concentration of the 

insert and the vector was determined using the Nanodrop 1000 and by loading a small 

amount of them in an agarose gel electrophoresis, where the intensity of the bands was 

compared to the DNA ladder of known concentration. Once the concentration of the 
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insert and the vector were estimated, mixes of different insert:vector ratios were 

prepared for ligation as described for the other cloning procedures above. Ligation was 

carried out in the same way as before and the new plasmids were transformed into 

electrocompetent bacteria by electroporation. After 1 hour of incubation in 1 ml liquid 

cultures at 37 °C, 100 µl of the transformed bacteria were spread on LB agar plates 

containing ampicillin and incubated overnight at 37 °C. The next day, some growing 

colonies were picked and inoculated into 4 ml liquid cultures containing ampicillin, 

which were incubated at 37 °C overnight. Then, plasmid DNA was isolated from the 

liquid cultures following the miniprep protocol described above. The correct generation 

of this new plasmid was verified by a test digest with restriction enzymes and 

sequencing. 

 

3.2.5. Plexin-B1 and Plexin-B2 expression analysis 

In order to investigate the role of Plexin-B2 in epithelial cell division by analysing the 

effect of its knockout, the expression levels of Plexin-B2 were assessed by qPCR. Due to 

the similarity of Plexin-B2 with Plexin-B1, the expression levels of the latter were also 

analysed to find out if it was necessary to knock it out as well in order to rule out a 

possible compensation mechanism in the absence of Plexin-B2. The expression levels 

were analysed for mIMCD-3 cells growing in 2D and in 3D as described in the following 

sections. 

 

RNA isolation 

First, mIMCD-3 cells were grown in a T25 flask until they reached 90 % confluence. The 

day before seeding them for 2D or 3D cultures, they were split from the flask to a 6-well 

plate, seeding 2,5 x105 cells per well. They were incubated overnight at 37 °C and 5 % 

CO2. The next day, Matrigel was thawed on ice for one hour. Then, the cells were 

detached and singled out as described previously. In the meantime, two 6-well plates 

were prepared for 2D or 3D cultures. The wells of the plate for 3D culture were coated 

with 50 µl of Matrigel and it was placed on ice to prevent its solidification. The mIMCD-3 

cells were taken out of the incubator, resuspended in medium and counted using a 
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Neubauer chamber. For the 2D cell culture, 2,5 x105 cells were seeded in each well of 

the 6-well plate and incubated at 37 °C and 5 % CO2. The 6-well plate with its wells 

coated with Matrigel was taken from the ice and left at room temperature for 5 minutes 

before seeding. During that time, the cells were diluted in 3 % Matrigel-containing cell 

culture medium to a concentration of 4.000 cells per 250 µl. Then, 1 ml of the cell 

suspension was added to each well on top of the 100 % Matrigel coating. The 6-well 

plate was incubated at 37 °C and 5 % CO2. The medium was exchanged for fresh 3 % 

Matrigel-containing medium every other day. The cysts were inspected daily and they 

were formed after 3-4 days of incubation. 

The medium was removed from the wells of the 3D culture 6-well plate and 

200 µl of trizol were added to each well. The cells were scraped with the pipette tip and 

collected in 2 ml tubes. They were briefly vortexed and centrifuged for 5 minutes at 

17.000 x g and 4 °C, then the supernatant was transferred to a new tube and 200 µl of 

chloroform were added. The cells were vortexed and centrifuged for 10 minutes at 

17.000 x g and 4 °C. After that, 400 µl of the upper phase were transferred to a new tube 

and 400 µl of isopropanol were added. The mix was incubated for 10 minutes at room 

temperature. The mix was loaded in a RNeasy Mini Kit column and centrifuged for 1 

minute at 6.000 x g at room temperature. Then, 700 µl of buffer RW1 were added and 

the mix was centrifuged at 6.000 x g for 1 minute at room temperature. The flowthrough 

was discarded and 500 µl of buffer RPE were added to the column. It was then 

centrifuged for 1 minute at 6.000 x g and room temperature. The flowthrough was 

discarded and the same step was repeated once more. The column was dried by 

centrifuging for 2 minutes at 17.000 x g at room temperature.  RNA was eluted by 

addition of 50 µl of nuclease-free water to the column and centrifugation for 1 minute 

at 9.500 x g at room temperature. 

The medium was also removed from the mIMCD-3 cells growing in 2D when they 

had reached 90 % confluence and 1 ml of trizol was added to each well. The cells were 

detached and lysed by pipetting up and down several times. The samples were 

transferred to a 1,5 ml tube and kept 5 minutes at room temperature. Then, 200 µl of 

chloroform were added and the mix was shaken harsh for 15 seconds. The samples were 

kept for 10 minutes at room temperature and then centrifuged for 15 minutes at 
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12.000 x g. The upper phase was transferred to a new tube, 500 µl of isopropanol were 

added and the mix was shaken for 15 seconds. The samples were incubated for 10 

minutes on ice and then centrifuged for 10 minutes at 4 °C and 12.000 x g. The 

supernatant was discarded and the pellet was washed with 75 % ethanol by vortexing 

and centrifugation for 5 minutes at 7.500 x g and 4 °C. The pellet was air-dried and 

resuspended in nuclease-free water. The RNA isolated from 2D and 3D cell cultures was 

treated using TURBO DNA-free kit, following the instructions of the manufacturer. 

 

cDNA synthesis 

Reverse transcription was used to generate cDNA from 1 µg of DNA-free RNA isolated 

from mIMCD-3 cells cultured in 2D and 3D. First, the following mix was prepared: 

Component Amount per reaction 

Total RNA 1 µg 

Random hexamer 1 µl (100 pmol) 

Nuclease-free water Up to 12,5 µl 

Table 5. Initial components of the reverse transcription mix  

 

This mix was incubated at 65 °C for 5 minutes and then chilled on ice. Then, the 

following components were added: 

Component Amount per reaction 

5X RT buffer 4 µl 

RiboLock RNase inhibitor 0,5 µl 

dNTPs 2 µl 

Reverse transcriptase 1 µl 

Table 6. Final components of the reverse transcription mix  
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The final volume was 20 µl. The following program was run using FlexCycler2 to 

synthetize the cDNA by reverse transcription: 

Temperature Duration 

25 °C 10 minutes 

42 °C 60 minutes 

70 °C 10 minutes 

4 °C ∞ 

Table 7. Program for the reverse transcription  

 

Quantitative PCR 

In order to do an absolute quantification of the Plexin-B1 and Plexin-B2 expression, 

standard curves from known amounts of previously isolated mouse genomic DNA were 

generated. In a qPCR plate, 20 ng of the cDNA obtained from mIMCD-3 cells growing in 

2D and 3D were pipetted, having two biological replicates for each of them and three 

technical replicates for each biological replicate. This was pipetted twice: once for 

Plexin-B1 and once for Plexin-B2. In the same plate, known amounts of genomic DNA 

for the generation of standard curves were also pipetted. For that, the amounts of 

0,33 ng, 1 ng, 3 ng and 9 ng were used, pipetting 3 technical replicates for each. A master 

mix containing the primers, the SYBR Green supermix and water was prepared and 

pipetted in the wells. The primer pairs used were the Probe 64 for Plexin-B1 and the 

Probe 89 for Plexin-B2. The SYBR Green supermix already contains the polymerase, 

dNTPs, MgCl2 and the SYBR Green dye. The final mix of components in each well of the 

qPCR plate was as follows: 

Component Amount 

H2O 7 µl 

Primer mix 0,5 µl 

SYBR Green supermix 12,5 µl 

DNA 5 µl 

Table 8. qPCR mix  
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The plate was then sealed with a protective adhesive plastic, introduced in the 

qPCR thermocycler and the reaction was carried out. After the reaction, some 

microliters were loaded on an agarose gel electrophoresis to verify the amplification. 

The data from the qPCR was exported to Excel where it was analysed, creating bar 

graphs and calculating statistical parameters. 

 

3.2.6. CRISPR/Cas9 genome editing 

In order to generate Plexin-B2 knockouts in mIMCD-3 cells the CRISPR/cas9 system was 

used. The knockout of Plexin-B2 was achieved by using the NHEJ repair method. A 

double strand break was introduced close to the beginning of the coding sequence, in 

the first exon. The NHEJ repair method caused small insertions or deletions, which led 

to a premature stop codon. This completely prevented the expression of functional 

Plexin-B2 proteins. 

For the generation of Plexin-B2 knockouts in mIMCD-3 cells, sgDNA-Cas9 

plasmids designed to target mouse Plexin-B2 were used, which were previously 

generated and already available in the lab. Those were produced by cloning four 

different sgDNA sequences (named 65, 125, 227 and 260) into the plasmid PX459 V2.0. 

For the analysis of the first exon to find adequate target sequences and the design of 

sgDNAs, the now unavailable Optimized CRISPR Design Tool was used 

(http://tools.genome-engineering.org)(Ran et al. 2013). 

 

 Transfection 

For the transfection of the CRISPR plasmids 2,5 x105 mIMCD-3 cells were seeded in each 

well of a 6-well plate the day before the transfection. One well was transfected with 

PX458 to control transfection by verifying GFP expression, another with PX459 V2.0 as 

a positive control for puromycin selection and each one of the other 4 wells was 

transfected with one of the CRISPR plasmids. For the transfection of 2,5 µg of plasmid 

per well, Lipofectamine LTX was used. First, 42 µl of Lipofectamine LTX were diluted in 

1 ml of Opti-MEM. Then, for every transfection, 4 µg of the corresponding plasmid were 
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mixed with 4 µl of PLUS reagent and diluted in Opti-MEM up to a final volume of 200 µl. 

Next, 150 µl of the Lipofectamine LTX dilution and 150 µl of the plasmid dilution were 

mixed to prepare the transfection mixes. They were incubated at room temperature for 

5 minutes and then 250 µl of the transfection mix were added to the cells. The next day 

the transfection efficiency was verified using the Nikon Eclipse Ti and the selection with 

puromycin was started. 

 

Antibiotic selection 

The cells which were successfully transfected with PX459 V2.0 or the CRISPR plasmids 

derived from it expressed resistance to puromycin. Therefore, for the selection of cells 

transfected with the CRISPR plasmids, the day after the transfection, the old medium 

was removed, the cells were washed with PBS and new medium containing 8 µg/ml of 

puromycin was added. The selection lasted for three days. Every day the cells were 

inspected, the medium was removed, the cells were washed with PBS to remove the 

dead ones and new medium with antibiotic was added. At the end of the selection, the 

cells in the wells transfected with the CRISPR plasmids were still growing, as well as the 

cells transfected with PX459 V2.0, which served as a positive control for the selection 

and to generate control clones. On the other hand, the cells transfected with PX458 had 

died, which served as a negative control for the selection and helped defining the 

finishing point of the selection period. The selected cells were allowed to grow until they 

could be subcultured. 

 

Isolation of genomic DNA from bulk cells 

When the cells expressing PX459_mPB2_65, PX459_mPB2_125, PX459_mPB2_227 and 

PX459_mPB2_260 had reached around 90 % confluence in the 6-well plate, they were 

split into T25 flasks and kept in culture. The next time of splitting, the remaining cell 

suspensions that were not seeded were transferred to 15 ml tubes and centrifuged at 

500 rpm in the Biofuge Stratos for 3 minutes at room temperature. Then, the cells were 

washed with PBS repeating the centrifugation step. After removing the PBS, the cells 

were lysed at 56 °C in 300 µl of lysis buffer containing 82 µl/ml of proteinase K overnight 
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with shaking. After the addition of 280 µl of phenol/chloroform/isoamyl alcohol, the 

samples were shaken for 30 seconds and centrifuged during 5 minutes at 20.000 x g and 

room temperature. Next, 280 µl of supernatant were transferred to a new tube, 280 µl 

of chloroform were added and the samples were shaken and centrifuged as before. This 

step was repeated, this time taking 250 µl of supernatant mixed with 250 µl of 

chloroform. Then, 200 µl of supernatant were taken to a new tube and 20 µl of sodium 

acetate were added. The tubes were inverted several times, 440 µl of ice-cold 99,8 % 

ethanol were added, the samples were shaken lightly and centrifuged for 10 minutes at 

20.000 x g at room temperature. Then, the supernatant was completely removed with 

a pipette and the pellet was air dried. Finally, the DNA was resuspended in 50 µl of 

nuclease-free water. 

 

Genomic PCR 

To test the efficiency of the CRISPR/Cas9-mediated modification of the locus of Plexin-B2 

with the T7 endonuclease assay, its genomic sequence was PCR-amplified. The forward 

primer used was T7_mPB2_uni_fwd_1 and the reverse primer was T7_mPB2_uni_rev_1. 

The mix was pipetted and they were kept on ice until the FlexCycler2 reached the initial 

denaturation temperature, to begin the reactions from a hot start.  After the PCR, a small 

volume of each reaction was loaded on an agarose gel electrophoresis to verify the 

correct amplification. 

 

T7 endonuclease assay 

In order to detect successful modification of the genomic DNA sequence of Plexin-B2 in 

the bulk of cells transfected with the CRISPR plasmids, the T7 endonuclease assay was 

used. The enzyme T7E1, cleaves double-strand DNA at the site of mismatches. When the 

product of the PCR described in the previous section was denatured and renatured 

again, wild type or modified homoduplexes were formed, but also heteroduplexes 

formed by a wild type strand and a modified strand. When this DNA was incubated with 

the T7E1 endonuclease, it cleaved the DNA at the site of the mismatches in the 

heteroduplexes, while leaving the homoduplexes intact. This was later visualized in an 
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agarose gel electrophoresis and gave an estimation of the efficiency of the CRISPR/cas9 

genome modification in the bulk cells. To do this, 17 µl of the PCR were mixed with 2 µl 

of the buffer NEBuffer 2 and were put in a heat block that immediately started to 

increase its temperature from room temperature to 95 °C in order to denature the DNA. 

The remaining volume from the PCR reactions were loaded in an agarose gel 

electrophoresis to control the correct amplification of the PCR and the band size. The 

samples were incubated at 95 °C for 5 minutes. Then, the heat block was covered with 

aluminium foil and its temperature was slowly decreased until 37 °C, allowing the DNA 

to reanneal. After that, 1 µl of the T7 enzyme was added and the samples were 

incubated at 37 °C for 30 minutes to cut the DNA at the site of mismatches. Then, the 

samples were loaded in an agarose gel electrophoresis to visualize the presence of 

digested PCR product that would confirm successful modification of the Plexin-B2 locus 

in the genomic DNA of the bulk cells. 

 

Clonal expansion 

The bulk cells transfected with the CRISPR plasmids were detached using trypsin as 

described above. Then, they were counted using a Neubauer chamber and seeded in 

96-well plates, adding 130 µl of cell suspension to each well, with a concentration of 

0,5 cells per well. They were incubated at 37 °C and 5 % CO2 and observed under the 

brightfield microscope daily to identify the wells where cells were growing from a single 

colony. Those wells were marked and when the cells reached approximately 90 % 

confluence they were split into three 96-well plates: one to isolate genomic DNA from 

them, one to freeze them and one to keep the cells in culture, working with them more 

comfortably. 

 

Freezing of CRISPR clones 

To freeze the CRISPR clones in a 96-well plate, first, quenching medium was prepared by 

mixing culture medium and FCS in a 1:1 proportion. Then, 2X freezing medium was 

prepared by mixing culture medium and DMSO in a 4:1 proportion. The medium was 

removed from the wells with the cells and they were washed with 100 µl of PBS per well. 
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Then, the PBS was removed, 30 µl of trypsin were added and the cells were incubated 

at 37 °C and 5 % CO2 until they completely detached from the wells. Next, 70 µl of 

quenching medium were added to each well and 30 µl of this cell suspension were 

discarded. To the remaining cells, 70 µl of 2X freezing medium were added per well, 

mixed and transferred to a 96-well plate with round bottom wells. The plate was 

wrapped with paper, sealed with plastic paraffin film, put in an expanded polystyrene 

box and kept at -80 °C. 

 

Isolation of genomic DNA from cells in 96-well plates 

The cells were washed with 100 µl of PBS per well twice. Then, the PBS was removed 

and 50 µl of lysis buffer were added to each well. The plate was wrapped in paper, sealed 

with plastic paraffin film and incubated overnight at 60 °C. The next day, 100 µl of 

ice-cold ethanol-NaCl mix were added per well and the plate was incubated for 30 

minutes at room temperature. During this time the plate was not moved. After the 

incubation, the liquid was poured off and the wells were washed thrice with 50 µl of 

70 % ethanol. Then, they were air dried and the pellets were resuspended in 20 µl of TE 

buffer. 

