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Currently most of the SET-LRP and ATRP techniques uses tris(2-
dimethylaminoethyl)amine (Me6-TREN) as ligand which is 80 time more expensive than 
its precursor tris(2-aminoethyl)amine (TREN). TREN is much less expensive than Me6-
TREN but at the same time is much less efficient, thus limiting the commercial applications 
of SET-LRP and ATRP mediated by TREN.1-6 In this work the efficiency of TREN was 
increased via two mechanisms: (i) the mixed ligand effect, (ii) the catalytic effect of 
solvent. Me6-TREN and TREN  mixed ligand effect was studied in programed “biphasic” 
mixtures of the dipolar aprotic solvents N-methylpyrrolidone (NMP), dimethylformamide 
(DMF) and N,N-dimethylacetamide (DMAc) with H2O and in the homogenous dimethyl 
sulfoxide (DMSO) system with methyl acrylate(MA) as monomer, initiated by bis(2-
bromopropionyl)-ethane (BPE). From the kinetic studies, molecular weight evolution and 
chain end analysis it was concluded that Me6-TREN complemented TREN to enhance its 
apparent rate constant of propagation, monomer conversion, and molecular weight control 
in the absence of externally added Cu(II)Br2. The catalytic effect of DMSO was studied 
with Me6-TREN, mixed-ligand and TREN and a liner external order of reaction was 
observed. The catalytic activity of DMSO in SET-LRP with near 100% chain end 
revitalized TREN as an excellent ligand in SET-LRP.  Since the highest rate of reaction in 
mixed-ligand system is observed at a 1/1 ratio of ligands, this suggested three possible 
mechanisms: (i) either a fast exchange of ligands in the catalytic system, (ii)  a new single 
dynamic ligand generated by hydrogen-bonding of the two ligands, (iii) or a combination 
of both (i) and (ii). 
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Chapter 1 
Replacing Cu(II)Br2 with Me6-TREN in Biphasic Cu(0)/TREN Catalyzed SET-LRP 

Reveals the Mixed-Ligand Effect 
(Reproduced with permission from Refence No 1. Copyright (2020) American Chemical 

Society.) 
 
Introduction 
 
Living Polymerization 
 
Polymers are heavily used chemical products ranging from medical implants to coatings 
on the sea vessels. The polymers are interesting because of their physical properties, unlike 
the small molecular weight molecules, which are interesting because of their chemical 
properties.2 Chiefly of which is the low density to strength ratio making them popular in 
commercial applications. Polymer chains consist of repeating units of one or more 
monomers.2 Not all the chain of a polymer has the same molecular weight. Their molecular 
weight and the distribution define many of the properties of the polymers. The main drive 
in polymer chemistry is to control the polymer architecture, polymer chain end 
functionality, molecular weight and lower the polydispersity (chain length distribution). 
Living polymerization technique gives us the above benefits by living end groups which 
can be of three types a) non-terminated end group b) reversibly activated and deactivated 
end group and c) reversibly activated and deactivated end group by chain transfer to give 
the desired polymer.3a Biological macromolecules such as proteins and nucleic acids are 
monodisperse, contrast to polymers. Currently, monodisperse macromolecules or polymers 
such us dendrimers and even synthetic peptides and nucleic acids can be prepared only by 
iterative (protection deprotection) methods. 
 
Conventional chain growth polymerization has four steps initiation, propagation, 
termination and chain transfer. Living polymerization on other hand have no or minimum 
termination and chain transfer. In 1936 Ziegler, reported that anionic polymerization of 
styrene and butadiene initiated with an alkyl lithium initiator does not have termination and 
chain transfer.4 The work on living polymerization was done before the term living 
polymerization was introduced, for example polymerization of ethylene oxide initiated by 
alkoxides by Flory.2,3  In 1956 Szwarc coined the term “living polymerization” for the 
anionic polymerization of  styrene initiated by sodium naphthalene.4 Szwarc observed that 
when additional monomer was added to polymer, the polymer chain would continue to 
grow suggesting living chain end in polymer. The definition proposed by Szwarc was 
“living polymer are polymers that retain their ability to propagated and grown to a desired 
size while their degree of termination or chain transfer is still negligible”.5 Experimentality, 
living polymerization is characterized by a linear kinetic plot, a linear molecular weight 
distribution versus conversion, low polydispersity, and  perfect or near perfect chain end-
functionality chain end-functionality. 
 
The termination in polymerization is monitored by consumption of monomer as a function 
of time. The semi-logarithmic kinetic plot of ln([M]0/[M]) versus time should be linear for 
living polymerization (Figure 1.1a).6 [M]0 is the initial concentration of monomer and [M] 
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is the concentration of monomer at a given time.  A linear plot suggests a constant number 
of active polymer chain with no termination.6 The rate of polymerization only depend on 
the concentration of monomer, when there no termination.6 Any deceleration in liner plot 
indicate termination and any acceleration indicate slow initiation. 

 
Figure 1.1. a) Evolution of monomer conversion plot versus time b) Molecular weight 
conversion curves for various kinds of polymerization methods: (A) freeradical 
polymerization; (B) living polymerization and (C) condensation polymerization.1  
 
Degree of polymerization (DP) is determined by the ratio of the concentration of monomer 
versus initiator (Equation 1). Without any termination all the active polymer chain grow 
at same rate and molecular weight is equal to DP. In ideal living polymerization the 
molecular weight is directly proportional to conversion (Figure 1.1b, line B). While in 
radical polymerization, high molecular weight polymer is formed in initial stage (Figure 
1.1b, curve A) and in condensation polymerization high molecular weight polymer is 
formed only as the conversion approaches 100 % (Figure 1.1b, curve C).2 When chain 
transfer reaction take place in polymerization, molecular weight of polymer is less than 
predicted DP. When inefficient initiation or chain coupling take place in polymerization, 
molecular weight of polymer is more than predicted DP. 
 
