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Abstract. A numerical method solving the Saint-Venant 
torsion problem with arbitrary cross-sections was derived 
by Gruttmann in 1999. The numerical method is validated 
by analyzing two examples with two mesh types: uniform 
and non-uniform; excellent accuracy was obtained 
compared to analytical solutions. Further, the comparison 
between three elements: LINQUAD, QUAD8NOD, and 
QUAD9NOD to choose the appropriate element for the 
numerical method was performed. The conclusion drawn 
is that our numerical method with QUAD8NOD and 
QUAD9NOD elements is suitable for Saint-Venant torsion 
problem. 
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1. Introduction 

The Saint-Venant problem of torsion is a classical problem 
that was described in detail on the theory of elasticity [1]. 
Numerical analysis of the torsion problem using the finite 
element method has been demonstrated by many 
researchers. Gruttmann [2] described the solution with the 
use of warping function, which is more attractive than 
Prandtl’s stress function, because in this case, the 
continuity conditions around the holes of a multiple 
connected domain are automatically fulfilled. 

 The objectives of the paper are summarized as follows: 
i) to present and assess our numerical method to solve the 
Saint-Venant torsion problem derived from the results of 
Gruttmann with the theory analytical, ii) to compare three 

types of quadrilateral elements: Four-node linear 
quadrilateral element denoted as LINQUAD, Eight-node 
quadrilateral element denoted as QUAD8NOD, Nine-node 
quadrilateral element denoted as QUAD9NOD in order to 
choose the appropriate element for our numerical method. 

2. Solution procedure by numerical 
method 

Gruttmann [2] considers a prismatic bar, whose 
longitudinal axis is the x–axis, and whose cross–sections 
lie in the y–z–plane, see Fig. 1. The considered domain Ω  
with boundary ∂Ω  may be multiple connected. On ∂Ω  
the right- handed orthogonal basis system is defined with 
tangent vector t and outward normal vector [ , ]T

y zn n=n . 
With t  the orientation of the associated coordinate s  is 
uniquely defined. 

 
Fig. 1: Torsion of a prismatic beam [2] 

 Assuming the invariable cross-section, the 
homogeneous isotropic elastic material. The displacement 
field of prsimatic beam x y z[u ,u ,u ]T=u is given by 
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 T
xu αω= , y xu zβ= − , ,z xu yβ= −   (1) 

where xβ : torsion angle, xd
dx
βα = , ( , )T y zω : warping 

function for torsion. Here, the constraint is required 

 0T dAω
Ω

= .      (2) 

 The shear stresses are defined by 
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where G is shear modulus. 

 The polar second moment of area of the shaft cross-
section can read as  

 .
T T

TI y y z z dA
z y

ω ω
Ω

    ∂ ∂= + − −    ∂ ∂    
   (4) 

 The strong form of the boundary value problem is 
described by 
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dzn
ds

= , .z
dyn
ds

= −     (6) 

 Using the Galerkin’s method, with test function Vη ∈
with 1{ ( ), 0 }TV H on

ω
η η= ∈ Ω = ∂Ω , Gruttmann [2] 

transformed the strong form (5) to the weak form as below 
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 (7) 

 The weak form of the boundary value problem (7) can 
be solved approximately using the finite element method. 
Using the isoparametric formulation, the [ , ]Ty z=x , the 
unknown function Tω  and the test function η  are 
interpolated within a typical element using the same shape 
functions 
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where nel denotes the number of nodes per element. The 
index h is used to denote the approximate solution of the 
finite element method. 

 The shape functions ( ),IN ξ η of reference element for 
LINQUAD, QUAD8NOD, QUAD9NOD, which were used 
in our numerical method, are introduced in Appendix A. 
For more detail, we refer e.g. to [3], [4]. 

 Inserting the derivatives of ( )T hω and hη  into the 
weak form (7) yields the finite element equation 

 
1 11

( ) 0.
numel nel nel

T e T e
I IK K I

I Ke

K Fδω ω
= ==

− =   (9) 

 The operator  describes the assembly and numel 
the total number of finite elements to solve the problem. 
The stiffness part e

IKK  to the nodes I and K as well as the 
right hand e

IF yields 
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in which J denoted as Jacobian matrix defined as  

 ,

y z

y z
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    (12) 

 pw  and qw  are the weights and pξ  and qη  are the 

integration points of the Gaussian integration technique. 
For LINQUAD reference element, we use 2 x 2 Gauss 
quadrature derived from the 1D case  where the quadrature 
points are located at 1/ 3− and 1 / 3 , and the 
corresponding weights are equal to 1 and 1, respectively 
(see [3]). 