 

Indel PCR 

In order to reduce the number of clones to be tested with western blot, a PCR based 

identification of possible knockout clones was used. To screen for potential indel 

mutations in the Plexin-B2 locus the PCR was designed in a way that either the forward 

or the reverse primer had its 3’ end annealing in the region of the double strand break 

produced by the Cas9. That way, proper priming would not be possible for those clones 

with indel mutations in that area. 
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Figure 16. Principle of the indel PCR 

 

The primers used to detect indels in clones coming from cells transfected with 

sgDNA 65 were sgRNA_mPB2_65_fwd and T7_mPB2_uni_rev_1, in clones coming from 

cells transfected with sgDNA 125 were T7_mPB2_uni_fwd_1 and 

sgRNA_mPB2_125_rev, in clones coming from cells transfected with sgDNA 227 were 

T7_mPB2_uni_fwd_1 and sgRNA_mPB2_227_rev and in clones coming from cells 

transfected with sgDNA 260 were sgRNA_mPB2_260_fwd and T7_mPB2_uni_rev_1. 

The amplification was verified by agarose gel electrophoresis. 

 

Cell lysis and SDS-PAGE 

Proteins from untreated mIMCD-3 cells, CRISPR clones and control clones were 

separated by SDS polyacrylamide gel electrophoresis (SDS-PAGE) as a previous step for 

western blot, for the detection of Plexin-B2. The clones suspected to be knockouts, the 

control clones and untreated mIMCD-3 cells were subcultured in 6-well plates to 

increase the amount of cells and, therefore, of its Plexin-B2 protein, in order to improve 

its detection. Once the cells were almost confluent, they were lysed by adding 200 µl of 

4X Laemmli buffer, scraping the cells with the pipette tip, pipetting up and down and 

transferring them to 1,5 ml tubes that were incubated for 5 minutes at 95 °C. Next, 5 % 

polyacrylamide gels of 1,5 mm of thickness were prepared by mixing 2,5 ml of 

acrylamide/bis-acrylamide (Rotiphorese Gel 30) with 3,75 ml of 4X separation gel buffer 

pH 8,8 containing tris and SDS, 8,75 ml of double-distilled water, 100 µl of 10 % 

ammonium persulfate (APS) as a radical initiator and 20 µl of the catalyst 

tetramethylethylenediamine (TEMED) and pouring the mix between 2 glass plates 

clamped in a stand. On top of the separating gel, the stacking gel was produced by 

mixing 1 ml of acrylamide/bis-acrylamide, 1,25 ml of 4X stacking gel buffer pH 6,8 

Wild type allele

Modified allele

Indel
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containing tris and SDS, 3 ml of double-distilled water, 25 µl of APS and 10 µl of TEMED 

and pouring the mix on top of the already solidified separating gel. The gel pockets were 

created placing a comb in the stacking gel before it solidified and removing it when the 

polymerization was finished. The gels were placed in an electrophoresis chamber that 

was filled with electrophoresis buffer. Using a Hamilton syringe, 5 µl of PageRuler Plus 

Prestained protein ladder were added to the leftmost well of each one of the gels and 

subsequently, using the Hamilton syringe, 50 µl of the lysates from the untreated 

mIMCD-3 cells, control clones and CRISPR clones suspected to be Plexin-B2 knockouts 

were loaded in the pockets of the gels. Then, a voltage of 80 V was applied to the gels 

until the samples reached the end of the stacking gel. After that, the voltage was 

changed to 120 V for the rest of the electrophoresis until the protein marker was fully 

separated and the front of the electrophoresis reached the bottom of the gels. 

 

Western blotting 

In order to detect Plexin-B2 in the different samples, western blotting to nitrocellulose 

membranes was performed by electrotransfer using the separating gels from the 

SDS-PAGE. For that, each separating gel was placed on a stack formed by a foam pad, 

Whatman paper, the separating gel, a nitrocellulose membrane, another piece of 

Whatman paper and another foam pad. The whole stack was soaked in cold transfer 

buffer and all the air was removed from it by gently pressing the stack. The stack was 

placed in a cassette, which was inserted in the electrode assembly in the orientation in 

which the membrane was facing the side of the anode and the gel faced the side of the 

cathode. The electrode assemblies containing the stacks were placed in electrotransfer 

tanks filled with cold transfer buffer, along with an ice block and a stir magnet. The tanks 

were placed on trays full of ice on top of magnetic stirrers, to ensure that the buffer 

inside the tanks remains uniformly cold during the transfer. Then, a current of 350 mA 

was passed during 2 hours. During this time, the negatively charged proteins in the gels 

moved towards the positively charged anode, transferring to the nitrocellulose 

membranes. Then, the membranes were placed in a solution of 5 % milk powder in 

tris-buffered saline with tween (TBS-T) for blocking during 30 minutes. Primary antibody 

was diluted in 5 ml of blocking solution and transferred to a 50 ml tube. Since α-tubulin 



Materials and methods 
 

92 
 

was used as a loading control, the membranes were cut above the 70 kilodalton mark in 

the protein ladder to incubate each part of the membrane with a different primary 

antibody. After cutting the membranes, the upper part was incubated with the 

anti-Plexin-B2 antibody solution, while the lower part of the membrane was incubated 

with the anti-α-tubulin antibody solution by placing the membranes in the 50 ml tubes 

containing the antibody solutions and placing them on a tube roller overnight at 4 °C. 

Next, the membranes were washed thrice with TBS-T for 5 minutes each time. After 

that, they were incubated with the corresponding secondary antibody conjugated with 

horseradish peroxidase (HRP) in the same way they were incubated with the primary 

antibody but at room temperature and for 1 hour. Then, the membranes were washed 

again three times with TBS-T for 5 minutes each. ECL substrate was added on the 

membranes and they were placed in a cassette to expose a photographic film with the 

signal coming from the activity of the peroxidase on the ECL substrate. Finally, the films 

were developed using the Mi5 processor. 

 

3.2.7. Generation of virally-transduced stable cell lines 

MDCK and mIMCD-3 cell lines were transduced with the Plexin-B2 serial deletion 

mutants using the viral constructs generated. In this way a stable expression of the 

fusion protein was achieved, which allowed for the analysis of the localization of the 

protein still after several days. This was necessary in order to be able to assess the 

localization of the protein in the 3D context, as the cysts require 3-4 days to grow and a 

transient transfection would not be strong enough to do proper imaging at that time 

point. The same was the case for the analysis of the localization of mitotic spindle 

regulators LGN and NuMA in mIMCD-3 cysts, comparing wild type cysts with Plexin-B2 

knockouts. 

The Plexin-B2 deletion mutants transduced in mIMCD-3 and MDCK cells were 

cloned in the pLNCX2 backbone and the same was true for the mitotic spindle regulator 

LGN. The pLNCX2 system does not require any helper plasmids for viral production, but 

requires a special packaging cell line called PT67. The investigation of the localization of 

the Plexin-B2 mutants was done without co-transduction of any other construct. 
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However, in the case of the study of the localization of mitotic spindle regulators, 

mIMCD-3 CRISPR control or Plexin-2 knockout cells were also transduced with Tubulin 

fused to mCherry, in order to visualize the mitotic spindle. The transduction of LGN was 

similar to the one of the Plexin-B2 mutants as it is in the same viral vector backbone of 

pLNCX2. However, the plasmid used to express EGFP-tagged NuMA was constructed and 

packaged by VectorBuilder in a pLV vector backbone, while Tubulin and H2B were in a 

pWPXL backbone. All of these are lentiviral systems and they require a different protocol 

to that of pLNCX2. In the case of lentiviral systems, a co-transfection with the helper 

plasmids pMD2.G and psPAX2 was necessary. The following stable cell lines expressing 

fluorescently-labelled proteins were generated: 

Target cell line Transduced fluorescent proteins 

mIMCD-3 Plexin-B2-EGFP 

 Plexin-B2ΔIC-EGFP 

 Plexin-B2ΔC1-RBD-C2-EGFP 

 Plexin-B2ΔRBD-C2-EGFP 

 Plexin-B2ΔC2-EGFP 

MDCK Plexin-B2-EGFP H2B-mCherry 

 Plexin-B2-EGFP 

 Plexin-B2ΔIC-EGFP 

 Plexin-B2ΔC1-RBD-C2-EGFP 

 Plexin-B2ΔRBD-C2-EGFP 

 Plexin-B2ΔC2-EGFP 

mIMCD-3 CRISPR control EGFP-LGN  

 EGFP-LGN Tubulin-mCherry 

 EGFP-NuMA 

mIMCD-3 CRISPR Plexin-B2 Knockouts EGFP-LGN 

 EGFP-LGN Tubulin-mCherry 

 EGFP-NuMA 

Table 9. Virally-transduced cell lines stably expressing fluorescently-labelled proteins  
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Retroviral transduction 

For a retroviral infection using pLNCX2, the packaging cell line PT67 is necessary. The 

pLNCX2 vector carries the extended packaging signal Ѱ+, but not the structural genes 

Gag, Pol and Env. These are encoded in the PT67 packaging cell line. For the transduction 

of cells using the pLNCX2 system, first, PT67 cells which were in culture were split and 

seeded in a 6-well plate one day before the transfection. The next day the cells were 

about 70 % confluent and ready for transfection with the calcium phosphate method. 

First, one sterile 2 ml tube was prepared for each one of the transfections. Then, 5 µg of 

the corresponding plasmid was added to the bottom of the tubes. These were filled up 

to 112,5 µl with sterile double distilled water. Next, the 2X BBS buffer was shaken 

vigorously before 125 µl were added to each tube. Quickly, 12,5 µl of CaCl2 were added 

dropwise on top of each one of the mixes. Then, the tubes were closed, vortexed and 

left for incubation for 20 minutes. Next, the mixes were pipetted dropwise on the PT67 

and these were incubated for 3 hours. After that, the medium was changed for the 

corresponding fresh cell culture medium. The cells were transferred to an S2 incubator 

and they were allowed to produce virus for 48 hours. One day before infection, the 

target cell lines were split into six well plates. On the day of the infection, the virus-

containing supernatants were taken from the PT67 cells, were centrifuged at 900 RPM 

in the Labofuge 400 for 3 minutes and the supernatants were transferred to new tubes. 

Next, they were filtered using hydrophilic polyvinylidene fluoride (PVDF) filters of 

0,45 µm pore size into fresh tubes. Polybrene was added to each viral supernatant to a 

final concentration of 8 µg/ml. Then, the medium was removed from the target cell lines 

and the viral supernatants were added to them. The cells were incubated with the viral 

supernatant for 24 hours and then the medium was replaced for fresh cell culture 

medium. The efficiency of the transduction was checked using the Nikon Eclipse Ti. The 

new stable cell lines were kept in culture and passaged in the S2 cell culture room until 

they were proved to be virus-free using the QIAamp MinElute Virus Spin kit, following 

the instructions of the manufacturer. Then, they were transferred to S1 cell culture and 

prepared for imaging. 
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Lentiviral transduction 

For the transduction of the lentiviral constructs (EGFP-NuMA, H2B-mCherry and 

Tubulin-mCherry), HEK293T cells, which were in culture, were split and seeded in 6-well 

plates. The next day they were transfected with the transfer plasmids and additionally 

with the helper plasmids pMD2.G and psPAX2. The plasmid pMD2.G is the envelope 

plasmid, containing the VSV-G sequence. The plasmid psPAX2 contains the packaging 

genes Gag, Pol, Rev and Tat. Transfection was done by the calcium phosphate method 

as described for the pLNCX2 system, but using the HEK293T cells and transfecting 1 µg 

of the target construct and 2 µg of each one of the helper plasmids for every 

transfection. The collection of the viral supernatant and the infection of the target cells 

was done as described previously for the pLNCX2 system. 

 

3.2.8. Lumen formation assay 

In order to assess the role of Plexin-B2 in mitosis of epithelial cells in a 3D context, cyst 

formation was compared between wild type mIMCD-3 cells, CRISPR control clones 

transduced with either LGN or NuMA and two Plexin-B2 knockout clones transduced 

with LGN or NuMA. For that, the amount of normal and abnormal lumina was counted 

and compared between the different cells. A lumen was considered normal when it was 

a unique empty cavity inside the cysts. When this cavity was split into several empty 

spaces because of the presence of cells that divided into the lumen or when these 

completely filled the cyst, the lumen was considered abnormal. These virally transduced 

cell lines were used instead of the non-transduced CRISPR clones because the same cell 

lines would later be used to study the localization of LGN and NuMA in normal control 

cysts compared with abnormal Plexin-B2 knockout cysts. 

This lumen formation experiment was done in a blind manner by asking a 

colleague to assign a code number to the different cell suspensions before seeding them 

on Matrigel and keeping the equivalency of the code secret until the recount was 

finished. The method for 3D culture was as described above. After 3 days the cysts were 

fixed and stained for β-catenin, ZO-1 and DAPI as explained before in order to identify 

the lateral membrane and the apical pole of the cells. Then, the cells were observed 
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under the confocal microscope and the number of cysts with normal or abnormal lumina 

were counted. In each experiment and for each cell line, twenty-five cysts were counted 

and the percentages of normal and abnormal lumina were calculated. Once the counting 

had been finished, the code was revealed to know which cell line corresponds to each 

ratio of normal/abnormal lumina. This assay was repeated 4 times and the average 

percentage of normal or abnormal lumina, as well as the statistical significance, was 

calculated for each cell line. 

 

3.2.9. Cell counting and crystal violet staining 

In order to see if the deletion of Plexin-B2 has a net effect on the cell proliferation/cell 

death of mIMCD-3 cells two experiments were carried out. In the first one, the number 

of mIMCD-3 cells, a CRISPR control clone and two CRISPR Plexin-B2 knockout clones was 

monitored every day while they were in culture. For that, 12.000 cells of each type were 

seeded in triplicates in 12-well plates. After that, every 24 hours the cells were detached 

from the plate using trypsin as described before and counted using a Neubauer cell 

counting chamber. Then, the average number of cells for each cell line was calculated 

for each day and the net cell growth resulting from proliferation and cell death was 

compared.  

For the second experiment, a similar comparison was made by daily fixing and 

staining the cells with crystal violet and measuring absorbance at 595 nm after washing 

and destaining them. For that, 12.000 cells of an mIMCD-3 CRISPR control clone and two 

CRISPR Plexin-B2 knockouts were seeded in triplicates on four 12-well plates, one plate 

for each day of the experiment. They were kept in culture and every 24 hours one of the 

plates was taken out of the incubator and the cells were washed three times with PBS. 

Next, they were fixed with 5 % glutaraldehyde for 20 minutes at room temperature. 

Then, they were washed three times with double distilled water. After that, they were 

stained with 0,1 % crystal violet for 60 minutes at room temperature. After the staining, 

the cells were washed three times with double distilled water and the dye was 

solubilized by adding 10 % acetic acid on the cells for 5 minutes and light shaking. Finally, 

the absorbance of the supernatant was measured at 595 nm. The average absorbance 
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of the triplicates was calculated for each cell line and for each day and the results were 

compared. 

 

3.2.10. Cell cycle analysis 

To test whether the absence of Plexin-B2 has an effect on cell cycle in mIMCD-3 cells, 

the DNA of a CRISPR control clone and a Plexin-B2 knockout clone was stained with 

propidium iodide and the proportion of cells with different amounts of DNA were 

counted using a Flow cytometer. In order to do that, the cells were kept in culture and 

grown in a 10 cm dish, detached with trypsin as described above and counted using a 

Neubauer chamber. Approximately 50 million cells of each cell type were collected in 

15 ml tubes by centrifugation at 500 rpm in the Biofuge Stratos for 3 minutes at room 

temperature and the supernatant was removed by aspiration. The cells were washed by 

adding 1 ml of PBS and gently resuspending.  They were spun down again by centrifuging 

for 5 minutes at 500 x g at room temperature. Then, the cells were fixed in 66 % ethanol 

by resuspending them in 400 µl of ice-cold PBS and slowly adding 800 µl of ice-cold 

100 % ethanol and mixing well. Next, the cells were kept at 4 °C for 2 hours. The cells 

were resuspended by inverting the tube several times and then pelleted by 

centrifugation at 500 x g for 5 minutes. The supernatant was carefully removed without 

disturbing the pellet and the cells were washed in 1 ml of PBS. Next, they were 

centrifuged again for 5 minutes at 500 x g and at room temperature and the supernatant 

was aspirated. Then, the cells were resuspended in 200 µl of 1X propidium 

iodide + RNase staining solution and incubated in the dark for 30 minutes at 37 °C. Next, 

the tubes were placed on ice and taken to the flow cytometer, where the cells were 

resuspended and counted with the appropriate settings for a propidium iodide cell cycle 

analysis. The results were analysed using the FACSDiva software. 