 

																													Degree of Polymerization (DP)=
[monomer]
[initiater] 																													(1) 

 
Another property of living polymerization is the very narrow molecular weight distribution 
(Mw/Mn) polymer is obtained. Mn is number average molecular weight and Mw is weight 
average molecular weight. The Mw/Mn is defined by Poisson distribution (Equation 2).2 
The Mw/Mn decreases with conversion and comes to an ideal value of 1.0 where all polymer 
chains have the same length. Any increase in Mw/Mn versus conversion suggest chain 
breaking reactions. 6  
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Lastly, the chain end-functionalization is demonstrated by modifying chain end to a 
particular group or using polymer as macroinitiator for another polymerization.  The 
perfect or near perfect chain end-functionality is used for two application: polymer 
architectural controller and functionalized end group.2 
 
Single Electron Transfer Living Radical Polymerization (SET-LRP) 
 
SET-LRP mechanism is shown in Figure 1.2. An example of living polymerizations in 
which Cu(0) acts as a catalyst to activate an alkyl halide by an outer sphere electron 
donation (reductive dehalogenation) to radicals while Cu(II)X2 acts as radical deactivator 
to provide a LRP.  The step propagation of polymer take place by addition of monomer to 
grouing radical chain.  Cu(I)X produced during the activation step of this reaction 
disproportionates into highly active Cu(0) and Cu(II)X2 in the presence of a 
disproportioning solvent such as a polar, a protic solvent or water and a ligand that 
stabilizes Cu(II)X2 better than Cu(I)X such as tris[2-(dimethylamino)ethyl] amine (Me6-
TREN) and tris(2-aminoethyl)amine (TREN). (Figure 1.2, Scheme 1.2).  In atom transfer 
radical polymerization (ATRP), Cu(I) acts as a catalyst to activate by an inner sphere 
electron donation and an excess of Cu(II), which is required for deactivation, is generated 
by irreversible bimolecular termination to provide the persistent radical effect,5 while in 
SET-LRP disproportionation rather than termination is responsible for the creation of 
CuX2. A wide range of important polymers such as acrylates, methacrylates, acrylamides, 
acrylonitrile, and vinyl chloride with excellent control of molecular weight, molecular 
weight distribution, chain end functionality, and quantitative conversion can be synthesis 
by SET-LRP.8,10,11,12 

 

Figure 1.2. Mechanism of SET-LRP9  
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The mechanistically fundamental step in Cu(0)-mediated  SET-LTP is disproportionation 
reaction of Cu(I)X into Cu(0) atomic species and Cu(II)X2. The disproportionation either 
be promote or disfavor by appropriate solvent and N-ligand combination.9-18  The 
frequently used ligand in SET-LRP  is Tris(2-dimethylaminoethyl)amine (Me6-TREN) 

9,10,13, which is more expensive than its precursor tris(2-aminoethyl)amine(TREN)9,28, 
because it favors the disproportionation process by preferentially binding Cu(II)X2 rather 
than Cu(I)X.19   However, the use of its precursor, tris(2-aminoethyl)amine (TREN),10,20-22 
which is about 80 times less expensive than Me6-TREN28, and poly(ethylene imine) (PEI)9 
also proved successful for the polymerization of vinyl chloride (VC) during the first days 
of SET-LRP. Likewise, TREN23-25 and N,N,N′,N″,N′-pentamethyldiethylenetriamine 
(PMDETA)9,26,27 are also alternative ligands to Me6-TREN for the Cu(0) wire-catalyzed 
SET-LRP of acrylates and methacrylates in homogeneous SET-LRP.  
 
Solvent play an important role in disproportionation Cu(I)X and chain end functionality of 
polymer. Disproportionating solvents, such as dimethyl sulfoxide (DMSO), provided high 
chain end functionality for a SET-LRP catalyzed by Cu(0) wire, powder, coins, and 
other.25,28 In nondisproportionating solvents including polar solvents like acetonitrile 29 and 
nonpolar solvents like toluene26, the chain end functionality of the resulting polymers is 
much lower. The incompatibility of SET-LRP with polar nondisproportionating solvents 
and nonpolar nondisproportionating solvents was resolved designing “programmed” 
biphasic organic solvent-H2O programmed biphasic systems to mediate the 
disproportionation of Cu(I)X/N-ligand, thus expanding the library of accessible solvents.30-

34. In “programmed” biphasic, SET-LRP is an interfacial process in which 
disproportionation and activation events take place independently in the aqueous and 
organic compartments, respectively, whereas the “self-controlled” reversible deactivation 
occurs at the interface. 35 In previous report, the replacement of Me6-TREN with TREN 
was not so successful in aqueous–organic “programmed” biphasic systems using Cu(0) 
wire catalyst, although it is very efficient in single phase SET-LRP experiments.36-40   In 
biphasic organic solvent–water systems, the external addition of Cu(II)Br2 was necessary 
to complement the performance of TREN and retain living character.36 Large amount of 
Cu(II)X2 decreases the chain end functionality of the polymer.25,28,41.  
 
The concept of mixed-ligand systems emerged as an efficient and simple methodology to 
obtain superior catalytic activity in transition-metal-catalyzed enantioselective reactions.42 
Nearly at the same time, Feringa’s laboratory reported that heterocombinations of chiral 
monodentate ligands were more effective than homocombinations for Rh-catalyzed C–C 
cross-coupling reactions.43 This concept was also employed for Pd-catalyzed C–N44,45 and 
C–S46 cross-coupling reactions as well as for Ni-catalyzed Suzuki-type cross-coupling and 
borylation reactions.47 However, the benefits of using mixed-ligand catalysts have only 
been noted so far in few metal-catalyzed polymerization experiments.48-50  
 
The goal of this chapter is to increase the efficiency of TREN using concept of mixed-
ligand systems without addition of external Cu(II)X2. The objective of this chapter is to 
investigated mixed-ligand concept in different solvent by changing different ligand system 
in reaction system. In the first series of experiments, the performance of the “programmed” 
biphasic SET-LRP of MA in various Me6-TREN/TREN ligand ratios will be compared to 
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determine the efficiency mixed-ligand systems. The reaction kinetics will be measured by 
periodically taking a sample from the reaction mixture and analyzing it for conversion and 
molecular weight distribution using 1H NMR and gel permeation chromatography (GPC), 
respectively.  The solvent affects the disproportionation of Cu(I)X, hence studying the 
different solvents with mixed-ligands will help us determine the efficiency mixed-ligand 
systems. Visualization experiment will be carried out to understand the mechanism of 
programmed” biphasic SET-LRP. Finally, the living livingness of the polymers obtained 
from mixed-ligand systems will be compared to individual ligand using NMR and MALDI-
TOF analysis by using thio-bromo “click” chemistry to determine the chain-end 
functionality of the resulting polymers. 
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Materials and Methods 
 
Reagents 
 
Methyl acrylate (MA) (99%, Acros) was passed over a short column of basic Al2O3 before 
use in order to remove the radical inhibitor. Tris(2-aminoethyl)amine (TREN) (99%, 
Acros), Cu(0) wire (20 gauge wire, 0.812 mm diameter from Fisher), and 
dimethylformamide (DMF) (99.8%, Sigma-Aldrich) were used as received. N,N-
Dimethylacetamide anhydrous (DMAc) (99.8%, Sigma-Aldrich) and N-methylpyrrolidone 
(NMP) (99%, Sigma-Aldrich) were distilled before use. Deionized water was used in all 
SET-LRP experiments. Triethylamine (NEt3) (>99.5% Chemimpex) was distilled under 
N2 over CaH2. Bis(2-bromopropionyl)ethane (BPE) was synthesized by esterification of 
ethylene glycol with 2-bromopropionyl bromide in the presence pyridine according to our 
previously reported method.51 Hexamethylated tris(2-aminoethyl)amine (Me6-TREN) was 
synthesized according to a literature procedure.52 