 For QUAD8NOD, QUAD9NOD reference element, we 
use 3 x 3 Gauss quadrature derived from the 1D case, 
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where the quadrature points are located at 3 / 5− ,0 and 
3 / 5 , and the corresponding weights are equal to 5/9, 

8/9, and 5/9, respectively (see [3]).  

 The value T
Iω of one arbitrary nodal point I has to be 

value 0. 

3. Verification examples 

Verification examples were implemented by MATLAB 
R2015a on a personal computer with Intel(R) Core(TM) 
i5-8265U CPU @ 1.60GHz (8 CPUs), ~1.8GHz , 16 GB 
RAM, and 500 GB hard disk memory. Calculation times 
are given in seconds. 

 We consider two Saint-Venant torsion examples 
presented in Theory of Elasticity [1]. The first example is 
a bar of square cross-section subjected to the torsion 
moment 1M =  [MN.m] with the length of the edge 1 m. 
The values of maximum shear stress and torsional moment 
of inertia obtained by analytical solution [1] are 

max 4.80769τ = [MPa], 0.1406TI = [m4]. 

 An equilateral triangle under torsion moment 1M =
[kN.m] will be analyzed in the second example. The height 
of the triangle is 200 mm. The results of maximum shear 
stress maxτ and torsional moment of inertia TI  are 1.62380 
[MPa] and 6158.40 [cm4] respectively. 

 We divided 4, 16, 64, 256, 1024, 4096, 16384, 65536 
elements for square section and 3,12, 37, 57, 109, 661, 896, 
1578 elements for triangular section. With these 
investigated models, we found the value of maximum 
shear stress, the moment of inertia, and the computation 
times of each element. 

4. Results 

It is clear from Table 1, Table 2 that the results of the 
maximum shear stress, the torsional moment of inertia 
obtained from our numerical method are in good 
agreement with the theoretical solution. It is remarkable 
that we performed two examples with two different ways 
of meshing: uniform mesh see Fig.2(a) and non-uniform 
mesh see Fig.2(b) to check the accuracy of numerical 
method. 

 Fig.3 shows the computation times of LINQUAD is 
better than QUAD8NOD and QUAD9NOD in the same 
discrete size. If the last results are considered, the 
computation times of QUAD8NOD and QUAD9NOD will 
be better than LINQUAD, see Table 1, Table 2. 

 It is noticeable from Fig.4 and Fig.5 that the values of 
the maximum shear stress, the moment of inertia obtained 
by QUAD8NOD and QUAD9NOD decrease to the 
analytical values when the number of elements increase. 

This is the opposite when LINQUAD is used. It means 
when QUAD8NOD and QUAD9NOD is used, the results 
are enough safe in the design of structures although the 
element is not meshed fine enough. We can also see that 
the convergence speed of QUAD8NOD and QUAD9NOD 
is faster than LINQUAD.  
Tab. 1: Square section in torsion 

Factors 
Element type 

LINQUAD QUAD8NODE QUAD9NODE 

Number of 
elements 65536 256 256 

Number of 
nodes 66049 833 1089 

maxτ (a)[MPa] 4.80377 4.81169 4.81162 

TI (b)[m4] 0.14058 0.14058 0.14058 

Times [s] 620 2.4 2.5 

Error (a), % 0.082 0.083 0.082 

Error( b),% 0.015 0.016 0.016 
Tab. 2: Triangular section in torsion 

Factors 
Element type 

LINQUAD QUAD8NODE QUAD9NODE 

Number of 
elements 1578 661 661 

Number of 
Nodes 1669 2092 2753 

maxτ (a)[MPa] 1.62253 1.62452 1.62462 

TI (b)[cm4] 6161.24 6158.4 6158.4 

Times [s] 6.0 4.9 4.9 

Error (a),% 0.078 0.045 0.051 

Error( b),% 0.046 0.00 0.000 

 The phenomenon that the cross- section of the bar does 
not remain in the plane during torsion is presented in Fig.6. 
The maximum shear stress corresponding to the maximum 
slope of the membrane is at the middle points of the long 
sides of the rectangle [1]. It means the distribution of shear 
stress of the square section decreases from middle point of 
edge to the center. Fig.7 shows a good agreement with the 
theoretical results. 

 From [1] the stress xzτ  get the maximum value in the 
middle of the sides of the triangle and the zero value in the 
center of the triangle. It is quite clear in Fig.6. 

5. Conclusions 

In this paper, we have studied how to derive the numerical 
method from Gruttmann’s paper [2] to solve the Saint-
Venant problem of torsion with arbitrary cross-section. 
The verification of the numerical method has been carried 
out by analyzing two examples with two different mesh 
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types: uniform and non-uniform. The comparison of the 
factors as the mesh size, the computation times to choose 
the appropriate element for our numerical method was 
performed. The study has shown (i) an excellent 

agreement of the results of our numerical method with the 
analytical method, (ii) QUAD8NOD and QUAD9NOD 
element are the appropriate elements for our numerical 
method.