 

3.2.11. Spinning disk microscopy 

In order to visualize the localization of Plexin-B2 during mitosis in MDCK cysts, the 

localization of LGN during mitosis in mIMCD-3 wild type cysts compared to Plexin-B2 

knockout cysts, the localization of NuMA during mitosis in Plexin-B2 knockout mIMCD-
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3 cysts and the localization of the different generated Plexin-B2 deletion mutants in 

MDCK and mIMCD-3 cells growing in 2D and 3D, live-cell imaging was performed using 

spinning disk microscopy. The microscope used was a Zeiss AxioObserver.Z1 with the 

spinning disk unit CSU-X1 from Yokogawa and an incubator chamber with CO2 supply. 

The images were taken with a 63x water/glycerine immersion objective with a numerical 

aperture of 1,3. The camera used was the Evolve 512 EMCCD camera. A spinning disk 

microscope is a special type of confocal microscope that does not scan the sample one 

point at a time with the laser. Instead, a wider laser beam illuminates a spinning disk 

consisting of an array of microlenses and pinholes that scan the sample multiple points 

at a time. This way the time needed to generate the image is shorter, which is very useful 

to record live processes like mitosis. For these experiments, the virally transduced, 

fluorescently labelled, generated stable cell lines described above were used. The cells 

were seeded in ibidi µ-slides, either in 2D or 3D as described before. During imaging the 

cells were incubated at 37 °C and 5 % CO2. In the case of the videos of mitosis, each cyst 

was imaged for 1 to 3 hours and the high speed allowed to take a z-stack of the entire 

cyst every 5 minutes. The total z-distance was variable, as every cyst has a different size, 

but the distance between single slices was of 1-2 µm. For the experiment to determine 

the localization of NuMA during mitosis in Plexin-B2 knockout mIMCD-3 cysts, the 

mitotic spindle was visualized using SiR-Tubulin. For that, SiR-Tubulin was diluted in cell 

culture medium to a final concentration of 50 nM. Then, the medium was removed from 

the cells and it was replaced with the SiR-Tubulin-containing medium. The cells were 

incubated with the SiR-Tubulin overnight. Before live-cell imaging, the staining medium 

was replaced with fresh normal medium.
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4. Results 

4.1. Plexin-B2 and its ligand sema4D localize to the basolateral membrane in the 

renal epithelium 

The kidney is an excellent model organ to study epithelial polarity (Wilson 2011; Carroll 

and Das 2011; Carroll and Yu 2012; Fedeles and Gallagher 2013). First, in order to 

visualize the localization of Plexin-B2 at distinct plasma membrane domains, a series of 

immunofluorescence stainings was done on cryosections of kidneys from adult mice or 

embryos and analysed by confocal microscopy (Figure 17). Additionally, the tissue was 

stained for E-cadherin and ZO-1 to be able to better identify the lateral membrane and 

the lateral-apical border of the cells, respectively, which allows for a precise 

determination of the localization of Plexin-B2. 

Also of interest was to assess the localization of one of the main transmembrane 

ligands of Plexin-B2 in the renal epithelium in order to verify whether it localizes in the 

same regions of the cells, which would allow for juxtacrine signaling. For that purpose, 

the adult kidney epithelium was also stained for sema4D.  

These experiments revealed that Plexin-B2 is expressed in a strictly polarized 

manner at the basolateral membrane of renal epithelial cells (Figure 17) colocalizing 

with E-cadherin, consistent with previous work (Xia et al. 2015). Interestingly, this 

polarized localization of Plexin-B2 observable in adult tissue was already present in the 

developing epithelium of 15,5 day old embryos (Figure 17).  

Sema4D localized to the basolateral membrane in adult renal epithelial cells as 

well. This demonstrated that both ligand and receptor localize in close proximity and 

that this polarized localization could have a functional meaning in the context of 

semaphorin-plexin signaling. 
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Figure 17. Confocal images of immunofluorescence stainings of Plexin-B2, Sema4D, E-cadherin and ZO-1 

in embryonic and adult mouse renal epithelium. Arrows indicate cell-cell contacts. Stars show apical 

membranes 

 

At the lateral membrane, cell-cell contacts occur. Since Sema4D is a 

transmembrane protein, this polarized localization of both ligand and receptor could be 

explained as a way of communication between cells adjacent to each other. The Sema4D 

on the lateral surface of one cell could bind the receptor Plexin-B2 present in the lateral 

membrane of the cell next to it. Therefore, in a later experiment, it was interesting to 

verify whether the presence of the ligand determines the position of the receptor (see 

section 4.4). 

 

4.2. Plexin-B2 localizes to cell-cell contacts in mIMCD-3 cells in 2D and 3D cultures  

Since the previous experiment showed that Plexin-B2 has a polarized expression in the 

renal epithelium, the next objective was to investigate the localization of Plexin-B2 in 

cell lines that could be used in cell culture to model the epithelium. Cell lines are much 
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easier to manipulate than mice and many more experiments can be done in a shorter 

span of time. In this work, in order to make a closer comparison with the previously 

analysed mouse kidney, the cell lines used to model the conditions of the kidney 

epithelium in cell culture were the dog MDCK (Madin-Darby canine kidney) and mouse 

mIMCD-3 cells (mouse inner medullary collecting duct-3), which are renal epithelial cell 

lines. MDCK cells are thought to be derived from the distal tubules or the collecting duct 

(Hansson, Simons, and van Meer 1986). Even though this cell line was generated to be 

a model for viral infection, it has been used for a long time as a mammalian model of 

epithelial cell biology (Hall, Farson, and Bissell 1982). 

The downside of MDCK cells is that they are derived from dog. Most antibodies 

are generated to react against mouse or human proteins and few have cross reactivity 

with dog (Dukes, Whitley, and Chalmers 2011). Moreover, databases and online genetic 

tools are more focused on mouse and human genes. For this reason, the mouse kidney 

epithelial cell line mIMCD-3 was also used to model the epithelial tissue (Giles, 

Ajzenberg, and Jackson 2014). 

In a first experiment, the localization of endogenous Plexin-B2 was determined 

by immunofluorescence staining in mIMCD-3 cells growing in 2D (Figure 18). For this, it 

was appropriate to study cells in a medium to low confluence level. In this setting, some 

cells show domains of the membrane forming cell-cell contacts with neighbouring cells 

and other domains facing empty spaces, representing different functional parts of the 

plasma membrane. 

Figure 18. Confocal images of immunofluorescence staining of Plexin-B2 and E-cadherin in mIMCD-3 

cells in two-dimensional culture. The arrows show accumulation of Plexin-B2 at cell-cell contacts. The 

stars show absence of Plexin-B2 where there are no cells in contact 

* 

* 
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In mIMCD-3 cells growing in 2D, Plexin-B2 localized to cell-cell contacts, 

coincidently with the localization observed in the mouse kidney (Figure 18). This was 

clear when comparing the localization of Plexin-B2 with the localization of E-cadherin, 

which should only be present at cell-cell contacts. In the sections of murine kidney, 

Plexin-B2 was absent from the apical membrane, where no cell-cell contacts happen. In 

this experiment with mIMCD-3 cells, the same can be observed; in those regions where 

the plasma membrane was facing an empty space, Plexin-B2 did not localize. This further 

supported the idea that the localization of Plexin-B2 in these cells is determined by the 

interaction of adjacent cells and it could mean that it plays a role in communication 

between neighbouring cells. 

However, this setting was insufficient to study the polarized expression of Plexin-

B2 in epithelial cells, as apical-basal polarity is not evident unless a z-stack of the entire 

monolayer is performed. One of the reasons that the mIMCD-3 and MDCK cell lines were 

chosen to model the kidney epithelium was their ability to grow forming cysts when 

cultured in 3D. This setting allows for the investigation of the localization of Plexin-B2 in 

cells where apicobasal polarity is much easier to visualize. 

The goal was to verify if endogenous Plexin-B2 localizes to the basolateral 

membrane in mIMCD-3 cysts as it does in the adult renal epithelium. For that, 

immunofluorescence stainings of Plexin-B2, E-cadherin and ZO-1 were performed in 

mIMCD-3 cells cultured in 3D. Plexin-B2 localized to the lateral membrane in mIMCD-3 

cysts, colocalizing with E-cadherin (Figure 19). In this case, the distribution of the protein 

was reminiscent of that of the developing kidney, being Plexin-B2 absent from the apical 

and the basal membranes.  

Figure 19. Confocal images of immunofluorescence staining of Plexin-B2, E-cadherin and ZO-1 in 

mIMCD-3 three-dimensional cysts. Arrows indicate lateral membranes. Stars show apical membranes 



Results 
 

103 
 

4.3. Plexin-B2 localizes to cell-cell contacts during mitosis in MDCK cysts 

In every epithelium, cell division is a key process to maintain tissue homeostasis (Yang, 

Plikus, and Komarova 2015). During this process, some components of the cell 

redistribute or change localization and later reorganize in the two daughter cells. In 

previous work from our group it was shown that Plexin-B2 plays a role in mitotic spindle 

orientation (Xia et al. 2015). Whether the polarized expression of Plexin-B2 in epithelial 

cells is relevant for mitotic spindle orientation is yet unknown. Therefore, in the 

following experiment the goal was to determine the localization of Plexin-B2 during 

mitosis of epithelial cells. For that, the MDCK cell line was used. 

With the purpose of visualizing the localization of Plexin-B2 throughout the 

entire mitotic process, live-cell imaging was performed with a spinning disk microscope 

and the entire cell division was recorded (Figure 20). After several attempts using 

transient plasmid transfections of an EGFP-tagged Plexin-B2, it was not possible to 

visualize the protein in living cells during mitosis. The construct was not expressed at 

sufficiently high levels by the time the MDCK cysts formed. Therefore, the MDCK cells 

were virally transduced to achieve stable expression of the fusion protein. In this 

construct, wild type Plexin-B2 is C-terminally tagged with EGFP (see methods) as shown 

in figure 24. The cells were also transduced with the histone H2B fused to the 

fluorophore mCherry in order to visualize the chromatin (Figure 20). 

The main challenge of this experiment was to record mitosis from the beginning 

in cells expressing both transduced constructs, as this cell line grows slowly and the 

efficiency of transduction was not high. Because of this, it was easier to find cells that 

had just started mitosis and record the cell division until the two daughter cells reached 

interphase. Images of the cell divisions were taken every 5 minutes (Figure 20). 

As shown in Figure 20, Plexin-B2 localized at cell-cell contacts in MDCK cells 

during mitosis when growing in 3D cysts, similarly to what was observed in neighbouring 

mIMCD-3 cells in interphase. When the new membrane formed, separating the two 

daughter cells, Plexin-B2 quickly localized there, maintaining the same polarized 

expression observed in the previous experiments. During the whole process, Plexin-B2 

was absent from the apical domain of the membrane. 
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Figure 20. Spinning disk live-cell microscopy images of Plexin-B2-GFP and H2B-mCherry-expressing 

MDCK cells during mitosis in 3D cell culture. Every row shows a different time-course experiment. Arrows 

indicate the accumulation of Plexin-B2 at cell-cell contacts, while stars show absence of Plexin-B2 in the 

apical membrane 

 

4.4. The basolateral localization of Plexin-B2 is ligand-independent 

As explained in section 4.1, the polarized expression of Plexin-B2 and its ligand Sema4D 

could be due to their possible functional role in communication between adjacent cells 

through Semaphorin-Plexin juxtacrine signaling. The ligands of Plexin-B2 are Sema4A, 

Sema4B, Sema4C, Sema4D and Sema4G (Maier et al. 2011; Hirschberg et al. 2010; 

Masuda et al. 2004; Yukawa et al. 2010; Xia et al. 2015). However, Sema4C is not 

expressed in renal tubular epithelial cells and the expression of Sema4A is limited to the 

renal cortex (Xia et al. 2015). Therefore, to test whether the polarized expression of 

Plexin-B2 depends on the presence of its ligand, its localization was analysed in 

Sema4B-/-; Sema4D-/-; Sema4G-/- triple-knockout mice by immunofluorescence stainings 

(Figure 21). 

In the absence of its ligands, Plexin-B2 still localized to the basolateral membrane 

and colocalized with E-cadherin (Figure 21). This result suggested that the localization 

of Plexin-B2 is independent of the presence of its ligands. 

 

* 

* 
* 

* 
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Figure 21. Confocal images of immunofluorescence staining of Plexin-B2, E-cadherin and ZO-1 in the 

renal epithelium of Sema4B, Sema4D and Sema4G triple deficient mice. Arrows indicate cell-cell 

contacts. Stars show apical membranes 

 

To sum up, the results of the experiments explained above show how Plexin-B2 

has a polarized expression at cell-cell contacts in renal epithelial cells both in vivo as in 

the MDCK and mIMCD-3 cell lines in interphase. Furthermore, it also localized at cell-

cell contacts during mitosis in MDCK cells. Moreover, this targeting is independent of 

the expression of the ligand. Therefore, the reason of this polarized localization 

remained unknown. Among other possibilities, the localization of Plexin-B2 could 

depend on part of its sequence or one of its functional domains. For that reason, the 

sequences of the functional intracellular domains of Plexin-B2 were determined and 

analysed, to assess their possible role determining Plexin-B2 localization. 

 

4.5. The localization of Plexin-B2 to cell-cell contacts is independent of its intracellular 

domain in MDCK and mIMCD-3 cells in 2D 

As explained in the introduction, the basolateral localization of transmembrane proteins 

in epithelial cells can be determined by short sequences in their cytoplasmic domains 

that bind clathrin adaptors (Stoops and Caplan 2014). Therefore, it was interesting to 

see the effect of the deletion of the intracellular domain of Plexin-B2 on the localization 

of the protein. For that, a construct of Plexin-B2 lacking the entire intracellular domain 

and C-terminally fused to EGFP (Plexin-B2ΔIC-EGFP) was stably expressed in MDCK cells. 

As shown in figure 22, Plexin-B2 lost its typical basolateral localization and was 

expressed at the apical membrane instead. 
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Figure 22. Confocal image of an MDCK cyst expressing Plexin-B2ΔIC-GFP. Arrows indicate accumulation 

of the fusion protein at the apical membrane 

 

One hypothesis is that the targeting of Plexin-B2 to the basolateral membrane is 

determined by a motif present in its cytoplasmic region. In order to narrow down the 

position of this motif within the sequence of Plexin-B2, sequential deletion mutants of 

the different domains present in the cytoplasmic region were generated. For that, first, 

the boundaries of the functional domains of murine Plexin-B2 had to be determined.  

The cytoplasmic region of plexins has already been extensively studied. In human 

Plexin-A1 two subdomains of the intracellular portion show high level of sequence 

similarity to parts of the SynGAP and R-RasGAP proteins, which includes two conserved 

arginine residues that have been shown to be essential for GAP function (Rohm et al. 

2000). These subdomains are named C1 and C2, and their boundaries have been 

unambiguously defined for mouse Plexin-A3 (He et al. 2009). It has been shown that the 

RBD domain is located between the C1 and C2 domains and the residues through which 

it interacts with the Rho-family GTPases Rac1 and Rnd1 have also been defined (Vikis et 

al. 2000; Driessens et al. 2001; Hu, Marton, and Goodman 2001; Zanata et al. 2002; 

Wang et al. 2011). Taken this information, the sequences of mouse Plexin-A3 and mouse 

Plexin-B2 were aligned to define the limits of each functional domain before designing 

the serial deletions to be generated (Figure 23). 
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Figure 23. Sequence alignment of mouse Plexin-A3 (residues 1242-1872) and mouse Plexin-B2 (residues 1123-1842). Conserved residues are shown in white letters and red 

background. The red boxes show the boundaries of the functional domains C1, RBD and C2
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Based on this alignment, sequential deletion mutants of Plexin-B2 were 

generated by PCR, designing the reverse primers to anneal between the different 

domains of the cytoplasmic sequence. Then, they were C-terminally fused to EGFP to 

visualize the proteins in confocal and spinning disk microscopy. 