 

Techniques 
 
400 MHz 1H NMR spectra were recorded on a Bruker AVANCE NEO 400 NMR 
instrument at 27 °C in CDCl3 containing tetramethylsilane (TMS) as internal standard. Gel 
permeation chromatography (GPC) analysis of the polymer samples was performed using 
a Shimadzu LC-20AD high-performance liquid chromatograph pump, a PE Nelson 
Analytical 900 Series integration data station, a Shimadzu RID-10A refractive index (RI) 
detector, and three AM gel columns (a guard column, 500 Å, 10 μm and 104 Å, 10 μm). 
THF (Fisher, HPLC grade) was used as eluent at a flow rate of 1 mL/min–1. The number-
average (Mn) and weight-average (Mw) molecular weights of PMA samples were 
determined with poly(methyl methacrylate) (PMMA) standards purchased from American 
Polymer Standards. MALDI-TOF spectra were obtained on a Voyager DE (Applied 
Biosystems) instrument with a 337 nm nitrogen laser (3 ns pulse width). For all polymers, 
the accelerating potential was 25 kV, the grid was 92.5, the laser power was 2200–2500 
a.u., and a positive ionization mode was used. The sample analysis was performed with 2-
(4-hydroxyphenylazo) benzoic acid as the matrix. Solutions of the matrix (25 mg/mL in 
THF), NaCl (2 mg/mL in deionized H2O), and polymer (10 mg/mL) were prepared 
separately. The solution for MALDI-TOF analysis was obtained by mixing the matrix, 
polymer, and salt solutions in a 5/1/1 volumetric ratio. Then 0.5 μL portions of the mixture 
were deposited onto three wells of sample plate and dried in air at room temperature before 
subjected to MALDI- TOF analysis. 
 
Typical Procedure for SET-LRP of MA in “Programmed” Biphasic Mixtures using 
Mixed-Ligand Systems 
 
Stock solutions with different ligand ratios (Me6-TREN/TREN as 0.05 M/0 M, 0.0375 
M/0.0125 M, 0.025 M/0.025 M, 0.0125 M/0.0375 M, 0 M/0.05 M) in water were prepared. 
The monomer (MA, 11.1 mmol, 1.00 mL), organic solvent (DMF, DMAc, or NMP, 0.4 
mL), water stock solution (0.005 mmol Ligand, 0.1 mL), and initiator (BPE, 0.05 mmol, 
16.6 mg) were added to a 25 mL Schlenk tube. The reaction mixture was then 
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deoxygenated by six freeze–pump–thaw cycles. After these cycles, the Schlenk tube was 
opened under a positive flow of nitrogen to add the Cu(0) wire wrapped around a Teflon-
coated stir bar. Two more freeze–pump–thaw cycles were carried out while holding the stir 
bar above the reaction mixture using an external magnet. After that, the Schlenk tube was 
filled with N2, and the reaction mixture was placed in a water bath at 25 °C. Then, the stir 
bar wrapped with the Cu(0) wire was dropped gently into the reaction mixture. The 
introduction of the Cu(0) wire defines t = 0. Samples were taken at different reaction times 
by purging the side arm of the Schlenk tube with nitrogen for 2 minutes using a 
deoxygenated syringe and stainless steel needles. The collected samples were dissolved in 
CDCl3 and quenched by air bubbling. After that, the monomer conversion was measured 
by 1H NMR spectroscopy. In order to determine the molecular weight and polydispersity 
of the samples, the solvent and the residual monomer were removed under vacuum. Finally, 
samples were dissolved in THF and passed through a short and small basic Al2O3 
chromatographic column to remove any residual copper and subsequently were analyzed 
by GPC. The resulting PMA was precipitated in cold methanol and dried under vacuum 
until constant weight to perform chain end analysis by 1H NMR spectroscopy, before and 
after the thioetherification reaction. 
 
General Procedure for the Chain End Modification of PMA via Thio-Bromo “Click” 
Reaction 
 
In a 10 mL test tube sealed with a rubber septum, thiophenol (0.05 equivalents) and distilled 
triethylamine (NEt3, 0.05 equivalents) were added into a solution of the corresponding 
polymer (0.01 equivalents) in acetonitrile (1 mL) under a nitrogen flow. The reaction 
mixture was stirred at room temperature for 3 hours. Then, the resulting modified PMA 
was precipitated in cold methanol and washed with methanol several times. The resulting 
modified polymers were dried under vacuum until constant weight.  
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Result and Discussion 
 
The Mixed-Ligand Effect During the Biphasic SET-LRP of MA in NMP–Water 
Mixture using Me6-TREN and TREN as Ligands 

From the reported literature, the use of mixed-ligand of Me6-TREN and TREN was not 
employed before in SET-LRP or any other metal-catalyzed LRP technique. The 
performance of Me6-TREN and TREN was first investigate by mediating the 
“programmed” biphasic SET-LRP of MA in NMP- water mixture (8/2 v/v). N-
methylpyrrolidone (NMP) dipolar aprotic solvent is not one of the most efficient SET-LRP 
solvent in homogenous solution,53 but becomes excellent in biphasic systems with 
water.34,36 The chemical structure of both ligands and a schematic illustration for the Cu(0) 
wire-catalyzed SET-LRP of MA initiated from the bifunctional initiator bis(2-
bromopropnionyl)ethane (BPE) are depicted in Scheme 1.1. Triplicate kinetic experiments 
were performed under the following reaction conditions: [MA]0/[BPE]0/[L]0 = 222/1/ 0.1 
using 9.0 cm of nonactivated Cu(0) wire. The molar ratio between Me6-TREN and TREN 
was varied from 1:0 to 0:1 while maintaining the total amount of ligand, relative to initiator, 
constant at 10 mol %. 
 
Scheme 1.1. Biphasic SET-LRP of MA Initiated from BPE and Catalyzed with 
Nonactivated Cu(0) Wire Using Various Molar Combinations of Me6-TREN and TRENa  

 
a Organic solvents investigated herein are NMP, DMF, and DMAc. 
 