(a) 64 elements. (b) 37 elements. 
Fig. 2: The mesh typical with QUAD9NOD for square section with (a) 64 elements and triangular section with (b) 37elements. 

(a) square section. (b) triangular section. 
Fig. 3: The computation time of three elements with respect to the number of elements for (a) square section and (b) triangular section. 

(a) square section. (b) triangular section. 
Fig. 4: The values of maximum shear stress of three elements with respect to the number of elements for (a) square section and (b) triangular section. 
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(a) square section. (b) triangular section. 
Fig. 5: The Polar Second Moment of Area correspond with respect to the number of elements for square section (a) and triangular section (b). 

 

(a) square section- 256 elements. (b) triangular section-37 elements. 
Fig. 6: Computed warping function for torsion Tω for square section with 256 elements (a) and triangular section with 37 elements (b). 

 

 
(a) xyτ . 

 
(b) xzτ . 

Fig. 7: Computed shear stresses xyτ (a) and xzτ (b) for square section. 



SECTION BUILDING STRUCTURES & STRUCTURAL MECHANICS VOLUME: 20 | NUMBER: 2 | 2020 | DECEMBER 

© 2020 TRANSACTIONS OF VSB - TECHNICAL UNIVERSITY OF OSTRAVA CIVIL ENGINEERING SERIES 45 

(a) xyτ  (b) xzτ  

Fig. 8: Computed shear stresses xyτ (a) and xzτ (b) for triangular section. 
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Appendix A  

This appendix completes Section 2 with the shape function 
of finite elements  

A1. LINQUAD element 

The reference LINQUAD element is defined on a rectangle 
with 4 nodes with coordinates: 

µ
1 [ 1, 1]N = - - , µ2 [ 1,1]N = - , µ3 [1,1]N = , µ4 [ 1,1]N = - , 

 and 4 corresponding linear shape function: 

1
1( , ) (1 )(1 )
4

N x h x h= - - , 2
1( , ) (1 )(1 )
4

N x h x h= + - , 
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3
1( , ) (1 )(1 )
4

N x h x h= + - , 4
1( , ) (1 )(1 ).
4

N x h x h= - +  

A2. QUAD8NOD element 

The reference QUAD8NOD element is defined on a 
rectangle with 8 nodes with coordinates: 

µ
1 [ 1, 1]N = - - , µ2 [ 1,1]N = - , µ3 [1,1]N = , µ4 [ 1,1]N = - , 

µ
5 [0, 1]N = - , µ6 [1,0]N = , µ7 [0,1]N = , µ8 [ 1,0]N = - , 

and 8 corresponding shape function: 

1
1( , ) (1 )(1 )( 1 )
4

N x h x h x h= - - - - - , 

2
1( , ) (1 )(1 )( 1 )
4

N x h x h x h= + - - + - , 

3
1( , ) (1 )(1 )( 1 )
4

N x h x h x h= + - - + + , 

4
1( , ) (1 )(1 )( 1 )
4

N x h x h x h= - + - + + , 

2
5

1( , ) (1 )(1 )
2

N x h x h= - - , 

2
6

1( , ) (1 )(1 )
2

N x h x h= + - , 

2
7

1( , ) (1 )(1 )
2

N x h x h= - + , 

2
8

1( , ) (1 )(1 )
2

N x h x h= - - . 

A3. QUAD9NOD element 

The reference QUAD9NOD element is defined on a 
rectangle with 9 nodes with coordinates: 

µ
1 [ 1, 1]N = - - , µ2 [ 1,1]N = - , µ3 [1,1]N = , µ4 [ 1,1]N = - , 

µ
5 [0, 1]N = - , µ6 [1,0]N = , µ7 [0,1]N = , µ8 [ 1,0]N = - , 

µ
9 [0,0]N = , 

and 9 corresponding shape function: 

1
( 1) ( 1)( , )

4
N x x h hx h - -= , 

2
( 1) ( 1)( , )

4
N x xh hx h + -= , 

3
( 1) ( 1)( , )

4
N x x h hx h + += , 

4
( 1)( 1)( , )

4
N x x h hx h - += , 

5
( 1)( 1) ( 1)( , )

2
N x x h hx h + - -=

-
, 

6
( 1) ( 1)( 1)( , )

2
N x x h hx h + + -=

-
, 

7
( 1)( 1)( 1)( , )

2
N x x h hx h + - +=

-
, 

8
( 1)( 1)( 1)( , )

2
N x x h hx h - + -=

-
, 

9
( 1)( 1)( 1)( 1)( , )

1
N x x h hx h + - + -= . 