In an initial experiment, the goal was to investigate whether the intracellular 

functional domains were required for the membrane targeting of Plexin-B2. For that, 

mIMCD-3 and MDCK cells were transduced with either one of three C-terminally EGFP-

labelled constructs: wild type Plexin-B2 (Plexin-B2wt-EGFP), a deletion mutant lacking 

the whole cytoplasmic region (Plexin-B2ΔIC-EGFP) or a deletion mutant lacking all the 

described functional domains (Plexin-B2ΔC1-RBD-C2, hereafter shortened as Plexin-

B2ΔC1 in the figures), but retaining the juxtamembrane sequence. These stable cell lines 

were then cultured in a 2D monolayer. The domain structure of the constructs used is 

shown in Figure 24. 

 

Figure 24. Domain structure of the EGFP-tagged Plexin-B2 wild type, complete cytoplasmic deletion 

mutant (Plexin-B2ΔIC) and C1, RBD and C2 domains deletion mutant (Plexin-B2ΔC1-RBD-C2) 

 

As shown in Figure 25 and Figure 26, for both cell lines, Plexin-B2 wild type 

accumulated at cell-cell contacts, as expected. The deletion of the functional domains 

did not change the membrane targeting of Plexin-B2. Moreover, both deletion 

constructs still accumulated preferentially at the cell-cell contacts like the wild type. 

These results suggest that the targeting of Plexin-B2 to the membrane is independent 

of its intracellular domain in mIMCD-3 and MDCK cells in 2D. 
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Figure 25. Confocal images of MDCK cells growing in 2D and expressing the Plexin-B2 constructs. Arrows 

indicate the accumulation of Plexin-B2 at the cell-cell contacts  

 

 

Figure 26. Confocal images of mIMCD-3 cells growing in 2D and expressing the Plexin-B2 constructs. 

Arrows indicate the accumulation of Plexin-B2 at the cell-cell contacts  
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However, to investigate whether the targeting of Plexin-B2 to the basolateral 

membrane in the kidney epithelium and in the cysts is dependent or not on the 

functional domains of the intracellular region of Plexin-B2, the 3D setting is much better 

suited than the culture of cells in a 2D monolayer. For that reason, the cells transduced 

with the constructs described before were cultured in 3D.  

 

4.6. The localization of Plexin-B2 to the basolateral membrane in MDCK and mIMCD-3 

cysts is dependent on its intracellular domain 

In order to verify whether in a 3D context the functional domains of the cytoplasmic 

region of Plexin-B2 are relevant for its basolateral targeting, MDCK and mIMCD-3 cells 

were transduced with EGFP-tagged Plexin-B2 wild type and the two deletion mutants 

described above and cultured in 3D to form cysts, which were imaged with confocal 

microscopy. In Figure 27 it is shown that in MDCK cells Plexin-B2 wild type localized to 

cell cell contacts at the lateral plasma membrane, while the mutant lacking the whole 

intracellular domain shifted its localization to exclusively the apical membrane. The 

mutant lacking all of the functional domains in the cytoplasmic region, but retaining the 

juxtamembrane domain still localized to the basolateral membrane. Therefore, it is likely 

that the signal that is responsible for the basolateral targeting of Plexin-B2 is located in 

the short juxtamembrane sequence between the transmembrane domain and the C1 

domain. 

As shown in Figure 28, in mIMCD-3 cells, the deletion of the Plexin-B2 

intracellular domains C1, RBD and C2 did not affect the basolateral localization of 

Plexin-B2 that can be observed for the wild type. However, the deletion of the whole 

intracellular domain of Plexin-B2, including the juxtamembrane domain, caused 

accumulation of the protein mainly at the apical membrane, similarly to what happened 

for MDCK cells. In the case of mIMCD-3 cells, this mutant did not localize exclusively at 

the apical membrane and some of the protein still remained at cell-cell contacts. These 

results further supported that the motif responsible for the correct localization of Plexin-

B2 is located between the transmembrane and C1 domains.  
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Figure 27. Confocal images of MDCK cells growing in 3D and expressing the Plexin-B2 constructs. Arrows 

indicate the accumulation of Plexin-B2  

 

 

Figure 28. Confocal images of mIMCD-3 cells growing in 3D and expressing the Plexin-B2 constructs. 

Arrows indicate the accumulation of Plexin-B2  
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With these results the next step was to find a sequence of residues in the 

mentioned area of the protein, which would be known to make transmembrane 

proteins localize at the basolateral membrane. 

 

4.7. Identification of a possible motif required for the sorting of Plexin-B2 to the lateral 

membrane 

The most common basolateral targeting signals are the tyrosine-based (NPxY and YxxØ) 

or the dileucine motifs (D/ExxxLL). These are located in the cytoplasmic domain of the 

proteins and sometimes also serve as endocytosis signals. Other basolateral sorting 

signals contain only one leucine (EExxxL)(Stoops and Caplan 2014). As shown in Figure 

29, in the region between the transmembrane domain and the C1 domain only one 

tyrosine-based domain can be found (YEKI), while the rest of the motifs do not appear.  

  

Figure 29. Potential lateral localization motif in the cytoplasmic domain of Plexin-B2. Part of the amino 

acid sequence of mouse Plexin-B2 showing the transmembrane domain, the C1 and C2 GAP domains and 

the RBD domain. The likely motif for lateral localization is highlighted in red (YEKI) 

 

 Next, the sequences of all mouse plexins were compared to see which ones of 

them had this motif. The sequence of human Plexin-B2 was also aligned to see if this 

motif was conserved between species. As shown in Figure 30, only the plexins of the B 

family have this motif, including the human Plexin-B2, which has the sequence fully 

conserved. In the case of mouse Plexin-B1 and mouse Plexin-B3, the hydrophobic 

residue changes from isoleucine to valine and the two residues between the tyrosine 
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and the hydrophobic residue change from glutamic acid-lysine to lysine-lysine and 

glutamine-lysine, respectively. However, for this sorting motif any residue can be at 

those positions. 

 

Figure 30. Alignment of all mouse plexins and human Plexin-B2. The alignment of the residues 

conforming the proposed basolateral localization signal is highlighted in yellow. Conserved residues are 

shown in white letters over red background  

 

4.8. Generation of Plexin-B2-deficient mIMCD-3 cells by CRISPR/Cas9 genome editing 

In a previous work from our group it was shown that signaling through Plexin-B2 controls 

mitotic spindle orientation via its GAP domain and Cdc42 (Xia et al. 2015). As explained 

in the introduction, the mitotic spindle is correctly oriented by a protein complex that 

includes NuMa exerting pulling forces on astral microtubules of the spindle and LGN 

linking NuMA to the appropriate region of the plasma membrane. However, it is 

unknown whether Plexin-B2 controls these critical regulators of mitotic spindle 

orientation and if so, how it does. Therefore, the next step was to test in mIMCD-3 cells 

what happens with the mitotic spindle regulators LGN and NuMA in the absence of 

Plexin-B2. There are different methods to abolish the expression of Plexin-B2 in 

mIMCD-3 cells, like knockout mediated by CRISPR/Cas9 genome editing or knockdown 

using shRNA or siRNA. Here, CRISPR/Cas9 genome editing was used to knock out Plexin-

B2 from mIMCD-3 cells. 
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First, the expression levels of Plexin-B2 and its closely related homologue Plexin-

B1, which could potentially compensate the loss of Plexin-B2, were verified. Expression 

levels were determined by qPCR in number of copies of the gene per nanogram of cDNA. 

Cells growing in 2D monolayers as well as cysts growing in 3D were analysed. The results 

showed that Plexin-B2 was expressed in these cells and that Plexin-B1 expression was 

much lower, although it could be detected (Figure 31). 

 

Figure 31. Expression levels of the Plexin-B1 and Plexin B2 genes in mIMCD-3 cells growing in 2D and 3D 

cultures assessed by qPCR  

 

Because of these results, Plexin-B2 knockout clones were generated by 

CRISPR/Cas9 genome editing. This was only done for mIMCD-3 cells, as MDCK are dog 

cells and there was no available antibody for dog Plexin-B2. To control for the specificity 

of the results, different sgRNAs were used to target the Plexin-B2 locus. As controls for 

further experiments, untreated mIMCD-3 cells were used, but also CRISPR control cells, 

which underwent the same CRISPR treatment as the knockout clones, but were only 

transfected with the CRISPR plasmid without an sgRNA sequence. From all the clones 

generated, one control clone and two knockout clones were chosen to continue with 

further experiments. These knockout clones came from cells treated with different 

sgRNAs. 
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As shown in Figure 32, in the knockout clones, Plexin-B2 could not be detected 

by western blotting, confirming the successful modification of their genome. Plexin-B2 

could still be detected in the CRISPR control clone in a level comparable with untreated 

mIMCD-3 cells, supporting that the procedures involved in the CRISPR/Cas9 genome 

editing method do not reduce the expression of the protein and that the absence of 

Plexin-B2 in the knockout clones is a consequence of the specific targeting of the 

sgRNAs. 

 

Figure 32. Western blot showing Plexin-B2 in mIMCD-3 cells and in control and knockout CRISPR clones  

 

4.9. Knockout of Plexin-B2 impairs lumen formation in mIMCD-3 cysts 

In order to investigate the impact of Plexin-B2-deficiency on the mitotic spindle 

regulators LGN and NuMA in mIMCD-3 cells, the CRISPR clones (control and knockout) 

were virally transduced with either EGFP-tagged LGN or EGFP-tagged NuMA, to visually 

analyse them with spinning disk microscopy. The cells transduced with LGN were also 

transduced with mCherry-tagged tubulin in order to visualize the mitotic spindle. 

However, this double transduction could not be achieved for the cells transduced with 

NuMA and in this case the mitotic spindle was visualized using the tubulin probe 

SiR-Tubulin. 

First, to verify that the Plexin-B2 knockout has a mitotic orientation defect 

phenotype, the CRISPR control and knockout clones were cultured in 3D and stained for 
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β-catenin and ZO-1. If the orientation of mitosis is not altered, the daughter cells stay in 

the same plane and the structure of the cysts remains normal, with one layer of cells 

surrounding a single lumen. If cells divide perpendicularly or oblique to the plane, the 

daughter cells invade the lumen and split it in several cavities or completely fill it (Figure 

33). Therefore, after seeding the CRISPR clones in a blind manner, when the cysts grew, 

the amount of cysts with normal and abnormal lumina were counted.  

 

Figure 33. Confocal images of mIMCD-3 Plexin-B2 wild type (control) and Plexin-B2 knockout growing 

in 3D and stained for β-catenin, ZO-1 and DAPI. Each row shows an independent experiment  

 

As shown in Figure 34, untreated mIMCD-3 cells and the control CRISPR clone for 

both transductions showed formation of mostly normal cysts with normal lumina. 

However, both Plexin-B2 knockout clones transduced with either of the mitotic spindle 

regulators showed an increased proportion of abnormal cysts with their lumen divided 

or filled with cells.  
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Figure 34. Quantification of normal and abnormal lumen formation in mIMCD-3 Plexin-B2 wild type and Plexin-B2 knockouts transduced with EGFP-NuMA or EGFP-LGN 

and tubulin-mCherry  
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4.10. Knockout of Plexin-B2 does not increase net proliferation of mIMCD-3 cells 

During culture of the CRISPR control cells and Plexin-B2 knockouts there was an 

impression that they were forming bigger cysts in the same amount of time and it was 

also observed that the amount of dead cells floating in the medium in 2D cultures was 

higher. Therefore, it was verified if they were growing at a higher rate. 

To test if the growth of the cells is affected in the knockout clones a counting 

experiment and a crystal violet staining experiment were done. Both experiments give 

an estimation of the growth of the cells in culture. For the cell counting experiment, 

untreated mIMCD-3 cells, a CRISPR control clone and the two Plexin-B2 knockout clones 

were seeded in equal numbers and counted every day for four days.  After four days, 

the CRISPR control clone and the two Plexin-B2 knockout clones had a statistically 

significant higher growth compared to untreated mIMCD-3 cells (Figure 35, p = 0,001; p 

= 0,04 and p = 0,01; respectively). The CRISPR control also grew more than the knockout 

clone 2, but the difference with the knockout 1 was not significant (p = 0,02 and p = 0,09; 

respectively). However, the difference between both Plexin-B2 knockout clones was not 

significant (p = 0,7). 

Another experiment to test the growth of the cells was the crystal violet staining. 

For that, the same number of CRISPR control cells and Plexin-B2 knockouts from both 

clones were seeded. Three wells were seeded for each time point and cell line to be 

analysed. Every day, the corresponding cells were stained with crystal violet. After 

washing away the excess of crystal violet, they were destained and the absorbance of 

the crystal violet-containing supernatant was measured. The bigger the amount of cells 

that were present in the wells, the more concentrated the crystal violet would be in the 

supernatant. Therefore, this was an indirect way of measuring growth. 

As shown in Figure 36, Plexin-B2 knockout clones seemed to grow slightly more 

than CRISPR controls, but overall the growth levels were comparable. After four days, 

no statistical differences could be detected between any of the knockouts and the 

CRISPR control (knockout 1: p = 0,6; knockout 2: p = 0,2) nor between knockout 1 and 

knockout 2 cells (p = 0,5). These two experiments taken together suggest that the 

growth of mIMCD-3 cells is not significantly affected by the deletion of Plexin-B2.
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Figure 35. Growth of mIMCD-3 control cells and Plexin-B2 mutants. Number of cells counted every day after seeding control cells and Plexin-B2 knockouts 
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Figure 36. Crystal violet absorbance-based indirect measurement of growth of mIMCD-3 control cells and Plexin-B2 knockouts. Absorbance at 595 nm measured in the 

supernatant after destaining the crystal violet in CRISPR control cells and Plexin-B2 knockout clones 1, 2, 3 and 4 days after seeding
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4.11. Knockout of Plexin-B2 increases the proportion of cells in the S and G2/M phases 

and aneuploidy in mIMCD-3 cells 

After verifying that both Plexin-B2 knockout clones show the same phenotype and 

behave similarly, in further experiments, I focused on clone number 2. When imaging 

the Plexin-B2 knockout cysts transduced with EGFP-LGN and tubulin-mCherry, some 

aberrant mitosis with more than two poles were observed (Figure 37). For this reason, 

it was interesting to verify the occurrence of aneuploidy in Plexin-B2 knockout mIMCD-3 

clones. For that, a cell cycle analysis with propidium iodide staining and flow cytometry 

was performed. 

 

Figure 37. Aberrant mitosis in a Plexin-B2 knockout mIMCD-3 cell. Plexin-B2 knockout clone transduced 

with EGFP LGN and tubulin-mCherry in which a mitotic spindle with three poles could be observed  

 

The amount of propidium iodide inside of a stained cell reflected the amount of 

DNA that it contained. In those cells where Plexin-B2 was knocked out, an increase of 

cells in the G2/M phase could be observed (Figure 38). This result taken together with 

the equal rate of growth when compared with the control cells could suggest that the 

Plexin-B2 knockout cells spend more time in the G2 or M phases of the cycle, thus 

increasing the proportion of the cells present in one of these phases. A striking result 

was the observed increase in the proportion of cells with aneuploidy in the Plexin-B2 

knockout mIMCD-3 cells compared to the control. This could be a consequence of 

defects in mitosis. 
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Figure 38. Cell cycle analysis of control and Plexin-B2 knockout mIMCD-3 cells. Cell count of cells 

containing different amounts of propidium iodide depending on their DNA content. P6: sub-G0. P3: 

G0/G1. P4: S and G2/M. P5: aneuploid cells  

 

4.12. Knockout of Plexin-B2 does not change LGN and NuMA localization during 

mitosis 

Since the knockout of Plexin-B2 impaired lumen formation in mIMCD-3 cysts, next, the 

mitotic spindle regulators LGN and NuMA were investigated. The goal was to verify if 

the localization of LGN and NuMA changes when Plexin-B2 is absent. For that, the 

CRISPR control clone and the two Plexin-B2 knockout clones, transduced with either 

EGFP-LGN or EGFP-NuMA, were cultured in 3D and live-cell imaging was performed 

using a spinning disk microscope. Tubulin was also labelled to visualize the mitotic 

spindle and be able to follow the process of mitosis, as well as identify the orientation 

of the cell division.  
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The goal was to image wild type and Plexin-B2 knockout cysts when they were 

still small and growing, so that it would be possible to see cells go from interphase into 

mitosis and record the entire cell division. However, very few cells were labelled for the 

mitotic spindle regulators and tubulin simultaneously and from those, none could be 

recorded going from interphase into mitosis. Instead, cells that had just started mitosis 

were recorded during the rest of the cell division. Another problem was that in the 

Plexin-B2 knockout cysts the lumen was filled with cells from a very early stage, which 

meant that the cells had contact with other cells in all directions and a potential 

mislocalization of LGN to the wrong membrane domains could not be investigated.  