From Table 1.1, Figure 1.3, and Figure 1.4a, it was observer that any of the tested mixed 
ligand compositions provided higher apparent rate of polymerization (kpapp) than those 
obtained in the control experiments performed in the presence of either Me6-TREN or 
TREN. For example, the replacement of 2.5 mol % of Me6-TREN with TREN increased 
the kpap from 0.068 min−1 (Figure 1.3a) to 0.078 min−1 (Figure 1.3b), while retaining first-
order kinetics. Similar trends were observed using the inverse ligand composition (Figure 
1.3d). Moreover, in both cases a slight increase in monomer conversion was also noted 
(Appendix 1a). Nevertheless, the superior catalytic activity was observed wherein 1:1 
molar combinations of both ligands. Under these conditions, the SET-LRP of MA 
proceeded approximately 1.2 and 1.3-fold faster than control experiments with Me6-TREN 
and TREN, respectively. This particular mixed-ligand system also enabled the highest 
monomer conversion (Appendix 1a). In addition, the synergistic effect between both 
ligands also improved the control over molecular weight distribution attained by SET-LRP. 
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Representative GPC data shown in Figure 1.5 illustrate the evolution of molecular weight 
as a function of conversion during these experiments. GPC chromatograms revealed 
monomodal polymer peak distributions shifting to higher molecular weight while 
increasing conversion. However, significantly higher than expected MnGPC values were 
obtained at low conversion for the control experiment using TREN without Me6-TREN 
(Figure 1.5e). When using only TREN ligands a nonlinear evolution of molecular weight 
was detected during the early stages of the polymerization (right panel of Figure 1.3e). 
Likewise, the broadest PMA at ultimate monomer conversion was obtained when only 
TREN ligands was used (Mw/Mn = 1.39 at 81% conversion). In previous publications, the 
addition of Cu(II)Br2 additive was used to significantly improve molecular weight control 
under these conditions.36-40 In this case, GPC analysis revealed that Me6-TREN was 
complementary and made TREN a very efficient ligand without using the externally added 
Cu(II)Br2. As can be seen in Appendix 1a, replacing only 2.5 mol % of TREN with Me6-
TREN improved significantly the molecular weight distribution evolution throughout 
polymerization (compare panels e and d of Figure 1.3). As expected, increasing further the 
amount of hexamethylated ligand resulted in a better-defined polymer (Appendix 1a). Note 
that the average Mw/Mn was below 1.2 using the equimolar combination of ligands (Figure 
1.3,1.4 and Table 1.1). Meanwhile, whereas initiator efficiency (Ieff) was around 75% for 
both control experiments, the use of mixed-ligand systems significantly enhanced this 
value (Figure 1.3 and Table 1.1). Again, the most important effect was observed at 1:1 
molar ratio between ligands. In this case, the Ieff was determined to be above 90%. Overall, 
these results demonstrate that the mixed-ligand catalytic system consisting of nonactivated 
Cu(0) wire and Me6-TREN/TREN is an effective catalyst for the SET-LRP of MA under 
biphasic reaction conditions. 
 
 

Table 1.1. Dependence of kpapp on the Dimension of the Cu(0) Wire in the SET-LRP of MA Initiated 
with BPE in NMP/water(8/2,v/v) at 25 °Ca 

entry 

Wire 
length 
(cm) 
20G 

Reaction conditions kpapp 
(min-1) 

kpapp/ 
kpapp(TREN) Mw/Mn Ieff(%) 

1 9.0 [MA]/[BPE]/[Me6-TREN] 
222/1/0.1 0.068 1.1 1.08 75 

2 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.075/0.025 0.078 1.3 1.15 87 

3 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.05/0.05 0.080 1.3 1.18 85 

4 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.025/0.075 0.076 1.3 1.21 96 

5 9.0 [[MA]/[BPE]/[TREN] 
222/1/0.1 0.060 1.0 1.42 77 

aReaction conditions: monomer = 1 mL; solvent + water = 0.5 mL. The v/v ratio must be multiplied by 
10 to obtain % solvent/% water. The value of v + v must be divided by 20 to obtain the total volume of 
solvents, 0.5 mL.  
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Figure 1.4. Evolution of kpapp for the SET-LRP of MA initiated with BPE in various 
“programmed” biphasic reaction mixtures at 25 °C. (a) NMP/water mixture (8/2, v/v) using 
9.0 cm nonactivated Cu(0) wire as catalyst. (b) DMF/water mixture (8/2, v/v) using 12.5, 
9.0, and 4.0 cm of nonactivated Cu(0) wire as catalyst. (c) DMF/water mixture (8/2, v/v) 
using 12.5 cm of nonactivated Cu(0) wire as catalyst and (d) DMAc/water mixture (8/2, 
v/v) using 9.0 cm of nonactivated Cu(0) wire as catalyst. Reaction conditions: MA = 1 mL, 
organic solvent = 0.4 mL, water = 0.1 mL, and [MA]0/[BPE]0/[L]0 = 222/1/0.1 (a,b, and d) 
[MA]0/[BPE]0/[L]0 = 222/1/0.1–0.0 (c). 
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Figure 1.5. Representative GPC traces of the evolution of molecular weight as a function 
of conversion for the SET-LRP of MA in a mixture of NMP/water (8/2, v/v) and catalyzed 
by the 9.0 cm nonactivated Cu(0) wire at 25 °C in the presence of various ligand 
compositions. Reaction conditions: MA = 1 mL, NMP = 0.4 mL, water = 0.1 mL, 
[MA]0/[BPE]0/[L]0 = 222/1/0.1. 
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The Mixed-Ligand Effect During the Biphasic SET-LRP of MA in DMF–Water 
Mixture using Me6-TREN and TREN as Ligands 

The accuracy of the trend disclosed above was tested with an additional set of control 
experiments using different Cu(0) wire lengths in a DMF-water mixture (8/2, v/v). Thus, 
the SET-LRP of MA was investigated using wire lengths of 12.5, 9.0, and 4.0 cm while 
maintaining the rest of the polymerization conditions unchanged (Figure 1.4).  Appendix 
2–4 show the corresponding kinetic plots and evolution of experimental Mn and Mw/Mn 
versus theoretical Mth. Kinetic experiments using 9.0 cm of nonactivated Cu(0) wire 
showed the same trend (Figure 1.4b, green columns) as in the case of Figure 1.4a. The 
biphasic SET-LRP of MA in a DMF/water (8/2, v/v) mixture was faster using mixed-ligand 
systems. However, again, the highest kpapp and Ieff values were observed at 1:1 molar ratio 
of Me6-TREN and TREN (Table 1.2). Under these conditions, SET-LRP was 
approximately 1.5-fold faster than the control experiment with either Me6-TREN or TREN. 
Indeed, monomer conversion was also slightly improved when the mixed-ligand systems 
0.075/0.025 (82%) and 0.05/0.05 (87%) were used (Table 1.2 entry 7 and 8). Mixed-ligand 
effects were also noted for the polymerization using 12.5 and 4.0 cm of Cu(0) wire. 
Previous reports demonstrated that SET-LRP catalysts utilize a surface-mediated 
activation.29,54 Accordingly, the use of 12.5 cm of Cu(0) wire provided the faster series of 
polymerizations, whereas with the shortest wire length reactions were slower (Figure 1.4b, 
red and purple columns, respectively). For example, at the 1:1 molar ratio between ligands, 
the kpapp values decrease as follows, 0.095 min–1 (12.5 cm), 0.082 min–1 (9.0 cm), and 0.051 
min–1 (4.0 cm) (Table 1.2 entry 3, 8 and 13). Nevertheless, the evolution of kpapp values as 
a function of ligand ratio reiterates again the benefit of employing a combination of both 
ligands. These results suggest the existence of an optimum molar ratio between ligands. 
Accordingly, both monomer conversion and Ieff also showed higher values in the mixed-
ligand systems for the polymerization using 4.0 cm of Cu(0) wire. However, the highest 
amount of catalyst did not provide a clear trend (compare Appendix 1b,c with Appendix 
1d). 
 
