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CHAPTER 1. INTRODUCTION 13

1.1 Abstract

Investigation of the cause of disease is no easy business. This is particularly so when one

reflects upon the lessons taught us in antiquity. Prior to the beginning of the last century,

diagnosis and treatment of diseases such as cancers was so bereft of hope that there was little

physicians could offer in the way of comfort, let alone treatment. One of the major insights

from investigations into cancers this century has been that those involved in research leading

to treatments are not dealing with a singular malady but multiple families of diseases with

different mechanisms and modes of action. Therefore, despite the end game being similar in

cancers, that of uncontrolled growth and replication leading to cellular dysfunction, different

diseases require different approaches in targeting them.

This leads us to a particular broad treatment approach, that of drug design. A drug is, in

the classical sense, a small molecule that, upon introduction into the body, interacts with

biochemical targets to induce a wider biological effect, ideally with both an intended target

and intended effect. The conceptual basis underpinning this ‘lock-and-key’ paradigm was

elucidated over a century ago and the primary occupation of those involved in biochemical

research has been to determine as much information as possible about both of these protein

locks and drug keys. And, as inferred from the paradigm, molecular shape is all-important

in determining and controlling action against the most important locks with the most potent

and specific keys.

The two most important target classes in drug discovery for some time have been protein

kinases and G Protein-Coupled Receptors (GPCRs). Both classes of proteins are large

families that perform very different tasks within the body. Kinases activate and inactive

many cellular processes by catalysing the transfer of a phosphate group from Adenosine

Tri-Phosphate (ATP) to other targets. GPCRs perform the job of interacting with chemical

signals and communicating them into a biological response. Dysfunction in both types of

proteins in certain cells can lead to a loss of biological control and, ultimately, a cancer.

Both of kinases and GPCRs have entirely different chemical structures so structural knowl-

edge therefore becomes crucial in any approach targeting cells where dysfunction has oc-

curred. Thus, for this thesis, a member from each class was investigated using a combina-

tion of structural approaches. From the kinase class, the kinase Proviral Integration site for

MuLV (Pim-1) and from the GPCR class, the cell membrane-bound Smoothened receptor

(SMO).



14 1.1. ABSTRACT

The kinase Pim-1 was the target of various approaches in chapter 3. Although a heavily

studied target from the mid-2000’s, there is a paucity of inhibitors targeting residues more

remote from structural characteristics that define kinases. Further limiting extension possi-

bilities is that Pim-1 is constitutively active so no inhibitors targeting an inactive state are

possible.

An initial project (Project 1) used the known binding properties of small molecules, or,

‘fragments’ to elucidate structural and dynamic information useful for targeting Pim-1. This

was followed by three projects, all with the goal of inhibitor discovery, all with different foci.

In Project 2, fragment binding modes from Project 1 provided the basis for the extension

and development of drug-like inhibitors with a focus on synthetic feasibility. In contrast,

inhibitors were found in Project 3 via a large-scale public dataset of purchasable molecules

that possess drug-like properties. Finally, Project 4 took the truncated form of a particularly

attractive fragment from Project 1 that was crystallised with Pim-1, verified its binding mode

and then generated extensions with, again, a focus on synthetic feasibility.

The GPCR SMO has fewer molecular studies and much about its structural behaviour re-

mains unknown. As the most ‘druggable’ protein in the Hedgehog pathway, structural studies

have primarily focussed on stabilising its inactive state to prevent signal transduction. Allied

to this is that there are generally few inhibitors for SMO and the drugs for cancers related

to its dysfunction are vulnerable to mutations that significantly reduce their effectiveness or

abrogate it entirely. The elucidation of structural information in therefore of high priority.

An initial study attempting to identify an unknown molecule from prior experiments led to

insights regarding binding characteristics of specific moieties. This was particularly impor-

tant to understand not just where favourable moieties bind but also sections of the SMO

binding pocket with unfavourable binding. In both subsequent virtual screens performed in

Chapter 4, the primary aim was to find new drug-like inhibitors of SMO using large public

datasets of commercially-available molecules. The initial screen retrieved relatively few in-

hibitors so the binding pocket was modified to find a structural state more amenable to small

molecule binding. These modifications led to a significant number of new, chemically novel

inhibitors for SMO, some structural information useful for future inhibitors and the elucida-

tion of structure-activity relationships useful for inhibitor design. This underpins the idea

that structural information is of critical importance in the discovery and design of molecular

inhibitors.
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1.2 Zusammenfassung

Die Untersuchung der Ursache einer Krankheit ist keine leichte Aufgabe. Dies gilt ins-

besondere, wenn man über die Lehren nachdenkt, die wir aus der Antike gelernt haben.

Vor Beginn des letzten Jahrhunderts war die Diagnose und Behandlung von Krankheiten

wie Krebserkrankungen so hoffnungslos, dass Ärzte kaum Trost, geschweige denn eine Be-

handlung anbieten konnten. Eine der wichtigsten Erkenntnisse aus der Erforschung von

Krebserkrankungen in diesem Jahrhundert ist, dass es sich dabei nicht um eine einzelne

Krankheit, sondern um mehrere Familien von Krankheiten mit unterschiedlichen Mechanis-

men und Wirkungsweisen handelt. Trotz der Tatsache, dass der finale Verlauf von Kreb-

serkrankungen ähnlich ist, d.h. unkontrolliertes Wachstum und Replikation, die zu zellulärer

Dysfunktion führen, erfordern die verschiedenen Krankheiten daher unterschiedliche Ansätze

in der Behandlung.

Dies führt uns zu einem besonders breiten Behandlungsansatz, dem des Wirkstoffdesigns. Die

beiden wichtigsten Zielklassen in der Wirkstoffforschung sind seit längerem Proteinkinasen

und G-Protein gekoppelte Rezeptoren (GPCRs). Beide Kategorien von Proteinen umfassen

große Familien, die sehr unterschiedliche Aufgaben im Körper erfüllen. Dysfunktionen bei-

der Arten von Proteinen in bestimmten Zellen können zu einem Verlust der biologischen

Kontrolle und letztlich zu Krebs führen. Sowohl Kinasen als auch GPCRs besitzen völlig

unterschiedliche chemische Strukturen, sodass bei der Adressierung dysfunktionaler Zellen

strukturelles Wissen von entscheidender Bedeutung ist. Daher wurde in dieser Arbeit je ein

Mitglied aus beiden Klassen mit einer Kombination verschiedener strukturbasierter Ansätze

untersucht. Aus der Familie der Kinasen die Kinase Proviral Integration Site for MuLV

(Pim-1) und aus der Familie der GPCRs der zellmembrangebundene Smoothened Rezeptor

(SMO).

Die Kinase Pim-1 war das Ziel verschiedener Ansätze in Kapitel 3. Obwohl es sich um ein

stark untersuchtes Target aus der Mitte der 2000er Jahre handelt, gibt es nur wenige In-

hibitoren, die Aminosäuren adressieren, welche weiter von strukturellen Merkmalen entfernt

sind, welche Kinasen ausmachen. Weitere Einschränkungen sind dadurch gegeben, dass Pim-

1 konstitutiv aktiv ist, sodass bei der Entwicklung von Inhibitoren nicht auf eine inaktive

Proteinkonformation abgezielt werden kann.

Ein erstes Projekt (Projekt 1) nutzte bekannte Bindungseigenschaften kleiner Moleküle, um

strukturelle und dynamische Informationen zu gewinnen, die bei der Adressierung von Pim-1
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nützlich sind. Es folgten drei Projekte mit dem Ziel, Inhibitoren unter Berücksichtigung un-

terschiedlicher Gesichtspunkte zu entwickeln. In Projekt 2 bildeten Fragmentbindungsmodi

aus Projekt 1 die Grundlage für die Erweiterung und Entwicklung von medikamentähnlichen

Inhibitoren mit einem Schwerpunkt auf synthetischer Darstellbarkeit. In Projekt 3 wurden

Inhibitoren aus einem großen, öffentlich zugänglichen Datensatz von kaufbaren Molekülen

mit medikamentenähnlichen Eigenschaften herausgesucht. Schließlich wurde in Projekt 4 die

verkürzte Form eines besonders attraktiven Fragments, das mit Pim-1 kristallisiert wurde,

aus Projekt 1 aufgenommen der Bindungsmodus verifiziert und dann Erweiterungen gener-

iert, wiederum mit dem Fokus auf der synthetischen Darstellbarkeit.

Über den GPCR SMO gibt es weniger molekulare Studien und vieles über sein strukturelles

Verhalten ist weiterhin unbekannt. Als das am besten adressierbare Protein im Hedgehog

Signalweg haben sich bisherige strukturbasierte Studien in erster Linie darauf konzentriert,

den inaktiven Zustand zu stabilisieren, um so eine Signaltransduktion zu verhindern. Daher

gibt es generell nur wenige Inhibitoren für SMO und die Medikamente für Krebserkrankungen

im Zusammenhang mit der Dysfunktion von SMO sind anfällig für Mutationen, was ihre

Wirksamkeit signifikant verringern oder ganz aufheben kann.

Eine erste Studie, in der versucht wurde, ein unbekanntes Molekül aus früheren Experi-

menten zu identifizieren, resultierte in Erkenntnissen über die Bindungseigenschaften bes-

timmter Struktureinheiten. Dies war besonders wichtig, um nicht nur Bereiche günstiger

Interaktionen, sondern auch Bereiche ungünstiger Interaktionen in der SMO-Bindungstasche

zu verstehen. In den beiden nachfolgenden virtuellen Screens, die in Kapitel 4 beschreiben

werden, bestand das Hauptziel darin, in großen, öffentlich zugänglichen Datensätzen kom-

merziell verfügbarer Moleküle neue medikamentenähnliche Inhibitoren für SMO zu finden.

Der erste Screen sowie die nachfolgenden Modifikationen resultierten in einer signifikanten

Anzahl chemisch neuartiger Inhibitoren für SMO, sowie strukturellen, für die Entwicklung

zukünftiger Inhibitoren nützlichen Erkenntnissen und der für das Inhibitor-Design nützlichen

Aufklärung von Struktur-Aktivitäts-Beziehungen. Dies untermauert die Idee, dass Struktur-

informationen für die Entdeckung und das Design molekularer Inhibitoren von entscheidender

Bedeutung sind.
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2.1 Structure-based virtual screening

Early-stage drug discovery efforts most commonly begin with the identification of chemical

compounds displaying pharmacological activity against a target protein. This is broadly

achieved via two approaches: High-Throughput Screening (HTS), where large libraries of

molecules (105 to 106/day) are physically tested against a protein, and Structure-Based Vir-

tual Screening or Structure-Based Drug Design (SBVS/SBDD), where molecules are evalu-

ated computationally prior to synthesis and physical testing.

The processes involved in HTS have been optimised over many years with attendant minia-

turisation of assay plates and automation amongst the first wave of innovation [1]. There

were other innovations such as in combinatorial synthesis, where structurally diverse arrays

of small molecules, or, ‘building blocks’, are combined to generate huge chemical libraries [2]

and in assay methods [3] but HTS campaigns are generally characterised by a low ratio of

signal-to-noise. The efficiencies gained by SBVS are intended to solve the inefficiencies of

HTS, namely, high cost in terms of both time and money but, primarily, the often indiscrim-

inate or imprecise investigation of a molecular target.

SBVS takes as its basis a foundational concept within molecular biology that from molecular

form flows biological function. Operationalised, this infers knowing the molecular structure of

a biological macromolecule, such as a protein receptor, means understanding and predicting

its function. Experimental methods (e.g. X-ray and NMR crystallography) have proven

wildly successful at cataloguing receptor structures to the atomic level, have provided a

basis for the beginnings of computational methods, that is, a 3-dimensional model of receptor

structures and for establishing activity against receptors.

However these are often prohibitively expensive methods in terms of time and labour so do

not lend themselves to large-scale testing of molecular libraries. Instead, they are often used

in an incremental manner to establish the binding mode of molecules known to bind and then

with derivatives. Cheaper methods such as molecular binding assays [4] (e.g. fluorescence

anisotropy) and signal transduction assays enable larger-scale testing of compounds against

biological targets.

Compounds tested in these assays can be broadly categorised according to purpose. Small

molecules, or, ‘fragments’, are low molecular weight (≤250 Da) compounds that are biologi-

cally active. These can be as small as a ring system (e.g. indole) and are often also termed

‘scaffolds’ as they tend to be a generic molecular entity that can be built-upon. Molecular
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frameworks apparently capable of serving as ligands for multiple targets led to the develop-

ment of ‘privileged scaffolds’. These are molecular entities, such as a quinoline, that tend to

feature in many drug molecules (e.g. Amodiaquin, Camptothecin) where libraries including

these entities are synthesised to target broad classes of targets [5].

‘Lead-like’ molecules are larger (∼300-400Da) molecules demonstrated or believed to be ther-

apeutically useful but with scope for further optimisation to improve potency. Although

classes of approved drugs do exist that are no bigger than lead-like molecules [6], generally

‘drug-like’ compounds are larger (≤500Da), more potent and possess properties (e.g. logP,

polar surface area, bioavailability) that improve the drug’s ability to reach targeted parts of

the body and reduce undesirable reactions such as toxicity and carcinogenicity [7] [8].

That these molecules are already known to be drug or lead-like molecules and have already

been synthesised potentially ensures a lack of novelty is built into the process. Thus, the

emergence of computer-based methods to more efficiently develop inhibitors with new chem-

istry. In one such approach, Virtual Screening (VS), databases of commercially-available

molecules firstly have 3D representations elucidated from a source such as X-ray crystal-

lography and are tested via computational methods against a known protein target, also

typically sourced from X-ray crystallography. Predictions of a given molecule’s binding pose

and affinity are made and then tested experimentally.

The size and characteristics of molecular databases are concerns [9]. The size of chemical

space is vast but large portions of it are biologically uninteresting. So, whilst screening larger

databases would be both slow and inefficient, strategies targeting biological relevancy are not

without risk or compromise. Many biologically-relevant small-molecule databases have been

made available online with library sizes in the thousands (e.g. WOMBAT [10], KEGG [11])

millions (e.g. CHEMBL [12], PubChem [13]) and hundreds of millions (ZINC [14]).

Issues remain in handling even mid-sized databases in the range of hundreds of Gb/Tb

within a reasonable timeframe without requiring specialised computing facilities, such as a

High-Performance Computing Cluster (HPCC). Reducing the computing effort often requires

decisions prior to calculations being performed (e.g. only target molecules of lead/fragment

size, logP cut-offs) or in finding ‘representative’ molecules afterward (e.g. clustering methods)

that are target-specific and require expert knowledge of the target itself.

The de novo molecule design approach allows the computational chemist to instead design

much smaller databases of molecular structures based upon the 3D structure of the recep-

tor’s binding pocket. This essentially guides a progressive optimisation of a given molecular
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representation mapped to ΔGbinding whilst allowing for the role of water in the binding pro-

cess and taking into consideration protein flexibility [15]. This, however, can and does often

result in the loss of information regarding Absorption, Distribution, Metabolism, Excretion

and Toxicity (ADMET) that is internalised by curated databases of molecules known to be

biologically active. Prioritising the optimisation of binding properties and in vitro efficacy,

more often than it should, leads to molecules that fail in clinical trials (‘late-stage attrition’)

with failure on grounds such as toxicity or adverse effects reported in up to 50% of drug

candidates [16]. This has led to a conclusion that profiling of ADMET properties and omis-

sion of molecules from further consideration should occur at earlier stages, namely, at the

screening stage.

Secondly, both ligands and receptors are flexible molecules and the degree of flexibility

increases dramatically with the number of rotatable bonds in any given molecule so ensuring

adequate conformational sampling of both is challenging. There is often difficulty in ensuring

a reasonable starting structure from X-ray crystallographic studies, often stemming from high

motions in the proteins under study. These motions often cause large flexible loops to be

unresolved or make it difficult to unambiguously distinguish oxygen atoms and NH2 groups.

Additionally, identifying a target’s binding site(s) is often made challenging by the flexibility

of the receptor, whether it is amino acids in the binding pocket or entire loops occluding

it. Furthermore, water molecules are crucial for ligand binding to a particular receptor but

often not resolved by crystallography.

Techniques exist to address these problems in static and dynamic ways and all have implica-

tions for the accuracy of predictions regarding binding-site and receptor behaviour. Chemical

probes can be used to identify binding ‘hot spots’ on a static 3D structure from X-ray crys-

tallography (e.g. SiteMap [17], Fpocket [18]), multiple chemical probes applied to protein

dynamics (e.g. MDMix [19]) normal mode analysis to determine a receptor’s ensemble of

most likely conformations (‘micro states’) as well as the dynamics between them [20] and,

finally, using the coordinates of water in simulations transformed to distribution functions

and discretized into a 3D grid from which thermodynamic quantities can be calculated, the

thermodynamic profile of a binding pocket and implications for ligand binding characterised

(e.g. Grid Inhomogenous Solvation Theory [21])

Finally, accurately quantifying binding energies in an aqueous environment is largely out of

reach even for the most accurate computational methods (e.g. Thermodynamic Integration).

Protein-ligand binding affinity can be determined from the experimentally measured binding

constant KB
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∆G = −RTlnKB = ∆H − T∆S (2.1)

Experimentally determined binding constants, KB, are typically in the range of 10−2 -

10−12mol·L−1 and correspond to a Gibbs free energy of binding, ΔG, of between -10 and

-70kJ·mol−1 in aqueous solution [22]. Two broad components addressed by the above rela-

tion are the ‘enthalpic’ and ‘entropic’ contributions to ligand binding, the former a function

of making and breaking of electrostatic interactions between all three of protein, ligand and

water with enthalpic contributions a function of the release of water to solvent and loss of

conformational mobility of receptor and ligand.

Both enthalpic and entropic contributions often compensate between each other. Features

that have been found to lead to more energetically favourable protein-ligand complexes in-

clude steric complementarity between protein and ligand, complementarity of surface prop-

erties (e.g. lipophilic parts of the ligand interact with lipophilic parts of the protein) and

that the ligand adopts an energetically favourable conformation. However, as stated, bind-

ing involves a complex equilibrium between ensembles of solvated species varying in their

conformation. In contrast, scoring functions that can be calculated quickly and efficiently

use often crude approximations, use only one receptor-ligand geometry, neglect the unbound

state of binding partners and often neglect cooperative effects of different interactions, usu-

ally assuming more of an additive relationship [23].

That said, at the high-throughput level SBVS inhabits, one can still use estimated energies for

relative ranking of potential ligands as, although an accurate estimate is not possible, some

correlations with experimentally-determined affinity are. Dozens of methods for estimating

binding affinity of a protein-ligand complex have been developed since the early 90’s and a

consequent taxonomy broadly groups them into five classes: (1) force field-based methods,

(2) empirical scoring functions, (3) knowledge-based methods, (4) Quantum Mechanics (QM)

scoring functions and (5) machine learning methods.

Force-field or ‘physics-based’ methods estimate affinity by complementing modelled estimates

of gas-phase electrostatic interactions between protein and ligand and a pre-calculated cubic

grid with solvation terms as estimated by continuum solvation models e.g. Generalised

Born solvation model (GBSA). These methods fall under the general term of ‘molecular

docking’ methods and have been implemented in UCSF’s DOCK [24], Autodock VINA [25]

and OpenEye’s FRED [26]. Both receptor and ligand are rigid in these methods so they rely

on input of multi-conformer ligands for fitting into the receptor’s binding pocket. Flexible
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docking solutions exist, where an initial rigid fit is complemented with bond rotation and

energy cut-offs [27] or incorporates both ligand and binding pocket flexibility via Genetic

Algorithms [28]. However, these are often an order of magnitude slower than rigid methods

and do not guarantee a significantly better result in all cases, such as with more diverse sets

of molecules [29].

Empirical scoring functions estimate the binding free energy of a ligand by the summing of all

individual free energies for interactions in a complex, where each function (fi) of ligand (rl)

and protein (rp) coordinates describing them is weighted by training sets of experimentally-

determined binding constants.

∆Gbinding ≈
∑
i

∆Gifi(rl, rp) (2.2)

Empirical scoring functions contain chemically-intuitive terms describing typical interactions

(e.g. H-bonding, hydrophobic interactions, binding entropy) but also contain penalty func-

tions for complexes that deviate from ideal values (e.g. atomic clashes, angle criteria).

Attempts have been made to improve scoring functions by weighting modalities of H-bonding

[30] [31], ionic [32] and hydrophobic [33] interactions differently. This is as opposed to treating

them as if they are identical or not significant in the overall binding, such as is the case with

London or cation-Π interactions. However, most methods tend to suffer from the same

problem, that difficulty remains in predicting binding affinities of ligands that materially

differ from those used in their training sets [34].

Knowledge-based scoring functions essentially sum all pairwise protein-ligand interactions

where the potential between atom pairs i and j with distance r between them, ωij(r), is

evaluated from the inverse Boltzmann law, the atomic densities are evaluated in pairwise

fashion between the system state (ρij) and a reference state and where interactions are

assumed to be zero (ρ∗ij).

ωij(r) = −kBT ln[gij(r)] = −kBT ln
[
ρij(r)

ρ∗ij

]
(2.3)

Using the assumption that a larger number of contacts between ligand and protein is indica-

tive of attractive interactions, distributions of these contacts can be converted to atom-pair

potentials, or, Potentials of Mean Force (PMF). Thus, in contrast to empirical scoring func-

tions, that are derived from a training dataset generally obtained from the Protein Data
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Bank (PDB), knowledge-based scoring functions make use of statistical analysis of struc-

tural information without the need for experimental binding data. Improvements have been

observed by augmenting potentials with geometric [35] and solvent [36] data. Although fast,

relatively straightforward to compute, and useful for re-ranking of docking results, no sin-

gle scoring function consistently outperforms others when applied to diverse test sets with

performance likely target-specific [37].

QM methods allow polarisation and charge-transfer effects of a region around the ligand

to be modelled and incorporated into the energy terms of the scoring function [38]. More

correctly under the QM/MM (Quantum Mechanics/Molecular Mechanics) approach, the

ligand was treated with a relatively expensive linear-scaling semi-empirical Hamiltonian and

the surrounding system with a cheaper classical Hamiltonian and the AMBER ff99SB force

field. The effective Hamiltonian of the system was therefore a sum of the MM, QM and

QM/MM Hamiltonians.

Ĥeff = ĤMM + ĤQM + ĤQM/MM (2.4)

Following energy minimisation steps, binding free energies were then calculated from the

gas-phase binding free energy coupled with the solvation free energy.

Other approaches [39] integrating linear-scaling semi-empirical methods with the Linear

Interaction Energy with Continuum Electrostatics (LIECE) model showed good agreement

with experimentally-determined binding free energies of inhibitors against classes of proteins

as diverse as an aspartic protease and a kinase.

The primary limitation for such methods is, however, throughput. Although certain optimi-

sations drastically increased the speed of calculation (e.g. using energy minimisation instead

of molecular dynamics), each molecule’s calculation took approximately an hour in 2008.

Although computational speed has dramatically increased in this time, one could imagine

that computations would remain of the order of tens of minutes per molecule, significantly

slower than other scoring function approaches.

Finally, machine learning based scoring functions do not assume a functional form regarding

binding affinity and structural features of the protein-ligand complex. Instead, they generate

features directly from a training set of molecular data. Features generated from interatomic

pairs of ligand and protein atoms are then selected via machine-learning algorithms (e.g.

Random Forest, Support-Vector Machine), to build and validate a model to compute an

outcome of interest, most commonly, binding affinity.
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Machine learning scoring functions have been reported to outperform other classes of scoring

function in predicting binding affinity of known protein-ligand complexes [40] even with less

chemically discriminative models [41]. However caution must also be exercised as it has been

reported that whilst producing excellent agreement with known complexes, machine learning

methods have proven less suited to predict affinity for novel molecules to novel targets [42].

2.2 Fragment-based drug-discovery

One difficulty within the SBVS approach can lie within the molecular size of ligands. Screen-

ing with larger and more complex compounds can lead to a sort of molecular ‘over-fitting’

problem, where molecules are prioritised and selected for further development primarily be-

cause they are larger. This increases the probability of both false positives in computational

studies and interactions with unintended targets in trials [43] [44].

In using one approach to solve this problem of larger false-positives, Fragment-Based Drug

Design (FBDD), one starts small. Molecules of low molecular weight are screened against

molecular targets. Although these molecules display lower overall affinity, the logic of FBDD

follows that specific interactions from the fragment will result in a stable and predictable

binding mode and that molecular extensions from this fragment will retain this binding

mode in addition to the interactions provided by the extension. The approach also offers

the proposition of an increase in the number of viable starting points in the binding pocket

that should result in a greater diversity of molecules discovered and optimised to bind to

a particular target. This potentially gives practitioners the opportunity to build desirable

properties into a molecule from the beginning. Flowing from the FBDD philosophy, molecules

should prioritise novelty, possess molecular properties useful in biological systems and, more

recently, extensions should be relatively easy to synthesise.

A campaign to ensure chemical novelty for crystallographic fragment screens was conducted

on molecules of less than 20 heavy atoms sourced from numerous commercial manufacturers

[45]. This was born from the idea, later confirmed, that as fragments tend to be low-

affinity binders, biophysical screening methods often miss molecules that are found to be

hits via crystallography [46]. An initial library of > 200 000 fragments was reduced via

several filtering steps, including the removal of reactive functional groups, toxic molecules

and to ensure adherence to Lipinski’s ‘rule of 5’ [47]. From there, clustering steps to ensure

chemical novelty pared the library down to 361 molecules. The library demonstrated a high
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crystallographic hit-rate (19.7%) against an aspartic protease target and elucidated molecules

with novel binding modes and chemotypes against this target [48].

Lower hit-rates but higher-affinity ligands were found in larger campaigns against multiple

targets [49] but the trend is clear, that more libraries are being designed with chemical

novelty in mind [50]. It does behove those looking for hits to be mindful of the biophysical

screening methods used as it has been demonstrated that, whilst faster, assay methods

(e.g. fluorescence assay, ElectroSpray Ionization-Mass Spectometry) often result in vastly

different hit rates with little overlap between them in identifying hits, in addition to not

directly providing information about binding modes [51].

After finding fragments that bind, ligands can be extended, or, ‘elaborated’ in a number

of ways. Successful examples of fragment linking or ‘target-guided synthesis’ have been

reported, such as where multiple fragments binding to different areas of a receptor’s binding

pocket are linked synthetically and then tested [52]. There are few successful campaigns in

the literature, however, as designing a useful linker with appropriate flexibility has proven

to be problematic. Too rigid and the original binding poses of each fragment are unlikely to

be stable in the elaborated molecule. Too flexible and there will be an entropic penalty to

pay that may abolish binding entirely.

Other approaches used, such as ‘tethering’, progress by synthesising disulfide-containing

molecules that covalently bind to cysteines adjacent to the binding pocket. Tethering has

been shown to effectively ‘probe’ a pocket and assist in finding an allosteric pocket, identify

fragments suitable to interfere with Protein-Protein Interface (PPI) formation or to stabilise

a complex that wouldn’t otherwise occur or form with much less stability [53]. The ap-

proach does demand specialised libraries of disulfide fragments [54] as well as the design and

expression of multiple cysteine mutants for screening, limiting its utility.

In addition to structural information, one can be more concerned with synthetic feasibility

of molecules from fragments known to bind to a target, as we were in chapter 3. The net

effect is to increase the probability of hits, a philosophy under the broad methodology of de

novo drug design. A library [55] of ‘synthetically tractable’ but drug-like molecules was also

reported that resulted in a freely-available dataset of molecules derived from Chembridge [56]

building blocks.

Beginning with relatively strict criteria for fragments (MW ≤ 250 Da, nrotatable bonds ≤
2, nchiral centres ≤ 1) and reactions, a collection of 58 ‘robust’ reactions [57] was used to
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exhaustively react ∼8000 building blocks in silico. This generated ∼21 million molecules with

a focus on both chemical novelty and being drug-like but small enough to allow for further

optimisation. Other approaches allow for customised libraries to be built or the reverse

process, retro-synthetic deconstruction of a molecule or series of interest. This method also

has, at its core, a focus on synthetic feasibility and from a small set of fragments, use of the

approach suggested diverse extensions with up to a 40-fold improvement in affinity against

the β2 Adrenergic Receptor [58].

2.3 Molecular docking

The broad philosophy and techniques underpinning in silico ligand discovery efforts in chap-

ter 3 and chapter 4 require intricate methods to estimate binding affinities and make full

and proper use of structural information gained via experiment and developed molecular

libraries. A common approach to facilitate the combination of both ligand and target struc-

tural information is molecular docking.

The principle inherent within molecular docking is to use the structure of a target protein

to detect molecules active against it. In doing so, molecular docking takes advantage of

the large and growing (>153 403 as at Jan 2019) amount of 3D protein structures made

available via the Protein Data Bank (PDB) [59]. Broadly, this is achieved via the placement

and scoring of molecular poses and then the evaluation of their fit in the binding pocket.

Aside from marked differences in scoring functions, molecular docking programs are often

characterised by two important facets; the degrees of freedom allowed within their algorithms,

whether that be in the orientation or flexibility of the ligand, protein or both, and methods

in how those degrees of freedom are searched. How solvation is handled and, for example,

detection of atomic clashes also affects the accuracy of calculations. A meaningful taxonomy

of docking software is beyond the scope of this thesis but two broad types used in chapter 3

and chapter 4 will be discussed.

2.3.1 Physics-based methods

The Solvation Energy for Exhaustive Docking (SEED) method used in chapter 3 places

poses of fragment-sized molecules (≤ 250 Da) in a receptor binding pocket exhaustively in

order to estimate the binding energy of each pose [60]. Pre-defined rules (e.g. dielectric

value of solvent/solute, maximum angular deviation from ideal H-bond geometry) govern

the generation and placement on binding pocket residues of vectors of uniform length on all



32

H-bonding groups in a direction of ideal H-bonding geometry.

A similar procedure occurs with polar groups on all pre-generated conformers of ligand

molecules before matching of H-bond vectors is completed. Additional rotations around

vector matches are performed to enhance sampling of conformational space in the binding

pocket. Bad contacts are detected via the measurement of atomic van der Waals (vdW)

distances and evaluation of binding energies to a pre-generated grid over the whole receptor.

After placement of a fragment pose, an evaluation of the total interaction energy is com-

pleted. Electrostatic energies in solution are calculated as the sum of all receptor and ligand

desolvation energies and fragment-receptor interaction energies, evaluated atomically via

Generalised Born approximation on atoms i and j of distance r in dielectric medium εp, or:

Eintij =
qiqj
εprij

− qiqjτ

RGBij
(2.5)

Where τ = (1/εp) - (1/εw) and where;

RGBij =

√√√√r2
ij +Reffi Reffj exp

( −r2
ij

4Reffi Reffj

)
(2.6)

And where qi and qj are assigned partial charges and Reffi and Reffj are the effective Born

radii of each atom [61].

Receptor desolvation is calculated via continuum electrostatics assumptions (e.g. uniform

dielectric constant in solvent and solute regions). This negates the need for explicit treatment

of solvent effects. Desolvation of the receptor is therefore the calculated energy difference

between an uncharged fragment and a charged receptor in solution upon binding, or, the

electric (Coulombic) displacement, ~D, of a fragment of volume, V , on a 3D grid:

∆E =
τ

8π

∑
k∈Vfrag

~D( ~xk)∆Vk (2.7)

Fragment desolvation is defined as the calculated energy difference between a charged frag-

ment and uncharged receptor in solution upon binding, or atoms of partial charges qi and qj

of distance r in dielectric medium εp,

E =
∑

e∈fragment
Eselfi +

∑
i>j

(
qiqj
εprij

− qiqjτ

RGBij

)
(2.8)
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Where Eselfi is the interaction between the charge itself and solvent, non-zero for intra-

molecular energies, and evaluated as:

Eselfi =
q2
i

2RvdWi εp
− q2

i τ

2Reffi

(2.9)

The difference in fragment energy is then evaluated simply as the energies of bound and

unbound fragment in solution.

∆E = Edocked − Efree (2.10)

An alternative approach by UCSF’s DOCK suite (chapter 3 and chapter 4) places ligands

uses a bipartite graph-matching algorithm to map subsets of atomic distances within a ligand

to subsets of receptor-sphere internal distances [62]. Spheres are generated and placed into

the binding pocket, reflecting groove and ridge complementarity of a pre-generated molecular

surface [63] [64]. Complementary ligand orientations are then matched to the positions of

these spheres (Figure 2.1). Separate electrostatic and vdW grids are calculated from the

molecular surface and distance-dependent potentials between ligand and the nearest surface

of the grids are calculated.