In the mIMCD-3 wild type cysts expressing Plexin-B2, the mitotic spindle 

regulator LGN localized to the lateral membrane, where the cell-cell contacts happened, 

positioning the mitotic spindle in parallel to the epithelial plane. In the Plexin-B2 

knockout clones, LGN still localized at cell-cell contacts, but now these extended to the 

whole membrane. Furthermore, the orientation of cell division seemed to be random 

and sometimes cells divided perpendicularly or oblique to the epithelial plane (Figure 

39). 

As shown in Figure 40, in the absence of Plexin-B2, NuMA still localized normally, 

accumulating at the mitotic spindle poles during cell division (Hueschen et al. 2017; 

Kotak, Busso, and Gönczy 2014). These results taken together strongly suggest that the 

absence of Plexin-B2 does not affect the localization of the mitotic spindle regulators 

LGN and NuMA.  
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Figure 39. Spinning disk live-cell imaging of wild type and Plexin-B2 knockout cysts expressing EGFP-LGN and tubulin-mCherry during mitosis. Arrows indicate accumulation 

of LGN and dashed lines indicate the orientation of the mitotic spindle  
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Figure 40. Spinning disk live-cell imaging of a Plexin-B2 knockout cyst expressing EGFP-NuMA and labelled with SiR-tubulin during mitosis. Arrows indicate NuMA 

accumulation 
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5. Discussion 

Cell polarity is essential in order to maintain epithelial integrity and function. In epithelial 

cells, many components and processes show a polarized organization. One of them is 

the mitotic spindle, whose orientation is controlled to achieve precise tissue shaping, 

differentiation of progenitors or symmetrical division in stem cells. Plexins have been 

demonstrated to control mitotic spindle orientation during tissue morphogenesis. In this 

work I investigated the possible mechanism responsible for the polarized expression of 

Plexin-B2 in epithelial cells and the potential link between Plexin-B2 and the mitotic 

spindle regulators LGN and NuMA.  

 

5.1. Polarized localization of Plexin-B2 in epithelia 

First, I investigated the localization of Plexin-B2 in epithelial cells in vivo. I confirmed that 

in the mouse kidney Plexin-B2 is expressed in a strictly polarized manner to the 

basolateral membrane, while being absent from the luminal surface. At the embryonic 

stage, the expression of Plexin-B2 is restricted to cell-cell contacts in the developing 

kidney. On the other hand, in the adult, Plexin-B2 also localizes at the epithelial-

extracellular matrix interface. This was demonstrated by immunofluorescence staining 

of endogenous Plexin-B2 in the embryonic and adult mouse kidney and comparison with 

staining of E-cadherin and ZO-1 (Figure 17). 

This strict basolateral localization of Plexin-B2 was also observed by Xia et al. for 

the mouse kidney epithelium and also for other epithelia like the lung or the intestine 

(Xia et al. 2015). This hints that Plexin-B2 might exert similar functions in these epithelia. 

Interestingly, in the mid-secretory human endometrium, Plexin-B2 has been shown to 

localize in a polarized manner to the apical surface of luminal epithelial cells (Singh and 

Aplin 2015). These differences could reflect a different role of Plexin-B2 in these tissues. 

In fact, Fujiwara et al. showed that another axon guidance molecule, ephrin-A1, was also 

expressed at the apical membrane of luminal epithelial cells of the endometrium and 

proposed that it mediates the interaction between blastocysts and the endometrium 

(Fujiwara et al. 2002). 
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The basolateral localization of Plexin-B2 in the epithelium would permit 

juxtacrine Semaphorin-Plexin signaling with adjacent epithelial cells mediated by 

transmembrane semaphorin ligands. This is further supported by the fact that Sema4D, 

a Plexin-B2 transmembrane ligand, is also localized at the basolateral membrane of renal 

epithelial cells as shown by immunofluorescence staining of the endogenous protein 

(Figure 17). This way, Sema4D expressed on the lateral surface of one epithelial cell can 

bind Plexin-B2 on the lateral membrane of the adjacent cell. Therefore, in these cells, 

Sema4D-Plexin-B2 signaling is possible. On the other hand, an apical localization of the 

plexin would be required for paracrine signaling mediated by a secreted or a cleaved 

semaphorin released into the lumen. Indeed, Arbeille et al. showed that during the 

development of the central nervous system, Sema3B released to the brain ventricles 

and spinal cord canal, bound to neuropilins on the apical surface of mitotic progenitors 

(Arbeille et al. 2015). This suggests that the expression of plexins is polarized to the 

surfaces where they can bind their ligands. Both patterns of expression could 

hypothetically also be used for a semaphorin-independent role of plexins. For example, 

Plexin-D1 has recently been identified as a mechanosensor in endothelial cells, which 

signals independently from its semaphorin ligand in a complex with Nrp1 and VEGFR2 

(Mehta et al. 2020). 

Supporting the idea that the basolateral localization of Plexin-B2 in kidney 

epithelial cells is related to its role in juxtacrine cell-cell communication, Ogawa et al. 

showed that another molecule involved in cell-cell communication, ephrin-B1, localizes 

to the basolateral membrane of epithelial cells of the proximal tubules in the kidney 

cortex (Ogawa et al. 2006). Contrarily, another group of axon guidance receptors, Robo1 

and Robo2, which use Slit as a ligand, have been shown to localize to the apical 

membrane of epithelial cells during lung development (Anselmo et al. 2003), although 

during a short period they were also observed at the basolateral membrane. This 

indicates that different families of axon guidance molecules exhibit sometimes the same 

subcellular distribution in epithelia, but other times the opposite one, probably related 

to their function in those tissues at specific times. 

The fact that Plexin-B2 is also localized at the basal membrane next to the 

extracellular matrix in the adult, but not in the embryo, suggests that its targeting there 
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might have a functional relevance. This could be linked to integrin function, as Plexin-B1 

has already been demonstrated to regulate integrin activity (Oinuma, Katoh, and Negishi 

2006; Barberis et al. 2004; Basile, Gavard, and Gutkind 2007). Besides Plexin-B1, other 

plexins can also regulate integrin function (Banu et al. 2006; Choi et al. 2014). Integrin 

signaling is essential for the development of epithelial polarity and epithelial 

morphogenesis. On one hand, Integrin signaling through Rac1 upon binding to the 

extracellular matrix is necessary for laminin secretion and assembly of the basement 

membrane (O’Brien et al. 2001; Yu et al. 2005). Then, integrin binds the basement 

membrane and signals through ILK in order to polarize the plus end of non-centrosomal 

microtubules at the basal membrane, which correctly orients apicobasal polarity and 

allows lumen formation (Akhtar and Streuli 2013). However, whether plexins play a role 

in this process needs to be further investigated. It would also be interesting to determine 

the subcellular localization of Plexin-B2 and its ligands in other epithelial tissues where 

their role is already known. Additionally, it is important to assess the subcellular 

expression of other axon guidance and cell-cell communication molecules like ephrin-

Eph and Slit-Robo in different epithelia and compare it with that of semaphorins and 

Plexins. 

Next, I assessed the localization of Plexin-B2 in mIMCD-3 cells, which I used as a 

model. The expression of Plexin-B2 at cell-cell contacts in mIMCD-3 monolayers and 3D 

cysts, as demonstrated by immunofluorescence staining of the endogenous protein 

(Figures 18 and 19), further supported the possible role of Plexin-B2 in cell-cell 

communication in epithelial cells. Moreover, it validated mIMCD-3 cells as a model to 

study localization and function of Plexin-B2 in epithelial cells, as it recapitulated the 

situation observed in vivo. 

The potential relevance of the localization at cell-cell contacts of axon guidance 

molecules in epithelial cells was also supported by the observation of EphA, a receptor 

for ephrin-A1, at cell-cell contacts in MDCK cells (Miao et al. 2003). It would be 

interesting to assess the localization of other axon guidance molecules, in particular 

other plexins and their semaphorin ligands, in mIMCD-3 cells in 2D and 3D. 
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5.2. Plexin-B2 localization during cell division 

Since it is known that Plexin-B2 plays a role in mitotic spindle orientation (Xia et al. 2015), 

the next question was to find out where Plexin-B2 localizes during mitosis. Plexin-B2 is 

constantly expressed at the mitotic poles during cell division, even after cell rounding, 

as demonstrated by live-cell imaging (Figure 20). As soon as the new membrane divided 

both daughter cells, Plexin-B2 also localized there. This suggests that Plexin-B2 might 

indicate the site of anchorage of the mitotic spindle to the cell cortex. Since the mitotic 

spindle regulators LGN and NuMA localize forming a lateral ring in planar symmetric cell 

divisions (Hao et al. 2010), the polarized expression of Plexin-B2 at the mitotic poles 

could also mean that it interacts with the mitotic spindle machinery. A first step for the 

future investigation of these possibilities would be to visualize the localization of Plexin-

B2 from a top or bottom view during cell division. This could be followed by co-IP studies 

to look for binding partners during cell division. It would also be interesting to observe 

the localization of Sema4D or other Plexin-B2 ligands during mitosis in these cells. 

Although it has been observed that Eph signaling can also control mitotic spindle 

orientation in vivo (Franco and Carmena 2019), there is not sufficient evidence in the 

current literature about the subcellular expression of this axon guidance molecule 

during mitosis. Therefore, it would be interesting to assess the subcellular localization 

of other axon guidance molecules during cell division to hint to the potential mode of 

action of this group of molecules, including semaphorins and plexins, in their control of 

mitosis. 

Plexins have been proposed to be adhesion molecules (Ohta et al. 1995). In a 

study by Gloerich et al., another adhesion molecule, E-cadherin, was involved in mitotic 

spindle orientation by positioning LGN at cell-cell contacts. In the same study it was 

shown that the loss of E-cadherin-mediated cell-cell adhesions produces the same 

phenotype demonstrated by Xia et al. in MDCK cysts and in the present study in 

mIMCD-3 cysts after knockout of Plexin-B2 (Gloerich et al. 2017). Interestingly, they 

further showed that E-cadherin localizes forming a lateral ring in MDCK cells during 

mitosis in a way similar to the observed for LGN and NuMA in planar symmetric cell 

divisions. Moreover, Desclozeaux et al. showed that Rab11 and the recycling endosome 

are required for E-cadherin trafficking to the basolateral membrane and that inhibiting 
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Rab11 caused aberrant MDCK cyst formation. Furthermore, ectopically expressing 

E-cadherin at the apical membrane produced the same phenotypical effects 

(Desclozeaux et al. 2008). These results, together with the ones that I present here and 

with the work of Xia et al. showing that the loss of Plexin-B2 causes aberrant mitotic 

spindle orientation,  suggest that Plexin-B2-mediated cell-cell adhesion could represent 

a mechanism that positions Plexin-B2 at the mitotic poles, which could be important in 

order to control the orientation of cell division. However, this needs to be further 

investigated. One way to do this would be by disrupting Plexin-B2 homophilic interaction 

through mutation of the responsible extracellular domains. This homophilic interaction 

could also be investigated by co-culturing Plexin-B2 knockout cells with cells transduced 

with EGFP-labelled wild type Plexin-B2, which would be visualized during mitosis. 

 

5.3. Plexin-B2 localization does not depend on binding to its ligand 

Since the strictly polarized localization of Plexin-B2 in epithelial cells could be explained 

by its requirement for juxtacrine Semaphorin-Plexin signaling, I hypothesized whether 

the trafficking of Plexin-B2 to the basolateral membrane depended on binding to its 

ligand. As demonstrated by immunofluorescence staining of endogenous Plexin-B2 in 

ligand-deficient mouse kidney (Figure 21), the polarized expression of Plexin-B2 is not 

dependent on the presence of its ligand. This means that the basolateral localization of 

Plexin-B2 in epithelia does not require stabilization by binding to semaphorins on 

adjacent cells. Plexin-B2 might interact with other proteins at cell-cell contacts to 

prevent endocytosis. Another possibility is, as mentioned above, that Plexin-B2 acts as 

a cell-cell adhesion molecule by binding homophilically (Ohta et al. 1995), which could 

prevent its internalization. It would therefore be interesting to co-culture Plexin-B2 

knockout cells with wild type cells in the absence of the ligands of Plexin-B2 and see if 

Plexin-B2 in the wild types still localizes to cell-cell contacts. 

 Interestingly, the kidney epithelium could develop normally in sema4B-/-, 

Sema4D-/- and Sema4G-/- triple knockout mice (Xia et al. 2015). This suggests that 

another ligand of Plexin-B2 is expressed in renal tubular epithelial cells during 
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development and compensates the loss of the other three. For instance, Sema4A or 

Sema4C. 

 

5.4. Identification of a basolateral sorting motif in the cytoplasmic domain of Plexin-B2 

Considering that many membrane proteins are targeted basolaterally through 

intracellular peptide motifs (Stoops and Caplan 2014), I studied a cytoplasmic domain-

deficient Plexin-B2 mutant. As demonstrated by expressing the EGFP-tagged 

intracellular deletion mutant of Plexin-B2 in MDCK cells (Figure 22), its cytoplasmic 

domain is required for its basolateral localization in epithelial cells in 3D. This result 

suggests the existence of a basolateral targeting motif within the intracellular sequence 

of Plexin-B2. Another possibility would be that Plexin-B2 gets recruited to the 

basolateral membrane by interacting with another protein localized at cell-cell contacts 

through its cytoplasmic region. Supporting this hypothesis, PDZ-RhoGEF has been shown 

to promote membrane localization of Plexin-B1, a close homologue of Plexin-B2 (Swiercz 

et al. 2002). However, this recruitment was not specific to cell-cell contacts, which could 

possibly require an additional interaction partner. 

For another cell-cell adhesion molecule like E-cadherin, a dileucine motif was 

identified as being the responsible for its basolateral targeting. This motif was conserved 

in most of the cadherin family members, sometimes changing the second leucine for 

isoleucine (Miranda et al. 2001). The expression patterns of the Plexin-B2 sequential 

deletion mutants in 3D (Figures 27 and 28) showed that the basolateral targeting motif 

must reside between the transmembrane domain and the C1 domain of the GAP. In this 

region, no dileucine motive like the one in E-cadherin can be found. Instead, tyrosine-

based lateral targeting motif appears (Figure 29). This motif is present in all mouse class 

B plexins and conserved in Plexin-B2 (Figure 30). The fact that this motif is conserved in 

plexins of the B subfamily but not in A, C or D subfamilies suggests that B plexins are 

targeted to the basolateral membrane while A, C and D plexins locate apically. However, 

there is no literature about their exact subcellular localization yet. Interestingly, Plexins 

of the A subfamily act as receptors for Sema3B, and their potential apical localization 
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could fit the neuropilin-mediated Sema3B signaling at the apical membrane of 

neuroepithelial progenitors observed by Arbeille et al. 

In order to verify whether this motif is really responsible for Plexin-B2 polarized 

basolateral localization in epithelia, point mutants should be generated and their 

targeting analized. Of note, there are several point mutations described for Plexin-B1, 

but none of them in the suggested motif (Wong et al. 2007). In that study, those 

mutations were investigated in the roles of cell spreading, adhesion, migration and cell 

collapse, but their possible phenotypes in the subcellular localization of Plexin-B1 in 

epithelial cells in 3D were not investigated. 

 Interestingly, in MDCK and mIMCD-3 cells in 2D, the cytoplasmic domain of 

Plexin-B2 was not required for its targeting to cell-cell contacts. In this case, its 

localization to cell-cell contacts could be mediated by resistance to endocytosis by 

stabilization through homophilic interactions mediated by the extracellular domain 

(Ohta et al. 1995). As mentioned above, an experiment co-culturing these cells, 

expressing Plexin-B2ΔIC, with Plexin-B2 knockouts would help solve this question. 

 

5.5. Plexin-B2 in mitotic spindle orientation 

Next, I further investigated the role of Plexin-B2 in mitotic spindle orientation. 