An additional set of control experiments were performed to highlight the occurrence of fast 
exchange between the two ligands at all compositions (Figure 1.4c). The SET-LRP of MA 
was investigated using decreasing ligand loading using either Me6-TREN or TREN and no 
coligand. The corresponding kinetic plots are shown in Appendix 5, panels a-c (Me6-
TREN) and Appendix 5, panels d-f (TREN). The control experiments from Figure 1.4c 
demonstrate both for the case of TREN (yellow colored experiments) and of Me6-TREN 
(blue colored experiments) a continuous decrease of the rate of polymerization as the 
concentration of the ligand decreases. These experiments contrast the experiments in which 
mixed-ligand with identical compositions as the single ligands are used (see red colored 
experiments). In these series of experiments an increase in rate is obtained as the ratio 
between the two ligands tends to approach the 1/1 ratio. This trend demonstrates the mixed-
ligand effect. The fact that the most important effects have been systematically observed 
at a 1/1 molar ratio suggests that in addition to a fast exchange between the two ligands, a 
new single dynamic ligand generated by H-bonding should be considered in future 
mechanistic investigations (Scheme 1.1). 
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The interaction between both ligands was confirmed by 1H NMR analysis of their 
equimolar mixture prepared in CDCl3. Figure 1.6 shows that signal corresponding to 
amine protons of TREN shifts downfield (0.15 ppm) and becomes broader in the presence 
of Me6-TREN, suggesting the formation of a more rigid complex than TREN or Me6-
TREN. 
 

Table 1.2. Dependence of kpapp on the Dimension of the Cu(0) Wire in the SET-LRP of MA Initiated 
with BPE in DMF/water(8/2,v/v) at 25 °Ca 

entry 
Wire 
length 
(cm) 

Reaction conditions kpapp 
(min-1) 

kpapp/ 
kpapp(TREN) Mw/Mn Ieff(%) 

1 12.5 [MA]/[BPE]/[Me6-TREN] 
222/1/0.1 0.079 1.4 1.12 79 

2 12.5 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.075/0.025 0.086 1.5 1.14 78 

3 12.5 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.05/0.05 0.095 1.6 1.21 78 

4 12.5 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.025/0.075 0.084 1.4 1.23 80 

5 12.5 [[MA]/[BPE]/[TREN] 
222/1/0.1 0.058 1.0 1.36 79 

6 9.0 [MA]/[BPE]/[Me6-TREN] 
222/1/0.1 0.055 1.0 1.09 76 

 
7 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 

222/1/0.075/0.025 0.057 1.0 1.08 82 

 
8 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 

222/1/0.05/0.05 0.082 1.5 1.09 87 

 
9 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 

222/1/0.025/0.075 0.063 1.1 1.13 78 

 
10 9.0 [[MA]/[BPE]/[TREN] 

222/1/0.1 0.055 1.0 1.25 66 

 
11 4.0 [MA]/[BPE]/[Me6-TREN] 

222/1/0.1 0.038 1.1 1.14 81 

 
12 4.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 

222/1/0.075/0.025 0.044 1.3 1.14 82 

 
13 4.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 

222/1/0.05/0.05 0.051 1.4 1.16 86 

 
14 4.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 

222/1/0.025/0.075 0.048 1.4 1.28 66 

 
15 4.0 [[MA]/[BPE]/[TREN] 

222/1/0.1 0.035 1.0 1.40 51 

aReaction conditions: monomer = 1 mL; solvent + water = 0.5 mL. The v/v ratio must be multiplied by 
10 to obtain % solvent/% water. The value of v + v must be divided by 20 to obtain the total volume of 
solvents, 0.5 mL.  
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Figure 1.6. 1H NMR spectra at 400 MHz of (a) TREN, (b) 1:1 molar ratio mixture of 
TREN and Me6-TREN, and (c) Me6-TREN in CDCl3 at 25 °C. 
 
The Mixed-Ligand Effect During the Biphasic SET-LRP of MA in DMAc–Water 
Mixture using Me6-TREN and TREN as Ligands 

In the last series of kinetics, it was examined the solvent screening with a DMAc-water 
mixture also at 8/2 (v/v). The SET-LRP of MA was investigated using only 9.0 cm of 
nonactivated Cu(0) wire. In this case, all the tested compositions showed two first-order 
kinetic regimes with a slower second domain (Appendix 6). The same behavior was 
previously observed during the homogeneous SET-LRP of MA in DMAc with lower 
loadings of water.53 On the basis of previous reports, this result may be attributed to rapid 
activation combined with insufficient disproportionation, which favors bimolecular 
termination events between growing chains. Nevertheless, even under these conditions, the 
1:1 molar ratio of Me6-TREN and TREN provided the fastest polymerization (Figure 1.4d 
and Table 1.3). Moreover, Ieff values also were higher for mixed-ligand systems, but no 
clear trend was observed on monomer conversion (Appendix 1e). As in all previously tested 
systems, with the transition from TREN to Me6-TREN, the resulting PMA showed 
narrower molecular weight distribution (Appendix 6 and Table 1.3). 
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Table 1.3. Dependence of kpapp on the Dimension of the Cu(0) Wire in the SET-LRP of MA Initiated 
with BPE in DMAc/water(8/2,v/v) at 25 °Ca  

entry Wire length 
(cm) Reaction conditions kpapp 

(min-1) 
kpapp/ 

kpapp(TREN) Mw/Mn Ieff(%) 

1 9.0 [MA]/[BPE]/[Me6-TREN] 
222/1/0.1 0.076 1.1 1.11 78 

2 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.075/0.025 0.077 1.1 1.16 83 

3 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.05/0.05 0.091 1.3 1.29 87 

4 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.025/0.075 0.075 1.0 1.36 87 

5 9.0 [[MA]/[BPE]/[TREN] 
222/1/0.1 0.071 1.0 2.14 60 

aReaction conditions: monomer = 1 mL; solvent + water = 0.5 mL. The v/v ratio must be multiplied by 
10 to obtain % solvent/% water. The value of v + v must be divided by 20 to obtain the total volume of 
solvents, 0.5 mL.  