Figure 2.1: Depicted here is an example of the receptor:ligand sphere matching algorithm in UCSF DOCK. (A) A

receptor with four spheres (empty circles) and ligand with three (coloured stars) is depicted prior to docking. (B) Four

possible orientational matches of ligand spheres (coloured stars) at a given distance tolerance (in Å). Increasing the

distance tolerance results in more orientations (i.e. with sphere 4) (from Coleman et al, 2013)

After ligand placement, a scoring function is applied to each atom in the pose comprising pre-

computed partial charges interacting with the nearest grid points in pairwise fashion [65]. A

vdW term is calculated from the AMBER united atom force field [66], an electrostatics term

is calculated from a Poisson-Boltzmann calculation using electrostatics grids (QNIFFT [67])

and desolvation handled via Generalised Born approximation of the fractional desolvation
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of all atoms in the pose [68]. The final score is then simply an additive relation combining

each of these components.

Escore = EvdW + Eelectrostatics + Eligand,desolenergy) (2.11)

Desolvation can also be estimated by applying the full transfer free energy, ∆Gtransi , to each

atom to calculate the overall free energy of desolvation of the ligand, ∆GLdesolv.

∆GLdesolv =

ligand∑
i

∆Gtransi Di (2.12)

The fractional desolvation, Di, over all atomic radii, ai is then evaluated where dV is the

volume of one grid element inside the binding pocket of the receptor.

Di =
aidV

4π

inr>ai∑
k

1

r4
ik

(2.13)

In contrast to SEED, DOCK assumes a lower dielectric constant inside the pocket than

outside the pocket.

2.3.2 Shape-based methods

An approach from OpenEye is within the family of ‘exhaustive docking’. Given the hypoth-

esis that the shape of the receptor is the most important factor in virtual screening, firstly,

a negative image of the receptor’s binding pocket is generated by docking a set of drug-like

molecular probes with only one conformer. The top-scoring poses of each probe are then

‘averaged’ to form a potential field that is converted to a density field by assuming a spher-

ical Gaussian density distribution. The field created has higher potentials both at positions

where ligand atoms make useful contacts with the receptor (e.g. polar H-bonds) and where

ligand atoms are likely to occupy when molecules are large enough to stretch across multiple

sub-pockets.

Unless pre-computed conformers are supplied, FRED [69] generates conformers then system-

atically enumerates all likely rotations and translations of each conformer within the binding

pocket of the receptor. After generating an initial ensemble of poses and filtering all clear

clashes using a negative image of the binding pocket, all remaining (tens-of-thousands to

tens-of-millions) poses are scored and the top-100 are retained for the next step, a solid-

body optimisation with 36 degrees of freedom. The top scoring pose is then kept as the final

pose (Figure 2.2).
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Figure 2.2: FRED docking process depicting the ligand scoring, optimisation and placement process. Conformers are

exhaustively generated and progressive filtering steps applied as thousands of poses are scored and rejected based upon

distances from the protein surface. Poses are then scored and a solid-body optimisation follows prior to presentation

of the finalised pose position (from McGann, 2011).

FRED’s empirical scoring function, Chemgauss, models and smooths distance-based poten-

tials for multiple types of interactions (e.g. H-bond, metal chelation) with additional facets

modelled such as penalties for H-bonds with solvent broken by the docking process. A sep-

arate scoring function, Chemical Gaussian Overlay (CGO), models how well a pose overlays

upon the structure of a known ligand, ensuring bias towards known binders in the docking

process. This additional step is implemented in OpenEye’s HYBRID program and has been

validated against a test set of 40 protein targets and multiple conformations of each protein

accounts for binding site flexibility [26].

2.4 Molecular dynamics simulations

Whilst a valuable perspective, molecular docking where ligand and protein conformations are

held rigid does not address dynamic protein and ligand behaviour at all. Similarly, flexible

docking is limited to finding an energetic minimum for ligands and residues within range

of them. The starting protein structures for these techniques are very often those obtained
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from X-ray crystallography. The result is therefore more of an ‘averaged’ view of the system

under study.

From the dynamics of a molecular system, making/breaking of hydrogen bonds, free energies,

water interaction patterns, configurational changes (e.g. ring flips, puckering) and many

other quantities can be estimated. The view of the energy landscape of protein folding has

traditionally been that of the ‘funnel hypothesis’, that its native state corresponds to its free

energy minimum in cellular solution conditions. However, at a larger scale, seminal papers

[70] [71] have elucidated an understanding of protein systems dynamically sampling multiple

conformational states, not necessarily all related to function. As the funnel hypothesis has

given way to a more realistic description of the temporally-resolved motions of a system,

more realistic treatments of chemically relevant quantities as they relate to time-resolved

conformational movements of biomolecular assemblies has been the result [72].

Many techniques exist to alter the course of simulations and explore more conformational

micro states, whether it be via biasing forces or guiding restraints. For example, in the gen-

eration of pathways through known endpoints of a system to gain information about allowed

or disallowed states such as Targeted or Adaptive Steered Molecular Dynamics (T/SMD).

Or, enhanced sampling of conformational states using techniques such as Umbrella Sam-

pling, conformational flooding and Ensemble-Biased Metadynamics. For now, only unbiased

(equilibrium) simulation methods as used in chapter 3 will be discussed.

2.4.1 Equilibrium simulation

The ingredients for a successful simulation are many and rooted in statistical mechanics,

used to transpose information collected at the microscopic (atomic) level into macroscopic

observables (e.g. potential energies, pressure, temperature). These can be used to study

both thermodynamic properties of a system (∆G) or kinetic (time-dependent) events.

By linking the macroscopic thermodynamic state of a system (Number of Particles N, Tem-

perature T, Pressure P) to its microscopic state (atomic positions q and momenta p), an

ensemble, or a collection of micro states that all have the same constrained properties as

the macroscopic system in multidimensional space (phase space) can be constructed. As a

molecular dynamics simulation generates a sequence of points in phase space as a function of

time, these points conform to different conformations of the system and belong to the same

ensemble.
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Depending upon the system under study, common ensembles include:

Ensemble Constraints Variables Thermodynamic system

Microcanonical (NVE) Number of atoms N

Volume V

Internal energy E

Energy of each particle εi Isolated

Canonical (NVT) Number of atoms N

Volume V

Temperature T

Internal energy Ej Closed

Grand canonical (µVT) Chemical potential µ

Volume V

Temperature T

Number of particles Ni

Internal energy Ej

Open

Isothermal (NPT) Number of atoms N

Pressure P

Temperature T

Volume Vi

Internal energy Ej

-

Table 2.1: Comparison of various classical thermodynamic ensemble types, their properties and constraints in addition

to the macroscopic thermodynamic system with which they may be compared (adapted from [73])

Broadly, if one allows a system to to run indefinitely, then that system will eventually pass

through all possible micro states. Thus, one aim of MD simulation is to generate enough

representative conformations of a system such that a sufficient amount of phase space is

sampled. This ensures that the link between macroscopic variables and microscopic states

is established. An ensemble average is the mean of a quantity (e.g. temperature, pressure)

that is a function of the micro state of a system. Ensemble averages, justified via agreement

with experiment, are therefore calculated over a large number of replicas of the system.

The ensemble average where the observable quantity of interest, A(pN , rN ), is expressed as

a function of all possible variables of the momenta p and positions r in the system, is given

by:

〈A〉 =

∫∫
dpNdrNA(pN , rN )ρ(pN , rN ) (2.14)

The probability density of the ensemble with Hamiltonian H, Temperature T , Boltzmann

Constant kB and partition function Q is then:

ρ(pN , rN ) =
1

Q
exp[
−H(pN , rN )

kBT
] (2.15)

Where the partition function can be evaluated as:
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Q =

∫∫
dpNdrNexp[

−H(pN , rN )

kBT
] (2.16)

This integral relies upon the availability of all possible micro states and a MD simulation

passing through all of these states. Instead, MD simulations can be used to calculate a time-

related ensemble average. So, a simulation of time t, number of steps M and instantaneous

value of A(pN , rN ) can be used to calculate the time-averaged value of A.

〈A〉time = lim
τ→∞

1

τ

∫ τ

t=0
A
(
pN (t), rN (t)

)
dt ≈ 1

M

M∑
t=1

A(pN , rN ) (2.17)

This leads to the insight of the Ergodic Hypothesis that the time-average of A equals the

ensemble average:

〈A〉ensemble = 〈A〉time (2.18)

With the assumption that the time average of a sufficiently long simulation is equal to the

ensemble average of thermodynamic quantities, we now have a basis for conducting MD

simulation to obtain said quantities.

In practice, the act of conducting a MD simulation is based upon Newton’s Second Law of

Motion where the total force acting upon atoms are related to their mass m and acceleration

a.

Fi = miai (2.19)

Integration of the equations of motion then allow us to determine positions, accelerations

and velocities of atoms as they vary over time (trajectory). So for atoms of velocity v and

position x at constant acceleration a:

F = m · a = m · dv
dt

= m · d
2x

dt2
(2.20)

After integration, expressions for time-dependent atomic velocities and positions from initial

velocities v0 and positions x0 can be stated as:

v = at+ v0 (2.21)

And:

x = v · t+ x0 (2.22)
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Combined, an expression is yielded to track changes in positions of atoms over time from

initial positions and velocities:

x =
1

2
· a · t2 + v0 · t · x0 (2.23)

With acceleration given as a derivative of potential energy E with respect to position r:

a =
1

M

dE

dr
(2.24)

Initial positions are usually chosen from experimentally determined structures (e.g. X-ray

or NMR spectroscopy). Initial velocities vi are usually selected randomly from a Maxwell-

Boltzmann or Gaussian distribution of temperature T that yields the probability that an

atom i has a velocity vx in the direction of x.

p(vix) =

(
mi

2πkBT

) 1
2

exp

[
− 1

2

miv
2
ix

kBT

]
(2.25)

Where the temperature can be calculated for a system of number of atoms N .

T =
1

3N

N∑
i=1

|pi|
2mi

(2.26)

As the potential energy, a function of atomic positions (3N), must be calculated analytically,

several popular algorithms exist. The algorithm used most commonly by the Ambertools

simulation software is the Leap-frog algorithm. Velocities are first calculated at time t+ 1
2δt

which are then used to calculate positions r at time t+ δt

v(t) =
1

2

[
v

(
t− 1

2
δt

)
+ v

(
t+

1

2
δt

)]
(2.27)

From the integration of the equations of motion, an estimate of the energy of a system may

be obtained via a potential energy function, or, force field. There are many force fields that

introduce approximations and impose limitations on their use with certain systems.

For example, specific force fields govern the motion and boundary conditions of everything

from small molecules to large protein systems [74,75] where secondary structure inherent in

protein systems means dihedral corrections and rotation barriers for certain residues under

certain circumstances must be applied. The parametrisation of these more complex force

fields coupled with the number of variants are beyond general description here.
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For now, as a general example of a well-developed general purpose force field, the General

Amber Force Field (GAFF [76]) shall be introduced. A simple harmonic function form

calculates the bond and non-bonded energy of a given atom pair (i, j) in media of dielectric

constant ε. Partial charges (qi, qj), bond angles θ separated by distance R are augmented by

empirically-determined force parameters Kr, Kq Vn and equilibrium structural parameters

req and qeq.

Epair =
∑
bonds

Kr(r − req)2 +
∑
angles

Kθ(θ − θeq)2+

∑
dihedrals

Vn
2

[
1 + cos(nφ− γ)

]
+
∑
i<j

[
Aij
R12
ij

− Bij
R6
ij

+
qiqj
εRij

] (2.28)

All of the above are implemented in CPU-bound and GPU-accelerated codes in the Amber-

tools [77] suite of programs used in chapter 3 and from here, the first stages of a simulation

can begin.

First, an energy-minimised starting structure is solvated via the overlay of water molecules

to completely surround the solute.

A heating stage follows where initial velocities are assigned to atoms in the system and water

molecules allowed to move. The system is heated from low temperature and the movements

of the solute restrained to minimise large forces that may lead to instability. As the system

is heated and the system stabilises, restraints on the solute are loosened and ultimately lifted

entirely as the system reaches the target temperature.

The purpose of the next stage, equilibration, is to allow the system to stabilise with respect

to quantities such as temperature, pressure and energy over time. It is run for as long as it

takes for this to occur, typically a few nanoseconds.

The final stage, production, is run for as long as is desired to observe the chemical phenom-

ena in question. In this phase, thermodynamic parameters are calculated so the length of

the simulation is dependent upon the ensemble as identified earlier and whether adequate

sampling of conformations have occurred to ensure the accuracy of these quantities.

2.5 Energy minimisation

Primarily, the goal of energy minimisation in chemistry is to determine a set of coordinates

representing a molecular conformation such that the potential energy of the system is at a
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minimum on the potential energy surface describing the molecule. Several algorithms are

implemented in chemistry software packages, generally working in Cartesian space, with

varying convergence criteria, complexity and tolerances for how far a molecule really is from

a local minimum, or, stationary point. Differences in in a given system govern which method

is most appropriate.

For now, only two first-order minimisation methods, Steepest Descent and Conjugate Gradi-

ent, both implemented in the Chemistry at HARvard Macromolecular Mechanics (CHARMM

[78]) software package, will be discussed. Also discussed will be an approach combining a

rapid method of estimating ligand conformational entropy with a second-order optimisation,

implemented in the OpenEye software SZYBKI. All of these approaches were used to find

energetic minima of proteins and protein-ligand interactions in chapter 3 and chapter 4.

2.5.1 Steepest descent minimisation

First introduced by Cauchy [79], the aim of the steepest descent, or, gradient descent method

is to find the minimum of a function f(x), x ∈ RN and that f : RN → R of gradient

gk = g(xk) = ∇f(xk) [80]. The minimum of a given quadratic function is found by computing

steps along a given search direction dk.

xk+1 = xk + αkdk, k = 0, 1, ..., n (2.29)

Where the step length αk is given such that:

αk = argminf(xk) + αdk) (2.30)

For the steepest descent method, the search direction is given as where the slope is negative,

or, dk = −∇f(xk). The algorithm therefore proceeds until a given convergence tolerance is

reached or variations fall below a given tolerance.
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Algorithm 1 Steepest descent algorithm

Input: Given an initial x0, d0 = −g0 and convergence tolerance tol

1: for k = 0 to maxiter do

2: Set αk = argminφ(α) = f(xk − αgk
3: xk+1 = xk − αkgk
4: Compute gk+1 = ∇f(xk+1

5: if then ‖gk+1‖ ≤ tol
6: converged

7: end if

8: end for

The CHARMM implementation of steepest descent adjusts the step size as the calculation

approaches convergence. For example, if a step results in a lower energy, the step size is

increased by 20% whereas if the energy rises, the step size is halved until convergence is

reached.

2.5.2 Conjugate gradient minimisation

From a similar starting point to the steepest descent, the conjugate gradient method [81] uses

the property of vector conjugacy of a set of nonzero vectors {p0, p0, ..., pn−1} to a Symmetric

Positive Definite (SPD) matrix A (A-conjugacy).

pT
i Apj (2.31)

This set of A-conjugate vectors acts as a basis for the whole of real number space IRN and

can be used to express the difference between the exact solution x∗ and the first guess x0 as

a linear combination of these conjugate vectors.

x∗ − x0 = σ0p0 + σ1p1 + ...+ σn−1pn−1 (2.32)

By using this property of conjugacy, the coefficients σk are equivalent to the step size αk

needed to minimise a quadratic function along xk + αkpk so the exact solution becomes a

linear combination of the initial guess coupled with step size and the conjugate vectors.

x∗ = x0 + α0p0 + α1p1 + ...+ αn−1pn−1 (2.33)

This only demonstrates that, in theory, a set of A-conjugate vectors exists. To each successive

step, each new direction pk is chosen as a linear combination of the negative residual −rk
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(equal to the steepest descent, or, negative gradient direction) and only the previous search

vector pk−1.

pk = −rk + βkpk (2.34)

Where βk is found by imposing a conjugacy condition, pT
k−1Apk, upon the current step by

the previous step.

βk =
rT
k Apk−1

pT
k−1Apk−1

=
rT
k rk

rT
k−1rk−1

(2.35)

The algorithm therefore becomes an exercise in using the previous step as a guide toward

the nearest minimum. The step length is calculated (step 2) then the solution is updated

with that step (step 3). The residual is updated (step 4) and then, finally, the new search

direction is obtained in the final two steps (5 and 6).

Algorithm 2 Conjugate gradient algorithm

Input: r0 = Ax0 − b, p0 = −r0

1: for k = 0, 1, 2, ... until convergence do

2: αk =
rT
k rk

pT
kApk

3: xk+1 = xk + αkpk

4: rk+1 = rk + αkApk

5: βk =
rT
k+1rk+1

rT
k rk

6: pk+1 = −rk+1 + βkpk

7: end for

As the step size is determined by the algorithm itself, in CHARMM it is implemented as

an automatic step. In terms of minimising the number of steps taken to reach convergence,

the conjugate gradient method will significantly outperform steepest descent. However, with

poor conformations, it will generate more integer overflows. Hence, it is common practice

to apply both algorithms to a given structure, beginning with steepest descent minimisation

followed by conjugate gradient minimisation as it nears the energetic minimum.

2.5.3 Minimisation and ligand entropy

Estimation of ligand entropy is essential to accurate estimation of the binding free energy

in a protein-ligand environment. However, accurate condensed-phase calculations of the

conformational entropy are computationally expensive, usually determined by MD simulation

assuming a trajectory is run for long enough. As accurate prediction of molecular entropy
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relies upon a given molecule being at its energetic minimum, a fast but relatively accurate

treatment of ligand entropy in a protein-ligand environment [82] is necessary in drug-design

research where the number of ligands being evaluated is often large.

Ligand entropy is estimated as the sum of configurational entropy Sc and solvation entropy

∆Ss

S = Sc + ∆Ss (2.36)

Configurational entropy

Configurational entropy is estimated as a relation to a partition function q with Boltzmann

constant k, number of ligands N, and absolute temperature T.

Sc = kN

[
1 + ln

( q
N

)
+
T

q

δq

δT

]
(2.37)

The conformationally-dependent partition function q of conformer i with internal energy εi,

translational, rotational and vibrational partition functions (qt, qir and qiv respectively) and

number of conformers nc can therefore be evaluated.

q = qt

nc∑
i=1

e−
εi
kT qirqiv (2.38)

Introduction of a simplifying assumption, that a ligand in a protein-ligand complex has three

translational and three rotational degrees of freedom, mean q can be evaluated as either qv

for a single binding mode or a function of all qiv’s for the number of binding modes np.

q =

np∑
i=1

exp(− εi
kT

)qiv (2.39)

Vibrational frequencies underpinning the evaluation of qiv are evaluated from normal-mode

analysis of the relation between mass-weighted second-derivative Hessian matrices Hm, the

true Hessian H and atomic mass matrix M.

Hm = M−
1
2HM−

1
2 (2.40)

Where eigenvalues λi of Hm can be used to determine harmonic wave numbers Ṽi.

Ṽi =
1

2πc

√
λi (2.41)
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The second-order Broyden-Fletcher-Goldfarb-Shanno (BFGS [83]) minimiser is used to con-

struct a diagonalised matrix H−1
i+1 after each step i from atomic position vector xi to predict

the positions of atoms in the next step xi+1, where f(xi) is a function governing where the

desired minimum is.

xi+1 = xi +H−1
i+1∇f(xi) (2.42)

In words, BFGS optimisation, especially limited-memory (L-BFGS) as implemented in Szy-

bki, is a way of finding a (local) minimum of an objective function, in this case f(xi), making

use of the objective function values and its gradient ∇ from a starting point of an initial di-

agonalised Hessian. So, with every iteration, the approximate Hessian approaches the exact

Hessian. Upon reaching a good quality Hessian, the optimisation is complete and a minimum

established by calculation of normal frequencies.

Primarily, there are two advantages to second-order minimisation methods using the Hessian

and gradient over first-order methods using the gradient. Firstly, speed of convergence.

Algorithms such as Steepest Descent tend to exhibit linear convergence [84] whereas L-

BFGS has superlinear, and therefore much faster, convergence [85]. Secondly, L-BFGS tends

to outperform both Steepest Descent and Conjugate Gradient on low-dimensional problems

(< 10 000 parameters), especially if the starting point of the optimisation is far away from

a local minimum [86].

Solvation entropy

Solvation entropy ∆Ss is estimated from an additive relation between electrostatic (∆Ss,elec)

and hydrophobic (∆Ss,hyd) components.

∆Ss = ∆Ss,elec + ∆Ss,hyd (2.43)

The electrostatics component is further broken down into bulk effects and polar solute-

solvent effects of dielectric constants εsolv for each component and temperature T for the

second component.

∆Ss,elecbulk = −
(
δ∆Gs
δεsolv

)(
δεsolv
δT

)
(2.44)

The second term is evaluated at a constant of 28 J.molK−1 based upon various gas-phase

calculations of molecules with proton donors or acceptors interacting with water molecules.
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Accurate treatment of specific hydrophilic solute-solvent clusters was determined to be be-

yond the scope of the method, making Szybki computationally too expensive for the purposes

of drug design research.

Finally, the hydrophobic term is evaluated in approximate fashion from the hydrophobic

solvation free energy ∆Gs,hyd in Temperature T .

∆Ss,hyd = −
(
δ∆Gs,hyd

δT

)
(2.45)

Where ∆Gs,hyd is an additive relation of the free energies of cavitation ∆Gcav, solute-solvent

vdW ∆GvdW and induction (permanent dipole-induced dipole) ∆Gind.

∆Gs,hyd = ∆Gcav + ∆GvdW + ∆Gind (2.46)

All three free energies are estimated from approximate methods to allow for the packing den-

sity solvent around the ligand (e.g. Scaled Particle Theory, or, SPT) as well as analytically-

determined relations that calculate solvent and ligand polarisabilities and dipole moments.

2.6 Ligand-based techniques

The use of ligand-based techniques in drug design has previously been a very fertile area

of research [87]. The broad philosophy is used to develop drug candidates in the absence

of structural information describing the target and is predicated on the assumption that

structurally similar molecules will have similar biological activity [88]. An outgrowth of this

has been statistical and analytical tools to elucidate the structural parameters and descriptors

that link a given molecule or molecular class to biological activity.

A popular family of techniques to address this are Quantitative Structure-Activity Relation-

ships (QSAR [89] [90]). The broad method involves in silico modelling of candidate ligands

that are energy minimised. Molecular descriptors for ligands are generated and are often

structural, physicochemical and/or based on calculations from knowledge-based, molecular

mechanics or quantum mechanical tools. A mathematical relation is developed to explain

variation in a dependent variable, that being biological activity against the target. The model

is then tested, refined and validated via an array of techniques more usually associated with

linear regression analysis.

Other approaches, such as the 3D Pharmacophore model [91], focus primarily on the lig-

and structure but integrate some structural information. To that end, a 3D pharmacophore
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model is an essential set of interactions aligned in three-dimensional space of small-molecule

ligands with a protein structure. These interactions encompass intuitive chemical descriptors

such as hydrogen-bond donors and acceptors but also integrate harder to elucidate interac-

tions such as charge-transfer interactions and electrostatic interactions with e.g Fluorine

atoms in a ligand. Variants on this, such as the Conformationally-Sampled Phamacophore

approach (CSP [92]) integrate molecular dynamics simulation as an initial step to increase

the probability of finding the receptor-bound form of the ligand.

2.6.1 Similarity and fingerprinting

Another outgrowth of ligand-based methods is in molecular 2D similarity, or, ‘fingerprints’.

The development of a fingerprint generally involves the encoding of 2D chemical structure

information (e.g. number of rotatable bonds, number of atoms) in a bit-string. This is

then compared to others via Tanimoto coefficient as a measure to determine the similarity

between comparison molecules [93].

The Tanimoto coefficient τ is evaluated where NA, NA and NA&B is the number of fea-

tures in the fingerprints of query molecule A and B individually and bits that are common,

respectively.

τ =
NA&B

NA +NB −NA&B
(2.47)

An attempt to integrate more molecular features into molecular fingerprints resulted in the

Extended-Connectivity Finger Print (ECFP [94]) method, a variant of the Morgan algorithm

[95] and explicitly designed to capture features relevant to activity.

The ECFP algorithm firstly assigns integers to the atoms in the query molecule prior to an

iterative updating stage where an atom’s identifier is updated to reflect the identifiers of their

neighbours. This includes basic chemical information (e.g. attached bond types, whether

part of a ring, atomic mass) followed by a duplicate removal stage (Figure 2.3). The final

stage is ‘folding’, a method to increase the information density stored in a fingerprint. With

fixed-length comparisons, strings that could contain most concievable chemical moieties,

fingerprints for small molecules will contain many 0’s and therefore be ‘sparse’ whereas for

very large molecules, the bit string will contain many 1’s and therefore be ‘rich’. This was

not considered an efficient way to store molecular representations.

The folding process begins with a fixed fingerprint size that is very large to accurately

represent any molecule expected to be endcoded. The fingerprint is then ‘folded’ be dividing
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it into two equal halves then combining the two halves using a logical OR. The result is

shorter fingerprints for molecules in our library but with a higher bit density. We can then

repeatedly fold the fingerprint until a pre-determined information density (the ‘minimum

density’) is reached or exceeded (Figure 2.4).

Figure 2.3: The ECFP and unique identifier generation process displaying initial assignment of atom identifiers,

updating of those identifiers and removal of duplicate strings (multiple identifier representations of equivalent atom

neighborhoods) prior to generation of the final list of identifiers for the encoded moiety (from ChemAxon.com)

Figure 2.4: Generation of the the fixed-length bit-string from unique identifiers during the ECFP generation process,

otherwise know as ‘folding’ (from ChemAxon.com)

Fingerprint similarity modules are implemented in Open Babel [96] and was used in chapter 3

and chapter 4.
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Chapter 3

Novel ligands for the kinase

Proviral Integration site for MuLV

(Pim-1)

In conjunction with my supervisor, Prof. Dr. Peter Kolb, I was responsible for the overall

research planning, strategy and execution of all projects. This is with the exception of

Project 4 where Prof. Dr. Diederich noted the significance of the X-ray crystal structure

that began the project. I was responsible for completing all computational work with the

exception of the docking of aniline-triazoles in Project 2 and library collation for Project

4, both completed by Dr. Florent Chevillard. Chemical synthesis of all compounds was

carried out by Mr. Lukas Heyder from our collaborators, AG Diederich. I was responsible

for assay testing of compounds with help from Mr. Matthias Oebbeke with exception of those

purchased for Project 3 that were also tested by Eurofins Inc. All Thermal Shift Assays and

X-ray crystallography were carried out by Dr. Christof Siefker.
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3.1 Introduction

3.1.1 The kinase Pim-1

The Proviral Integration site for MuLV (PIM) kinases are a family of serine/threonine kinases

in the CalModulin-Dependent Kinase (CAMK) family.

PIM genes were first identified in the 1980s as potent oncogenes associated with murine

leukaemia virus (MuLV)-induced lymphomas in mice [97] and comprise a family of three

genes: Pim-1, Pim-2 and Pim-3. These genes have differing tissue expression profiles [98]

and a sequence homology of >60%. This leads to compensatory activation [99] in the absence

of one or more of the proteins expressed by PIM genes but particularly Pim-1 [100].

Pim-1 interacts with and phosphorylates a variety of cellular targets and performs a variety

of roles involved in cell cycle progression and death. Pim-1 inhibits apoptosis via interactions

with regulator proteins bcl-2 and Gfi-1 [101] but has arguably a more significant role in a

pathway involving the Janus Kinases and Signal Transducer and Activator of Transcription

proteins (JAK-STAT pathway [102]).

The JAK-STAT pathway (Figure 3.1) is involved in cellular processes leading to DNA tran-

scription such as cell survival, proliferation and differentiation [103]. Pim-1 has cell cycle

substrates necessary for mitosis (NuMA [104]), cyclin-dependent kinase inhibition to regulate

DNA synthesis (p21Cip1) [105], inhibitors (p27Kip1 [106]) and activators (Cdc25A [107] and

Cdc25c [108]) of cell division. Pim-1 also has a role inhibiting the formation of a heterodimer

between Bcl-2 and Bcl-2-associated death promoter (BAD) via phosphorylation of S112 and

S136 in the latter, leading to inhibition of Bak/Bak-triggered apoptosis [109].

Likely the most potent collaboration, however, is between Pim-1 and a transcription factor,

c-Myc [110]. c-Myc regulates many important genes and processes (e.g. telomerase activity,

differentiation) and its disregulation, most commonly via amplification, is associated with

most cancers [111]. c-Myc typically has a very short half-life of 10 to 20 minutes prior to its

dephosphorylation and ubiquitination as part of one or more Raf pathways [112]. However, in

one of the most compelling collaborations described between any combination of oncogenes,

it has been established that even mild Pim-1 over-expression and increased levels of c-Myc

are associated with highly malignant monoclonal tumours [113], despite being relatively weak

oncogenes individually. Pim-1 inhibits c-Myc degradation via increased phosphorylation at

two key sites in c-Myc (S62 and S329), found via protein stability assays to dramatically

increase the half-life of c-Myc to >90 minutes [114].
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Figure 3.1: Pim-1 in the JAK/STAT pathway. Upon activation by cytokine binding to cellular receptors (green

cylinder), JAK2 (pink ovoid sphere) autophosphorylates its cytoplasmic receptor domain, creating recruitment sites

for STATS (yellow ovoid spheres). STATS 3 and 5 directly bind to the Pim-1 promoter regions and up-regulate its

gene expression. Expression of all three PIM proteins are also induced by activation of transcription factor complexes

such as NF-kB. Additionally, Pim-1 is also able to negatively regulate the JAK/STAT pathway via binding to SOCs,

a group of negative regulators. PIM in the JAK2 pathway subsequently phosphorylates, and consequently activates

or inactivates, a number of enzymes and transcription factors (light blue ovoid spheres) and kinase inhibitors (aqua

spheres) in many cellular pathways (adapted from [102]).

Consequently, Pim-1 kinases are overexpressed, not just in a variety of haematopoietic ma-

lignancies but also solid tumours. This often leads to cancers in the prostate [115], lungs,

gastric system, pancreas and squamous cell carcinomas of the upper-body [116].

As levels of Pim-1 are effectively rate-limiting for tumour progression in certain lymphomas,

this makes it an attractive target for drug therapies against these diseases. Some unique

structural factors that make Pim-1 even more apposite a drug target are that it is con-

stitutively active, requiring no further post-translational modification once properly folded.

Pim-1’s cellular activity is also regulated by its own synthesis and degradation, hence, ex-

pression and activity are predictable [117].
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Structurally, Pim-1 posesses the usual kinase features such as a characteristic bi-lobular fold

comprising the N-terminus and C-terminus is augmented by a catalytic domain comprised

of an activation loop (DFG loop), a ‘hinge’ region generally occupied by Adenosine Tri-

Phosphate (ATP) and a flexible two-stranded β-sheet (Glycine-rich or P-Loop). Within the

binding pocket are two residues key for kinase inhibitor binding. The adenine moiety of

ATP interacts with E121 in the Hinge so inhibitors targeting this residue are known as

‘ATP-mimetic’ whereas the opposite side of the pocket contains a catalytic [118] Lysine

(K67) that interacts with inhibitors in ‘ATP-competitive’ fashion (Figure 3.2).

Figure 3.2: The basic structure of the kinase Pim-1. Depicted here are the N-terminus and C-terminus (grey cartoon)

signifying the respective beginning and end of the protein sequence, a flexible Glycine-rich P-Loop (pink cartoon), the

DFG loop (straw cartoon) that adopts alternative conformations delineating activation or inactivation, a conserved

Lysine (K67, stick representation) that plays a catalytic role in phosphate transfer from bound ATP to Pim-1’s co-

substrate, a hinge region (green cartoon) that directly binds the adenine moiety of ATP via E121 (stick representation)

and a bound ligand (PDB:3BGP, green carbons, stick representation) displaying a binding mode usually associated

with ‘ATP-mimetic’ inhibition.

As with other kinases, Pim-1 has several regions where non-conserved residues are found.

This arises because ATP does not occupy the entire volume of the binding pocket so regions

around the segments of a bound ATP molecule have been named accordingly. Two of the

more important areas are the Hydrophobic Pocket, situated behind the adenine moiety of

ATP and the Specificity Surface, situated at the opening of the binding pocket [119]. Both

areas are believed to be important for kinase selectivity (Figure 3.3).

PIM inhibition has been intensely studied for over a decade and highly diverse classes of
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Figure 3.3: The Pim-1 binding pocket showing the protein in complex with AMPPNP (PDB:1YXT) and non-

conserved regions categorised by ATP binding mode, green areas where apolar binding occurs and red where polar

interactions occur. Key residues (e.g. E121, D128) are depicted by light-grey stick representations.

inhibitors have been published [120] displaying a few important structural features. Gener-

ally, ligands have possessed a rigid core to fill the ATP binding site, interacting with apolar

residues (e.g I104, F49). Polar interactions have generally been formed with residues in a

hydrogen-bonding network comprised of a catalytic lysine (K67) and residues in the DFG

loop (D186).