Interestingly, the apical localization of Plexin-B2ΔIC in MDCK cells did not prevent the 

formation of normal cysts (Figures 22, 27 and 28). This can be explained by the fact that 

these cells are still expressing wild type Plexin-B2 endogenously. Considering that Xia et 

al. showed that the GAP domain of Plexin-B2 is required for mitotic spindle positioning, 

it can be concluded that Plexin-B2ΔIC does not intervene in the orientation of the mitotic 

spindle. It would be interesting to ectopically express full-length Plexin-B2 at the apical 

membrane in these cells and observe its potential impact on cell division. 

Plexin-B2 is required to correctly position the mitotic spindle also in mIMCD-3 

cysts, as confirmed by deleting Plexin-B2 using CRISPR/Cas9 genome editing (Figures 33, 

34 and 39). This is coincident with the results of Xia et al. in MDCK cysts and in vivo. 

Sema3B signaling was also demonstrated to control the positioning of the spindle in 

neuroepithelial mitotic progenitors (Arbeille et al. 2015), supporting the role of 
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Semaphorin-Plexin signaling in mitotic spindle orientation. Furthermore, another axon 

guidance receptor like Eph has been shown to control mitotic spindle orientation as well 

(Franco and Carmena 2019). Therefore, it seems likely that epithelial cells utilize cell-cell 

communication factors, like axonal guidance molecules, as extrinsic cues to position 

their mitotic spindle correctly. 

In order to elucidate how this happens, I investigated the mitotic spindle 

regulators LGN and NuMA in Plexin-B2 knockout cells and compared them to wild type 

cells. It has been shown before that LGN and NuMA localize forming a lateral ring in 

planar dividing cells (Hao et al. 2010). Furthermore, NuMA also shows localization at the 

centrosomes during mitosis (Du and Macara 2004). The deletion of Plexin-B2 in 

mIMCD-3 cells did not alter the localization of LGN at cell-cell contacts during interphase 

(Figure 39). During mitosis, in control cysts, LGN localized at the mitotic poles of the cell 

cortex similarly to what was shown for Plexin-B2 (Figures 39 and 20). However, in Plexin-

B2 knockout mutants, LGN localized all around the membrane (Figure 39). This result 

has to be interpreted with caution, as in both wild type and Plexin-B2 knockout cells, 

LGN localizes to cell-cell contacts during cell division. In the case of Plexin-B2 knockout 

cysts, at the time point of the analysis, the dividing cells are completely surrounded by 

other cells. In contrast, in wild type cysts, each cell only contacts other cells at its lateral 

sides. LGN could potentially still be excluded from the apical membrane in Plexin-B2 

knockout cells, but since they do not show an apical domain, this could not be analysed. 

From this result it cannot be concluded whether Plexin-B2 controls the localization of 

LGN at cell-cell contacts. However, it is possible to confirm that Plexin-B2 is not required 

for the targeting of LGN to the membrane. It would be interesting to knockout or 

knockdown Plexin-B2 after the mIMCD-3 cells have been allowed to form normal cysts 

with a central lumen, for example by transducing the cells with an inducible shRNA 

construct. This way, the localization of LGN during mitosis could be observed in Plexin-

B2 depleted cells that still show an apical domain. 

 In Plexin-B2 knockout mIMCD-3 cells, the mitotic spindle axis could be observed 

sometimes aligning normally (not shown), parallel to the outer surface of the cyst, but 

other times perpendicularly or oblique (Figure 39). Therefore, the localization of LGN in 

the whole cell cortex makes the orientation of the mitotic spindle random, causing 
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eventual cell divisions towards the centre of the cyst and generating multi-layered and 

luminal filling. 

In this study, I encountered many difficulties to analyse the position of NuMA in 

Plexin-B2 knockout and wild type mIMCD-3 cysts due to its low transduction efficiency. 

From the example that could be analized (Figure 40), it can be concluded that the 

knockout of Plexin-B2 does not alter the localization of NuMA at the spindle poles. 

However, the deletion of Plexin-B2 alters the recruitment of NuMA to the correct 

membrane domain to ensure planar division. This is consistent with the fact that LGN 

does not influence the localization of NuMA to the centrosomes, but recruits it to the 

appropriate cortical domain (Du and Macara 2004). 

 How does Plexin-B2 control mitotic spindle orientation? Xia et al. showed that 

correct orientation of the spindle depended on Plexin-B2-mediated activation of Cdc42 

(Xia et al. 2015). Interestingly, active Cdc42 has been shown to mediate the apical 

membrane determination in MDCK and Caco-2 cells in the first cell divisions during cyst 

formation (Martin-Belmonte et al. 2007; Jaffe et al. 2008). Therefore, Plexin-B2 might 

control the formation of the apical membrane and an initial lumen at the first cell 

divisions of MDCK and mIMCD-3 cysts, rather than regulate directly the position of LGN. 

This would be consistent with the results that I present here, where LGN still localizes to 

cell-cell contacts in Plexin-B2 knockout cysts, but no clear apical domain or central lumen 

is formed. Another possiblility is that Plexin-B2 controls mitotic spindle orientation by 

regulating the cortical actin cytoskeleton. The observation that another axon guidance 

receptor like Eph controls mitotic spindle orientation by regulating myosin II supports 

this idea (Franco and Carmena 2019). However, Arbeille et al. showed the cortical actin 

cytoskeleton was unaltered in Sema3B-deficient neuroepithelial progenitors with 

mitotic spindle orientation defects. They propose that semaphorin signaling controls the 

positioning of the spindle through GSK3-mediated inhibition of the microtubule 

stabilizer CRMP2 (Arbeille et al. 2015). Therefore, further investigation needs to be done 

analysing the actin cytoskeleton in Plexin-B2 knockout cysts and pathways like GSK3-

CRMP2. It would also be interesting to repeat the experiments done in this work during 

the first divisions of mIMCD-3 cells in order to elucidate if they ever form a central 

lumen. 
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5.6. Plexin-B2 and cell cycle 

Due to the observation that Plexin-B2 knockout cysts were bigger than wild type cysts 

and also because of the finding of striking multipolar mitoses in Plexin-B2 knockout cells, 

the role of Plexin-B2 in the cell cycle was further investigated. By performing a 

propidium iodide staining followed by flow cytometry, a higher proportion of cells in the 

G2/M phases of the cell cycle could be observed in Plexin-B2 knockout cells. This could 

have various interpretations. It is possible that in Plexin-B2 knockout cells mitosis takes 

longer, causing an accumulation of cells in the G2/M phases. Indeed, this was the 

impression while recording mitosis in wild type and Plexin-B2 knockout cysts, but the 

duration of cell division has not been quantified in this work. This hypothesis is 

consistent with the results of a study on breast cancer cells, in which a G2/M transition 

block was found upon knockdown of either Plexin-B2 or its ligand Sema4C (Gurrapu et 

al. 2018). That block resulted in the increase of cells in the G2/M phases. Another 

possibility is that Plexin-B2 knockout cells proliferate more than wild types. As shown in 

Figure 35 and Figure 36, growth was comparable between wild types and Plexin-B2 

knockouts. However, this could also mean that both cell proliferation as well as cell 

death are increased in Plexin-B2 knockout cells, keeping the net growth unchanged. In 

the study of Gurrapu et al. it was shown that knockdown of Sema4C or Plexin-B2 

reduced proliferation of breast cancer cells, but not of normal immortalized human 

mammary epithelial cells. It would be interesting to measure cell death in mIMCD-3 

Plexin-B2 knockout cells and compare it to that of the wild type or perform a more 

specific cell proliferation assessment. Besides the study of Gurrapu et al., other studies 

have shown that the depletion of Plexin-B2 or its close homologue Plexin-B1 decreased 

proliferation in several cell types, including cancer cells (Daviaud et al. 2016; Saha et al. 

2012; Perälä et al. 2011; Cao et al. 2014). Contrarily, Eph deletion not only showed 

disrupted mitotic spindle orientation, but also promoted proliferation by a reduced Rho-

dependent inactivation of the PI3K-Akt1 pathway (Franco and Carmena 2019).  This 

suggests that Plexin-B2 could act in a similar way through its PDZ domain-binding motif 

and RhoA activation downstream effect. Interestingly, the altered proliferation 

observed in the study of Gurrapu et al. was attributable to a reduction in Plexin-B2-
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mediated RhoA activation. Whether Plexin-B2 signaling enhances or inhibits 

proliferation in mIMCD-3 cells has to be further studied using Plexin-B2 knockout cells. 

Even though multipolar mitoses were observed for Plexin-B2 knockout cells, 

strikingly, an increase of the Sub-G0 population was not found, but in fact there was a 

higher proportion of cells with excessive DNA content. An explanation for this 

phenomenon could be that too prolonged mitosis could lead to problems when 

finalizing cell division or to defects in cytokinesis as a consequence of the absence of 

Plexin-B2. This is consistent with the results of Gurrapu et al., who also observed a 

blockade of cytokinesis resulting in multinucleated cells. However, no experiments have 

been conducted in this thesis to investigate this possibility.
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“Mammalian PAR-1 Determines Epithelial Lumen Polarity by Organizing the 
Microtubule Cytoskeleton.” The Journal of Cell Biology 164 (5): 717–27. 
https://doi.org/10.1083/jcb.200308104. 

Conrotto, Paolo, Simona Corso, Sara Gamberini, Paolo Maria Comoglio, and Silvia 
Giordano. 2004. “Interplay between Scatter Factor Receptors and B Plexins 
Controls Invasive Growth.” Oncogene 23 (30): 5131–37. 
https://doi.org/10.1038/sj.onc.1207650. 

Couwenbergs, Claudia, Jean-Claude Labbé, Morgan Goulding, Thomas Marty, Bruce 
Bowerman, and Monica Gotta. 2007. “Heterotrimeric G Protein Signaling 
Functions with Dynein to Promote Spindle Positioning in C. Elegans.” The Journal 
of Cell Biology 179 (1): 15–22. https://doi.org/10.1083/jcb.200707085. 



References 
 

151 
 

 

Cuenca, A. A., Aaron Schetter, Donato Aceto, Kenneth Kemphues, and Geraldine 
Seydoux. 2003. “Polarization of the C. Elegans Zygote Proceeds via Distinct 
Establishment and Maintenance Phases.” Development 130 (7): 1255–65. 
https://doi.org/10.1242/dev.00284. 

Curtin, John A., Elizabeth Quint, Vicky Tsipouri, Ruth M. Arkell, Bruce Cattanach, 
Andrew J. Copp, Deborah J. Henderson, et al. 2003. “Mutation of Celsr1 Disrupts 
Planar Polarity of Inner Ear Hair Cells and Causes Severe Neural Tube Defects in 
the Mouse.” Current Biology : CB 13 (13): 1129–33. 
https://doi.org/10.1016/s0960-9822(03)00374-9. 

Daulat, Avais M., and Jean-Paul Borg. 2017. “Wnt/Planar Cell Polarity Signaling: New 
Opportunities for Cancer Treatment.” Trends in Cancer 3 (2): 113–25. 
https://doi.org/10.1016/j.trecan.2017.01.001. 

Daviaud, Nicolas, Karen Chen, Yong Huang, Roland H. Friedel, and Hongyan Zou. 2016. 
“Impaired Cortical Neurogenesis in Plexin-B1 and -B2 Double Deletion Mutant.” 
Developmental Neurobiology 76 (8): 882–99. 
https://doi.org/10.1002/dneu.22364. 

David, Nicolas B., Charlotte A. Martin, Marion Segalen, François Rosenfeld, François 
Schweisguth, and Yohanns Bellaïche. 2005. “Drosophila Ric-8 Regulates Gαi 
Cortical Localization to Promote Gαi-Dependent Planar Orientation of the Mitotic 
Spindle during Asymmetric Cell Division.” Nature Cell Biology 7 (11): 1083–90. 
https://doi.org/10.1038/ncb1319. 

Deborde, Sylvie, Emilie Perret, Diego Gravotta, Ami Deora, Susana Salvarezza, Ryan 
Schreiner, and Enrique Rodriguez-Boulan. 2008. “Clathrin Is a Key Regulator of 
Basolateral Polarity.” Nature 452 (7188): 719–23. 
https://doi.org/10.1038/nature06828. 

Desclozeaux, Marion, Juliana Venturato, Fiona G. Wylie, Jason G. Kay, Shannon R. 
Joseph, Huong T. Le, and Jennifer L. Stow. 2008. “Active Rab11 and Functional 
Recycling Endosome Are Required for E-Cadherin Trafficking and Lumen 
Formation during Epithelial Morphogenesis.” American Journal of Physiology-Cell 
Physiology 295 (2): C545–56. https://doi.org/10.1152/ajpcell.00097.2008. 

Devenport, Danelle. 2014. “The Cell Biology of Planar Cell Polarity.” The Journal of Cell 
Biology 207 (2): 171–79. https://doi.org/10.1083/jcb.201408039. 

Dickson, B. J. 2001. “Rho GTPases in Growth Cone Guidance.” Current Opinion in 
Neurobiology 11 (1): 103–10. https://doi.org/10.1016/S0959-4388(00)00180-X. 

Donovan, Kirk W., and Anthony Bretscher. 2012. “Myosin-V Is Activated by Binding 
Secretory Cargo and Released in Coordination with Rab/Exocyst Function.” 
Developmental Cell 23 (4): 769–81. https://doi.org/10.1016/j.devcel.2012.09.001. 

Doyle, D. A., A. Lee, J. Lewis, E. Kim, M. Sheng, and R. MacKinnon. 1996. “Crystal 
Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: 
Molecular Basis of Peptide Recognition by PDZ.” Cell 85 (7): 1067–76. 
https://doi.org/10.1016/s0092-8674(00)81307-0. 



References 
 

152 
 

 

Drees, Frauke, Sabine Pokutta, Soichiro Yamada, W. James Nelson, and William I. Weis. 
2005. “α-Catenin Is a Molecular Switch That Binds E-Cadherin-β-Catenin and 
Regulates Actin-Filament Assembly.” Cell 123 (5): 903–15. 
https://doi.org/10.1016/j.cell.2005.09.021. 

Driessens, M. H., H. Hu, C. D. Nobes, A. Self, I. Jordens, C. S. Goodman, and A. Hall. 
2001. “Plexin-B Semaphorin Receptors Interact Directly with Active Rac and 
Regulate the Actin Cytoskeleton by Activating Rho.” Current Biology : CB 11 (5): 
339–44. http://www.ncbi.nlm.nih.gov/pubmed/11267870. 

Du, Quansheng, and Ian G. Macara. 2004. “Mammalian Pins Is a Conformational Switch 
That Links NuMA to Heterotrimeric G Proteins.” Cell 119 (4): 503–16. 
https://doi.org/10.1016/j.cell.2004.10.028. 

DuBridge, R. B., P. Tang, H. C. Hsia, P. M. Leong, J. H. Miller, and M. P. Calos. 1987. 
“Analysis of Mutation in Human Cells by Using an Epstein-Barr Virus Shuttle 
System.” Molecular and Cellular Biology 7 (1): 379–87. 
http://www.ncbi.nlm.nih.gov/pubmed/3031469. 

Dukes, Joseph D., Paul Whitley, and Andrew D. Chalmers. 2011. “The MDCK Variety 
Pack: Choosing the Right Strain.” BMC Cell Biology 12 (1): 43. 
https://doi.org/10.1186/1471-2121-12-43. 

Elhabazi, Abdellah, Stéphanie Delaire, Armand Bensussan, Laurence Boumsell, and 
Georges Bismuth. 2001. “Biological Activity of Soluble CD100. I. The Extracellular 
Region of CD100 Is Released from the Surface of T Lymphocytes by Regulated 
Proteolysis.” The Journal of Immunology 166 (7): 4341–47. 
https://doi.org/10.4049/jimmunol.166.7.4341. 

Erickson, Jon W., Chun-jiang Zhang, Richard A. Kahn, Tony Evans, and Richard A. 
Cerione. 1996. “Mammalian Cdc42 Is a Brefeldin A-Sensitive Component of the 
Golgi Apparatus.” Journal of Biological Chemistry 271 (43): 26850–54. 
https://doi.org/10.1074/jbc.271.43.26850. 

Etemad-Moghadam, Bijan, Su Guo, and Kenneth J. Kemphues. 1995. “Asymmetrically 
Distributed PAR-3 Protein Contributes to Cell Polarity and Spindle Alignment in 
Early C. Elegans Embryos.” Cell 83 (5): 743–52. 
https://doi.org/10.1016/0092-8674(95)90187-6. 