 

 
Figure 1.7. Visualization of the reaction mixture after the biphasic SET-LRP of MA 
initiated with BPE using various ligand compositions. (a) NMP/water (8/2, v/v), (b) 
DMF/water (8/2, v/v), and (c) DMAc/water (8/2, v/v). Reaction conditions: MA = 1 mL, 
organic solvent = 0.4 mL, water = 0.1 mL, [MA]0/[BPE]0/[L]0 = 222/1/0.1. 
 
Visualization of the Reaction Mixtures at the End of the Polymerization: How 
Biphasic SET-LRP Takes Place? 

NMP, DMF, and DMAc are dipolar aprotic solvents miscible with water. However, 
irrespective of the ligand or mixture of ligands used, the SET-LRP of MA in aqueous 
mixtures of these solvents containing 20% water proceeds under biphasic reaction 
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conditions as can be seen in the series of digital images recorded at the end of the 
polymerizations (Figure 1.7). 
 
Note that these biphasic reaction mixtures are “programmed” by the partition of the 
Cu(I)Br/mixed-ligand generated during the activation step in the organic phase, to the 
water phase, where it disproportionates into atomic Cu(0) and Cu(II)Br2. Under these 
conditions, dissociation of I-X and Pn-X is achieved in the organic phase through a 
heterolytic outer-sphere SET-process wherein the outer sphere electron donor Cu(0) 
transfers an electron to I-X/Pn-X resulting, depending of the structure of the initiator, in a 
radical anion [Pn/P-X]•–, which degrades in a stepwise or concerted pathway to Pn•δ+ and 
X– (Scheme 1.2).11-13 Detailed mechanism and definitions by both IUPAC Organic and 
Electrochemistry Divisions were discussed in previous reviews. 11-13 
 
Scheme 1.2. Schematic Representation of Cu(0)-Catalyzed SET-LRP in Organic-Water 
“Programmed” Biphasic Reaction Mixturesa 

 

aColor code: organic phase, green; aqueous phase, blue; interphase, red. 

Subsequently, Cu(I)X species generated during or after the SET event, are partitioned from 
the organic phase into the aqueous phase associated with an N-ligand. This process is 
determined by the much higher solubility of Cu(I)X/L in the aqueous phase rather than in 
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organic phase. In the water phase, the Cu(I)X/L species quantitatively disproportionate 
(equilibrium constant for disproportionation, Kdisp = 0.89 × 106–5.8 × 107)55,56 to generate 
the atomic Cu(0) activator and Cu(II)X2/L deactivator. While water is miscible with dipolar 
aprotic solvents, the solution of Cu(II)Br2/L in water is not miscible with the solution of 
the dipolar aprotic solvent containing MA. This immiscibility is responsible for the 
transition from a single-phase reaction mixture to a biphasic reaction mixture. Cu(0) atomic 
species activate the dormant species, and the excess of Cu(0) nucleates and grows on the 
existing Cu(0) surface (e.g., powder, wire, plates, etc.),57 increasing its area and therefore 
the reactivity of the original Cu(0) surface. Propagation takes place in the organic phase 
via the addition of the monomer to the growing radicals. However, the Cu(II)X2-mediated 
deactivation of the propagating macroradicals is thought to occur at the interphase between 
organic and aqueous phase via reverse outer-sphere oxidation of Pn• to Pn-X (Scheme 1.2). 
Accordingly, after SET-LRP, the organic phase consisting mainly of PMA and residual 
monomer dissolved in the organic solvent was almost colorless, whereas the water droplets 
were bluish because they contain Cu(II)Br2/L complexes with only some traces of organic 
solvent and monomer (Figure 1.7). The images in Figure 1.7 also revealed a slight increase 
in the blue color of the water phase as the concentration of TREN increases. This trend 
may indicate a negligible increase in the extent of bimolecular termination that is too low 
to be detected by NMR and MALDI-TOF analysis experiments. A similar color change 
going from Me6-TREN to TREN was observed during the control experiments using ethyl 
acetate instead of MA (Appendix 7). [EA]0 in Appendix 7 refers to ethyl acetate that has 
been used as a nonreactive model for methyl acrylate. 
 
Structural Analysis of PMA before and after Thio-Bromo “Click” Functionalization 
 
A combination of 400 MHz 1H NMR and MALDI-TOF measurements before and after 
reacting -Br end-groups of PMA with thiophenol via thio-bromo “click” reaction58,59 were 
used to assess the livingness of polymers prepared using various molar ratios between Me6-
TREN and TREN. Low molar mass polymers were prepared using the three above 
investigated “programmed” biphasic mixtures targeting SET-LRP of MA at a 
[MA]0/[BPE]0 = 60. Figure 1.8 shows representative 1H NMR spectra of PMA samples 
isolated at high conversion after biphasic SET-LRP in DMF/water mixture (8/2, v/v) using 
1:0, 1:1, and 0:1 molar ratios of Me6-TREN and TREN. 
 
Within the experimental error, the integral of signal c, corresponding to the CH3- groups 
of the middle-chain initiator residue, and signal a,k, corresponding to the middle-chain CH2 
groups and CH-Br end-groups, did not provide any evidence of termination events. 
Irrespective of the ligand composition, the bromine chain-end functionality was in all cases 
>98% at monomer conversion >90%. 
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Figure 1.8. 1H NMR spectra at 400 MHz of α,ω-di(bromo)PMA at (a) 93% monomer 
conversion (Mn = 6480 and Mw/Mn = 1.14) ([MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.1); (b) 
91% monomer conversion (Mn = 6100 and Mw/Mn = 1.25) ([MA]0/[BPE]0/[Me6-
TREN]0/[TREN]0 = 60/1/0.05/0.05); (c) 94% monomer conversion (Mn = 5990 and Mw/Mn 
= 1.25) ([MA]0/[BPE]0/[TREN]0 = 60/1/0.1). Polymerization conditions: MA = 1 mL, 
DMF = 0.4 mL, water = 0.1 mL using 12.5 cm of nonactivated Cu(0) wire 20-gauge wire. 
1H NMR resonances from residual solvents are indicated with *. 
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Figure 1.9. MALDI-TOF of α,ω-di(bromo)PMA isolated at 91% monomer conversion 
from SET-LRP of MA in DMF/water (8/2, v/v) mixture initiated with BPE and catalyzed 
by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after “thio-bromo “click”. 
Polymerization conditions: MA = 1 mL, DMF = 0.4 mL, water = 0.1 mL using 12.5 cm of 
nonactivated Cu(0) wire 20-gauge wire ([MA]0/[BPE]0/[TREN]0 = 60/1/0.05/0.05). The 
dotted line in expansion after thioetherification shows the original peak from before 
thioetherification, while 58 represents the increase in molar mass after thioetherification 
i.e., 2x[SPh (109. 2) – Br (79.9)] = 58.57 for each chain end. 
 