So-called ‘hinge binders’ have been situated in the adenine pocket. However, Pim-1 is

uniquely apolar when compared to other kinases. Hence, where there are at least two polar

bonds available in the hinge in other kinases, the position and geometry of a Proline (P123)

in Pim-1 negates the possibility of ligands interacting with residues other than the canonical

hinge-ATP interaction, a hydrogen-bond acceptor interaction with the backbone carbonyl of

E121. This dramatically reduces the potential affinity of hinge binders and is reflected in the

higher Km for ATP in PIM proteins, in the three-digit μM-range for Pim-1 vs single-digit
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to double-digit μM for other Ser-Thr kinases [121]. Those developing Pim-1 ligands have

consequently focussed on ATP-competitive rather than ATP-mimetic inhibition.

Far less common is the targeting of residues at the Specificity Surface (D128-D131). Stau-

rosporine has been shown to bind in a ATP-mimetic fashion to the hinge and D128 via its

methylamino group [122]. A High-Throughput Screen (HTS) and structure-guided optimi-

sation campaign also resulted in very potent inhibitors that targeted the hinge, K67 and

D128 via short but rigid chain linkers between ring groups [123,124] (Figure 3.4). But these

are the only examples in the literature. This is perhaps surprising as these residues are

conserved in all three PIM kinases and a focus of these campaigns was on the development

of pan-PIM inhibitors.

Figure 3.4: Example Pim-1 X-ray structures depicting rigid short-chain linkers between aromatic moieties interacting

with polar residues in the binding pocket. (A) A ligand (pink carbons, ball-and-stick representation) is depicted

forming polar interactions with residues (green, stick representation) such Pim-1’s catalytic Lysine (K67) and D128

(from Burger, et al 2013). (B) A ligand (orange carbons, stick representation) is depicted forming polar interactions with

residues (light blue, stick representation) K67, the conserved backbone and a salt-bridge with D128 (from Ishchenko,

et al 2015)

3.1.2 Structure-based Virtual Screening

In light of the structural information obtained from previous campaigns, Structure-Based

Virtual Screening (SBVS) offers the possibility of large-scale structure-based ligand discovery

for Pim-1. Large-scale docking campaigns have well-known limitations [9] and the size of

drug-like chemical space is very large, estimated to be in excess of 1060 molecules [125].

Nonetheless, by fitting libraries of small molecules into a binding pocket and scoring them

with a function containing well-developed physics-based terms and parameters, a relatively

large amount of chemical space can be quickly sampled.

Fragment-based Drug Design (FBDD) offers the possibility of sampling a greater amount

of this space than any HTS campaign [126]. This is considered a function of the greater
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efficiency of exploring the chemical space of smaller molecules up to 30 heavy atoms (∼1020

[127]). Fragments hits, despite lower potency overall, form high-quality, enthalpy-driven

interactions with a target protein due a net loss of rigid-body entropy caused by the ligand

binding event [44]. The small size of these molecules does, however, impact on detection

of fragments. The use of X-ray crystallography has proven to be the most reliable method

for finding ligands as many well-developed biophysical methods miss fragment-sized hits at

their detection limits [46].

Target characteristics are also important in the design of a suitable library for FBDD. With

respect to kinases, as they have evolved to bind ATP, molecules targeting the region where the

adenine portion of ATP binds, known as ‘ATP-mimetic’, have proven successful at finding

novel and selective ligands [128]. In contrast, some of the more unusual kinase hits have

been developed to nM affinities from initial hits some distance away from the ATP binding

site [129], or in an ‘ATP-competitive’ fashion, or ‘allosteric regulators’.

The synthetic feasibility of molecules from fragment hits has also been demonstrated to lead

to ligands [130]. The pursuit of hits using methods to react chemical building blocks or

fragments exhaustively in silico can, in principle, lead to easily-synthesisable molecules [57].

Ligands can be biased toward novelty, generated and applied to computational methods

quickly [58]. Conversely, finding novel chemotypes is also possible with large and diverse

libraries when compared to rational design campaigns from initial HTS hits. Rapid testing

of molecules can also be facilitated by using libraries comprised of commercially-available

molecules as ZINC Is Not Commercial (ZINC [131]).

The aims of this work are broadly within the scope of novel ligand discovery via SBVS and

FBDD. In Project 1, fragments from an internal fragment library [45] were docked with

Pim-1 and PKA and compared to X-ray crystallographic structures solved in-house. In an

attempt to answer questions concerning which starting structure to use and how to develop

reliable predictions, docking to multiple structures both simulated and derived from X-ray

studies was conducted with multiple docking codes and results compared.

For Project 2, a library of extended fragments determined to produce reliable fragment

binding modes was constructed via exhaustive in silico reactions, docked and tested against

Pim-1 and a selectivity target, PKA. In Project 3, the same targets were screened against a

lead-like subset of ZINC, tested in-house and by third-party vendor, protein-ligand complexes

crystallised and their structures solved.



57

Finally, Project 4 addresses an X-ray hit from the internal fragment library, Fragment num-

ber 200 (f200), that was not the complete molecule in the library but found a quality inter-

action with Pim-1 ’s catalytic lysine and a nearby water network. The binding mode and

protonation state of the fragment was confirmed by simulation, the fragment then extended

in silico and docked, inhibitors then synthesised and tested.

3.2 Materials and methods

3.2.1 Protein preparation

Three-dimensional crystal structures of Pim-1 were prepared from in-house datasets or down-

loaded from the Protein Data Bank [59] (PDB: 3BGP). Missing atoms or residues were

repaired and minimised with Wit!P [132], hydrogens added and their positions minimised

with CHARMM v31b2 [78]. Protonation states of histidine residues in all structures were

determined via visual inspection. Each histidine was allocated a status of HID, HIE and HIP

for docking dependent upon whether the ε, δ or both nitrogens in the imidazole side-chain

were considered likely to be protonated.

Each protein structure was prepared for docking with three program suites: Solvation Energy

for Exhausive Docking (SEED) version 3.3.5 [60], OpenEye’s OEDocking suite (v3.2.0.2) [69],

DOCK 3.6 [68]/3.7 [24].

For SEED, defaults regarding departures from ideal hydrogen bonding geometry, clashes,

and other chemical parameters were used and residues comprising the binding site of the

protein were determined via manual inspection. Pre-defined rules regarding bond-length,

angle and direction of H-bond donors and acceptors allow the construction and distribution

of vectors of unitary length on all hydrogen bonding groups of ideal geometry. To reduce

computations of unlikely polar-bond geometries, coordinates of a known ligand were used to

restrict the number of force vectors evaluated to those not exceeding a set geometry criterion

(10-70◦).

The structure was prepared for docking with FRED using the pdb2receptor module in the

OEDocking suite. Parameters regarding box shape, size and contours were calculated au-

tomatically and it was determined after preparation that the binding site was adequately

covered.

Finally, the receptor was prepared for DOCK via the generation of a set of spheres repre-

senting the invagination of the receptor binding pocket. This was generated using a program
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included in the DOCK distribution, sphgen [133]. The number and positions of spheres gen-

erated automatically was deemed adequate for coverage of the Pim-1 receptor. The oxygen

atoms in E121 were ‘tarted’ by increasing their respective atomic partial charges by 0.4 with

a consequent increase in the overall electrostatic potential surrounding this residue.

Images of the binding pocket for the SEED, FRED and DOCK binding pockets can be found

in Appendix Figures 7.1, 7.2 and 7.3 respectively.

3.2.2 Ligand preparation

Molecules for all projects were drawn from an internal fragment library [45] as well as ZINC12

[131] and ZINC15 [14].

The internal fragment library was developed from databases of commercially available com-

pounds with the focus on chemical novelty of ‘drug-like’ fragments amenable to development

strategies such as growing and merging. This process resulted in a fragment library of 361

molecules that was validated against an aspartic protease receptor, Endothiapepsin [48].

For docking with SEED and FRED, the fragment library was prepared from Simplified

Molecular Input Line Entry System (SMILES [134–136]) using OpenEye’s QUACPAC [137]

suite for appropriate protomer and tautomer generation. Multiple 3D conformers for each

protomer were generated with OMEGA [138]. To reduce the number of similar conformers

and lower the computational effort required, values of the -rmsrange parameter were in-

creased sequentially from 0.5 - 1.2 with number of rotatable bonds (1-7) in a given molecule.

The -erange parameter was set to 5.0 kcal·mol−1. This reduced the number of conformers

from hundreds to < 20 in most cases without substantially compromising the amount of

conformational space explored. AM1-BCC [139] partial atomic charges were calculated for

each conformer.

Generation of the fragment library for use with DOCK was completed using the internal

ligand generation pipeline implemented with the DOCK 3.7 suite to generate the .db2 files

required. The pipeline takes SMILES as input and uses ChemAxon [140] programs for

protomer generation, CORINA 4.1 [141] for initial 3D conformer generation, AMSOL 7.1

[142] to compute atomic partial charges and ligand desolvation terms and finally OMEGA

to generate conformers.

Both ZINC12 and ZINC15 are freely-available databases of, in principle, biologically-relevant

and purchasable compounds. Additional web-based resources are available such as similarity
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searches and activity prediction. The database focusses on chemical novelty and offers several

‘tranches’ for download such as ‘fragment’, ‘lead-like’, ‘drug-like’, etc. For this work, only

lead-like databases were downloaded directly from the ZINC12 and ZINC15 websites.

Finally, after initial fragment docking, extensions to the internal fragment library were gen-

erated using the Python IN silico de novo Growing UtIlities (PINGUI [58]). This method

takes a given molecule, identifies sites, or, ‘reactive handles’ on the molecule amenable to

extension and reacts them exhaustively in silico with building-block libraries using 58 robust

reactions [57] to ensure synthetic feasibility.

Molecules in another series of aniline triazoles were reacted in silico with a fragment derived

from an in-house developed database, SCUBIDOO [55]. The scaffold (4012414) and all

synthesised derivatives were predicted to interact with both K67 and the hinge (E121). A

coupling reaction, Buchwald-Hartwig cross-coupling, was chosen to extend the molecules at

the meta position of the aniline in order to target D128. In total, 6 molecules were selected

from this series for docking and testing (Figure 3.5).

Figure 3.5: Depicted here is the Pim-1 binding pocket in complex with an aniline triazole scaffold (dark grey, stick

representation) and key residues (light grey, stick representation) labelled. Predicted polar interactions are represented

by yellow dashed lines. The scaffold’s triazole was predicted to interact with the catalytic lysine (K67) and its aniline

nitrogen predicted to interact with a hinge residue (E121). A halogen in meta position of the aniline is highlighted

(green circle) to show the proposed in silico reaction site
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For Project 4, extensions to a ligand found for Pim-1 from the internal fragment library

(f200 ) were generated at position 5 on the aryl component of its quinoxaline core (Figure

3.6). Extensions from this position therefore made amenable the targeting of charged residues

near the Specificity Surface (D128 and D131). One coupling reaction was used (Suzuki [143])

and this was reacted in silico with building blocks from the MolPort [144] library.

Figure 3.6: Depicted here is the Pim-1 binding pocket in complex with a substituted quinoxaline (green carbons, stick

representation) and key residues (light grey, stick representation) labelled. Position 5 of the quinoxaline is highlighted

(green square) to show the proposed in silico Suzuki reaction site

3.2.3 Molecular dynamics simulations

All molecular dynamics simulations were completed with the Amber and AmberTools suite

of programs (versions 14 [145] and 16 [146]). Simulations post-processed with MDMix [19]

were completed with Amber 16.

Ligands were prepared from files containing atomic coordinates (.mol2 ) and fixed partial

charges calculated using the Restrained ElectroStatic Potential (RESP) model [147]. This

was completed via geometric optimisation and electrostatic potential calculations on con-

verged wave functions using Gaussian 09 rev C.01 [148] at the HF/6-31G* level of theory.

Software in AmberTools (Antechamber [149]) was used for file conversion between Gaussian

logs and .mol2 files.
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Protein structures were initially prepared using MOE [150] to add hydrogens, fix chain breaks

and missing atoms. The positions of all crystallographic water molecules were retained.

Amber Tool’s LEaP module was used to generate topologies and coordinates for both ligands

and proteins. The force fields chosen for all simulation steps (heating, equilibration and

production) were The General Amber Force Field (GAFF [76]) for ligands and ff99SB [151]

for the protein, respectively. The protein-ligand complex then had charges neutralised with

Na+ and Cl- ions and was solvated with a truncated-octahedral TIP3 [152] water box of

10 Å in size repeated in all three spatial dimensions such that the closest distance between

any atom present in the protein and the edge of the periodic box was also 10 Å to ensure

total coverage of the complex.

Prior to production MD, each complex first underwent two energy minimisation stages, then

a heating stage from 100K to 300K and six subsequent equilibration stages at constant

volume and temperature for a total of 5 ns (2 fs time steps). All heating and equilibration

stages had protein heavy atoms restrained with restraint weights progressively reduced to

zero as the complex progressed from one stage to the next.

Upon confirmation of a complex’s thermodynamic stability in terms of temperature, pressure

potential energy and other variables, a constant volume and temperature (NVT) simulation

was conducted with periodic boundary conditions. All bonds with hydrogen were constrained

using the SHAKE algorithm [153] and Langevin thermostat [154] for temperature regulation.

After checks for stability of the system (e.g. temperature, pressure, RMSD), each produc-

tion simulation was run for 100ns with three repeats per simulation for a total of 400ns of

simulation time.

For Project 1, the Hierarchical Agglomerative Clustering algorithm in AmberTools’ CPP-

TRAJ was used to output the most frequent conformation of the protein binding pocket.

Five clusters were calculated and the average distance between members of clusters was used

to determine membership of each cluster.

For the purposes of trajectory analysis, a hydrogen bond between two atoms is defined as

between 2.4-3.4 Å heavy atom distance and angle of 120-240◦.

MDMix simulations in Project 4 were conducted on the Pim-1 apo structure. These simula-

tions used an additional protein forcefield, ff99SB-ILDN [155], that cites improved side-chain

potentials for the ff99SB force field.
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Each simulation had a single minimisation stage and five equilibration stages where the

temperature was progressively increased to 300K at constant pressure and restraints were

only applied to non-hydrogen atoms. Simulations also used a 20% mixture of three solvents

in a truncated octahedral box; water, acetamide and ethanol (Figure 3.7). Each production

simulation was run for 50 ns at constant pressure (NPT) with four replicates making a total

of 15 simulations (3 solvents x 5 simulations per solvent), or, 250 ns of simulation time per

solvent.

Figure 3.7: Example Pim-1 apo structure with 20% ethanol/water solvent mixture and binding pocket residues

labelled. Red spheres are water molecules whereas ethanol molecules are depicted as stick representations

From these simulations, binding ‘hot spots’ were calculated from solvent counts per 5 Å3 grid

element. The observed vs expected population was used to calculate the binding free energy

using the inverse Boltzmann relation.

∆Gbinding = −kBT · ln(
Ni

N0
) (3.1)

Solvent densities were visualised as isomeshes of ∆G ≤ -1.0 kcal·mol−1.
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3.2.4 Docking and minimisation

For FRED and HYBRID, program defaults were used with the exception of dock resolution

(=HIGH). Only the highest scoring pose for each molecule was retrieved.

For SEED, both polar and apolar docking algorithms were selected and all poses to an

evaluated energy of +5.0 kcal·mol−1 were retrieved. Otherwise, program defaults regarding

protein clashes, charge cut-offs and so on were used. Poses were assessed in terms of both

fragment and receptor desolvation energies and total interaction energies.

For DOCK, parameters governing van der Waals clashes were increased from defaults (20

kcal·mol−1 → 500 kcal·mol−1) i.e. poses where the vdW score exceeded this value were

discarded. The matchgoal parameter was also set higher (1000→ 5000) to increase sampling

of molecular orientations. Simplex minimisation was used. Sphere colouring was not used.

Only the highest scored pose was retrieved. Regarding all other parameters, program defaults

were used.

Protein structures from simulations often results in residues where side chain rings and

backbone amides were bent significantly out-of-plane. To alleviate this, atomic positions

were energy minimised using CHARMM with different harmonic force constants applied at

different levels of the protein. Force constants were applied by atomic mass resulting in a

force on a given atom in kcal·mol−1/Å−1 · 2.

Prior to docking, simulated structures were energy-minimised with CHARMM, progressively

weaker harmonic restraints applied at different levels of the protein. Protein backbone atoms

were the most restrained with a force constant of 2.0, side chain atoms at 0.4 with hydrogens

the most unrestrained at 0.08.

The positions of all pose structures within the Pim-1 active site were optimised using SZYBKI

[156]. Optimisation parameters were set to minimise torsional strain of molecular poses using

the Merck Molecular Force Field (MMFF94 [157]) with the Poisson-Boltzmann solvation

model [158]. All residues within 3 Å of a given pose were also minimised. Program defaults

regarding the optimisation method (e.g. BFGS [159] algorithm) were used.

To measure the quality of a docking prediction with respect to crystallographically-determined

atomic positions, the Root Mean Square Deviation (RMSD) of atomic positions was used. It

is simply the quadratic mean of the distance δ between equivalent atoms N in two superposed

chemical structures.
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RMSD =

√√√√ 1

N

N∑
i=1

δ2
i (3.2)

Molecular poses retrieved less than 1 Å RMSD from the ligand’s crystal position were con-

sidered a near-perfect fit with poses less than 2 Å considered very good and less than 3 Å to

be good.

Clustering of poses for Project 2 was completed with ChemMine [160], an online service for

small molecule data analysis. A Tanimoto similarity (Tc) of cut-off of 0.4 or lower using the

Extended-Connectivity Finger Print version 4 fingerprint (ECFP4 [94]) was used with their

hierarchical clustering functionality to sort molecules into ‘bins’. The first compound from

each bin was retained.

All similarity checks of molecules were conducted against the CHEMBL [12] database at

https://www.ebi.ac.uk/chembl/.

Assays

In Project 2 potential inhibitors were tested against Pim-1 and a selectivity target, Protein

Kinase A (PKA) using a Z′-LYTETM Kinase Assay Kit (Invitrogen/Thermo-Fisher) with

substrate peptides appropriate for the protein used.

The peptide substrate is labelled with two fluorophores (coumarin and fluorescein) that make

up a Fluorescence Resonance Energy Transfer (FRET) pair and in the primary reaction,

the γ-phosphate of ATP is transferred to a serine or threonine residue on the peptide. In

subsequent reactions, a site-specific protease cleaves unphosphorylated peptides, disrupting

FRET between donor (coumarin) and acceptor (fluorescein) fluorophores (Figure 3.8). From

here, an emission ratio of donor vs acceptor emissions after excitation at 400 nm is calculated.

Both cleaved and uncleaved FRET-peptides contribute to the fluorescence signals. The

emission ratio will therefore remain low if the peptide is phosphorylated (i.e. low kinase

inhibition) and will be high for unphosphorylated peptide, reflecting inhibitory activity.

For both enzymes used in the assay, an initial optimisation step was performed to determine

the appropriate enzyme concentration for screening. The assay protocol recommends near-

Km, ATP concentrations and kinase concentration that phophorylates 20-40% of the assay

substrate peptide.

https://www.ebi.ac.uk/chembl/
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Figure 3.8: Z’LYTE biochemical assay schematic depicting the (1) Kinase Reaction, where a synthetic peptide is

phosphorylated by the kinase; (2) the Development Reaction, where unphosphorylated peptides are cleaved by the

Development Reagent and; (3) measurement of emission ratios of cleaved vs uncleaved peptide reflecting the presence

(or absence) of fluorophores in FRET and, therefore, inhibitory activity (from Z′-LYTE KINASE ASSAY KIT –

SER/THR 7 PEPTIDE PROTOCOL, https://www.thermofisher.com/order/catalog/product/PV3180)

For both Pim-1 and PKA, the kinase concentration meeting these requirements was deter-

mined to be 80μg/mL (20μg/mL final concentration in each well based on a 10μL assay).

The ATP concentration used was 16 μM (4 μM final concentration) with Km determined to

be in the range of ∼4.2μM with each assay. Inhibitors were initially solved in 4% DMSO and

serially diluted to one-digit nM concentration and a final DMSO concentration in each well

of 1%. Staurosporine was tested for comparison purposes in each assay performed.

All compounds were tested with two mechanical and three biological replicates in black, flat-

bottom 384-well plates (Greiner MODEL; 7849000) and FRET of both coumarin (445nm)

and fluorescein (520nm) fluorophores was measured at each well and the emission ratio

calculated.

Per cent phosphorylation was calculated as a function of the emission ratio of compounds

tested and controls thusly:

% Phosphorylation = 1− (EmissionRatio× F100%)− C100%

(C0% − C100% + [EmissionRatio× (F100% − F0%)]
(3.3)

All IC50 plots were created in Qtiplot [161]. Dose-dependent inhibition was then quantified

by plotting fitting a sigmoidal curve via a 4-parameter logistic equation [162]. The IC50

of a given compound was calculated at the mid-point of the curve, indicating half-maximal

inhibition of the protein by a given inhibitor.

The binding affinity Ki of an inhibitor in a binding assay of fixed substrate concentration

[S] and half-maximal substrate enzyme activity Km was from the obtained IC50’s using the

Cheng-Prusoff relation [163].

https://www.thermofisher.com/order/catalog/product/PV3180
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Ki =
IC50

1 + [S]
Km

(3.4)

The Hill slope (d) of the plot was used as an indicator of possible ligand aggregation [164].

y = min+
max−min
1 + ( x

IC50
)d

(3.5)

For Project 3, compounds were tested both in-house and by a third-party vendor (Eurofins

Inc.). Compounds were tested against Pim-1 and their residual activities at a concentration

of 10 μM calculated via single-point inhibition assay [97] against a panel of human kinases.

Compounds displaying activity were then re-tested at concentrations close to their likely

IC50.

Inhibition constants Ki were determined of molecules with measured IC50s using the Cheng-

Prusoff relation [165]. We assume Michaelis–Menten kinetics of all enzymes tested, interact-

ing with a substrate of Michaelis constant KM and concentration S.

Ki =
IC50

1 + [s]
Km

(3.6)

3.3 Results

3.3.1 Project 1: Docking software comparisons vs structures from MD

simulation

Three X-ray structures were chosen for comparison, one from the PDB (3BGP) and two re-

sulting from equilibrium simulations of the apo structure (apo MD) and 3BGP (3BGP MD).

The 3BGP structure was chosen as it most broadly represented structural characteristics

thought important for ligands binding to Pim-1. It did not differ markedly from 97 other

Pim-1 structures on the PDB (RMSD x̄ = 0.37 Å, σx̄ = 0.05) and was therefore chosen for

further docking.

Trajectories from simulations of the apo MD structure were combined for cluster analysis.

The first frame in the trajectory was chosen as the reference frame and, after alignment,

RMSDs calculated for binding pocket residues, K67, the P-Loop and the DFG loop. It was

determined that the overall RMSD of the protein did not vary markedly during the course

of the simulation and quickly achieved an equilibrium (<1 ns).
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The first cluster for each of the 3BGP MD and apo MD binding pockets contained 64%

and ∼ 86% of the total frames from trajectories respectively. There was overall a greater

variation in RMSDs between each frame and the centroid of each cluster for the 3BGP MD

binding pocket (RMSD x̄ = 2.10 Å) when compared to the apo MD pocket (RMSD x̄ =

1.83 Å). This variation was also reflected in average RMSDs from cluster centroids when the

P-Loop alone was considered (RMSD x̄ = 2.44 Å for 3BGP MD vs 1.38 Å for apo MD). This

variation in-turn reflects greater flexibility of the P-Loop in the presence of a bound ligand

as, presumably, the absence of a ligand allows flexible residues to return to a more relaxed

state.

However, with respect to the 3BGP MD trajectory, the first cluster was closest in terms of

RMSD (0.861 Å) to its crystal structure when compared to the other four clusters (RMSD x̄

= 1.30 Å), reflecting a more ’averaged’ bound ligand state and was thus chosen for fragment

docking.

Descriptive statistics regarding simulations of this structure can be found in the Appendix

Table 7.1.

A Thermal Shift Assay (TSA) was performed as a crystallographic pre-screening step on all

361 compounds in the internal fragment library and from these, 31 molecules displayed a

‘significant’ (> 4 ◦C) positive temperature shift, indicative of stability in the protein-ligand

complex (Appendix, Figure 7.4). The crystal structures of 12 of these molecules in complex

with Pim-1 were subsequently fully resolved and used as references for assessing docking

performance.

All 12 fragments were docked to the the 3BGP X-ray structure as well as the apo MD and

3BGP MD structures. When docking to the X-ray structure of 3BGP, SEED recreated polar

contacts in most (92%) cases and retrieved at least one pose per fragment close to the crystal

binding mode (Table 3.1). FRED and HYBRID performed similarly when compared to each

other, in over half of cases retrieving poses close to the crystal binding mode of each fragment.

DOCK was unable to retrieve poses near the crystal binding mode.

Broadly improved pose retrieval was achieved when docking to the apo MD structure. SEED

and HYBRID were able to retrieve more poses that recreated the crystal binding mode but

SEED, FRED and HYBRID all performed worse in terms of RMSD. Improved performance

in terms of the number of crystal poses retrieved and RMSD was noted with DOCK.
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Docking fragments to the 3BGP MD structure improved the RMSD of fragments from the

crystal binding mode for both HYBRID and SEED with respect to apo MD structure whilst

also achieving similar performance to the 3BGP crystal structure. Unlike, the 3BGP crystal

structure, poses were retrieved for DOCK when using the 3BGP MD structure for docking.

Program PDB:3BGP apo MD 3BGP MD

RMSD x̄ (σx̄) % poses RMSD x̄ (σx̄) % poses RMSD x̄ (σx̄) % poses

FRED 2.58 (1.33) 75% 3.07 (1.15) 50% 3.45 (1.06) 58%

HYBRID 2.61 (1.17) 67% 3.37 (0.97) 75% 2.69 (1.38) 58%

SEED 1.68 (0.50) 92% 2.62 (0.95) 100% 2.15 (1.15) 100%

DOCK - (-) - 3.98 (1.09) 50% 3.90 (0.64) 42%

Table 3.1: Comparison of mean and standard deviations of RMSDs (Å) from fragment X-ray structures for poses

docked to PDB:3BGP, apo MD and 3BGP MD. Per-cent poses is defined as the proportion of docked poses within 5 Å

of the position of the bound X-ray ligand

Complete data regarding fragment RMSDs from X-ray crystal structures against both 3BGP

and apo MD targets can be found in Appendix Tables 7.2 and 7.3 respectively.

3.3.2 Project 2: synthetically-feasible extensions of an internal fragment

library

The initial fragment project found 54 fragments with a stable binding mode in Pim-1 of

which 34 possessed so-called ‘reactive handles’ amenable to extension. A thermal-shift assay

was conducted and 20 (59%) displayed a positive temperature shift, indicative of a net

increase in stability of these protein-ligand complexes. From these fragments, 37 reactions

in silico with 7805 building blocks from the ChemBridge [56] dataset generated a docking

library of 171 919 (313 299 protomers).

As there were large disparities in the number of molecules generated by each in silico reaction,

the full library was divided into separate docking instances by reaction to avoid ‘drowning

out’ of potentially good but similarly scored molecules from each reaction. Where there were

500 or more poses retrieved, the top-500 from each dock was retained for analysis. Otherwise,

each pose in a given dock was analysed.

A complete list of each dock and the size of each library can be found in the Appendix Table

7.5.

Visual inspection of poses retrieved resulted in library of 1156 molecules that was reduced

to 517 after minimisation and eliminating those with unsatisfactory binding modes (e.g.
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stranded H-bond donors, shape complementarity). They were divided into groups depending

on whether they retained the binding mode of the fragment from which they were derived

(394 ) or not (123 ). Each of these groups was further divided into separate groups depending

on whether they interacted with residues near the Specificity Surface or not.

In the case of molecules that retained their fragment binding mode, 146 poses displaying an

interaction with D128 were retrieved whilst 248 poses were not predicted to be interacting

with this residue. Of molecules displaying a different pose to their original fragment binding

mode, 20 molecules interacting with D128 were retrieved whereas 103 were not predicted to

be interacting with this residue.

There were many more molecules retaining their predicted fragment binding modes as com-

pared to those where the extended molecules displayed a different binding mode from the

original fragment. ECFP4 Tanimoto similarity was used to cluster this group into ‘bins’ and

the first molecule from each bin retained. After clustering and visual inspection, common

in high-throughput and virtual screening [166,167], a final list of 47 molecules was collated.

This list comprised of 27 molecules displaying a binding mode extended from their originally

predicted fragment position (‘BM’) and 20 where the extended molecule displayed a different

binding mode to the initial fragment prediction (‘novel’). These molecules were subjected

to assessment and grading by lab members experienced in docking, the grades collected and

analysed with 21 chosen for synthesis. Derivatisation and optimisation of some compounds

resulted in a final list of 37 compounds (Figure 3.9).

Whilst there was a great diversity in which moieties were positioned within the Pim-1 pocket,

the binding mode for all predictions was similar. All poses retrieved were interacting with

K67 and most were also predicted to be interacting with residues near the Specificity Sur-

face, particularly D128. In most cases, interactions with K67 were via a salt-bridge with

a carboxylate whereas D128 was generally predicted to interact with a charged endocyclic

amine group such as a protonated piperidine (Figure 3.10). Due to the bi-partite nature of

molecules created by PINGUI, most molecules were comprised of two or more ring systems

with flexible linkers rather than the bulky π-systems of known ligands for Pim-1 that interact

with D128 e.g. Staurosporine, Bisindolyl Maleimides.

A complete list of molecules 13 to 49 can be found in the Appendix Table 7.6.

It was decided from the above predictions to synthesise 10 compounds. Of these, 9 were

actually synthesised with one failing (Table 3.2). All were racemic mixtures. Of these, 3
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Figure 3.9: Schematic of Project 2 preparation, docking and post-processing. Docked molecules were first created by

reacting internal library fragments in silico with ChemBridge building blocks. They were then divided into separate

docking instances by reaction type, docked and the results aggregated and clustered by Tanimoto similarity (ECFP4

fingerprint). After detailed visual inspection, groups were formed based upon whether molecules retained the original

fragment binding mode or not (frag BM and ‘novel’ BM respectively). A preliminary list in each of these categories

was subjected to visual inspection and grading by lab members prior to the formation of a final list for analysis by

collaborators for synthesis. Minor alterations and synthetically-feasible derivatives were suggested by collaborators

prior to the final synthesis of 9 molecules that were then tested for inhibitory activity via FRET-based assays.

molecules (27, 29 and 47) were the original molecules predicted to interact with Pim-1 and 6

were synthesised with small alterations (e.g. pyridine → benzene) to ensure synthetic feasi-

bility. After minimisation, all 9 molecules were predicted to have net favourable interaction

energies (Appendix Tables 7.7, 7.8 and 7.9)

All molecules were tested via FRET assay with 5 showing at least mild activity against

Pim-1. The most potent was 26, measured to be inhibiting at an Ki=24.99 μM. This is as

compared to Staurosporine, measured to be inhibiting at a calculated Ki=4.7 μM (Figure

3.11).
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Figure 3.10: Predicted binding mode of 29 (black carbons, stick representation) in the Pim-1 binding pocket, key

residues (light grey, stick representation) labelled and 2D structure (inset) of the pose displayed. Predicted polar

interactions are represented by yellow dashed lines. Depicted here are salt-bridge interactions formed between 29’s

carboxylate and K67 as well its diazepane nitrogen and D128

Figure 3.11: Dose-response curves of FRET-based assays from extensions via in silico reactions with our internal

library. Depicted here is the per-cent phosphorylation against the LOG10 ligand concentration of tested compounds

displaying activity against Pim-1 with error bars (standard-error of measurement) and curves fitted to the data (multi-

coloured lines). The IC50 of a given compound was calculated at the mid-point of the curve, indicating half-maximal

inhibition of the protein. The most potent ligand, 26, is represented by the lime green line with Staurosporine (black

line) for comparison. Each experiment was repeated with two mechanical replicates and three biological replicates.
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Compound 26 was predicted to interact with the side chains of K67 and D128 and the

backbone of D186 (Figure 3.12).

Figure 3.12: Predicted binding mode of the (E)-isomer of 26 (black carbons, stick representation) in the Pim-1

binding pocket, key residues (light grey, stick representation) labelled and 2D structure (inset) of the pose displayed.