Fazzari, Pietro, Junia Penachioni, Sara Gianola, Ferdinando Rossi, Britta J. Eickholt, 
Flavio Maina, Lena Alexopoulou, et al. 2007. “Plexin-B1 Plays a Redundant Role 
during Mouse Development and in Tumour Angiogenesis.” BMC Developmental 
Biology 7 (May): 55. https://doi.org/10.1186/1471-213X-7-55. 

Fedeles, Sorin, and Anna Rachel Gallagher. 2013. “Cell Polarity and Cystic Kidney 
Disease.” Pediatric Nephrology 28: 1161–72. 
https://doi.org/10.1007/s00467-012-2337-z. 

Feiguin, F., M. Hannus, M. Mlodzik, and S. Eaton. 2001. “The Ankyrin Repeat Protein 
Diego Mediates Frizzled-Dependent Planar Polarization.” Developmental Cell 1 
(1): 93–101. http://www.ncbi.nlm.nih.gov/pubmed/11703927. 



References 
 

153 
 

 

Feng, Wei, Hao Wu, Ling-Nga Chan, and Mingjie Zhang. 2008. “Par-3-Mediated 
Junctional Localization of the Lipid Phosphatase PTEN Is Required for Cell Polarity 
Establishment.” Journal of Biological Chemistry 283 (34): 23440–49. 
https://doi.org/10.1074/jbc.M802482200. 

Fischer, Evelyne, Emilie Legue, Antonia Doyen, Faridabano Nato, Jean-François Nicolas, 
Vicente Torres, Moshe Yaniv, and Marco Pontoglio. 2006. “Defective Planar Cell 
Polarity in Polycystic Kidney Disease.” Nature Genetics 38 (1): 21–23. 
https://doi.org/10.1038/ng1701. 

Franco, Maribel, and Ana Carmena. 2019. “Eph Signaling Controls Mitotic Spindle 
Orientation and Cell Proliferation in Neuroepithelial Cells.” Journal of Cell Biology 
218 (4): 1200–1217. https://doi.org/10.1083/jcb.201807157. 

Fujiwara, Hiroshi, Shinya Yoshioka, Keiji Tatsumi, Kenzo Kosaka, Yukiyasu Satoh, 
Yoshihiro Nishioka, Miho Egawa, Toshihiro Higuchi, and Shingo Fujii. 2002. 
“Human Endometrial Epithelial Cells Express Ephrin A1: Possible Interaction 
between Human Blastocysts and Endometrium via Eph-Ephrin System.” The 
Journal of Clinical Endocrinology & Metabolism 87 (12): 5801–7. 
https://doi.org/10.1210/jc.2002-020508. 

Gallo, C. M., J. T. Wang, F. Motegi, and G. Seydoux. 2010. “Cytoplasmic Partitioning of 
P Granule Components Is Not Required to Specify the Germline in C. Elegans.” 
Science 330 (6011): 1685–89. https://doi.org/10.1126/science.1193697. 

Garcia-Areas, R., S. Libreros, M. Simoes, C. Castro-Silva, N. Gazaniga, S. Amat, J. 
Jaczewska, et al. 2017. “Suppression of Tumor-Derived Semaphorin 7A and 
Genetic Ablation of Host-Derived Semaphorin 7A Impairs Tumor Progression in a 
Murine Model of Advanced Breast Carcinoma.” International Journal of Oncology 
51 (5): 1395–1404. https://doi.org/10.3892/ijo.2017.4144. 

Garneau, Josiane E., Marie-Ève Dupuis, Manuela Villion, Dennis A. Romero, Rodolphe 
Barrangou, Patrick Boyaval, Christophe Fremaux, Philippe Horvath, Alfonso H. 
Magadán, and Sylvain Moineau. 2010. “The CRISPR/Cas Bacterial Immune System 
Cleaves Bacteriophage and Plasmid DNA.” Nature 468 (7320): 67–71. 
https://doi.org/10.1038/nature09523. 

Genevet, Alice, and Nicolas Tapon. 2011. “The Hippo Pathway and Apico–Basal Cell 
Polarity.” Biochemical Journal 436 (2): 213–24. 
https://doi.org/10.1042/BJ20110217. 

Gho, M., Y. Bellaïche, and F. Schweisguth. 1999. “Revisiting the Drosophila 
Microchaete Lineage: A Novel Intrinsically Asymmetric Cell Division Generates a 
Glial Cell.” Development (Cambridge, England) 126 (16): 3573–84. 
http://www.ncbi.nlm.nih.gov/pubmed/10409503. 

Gilbert, T., A. Le Bivic, A. Quaroni, and E. Rodriguez-Boulan. 1991. “Microtubular 
Organization and Its Involvement in the Biogenetic Pathways of Plasma 
Membrane Proteins in Caco-2 Intestinal Epithelial Cells.” The Journal of Cell 
Biology 113 (2): 275–88. https://doi.org/10.1083/jcb.113.2.275. 

Giles, Rachel H., Henry Ajzenberg, and Peter K. Jackson. 2014. “3D Spheroid Model of 



References 
 

154 
 

 

MIMCD3 Cells for Studying Ciliopathies and Renal Epithelial Disorders.” Nature 
Protocols 9 (12): 2725–31. https://doi.org/10.1038/nprot.2014.181. 

Gillies, Taryn E., and Clemens Cabernard. 2011. “Cell Division Orientation in Animals.” 
Current Biology 21 (15): R599–609. https://doi.org/10.1016/j.cub.2011.06.055. 

Giordano, Silvia, Simona Corso, Paolo Conrotto, Stefania Artigiani, Giorgio Gilestro, 
Davide Barberis, Luca Tamagnone, and Paolo M. Comoglio. 2002. “The 
Semaphorin 4D Receptor Controls Invasive Growth by Coupling with Met.” Nature 
Cell Biology 4 (9): 720–24. https://doi.org/10.1038/ncb843. 

Gloerich, Martijn, Julie M. Bianchini, Kathleen A. Siemers, Daniel J. Cohen, and W. 
James Nelson. 2017. “Cell Division Orientation Is Coupled to Cell–Cell Adhesion by 
the E-Cadherin/LGN Complex.” Nature Communications 8 (January): 13996. 
https://doi.org/10.1038/ncomms13996. 

Gloerich, Martijn, and Johannes L. Bos. 2011. “Regulating Rap Small G-Proteins in Time 
and Space.” Trends in Cell Biology 21 (10): 615–23. 
https://doi.org/10.1016/j.tcb.2011.07.001. 

Goetz, Sarah C., and Kathryn V. Anderson. 2010. “The Primary Cilium: A Signalling 
Centre during Vertebrate Development.” Nature Reviews Genetics 11 (5): 331–44. 
https://doi.org/10.1038/nrg2774. 

Gong, Ying, Chunhui Mo, and Scott E. Fraser. 2004. “Planar Cell Polarity Signalling 
Controls Cell Division Orientation during Zebrafish Gastrulation.” Nature 430 
(7000): 689–93. https://doi.org/10.1038/nature02796. 

Gonzalez, Alfonso, and Enrique Rodriguez-Boulan. 2009. “Clathrin and AP1B: Key Roles 
in Basolateral Trafficking through Trans-Endosomal Routes.” FEBS Letters 583 
(23): 3784–95. https://doi.org/10.1016/j.febslet.2009.10.050. 

Grill, S. W., Jonathon Howard, Erik Schäffer, Ernst H K Stelzer, and Anthony A Hyman. 
2003. “The Distribution of Active Force Generators Controls Mitotic Spindle 
Position.” Science 301 (5632): 518–21. https://doi.org/10.1126/science.1086560. 

Grill, Stephan W., Pierre Gönczy, Ernst H. K. Stelzer, and Anthony A. Hyman. 2001. 
“Polarity Controls Forces Governing Asymmetric Spindle Positioning in the 
Caenorhabditis Elegans Embryo.” Nature 409 (6820): 630–33. 
https://doi.org/10.1038/35054572. 

Grinberg-Bleyer, Yenkel, Rachel Caron, John J. Seeley, Nilushi S. De Silva, Christian W. 
Schindler, Matthew S. Hayden, Ulf Klein, and Sankar Ghosh. 2018. “The 
Alternative NF-ΚB Pathway in Regulatory T Cell Homeostasis and Suppressive 
Function.” Journal of Immunology (Baltimore, Md. : 1950) 200 (7): 2362–71. 
https://doi.org/10.4049/jimmunol.1800042. 

Grindstaff, K. K., C. Yeaman, N. Anandasabapathy, S. C. Hsu, E. Rodriguez-Boulan, R. H. 
Scheller, and W. J. Nelson. 1998. “Sec6/8 Complex Is Recruited to Cell-Cell 
Contacts and Specifies Transport Vesicle Delivery to the Basal-Lateral Membrane 
in Epithelial Cells.” Cell 93 (5): 731–40. 
https://doi.org/10.1016/s0092-8674(00)81435-x. 



References 
 

155 
 

 

Gu, Chenghua, and Enrico Giraudo. 2013. “The Role of Semaphorins and Their 
Receptors in Vascular Development and Cancer.” Experimental Cell Research 319 
(9): 1306–16. https://doi.org/10.1016/j.yexcr.2013.02.003. 

Gu, Chenghua, Yutaka Yoshida, Jean Livet, Dorothy V. Reimert, Fanny Mann, Janna 
Merte, Christopher E. Henderson, Thomas M. Jessell, Alex L. Kolodkin, and David 
D. Ginty. 2005. “Semaphorin 3E and Plexin-D1 Control Vascular Pattern 
Independently of Neuropilins.” Science 307 (5707): 265–68. 
https://doi.org/10.1126/science.1105416. 

Gubb, D., and A. García-Bellido. 1982. “A Genetic Analysis of the Determination of 
Cuticular Polarity during Development in Drosophila Melanogaster.” Journal of 
Embryology and Experimental Morphology 68 (April): 37–57. 
http://www.ncbi.nlm.nih.gov/pubmed/6809878. 

Guirao, Boris, Alice Meunier, Stéphane Mortaud, Andrea Aguilar, Jean-Marc Corsi, 
Laetitia Strehl, Yuki Hirota, et al. 2010. “Coupling between Hydrodynamic Forces 
and Planar Cell Polarity Orients Mammalian Motile Cilia.” Nature Cell Biology 12 
(4): 341–50. https://doi.org/10.1038/ncb2040. 

Guo, N., C. Hawkins, and J. Nathans. 2004. “From The Cover: Frizzled6 Controls Hair 
Patterning in Mice.” Proceedings of the National Academy of Sciences 101 (25): 
9277–81. https://doi.org/10.1073/pnas.0402802101. 

Guo, Su, and Kenneth J. Kemphues. 1995. “Par-1, a Gene Required for Establishing 
Polarity in C. Elegans Embryos, Encodes a Putative Ser/Thr Kinase That Is 
Asymmetrically Distributed.” Cell 81 (4): 611–20. 
https://doi.org/10.1016/0092-8674(95)90082-9. 

Gurrapu, Sreeharsha, Emanuela Pupo, Giulia Franzolin, Letizia Lanzetti, and Luca 
Tamagnone. 2018. “Sema4C/PlexinB2 Signaling Controls Breast Cancer Cell 
Growth, Hormonal Dependence and Tumorigenic Potential.” Cell Death and 
Differentiation 25 (7): 1259–75. https://doi.org/10.1038/s41418-018-0097-4. 

Gurrapu, Sreeharsha, and Luca Tamagnone. 2016. “Transmembrane Semaphorins: 
Multimodal Signaling Cues in Development and Cancer.” Cell Adhesion and 
Migration 10 (6): 675–91. https://doi.org/10.1080/19336918.2016.1197479. 

———. 2019. “Semaphorins as Regulators of Phenotypic Plasticity and Functional 
Reprogramming of Cancer Cells.” Trends in Molecular Medicine 25 (4): 303–14. 
https://doi.org/10.1016/j.molmed.2019.01.010. 

Haklai-Topper, Liat, Guy Mlechkovich, Dana Savariego, Irena Gokhman, and Avraham 
Yaron. 2010. “Cis Interaction between Semaphorin6A and Plexin-A4 Modulates 
the Repulsive Response to Sema6A.” EMBO Journal 29 (15): 2635–45. 
https://doi.org/10.1038/emboj.2010.147. 

Hall, H. G., D. A. Farson, and M. J. Bissell. 1982. “Lumen Formation by Epithelial Cell 
Lines in Response to Collagen Overlay: A Morphogenetic Model in Culture.” 
Proceedings of the National Academy of Sciences of the United States of America 
79 (15): 4672–76. http://www.ncbi.nlm.nih.gov/pubmed/6956885. 



References 
 

156 
 

 

Hansson, G. C., K. Simons, and G. van Meer. 1986. “Two Strains of the Madin-Darby 
Canine Kidney (MDCK) Cell Line Have Distinct Glycosphingolipid Compositions.” 
The EMBO Journal 5 (3): 483–89. http://www.ncbi.nlm.nih.gov/pubmed/3519211. 

Hao, Yi, Quansheng Du, Xinyu Chen, Zhen Zheng, Jeremy L. Balsbaugh, Sushmit Maitra, 
Jeffrey Shabanowitz, Donald F. Hunt, and Ian G. Macara. 2010. “Par3 Controls 
Epithelial Spindle Orientation by APKC-Mediated Phosphorylation of Apical Pins.” 
Current Biology 20 (20): 1809–18. https://doi.org/10.1016/j.cub.2010.09.032. 

Harris, Tony J.C., and Mark Peifer. 2005. “The Positioning and Segregation of Apical 
Cues during Epithelial Polarity Establishment in Drosophila.” The Journal of Cell 
Biology 170 (5): 813–23. https://doi.org/10.1083/jcb.200505127. 

Hayashi, Mikihito, Tomoki Nakashima, Masahiko Taniguchi, Tatsuhiko Kodama, Atsushi 
Kumanogoh, and Hiroshi Takayanagi. 2012. “Osteoprotection by Semaphorin 3A.” 
Nature 485 (7396): 69–74. https://doi.org/10.1038/nature11000. 

He, Huawei, Taehong Yang, Jonathan R. Terman, and Xuewu Zhang. 2009. “Crystal 
Structure of the Plexin A3 Intracellular Region Reveals an Autoinhibited 
Conformation through Active Site Sequestration.” Proceedings of the National 
Academy of Sciences of the United States of America 106 (37): 15610–15. 
https://doi.org/10.1073/pnas.0906923106. 

He, Z., and M. Tessier-Lavigne. 1997. “Neuropilin Is a Receptor for the Axonal 
Chemorepellent Semaphorin III.” Cell 90 (4): 739–51. 
https://doi.org/10.1016/s0092-8674(00)80534-6. 

Hediger, Matthias A., Michael F. Romero, Ji-Bin Peng, Andreas Rolfs, Hitomi Takanaga, 
and Elspeth A. Bruford. 2004. “The ABCs of Solute Carriers: Physiological, 
Pathological and Therapeutic Implications of Human Membrane Transport 
Proteins.” Pflugers Archiv: European Journal of Physiology 447 (5): 465–68. 
https://doi.org/10.1007/s00424-003-1192-y. 

Herman, Jeffery G., and Gary G. Meadows. 2007. “Increased Class 3 Semaphorin 
Expression Modulates the Invasive and Adhesive Properties of Prostate Cancer 
Cells.” International Journal of Oncology 30 (5): 1231–38. 
https://doi.org/10.3892/ijo.30.5.1231. 

Hilario, Jona D., Louise R. Rodino-Klapac, Chunping Wang, and Christine E. Beattie. 
2009. “Semaphorin 5A Is a Bifunctional Axon Guidance Cue for Axial Motoneurons 
in Vivo.” Developmental Biology 326 (1): 190–200. 
https://doi.org/10.1016/j.ydbio.2008.11.007. 

Hirate, Yoshikazu, Shino Hirahara, Ken-ichi Inoue, Atsushi Suzuki, Vernadeth B. Alarcon, 
Kazunori Akimoto, Takaaki Hirai, et al. 2013. “Polarity-Dependent Distribution of 
Angiomotin Localizes Hippo Signaling in Preimplantation Embryos.” Current 
Biology 23 (13): 1181–94. https://doi.org/10.1016/j.cub.2013.05.014. 