 
 
 
 
 

a) PMA before thioetherification

b) PMA after thioetherification

Conversion = 91%
Mth= 5028
Mn,GPC= 6096;  Mw/Mn= 1.25 
Mn,MALDI= 3982;  Mw/Mn= 1.17

Conversion = 91%
Mth= 5028
Mn,GPC= 8259;  Mw/Mn= 1.17 
Mn,MALDI= 4932;  Mw/Mn= 1.08
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The chain-end functionality of PMA calculated after thio-bromo “click” reaction with 
thiophenol also supports the near perfect functionality of the synthesized PMA (Appendix 
8). The MALDI-TOF analysis of the prepared samples was also consistent with these 
results. Figure 1.9 depicts representative MALDI-TOF spectra of PMA synthesized using 
equimolar amounts of Me6-TREN and TREN analyzed before and after the 
thioetherification reaction. The polymer isolated after SET-LRP showed one distribution 
which can be assigned to the corresponding bromine-terminated polyacrylate chains 
ionized with Na+. After thioetherification with thiophenol, the original series of peaks 
vanished and appeared 59 mass units above. This is the expected mass difference value 
considering the replacement of -Br atoms (2 × 79.9) by -SPh moieties (2 × 109.2) at both 
polymer chain-ends. MALDI-TOF analysis of PMA prepared using Me6-TREN and TREN 
showed also high levels of chain end functionality (Appendix 9 and Appendix 10, 
respectively). Likewise, equivalent samples prepared in NMP/water and DMAc/water (8/2, 
v/v) mixtures provided also evidence of chain-end functionality close to 100% in all cases 
(see Appendix 11– Appendix 20). 
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Conclusion 
 
The use of TREN and Me6-TREN mixed-ligand system to mediate the Cu(0) wire-
catalyzed SET-LRP MA in various “programmed” biphasic mixtures based on dipolar 
aprotic solvents and water is reported. Kinetic data and chain end analysis demonstrate that 
Me6-TREN can complement and make TREN a very efficient ligand in the absence of 
externally added Cu(II)Br2. During the SET-LRP of MA in 8/2 (v/v) aqueous mixtures of 
NMP, DMF, and DMAc with H2O the use of the mixed-ligand system demonstrated an 
enhanced rate of polymerization, monomer conversion, and molecular weight control. The 
fact that the most important effect is observed at 1/1 molar ratio between ligands suggests 
that in addition to a fast exchange between the two ligands, a new single dynamic ligand 
generated by hydrogen-bonding should be considered in future mechanistic investigations. 
The rate of polymerization at 1/1 molar ratio between the two ligands is higher than that 
obtained with each of the individual ligand at the same molar concentration. At the same 
time, SET-LRP experiments performed in biphasic systems with H2O do not require the 
use of the activated Cu(0) wire. The high chain end functionality generated in the absence 
of externally added Cu(II)Br2 makes the SET-LRP in the presence of the mixed-ligand the 
method of choice for the synthesis of biomacromolecules. 
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Chapter 2 
The Me6-TREN/TREN Mixed-Ligand Effect During SET-LRP 

in the Catalytically Active DMSO Revitalizes TREN into an 
Excellent Ligand 

(Reproduced with permission from Refence No 1. Copyright (2020) American Chemical Society.) 
 

Introduction  
 
In last chapter, the efficiency of tris(2-aminoethyl)amine (TREN) ligand in SET-LRP was 
improved using mixed-ligand concept and thus expanding the solvents which can be used 
in “programmed” biphasic SET-LRP. The mixed-ligand concept represents an inexpensive 
but extremely efficient methodology to design new catalytic systems without synthetic 
efforts.2 Almost simultaneously with its development, Feringa reported 
heterocombinations of chiral monodentate ligands as more efficient than 
homocombinations in Rh-catalyzed C–C cross-coupling.3 At the same time the mixed-
ligand strategy was expanded to Pd-catalyzed C–N4,5 and C–S6 cross-coupling and to Ni-
mediated Suzuki cross-coupling and borylation.7 The advantages of the mixed-ligand 
catalytic systems have been observed only in several polymerization reactions.8-10  
 
A suitable solvent/N-ligand mixture is demanded for Cu(0)-catalyzed single electron 
transfer-living radical polymerization (SET-LRP)11-18 in order to facilitate the 
disproportionation of Cu(I)X into Cu(0) and Cu(II)X2.19,20 Tris(2-
dimethylaminoethyl)amine (Me6-TREN) is a common ligand used in SET-LRP,11,12,15 
since it favors the disproportionation by preferentially binding Cu(II)X2 rather than 
Cu(I)X.21 Nevertheless, the precursor of Me6-TREN, tris(2-aminoethyl)amine (TREN)12,22-

24 that is about 80 times less expensive than Me6-TREN, and poly(ethylene imine) (PEI)11 
was also used for SET-LRP of vinyl chloride (VC), acrylates, and methacrylates during the 
first days of SET-LRP. Likewise, TREN25-27 and N,N,N′,N″,N′-
pentamethyldiethylenetriamine (PMDETA)11,28,29 were also employed in SET-LRP. 
 
In previous report, the replacement of Me6-TREN with TREN was not so successful in 
aqueous–organic “programmed” biphasic systems using Cu(0) wire catalyst,”30-34 although 
TREN is known for its efficiency in single-phase SET-LRP. Biphasic organic solvent–
water SET-LRP complex systems demand the addition of Cu(II)Br2 in order to retain the 
living character when TREN is used as a ligand. In this particular case, SET-LRP is an 
interfacial process that was discussed in more details in previous publications.35 The Cu(0)-
mediated SET-LRP in bi(multi)phasic mixtures of organic solvents with water is very 
important and opens new methodologies since the organic solvent does not have to 
facilitate the disproportionation of Cu(I)X/N-ligand, as in the classic SET-LRP.36-40 The 
first mixed-ligand effect in a SET-LRP system was observed in the water–organic solvent 
“programmed” biphasic systems when Me6-TREN was successfully employed to replace 
the externally added Cu(II)X2 with Me6-TREN.11  
 
In most organic reactions the rate of reaction is dependent upon the reactant concentration. 
When the amount of solvent is increased, the reactant concentration decreases and the rate 
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of reaction decreases. In the catalytic effect of solvent during SET-LRP the opposite effect 
was observed.12a By increasing the amount of DMSO during the polymerization of MA 
with Methyl-2-bromopropionate (MBP) catalyzed by Cu(0) powder, the apparent rate of 
polymerization increases with the increased amount of DMSO. 
 