Predicted polar interactions are represented by yellow dashed lines. Depicted here is a salt-bridge interaction between

the carboxylate of 26 and K67 with the hydroxy group of its substituted benzofuran interacting with D128. This

ligand was the most potent of all tested with a calculated Ki of 24.98 μM.

All molecules from the aniline triazole series were tested via FRET assay with 52 the only

ligand to result in a measurable Ki of 137.0 μM (Figure 3.13). However, although a curve

could be fit, the values of per-cent inhibition suggest very little inhibition by this compound

was actually occurring.

Molecule 52 was the only ligand in the series predicted to directly target D128 (Figure 3.14).
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Figure 3.13: Dose-response curves of FRET-based assays from extensions via in silico reactions with our internal

library. Depicted here is the per-cent phosphorylation against the LOG10 ligand concentration of tested compounds

displaying activity against Pim-1 with error bars (standard-error of measurement) and curves fitted to the data (multi-

coloured lines). The IC50 of a given compound was calculated at the mid-point of the curve, indicating half-maximal

inhibition of the protein. In this case, 52 (red line) is displaying very mild inhibition. Staurosporine (black line) is

again depicted for comparison. Each experiment was repeated with two mechanical replicates and three biological

replicates.

Figure 3.14: Predicted binding mode of the most potent ligand from the aniline triazole series, 52 (black carbons, stick

representation), the predicted binding mode of the aniline triazole scaffold (dark grey carbons, stick representation)

in the Pim-1 binding pocket, key residues (light grey, stick representation) labelled and 2D structure (inset) of the

pose displayed. Predicted polar interactions are represented by yellow dashed lines. The aniline triazole scaffold

(SCUBIDOO fragment 4012414) is overlayed to exemplify the fragment-based growing approach used.
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None of the compounds tested from either series showed activity against PKA.

A complete list of molecules 50 to 55 can be found in the Appendix Table 7.10.

3.3.3 Project 3: novel inhibitors from the ZINC dataset

Several constraints were applied to the ZINC datasets downloaded for docking; molecules had

to be purchasable, their molecular weight between 250 and 350Da, logP ≤ 3.5 and contain

protomers within a pH range of 6-8. Applying these restrictions led to a database size of 4

601 296.

The entire dataset was docked and after checks for availability, torsional strain and likely

protonation states, 28 were submitted for group evaluation. Of these, 6 were selected for

purchase after checking for similarity with known actives. Molecules chosen for purchase

were found to be generally dissimilar to 8834 known actives against Pim-1 (Tc: x̄ = 0.40,

σx̄ = 0.09).

As Pim-1 has a more apolar hinge, the canonical Pim-1 backbone hinge interaction tends

to be large apolar moieties and this series were no exception with many molecules retrieved

and 4/6 purchased having an indole predicted to be in this position (Figure 3.15). Most

compounds were also predicted to interact with the catalytic lysine (K67) with some (3/6)

predicted to interact with both the hinge and K67. A diverse array of chemotypes were

predicted to interact with K67 but generally they were rigid, fused-ring systems (e.g. iso-

quinoline, triazolo-thiadiazolyl/pyrimidine).

A complete list and 2D structures of molecules 56 to 61 can be found in the Appendix Table

3.3.

A TSA was conducted on the all purchased compounds and from these, 5 molecules displayed

a positive temperature shift of at least 4◦C, again indicative of stabilisation of the formed

protein-ligand complex. Summary TSA data can be found in Appendix Table 3.3.

Despite one compound displaying a negative shift on the TSA, all compounds were selected

for crystallography. All compounds were co-crystallised [168] with the aid of a consensus

peptide, Pimtide [169]. Datasets were subsequently obtained for all compounds but only

crystal structures of 2 of these molecules in complex with Pim-1 could be fully refined.

Protein-ligand X-ray structures were determined of molecules 57 and 61 to a resolution of

1.97 Å and 2.21 Å respectively.
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Figure 3.15: Predicted binding mode of 59 (black carbons, stick representation) in the Pim-1 binding pocket, key

residues (light grey, stick representation) labelled and 2D structure (inset) of the pose displayed. Predicted polar

interactions are represented by yellow dashed lines. Depicted here are interactions between the secondary amide of 59

and K67, an indole nitrogen with hinge residue E121 and its primary amide and D128.

Unexpectedly, 61 displayed quite a different binding mode in its crystal structure when

compared to the docking prediction (Figure 3.16). Its isoquinoline motif was not found to

be interacting with K67 as predicted. Instead it was positioned on the hinge side of the

binding pocket. The secondary amide of 61 formed a bridging interaction with W278, R6

of Pimtide and D131 at the Specificity Surface and its pyrrolidine was positioned to form an

interaction with D186 rather than D128 and D131 at the Specificity Surface of Pim-1.

The exact binding mode of 57 was not clear as the ligand was only partially visible in the

X-ray structure. However the position of the ligand was redolent of a different binding mode

than that predicted during the initial screen (Figure 3.17).

As with 61, it appeared likely that 57 was involved in a water-bridged interaction with

Pimtide. It is possible that the the crystallised ligand was the hydrolysis product of the

ester linking 57’s indole and pyrrole moieties. It was, however, subsequently determined

that by including Pimtide and crystallographic waters in receptor preparation, the binding
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Figure 3.16: X-ray structure of 61 (left, green carbons, stick representation) in complex with Pim-1 and Pimtide (ma-

genta carbons, stick representation) as compared to the docking prediction (right, black carbons, stick representation)

with no Pimtide. Key residues (light grey, stick representation) are labelled and the 2D structure (inset) of the pose

displayed. Predicted polar interactions are represented by yellow dashed lines. This depicts the very different binding

mode with respect to the docking prediction when the secondary amide of 61 formed a water-mediated interaction with

R6 of Pimtide and a salt-bridge between its pyrrolidine and D186. This is as compared to the predicted interactions

between its isoquinoline with K67 and salt-bridge between its pyrolidine and D128. Despite the sequence similarity of

Pimtide to the known Pim-1 co-substrate, this molecule was not found to be active on orthogonal assays where Pimtide

was not present and is thus unlikely to reflect a inhibatory binding mode with the Pim-1 co-substrate.

mode of the complete structures of both 57 and 61 could be replicated by re-docking to

their X-ray structures (Figure 3.18).

All 6 compounds were tested against a panel of 10 kinases by a third-party vendor and their

residual activities calculated. Compounds 57, 58 and 59 showed inhibitory activity against

Pim-1 specifically with 58 also reducing the activity of Pim-2 and mTOR.

Molecules were tested via FRET-based assay and Ki’s of 57, 58 and 61 subsequently eluci-

dated. Compound 58 was found to found to be a mild ligand against Pim-1 (Ki=15.09 μM

with 57 showing signs of inhibition at higher concentrations (Figure 3.19). All others showed

little or no activity.
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Figure 3.17: X-ray structure of 57 (left, green carbons, stick representation) in complex with Pim-1 and Pimtide

(magenta carbons, stick representation) as compared to the docking prediction (right, black carbons, stick represen-

tation) with no Pimtide. Key residues (light grey, stick representation) are labelled and the 2D structure (inset) of

the pose displayed. Predicted polar interactions are represented by yellow dashed lines. Although only part of the

ligand was placed in the binding pocket, the difference in the binding mode can be seen as the interactions predicted

by docking, substituted indole with hinge residue E121 and pyrrolidine with D186, likely did not form in the X-ray

structure.

Compound 58 was predicted by FRED to interact with the hinge with an indole positioned

there (Figure 3.20). An additional polar interaction was predicted, a triazolo-thiadiazole

moiety predicted to interact with the catalytic lysine (K67). It also displayed the highest

positive temperature shift on the TSA (5.16 ◦C± 0.23), indicative of higher protein-ligand

complex stability.



79

Figure 3.18: Depicted are the X-ray structure binding modes of ligands 57 (left, green carbons, stick representa-

tion) and 61 (right, green carbons, stick representation) in complex with Pim-1 and Pimtide (magenta carbons, stick

representation) as compared to the docking prediction (black carbons, stick representation). Key residues (light grey,

stick representation) are labelled and the 2D structure (inset) of the pose displayed. Predicted polar interactions are

represented by yellow dashed lines. In both cases, only by including in the docking calculation both Pimtide and

cystallographic water molecules (red oxygens, light grey hydrogens, stick representation) that were interacting with

Pimtide in the X-ray structure was the X-ray binding mode of the ligand able to be recreated.

Figure 3.19: Dose-response curves of FRET-based assays of compounds 57, 58 and 61. Depicted here is the per-cent

phosphorylation against the LOG10 ligand concentration of tested compounds displaying activity against Pim-1 with

error bars (standard-error of measurement) and curves fitted to the data (multi-coloured lines). The IC50 of a given

compound was calculated at the mid-point of the curve, indicating half-maximal inhibition of the protein. In this

case, 57 (green line) is displaying mild inhbitory activity whereas 61 (red line) shows almost no activity and some

indication of fluorescence at higher ligand concentrations. Staurosporine (black line) is again depicted for comparison.

Each experiment was repeated with two mechanical replicates and three biological replicates
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Figure 3.20: Predicted binding mode of 58 (black carbons, stick representation) in the Pim-1 binding pocket, key

residues (light grey, stick representation) labelled and 2D structure (inset) of the pose displayed. Predicted polar

interactions are represented by yellow dashed lines. Depicted here are interactions between the triazolo-thiadiazole

core of 58 with K67 and its indole with hinge residue E121. After also being tested against a panel of other kinases,

58 was found to be active against Pim-2. As both Pim-1 and Pim-2 share significant sequence homology with Pim-3,

58 is thus a candidate selective pan-PIM inhibitor.

Activities against all kinases tested and calculated Ki’s against Pim-1 can be found in the

Appendix Tables 7.11 and 7.12.

3.3.4 Project 4: extensions of truncated fragment f200

Prior to commencing any fragment elaboration it was necessary to establish the binding

mode of the fragment in the binding pocket as this had implications for its stability and that

of extensions to it. As hydrogen atoms are not well resolved by X-ray diffraction studies,

the crystallographic structure of f200 does not provide explicit information regarding the

protonation state of the ligand.

In the X-ray structure, three water molecules (W63, W62 and W29) were resolved and
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arranged in a network within the binding pocket, bridging interactions with I104 and K67.

One of the crystallographic waters, W62, is closest (∼ 3.8 Å) to the amide of the ligand’s

quinoxaline core, albeit slightly beyond hydrogen-bonding distance and with apparently sub-

optimal geometry for an interaction. Nonetheless, prior work [170] has suggested that W62

is the only buried water in Pim-1’s binding pocket.

Calculated water hot spots from MDMix simulations of Pim-1’s apo structure depict areas

of elevated solvent density surrounding the positions of all three waters and much of the

area of elevated solvent density adjacent to a position similar to W62 was within hydrogen-

bonding range of the position of the quinoxaline core (Figure 3.21). There was significantly

less solvent density surrounding a similar position of W63 suggesting waters positioned here

may be displacable to allow room for a buried water to form a polar bond with the ligand.

Figure 3.21: Output from MDMix showing areas of solvent density below -1.0 kcal·mol−1 (blue mesh) overlayed

with the f200 crystollagraphic ligand (green carbons, stick representation) and crystallographic water molecules (red

spheres) to illustrate the proximity of these water molecules to calculated solvent density from MD simulations.

Further simulations of the ligand confirmed that the water in a similar position to W63 (W3)

is less stable in the binding pocket, leaving it ∼2 ns into the production simulation. This

allowed an inward rearrangement of I104’s side chain into the binding pocket and a water

(W2) to move into hydrogen-bonding range of the quinoxaline amide nitrogen. Although the

water network was disturbed by this event, the interaction between the quinoxaline amide

and W2 (x̄DISTANCE = 3.00 Å, x̄ANGLE = 148.46◦) and another between the amide carbonyl

and K67 (x̄DISTANCE = 2.94 Å, x̄ANGLE = 154.33◦) meant the ligand’s binding mode was
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stable for > 10 ns. After this point, polar interactions were broken and the ligand began to

leave the binding pocket.

By contrast, simulation of a negative control, the imino tautomer of the quinoxiline’s amide

group, showed a close contact between the hydroxy group of the iminol and K67 after heating

and equilibration when positioned similarly to the X-ray ligand (Figure 3.22). Soon after

commencing production, W3 again left the binding pocket (∼2 ns) and the water network

was again disturbed. The ligand was ejected from the binding pocket soon after (∼3 ns).

Figure 3.22: Positions and distances (Å) from an MD snapshot between ligand (turqoise carbons, ball-and-stick

representation), water molecules in the Pim-1 binding pocket W1, W2 and W3 (red oxygen, white hydrogens, vdW

representation) and K67 for f200 amide (left) and iminol (right) tautomers. In the former case, interactions are predicted

to form between the quinoxaline’s amide carbonyl and K67 as well as the amide nitrogen and a buried water molecule

(W2). In contrast, the proximity of the iminol hydroxy to the hydrogens of K67 leads to repulsion and lower stability in

the binding pocket as demonstrated by its shorter simulation time before interactions are broken (∼2 ns) as compared

to > 10 ns for the amide tautomer.

Plots of all distances and RMSDs measured during simulations can be found in Appendix

Figures 7.6 and 7.7.

Reacting the ligand in silico resulted in a docking library of 841 molecules. The binding

modes of all docked poses were again assessed by an initial visual inspection and analysis.

From these an initial list of 38 molecules was selected. They were again submitted for

evaluation and grading by lab members, grades were collated and analysed and 8 molecules

were subsequently selected for synthesis.

As with Project 2, all molecules chosen displayed predicted interactions with residues at

the Specificity Surface, specifically D128. However, two molecules displayed an alternative
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predicted binding mode for the initial fragment. For 62 and 68, the interaction between

the carbonyl group of the quinoxaline’s amide nitrogen is preserved but the amine is instead

predicted to interact with D186 whilst retaining the interaction with D128 (Figure 3.23).

Figure 3.23: Example alternative predicted binding modes in the Pim-1 binding pocket of 62 (left, black carbons,

stick representation) and 68 (right, black carbons, stick representation) in the Pim-1 binding pocket. Key residues (light

grey, stick representation) are labelled and 2D structure (inset) of the pose displayed. Predicted polar interactions are

represented by yellow dashed lines. In the case of 62, the molecule was predicted to retain the X-ray crystallographic

binding mode of the f200 quinoxaline and an additional polar interaction between its indole moiety and D128. An

alternative predicted binding mode of 68 depicts interactions between the quinoxaline, K67 and D186 as well as a

salt-bridge between its piperidine D128.

A complete list and 2D structures of molecules 56 to 63 can be found in Appendix Table

7.13.

Molecules 63, 66, 67 and 69 were tested and did not show activity against Pim-1.

3.4 Discussion and conclusions

That any given docking program is able to find molecular poses close to their determined

crystal position has been established as an important performance criterion by prior work

[171] in so-called ‘cognate’ docking. It was demonstrated that the molecular pose closest in

terms of RMSD to the crystal structure is not necessarily the highest scoring pose. As we

often do not know the crystal pose a priori, the more ‘real world’ test is to dock multiple

low-energy conformations of a given molecule to the target.

As demonstrated, generation of multi-conformer molecules for docking is crucial to ensure

adequate sampling of conformational space and accurate placement of the molecular pose
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prior to scoring. However, the number of conformations needed to ensure adequate sampling

is not straightforward. What we see from this study is that from only a few conformers per

molecule (x̄ = 4.5, min = 1, max = 24), reliable fragment binding modes from docking were

the result.

The two conformer generation and docking pipelines used in this work further support the

influence of molecular shape in docking. Docking with the programs FRED, HYBRID and

SEED all used the same database. Although SEED was overall superior in terms of RMSD

with respect to the crystal structure as reference, FRED’s performance in retrieving a given

pose close to the crystal structure was acceptable considering only the top scored pose was

retained. Despite generally being within the top 5% of docked poses, at no stage was the

top scored SEED pose also the closest in terms of RMSD.

DOCK generally failed to recreate crystal binding modes when retaining only the top scored

pose, despite manipulation of matching spheres into positions ideal for polar contacts. This

is suggestive that for physics-based methods such as SEED and DOCK, one would generally

need to analyse the placement of multiple poses rather than relying on the scoring function

as sole arbiter of pose quality.

More influential is the conformational shape of the protein. The structure used for most

docking here, 3BGP, broadly represents the most frequent conformations of ligand-bound

Pim-1 structures uploaded to the PDB. This is particularly the case with respect to important

flexible residues such as the catalytic lysine (K67) and residues in the P-Loop. It clearly

outperformed the apo MD structure when a given ligand had a carboxylate anion forming

a salt bridge with K67. In this case, the 3BGP structure often retrieved poses <2 Å from

the X-ray position whereas the apo MD structure failed to recreate the binding position of

these molecules in all cases.

The reason becomes more clear when one compares the positions of K67 and P-Loop residues

of the 3BGP and apo MD structures. Although the average RMSDs of residues themselves

did not deviate much during the course of the apo MD simulation, the positions of both are

very different with respect to the two residues in the X-ray structure (Figure 3.24). Thus, the

shape complementarity of the binding pocket was disturbed. The next effect was that the

apo MD structure did not retrieve poses close to that of the fragment in the X-ray structure,

even when using software (HYBRID) where information regarding the likely binding site was

supplied by the position of the ligand from the geometry in 3BGP.
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Figure 3.24: Depicted are differences between the positions of K67 and F49 (P-Loop) in 3BGP (green carbons, stick

representation) and apo MD (pink carbons, stick representation) structures. This is indicative that in the absence of a

bound ligand, both F49 and K67 retract into the binding pocket, negatively affecting docking codes’ ability to recreate

X-ray binding modes as shape complementarity is disturbed.

RMSDs and number of poses retrieved by HYBRID, SEED and DOCK were improved or

remained similar when docking to a snapshot from MD trajectory taken from the simulation

based on the 3BGP X-ray structure. This is suggestive that simulating with a bound ligand

will result in a conformation that reflects the ligand’s binding mode but one that is also

suitable for the retrieval of new ligands. However, results were significantly better with

HYBRID as opposed to FRED so some binding site information is still required.

Alternatively, this also suggests that with knowledge of the binding pocket, preferring HY-

BRID over FRED with a simulated structure reduces the probability of prioritising an un-

likely fragment binding mode for further development. This lends further support to protein

conformation being the most important criterion when deciding upon a starting structure

for rigid docking.

From this, a workflow can be expected (Figure 3.25). Where binding site information is

augmented by a bound ligand, superior docking results were obtained by simulation of a

bound ligand structure followed by minimisation and then docking with software that inte-

grates binding pocket information e.g. HYBRID. This approach is benefited by reducing the
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reliance upon the researcher’s choice of starting structure.

Although HYBRID outperformed both FRED and DOCK generally, DOCK outperformed

HYBRID in some cases, such as when an interaction with the catalytic Lysine (K67) was

predicted to interact with a moiety on the ligand weaker than a salt-bridge. Salt-bridges

are generally over-estimated by force-field methods [172] but it may be that HYBRID, with

its focus on shape, underestimates the importance of ligands possessing weaker interactions.

Whether this occurs in HYBRIDs scoring step, where interaction potentials are smoothed, or

in its Chemical Gaussian Overlay (CGO) step, where the docked pose is directly compared

to the bound ligand, is unclear.

In the absence of binding pocket information, it remains that the choice of starting protein

structure generally requires expert intervention or analysis of multiple protein structures.

Following this, good results can be obtained via a more traditional work flow of unbiased

fragment docking to establish the most likely binding mode by analysis of multiple poses

followed by a second round of docking with programs optimised for larger molecules e.g.

FRED.

Fluorescence assay results from fragment extensions in Project 2 were somewhat mixed but

go some way to confirming that compounds targeting residues at the Specificity Surface of

Pim-1 require a more rigid structure. Previous ligands had either large rigid rings or rigid

amide linkers and 26, the most potent ligand, was the only compound tested that had an

unsaturated linker between a benzoic acid moiety and a substituted benzotetrahydrofuran

predicted to directly interact with D128. Similarly, 52, although possessing a saturated

linker between its aniline triazole moiety and its piperidine, the molecule was likely made

more rigid by an internal hydrogen-bond between its triazole and a secondary amine in the

chain.

The specific moiety interacting with Specificity Surface residues is also likely affected by

their proximity to the bulk water boundary, an area where relatively low-permittivity of

a protein’s binding pocket meets the relatively high permittivity of bulk water. D128 is

quite close to where the boundary likely is and prior work [173] has elucidated that solvent

polarisation effects at the protein-solvent interface have a ‘dampening’ effect on energies

and forces acting upon pair-wise electrostatic interactions. More specifically, interactions

between charged atoms are particularly decreased by this effect (solvent screening) [174].

Although the estimation of overall interaction energy for all tested molecules was predicted

to be favourable by docking and after minimisation, in every case where a charged moiety
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Figure 3.25: Suggested workflow for various docking software when coupled with molecular dynamics simulation.

Recommended tasks are modelled by rounded rectangles, decision points by diamonds, recommended software by

squared rectangles and databases by ovoid cylinders.

was predicted to interact with D128, solvent screening effects were predicted to be high.

Thus, molecules with moieties such as a piperidine or charged primary amine in this position

displayed either poor or negligible affinity in the assay. Other compounds, such as 52, had

a piperidine predicted to interact with D128. But the piperidine nitrogen also has an ethyl

substituent, possibly negating solvent polarisation effects. However, despite possessing a

measurable affinity for Pim-1, it was a relatively poor ligand inhibiting in the three-digit μM

range.

In any case, charged molecules forming salt bridges in a protein binding pocket are tradition-

ally prioritised highly in docking. Where residues are within the binding pocket, these are

likely to be very strong interactions. This is borne out by the number of ATP-competitive

inhibitors for Pim-1 where a salt bridge is formed with the charged side-chain of K67, in-
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cluding many of the inhibitors in this work. However, although not a definitive indicator of

the likelihood of an interaction, the results of this study make clear that a reduction in the

relative strength of interactions with solvent-exposed charged residues should be considered

when analysing a given molecule’s overall binding characteristics.

The trend with regard to inhibitors with predicted charged interactions was confirmed in

Project 3. Any inhibitors in possession of charged moieties predicted to interact with D128

(60 and 61) showed little to no activity against Pim-1. The most potent compound from

this series, a triazolo-thiadiazole (58), was predicted to bind in ATP-competitive fashion and

did not address D128 at all. Although an X-ray structure was not obtained of this ligand,

it achieved the highest measured positive temperature shift on the TSA. It inhibited at the

two-digit μM range or better on orthogonal assays and appeared to be a selectively pan-PIM

inhibitor. Its potency and position within the binding pocket therefore offer a reasonable

starting point for a molecular optimisation campaign.

Two inhibitors were crystallised and their X-ray structures solved, 57 and 61, the latter

the first X-ray structure on the PDB to display a direct interaction with Pim-1’s consensus

peptide (Pimtide). The binding modes of both compounds were only able to be recreated by

re-docking them to their crystal structures with Pimtide and its crystallographic waters in

place in the prepared structure. Compound 61’s pyrrolidine was found to be interacting with

D186 in the DFG loop, the only X-ray structure found to be interacting with this residue

without also interacting with the charged side chain of K67.

Additionally, whilst 61 showed little activity in the absence of Pimtide in our FRET assay,

57 was mildly active in this assay, an orthogonal inhibition assay and showed a positive

temperature shift in the TSA performed in addition to being crystallised with Pimtide.

Structurally, 57 possesses a substituted indole and pyrrole acceptor. These are frequently

reported amongst known Pim-1 inhibitors and their typical placement is predicted by the

docking binding mode i.e. the indole placed at the hinge interacting with E121 and the

pyrrole predicted to interact with K67. This is suggestive of multiple binding modes for this

ligand but this was not confirmed.

Simulations of the quinoxaline fragment and a negative control in Project 4 tentatively

confirmed the stability of its binding mode within the binding pocket of Pim-1. A network of

three waters between I104 and K67 is found in many Pim-1 X-ray structures but simulations

here have demonstrated that, in line with previous work, only one of them (W29), bridging

with K67, is likely to be conserved in Pim-1 generally. Simulations have also demonstrated
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that upon the ejection of the least stable water, closest to I104, there is a rearrangement of

the remaining waters. One of them, W62, formed a direct interaction with the protonated

amide nitrogen of the ligand’s quinoxaline core. A new network of interactions was thus

formed involving direct interactions with the quinoxaline’s carbonyl and K67 in addition to

the those already described (Figure 3.22).

The X-ray binding mode of the quinoxaline fragment was somewhat corroborated by simu-

lations but, unfortunately, activity of the fragment itself was not detected in FRET-based

assays. This is presumably due to the low affinity of fragment sized-molecules, a common

phenomena in FBDD campaigns [43]. Four synthesised extensions were also tested and found

to be inactive against Pim-1.

The exact reason for lack of activity by these compounds in the FRET assay is unclear. How-

ever, all of the predicted inhibitors were extended in silico from position 6 of the quinoxaline

core. Whilst this allowed for extensions that were predicted to interact with D128, none of

the apolar sections of extensions tested were particularly close to the hinge.

By way of contrast, in addition to possessing greater rigidity and a predicted interaction

between D128 and an uncharged moiety (a hydroxyl), the apolar benzofuran sidechain of 26

was also predicted to be more proximal to the more apolar Pim-1 hinge. It therefore seems

reasonable to suppose that inhibitors extended in silico at position 6, rather than 5, may

more effectively address the Pim-1 hinge in docking studies and possess the added benefit of

greater shape complementarity in the Pim-1 binding pocket (Figure 3.26).

Figure 3.26: Predicted binding modes of 26 (black carbons, stick representation) vs 62 (left, straw coloured carbons,

stick representation) and an example docked pose (right, straw coloured carbons, stick representation). Depicted here

is a prediction of decreased distance and enhanced shape complementarity to the more apolar Pim-1 hinge region (green

region) after Suzuki Coupling in silico at position 6 to the quinoxaline core from Project 4 as opposed to extending

from position 5.
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It bears asking the question whether completing analysis, synthesis and testing in-house, as

per Project 2 and Project 4, is a more efficient approach than purchasing ligands and using

3rd-party vendors for testing as per Project 3. Broadly comparing the two approaches, using

a large dataset such as ZINC, curated to be lead-like, is the more reliable method purely for

finding new ligands. PINGUI is pitched as an ideas generator and on that front it succeeds as

it certainly did generate many possibilities for synthesis and testing in Project 2 and Project

4.

However, its utility is dependent upon the presentation of a reliable fragment binding mode.

This is, as demonstrated, difficult to achieve without expert knowledge in choosing the target

protein structure. Related, upon determining a reliable fragment binding mode, it was found

that only few molecules actually retained it upon extensions being added.

Assuming the docking program gets the binding mode right, more molecular possibilities

are always useful. But the claim of synthetic feasibility is also questionable as, in almost all

cases, the molecule tested was either synthesised using a different method due to the risk of

low yields or synthetic complexity or for similar reasons, a derivative with a minor change

(e.g. pyridine → aryl ring) was proposed. This necessitated additional work to confirm the

binding mode of the derivative prior to any attempts at synthesis as less than half of the

molecules were synthesised with the reaction as proposed.

There was also a vast difference in both the computational and personnel effort to develop a

similar number of inhibitors at a similar range of potency against Pim-1. This appears to be

the case even when the focus was on synthesising specialist inhibitors to address specific areas

in the Pim-1 binding pocket. Using the PINGUI-developed library in Project 2 necessitated

compiling and parametrising an initial library for docking and separate docking runs on a

HPC cluster to avoid results being dominated by in silico reactions that naturally tend to

generate a lot more products than others. This was followed by further filtering steps prior

to analysis. All of this was followed by synthesis effort that was not straightforward and

subsequent affinity testing. Compare and contrast this to merely downloading and docking

a ZINC subset as in Project 3, an order of magnitude larger than the dataset in Project 2,

followed by affinity testing and structural information gained from X-ray crystallography.

However, the costs of completing all steps in-house must be balanced against the gains. From

Project 1, structural information about the Pim-1 binding pocket was gained as decisions

regarding starting X-ray structures and which software to use in subsequent virtual screening

campaigns were simplified.
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In Project 2, more was learned regarding the likelihood of successful novel ligand synthesis

and how minor changes to ensure synthetic feasibility can also ensure subsequent ligands.

A chemotypically broader array of molecules synthesised and tested elucidated structural

information about Pim-1 itself as we now know several moieties that are both less likely to

interact with charged residues near the bulk-water interface but also how to ameliorate these

solvent polarisation effects.

Finally, more was learned regarding the stability of Pim-1’s structural waters from Project

4 and how this leads to a stable binding mode for a novel scaffold for Pim-1. From a stable

fragment binding mode, synthetically feasible products were the result from using only one

reaction at one site on the quinoxaline’s core structure. More sites are available to be used

to explore the Pim-1 binding pocket.

What constitutes a ‘hit’ is also an important question posed by this work. A hit, of course,

requires experimental confirmation. However, there are degrees to this. Through a significant

amount of work, a few inhibitors in the μM range or worse were the result. So perhaps one

may not consider these relatively weak ligands real hits. These compounds are, however, not

optimised for binding to Pim-1 and the two clear hits from synthesis projects, 26 and 52,

are chemically diverse and provide excellent starting points for optimisation campaigns.

There were essentially three hits from Project 3. Compound 61 may not be considered a

real hit as it only crystallised via an interaction with Pimtide and therefore showed no assay

activity. This is despite the likely similarity between Pimtide and the substrate in cellular

conditions. Its activity in the absence of Pimtide could not be assessed as Pimtide’s sequence

(ARKRRRHPSGPPTA) fits within the peptide sequence in the assay kit used. However, 57

and 58 were both active in orthogonal assays. Despite not progressing to full refinement in

crystallographic studies, 58 in particular appears to be a selective pan-PIM inhibitor, albeit

at the μM level.

Additionally, the binding properties of Pimtide with respect to ligands demands further in-

vestigation. The water-mediated interaction of 61 with Pimtide involved a charged moiety

and occurred near the bulk-solvent boundary (Figure 3.27). Using Pimtide potentially ob-

viates the need for a direct interaction between a charged ligand and charged residues that

are difficult to target for similar reasons to those near the Specificity Surface (D128-D131).

These residues in addition to those near the Ribose pocket (E171) and the Phosphate Groove

(K169, D167) offer the possibility of novel and selective inhibitors for Pim-1 as there are few

published inhibitors targeting them and they are less conserved in kinases.
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Figure 3.27: Crystal structure of 61 (green carbons, stick representation) in complex with Pim-1 a water-mediated

interaction (red, cross representation) and Pimtide (magenta carbons, stick representation). Key residues (yellow, stick

representation) are labelled and predicted polar interactions are represented by yellow dashed lines. Depicted here are

charged residues near the Ribose pocket and Phosphate Groove (see Figure 3.3) that could potentially be targeted in

the Pim-1 binding pocket for the development of peptide inhibitors.

Pimtide’s binding position and proximity to the binding pocket also offer the possibilities for

the design of peptide inhibitors. It was reported in a review of computational and lab-based

studies that peptide inhibitors can be viable strategy for the development of substrate-

competitive inhibitors, particularly for Ser-Thr kinases [175]. Computational approaches are

complicated by the conformational flexibility of peptides and in vivo work is made more

difficult by their poor stability and bioavailability. However, Pimtide’s rigidity and the

predictability of its binding mode with Pim-1 suggests a role as a Protein-Protein Inhibitor,

of which there has been recent success using structure-guided methods with more flexible

peptides against a Tyrosine kinase, ABL [176]. This is, however, quite separate from the

ATP-competitive inhibitors discussed in this study.

So what makes a good ligand for Pim-1? As intimated by the results presented here, rigidity

is important for high-affinity binding to Pim-1, particularly on the hinge side of the pocket.

With respect to the more apolar Pim-1 hinge, a very recent optimisation campaign [177]

confirmed that rigid, often large ring systems where vdW interactions dominate, are impor-

tant for positioning the ligand in the absence of the second conserved hydrogen-bond donor

usually found in the hinge of kinases. The ligands from that study, a series of tetrahydropy-

rrolo quinazolinones, were made more rigid and planar by the presence of an intramolecular

hydrogen-bond between the pyrrole-NH to the quinazolinone-N and made large potency
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gains on this basis (Figure 3.28, A). Indeed, the necessity of planarity was made clear by

an study [178] of activity cliffs with respect to a series of benzofuranones, where a series of

hinge-binding pyrrolo pyridines were synthesised where the only difference was the position

of the pyridine Nitrogen. Even a slight disturbance of planarity resulted in large decreases

in affinity.