Hirokawa, N., T. C. Keller, R. Chasan, and M. S. Mooseker. 1983. “Mechanism of Brush 
Border Contractility Studied by the Quick-Freeze, Deep-Etch Method.” The Journal 
of Cell Biology 96 (5): 1325–36. https://doi.org/10.1083/jcb.96.5.1325. 



References 
 

157 
 

 

Hirschberg, A., S. Deng, A. Korostylev, E. Paldy, M. R. Costa, T. Worzfeld, P. Vodrazka, 
et al. 2010. “Gene Deletion Mutants Reveal a Role for Semaphorin Receptors of 
the Plexin-B Family in Mechanisms Underlying Corticogenesis.” Molecular and 
Cellular Biology 30 (3): 764–80. https://doi.org/10.1128/MCB.01458-09. 

Hodge, Richard G., and Anne J. Ridley. 2016. “Regulating Rho GTPases and Their 
Regulators.” Nature Reviews Molecular Cell Biology 17 (8): 496–510. 
https://doi.org/10.1038/nrm.2016.67. 

Holmes, S., A.-M. Downs, A. Fosberry, P. D. Hayes, D. Michalovich, P. Murdoch, K. 
Moores, et al. 2002. “Sema7A Is a Potent Monocyte Stimulator.” Scandinavian 
Journal of Immunology 56 (3): 270–75. 
https://doi.org/10.1046/j.1365-3083.2002.01129.x. 

Horvath, Philippe, and Rodolphe Barrangou. 2010. “CRISPR/Cas, the Immune System of 
Bacteria and Archaea.” Science 327 (5962): 167–70. 
https://doi.org/10.1126/science.1179555. 

Hu, H., T. F. Marton, and C. S. Goodman. 2001. “Plexin B Mediates Axon Guidance in 
Drosophila by Simultaneously Inhibiting Active Rac and Enhancing RhoA 
Signaling.” Neuron 32 (1): 39–51. 
http://www.ncbi.nlm.nih.gov/pubmed/11604137. 

Hueschen, Christina L., Samuel J. Kenny, Ke Xu, and Sophie Dumont. 2017. “NuMA 
Recruits Dynein Activity to Microtubule Minus-Ends at Mitosis.” ELife 6 
(November): e29328. https://doi.org/10.7554/eLife.29328. 

Hung, T. J., and K. J. Kemphues. 1999. “PAR-6 Is a Conserved PDZ Domain-Containing 
Protein That Colocalizes with PAR-3 in Caenorhabditis Elegans Embryos.” 
Development (Cambridge, England) 126 (1): 127–35. 
http://www.ncbi.nlm.nih.gov/pubmed/9834192. 

Hurd, Toby W., Lin Gao, Michael H. Roh, Ian G. Macara, and Ben Margolis. 2003. 
“Direct Interaction of Two Polarity Complexes Implicated in Epithelial Tight 
Junction Assembly.” Nature Cell Biology 5 (2): 137–42. 
https://doi.org/10.1038/ncb923. 

Hurov, Jonathan B., Janis L. Watkins, and Helen Piwnica-Worms. 2004. “Atypical PKC 
Phosphorylates PAR-1 Kinases to Regulate Localization and Activity.” Current 
Biology 14 (8): 736–41. https://doi.org/10.1016/j.cub.2004.04.007. 

Hutagalung, Alex H., and Peter J. Novick. 2011. “Role of Rab GTPases in Membrane 
Traffic and Cell Physiology.” Physiological Reviews 91 (1): 119–49. 
https://doi.org/10.1152/physrev.00059.2009. 

Hutterer, Andrea, Joerg Betschinger, Mark Petronczki, and Juergen A. Knoblich. 2004. 
“Sequential Roles of Cdc42, Par-6, APKC, and Lgl in the Establishment of Epithelial 
Polarity during Drosophila Embryogenesis.” Developmental Cell 6 (6): 845–54. 
https://doi.org/10.1016/j.devcel.2004.05.003. 

Iden, Sandra, and John G. Collard. 2008. “Crosstalk between Small GTPases and 
Polarity Proteins in Cell Polarization.” Nature Reviews Molecular Cell Biology 9 



References 
 

158 
 

 

(11): 846–59. https://doi.org/10.1038/nrm2521. 

Izumi, Yasushi, Nao Ohta, Kanako Hisata, Thomas Raabe, and Fumio Matsuzaki. 2006. 
“Drosophila Pins-Binding Protein Mud Regulates Spindle-Polarity Coupling and 
Centrosome Organization.” Nature Cell Biology 8 (6): 586–93. 
https://doi.org/10.1038/ncb1409. 

Jaffe, Aron B., Noriko Kaji, Joanne Durgan, and Alan Hall. 2008. “Cdc42 Controls Spindle 
Orientation to Position the Apical Surface during Epithelial Morphogenesis.” 
Journal of Cell Biology 183 (4): 625–33. https://doi.org/10.1083/jcb.200807121. 

Janssen, Bert J. C., Ross A. Robinson, Francesc Pérez-Brangulí, Christian H. Bell, Kevin J. 
Mitchell, Christian Siebold, and E. Yvonne Jones. 2010. “Structural Basis of 
Semaphorin–Plexin Signalling.” Nature 467 (7319): 1118–22. 
https://doi.org/10.1038/nature09468. 

Jaulin, Fanny, and Geri Kreitzer. 2010. “KIF17 Stabilizes Microtubules and Contributes 
to Epithelial Morphogenesis by Acting at MT plus Ends with EB1 and APC.” The 
Journal of Cell Biology 190 (3): 443–60. https://doi.org/10.1083/jcb.201006044. 

Jaulin, Fanny, Xiaoxiao Xue, Enrique Rodriguez-Boulan, and Geri Kreitzer. 2007. 
“Polarization-Dependent Selective Transport to the Apical Membrane by KIF5B in 
MDCK Cells.” Developmental Cell 13 (4): 511–22. 
https://doi.org/10.1016/j.devcel.2007.08.001. 

Jessen, Jason R., Jacek Topczewski, Stephanie Bingham, Diane S. Sepich, Florence 
Marlow, Anand Chandrasekhar, and Lilianna Solnica-Krezel. 2002. “Zebrafish 
Trilobite Identifies New Roles for Strabismus in Gastrulation and Neuronal 
Movements.” Nature Cell Biology 4 (8): 610–15. https://doi.org/10.1038/ncb828. 

Johnson, Jayme M., Meng Jin, and Daniel J. Lew. 2011. “Symmetry Breaking and the 
Establishment of Cell Polarity in Budding Yeast.” Current Opinion in Genetics & 
Development 21 (6): 740–46. https://doi.org/10.1016/j.gde.2011.09.007. 

Johnson, Martin H. 2009. “From Mouse Egg to Mouse Embryo: Polarities, Axes, and 
Tissues.” Annual Review of Cell and Developmental Biology 25 (1): 483–512. 
https://doi.org/10.1146/annurev.cellbio.042308.113348. 

Johnston, Christopher A., Keiko Hirono, Kenneth E. Prehoda, and Chris Q. Doe. 2009. 
“Identification of an Aurora-A/PinsLINKER/ Dlg Spindle Orientation Pathway Using 
Induced Cell Polarity in S2 Cells.” Cell 138 (6): 1150–63. 
https://doi.org/10.1016/j.cell.2009.07.041. 

Jongbloets, B. C., and R. J. Pasterkamp. 2014. “Semaphorin Signalling during 
Development.” Development 141 (17): 3292–97. 
https://doi.org/10.1242/dev.105544. 

Kagoshima, Masako, Takaaki Ito, Hitoshi Kitamura, and Yoshio Goshima. 2001. “Diverse 
Gene Expression and Function of Semaphorins in Developing Lung: Positive and 
Negative Regulatory Roles of Semaphorins in Lung Branching Morphogenesis.” 
Genes to Cells 6 (6): 559–71. https://doi.org/10.1046/j.1365-2443.2001.00441.x. 

Kaltschmidt, Julia A., Catherine M. Davidson, Nicholas H. Brown, and Andrea H. Brand. 



References 
 

159 
 

 

2000. “Rotation and Asymmetry of the Mitotic Spindle Direct Asymmetric Cell 
Division in the Developing Central Nervous System.” Nature Cell Biology 2 (1): 7–
12. https://doi.org/10.1038/71323. 

Kang, Sujin, and Atsushi Kumanogoh. 2013. “Semaphorins in Bone Development, 
Homeostasis, and Disease.” Seminars in Cell & Developmental Biology 24 (3): 163–
71. https://doi.org/10.1016/j.semcdb.2012.09.008. 

Kantor, David B., Onanong Chivatakarn, Katherine L. Peer, Stephen F. Oster, Masaru 
Inatani, Michael J. Hansen, John G. Flanagan, et al. 2004. “Semaphorin 5A Is a 
Bifunctional Axon Guidance Cue Regulated by Heparan and Chondroitin Sulfate 
Proteoglycans.” Neuron 44 (6): 961–75. 
https://doi.org/10.1016/j.neuron.2004.12.002. 

Kemphues, K. J., J. R. Priess, D. G. Morton, and N. S. Cheng. 1988. “Identification of 
Genes Required for Cytoplasmic Localization in Early C. Elegans Embryos.” Cell 52 
(3): 311–20. https://doi.org/10.1016/s0092-8674(88)80024-2. 

Kessler, Ofra, Niva Shraga-Heled, Tali Lange, Noga Gutmann-Raviv, Edmond Sabo, 
Limor Baruch, Marcelle Machluf, and Gera Neufeld. 2004. “Semaphorin-3F Is an 
Inhibitor of Tumor Angiogenesis.” Cancer Research 64 (3): 1008–15. 
https://doi.org/10.1158/0008-5472.can-03-3090. 

Kibar, Zoha, Elena Torban, Jonathan R. McDearmid, Annie Reynolds, Joanne Berghout, 
Melissa Mathieu, Irena Kirillova, et al. 2007. “Mutations in VANGL1 Associated 
with Neural-Tube Defects.” New England Journal of Medicine 356 (14): 1432–37. 
https://doi.org/10.1056/NEJMoa060651. 

Kibar, Zoha, Kyle J. Vogan, Normand Groulx, Monica J. Justice, D. Alan Underhill, and 
Philippe Gros. 2001. “Ltap, a Mammalian Homolog of Drosophila Strabismus/Van 
Gogh, Is Altered in the Mouse Neural Tube Mutant Loop-Tail.” Nature Genetics 28 
(3): 251–55. https://doi.org/10.1038/90081. 

Kim, Jiha, Won-Jong Oh, Nicholas Gaiano, Yutaka Yoshida, and Chenghua Gu. 2011. 
“Semaphorin 3E-Plexin-D1 Signaling Regulates VEGF Function in Developmental 
Angiogenesis via a Feedback Mechanism.” Genes & Development 25 (13): 1399–
1411. https://doi.org/10.1101/gad.2042011. 

Klein, Thomas J., and Marek Mlodzik. 2005. “PLANAR CELL POLARIZATION: An 
Emerging Model Points in the Right Direction.” Annual Review of Cell and 
Developmental Biology 21 (1): 155–76. 
https://doi.org/10.1146/annurev.cellbio.21.012704.132806. 

Knoblich, Juergen A. 2001. “Asymmetric Cell Division during Animal Development.” 
Nature Reviews Molecular Cell Biology 2 (1): 11–20. 
https://doi.org/10.1038/35048085. 

Ko, Ji-Ae, Yasumiko Akamatsu, Ryoji Yanai, and Teruo Nishida. 2010. “Effects of 
Semaphorin 3A Overexpression in Corneal Fibroblasts on the Expression of 
Adherens-Junction Proteins in Corneal Epithelial Cells.” Biochemical and 
Biophysical Research Communications 396 (4): 781–86. 
https://doi.org/10.1016/j.bbrc.2010.04.029. 



References 
 

160 
 

 

Kolodkin, A. L., D. V. Levengood, E. G. Rowe, Y. T. Tai, R. J. Giger, and D. D. Ginty. 1997. 
“Neuropilin Is a Semaphorin III Receptor.” Cell 90 (4): 753–62. 
https://doi.org/10.1016/s0092-8674(00)80535-8. 

Kolodkin, A. L., D. J. Matthes, and C. S. Goodman. 1993. “The Semaphorin Genes 
Encode a Family of Transmembrane and Secreted Growth Cone Guidance 
Molecules.” Cell 75 (7): 1389–99. https://doi.org/10.1016/0092-8674(93)90625-z. 

Koropouli, Eleftheria, and Alex L. Kolodkin. 2014. “Semaphorins and the Dynamic 
Regulation of Synapse Assembly, Refinement, and Function.” Current Opinion in 
Neurobiology 27 (August): 1–7. https://doi.org/10.1016/j.conb.2014.02.005. 

Korostylev, Alexander, Thomas Worzfeld, Suhua Deng, Roland H. Friedel, Jakub M. 
Swiercz, Peter Vodrazka, Viola Maier, et al. 2008. “A Functional Role for 
Semaphorin 4D/Plexin B1 Interaction in Epithelial Branching Morphogenesis 
during Organogenesis.” Development 135 (20): 3333–43. 
https://doi.org/10.1242/dev.019760. 

Kotak, Sachin, Coralie Busso, and Pierre Gönczy. 2014. “NuMA Interacts with 
Phosphoinositides and Links the Mitotic Spindle with the Plasma Membrane.” The 
EMBO Journal 33 (16): 1815–30. https://doi.org/10.15252/embj.201488147. 

Kotak, Sachin, and Pierre Gönczy. 2013. “Mechanisms of Spindle Positioning: Cortical 
Force Generators in the Limelight.” Current Opinion in Cell Biology 25 (6): 741–48. 
https://doi.org/10.1016/j.ceb.2013.07.008. 

Kozubowski, Lukasz, Koji Saito, Jayme M. Johnson, Audrey S. Howell, Trevin R. Zyla, and 
Daniel J. Lew. 2008. “Symmetry-Breaking Polarization Driven by a Cdc42p GEF-
PAK Complex.” Current Biology 18 (22): 1719–26. 
https://doi.org/10.1016/j.cub.2008.09.060. 

Kroschewski, Ruth, Alan Hall, and Ira Mellman. 1999. “Cdc42 Controls Secretory and 
Endocytic Transport to the Basolateral Plasma Membrane of MDCK Cells.” Nature 
Cell Biology 1 (1): 8–13. https://doi.org/10.1038/8977. 

Krueger, Lori E., Jui-Ching Wu, Meng-Fu Bryan Tsou, and Lesilee S. Rose. 2010. “LET-99 
Inhibits Lateral Posterior Pulling Forces during Asymmetric Spindle Elongation in 
C. Elegans Embryos.” The Journal of Cell Biology 189 (3): 481–95. 
https://doi.org/10.1083/jcb.201001115. 

Kumanogoh, Atsushi, and Hitoshi Kikutani. 2013. “Immunological Functions of the  
Neuropilins and Plexins as Receptors  for Semaphorins.” Nature Reviews. 
Immunology 13 (11): 802–14. http://www.ncbi.nlm.nih.gov/pubmed/24319778. 

Laprise, Patrick, Kimberly M. Lau, Kathryn P. Harris, Nancy F. Silva-Gagliardi, Sarah M. 
Paul, Slobodan Beronja, Greg J. Beitel, C. Jane McGlade, and Ulrich Tepass. 2009. 
“Yurt, Coracle, Neurexin IV and the Na+,K+-ATPase Form a Novel Group of 
Epithelial Polarity Proteins.” Nature 459 (7250): 1141–45. 
https://doi.org/10.1038/nature08067. 

Lawrence, P. A., and P. M. Shelton. 1975. “The Determination of Polarity in the 
Developing Insect Retina.” Journal of Embryology and Experimental Morphology 



References 
 

161 
 

 

33 (2): 471–86. http://www.ncbi.nlm.nih.gov/pubmed/1176856. 

Lawrence, Peter A., Gary Struhl, and José Casal. 2007. “Planar Cell Polarity: One or Two 
Pathways?” Nature Reviews Genetics 8 (7): 555–63. 
https://doi.org/10.1038/nrg2125. 

Lawson, Campbell D., and Anne J. Ridley. 2018. “Rho GTPase Signaling Complexes in 
Cell Migration and Invasion.” The Journal of Cell Biology 217 (2): 447–57. 
https://doi.org/10.1083/jcb.201612069. 

Lázaro-Diéguez, Francisco, David Cohen, Dawn Fernandez, Louis Hodgson, Sven C.D. 
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