The search for novelty may therefore be more fruitful from the side of the Pim-1 binding

pocket occupied by its catalytic Lysine, K67. Another very recent optimisation campaign

of diamino pyrazoles [179] reported pM inhibition whilst targeting residues near the Speci-

ficity Surface (e.g. D128, E171) (Figure 3.28, B). Their results suggest that the necessity

for rigidity on the hinge sided of the binding pocket is perhaps less important on the Lysine

side, offering some flexibility in terms of shape-complementarity and, consequently, in what

moieties can target less conserved or solvent-exposed residues in this region. The binding

position of ligands such as Staurosporine, ostensibly a hinge binder, does prima facie contra-

dict this. Its very large fused aromatic ring system, however, does also satisfy the need for

rigidity. Nevertheless, for future campaigns targeting more novel residues, strategies involv-

ing chemotypes extending from the catalytic Lysine side of the Pim-1 pocket would appear

to be more effective at finding more affine and potentially selective ligands.

Figure 3.28: Example ligands suggesting future targeting strategies for Pim-1. (A) Depicted is a ligand (green

carbons, stick representation) with multiple rigid endocyclic systems in the Pim-1 binding pocket with crystallographic

water molecules (red, spheres). Key residues (tan carbons, stick representation) are labelled and likely polar bonds are

represented by dashed black lines. The ligand also forms an intramolecular hydrogen-bond between its pyrrole-NH and

the quinazolinone-N that preserves the planarity of the ligand (adapted from Wang, H-L, et al 2019) (B) In this case,

a ligand (pink carbons, stick representation) in complex with Pim-1 (orange, cartoon representation) targets solvent-

exposed residues (e.g. D128) by extending from the catalytic Lysine side of the Pim-1 binding pocket, a strategy that

resulted in ligands with improved shape complementarity (adapted from Wang, X, et al 2019)

To summarise, whilst Project 3 was a more rapid method to find novel ligands based in

existing knowledge of Pim-1 and kinases generally, more was learned from the other projects
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that will guide subsequent ligand optimisation campaigns and generate productive streams

of research in and of themselves. On balance, the net gain in terms of chemical novelty and

structural understanding of Pim-1 and kinases is therefore larger with the latter. Promis-

ing results from structural studies should also inform the development of Pim-1 peptide

inhibitors, further adding to structural information about Pim-1 generally. The data gained

from all of these projects should guide structure-based optimisation of Pim-1 inhibitors to-

ward and beyond sub-nM affinity.





97

Chapter 4

Novel ligands for the Smoothened

receptor

In conjunction with my supervisor, Prof. Dr. Peter Kolb, I was responsible for the overall

research planning, strategy and execution of all projects. I was also responsible for complet-

ing all computational work. All assay testing of suggested compounds was carried out by

collaborators at the Siebold group at Oxford University led by Prof. Dr. Christian Siebold,

namely Dr. Eamon Byrne, Ms. Maria Klimopoulous, Mrs. Rebekka Siebold-Schwab and Ms.

Rachel Woolley. The unpublished structure was graciously provided by the Siebold Lab.
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4.1 Introduction

Members of the Hedgehog (Hh) signal pathway, first identified in studies on Drosophila

embryonic development, play a foundational role in the cellular communication and develop-

ment of vertebrate organisms. Of the large families of secreted peptide factors, for example,

Wingless-related integration site (Wnt), fibroblast growth factor and TGF-β, Hh provides

one of the more arresting examples of conservation of function between developmental reg-

ulation of a quite diverse array of organisms [180].

In vertebrate systems, three main genes have been identified as conserved; Desert Hedge-

hog (Dhh), Indian Hedgehog (Ihh) and Sonic Hedgehog (Shh). Expression of these genes

regulate the specification of cell fate, proliferation and survival depending on the tissue be-

ing addressed. The pathway is therefore implicated in the vast majority of vertebrate tissue

formation and, aside from tissue maintenance and repair, is dormant in adult cells [181] [182].

Given these important regulatory mechanisms, misregulation of the Hh pathway via various

activating, inactivating and loss-of-function mutations unsurprisingly leads to an array of

medical issues. Primarily, these are various cancers including medullablastomas, glioblas-

tomas, breast cancers and one of the most common human forms, Basal Cell Carcinomas

(BCCs) [183].

Within the Hh pathway, a membrane receptor that has been identified as amenable for inhi-

bition is the Smoothened receptor (SMO). SMO is a G Protein-Coupled Receptor (GPCR)

with a traditional 7-Transmembrane (7TM) bundle, four Extra-Cellular Loops (ECLs) and

an extra-cellular Cysteine-Rich Domain (CRD), believed to play a crucial role in regulation

of its activity [184] (Figure 4.1). Despite sharing little sequence identity with other human

GPCRs [185], the designation of SMO as a GPCR has been controversial [186]. However, it

has been determined that SMO exhibits the characteristics of a GPCR, demonstrating that

coupling to Gα is required for Hh signalling in vivo [187].

SMO’s activity in the Hh pathway is largely dependent upon its trafficking with other pro-

teins in and out of the primary cilium (Figure 4.2). Upon binding of one of the three Hh

signals to a 12-Transmembrane receptor, Patched (PTC1), SMO is phosphorylated by the

kinase GRK2 and free to accumulate in the primary cilium via coupling to heterotrimeric

G proteins and β-Arrestin. Kinesin-like proteins such as Kif7 facilitate the formation of a

special compartment at the tips of the primary cilium [188] that allow for complexation of

SMO-mediated downstream signal transduction mechanisms, such as phosphorylation and
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Figure 4.1: The complete SMO assembly, inactive comformation (PDB:5L7I). Depicted here are SMO’s extracellular

loops (CRD, grey cartoon representation), its heptahelical transmembrane domain (7TM, multi-coloured cartoon) and

intracellular C-terminal domain (ICD, grey cartoon). Allosteric binding in the CRD results in conformational changes

in the other domains that impel SMO toward an active conformation.

therefore activation of transcriptional effectors (e.g. Zinc finger protein Gli1). Full length

Gli proteins dissociate from the unphosphorylated Kif7 and the Gli-repressor SuFu [189],

bypass proteolytic processing, enter the nucleus and activate cellular transcription.

Absent a Hh signal, SMO remains bound to PTC1 and Gli proteins are instead isolated by

Kif7 and SuFu to be differentially phosphorylated by PKA, GSK3β and CK1. Gli proteins are

further processed into transcriptional repressors. These truncated Gli proteins pass through

the cytoplasm and into the cell nucleus to repress transcription.

The activities of SMO and PTC1 are, thus, crucial determinants of disease. At least 85% of

inactivating PTC1 and 10% of activating SMO mutations drive uncontrolled replication in
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Figure 4.2: The Hedgehog (Hh) pathways in cells, activated and inactivated. Depicted here are known pathway pro-

teins (ovoid spheres, multiple colours), signal molecules (yellow, spheres), proteosomes (red, rectangles), the endosome

(light brown, rectangle), cilial microtubule assembly (large cylinder assembly) and lipid membrane with membrane

proteins CAM-related/down-regulated by oncogenes (CDO), Brother Of CDO (BOC) and Hedghog Interacting Pro-

tein (HHIP) that bind Hh signal molecules. Depicted here, in the absence of a Hh signal, SMO is held in complex with

Patched (PTC1) at the base of the primary cilia and is therefore unable to prevent Gli proteins from being cleaved into

transcriptional repressors, hence, gene transcription is inactive. In the presence of a Hh signal, PTC1 is complexed

with HHIP and the Hh signal and SMO is able to translocate to the tip of primary cilium where it accumulates and

prevents Gli cleavage. Gli proteins are subsequently phosphorylated and activated by Kif7 and SuFu where they can

pass into the nucleus and activate transcription (adapted from Teglund, et al. 2010)

Hh tumours [190]. Despite this and suggestions of other targets downstream of SMO [191],

particularly in avoiding drug resistance [192], SMO is thus considered the most ’druggable’

protein in the Hh pathway [193].

The first crystal structure [194] of SMO provided structural information regarding antag-

onism via a known small molecule inhibitor to SMO. Of other small molecule inhibitors

against SMO, a particular success was the clinical drug Vismodegib (Erivedge) [195], a more

polar molecule than earlier inhibitors such as Cyclopamine. However, a missense mutation in

TM6 (D473) common to many BCCs has been reported to disrupt Vismodegib binding [196].

Attempts to circumvent resistance with ligands that avoid D473 has led to ligand binding

unaffected by the mutation to D473 by Taladegib [197], used in trials for solid tumours
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and other cancers (DrugBank Accession Number: DB12550) (Figure 4.3). Other work has

prioritised novelty via an inhibitor binding deep within the 7TM bundle (SANT-1) as well

as alteration of the binding pocket by an agonist, SAG1.5 [198], inhibitors that assiduously

avoid D473. Although D473 is the most common mutation in BCCs, others have been re-

ported [199]. A tool compound containing a large pthalazine core, TC114, was also used to

elucidate specific structural roles played by ECL3 and TM6 for crystallographic study [200].

Figure 4.3: Some published drugs and inhibitors against SMO. Taladegib has previously been subject to adenocar-

cinoma and solid tumour Phase I and II clinical trials treating at Stages I - IIIB that have completed or it has been

withdrawn from the trial. Vismodegib is currently in clinical trials for patients suffering from Basal Cell Carcinomas,

pancreatic and prostate cancers at various stages and has been subject to numerous other clinical trials. TC114 and

SANT-1 are not clinical candidates.

There is a sizeable gap in the literature regarding SMO inhibitors and chemical diversity.

This is in terms of chemotypes, ligand binding modes and susceptibility to mutations as

many SMO ligands rely on only one or two polar interactions, primarily binding via apolar

interactions. Experience thus far with Vismodegib suggests it would be prudent to explore

alternative binding modes, multiple positions within the TM7 bundle and more interactions

to stabilise a ligand within the binding pocket.

In light of the structural information obtained from previous campaigns, Structure-Based

Virtual Screening (SBVS) offers the possibility of large-scale structure-based ligand discovery

for SMO. Large-scale docking campaigns have well-known limitations [9]. Nonetheless, by

fitting libraries of small molecules into a binding pocket and scoring them with a function

containing well-developed physics-based terms and parameters, a relatively large amount of

chemical space can be quickly sampled.
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Finding novel chemotypes is also more likely with large and diverse libraries when compared

to a rational design campaign as in previous studies. Rapid testing of molecules can also be

facilitated by using libraries comprised of commercially-available molecules as ZINC Is Not

Commercial (ZINC [131]).

More recent work has elucidated structural information regarding the role of cholesterol

as an agonist in the extra-cellular CRD [201] and rearrangement of various loops that al-

low communication across the cell membrane. Although SMO’s endogenous ligand remains

unknown [202], it has been found that cholesterol is both necessary and sufficient to ac-

tivate SMO [203]. Binding of antagonists (e.g. Vismodegib) in SMO’s Trans-Membrane

Domain (TMD) induce conformational changes in ECL3 that propagate to the extra-cellular

Cysteine-Rich Domain (CRD) and occlude the cholesterol binding site. This intrusion of

ECL3 leads to side chain rotations of W109 and R161 and the formation of a cation-π inter-

action between them where cholesterol would ordinarily bind. This interaction suggests that

a ligand binding in the TM7 domain should therefore prevent binding of cholesterol but the

reverse is not necessarily the case.

Until recently, no ligand was crystallised in complex with SMO where cholesterol has bound

to the CRD. However, an unpublished X-ray structure of active-state SMO with bound

cholesterol was recently solved where a large region of difference (Fo-Fc) electron density

was noted in the TM7 region, indicative of a bound ligand. A diverse array of compounds

such as assay kit ingredients, PEG, protein expression compounds, or hydrolysed cholesterol

were ruled out by collaborators (see Table 7.14 for a complete list).

This work therefore has several aims. Firstly, attempts to identify the unknown molecule(s)

in the area of electron density (referred to as the Completely Unknown Region of Electron

Density, or, ‘CURED’ for the rest of this work) were made with a mixture of datasets.

Second, the use of small molecule probes to analyse the allosteric binding pocket of SMO

and to suggest which moieties would be favourable or unfavourable in different regions.

Finally, the discovery, testing and further development of novel inhibitors for SMO.

4.2 Material and methods

4.2.1 Receptor preparation

Three-dimensional crystal structures of SMO were prepared from an unpublished X-ray

structure and two downloaded from the Protein Data Bank [59] (PDB: 5L7I and 4N4W).

The resolution of each structure was reported as 3.2 Å, 3.3 Å and 2.8 Å, respectively.
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The unpublished X-ray structure was prepared in order to identify the Fo-Fc density present

within the ECL and TM7 domains of the receptor. Docked molecular probes were used both

to narrow the range of possibilities of chemical moieties within sections of the CURED and

’map’ the binding pocket into regions favourable for these moieties. These sections were

grouped according to which moieties were favourable.

The aim of working with the 5L7I X-ray structure was to prioritise retrieval of poses from

a drug-bound structure, that being Vismodegib. Vismodegib displays few polar interactions

(D384), its position primarily stabilised by apolar interactions. So priority was given to

docked poses that were predicted to display more polar interactions connecting ECL1 (N219),

ECL3 (D384, Y394, R400) and TM6 (E518) whilst avoiding other residues in ECL3 (D473)

and some in TM6 (Q477, E481) where mutations have been demonstrated to affect binding

in many Hh-driven cancers [199]

An alternative structure (PDB:4N4W) was chosen to find more ’deep’ binders in the region

occupied by SANT-1. It has two polar interactions with residues in ECL3 (Y394) and TM6

(H470) and two apolar moieties than penetrate deeper into the binding pocket. Poses were

therefore prioritised if their positions were predicted to be below the position of H470 whether

they were directly interacting with H470 or not.

Missing atoms or residues for all structures were repaired and minimised with Wit!P [132],

hydrogens added and their positions minimised with CHARMM v31b2 [78]. Protonation

states of histidine residues in all structures were determined via visual inspection. Each

histidine was allocated a status of HID, HIE and HIP for docking dependent upon whether

the ε, δ or both nitrogens in the imidazole side-chain were considered likely to be protonated.

A complete list of protonation states for histidines in all prepared SMO structures can be

found in Appendix Table 7.15

The unpublished receptor structure was prepared for docking with two program suites: Sol-

vation Energy for Exhausive Docking (SEED) version 3.3.5 [60] and DOCK 3.6 [68]/3.7 [24].

Receptors downloaded from the PDB (5L7I and 4N4W) were also prepared for docking with

DOCK. In all cases, the X-ray ligand was removed prior to docking.

For SEED, defaults regarding departures from ideal hydrogen bonding geometry, clashes,

etc. were used and residues comprising the binding site of the protein were determined via

manual inspection. Pre-defined rules regarding bond-length, angle and direction of H-bond
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donors and acceptors allow the construction and distribution of vectors of unitary length on

all hydrogen bonding groups of ideal geometry. To reduce computations of unlikely polar-

bond geometries, coordinates of known ligands were used to restrict the number of force

vectors evaluated to those not exceeding a set geometry criterion (10-70◦).

The Fo-Fc density in the unpublished structure (Figure 4.4) was located primarily in extra-

cellular regions of the SMO binding pocket but also extending deep into transmembrane

regions of the receptor. The top of the electron density was located just below F484 and

extended between other residues in TM6, including the hydrogen-bond network connecting

it to ECL3 (D473, E518, R400), finally extending to lower residues in TM6 (H470).

Figure 4.4: A region of Fo-Fc density (dark grey, mesh representation) from an unpublished X-ray structure is depicted

here with the aligned crystal structure of Vismodegib (green carbons, stick representation) for reference. Key residues

(light grey, stick representation) are labelled and 2D structure (inset) of Vismodegib is displayed. This demonstrates

the binding position and orientation of the CURED with respect to the binding position of a known ligand.

In total, vectors around 29 residues were determined to provide adequate coverage of the
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binding pocket around the electron density. An image of the prepared binding pocket can

be found in Appendix Figure 7.8

For docking with DOCK, receptors were prepared via the generation of a set of spheres

representing the invagination of the binding pocket. The geometric positions of these spheres

were generated using sphgen [133]. The default number and positions of spheres was deemed

inadequate for coverage of SMO ’s binding pocket so more spheres were added and their

positions set within the binding pocket to ensure coverage. This also increased the number

of matching points around key residues for scoring and evaluation of poses.

After generation of vdW and electrostatic grids for the entire protein, a box was generated

from the cluster centre of all spheres so that it enclosed them plus some margin. Within

the boundaries of this box, scoring grids [65] describing protein energy potential functions

were pre-computed for later docking and scoring. The default box size is 5 Å3 but this was

generally increased.

This decision was made as, often, poses were placed partially outside of the boundaries of

the default box. The effect of this was that some atoms were not considered in scoring. As

the eventual score is a delicate balance involving atomic pair-wise calculations of multiple

quantities, components of the overall score for affected molecules were inaccurate, as was the

overall score.

Images of the prepared binding pockets can be found in Appendix Figures 7.9, 7.10 and 7.11.

A receptor was also prepared from 5L7I with an alternative conformation. All residues within

8 Å RMSD of a known ligand against SMO, Vismodegib, were identified and minimised using

CHARMM and, for comparison, MOE [150].

Minimisation was completed with CHARMM using the CHARMM force field, steepest de-

scent and conjugate gradient optimisation with Modified Partial Equalization of Orbital

Electronegativity (MPEOE [204]) atomic partial charges calculated.

Minimisation with MOE was completed with the Amber10 [205]: Extended Huckel Theory

(EHT) [206] force field as implemented in MOE, a method that combines Amber10 and EHT

bonded parameters for large-scale energy minimization. Optimisation was completed with

the Truncated Newton [207] method and atoms were parameterised with AM1-BCC [139]

partial charges.
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Certain residues in the 4N4W binding pocket were subject to a process known as ‘tarting’, the

purpose being to increase ligand preference for specific parts of the protein binding pocket.

Applying this idea, the partial charges of specific atoms in a protein are redefined and the

net effect is an overall increase in the polarity of certain bonds. This increased polarisation

is generally performed on backbone atoms, their partial charges increased by 0.4e prior to

calculating electrostatic potential grids for docking. To encourage retrieval of poses as deep

in the binding pocket as SANT-1 residues 4 Å from its position and below the position of

H470 were tarted.

4.2.2 Ligand preparation

An initial benchmarking campaign was performed to assess the performance of chosen SMO

structures. This campaign took a list of molecules found active against SMO from CHEMBL

[12] and used these to generate a set of challenging ‘decoys’ from the DUD-E website [208].

Using 3D similarity fingerprints, DUD-E decoys are similar in terms of chemical properties

(e.g. molecular weight, number rotatable bonds) to known actives but are unlikely to bind

to the target. This provides a useful metric of scoring ranks vs known activity, otherwise

known as enrichment. All known actives and generated decoys were docked to both of the

5L7I and 4N4W X-ray structures.

In order to identify the CURED, an internal library of 141 molecular ’probes’ that includes

small molecules such as benzene, water and cyclopentane was used in initial docking studies.

A full list of these probes can be found in Appendix Table 7.16.

Additionally, the ZINC12 [131], ZINC15 [14], The Human Metabolome DataBase (HMDB

3.0 [209]), and the Kyoto Encyclopedia of Genes and Genomes (KEGG [210]) and a small

Pharmacognosy library of natural products from the University of Vienna were used. Both

ZINC12 and ZINC15 are freely-available databases of biologically-relevant and purchasable

compounds with additional web-based resources such as similarity searches, activity predic-

tion, etc. The database also focusses on chemical novelty and offers several ’tranches’ for

download such as ’fragment’, lead-like’, ’drug-like’, etc.

The aim of docking HMDB, KEGG and other molecules was to determine whether there

are cell metabolites or biologically relevant molecules that could fit within the region of

electron density. Additionally, checks were made of the various kits and reagents from prior

studies [201] in order to rule out contamination from commercial kit/molecule providers as
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listed in the paper. Other molecules were docked, even those already ruled out, as negative

controls (Monoolein, Hemisuccinate, Glycerol Monooleate, LKM, THPTA).

For docking with SEED, the probe library was prepared from SMILES using OpenEye’s

QUACPAC [137] suite for appropriate protomer and tautomer generation. Multiple 3D

conformers for each protomer were generated with OMEGA [138] and, as there are few

molecules in the database with rotatable bonds, no restrictions were placed on conformer

generation. AM1-BCC [139] partial atomic charges were calculated for each conformer.

Generation of HMDB and KEGG libraries for use with DOCK was completed using the

internal ligand generation pipeline implemented within the DOCK 3.7 suite to generate

the .db2 files required. The pipeline takes SMILES as input and uses Chem Axon [140]

programs for protomer generation, CORINA 4.1 [141] for initial 3D conformer generation,

AMSOL 7.1 [142] to compute atomic partial charges and ligand desolvation terms and finally

OMEGA to generate multiple conformers.

For this work, the ‘lead-like’ databases were downloaded directly from the ZINC12 and

ZINC15 websites.

4.2.3 Docking and pose minimisation

For SEED, both polar and apolar docking algorithms were selected and all poses to an energy

of +5.0 kcal·mol−1 were retrieved. Otherwise, program defaults regarding certain parameters

(e.g. protein clashes, charge cut-offs) were used. Poses were assessed in terms of fragment

and receptor desolvation energies as well as total interaction energies.

For DOCK, parameters governing van der Waals clashes were increased from defaults (20

kcal·mol−1 → 500 kcal·mol−1) i.e. poses where the vdW score exceeds this were discarded.

The matchgoal parameter was also set higher (1000→ 5000) to increase sampling of molecular

orientations. Simplex minimisation was used. Sphere colouring was not used. Only the

highest scoring pose was retrieved. Regarding all other parameters, program defaults were

used.

For ZINC screens, the positions of all pose structures within the SMO active site were

optimised using SZYBKI [156]. Optimisation parameters were set to minimise torsional

strain of molecular poses using the Merck Molecular Force Field (MMFF94 [157]) with the

Poisson-Boltzmann solvation model [158]. All protein residues within 3 Å of a given pose

were also minimised. Program defaults regarding the optimisation method (e.g. BFGS [159]
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algorithm) were used. Estimates of various energies (e.g. overall interaction, desolvation

cost) were obtained from optimised protein-ligand structures.

Chem Axon’s [140] MarvinSketch v14.12.8.0 for Linux was used for drawing and display-

ing chemical structures and calculating pKa curves used to evaluate docked molecules. The

Cambridge Structural Database’s program, Mogul [211], was used in the evaluation of molec-

ular torsion angles. Receiver Operator Curve (ROC) plots to evaluate docking performance

were generated with Python scripts in the DOCK pipeline. Molecular Tanimoto similarity

(Tc) was calculated with Open Babel [96] using the ECFP4 [94] fingerprint.

4.2.4 qPCR assay

Real-time quantitative reverse-transcription PCR reactions were performed using Power

SYBR Green PCR Master Mix from Thermo Fisher/Life Technologies. Relative Gli1 mRNA

levels were calculated using the comparative ΔCt method, reported in arbitrary units and

normalized with respect to Gapdh mRNA levels.

Primers used were custom with respect to Gli1 (forward primer: 5′-CCAAGCCAACTT

TATGTCAGGG-3′ and reverse primer: 5′-AGCCCGCTTCTTTGTTAATTTGA-3′) and

Gapdh (forward primer: 5′-AGTGGCAAAGTGGAGATT-3′ and reverse primer: 5′-GTGGAG

TCATACTGGAACA-3′). All experiments were repeated with two mechanical replicates and

at least three biological replicates.

4.3 Results

4.3.1 Identifying the region of Fo-Fc density and mapping SMO’s al-

losteric pocket

Docking to the unpublished structure was completed using UCSF DOCK. Spheres were

added primarily to ensure coverage of the area of electron density in the middle of the

binding pocket. In all, 55 matching spheres were used.

During preparation of HMDB and KEGG datasets, some molecules (∼4%), often those with

unusual atomic combinations or unclear protonation states, failed checks within the ligand

generation pipeline. Generally, these were highly-charged molecules or had a large number

(<4) of chiral centres that one would not expect to interact with SMO or be resident in any

system where SMO is present so were omitted from consideration.
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Upon omission of failed protomers, the finalised datasets contained 1001 protomers with

respect to HMDB and 15 245 with respect to KEGG.

All poses were evaluated in terms of whether they fit within the boundaries of the CURED in

terms of its complete volume. Candidate molecules that met this criteria were subsequently

evaluated in terms of unsatisfied hydrogen bond donors and acceptors and shape comple-

mentarity. None of the poses retrieved by docking either HMDB nor KEGG satisfied both

criteria.

The region of electron density within the TM7 bundle of the unpublished structure was

divided into multiple sections (Figure 4.5). These sections reflected differences in predictions

of what probes molecules were favourable and in which section they were favourable.

The entire region was divided into three major segments (Upper, Middle, Lower) and two

points between then (Transition points One and Two).

Figure 4.5: A region of Fo-Fc density (dark grey, mesh representation) from an unpublished X-ray structure is

depicted, key residues (light grey, stick representation) are labelled. Indicative sections of the CURED were categorised

by apparent size and shape.
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Generally, highly polar molecules (e.g. methyl sulfone, proprionic acid) retrieved poses

with unfavourable energies. Both small polar and apolar molecules (e.g. ethanol, tert-

butane) tended to result in poses with higher energies and fewer poses in general, as did

non-aromatic rings. Rings found fewer favourable poses in the Upper region and those that

had large receptor desolvation costs and species 6-ring sized or larger had increasing receptor

desolvation costs the lower into the pocket they were placed.

As expected, highly-scored poses tended to be driven by apolar binding. Some probes (e.g.

phenol, mesoinisotol) scored higher due to polar substituents interacting with polar residues.

Although these substituents were generally placed outside of the CURED, their apolar in-

teraction energies inside it were similar to non-substituted analogues (e.g. benzene).

In the Upper region, few poses addressed the upper portion of this section explicitly or fit

it perfectly. However, in general, probes with large apolar sections had high-scoring poses

placed here and were often unfavourable any deeper in the CURED region. This was generally

driven by lower apolar interaction energies and poses placed closer to or inside the CURED

tended to have lower receptor desolvation costs. Fused-ring systems tended to score higher

in this section and, in some cases, were placed almost within the contour of the CURED

region (Figure 4.6). The aforementioned trend of more favourable receptor desolvation also

held true with poses placed closer to or within the CURED.

Figure 4.6: Example A-carboline docking pose (black carbons, stick representation) within the CURED (dark grey,

mesh representation) in the SMO binding pocket (TM7 bundle). Key residues (light grey, stick representation) are

labelled. Poses placed here tended to have lower protein desolvation and large fused-ring systems tended to score

higher, indicative of greater shape complementarity with the receptor pocket.
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A corner of the upper region was within hydrogen-bonding distance of E481 (Figure 4.7).

Although no docking pose was directly placed here, distance measurements between this

corner of the CURED and the positions of E481 and Q477 suggest a hydrogen-bond donor

at this position would fit, possibly interacting with both.

Figure 4.7: Distances (Å) between E481 and Q477 and the CURED (dark grey, mesh representation). Key residues

(light grey, stick representation) are labelled. Distances (Å) are represented by dasged yellow lines and measured

between polar atoms on residues and a sphere (straw colour) placed within the boundary of the CURED.

For the Middle region, at Transition point 1, the majority of probe poses within the CURED

were unfavourable, particularly any ring-sized moieties. This is suggestive of chains link-

ing the upper and middle sections. SEED was generally unable to place poses in the top

part of this segment, particularly ring-sized probes. The main portion of this section is al-

ready very close (1.8 Å) to D384 so favourable poses with most probe molecules, considering

neighbouring residues, were unlikely (Figure 4.8).
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Figure 4.8: Distance (Å) between D384 and the CURED (dark grey, mesh representation). Key residues (light grey,

stick representation) are labelled. Distances (Å) are measured between polar atoms on residues and a sphere (straw

colour) placed within the boundary of the CURED.

An exception was methanol as several poses were found with favourable polar interaction

energies between methanol and D384 (Figure 4.9). The closer poses were placed to D384,

whether inside or slightly outside the CURED’s boundaries, the greater the interaction

energy with little increase in desolvation cost.

Figure 4.9: Docked methanol (black carbons, stick representation) poses within the CURED (dark grey, mesh

representation) in the SMO binding pocket (TM7 bundle). Key residues (light grey, stick representation) are labelled.

Predicted polar interactions are represented by yellow dashed lines and distances in Angstroms (Å). Methanol’s docked

positions were indicative of a hydrogen-bond donor interaction with D384 as interaction energies between poses and

this residue improved the closer they were placed to D384 with little increase in desolvation cost.

Poses in the lower part of the the Middle region were retrieved with high receptor desolvation

penalties and consequently unfavourable energies for any molecules that were 6-member

ring-sized (e.g. benzene) or bigger (Figure 4.10). A proximal bump in the CURED was not
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directly addressed by any probes but it is within range of polar residues (e.g. Y394, S287)

so moieties could form polar interactions. Substituted rings (e.g. phenol) were generally

unfavourable but some 5-member ring species (e.g. N-methylpyrrole) found poses that were

favourable near this position.

Figure 4.10: Favourable N-methylpyrrole (light grey carbons, stick representation) vs unfavourable benzene (black

carbons, stick representation) in similar positions within the CURED (dark grey, mesh representation) with the distance

to a proximal bump in the CURED represented by a sphere (straw colour). Distances (Å) are represented by yellow

dashed lines. This is suggestive that moieties the size of smaller endocyclic systems (or smaller) are more likely to be

favouble in lower CURED regions.

Larger molecules with poses that crossed between the lower segment through Transition

Point 2 and into the lower CURED region (e.g. indole) tended to be highly unfavourable

and possess high receptor desolvation costs (Figure 4.11).
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Figure 4.11: Unfavourable indole poses (black carbons, stick representation) within the CURED (dark grey, mesh

representation) in the SMO binding pocket (TM7 bundle). Key residues (light grey, stick representation) are labelled.

Endocyclic systems larger than benzene tended to score highly unfavourably, suggestive that moieties must fit within

the CURED’s density. This is as opposed to a large moiety being placed in this position where calculated atomic

density is missing.

Poses from any probe that penetrated toward R400 resulted in very high receptor desolvation

costs and unfavourable energies. This and the position of R400 (Figure 4.12) supports no

direct interaction between residues in this area with the CURED molecule.

Figure 4.12: Position of R400 (magenta carbons, stick representation) in the CURED (dark grey, mesh representa-

tion) X-ray structure vs the same residue’s position with respect to bound ligand Vismodegib (green carbons, stick

repreentation). Key residues (light grey, stick representation) are labelled and distance (Å) are represented by dashed

yellow lines. The distance between the crystal position of Vismodegib’s amide Oxygen and R400 is indicative of no or

a weak interaction. The position and orientation of R400 is further away with respect to the boundary of the CURED

thus an interaction between R400 and a moiety within the CURED is unlikely.
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Finally, for the Lower region, moieties placed within transition Point 2 generally had very

large receptor desolvation costs and unfavourable interaction energies. Any ring-sized molecules

tended to be unfavourable in this region. However, receptor desolvation costs tended to de-

crease for poses closer to or within the CURED.

Although a molecule could not be conclusively identified, a schema for favourable moieties

from docked probes can be proposed (Figure 4.13).

Figure 4.13: Example 2D structure of a molecule indicative of moieties favourable within the CURED (green area)

in the SMO binding pocket (TM7 bundle). Key residues (light grey, stick representation) are labelled.

A complete list of all probes used and calculated interaction energies can be found in the

Appendix Table 7.18

4.3.2 ZINC virtual screen - Round 1

Several constraints were applied to both the ZINC12 and ZINC15 datasets downloaded for

docking. Molecules needed to be purchasable, their molecular weight between 250 and 350Da,

logP ≤ 3.5 and contain protomers within a pH range of 6-8. Applying these constraints led

to database sizes of 4 601 296 and 3 841 554 respectively.

For the structures prepared from 5L7I, spheres were added around the position of the bound
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Vismodegib ligand atoms. Several were added within hydrogen bonding range of key residues

such as the hydrogen bonding network between R400, H470, D473 and E518 and others that

have been shown in other studies to interact with SMO ligands (N219, D384, Q477). In all,

50 matching spheres were used (Appendix Figure 7.10).

Spheres were placed near the same residues for the 4N4W X-ray structure. However, ad-

ditional spheres were placed deeper in its binding pocket. This was to ensure sampling of

poses placed in similar positions to the SANT1 ligand, some spheres placed as deep as L325

and M326. In all, 80 matching spheres were used (Appendix Figure 7.11).

Known actives against SMO were downloaded from the CHEMBL website. After removing

duplicates, this resulted in a dataset of 676 molecules. These were used to generate 51 075

DUD-E decoys for docking against SMO.

Docking of actives and decoys with DOCK defaults initially produced worse than chance

performance with the Vismodegib structure, particularly with respect to ‘early enrichment’.

Early enrichment describes the situation where the correct predictions of known actives are

also amongst highest ranked molecules. In general, few poses (142/676 = 21%) of known

actives were retrieved and increasing the size of the box around the binding site (5 Å3 →
15 Å3) did not improve early enrichment of docked molecules.

It was determined that default DOCK 3.7 parameters regarding conformational sampling

and surface clashes are set more strictly than in previous versions. The default values mean

that far fewer orientations are sampled prior to energy minimisation, where poses clashing

with the molecular surface are finally rejected. It was therefore considered likely that many

viable poses are likely rejected at the minimisation stage. Prior work [24] has determined

that increasing sampling tolerances, coupled with energy minimisation, results in monotonic

improvement of ligand enrichment over decoys for most DUD-E targets.

Subsequent increases in conformational sampling and vdW score tolerances retrieved more

known actives (78%) and improved both early enrichment of actives and performance in

terms of logAUC (Appendix Figure 7.12, Plot A).

Docking with the ZINC12 lead-like dataset led to an initial list of 83 molecules after checks for

availability, torsional strain and likely protonation states. Of these, 44 were selected after an

initial visual inspection, common in high-throughput and virtual screening [166,167]. These

molecules were assessed and graded by lab members experienced in docking and the grades
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analysed. Subsequently, 11 were selected for purchase after checking for similarity with a

prior virtual screen using the ZINC12 dataset [212]. Molecules chosen for purchase were

found to be generally dissimilar to the ligands in that study (Tc: x̄ = 0.22, σx̄ = 0.07) and

known actives (Tc: x̄ = 0.32, σx̄ = 0.10).

Many of the poses retrieved did reproduce the interaction between Vismodegib and D384

from its crystal structure but also tended to place apolar moieties into pockets between N219

and F484 below Y394. Polar interactions with D384 tended to be between charged amino

groups rather than amide groups as per the Vismodegib X-ray structure. Some molecules

(Figure 4.14) also had additional predicted interactions with residues in ECL3 (Y394) and

TM6 (E518) and these were prioritised higher for testing.

Figure 4.14: Predicted binding mode of K5 (black carbons, stick representation) in the SMO binding pocket (TM7

bundle). Key residues (light grey, stick representation) are labelled, predicted polar interactions are represented by

yellow dashed lines. Depicted here is a salt-bridge interaction between its pyrrolidine and D384 in ECL3, amide oxygen

and pyridine interacting with Y394 in ECL3 and amide nitrogen predicted to interact with E518 in TM6.

The remainder of predictions came from docking to the SANT-1 structure (PDB: 4N4W).



119

Most compounds were predicted to recreate the binding mode displayed by SANT-1 i.e. with

residues in ECL3 (Y394) and TM6 (H470) (Figure 4.15). Molecules displaying predicted

interactions with residues in ECL3 (D384) and TM6 (E518) were subsequently prioritised.

Amide and urea linkers were typically predicted to interact with residues in these loops and,

as in common in SMO ligands, apolar moieties were placed both above and below these

linkers.

Figure 4.15: Predicted binding mode of K4 (black carbons, stick representation) in the SMO binding pocket (TM7

bundle). Key residues (light grey, stick representation) are labelled, predicted polar interactions are represented by

yellow dashed lines. Depicted here is a salt-bridge interaction between its piperidine and D384 in ECL3, urea oxygen

interacting with Y394 in ECL3, urea nitrogens interacting with E518 in TM6 and triazole interacting with H470 also

in TM6,

A complete list and 2D structures of molecules K1 to K11 can be found in the Appendix

Table 4.1
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4.3.3 Assay results - Round 1

Repression of Hh signalling for all 11 compounds was tested via qPCR. Gli mRNA is a com-

mon metric for Hh signalling activity as it is a target gene of the Hh pathway. Measurements

of relative Gli1 mRNA transcription levels were taken and normalised with respect to Gapdh

mRNA levels. Ligands of known concentration were introduced into the assay and residual

signal thus quantified a given ligand’s ability to repress Hh signalling.

Assays were initially conducted at two ligand concentrations (10µM and 100µM). Measured

residual transcription levels with ligand present were compared to two controls, residual

transcription with no ligand present and with a potent inhibitor, SANT-1. Three compounds,

K5, K6 and K9, displayed significant concentration dependence with respect to residual

transcription levels when compared to controls (Figure 4.16).

Figure 4.16: Normalised Gli mRNA levels for K1 - K11 at 10µM and 100µM. All compounds were tested with

positive (SANT-1) and negative (no ligand) controls and reflect the constitutive activity of SMO. Statistical analysis

of Gli1 mRNA levels across samples was performed via one-way ANOVA with Holm–Sidak post-hoc tests for multiple

comparisons. Ligands K5, K6 and K9 displayed significant (p<0.01) concentration dependence with respect to residual

mRNA transcription levels.

4.3.4 Minimisation of the binding pocket found more SMO poses

Relatively few poses were found in the first round of docking to the Vismodegib X-ray

structure (PDB: 5L7I) than would be expected for a drug-bound structure. It was apparent

from visual inspection of poses retrieved from docking that the dominant chemotype retrieved



122

was pyrimidines with unlikely protonation states (∼26% of the top-2000 poses). These poses

were generally placed near the hydrogen-bonding network (R400/H470/D473/E518) and no

lower.

There was also some degree of excessive intramolecular strain in poses that was unable to

be resolved by ligand minimisation, even when minimising nearby (≤3 Å) residues as well.

Primary amides in particular displayed significant torsional strain, pushing the carbonyl

oxygen and amine hydrogen out-of-plane (Figure 4.17). Both phenomena were likely caused

by large van der Waals forces imposed upon the ligand by apolar residues in the binding

pocket and gave rise to the notion that perhaps residues in the binding pocket itself were

not fully relaxed.

Figure 4.17: Example molecular poses from docking with unlikely pyramidine protonation state (left, black carbons,

stick representation) and primary amide with torsional strain (right, black carbons, stick representation) in the SMO

binding pocket (TM7 bundle). Key residues (light grey, stick representation) are labelled, predicted polar interactions

are represented by yellow dashed lines, distances (Å) and angles were measured. It was considered that the placement

of poses in this manner, even after energy minimisation of both the ligand and surrounding residues was conducted,

was suggestive of large vdW forces being applied to the molecules being docked. Additionally, the degree of deviance

from 180◦ of some amides, although within the boundaries of previously published X-ray structures, was considered

excessive. This was considered prima facie evidence that the pocket should be relaxed via energy minimisation to a

lower energy conformation in order to find more likely docking poses.

To find more poses and minimise intramolecular strain, all residues within 8 Å of Vismod-

egib’s position in the binding pocket were minimised - 66 in total (Figure 4.18). Most

residues within this distance were in TM6 and the rest spread evenly between Extra-Cellular
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Loops 1 and 3. Residues were minimised using CHARMM and MOE and the differences

between these results compared to the X-ray structure and to each other.

Figure 4.18: Depiction of residues (banana yellow, cartoon representation) within 8 Å of the binding position of Vis-

modegib (green carbons, stick representation) in ECL1, 3 and 4 and TM6 (pink, cartoon representation) depicting those

that were were relaxed by minimisation with both CHARMM and MOE. Key residues (yellow, stick representation)

are labelled, distances (Å) are represented by yellow dashed lines.

A complete list of minimised residues can be found in Appendix Table 7.19

Overall, there was little movement of binding pocket residues. Movement of atomic positions

in terms of RMSD for each residue was compared to the original X-ray structure. There were

lower RMSDs from the X-ray structure for the CHARMM-minimised structure (RMSD: x̄ =

0.40, σx̄ = 0.21) when compared to the MOE-minimised structure (RMSD from X-ray struc-

ture: x̄ = 0.54, σx̄ = 0.36). Movements in the latter were, however, more ‘inward’ resulting

in a more constricted binding pocket (Figure 4.19). There was, accordingly, a lower overall
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energy for the structure minimised by CHARMM (-18 341.69 kcal·mol−1) when compared to

that obtained from MOE (-18 197.09 kcal·mol−1). Consequently, the CHARMM-minimised

structure was chosen for further docking.

Figure 4.19: Selected minimised binding pocket residues comparing the crystal structure and after minimisation with

CHARMM (light blue, cartoon representation) and MOE (pink, cartoon representation) with the binding position of

Vismodegib (green, stick representation) for reference. Key residues (stick representation) are labelled. Minimisation

with CHARMM resulted in a lower energy structure when compared to MOE and more outward movement of residues.

The resultant structure was a more ‘open’ binding pocket and was used for further docking.

Descriptive statistics for the RMSDs and complete CHARMM output of the energy calcula-

tion can be found in Appendix Tables 7.20 and 7.21 respectively

As in Round 1, known actives against SMO and decoys were redocked to the relaxed structure

to assess its performance. More poses (98% of known actives) were retrieved than the

unrelaxed structures and there were mild improvements both in AUC and early enrichment

of actives (Appendix Figure 7.12, Plot B).

The ZINC12 dataset was also redocked to the CHARMM-minimised structure and the top-

2000 scored poses were retained for analysis. Docking to the CHARMM-minimised structure
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resulted in a very different top-2000 when compared to that from docking to the X-ray

structure. Only 440 (22%) molecules were common to the top-2000 of both docks. Of those,

there were relatively small changes in score but the same molecules displayed very large

changes in ranking (Table 4.2).

min Q1 x̄ Q3 max Pearson r/MCC

rank -1814.0 -669.5 -141.0 315.0 1895.0 0.08/0.08

score -21.420 -7.305 -5.645 -3.790 3.910 0.56

Table 4.2: Five-number summary statistics (min, Q1, median, Q3, max) of differences in ranking and score for the

440 molecules common between ZINC12 dockings. Pearson correlation and Matthews Correlation Coefficient (MCC)

also shown. The data confirm large differences in docking rank and extremely weak correlation (0.08) when comparing

molecules docked to unrelaxed and relaxed structures. A similar but more mild effect was observed for docking score

(MCC=0.56).

Additionally, the proportion of pyrimidines with unlikely protonation states decreased (∼26%

→ ∼7% of the top-2000 poses) and more poses were retrieved interacting with residues in

ECL1 (N219) found in previous ligands against SMO.

Though more poses were retrieved in Round 1 docking to the SANT-1 structure, it was

apparent that none of them were ‘deep’ binding ligands. Tarting of residues was therefore

applied to the already-prepared deep binding X-ray structure (Figure 4.20).

In all, 9 residues were tarted, primarily by increasing the polarity of the backbone carbonyl

groups in apolar residues. A complete list of tarted residues and affected atoms and can be

found in Appendix Table 7.22.

As with the Vismodegib structure, increasing pose sampling improved early enrichment.

However, docking actives and decoys to the tarted structure resulted in worse than chance

prediction for high ranked compounds and a late enrichment of known actives to SMO

(Appendix Figure 7.12, Plot D). This is likely due to a large increase in electrostatic potential

caused by tarting >5 residues in the same binding pocket, even apolar residues such as T466

and F462. Primarily, this meant that more polar decoys that scored poorly when docked to

the untarted receptor were scored far more favourably in the tarted receptor.

Six of the known actives to SMO, also more polar molecules, scored highly when docked to

the tarted receptor after being scored as unfavourable against the untarted receptor. When

omitted from analysis, scores for the remaining actives that retrieved docked positions (463 )
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Figure 4.20: Residues (magenta, stick representation), generally apolar in nature, that were ‘tarted’ below H470

(green carbons, stick representation) in the SMO binding pocket (dark green, cartoon presentation) with the position

of ligand SANT-1 (green carbons, stick representation) for reference with 2D structure (inset) displayed. In all, 9

residues were ‘tarted’ prior to redocking the ZINC12 dataset but the effect on docking score and rank was mild.

in tarted and untarted receptors were broadly correlated (Pearson r = 0.76). 2D structures

and scores for these molecules can be found in the Appendix (Table 7.23)

Upon redocking the ZINC12 dataset, most poses retrieved (1699/85%) were common to the

top-2000 poses of both tarted and untarted receptors and both ranking and scores did not

change significantly (Table 4.3).

Energy minimisation of molecules docked to the Vismodegib structure revealed that using

the relaxed receptor pocket did result in molecules with more favourable protein-ligand

vdW energies as well as slightly more favourable protein and ligand desolvation energies.

However, the mean estimated interaction energies of both rounds of molecules were very

similar for those docked to the X-ray structure (-17.45 kcal·mol−1) when compared to the

relaxed structure (-17.35 kcal·mol−1).
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min Q1 x̃ Q3 max Pearson r/MCC

rank -1506.0 -96.0 -3.0 103.5 1366.0 0.87/0.79

score -7.55 -0.17 0.14 0.46 7.95 0.94

Table 4.3: Five-number summary statistics (min, Q1, median, Q3, max) of differences in ranking and score for the

1699 molecules common between ZINC12 dockings. Pearson correlation and Matthews Correlation Coefficient (MCC)

also shown. Although some docked poses displayed dramatic differences in ranking and score, generally the effect of

tarting residues on docking results was mild as there were strong associations between docking to untarted and tarted

receptors for rank (MCC=0.79) and score (MCC=0.94) respectively.

The effect of the tarted receptor was less pronounced. As expected, Coulomb energies

were more favourable but mean overall protein-ligand interaction energies were similar for

molecules docked to the X-ray structure (-12.15 kcal·mol−1) as compared to the tarted (-12.51

kcal·mol−1) receptor.

Generally, estimated interaction energies were higher for molecules docked to the 4N4W

structure when compared to the Vismodegib structure. This is likely to be due to the higher

(∼10 kcal·mol−1) cost of protein desolvation for poses placed deeper in the 7TM bundle.

A summary of energies as estimated during minimisation can be found in Appendix Table

7.26

4.3.5 ZINC virtual screen - round 2

Docking of the ZINC12 and ZINC15 lead-like datasets as well as a Pharmacognosy library

led to an initial list of 115 molecules after checks for availability, torsional strain and likely

protonation states. Of these, 70 were again subjected to visual inspection and analysis and

submitted for evaluation and grading by lab members prior to the collation of a final list.

Finally, 16 were selected for purchase after again checking for similarity with La Croix et

al and molecules from Round 1. Molecules chosen for purchase were found to be generally

dissimilar to the ligands in that study, broadly dissimilar to Round 1 molecules and all known

actives against SMO (Appendix Table 7.24).

When compared to compounds from Round 1, docking to the Vismodegib relaxed struc-

ture resulted in molecules with larger, ring-sized moieties addressing residues near the

hydrogen-bond network and linking ECL3 (Y394, R400), TM6 (E518, H470) and ECL1

(N219). Again, residues in ECL3 and TM6 prone to mutations in BCCs (D473, E481) were

avoided. Molecules from the ZINC15 dataset, broadly, were more likely to be comprised of
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both aromatic and non-aromatic endocyclic amines so whilst several predictions included

the amide/urea linker as seen in Round 1 poses, several poses were retrieved with the added

benefit of rigidity and shape complementarity (Figure 4.21).

Figure 4.21: Predicted binding mode of compound K2.10 (black carbons, stick representation) in the SMO binding

pocket (TM7 bundle). Key residues (light grey, stick representation) are labelled, predicted polar interactions are

represented by yellow dashed lines. Depicted are interactions between the imidazole of K2.10 and N219 in ECL1, a

salt-bridge between a primary amine and D384 in ECL3 and an interaction between its amide nitrogen and E518 in

TM6.

Predictions from the tarted SANT-1 structure recreated the two polar interactions from the

SANT-1 X-ray structure in ECL3 (Y394) and TM6 (H470). Additional interactions were

predicted with other residues in TM6 (E518 and N521). More poses were retrieved with

improved shape complementarity and more poses penetrated deep into the binding pocket

when compared to poses from Round 1 (Figure 4.22).
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A complete list and 2D structures of molecules K2.1 to K2.20 can be found in the Table

4.4

Figure 4.22: Predicted binding mode of compound K2.19 (black carbons, stick representation) in the SMO binding

pocket (TM7 bundle). Key residues (light grey, stick representation) are labelled, predicted polar interactions are

represented by yellow dashed lines. Depicted is a salt-bridge interaction between the charged primary amine as well as

urea nitrogens of K2.19 with E518 in TM6, an interaction between its urea carbonyl and Y394 as well as interactions

between its pyrazole and N521 and its thiazole and H470 in TM6. This was considered an ideal pose as interactions

bridging residues in ECL3 (Y394) and TM6 (E518) were predicted in addition to an interaction with H470 and overall

shape complementarity
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4.3.6 Assay results - Round 2

Repression of Hh signalling for all 16 compounds was again tested via qPCR (Figure 4.23).

Assays were again conducted at two ligand concentrations (10µM and 100µM). Of these,

compounds K2.2, K2.4, K2.7, K2.10-K2.14 and K2.18-K2.20 displayed significant con-

centration dependence with respect to residual mRNA transcription levels when compared

to controls (Figure 4.23)

Figure 4.23: Normalised Gli mRNA levels for K2.1 - K2.20 at 10µM and 100µM. All compounds were tested

with positive (SANT-1) and negative (no ligand) controls and reflect the constitutive activity of SMO. Statistical

analysis of Gli1 mRNA levels across samples was performed via one-way ANOVA with Holm–Sidak post-hoc tests for

multiple comparisons. Ligands K2.2, K2.4, K2.7, K2.10-K2.14 and K2.18-K2.20 displayed significant (p<0.01)

concentration dependence with respect to residual mRNA transcription levels.

4.4 Discussion and conclusions

Although molecular diversity was the goal with this work, it is prudent to consider which

parts of a given compound should be prioritised for novelty. Common to ligands in this work

was a short chain with small functional groups (e.g. aliphatic amide, urea) interacting via

a hydrogen-bonding network in the middle of the binding pocket, linking and potentially

stabilising its conformation. Above and below this central stability were a diverse array of

aromatic groups with no clear molecular trend in terms of size, chemotype or binding mode.

Though the molecule in the CURED structure was unable to be formally identified, the
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role and binding positions of endogenous regulators of SMO activity may be related and

similar. Initial probe docking provided a framework for which moieties were unfavourable

and where in the binding pocket and also provided useful data to inform molecule selection for

subsequent screening efforts. However, docked positions of probes where interaction energies

were favourable allowed the suggestion of a representative 2D structure. Essentially, a bulky

endocyclic system binding near the opening to the binding pocket with possibly an aliphatic

or at least less bulky tail penetrating deeper into the binding pocket. The crystallographic

positions of D384, Q477 and E481 support at least one polar interaction with the ligand.

Molecules in the class of oxysterols could therefore be candidate molecules for further anal-

ysis. At present, the only endogenous regulator of SMO activity known is cholesterol [213].

And, as reported, it was crystallised in the CRD [201], not in the heptahelical bundle where

the CURED is positioned. However, it remains an unresolved question whether other proteins

that interact indirectly with SMO (e.g. PTC1) via cholesterol or cholesterol-like molecules

regulate access to the CRD, the TM7 bundle or, indeed, both of these regions of SMO [214].

Although cholesterol itself was ruled out as a possibility for the CURED, long, cyclic en-

dogenous ligands to SMO were known some time ago [215] and ligands with bulky fused-ring

systems, such as Cyclopamine, have been crystallised with SMO in the TM7 [216] (Figure

4.24, A and B).

More recently, a class of cilia-associated oxysterols were reported to directly activate SMO

and promote accumulation in the primary cilia, allowing SMO to participate in downstream

signalling [217] (Figure 4.24, C-F). Although this study isolated oxysterols in cilia from non-

human SMO, the authors were able to demonstrate that oxysterols were not only able to

activate SMO but that they were able to activate SMO via binding in the TMD bundle

and that enzymes involved in cilia-associated oxysterol biosynthesis would be enriched in

domains of active Hh signaling. Which oxysterols or even other lipidic inhibitors SMO

encounters before or after entering the primary cilia remain open questions. However, the

broad molecular shape of oxysterols when compared to the shape of the CURED demands

that subsequent computational campaigns add all known Hh oxysterols as well as similar

molecules to any analysis.

With regards the virtual screens carried out using molecules from the ZINC dataset, the

hydrogen-bonding network in the middle pocket (R400, H470, D473, E518) provided, prima

facie, several tempting polar residues that have been targeted by ligands with larger moieties

in this position and, by itself, is believed to stabilise SMO’s inactive conformation [218].
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Figure 4.24: Other work involving oxysterol inhibition of smoothened. (A) The cystallographic binding position of

Cyclopamine (green, stick representation surrounded by mesh) is displayed at the top of the heptahelical bundle near

the entrance to the binding pocket, an example of an potent oxysterol-like ligand perhaps too bulky to bind deeper in

the TM7 bundle of SMO (from Weierstall, et al, 2014). (B) 2D structure of Cyclopamine showing its largely apolar

structure (C) 2D structures of various oxysterols from Raleigh, et al, 2018, depicting a bulky fused-ring segment with

short aliphatic tail sections. (C) Depiction of SMO crystal structure with its CRD (red cartoon), C-Terminal Domain

(CTD, grey cartoon) and Cytoplasmic Binding Pocket (CBP, aqua cartoon) as defined by the authors of Raleigh, et

al, 2018. (E-F) CBP for SMO showing key CBP residues (aqua cartoon) and predicted binding mode of two oxysterols

(grey stick representation) from Rayleigh. et al, 2018.

However, the search for chemical novelty was not the only goal as some parameters for

useful SMO ligands needed to be met. In accord with one of the stated goals of both

virtual screens, all tested compounds were predicted to avoid D473, a common mutation in

SMO. Structural rearrangements of the SMO binding pocket from mutations such a D473G,

D473N and D473H have been demonstrated to abolish binding of Vismodegib entirely [199]

and significantly reduce the affinity of other inhibitors such as AntaXV [198]. Other residues

prone to mutation (e.g. E481) were avoided.

Even with these restrictions, cellular assays confirmed hits in both rounds of ZINC docking

with hit rates of 25% and 75% respectively, hit rates somewhat higher than other SMO

campaigns but within the usual range of many GPCR virtual screens (17% - 58% [212]).

This was achieved whilst specifically avoiding similarity with previous ligands, residues prone

to mutation and also despite a well known bias in commercial compound libraries toward

well-studied targets [219] [220] (e.g. β2 Adrenergic Receptor). Both of these factors severely

limit the pool of inhibitors that may bind similarly to known SMO ligands.

Whilst previously known ligands and their binding modes provided a guide for choosing

possible inhibitors, the focus was most certainly on finding novel binding modes. That is,

candidate inhibitors predicted to interact in a similar manner to known SMO ligands were
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only prioritised if they displayed interactions in addition to those demonstrated by known

SMO ligands. This is simply because SMO ligands tend to be driven by apolar binding (e.g.

Cyclopamine) and then only one or two polar interactions within the same loop or helix.

For example, Vismodegib only displays polar interactions with residues in ECL3 (D384 and

Y394) and otherwise exhibits apolar binding. A more potent ligand, SANT-1, again we

see only two polar interactions but with residues in both ECL3 (Y394) and TM6 (H470).

Accordingly, candidate inhibitors displaying more electrostatic interactions were naturally

prioritised. As were those where molecules were predicted to interact with multiple loops

and helices.

Specific attempts to discover new ’deep’ binding ligands appear to have borne fruit. As

SANT-1 is the only known ligand to bind in this way, and is so affine it was used as the

benchmark inhibitor in all cellular assays conducted for this work, it was considered impor-

tant to find more molecules that bind as deep as SANT-1 and again prioritise novelty. All

molecules tested that were predicted to be deep binders showed concentration-dependent

decreases of constitutive signal activity in the cellular assay. All were predicted to interact

with similar residues (Y394) and penetrate deep into the pocket below H470 but priority

was also given to molecules predicted to interact with residues higher in the pocket such as

those in the hydrogen-bonding network. Those also interacting with H470, as in SANT-1

displayed a greater decrease in residual Hh signal on the cellular assay. That the hit rate

significantly increased in the second screening for the relaxed Vismodegib docking structure

also confirms the importance of shape in docking.

With this in mind, two emerging Structure-Activity Relationships can therefore be elucidated

from assay results. In Round 1, similar Hh signal reductions were observed for K5 and

K6 at 100μM with K5 significantly better at 10μM. Both molecules possess charged cyclic

amines predicted to form a salt-bridge with the carboxylate sidechain of D384 in ECL1 and

amide nitrogen predicted to interact with E518 in TM6. However, K5 also had an additional

predicted interaction between Y394 in ECL3 and its pyridine, also observed with Vismodegib

(Figure 4.25). Whether the additional interactions with E518 result in a more affine ligand

is to be determined in a binding assay.

A second trend was observed in K2.7, K2.11 and K2.12. All three molecules possess a

β-hydroxy moiety predicted to interact with various middle-pocket residues (Figure 4.26).

However, assay results showed greater Hh signal reduction for K2.7 and K2.12, both of

which are predicted to link trans-membrane helices and extra-cellular loops via salt-bridge
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Figure 4.25: Predicted binding modes of K5 (left, black carbons, stick representation) and K6 (right, black carbons,

stick representation) in the SMO binding pocket (TM7 bundle). Key residues (light grey, stick representation) are

labelled, predicted polar interactions are represented by yellow dashed lines. In each case, predicted salt-bridge inter-

actions with ECL3 residues (D384) are complemented with a polar interaction between an amide/urea Nitrogen and

a residue in TM6 (E518). As per assay results, K5’s greater ability to impede Hh signalling at a lower concentration

(10μM vs 100μM) is suggestive of the additional interaction with Y394 being more important in terms of Hh signal

reduction than H470.

interactions with E518 in TM7, Y394 in ECL3 with respect to K2.7 and D384 in ECL1 with

respect K2.12.

It is noteworthy that K2.7 reduces Hh signalling to the level of SANT-1. This is despite

no optimisation ligands from either ZINC screen. Despite uncovering some ligands active

against SMO that were predicted to bind deeper in the binding pocket, none appeared to

reduce Hh signalling as much as SANT-1. Binding assays will be required to confirm whether

K2.7 is as affine as SANT-1 and efforts should be made to test for colloidal aggregation [164],

a common but difficult to predict problem for any inhibitor development campaign.

However, more molecules were found to be active against SMO in the second round of testing

that were also predicted to interact with similar residues to K2.7. This suggests that these

residues (Y394, E518) are likely more accessible and opens possibilities for optimisation of

both interactions and chemotypes without the need to bind deeper and to compete with

SANT-1 on affinity.

More generally, what structural features make a good SMO ligand? In terms of the binding
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Figure 4.26: Predicted binding mode of K2.7 (left, black carbons, stick representation), K2.11 (middle, black

carbons, stick representation) and K2.12 (right, black carbons, stick representation) in the SMO binding pocket (TM7

bundle). Key residues (light grey, stick representation) are labelled, predicted polar interactions are represented by

yellow dashed lines. As per assay results, ligand K2.7 displayed greater Hh signal reduction at 100μM than both

K2.11 and K2.12, comparable to the positive control (SANT-1). K2.12 displayed greater Hh signal reduction than

K2.11 at the lower concentration (10μM) and, like K2.7, was also predicted to link residues in transmembrane (E518)

and extra-cellular helices (D384). These predictions underscore the likely importance of Y394 in SMO ligand binding

and supports the strategy to select for molecules that link transmembrane and extra-cellular helices.

pocket, Y394 in ECL3, in isolation, appears to be a crucial residue for ligands binding

to SMO’s inactive conformation. The pyridine nitrogen of Vismodegib interacts with the

hydroxy sidechain of Y394 and its binding within the TM7 bundle is associated with a

conformational change of ECL3 that occludes the sterol binding groove in the CRD occupied

by active-state SMO [201]. Similarly, a pyrazole in the SANT-1 X-ray structure also interacts

with Y394 [198]. Results from signalling assays performed support this, molecules possessing

predicted interactions with Y394, regardless of the chemotype, generally result in a decreased

Hh signal activity (Figure 4.27).

Secondarily, molecules displaying predicted interactions bridging Y394 and residues in TM6

such as E518 were associated with greater decreases in Hh signalling. A very recent structure

optimisation campaign of a single virtual screening hit combining competitive binding assays

and free-energy methods (MM/GBSA) confirmed the primacy of the binding free-energy

contribution of Y394 but there were large gains in affinity from also targeting E518, whose

energy contribution was only slightly less [221]. Structurally, amide or urea moieties appear

ideal to exploit this linking of ECL3 and TM6 as the rigidity and geometry of these functional
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groups are easily within reach of the hydroxy sidechain of Y394 and the carboxylate of E518,

particularly in the case of compounds such as K5, K11 and K2.19 (Figure 4.27).

Additionally, molecules displaying predicted interactions with another residue in TM6 (H470)

in concert with either or both of Y394 and E518 were also associated with large decreases

in Hh signalling, particularly K6 and K2.19 (Figure 4.27). This effect was not consistent,

however, and of the three residues discussed here, despite as potent a ligand as SANT-1 also

displaying this interaction with SMO, it may be the least important of the three residues

discussed here.

Figure 4.27: Interaction matrix of all compounds tested in Rounds 1 and 2. Colours represent different interacting

moieties in line with traditional colours of atoms in chemistry (red=Oxygen, blue=Nitrogen). Generally, compounds

predicted to interact with Y394 displayed a greater propensity to reduce Hh signalling, followed by those predicted to

link residues in ECL loops and TM helices (e.g. Y394 and E518, respectively). Compounds interacting with H470 also

displayed a greater propensity to reduce Hh signalling but the effect was not consistent, hence Y394 and the strategy

of linking ECL loops and transmembrane helices (e.g. Y394/D384 and E518) appear to be more important for binding

to SMO’s TM7 bundle.



138

Tarting of residues in the SMO binding pocket to encourage ‘deep’ binding was less effective

than pocket minimisation in retrieving hits. In principle, tarting a lot of residues should

dramatically increase overall electrostatic potential surrounding affected residues and highly

polar molecules should therefore score higher. This was borne out as more highly polar

decoys outscored actives in the tarted receptor in initial tests. However, docking scores for

less polar actives against SMO were largely unaffected by tarting. Several known actives,

poorly scored in the untarted receptor, did however score highly in the tarted receptor.

It was therefore possible that more molecules active against SMO, polar but not too polar,

could be retrieved. The increased risk of retrieving molecules from ZINC that score high

purely because they are more polar was mitigated as molecules in the ZINC dataset tend

not to be as apparently polar as generated decoys. This was confirmed as docked ZINC12

molecules tended to be scored and ranked similarly in both tarted and untarted receptors.

A few known active molecules were nonetheless retrieved against the tarted receptor after

being missed in docking to the untarted receptor (e.g. K2.19).

A few facets of the SMO binding pocket allow for a greater chance for success in any structure-

based screen of this nature. As with other GPCRs, SMO has a deep and narrow cavity in

its transmembrane domain and is generally not accessible by solvent. It is larger than the

orthosteric binding pocket of aminergic receptors such as the β2AR but significantly smaller

than that of peptide receptors and shape-complementarity is important for docking. The

library bias of commercially-available libraries such as ZINC toward GPCRs increases the

probability of retrieving molecules that meet well with the shape-complementarity desired in

SMO ligands, reflected in the higher than usual hit-rate. Underscoring this, as mentioned,

K2.7, K2.11 and K2.12, posess a β-hydroxy moiety that has been proven important for

binding to specific residues in the β2AR.

Thus, from a structure-based screen of libraries biased toward availability, 15 ligands with

little commonality between their structures were retrieved and their antagonism to SMO

conformed via cellular assay. The importance of a structure-based perspective was demon-

strated when relaxation of the binding pocket prior to docking found that small changes in

the positions of residues around the binding position of Vismodegib resulted in the retrieval

of more antagonists. The importance of key extra-cellular and transmembrane residues was

highlighted in addition to the enhanced activity of compounds that target multiple residues

across domains.

The compounds themselves were demonstrated to be active with predicted binding modes
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that avoid residues prone to mutation and consequent clinical resistance and at least one was

potentially as potent as the most affine Hh pathway inhibitor known. Additionally, without

optimisation, several drug-like compounds displayed significant activity against SMO with

chemotypes that are, in principle, easily synthesisable and amenable to optimisation. All of

this contributes to structural knowledge of SMO and provides excellent starting points for

further structure-based campaigns for the development of more potent inhibitors.
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Chapter 5

Perspective
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5.1 Introduction

The greatest costs of any fragment-based campaign are those resulting from an in-depth

analysis of false positives whereas false negatives are a total loss of important information.

Using computational methods on concert with experimental validation, a campaign of ligand

discovery can reduce the probability of such losses. The previous chapters describe specific

attempts to find small molecule inhibitors against two prima facie straightforward molecular

targets, Pim-1 and SMO. As with anything in life and research, the devil was in the tiny but

significant details.

Chapter 4 focussed on the development of both synthetically feasible and optimisable ligands

against Pim-1. Along the way, insights regarding the dynamics and structure of the Pim-1

binding pocket were gained via MD simulation and a docking comparison that informed sub-

sequent structure-based virtual screening campaigns. Although synthetic feasibility remains

a difficult problem, some success was observed in synthesising inhibitors that were active

against Pim-1 as well as some amenable to further optimisation from a later screen using

the ZINC dataset. Some surprising results involving a stabilising peptide are suggestive

of future development of less-explored sections of the Pim-1 binding pocket and, with some

modifications, a crystallised fragment offers attractive extensions for future Pim-1 inhibitors.

Ligands discovered in chapter 4 were both chemically novel and active against SMO. These

ligands were predicted to make interactions distinct from previous SMO ligands within the

allosteric pocket of SMO in the 7TM bundle and were chosen specifically to avoid known

undesirable effects (e.g. interactions with D473, known to be prone to mis-sense mutation).

Minimisation of the SMO binding pocket generally retrieved more ligands and emerging

structure-activity relationships gave additional insight into important residues for future

ligand discovery campaigns.

In light of the above, it bears examining in detail what was learned, both positive and

negative, from the multifaceted investigations of these two targets and how these lessons can

be applied to future work involving these two targets.
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5.2 What was learned from this thesis

5.2.1 Chemically diverse synthetically feasible ligands were found against

Pim-1

A campaign was described in chapter 3 that focussed on the discovery of novelty and syn-

thetic feasibility in ligands for the Pim-1 kinase. A number of small (< 250Da) molecules

from a diverse in-house library were predicted and confirmed to bind via a docking and

crystallographic screen. These fragments, in and of themselves, are unsuitable as a drug

due to the nature of their unspecific binding and generally have low affinity for any target.

However, as demonstrated, fragments with reliable binding modes make an ideal starting

point for extensions into other sections of the Pim-1 binding pocket.

Although not novel per se, the diverse nature of fragments from the in-house library and

their known binding modes enabled consideration of productive extensions. A focus on

synthetic feasibility led to enumeration of points on fragments amenable to extension and

the use of a published set of ‘safe’ synthetic reactions. An additional criterion of availability

determined that these molecules would be extended via purchasable ‘building blocks’ from

the ChemBridge library.

Although the focus on synthesisability and availability potentially compromised the degree

of chemical space exploration in this project, there was some level of compensation for loss

of novelty as specific sections of the Pim-1 binding pocket could be targeted by molecules

synthesised to do so. Coupled with a reliable fragment binding mode, this enabled some

risks to be taken. There are few ligands targeting those near Pim-1’s Specificity Surface

(e.g. D128, D131, E171) and molecular choices during evaluation of docking results guided

us toward making these residues a priority. This is despite the risks inherent in targeting

residues that are both somewhat divergent from ideal shape complementarity and solvent-

exposed.

The result of this campaign was some ligands with good enough affinity to form the basis for

optimisation, traditional in screening campaigns against kinases. These were predicted to

address seldom targeted parts of Pim-1 and were inactive against a selectivity target, Protein

Kinase A. It was found that molecules showing activity were generally more rigid than other

known Pim-1 inhibitors, suggestive of an important facet of any molecule targeting residues

near the Specificity Surface.
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An additional factor appears to have been the nature of the electrostatic interaction with

those residues. Measured activity was highest with ligands that had uncharged moieties

interacting with solvent-exposed charged residues. This is suggestive that solvent screening

‘dampening’ effects were less of a problem than with charged moieties. This was certainly

the case with the most potent compound, a hydroxy benzofuran-benzoic acid, where its

hydroy group was predicted to interact with D128 and its carboxylate predicted to interact

with Pim-1’s catalytic lysine (K67). Compounds possessing a benzoic acid but coupled to a

charged moiety (e.g. piperidine) were inactive in assays. The effect seems to be ameliorated

somewhat by substitution of the charged species with, for example, a short aliphatic chain.

However, the activity of one compound with an additional group of this nature was still

relatively weak with a three-digit Ki.

5.2.2 Novel ligands were also found in focussed libraries for diverse targets

Project 3 in chapter 3 and two ZINC screens in chapter 4 also unearthed chemical novelty

for both Pim-1 and SMO. This is perhaps a slightly surprising result as the ZINC dataset

is perhaps less likely to retrieve kinase ligands. However, several potent hits were observed

against SMO with room for further development and optimisation.

With regards Pim-1, proposed inhibitors were tested via orthogonal assays, some were crys-

tallised and X-ray structures obtained. Those showing activity were predicted to interact

with Pim-1 via canonical binding modes with the hinge and/or catalytic lysine (K67). How-

ever, chemically they were novel when compared to other Pim-1 ligands, generally comprised

of more flexible linkers rather than the large apolar moieties traditionally associated with

Pim-1 inhibitors. The most potent, however, was also the most rigid, a triazolo-thiadiazole

coupled to an indole on one side and a pyridine on the other.

Two rounds of a ZINC screen were also successful in finding ligands for SMO. In some ways

this is not a surprise as the commercial compound libraries it is based on have a well-known

bias toward GPCRs. However, hit rates in both rounds were above expectations and results

showcased the best of a structure-based virtual screen. Molecules showing reasonable activity

were generally dissimilar to previously published ligands and patterns of activity in ligands

with a degree of similarity to each other suggested at least one emerging Structure-Activity

Relationship (SAR). Additionally, ligands were found in assays that lowered signalling ac-

tivities to within range of the most potent inhibitor known against SMO.

So for both targets, chemically diverse hits have been the result of screens of the ZINC library.
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None of the ligands appeared potent in drug terms but the nature of the subset used, drug-like

and filtered for availability, has left some ‘headroom’ for a productive optimisation campaign.

This is the case in terms of the ligands themselves as well as for similar compounds.

5.2.3 Structural information matters

In Project 1 (chapter 3), the importance of binding pocket shape in proteins was highlighted.

The project was designed to address a problem with any virtual screening campaign, that

of making the choice of a starting structure for docking. Related, as fragments often find

multiple poses in a binding pocket, the problem of finding a reliable binding mode to extend in

fragment-based approaches as well as choosing an appropriate docking program was analysed.

Starting structure choice often requires expert input, particularly as subtle differences in

conformation can affect the chemotypes predicted to bind in an active site as well as the

quality of those predictions. A work flow including MD simulation of a bound ligand-

structure coupled with docking using multiple software codes was demonstrated to improve

performance across the board in ‘cognate’ docking, or, the ability of a docking program to

retrieve a ligand pose close to the known X-ray crystal structure. This is presumably as the

simulations were able to explore conformational states that reflect a ‘typical’ bound ligand.

A conformation was found for subsequent docking that allowed for the retrieval of a more

diverse array of ligands than is reflected in the structure of the original bound ligand. It may

in fact be the case that the particular bound ligand matters less than simulation with any

given ligand. By way of contrast, in the absence of a bound ligand, simulation from a bound

ligand state generally worsened docking performance as conformational states reflecting the

unbound state of the protein were sampled. The overall improvement in docking performance

of ligand-bound simulated structures, therefore, both obviates the need for expert choice and

reliance upon the choice of software.

Minimisation of the SMO binding pocket also demonstrated the importance of conformation

for rigid docking as, despite docking to a drug-bound structure, initial results were less than

satisfactory. Even after ligand minimisation, in some cases poses displayed extreme torsional

strain. There was also an unusual frequency of very unlikely protomers placed within the

pocket that scored highly - indicative of a sampling problem. This led to the conclusion that

the binding pocket itself may not be in a conformation likely to retrieve more novel ligands

and with reasonable poses. Minimisation of residues around the position of the ligand in the
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drug-bound structure quite simply led to more ligands that were reflective of a reasonable

binding position.

The provision of exhaustive ligand conformations mattered less than protein structure in all

projects. The shape of the molecular pose is crucial in prediction of the most likely binding

mode in biomolecular studies. However, particularly with the fragment study of Pim-1 in

Project 1 of chapter 3, only a few conformers (5-15) in energetically likely conformations were

necessary to retrieve poses close (< 2Å) to the crystal binding mode for some fragments.

Only a few more conformers per molecule (15-20) were generated in libraries of extended

molecules in Project 2 and Project 3 and for both ZINC screens against SMO in chapter 4.

The number of rotatable bonds in molecules generated by the DOCK pipeline also affects the

number of conformers generated. An ‘energy window’ parameter in conformation generation

dictates accept/reject criteria for conformers. If the difference in molecular strain energy

between a conformer and the global minimum conformer is above a certain threshold, the

conformer is omitted from preparation. This parameter is set progressively much more

strictly for molecules with a higher numbers of rotatable bonds, limiting the number of

conformers generated and, ostensibly, reducing computational time per molecule. This, of

course, has the effect of limiting the amount of chemical space explored by rigid fragments

supplied for docking.

However, it would appear that the lack of conformational space explored by fewer conformers

is compensated for the fact that all docking codes used have a minimisation step after initial

docking of the rigid molecule. This essentially kicks retrieval of the most likely conformation

for each pose down the road. Energy minimisation will not resolve large clashes with the

protein surface or eject the molecule from the binding pocket. However, it can certainly

change pose geometry enough to make and break interactions or fatally affect shape com-

plementarity in correcting the geometry of, for example, amines to reflect sp2-hybridisation

rather than their putative sp3 geometry. The implicit assumption is therefore that it is more

important that an initial docked position of a rigid molecule be converted to a favourable

pose after minimisation than the generation of more conformers prior to docking.

5.2.4 One should always be prepared for surprises

Two unexpected results were observed in this thesis. Firstly, in Project 3 of chapter 3, two

ligands were crystallised in complex with Pim-1 and a consensus peptide, Pimtide. Pimtide

is a consensus peptide that was designed to mimic the binding of the Pim-1 co-substrate and
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is also used to stabilise the protein-ligand complex for crystallography. Secondly, in Project

4 of chapter 3, a fragment from the internal fragment library, f200, was crystallised with only

its quinoxaline moiety, missing entirely a thiophene and unsaturated linker. As the original

structure for this fragment had these functional groups present, this fragment was initially

missed when docking the internal fragment library from where it had originated.

Both ligands in Project 3 of chapter 3 crystallised and displaying water-mediated interactions

with Pimtide. Both of these results are the first examples of direct interactions between a

ligand and Pimtide on the PDB, albeit in only one ligand is this directly observed in the

X-ray crystal structure. As the initial docking was completed without Pimtide in the model,

the predicted pose was very different to the eventual binding mode. In fact, the only way to

retrieve the crystal binding mode was to dock the ligand in a protein prepared with Pimtide

and all crystallographic waters present. Shape complementarity was, again, demonstrated

as being the key influence determining ideal binding positions in protein-ligand complexes.

Residues near the Pim-1 Specificity Surface are presumably difficult to target due to their

degree of solvent exposure. The position of both crystallised ligands means they are in

complex with a crystallographic water, D128 and R6 on Pimtide. A goal for the development

of various peptide substrates has been to analyse protein kinase phosphorylation specificity

but residues nearby to Pimtide’s usual binding position, less conserved in kinases, offer the

possibility other peptide inhibitors. This should be aggressively pursued as the lack of DFG-

loop dynamics means active-state Pim-1 has been extensively targeted so finding chemical

novelty in the small-molecule space will be progressively more difficult. Targeting of these

conserved residues, of course, offers the possibility of more selective Pim-1 ligands too.

The truncated form of the fragment ligand in Project 4 of chapter 3 was initially missed as the

full fragment was that which was used in docking. Attempts to find a docked position for the

full fragment from the position of the X-ray structure inevitably resulted in clashes with the

protein surface and attempts by in-house specialists to model the full fragment into measured

electron density were not able to supplant evidence in favour of the truncated fragment. The

X-ray crystallographic structure of the truncated ligand was, however, suggestive of an ideal

starting structure for a fragment extension project. Apparent interactions between the amide

carbonyl of its quinoxaline core and Pim-1 ’s catalytic Lysine (K67) as well as the amide

nitrogen with a buried water suggested a stable binding mode. The position of the apolar

part of the fragment in within Pim-1 ’s hydrophobic pocket should only have strengthened

its position.
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Sadly, it was found that neither the quinoxaline core nor several extensions tested were

active against Pim-1 in a FRET-based assay. The most likely explanation seems to be

that, although extended molecules were chosen with polar interactions in mind, none of the

extensions approached the hinge. Many Pim-1 inhibitors have large apolar moeities within

range of the hinge, naturally more apolar in Pim-1. A remedy along these lines would be to

target the hinge by extending the quinoxaline fragment at a different position, for example

7 instead of 6. This has the benefit of concomitantly optimising for shape complementarity

of the Pim-1 binding pocket.

5.2.5 Some aspects didn’t work as well as we would like

Some projects were left with somewhat unsatisfactory results. Specifically, that there were

few ligands found in Project 2 of chapter 3 against Pim-1, that the goal of synthetic feasibility

remains a difficult one and that the CURED found in the SMO allosteric binding pocket in

chapter 4 was unable to be identified.

Lack of affinity caused by the possibility of solvent screening effects between charged ligands

and solvent-exposed charged residues in Project 2 was probably exacerbated by the flexibility

of molecules that were found inactive against Pim-1. Most potential inhibitors had relatively

flexible linkers between moieties within the binding pocket and those predicted to interact

with residues such as D128.

Docking, particularly rigid docking, typically does not attempt to quantify configurational

entropy changes upon ligand binding [222]. Some attempts using rigid multiple poses have

been reported [223]. But, in and of themselves, docking scoring functions are unable to

quantify the degree to which these effects, that oppose the attractive forces involved in

binding [224], will impact on docking predictions.

Appropriate sampling of conformational space via molecular simulation coupled with free

energy methods (e.g. Free Energy Perturbation) are designed specifically to estimate and

decompose the various free energy changes upon ligand binding. These methods do not often

achieve so-called ‘chemical accuracy’ (< 1 kcal·mol−1), ostensibly for reasons related to inad-

equate sampling, leading to Mean Absolute Deviations (MAD) from experimental estimates

more of the order of 4-6 kcal·mol−1 [225]. However, they can be useful for qualitative ranking

of molecules in a series of similar ligands, for example. Addressing the problem of solvent

polarisation effects is more tricky. Again, for qualitative ranking, free energy methods using

polarisable force fields (e.g. AMOEBA [226]) or even hybrid methods (e.g. QM/MM) should
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be useful in congeneric ligand series’. As these are computationally-expensive methods at

present, the aim as hardware speeds increase will be to scale up their use to broader sets of

ligands.

Synthetic feasibility was the goal in the development of ligands in Project 2 of chapter 3 and

results were quite mixed. In almost all cases, compounds were synthesised with methods that

differed to that proposed by our software. In many cases, molecules proposed were required

to be altered slightly to make them synthesisable either at all or not without significant effort

and development expended by synthesis collaborators.

There is no easy automated solution for this. Whilst some syntheses do prove to be relatively

straightforward, in silico reactions should remain more as idea generators than a blueprint

for automated synthetic success. It therefore remains that even apparently straightforward

organic molecule synthesis requires expert intervention for all synthesis methods.

Identification of the molecule(s) within the electron density in chapter 4 also proved elusive.

The endogenous ligand of SMO is, at present, not known and many compounds used in

SMO’s crystallisation in addition to assay kit ingredients were ruled out of consideration

during X-ray model refinement. Docking of databases including compounds known to be

present in cell process such as membrane transport and signal transduction as well as cell

metabolites failed to find a candidate ligand. Docking of small molecular probes provided

valuable insight into the energetics of various segments of the SMO binding pocket and did

allow us to narrow the list of moieties likely to be favourable in these segments. However,

in terms of raw combinatorics, a library of molecules including all possibilities of interacting

moities and appropriate linkers would be huge.

A proposed approach is to build a library of molecules based on filtering rules for specific

segments of the CURED then docking them. From there, the application of, for example,

a scoring function based on spatial criteria [227] could be applied to score and rank the

possibilities. One imagines that would at least further narrow molecular possibilities but a

run-on effect is the possibility of identifying other molecules that could plausibly fit within

the binding pocket to discover new ligands for SMO.

5.2.6 What is a ‘hit’?

Results from both major targets in this thesis prompt the question of what constitutes a

real ‘hit’ in ligand discovery campaigns. Does it have pM affinity for the target? Or merely
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those that show enough to be interesting for further development? Are these criteria target-

dependent? If a compound shows activity but crystallises in an entirely different position

than that predicted, does this no longer count as a hit? And does the limited nature of

biophysical methods mean that we cannot be sure of a molecule’s status as a ‘hit’ until we

obtain an X-ray structure?

In terms of raw affinity, the answer to this question is a resounding no for all ligands tested.

None achieved even nM affinity so in kinase terms, the best ligands at two-digit µM affinity

would be considered relatively weak ligands. However, as stated, most kinase campaigns

begin with ligands inhibiting at this level of affinity. This is closely followed by an intensifying

of effort in the service of optimisation that can take some months or even years prior to testing

(e.g. in vivo assays) and publication.

Sometimes, despite the success of a crystal hit, it may not be considered a real hit. As

reported in Project 3 of chapter 3, two molecules displayed completely different binding

modes to that predicted by docking, due to the unforeseen intervention of Pim-1’s consensus

peptide Pimtide. Unfortunately, one of those crystallised did not show activity in an assay.

A third ligand was shown to be active in assays and was crystallised but, although a dataset

was obtained, it did not survive structural model refinement as the ligand could not be

accurately placed within the electron density measured.

It would be tempting to view those interacting with Pimtide as not real hits. However,

although not reflective of the exact sequence of Pim-1’s co-substrate, one of the aims of

Pimtide is to mimic substrate binding. Additionally, the positions of both ligands should

inhibit ATP binding. It is therefore possible that the binding mode observed with these

ligands reflects a bound state where ATP is replaced but allow for co-substrate binding.

This was not the case where one ligand was crystallised with Pimtide but inactive in assays.

However, it does not preclude others from this possibility.

One of the ligands crystallised with Pimtide showed activity in assays. Assuming it was not

a hydrolysis product that crystallised, this is suggestive of more than one binding mode. The

binding mode elucidated from its X-ray structure still counts as a X-ray crystallographic hit

and the information gained from its binding position will be useful in targeting less conserved

Pim-1 residues.

A third example, whilst it did not progress to a fully refined structure, was active both against

Pim-1 but also showed signs of pan-PIM inhibition. Primarily, the limitations in ligand
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detection using biophysical methods concern false negatives so despite no X-ray structure

and a relatively weak affinity, its status as a hit should be assured.

To summarise, the determination of a molecular ‘hit’ depends upon the criteria used. Some

compounds discovered that make a reasonable starting point for optimisation or show signs

of other useful properties would be disregarded as hits by others. What can be gleaned

from this thesis, however, is that although there are costs associated with pursuing leads

that perhaps end less than satisfactorily, the costs of false negatives are known to be much

greater. So care should be taken before outright rejecting compounds that show reasonable

signs of activity but have scope for optimisation or tell us something about a target that was

not previous known.
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[205] D. A. Case, T. E. Cheatham, T. Darden, H. Göhlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang,

and R. J. Woods, “The amber biomolecular simulation programs,” J. Comput. Chem., vol. 26, pp. 1668–1688,

2005.

[206] P. R. Gerber and Müller, “Mab, a generally applicable molecular force field for structure modelling in medicinal

chemistry,” J. Comput.-Aided Mol. Design, vol. 9, no. 3, pp. 251–268, 1995.

[207] P. Labute, “The moe nonlinear optimization library,” 1995.

[208] M. M. Mysinger, M. Carchia, J. J. Irwin, and B. K. Shoichet, “Directory of useful decoys, enhanced (dud-e):

better ligands and decoys for better benchmarking,” J. Med. Chem., vol. 55, no. 14, pp. 6582–6594, 2012.

[209] D. S. Wishart, T. Jewison, A. C. Guo, M. Wilson, C. Knox, Y. Liu, Y. Djoumbou, R. Mandal, F. Aziat, E. Dong,

S. Bouatra, I. Sinelnikov, D. Arndt, J. Xia, P. Liu, F. Yallou, T. Bjorndahl, R. Perez-Pineiro, R. Eisner, F. Allen,

V. Neveu, R. Greiner, and A. Scalbert, “Hmdb 3.0-the human metabolome database in 2013,” Nucleic Acids

Res., vol. 41, pp. D801–D807, 2012.

[210] M. Kanehisa and S. Goto, “Kegg: Kyoto encyclopedia of genes and genomes,” Nucleic Acids Res., vol. 28, no. 1,

pp. 27–30, 2000.

[211] I. J. Bruno, J. C. Cole, M. Kessler, J. Luo, W. D. S. Motherwell, L. H. Purkis, B. R. Smith, and R. Tay-

lor, “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Model., vol. 44,

pp. 2133–2144, 2004.

[212] C. Lacroix, I. Fish, H. Torosyan, P. Parathaman, J. J. Irwin, B. K. Shoichet, and S. Angers, “Identification of

novel smoothened ligands using structure-based docking,” PLOS ONE, vol. 11, pp. 1–20, 08 2016.

[213] H. J. Sharpe and F. J. de Sauvage, “An oxysterol ligand for smoothened,” Nat. Chem. Biol., vol. 8, pp. 139–140,

2012.

[214] E. F. X. Byrne, G. Luchetti, R. Rohatgi, and C. Siebold, “Multiple ligand binding sites regulate the hedgehog

signal transducer smoothened in vertebrates,” Curr. Opin. Cell. Biol., vol. 51, pp. 81–88, 2018.

[215] R. W. King, “Roughing up smoothened: chemical modulators of hedgehog signaling,” Journal of Biology, vol. 1,

no. 2, pp. 1–8, 2002.

[216] U. Weierstall, D. James, C. Wang, T. A. White, D. Wang, W. Liu, J. C. H. Spence, R. B. Doak, G. Nelson,

P. Fromme, R. Fromme, I. Grotjohann, C. Kupitz, N. A. Zatsepin, H. Liu, S. Basu, D. Wacker, G. W. Han,

V. Katritch, S. Boutet, M. Messerschmidt, G. J. Williams, J. E. Koglin, M. M. Seibert, M. Klinker, C. Gati,

R. L. Shoeman, A. Barty, H. N. Chapman, R. A. Kirian, K. R. Beyerlein, R. C. Stevens, D. Li1, S. T. A.

Shah, N. Howe11, M. Caffrey, and V. Cherezov, “Lipidic cubic phase injector facilitates membrane protein serial

femtosecond crystallography,” Nature Communications, vol. 5, no. 3309, pp. 1–6, 2013.



168

[217] D. R. Raleigh, N. Sever, P. K. Choksi, M. A. Sigg, K. M. Hines, B. M. Thompson, D. Elnatan, P. Jais-

hankar, P. Bisignano, F. R. Garcia-Gonzalo, A. L. Krup, M. Eberl, E. F. Byrne, C. Siebold, S. Y. Wong,

A. R. Renslo, M. Grabe, J. G. McDonald, L. Xu, P. A. Beachy, and J. F. Reiter, “Cilia-associated oxysterols

activate smoothened,” Mol. Cell, vol. 72, no. 2, pp. 316 – 327.e5, 2018.

[218] K. K. Chahal, M. Parle, and R. Abagyan, “Hedgehog pathway and smoothened inhibitors in cancer therapies,”

Anti-Cancer Drugs, vol. 29, no. 5, pp. 387–401, 2018.

[219] P. Kolb, D. M. Rosenbaum, J. J. Irwin, J. J. Fung, B. K. Kobilka, and B. K. Shoichet, “Structure-based discovery

of β2-adrenergic receptor ligands,” Proc. Natl. Acad. Sci. U. S. A., vol. 106, pp. 6843–6848, APR 21 2009.

[220] J. Carlsson, R. G. Coleman, V. Setola, J. J. Irwin, H. Fan, A. Schlessinger, A. Sali, B. L. Roth, and B. K.

Shoichet, “Ligand discovery from a dopamine D(3) receptor homology model and crystal structure,” Nat. Chem.

Biol., vol. 7, no. 11, pp. 769–778, 2011.

[221] S. Song, J. Jiang, L. Zhao, Q. Wang, W. Lu, C. Zheng, J. Zhang, H. Ma, S. Tian, J. Zheng, L. Luo, Y. Li, Z.-J.

Yang, and X. Zhang, “Structural optimization on a virtual screening hit of smoothened receptor,” Eur. J. Med.

Chem., vol. 172, pp. 1–15, 2019.

[222] T. Pantsar and A. Poso, “Binding affinity via docking: Fact and fiction,” Molecules, vol. 23, no. 8, 2018.

[223] A. M. Ruvinsky, “Role of binding entropy in the refinement of protein–ligand docking predictions: Analysis based

on the use of 11 scoring functions,” J. Comput. Chem., vol. 28, no. 8, pp. 1364–1372, 2007.

[224] C.-e. a. Chang, W. Chen, and M. K. Gilson, “Ligand configurational entropy and protein binding.,” Proc. Natl.

Acad. Sci. U. S. A., vol. 104, no. 5, pp. 1534–9, 2007.

[225] F. Manzoni and U. Ryde, “Assessing the stability of free-energy perturbation calculations by performing varia-

tions in the method,” J. Comput.-Aided Mol. Design, vol. 32, no. 4, pp. 529–536, 2018.

[226] J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque, D. L. Mobley, D. S.

Lambrecht, R. A. DiStasio, M. Head-Gordon, G. N. I. Clark, M. E. Johnson, and T. Head-Gordon, “Current

status of the amoeba polarizable force field,” J. Phys. Chem. B, vol. 114, no. 8, pp. 2549–2564, 2010.

[227] D. Yusuf, A. M. Davis, G. J. Kleywegt, and S. Schmitt, “An alternative method for the evaluation of docking

performance: Rsr vs rmsd,” J. Chem. Inf. Model., vol. 48, no. 7, pp. 1411–1422, 2008.



169

Chapter 7

Appendix





171

7.1 Novel ligands against the kinase Proviral Integration site
for MuLV (Pim-1)

7.1.1 Project 1: Docking software comparisons vs structures from MD
simulation

Figure 7.1: Prepared Pim-1 docking binding site polar (light blue, small spheres) and apolar (light pink, small spheres)
vectors for SEED with crystal ligand (green carbons, stick representation) overlay (PDB:3BGP). Key residues (light
grey, stick representation) are labelled.
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Figure 7.2: Prepared Pim-1 docking binding sites for FRED with binding site contours (dark blue, mesh representa-
tion) with crystal ligand (grey carbons, ball-and-stick representation) overlay (PDB:3BGP). Key residues (light grey,
stick representation) are labelled.

Figure 7.3: Prepared Pim-1 docking binding site for DOCK with matching spheres (green, sphere representation)
with crystal ligand overlay (PDB:3BGP). Key residues (light grey, stick representation) are labelled.
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Figure 7.4: Pim-1 Thermal Shift Assay (TSA) results of 31 fragments that displayed a positive temperature shift of
≥ 4◦C (those with lower temperature shifts not shown) - fragment screen against internal fragment library

Section of protein Residues RMSD x̄ (σx̄)

Binding pocket L44-G55, V64-K67, E89,
L93, I104, L120-E124,
V126-D128, F130-D131,
E171-L174, E180-F188

1.58 (0.18)

Catalytic lysine K67 0.61 (0.18)
DFG loop D186-F188 1.63 (0.20)
P-loop G45-V52 0.99 (0.24)

Table 7.1: Mean RMSDs (Å) of Pim-1 apo structure from MD similations - Project 1
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Predict binding mode? (Y/N) RMSD to best pose (Å)

Frag FRED HYBRID SEED DOCK PDB

1 N (>5Å) N (>5Å) Y (1.316) N (>5Å) 5N4Z

2 N (4.858) N (>5Å) Y (1.350) N (>5Å) 5N4N

3 Y (4.118) N (4.616) N (>5Å) N (>5Å) 5N50

4 Y (2.038) Y (2.243) Y (1.453) N (>5Å) 5N4O

5 Y (1.376) Y (1.277) Y (1.309) N (>5Å) -

6 N (>5Å) Y 3.087 Y (2.091) Y (4.161Å) 5N4U

7 Y (1.514) Y 1.436 Y (1.566) N (>5Å) 5N4V

8 Y (1.410) N (>5Å) Y (2.882) N (>5Å) 5MZL

9 Y (2.558) Y 3.129 Y (2.153) N (>5Å) 5N4X

10 N (3.789) N (3.505) Y (1.424) N (>5Å) 5N51

11 N (>5Å) N (>5Å) Y (1.301) N (>5Å) 5N4Y

12 Y (1.593Å) Y 1.607 Y (1.613Å) N (>5Å) 5N52

Table 7.2: RMSD (Å) from the crystal structure of fragments from the internal fragment library as compared to the
docked position for the 3BGP crystal structure for all docking codes used. 2D structure is also displayed - Project 1
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Predict binding mode? (Y/N) RMSD to best pose (Å)

Frag FRED HYBRID SEED DOCK PDB

1 N (>5Å) N (>5Å) Y (1.889) Y (1.889) 5N4Z

2 Y (2.606) Y (2.700) Y (1.791) Y (3.784) 5N4N

3 Y (4.203) Y (3.281) Y (1.929) Y (4.206) 5N50

4 N (>5Å) Y (2.966) N (3.953) N (4.750) 5N4O

5 N (>5Å) N (4.777) Y (2.635) N (>5Å) -

6 Y (2.664) N (>5Å) Y (2.706) N (>5Å) 5N4U

7 N (>5Å) N (>5Å) N (4.249) N (>5Å) 5N4V

8 N (4.787) N (3.005) Y (2.304) N (>5Å) 5MZL

9 N (>5Å) N (3.791) Y (2.244) N (4.808) 5N4X

10 Y (2.216) Y (2.891) Y (2.079) N (4.446) 5N51

11 Y (1.937) Y (1.954) Y (1.594) - 5N4Y

12 N (>5Å) N (4.914) N (4.086) N (>5Å) 5N52

Table 7.3: RMSD (Å) from the crystal structure of fragments from the internal fragment library as compared to the
docked position for the apo MD structure for all docking codes used. 2D structure is also displayed - Project 1
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Predict binding mode? (Y/N) RMSD to best pose (Å)

Frag FRED HYBRID SEED DOCK PDB

1 N (>5Å) N (>5Å) Y (2.559) N (3.475) 5N4Z

2 N (4.144) N (>5Å) Y (0.579) N (>5Å) 5N4N

3 N (>5Å) N (>5Å) N (3.987) N (3.759) 5N50

4 Y (1.586) Y (1.057) Y (2.602) N (>5Å) 5N4O

5 Y (2.492) Y (2.527) Y (1.343) N (>5Å) -

6 N (>5Å) N (>5Å) Y (1.509) N (>5Å) 5N4U

7 Y (4.436) Y (4.479) Y (3.003) Y (3.191) 5N4V

8 N (>5Å) N (>5Å) Y (2.411) N (>5Å) 5MZL

9 N (4.414) Y (3.048) Y (1.834) Y (4.414) 5N4X

10 N (>5Å) N (3.513) Y (1.474) N (4.708) 5N51

11 N (3.594) Y (0.666) Y (0.528) N (>5Å) 5N4Y

12 Y (3.499) Y (3.519) Y (3.976) N (>5Å) 5N52

Table 7.4: RMSD (Å) from the crystal structure of fragments from the internal fragment library as compared to the
docked position for the 3BGP MD structure for all docking codes. 2D structure is also displayed - Project 1
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7.1.2 Project 2: synthetically-feasible extensions of an internal fragment
library

Reaction Number of protomers

1,2,4-triazole acetohydrazide 70
1,2,4-triazole carboxylic-acid or ester 23 759
benzimidazole derivatives carboxylic-
acid or ester

710

benzothiophene 515
benzoxazole carboxylic-acid 120
Buchwald-Hartwig 29 704
Fischer indole 2
Friedlaender chinoline 1
Grignard alcohol 12 379
Grignard carbonyl 5612
Heck non-terminal vinyl 14
heteroaromatic nuc sub 719
Huisgen Cu-catalyzed 1,4-subst 64
Huisgen disubst-alkyne 110
Mitsunobu imide 30
Mitsunobu phenole 821
Mitsunobu sulfonamide 9
Mitsunobu tetrazole 1 35
Mitsunobu tetrazole 2 45
Mitsunobu tetrazole 3 3
Mitsunobu tetrazole 4 3
Negishi 14793
nucl sub aromatic ortho nitro 7
nucl sub aromatic para nitro 4
oxadiazole 9211
reductive amination 8198
Schotten-Baumann amide 190 351
Sonogashira 30
Stille 8962
sulfon amide 31
Suzuki 545
tetrazole connect regioisomere 1 875
tetrazole connect regioisomere 2 924
triaryl-imidazole 974
urea 135
Williamson ether 2394
Wittig 1140

Total 313 299

Table 7.5: Number of derivatives from fragments in Project 1 created in silico using PINGUI and reactions from
Hartenfeller et al by reaction used - Project 2

Number KolbLabID Ki (µM) 2D Structure

Staurosporine - 4.71 μM
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13 K002CT001

14 K002CT002

15 K002CT003

16 K002CT004

17 K002CT005

18 K002CT006

19 K002CT007

20 K002CT008

21 K002CT009



179

22 K002CT010

23 K002CT011

24 K002CT012

25 K002CT013

26 K002CT014 24.98 μM

27 K002CT015 >10mM



180

28 K002CT016

29 K002CT017 >10mM

30 K002CT018 >10mM

31 K002CT019

32 K002CT020

33 K002CT021
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34 K002CT022

35 K002CT023

36 K002CT024

37 K002CT025

38 K002CT026

39 K002CT027 141.14 μM
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40 K002CT028 >10mM

41 K002CT029

42 K002CT030 91.47 μM

43 K002CT031

44 K002CT032

45 K002CT033

46 K002CT034

47 K002CT035 191.76 μM
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48 K002CT036 250.44 μM

49 K002CT037

Table 7.6: Complete list of predicted Pim-1 inhibitors, Ki of all that were tested and 2D structure - Project 2

26 27 29

Overall MMFF energy terms

MMFF VdW 173.10853 174.99911 211.79359
MMFF Coulomb -773.74868 -1054.68906 -1010.24262
MMFF Torsion 73.51171 92.36242 86.00307

Protein shell MMFF terms:

MMFF VdW 163.55022 155.04904 179.39431
MMFF Coulomb -634.13971 -834.09671 -847.24709
MMFF Torsion 69.88636 73.76472 89.46652

Protein shell - ligand MMFF terms

MMFF VdW -11.24085 -7.97985 -4.64507
MMFF Coulomb -143.96872 -172.25685 -140.44702

Ligand MMFF Intramol. Terms

MMFF VdW 20.79916 27.92992 37.04436
MMFF Coulomb 4.35975 -48.33549 -22.54851
MMFF Bond 0.0000 0.0000 0.0000
MMFF Bend 0.0000 0.0000 0.0000
MMFF StretchBend 0.0000 0.0000 0.0000
MMFF Torsion 3.62536 18.5977 -3.46346
MMFF Improper Torsion 0.0000 0.0000 0.0000

Ligand MMFF Intramol.
Energy

28.78427 -1.80788 11.03239

Overall Ligand-Protein Interaction terms

VdW -15.24877 -13.79325 -8.79115
Coulomb diel=1.0 157.15608 -163.84875 -135.23599
Protein desolv (PB) 11.87588 18.05575 16.61079
Ligand desolv (PB) 18.79844 19.47878 17.90345
Solvent screening (PB) -177.23943 129.67464 104.97469

Overall Lig-Prot Interac-
tion

-4.65779 -10.43284 -4.53821

Total energy 24.12647 kcal/mol -12.24072 kcal/mol 6.49418 kcal/mol

Table 7.7: Selected Szybki minimisation output for synthesised inhibitors 26, 27 and 29 - Project 2
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30 39 40

Overall MMFF energy terms

MMFF VdW 178.32713 173.22691 178.75834
MMFF Coulomb -994.08532 -849.55585 -953.7639
MMFF Torsion 74.43372 75.55722 77.25445

Protein shell MMFF terms:

MMFF VdW 152.00414 149.60911 158.84842
MMFF Coulomb -793.83878 -633.62987 -776.76304
MMFF Torsion 75.79929 66.65698 70.88795

Protein shell - ligand MMFF terms

MMFF VdW -12.5733 1.3277 -4.06612
MMFF Coulomb -183.92707 -171.73928 -132.58372

Ligand MMFF Intramol. Terms

MMFF VdW 38.89629 22.2901 23.97603
MMFF Coulomb -16.31947 -44.1867 -44.41714
MMFF Bond 0.0000 0.0000 0.0000
MMFF Bend 0.0000 0.0000 0.0000
MMFF StretchBend 0.0000 0.0000 0.0000
MMFF Torsion -1.3656 8.9002 6.3665
MMFF Improper Torsion 0.0000 0.0000 0.0000

Ligand MMFF Intramol.
Energy

21.21125 -12.99636 -14.07461

Overall Ligand-Protein Interaction terms

VdW -16.18952 -3.71935 -8.58616
Coulomb diel=1.0 -162.83585 -222.80383 -194.34521
Protein desolv (PB) 20.79349 17.2907 19.59708
Ligand desolv (PB) 19.83262 24.08791 18.44216
Solvent screening (PB) 122.8871 170.24762 151.08281

Overall Lig-Prot Interac-
tion

-15.51216 -14.89695 -13.80933

Total energy 5.69909 kcal/mol -27.89331 kcal/mol -27.88393 kcal/mol

Table 7.8: Selected Szybki minimisation output for synthesised inhibitors 30, 39 and 40 - Project 2

42 47 48

Overall MMFF energy terms

MMFF VdW 196.33979 199.14136 194.1482
MMFF Coulomb -1131.72547 -942.02649 -866.95849
MMFF Torsion 119.45029 86.9706 83.10517

Protein shell MMFF terms:

MMFF VdW 184.86334 175.19889 169.06271
MMFF Coulomb -905.12258 -925.08184 -743.19743
MMFF Torsion 101.90064 76.78063 73.05085

Protein shell - ligand MMFF terms

MMFF VdW -7.2298 -4.80154 -11.25881
MMFF Coulomb -195.32913 -86.67719 -131.8179

Ligand MMFF Intramol. Terms

MMFF VdW 18.70625 28.74401 36.3443
MMFF Coulomb -31.27376 69.73254 8.05684
MMFF Bond 0.0000 0.0000 0.0000
MMFF Bend 0.0000 0.0000 0.0000
MMFF StretchBend 0.0000 0.0000 0.0000
MMFF Torsion 17.54965 10.18997 10.0543
MMFF Improper Torsion 0.0000 0.0000 0.0000

Ligand MMFF Intramol.
Energy

4.98214 108.66652 54.45545

Overall Ligand-Protein Interaction terms

VdW -10.34907 -10.1994 -15.50657
Coulomb diel=1.0 -184.8342 125.85612 136.16232
Protein desolv (PB) 19.76263 16.49491 13.70759
Ligand desolv (PB) 20.32186 19.62251 19.44108
Solvent screening (PB) 145.88319 -152.89174 -159.19449

Overall Lig-Prot Interac-
tion

-9.21559 -1.1176 -5.39006

Total energy -4.23345 kcal/mol 107.54893 kcal/mol 49.06539 kcal/mol

Table 7.9: Selected Szybki minimisation output for synthesised inhibitors 42, 47 and 48 - Project 2
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Number InternalID Ki (µM) 2D Structure

50 LHA039 >10mM

51 LHA047 >10mM

52 LHA085 132.11µM

53 LHA086 >10mM

54 LHA100 >10mM

55 LHA119 >10mM

Table 7.10: Predicted Pim-1 inhibitors, aniline triazole series - Project 3

7.1.3 Project 3: novel inhibitors from the ZINC dataset

ID Kinase tested

Compound Abl ASK1 B-Raf Lyn MAPK2 mTOR Pim-1 Pim-2 Plk4 Rsk2 TTBK2
56 111 100 100 102 97 99 98 118 104 104 103
57 82 94 105 86 92 100 77 95 98 96 104
58 88 100 94 96 101 72 44 57 96 97 105
59 105 105 92 100 111 102 83 105 112 96 107
60 104 110 101 95 101 101 94 92 107 87 99
61 96 99 110 96 98 101 99 109 106 84 99

Table 7.11: Mean % residual activity at 10µM of Pim-1 inhibitors as determined by third-party vendor (Eurofins)
using method in [97] - Project 3



186

Compound In-house IC50 (µM) Eurofins IC50 (µM)

57 308.02 56.5
58 13.2 4.2
59 NOT TESTED > 100µM
61 1843 > 100µM

Table 7.12: Calculated IC50’s of Pim-1 inhibitors as determined by third-party vendor (Eurofins) using method in [97]
- Project 3

Figure 7.5: IC50 curves for compounds 57 and 58 as determined by third-party vendor (Eurofins) using method
in [97] (Eurofins)

7.1.4 Project 4: extensions of truncated fragment f200

Figure 7.6: Mean distances (Å) between simulated amide (left) and iminol (right) tautomers with W62 (black trace)
and K67 (red trace) against Pim-1for first 10ns of simulations
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Figure 7.7: Mean RMSD (Å) between simulated amide (red trace) and iminol (black trace) tautomers against Pim-1
for first 20ns of simulations
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Number KolblabID 2D Structure

62 K004CT001

63 K004CT002

64 K004CT003

65 K004CT004

66 K004CT005

67 K004CT006

68 K004CT007

69 K004CT008

Table 7.13: Predicted quinoxaline dervative inhibitors, unique IDs and 2D structures - Project 4
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7.2 Novel inhibitors against the Smoothened receptor

Compounds Assay kit ingredients

Vitamin K Pierce BCA assay kit (Thermo-Fisher)
Vitamin E Power SYBR Green Cells-To-CT (Thermo-Fisher)
PEG3 SigmaFast EDTA-free protease inhibitor cocktail
Ceramide
DDM
Monoolein

Table 7.14: Exhaustive list of molecules ruled out by collaborators as fitting within the CURED

PDB code
Residue number Unpublished structure 5L7I 4N4W
H63 HIP HIE HIE
H103 HID - -
H227 HID HID HIE
H231 HIE HIE HIP
H340 HID HIP HIE
H361 HIE HIE HIE
H433 - HIP HIP
H470 HIE HIE HIE
H1078 HIP -

Table 7.15: Protonation states of Histidines in all Smoothened structures used for docking where HID=only the
δ Nitrogen on imidazole sidechains were protonated, HIE=ε Nitrogen is protonated and HIP=both Nitrogens are
protonated.
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Figure 7.8: Prepared SMO docking binding site polar (light blue, small spheres) and apolar (light pink, small spheres)
vectors for SEED with CURED Fo-Fc density for reference, key residues (light grey, stick representation) are labelled
- unpublished X-ray structure
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Figure 7.9: Prepared SMO docking binding site for DOCK with matching spheres (green, sphere representation) with
CURED Fo-Fc density for reference, key residues (light grey, stick representation) are labelled - unpublished X-ray
structure
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Figure 7.10: Prepared SMO docking binding site for DOCK with matching spheres (green, sphere representation)
with Vismodegib (green, stick representation) for reference, key residues (light grey, stick representation) are labelled
- PDB: 5L7I
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Figure 7.11: Prepared SMO docking binding site for DOCK with matching spheres (green, sphere representation)
with SANT-1 (green, stick representation) for reference, key residues (light grey, stick representation) are labelled -
PDB: 4N4W
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1, 4-dimethylbenzene Cytosine N-methylbenzoimidazole
1,2-difluorobenzene D-Proline N-Methylindole
1,2-dimethylbenzene Decahydroquinoline N-Methylpyrrole
1,3-dimethylbenzene Decaline N-pyrrolidinaldehyde-2-carboxylic

acid
2-aminopyradine Delta-valerolactam N, N, Dimethylaniline
2-aminopyramidine-4-one Dibenzocyclohexane N(3)-methyl-2-aminopyrimidinone
2-methyl-2-butene Dihydroxy-benzene Napthalene
2-methyl-2-phenylpropane Dihydroxy-cyclohexane Nitrobenzene
2-methylthiophene Dimethylammonium Phenole
2-phenylethanol Dimethylether Phenylethane
2-Pyrrolidinone Dinitrobenzene Phenylsulfonamide
2,2-Dimethylpropane Diphenyl Ether Phenylurea
2,3-Dihydroxy-tetrahydrofurane Ethane Phosphate anion
2,3,4-furantricarboxylic-acid Ethanol Piperadine
2,4-diaminopyrimidine Ethene Piperazine
2,4-dichlorotoluene Ethylammonium Proline
2,5-Diketopiperazine Fluorobenzene Propane
3-methoxyanisole Guanine Propene
3-methylanisole Quinoline-4,5, dihydroxyl-1-amine Proprionic acid
3,6-dimethyl-2,5-diketo-1,4-
piperazine

Quinoline-4,7-diamine Purine

5-amidine indole Quinoline-3,10-diamine Pyridine
5-methylisooxazole Quinoline-3-E-methylamide-10-

amine
Pyrrole

5-phenyl-1,4-benzodiazepine Quinoline-3-Z-methylamide-10-
amine

Quinazoline

5-phenyl-1,4-benzodiazepine-2-one Imidazole – less polar Quinoline
Acetate Imidazole – more polar Tert-butane
Acetone Indane Tetrahydro-2-pyrimidinone
Acetophenone Indole Tetrahydro-quinoline
Adamantane Isopropanol Tetrahydrofuran
Adenine Isoquinazoline Tetrahydropyrrole
alpha-Carboline Isoquinoline Tetraline
Aminomethane L-Proline Thiazole
Aniline Meso-Inositol Thiazolidinone
Anisol Methane Thiophene
Benzamide Methanol Toluene
Benzamidine Methanol Trans-Dihydroxy-cyclohexane

(anti)
Benzene Methyl benzoate Trifluoroethane
Benzodioxolane Methyl guanidine Trifluoromethane
Benzoic acid Methyl sulfone Trifluoromethylbenzene
Benzonitrile Methylamidine Trimethylammonium
Benzothiophene Methylammonium Uracil
Beta-carboline Methylcyclopropane Water
Bromobenzene Methylphenol
Butene Methylphenylsulfide
Chlorobenzene Methylphenylsulfone
cis-(D-Ala,D-Ala)-2,5-
Diketopiperazine

Methylphenylsulfoxide

Cis-Dihydroxycyclohexane N-ethylimidazole
Cyclohexane N-ethylpyrrolidinone
Cyclohexoguanidine N-Methyl Methylamide
Cyclopentanone N-Methyl-methylsulfonamide
Cyclopropane N-Methylacetamide

Table 7.16: All molecular ’probes’ used in docking to the unpublished structure to identify the molecule in the
CURED.
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Fragment Interaction energy: Max(µ± σ) Notes

Highly polar molecules

Benzoic acid No favorable poses Apolar but acid moiety
Methyl sulfone No favorable poses Small strongly polar molecule
Imidazole – more polar No favorable poses Small ring, few seeded positions
Proprionic acid No favorable poses Small acid
Phosphate anion No favorable poses

Small, polar molecules

Acetate -0.8 One pose
Acetone -8.25 (-3.99 ± 1.43)
Aminomethane -7.22 (-3.62 ± 1.22)
D-Proline -5.69 (-1.98 ± 1.64)
L-Proline -13.39 (-2.50 ± 2.60)
Methanol -6.83 (-2.46 ± 1.30)
Trifluoroethane -5.13 (-1.88 ± 1.14)
Thiophene -6.39 (-2.77 ± 1.22)
Dimethylammonium -14.26 (-4.32 ± 2.85) Polar interactions outside blob,

large receptor desolvation costs
Dimethylether -8.06 (-3.29 ± 1.38) No convincing poses, outside blob
Ethylammonium -14.18 (-4.21 ± 3.56) Polar interactions outside blob,

large receptor desolvation costs
Ethanol -8.13 (-3.32 ± 1.68) Polar interactions outside blob,

large receptor desolvation costs
Methylamidine -18.85 (-5.75 ± 3.55)
Methylammonium -14.43 (-3.04 ± 3.09) Polar interactions outside blob,

large receptor desolvation costs
Methyl guanidine -17.79 (-6.26 ± 3.44) Polar interactions outside blob,

large receptor desolvation costs
N-Methyl-methylsulfonamide -17.79 (-2.69 ± 1.77) Polar interactions outside blob,

large receptor desolvation costs
N-Methyl Methylamide -10.34 (-3.48 ± 1.99)
N-Methylacetamide -10.33 (-4.04 ± 2.00)
Pyrrole -6.57 (-3.15 ± 1.45)
Tetrahydropyrrole -16.41 (-5.83 ± 4.24) Scores inflated by polar interac-

tions that are outside blob.
Tetrahydrofuran -9.52 (-5.06 ± 1.81)
Thiazole -5.84 (-2.62 ± 0.97)
Thiazolidinone -9.93 (-3.47 ± 1.45) Polar interactions outside blob,

large receptor desolvation costs
Trifluoromethane -5.13 (-1.88 ± 1.14)
Trimethylammonium -8.69 (-3.44 ± 1.83)
Water -2.97 (-1.49 ± 0.72)

Small, apolar molecules

Ethane -7.32 (-2.61 ± 1.36)
Ethene -5.41 (-2.14 ± 1.04)
Methane -4.30 (-2.49 ± 0.91)
Propane -8.36 (-3.71 ± 1.40)
Propene -7.45 (-3.14 ± 1.12)
Tert-butane -8.03 (-3.90 ± 1.70)
2,2-Dimethylpropane -8.04 (-4.67 ± 1.81)

Table 7.17: Calculated interaction energies in kcal·mol−1, (maximum, mean and standard deviation) of molecular
probes where poses were found outside CURED.
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Fragment Interaction energy:
Max(µ± σ)

Fragment Interaction energy:
Max(µ± σ)

Dibenzocyclohexane -9.14 (-4.34 ± 2.60) Hag 5 -12.24 (-5.51 ± 3.41)
Quinoline-4,5,
dihydroxyl-1-amine

-13.33 (-4.62 ± 3.27) Indane -10.54 (-5.04 ± 2.88)

alpha-Carboline -12.48 (-4.94 ± 3.24) Indole -9.45 (-4.25 ± 2.45)
Acetphenone -11.83 (-4.76 ± 2.66) Isopropanol -9.09 (-4.53 ± 1.70)
Adamantane -11.83 (-10.33 ± 0.515) Isoquinoline -9.50 (-4.28 ± 2.47)
Adenine -9.5 (-3.62 ± 2.00) Isoquinazoline -9.68 (-4.05 ± 2.64)
5-amidine indole -25.43 (-6.67 ± 5.35) 2-methyl-2-butene -8.90 (-4.43 ± 1.87)
2-aminopyradine -7.95 (-3.29 ± 1.72) Methyl benzoate -11.72 (-4.64 ± 2.93)
2-aminopyramidine-4-
one

-10.58 (-4.19 ± 1.88) Methylcyclopropane -7.98 (-4.59 ± 1.21)

Aniline -10.37 (-5.20 ± 2.08) 1,3-dimethylbenzene -9.87 (-4.58 ± 2.48)
Anisol -10.33 (-4.19 ± 2.36) N(3)-methyl-2-

aminopyrimidinone
-11.58 (-4.64 ± 2.41)

Imidazole – less polar
version

-8.22 (-3.45 ± 1.44) 3-methylanisole -11.40 (-4.46 ± 2.89)

Beta-carboline -8.22 (-4.41 ± 3.08) N-methylbenzoimidazole -11.27 (-4.64 ± 2.62)
Benzamidine -22.43 (-5.57 ± 4.46) 5-methylisooxazole -9.86 (-3.89 ± 1.85)
Benzene -6.50 (-2.76 ± 1.76) 2-methyl-2-

phenylpropane
-11.43 (-5.56 ± 3.17)

Bromobenzene -10.23 (-4.73 ± 2.58) Methylphenylsulfide -9.40 (-3.69 ± 2.37)
Butene -8.07 (-4.56 ± 1.05) Methylphenylsulfone -11.32 (-3.31 ± 2.36)
Benzamide -11.38 (-4.17 ± 2.47) Methylphenylsulfoxide -10.00 (-3.85 ± 2.39)
Benzodioxolane -9.56 (-3.76 ± 2.47) 2-methylthiophene -7.87 (-3.46 ± 1.65)
Benzonitrile -8.34 (-3.01 ± 1.92) Methylphenol -9.29 (-4.17 ± 2.29)
Benzothiophene -8.69 (-3.68 ± 2.32) 3-methoxyanisole -12.74 (-4.86 ± 3.14)
Cis-
Dihydroxycyclohexane

-13.03 (-5.20 ± 3.04) Meso-Inositol -13.65 (-5.19 ± 3.03)

Cyclohexoguanidine -21.30 (-6..48 ± 4.39) Napthalene -10.14 (-4.39 ± 2.87)
Chlorobenzene -9.51 (-4.16 ± 2.67) Nitrobenzene -10.30 (-4.28 ± 2.45)
Cyclohexane -8.78 (-4.09 ± 2.65) N-Methylindole -10.53 (-4.22 ± 2.52)
Cyclopentanone -8.22 (-4.66 ± 1.53) N-Methylpyrrole -8.09 (-3.83 ± 1.74)
Cyclopropane -6.57 (-2.92 ± 1.40) 1,2-dimethylbenzene -9.51 (-4.41 ± 2.64)
Cytosine -9.81 (-4.25 ± 1.99) 5-phenyl-1,4-

benzodiazepine-2-one
-16.43 (-5.51 ± 4.18)

Decahydroquinoline -13.52 (-6.41 ± 3.67) 5-phenyl-1,4-
benzodiazepine

-13.27 (-4.62 ± 2.53)

Decaline -12.90 (-5.78 ± 3.56) 1, 4-dimethylbenzene -10.48 (-4.48 ± 2.76)
Delta-valerolactam -10.22 (-5.54 ± 1.96) Phenole -9.65 (-3.92 ± 2.08)
2,3-Dihydroxy-
tetrahydrofurane

-12.48 (-5.45 ± 2.35) Phenylethane -10.45 (-4.15 ± 2.55)

Dihydroxy-benzene -8.36 (-4.23 ± 2.04) 2-phenylethanol -10.70 (-3.75 ± 2.53)
Dihydroxy-cyclohexane -13.03 (-7.24 ± 2.64) Phenylsulfonamide -11.65 (-3.25 ± 2.44)
2,4-diaminopyrimidine -8.90 (-3.80 ± 1.90) Phenylurea -12.50 (-4.29 ± 2.81)
2,4-dichlorotoluene -12.24 (-5.00 ± 3.21) Piperazine -16.07 (-6.75 ± 4.99)
1,2-difluorobenzene -8.75 (-3.68 ± 2.10) Piperadine -18.01 (-5.83 ± 4.62)
N, N, Dimethylaniline -11.58 (-4.15 ± 2.78) Proline -13.87 (-2.51 ± 2.48)
Dinitrobenzene -12.38 (-4.85 ± 3.09) Purine -10.51 (-3.45 ± 2.04)
Diphenyl Ether -10.87 (-3.39 ± 2.52) N-pyrrolidinaldehyde-2-

carboxylic acid
-15.62 (-6.66 ± 2.68)

cis-(D-Ala,D-Ala)-2,5-
Diketopiperazine

-12.58 (-4.33 ± 2.84) Pyridine -8.98 (-3.10 ± 1.82)

2,5-Diketopiperazine -12.49 (-4.10 ± 2.69) 2-Pyrrolidinone -9.22 (-4.63 ± 1.54)
3,6-dimethyl-2,5-diketo-
1,4-piperazine

-12.59 (-4.87 ± 2.85) Quinazoline -10.49 (-4.00 ± 2.62)

N-ethylpyrrolidinone -14.54 (-6.55 ± 2.50) Quinoline -10.72 (-4.01 ± 2.81)
N-ethylimidazole -9.12 (-3.88 ± 2.01) Trans-Dihydroxy-

cyclohexane (anti)
-12.17 (-4.89 ± 2.77)

Fluorobenzene -7.73 (-3.62 ± 1.81) Tetraline -11.29 (-5.25 ± 3.16)
2,3,4-furantricarboxylic-
acid

-11.50 (-5.63 ± 2.67) Tetrahydro-2-
pyrimidinone

-11.35 (-5.07 ± 1.91)

Guanine -12.75 (-4.40 ± 2.70) Tetrahydro-quinoline -12.21 (-4.94 ± 3.01)
Quinoline-4,7-diamine -11.79 (-4.62 ± 3.21) Toluene -8.61 (-4.33 ± 2.17)
Quinoline-3,10-diamine -10.84 (-3.98 ± 2.80) Trifluoromethylbenzene -12.35 (-4.54 ± 2.77)
Quinoline-3-E-
methylamide-10-amine

-11.63 (-4.76 ± 2.93) Uracil -9.56 (-3.55 ± 1.67)

Table 7.18: Calculated interaction energies in kcal·mol−1 (maximum, mean and standard deviation) of molecular
probes found inside CURED.
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Figure 7.12: ROC plots of molecular enrichment of known actives for prepared SMO Vismodegib (plots A and B) and
SANT-1 receptors (plots C and D). In each case, it is demonstrated that increasing the box margin and orientational
sampling from defaults enhanced the model’s ability to dock and score molecules known to be active against SMO.



198

TM1 TM2 TM3 TM4 TM5 TM6 TM7 ECL1 ECL2 ECL3

I234 W281 V321 V404 T466 M525 Y207 Q284 D382
L325 I408 C469 F526 I215 M301 G383

H470 N219 L303 D384
Y472 P220 S385
D473 L221 V386
F474 F222 S387
N476 M230 G388
Q477 H231 I389
A478 Y233 C390
E479 F391
W480 G393
E481 Y394
R482 K395
S483 N396
F484 Y397
R485 R400
V488
I509
N511
R512
P513
S514
L515
V517
E518
K519
I520
N521
L522
F523
A524

Table 7.19: Smoothened residues within 8Å of the Vismodegib binding position by helix/loop that were energy
minimised by both MOE and CHARMM

n min max range x̃ x̄ (σx̄)

CHARMM 66 0.091 1.019 0.928 0.21 0.40 (0.21)
MOE 66 0.331 1.685 1.685 0.46 0.54 (0.36)

Table 7.20: Descriptive statistics for distance in RMSD of selected residues from X-ray structure of PDB:5L7I
of CHARMM-minimised and MOE-minimised receptor structures demonstrating that overall movement of atomic
positions in SMO pocket residues was mild when using CHARMM (x̃=0.40) or MOE(x̃=0.54).
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ENER ENR: Eval# ENERgy Delta-E GRMS
ENER INTERN: BONDs ANGLes UREY-b DIHEdrals IMPRopers
ENER EXTERN: VDWaals ELEC HBONds ASP USER

CHARMM
ENER> 0 -18341.68878 0.00000 8.92134
ENER INTERN> 298.29580 1476.16693 0.00000 1259.32198 27.59509
ENER EXTERN> -4615.67876 -16787.38982 0.00000 0.00000 0.00000

MOE
ENER> 0 -18197.08623 0.00000 9.39867
ENER INTERN> 342.27848 1621.19000 0.00000 1286.86442 44.01162
ENER EXTERN> -4565.37810 -16926.05265 0.00000 0.00000 0.00000

Table 7.21: Calculated receptor energies of receptors after minimisation with CHARMM and MOE of SMO receptors.
Despite more overall movement of atom positions in the MOE structure, the CHARMM-minimised structure was overall
lower in energy.

Residue code Atoms affected (AMBER atom types)

VAL270 (VAM) O (-0.500 → -0.900), H (-0.248 → -0.648)
LEU325 (LEV) O (-0.500 → -0.900), H (-0.248 → -0.648)
GLY328 (GLZ) O (-0.500 → -0.900), H (-0.248 → -0.648)
GLY456 (GLZ) O (-0.500 → -0.900), H (-0.248 → -0.648)
PHE462 (PHF) O (-0.500 → -0.900), H (-0.248 → -0.648)
THR466 (THS) O (-0.500 → -0.900), H (-0.248 → -0.648), HOG (-0.310 → -0.710)
ALA524 (ALB) O (-0.500 → -0.900), HN (-0.248 → -0.648)
MET525 (MEU) O (-0.500 → -0.900), HN (-0.248 → -0.648)
THR528 (THS) O (-0.500 → -0.900), H (-0.248 → -0.648), HOG (-0.310 → -0.710)

Table 7.22: Tarted Smoothened residues with atomic partial before and after tarting residues in PDB: 4N4W
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Number ZINCID 2D Structure Tarted score Untarted
score

1 CHEMBL497218 -153.07 -4.23

2 CHEMBL523431 -124.25 -1.61

3 CHEMBL1823838 -109.37 -28.42

4 CHEMBL3126707 -90.91 -5.75

5 CHEMBL3604610 -71.71 1.47

6 CHEMBL3604612 -69.16 3.57

Table 7.23: Molecules known to be active against SMO that scored high when docked to the tarted receptor but poorly
against the untarted receptor and their interaction energies in both docks. This is to demonstrate that the interaction
energies of some very polar molecules were scored highly simply due to the increase in electrostatic potential around
tarted residues.



201

x̄ ± σx̄ min Q1 x̃ Q3 max

Lacroix, et al 0.29 ± 0.08 0.12 0.23 0.29 0.35 0.55
Round 1 0.52 ± 0.12 0.23 0.44 0.51 0.61 0.85
All actives 0.29 ± 0.10 0.04 0.51 0.71

Table 7.24: Descriptive statistics of ECFP4 Tanimoto similarity of Round 2 molecules with Lacroix et al and Round
1 molecules showing overall low similarity between Round 2 molecules with Round 1 molecules, a prior study using the
ZINC12 dataset and all known actives against SMO

5L7I 4N4W

R1 (X-ray) R2 (relaxed) R1 (X-ray) R2 (tarted)

Total Energy 19.54 19.63 17.31 -2.58
Overall: MMFF VdW 144.5 168.77 177.45 185.06
Overall: MMFF Coulomb -1101.92 -1057.74 -1205.42 -1269.97
Overall: MMFF Torsion 98.55 107.34 90.32 96.68

Prot vdw 120.83 144.93 155.12 163.50
Prot: MMFF Torsion 90.01 99.54 83.18 91.71

Lig: MMFF VdW 31.38 34.56 27.62 28.19
Lig: MMFF Torsion 8.54 7.81 7.14 4.97

Prot-Lig: MMFF VdW -7.72 -10.73 -5.29 -6.63
Prot-Lig: MMFF Coulomb -28.53 -28.63 -52.63 -33.42
Prot-Lig: VdW -14.75 -17.9 -12.45 -13.86
Prot-Lig: Coulomb diel=1.0 -165.1 -135.02 -185.17 -178.37
Prot-Lig Protein desolv:(PB) 26.42 25.44 34.50 34.97
Prot-Lig Ligand desolv: (PB) 24.93 22.53 22.20 21.26

Overall Prot-Lig Interaction -17.45 -17.35 -12.15 -12.51

Table 7.25: Mean estimated energies from SZYBKI (kcal.mol−1) for ZINC12 Round 1 vs Round 2 molecules - X-ray
vs altered receptor structures

5L7I 4N4W

ZINC12 ZINC15 ZINC12 ZINC15

Total Energy 19.63 -0.16 -2.58 35.81
Overall: MMFF VdW 168.77 165.61 185.06 143.13
Overall: MMFF Coulomb -1057.74 -1095.80 -1269.97 -855.63
Overall: MMFF Torsion 107.34 100.37 96.68 76.60

Prot vdw 144.93 146.05 163.50 140.22
Prot: MMFF Torsion 99.54 95.42 91.71 70.58

Lig: MMFF VdW 34.56 28.67 28.19 18.12
Lig: MMFF Torsion 7.81 4.96 4.97 6.02

Prot-Lig: MMFF VdW -10.73 -9.12 -6.63 -15.22
Prot-Lig: MMFF Coulomb -28.63 -52.37 -33.42 -12.48
Prot-Lig: VdW -17.90 -16.92 -13.86 -25.11
Prot-Lig: Coulomb diel=1.0 -135.02 -138.42 -178.37 -10.26
Prot-Lig Protein desolv:(PB) 25.44 25.75 34.97 22.79
Prot-Lig Ligand desolv: (PB) 22.53 21.12 21.26 7.23

Overall Prot-Lig Int -17.35 -16.46 -12.51 -0.88

Table 7.26: Mean estimated energies from SZYBKI (kcal.mol−1) for Round 2 molecules - ZINC12 vs ZINC15
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Abbreviation Complete definition

Chemistry and biology

HTS High-Throughput Screen/ing
TSA Thermal Shift Assay
vdW van der Waals

Computational chemistry

MD Molecular dynamics simulation
PES Potential Energy Surace

Pim-1

ATP Adenosine Triphosphate
Pim-1 Proviral Integration site for MuLV

Smoothened receptor

7TM 7 Transmembrane Bundle
CRD Cysteine-Rich Domain
ECL Extra-Cellular Loop
GPCR G-Protein Coupled Receptor
Hh Hedgehog signal pathway
SANT1 Smoothened ANTagonist 1
SMO Smoothened receptor
Vismo Vismodegib

Statistical

AUC Area Under the Curve MCC Matthew’s Correlation Coefficient
x̃ Median
Q1 25% quartile
Q3 75% quartile
x̄ Sample mean
σx̄ Sample standard deviation
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