The goal of this chapter is to increase the efficiency of TREN using catalytic activity of 
DMSO and mixed-ligand concept. There are two objectives of this chapter, first by 
measuring apparent rate of polymerization at different volume of DMSO to establish  
catalytic activity of DMSO and secondly investigated mixed-ligand concept in two 
different concentrations of the DMSO solvent by changing different ligand system in 
reaction system. In first series of experiment, the catalytic activity of DMSO solvent was 
studied in both Me6-TREN and TREN and in the mixed-ligand Me6-TREN/TREN-
mediated SET-LRP of MA initiated with BPE at 25 °C and catalyzed with nonactivated 
Cu(0) wire. In second series of experiment, the mixed-ligand effect of Me6-TREN/TREN 
was investigated at two different concentrations of the DMSO solvent by measuring  
reaction kinetics and molecular weight distribution using 1H NMR and gel permeation 
chromatography (GPC), respectively. Finally, by determination of the chain-end 
functionality of the resulting polymers by a combination of NMR and MALDI-TOF before 
and after thio-bromo “click” reaction which will demonstrated that the catalytic activity of 
DMSO. 
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Materials and Methods 
 
Reagents 
 
Methyl acrylate (MA; 99%, Acros) was passed over a short column of basic Al2O3 to 
remove its radical inhibitor. Tris(2-aminoethyl)amine (TREN; 99%, Acros), Cu(0) wire 
(20 gauge wire, 0.812 mm diameter from Fisher), and dimethyl sulfoxide (DMSO; 99.8%, 
Sigma-Aldrich) were used as received. Triethylamine (NEt3; >99.5% Chemimpex) was 
distilled under N2 from CaH2. Bis(2-bromopropionyl)ethane (BPE) was synthesized by 
esterification of ethylene glycol with 2-bromopropionyl bromide in the presence 
pyridine.41 Hexamethylated tris(2-aminoethyl)amine (Me6-TREN) was synthesized by a 
literature procedure.42  
 
Techniques 
 
1H NMR (400 MHz) spectra were recorded on a Bruker AVANCE NEO 400 NMR 
instrument at 27 °C in CDCl3 containing tetramethylsilane (TMS) as internal standard. Gel 
permeation chromatography (GPC) analysis of the polymer samples was performed using 
a Shimadzu LC-20AD high-performance liquid chromatograph pump, a PE Nelson 
Analytical 900 Series integration data station, a Shimadzu RID-10A refractive index (RI) 
detector, and three AM gel columns (a guard column, 500 Å, 10 μm and 104 Å, 10 μm). 
THF (Fisher, HPLC grade) was used as eluent at a flow rate of 1 mL min–1. The number-
average (Mn) and weight-average (Mw) molecular weights of PMA were determined with 
poly(methyl methacrylate) (PMMA) standards from American Polymer Standards. 
MALDI-TOF spectra were obtained on a Voyager DE (Applied Biosystems) instrument 
with a 337 nm nitrogen laser (3 ns pulse width). The accelerating potential was 25 kV, the 
grid was 92.5, the laser power was 2200–2500, and a positive ionization mode was used. 
The sample analysis was performed with 2-(4-hydroxyphenylazo) benzoic acid as the 
matrix. Solutions of the matrix (25 mg/mL in THF), NaCl (2 mg/mL in deionized H2O), 
and polymer (10 mg/mL) were prepared independently. The solution for MALDI-TOF 
analysis was obtained by mixing the matrix, polymer, and salt solutions in a 5/1/1 
volumetric ratio. Subsequently, 0.5 μL portions of the mixture were deposited onto three 
wells of sample plate and dried in air at room temperature before being subjected to 
MALDI-TOF analysis. 
 
Standard Procedure for SET-LRP of MA in DMSO Using Me6-TREN, TREN, and 
the Mixed-Ligand Me6-TREN/TREN Methodology 
 
Stock solutions prepared with different ratios of Me6-TREN to TREN such as 0.02/0 M, 
0.015/0.005 M, 0.01/0.01 M, 0.005/0.015 M, and 0/0.02 M in DMSO were first made. The 
monomer (MA, 22.2 mmol, 2.00 mL), organic solvent (DMSO if necessary), DMSO stock 
solution (0.02 mmol ligand, 1 mL), and initiator (BPE, 0.1 mmol, 33.2 mg) were added in 
this order to a 25 mL Schlenk tube. The mixture was deoxygenated by six freeze–pump–
thaw cycles. Subsequently, the Schlenk tube was opened under a positive flow of nitrogen 
to add the Cu(0) wire wrapped around a Teflon-coated stir bar. Two more freeze–pump–
thaw cycles were carried out while holding the stir bar above the reaction mixture with the 
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help of an external magnet. The Schlenk tube was filled with N2, and the reaction was 
placed in a water bath at 25 °C. Then, the stir bar wrapped with the Cu(0) wire was dropped 
gently into the reaction. The introduction of the Cu(0) wire defines t = 0. Samples were 
taken at different times by purging the side arm of the Schlenk tube with nitrogen for 2 
minutes using a deoxygenated syringe and stainless steel needles. Samples were dissolved 
in CDCl3 and quenched by air bubbling. After that, the monomer conversion was measured 
by 1H NMR spectroscopy. In order to determine the molecular weight and polydispersity 
of the samples, the solvent and the residual monomer were removed under vacuum. Finally, 
samples were dissolved in THF and passed through a short small basic Al2O3 
chromatographic column to remove any residual copper and analyzed by GPC. The 
resulting PMA was precipitated in cold methanol and dried under vacuum until constant 
weight to perform chain-end analysis by 1H NMR spectroscopy, before and after the 
thioetherification of the chain ends. 
 
General Method for the Chain-End Thioetherification of PMA via Thio-Bromo 
“Click” Reaction 
 
In a 10 mL test tube sealed with a rubber septum, thiophenol (0.05 equivalents) and distilled 
triethylamine (NEt3, 0.05 equivalents) were added into a solution of the corresponding 
polymer (0.01 equivalents) in acetonitrile (1 mL) under a nitrogen flow. The mixture was 
stirred at room temperature for 3 hours. Then, the resulting modified PMA was precipitated 
in cold methanol and washed with methanol several times. The resulting polymer was dried 
under vacuum to a constant weight. 
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Results and Discussion 
 
Determination of the External Order of Reaction in DMSO During SET-LRP 
Catalyzed with Nonactivated Cu(0) Wire in DMSO  
 
A close to first order external order of reaction in the DMSO used as solvent was observed 
when Cu(0) powder was employed as catalyst in SET-LRP.12a,43-48 This external first order 
of reaction in DMSO demonstrated the catalytic activity of DMSO when SET-LRP was 
performed in DMSO as solvent.12a Three series of experiments were carried out with 
nonactivated Cu(0) wire as catalyst, MA as monomer, and Me6-TREN, TREN, and 
mixtures of Me6-TREN/TREN in different concentrations of DMSO at 25 °C. BPE was 
used as initiator in all cases. 
 
The structures of the two ligands and an equation of the Cu(0) wire-catalyzed SET-LRP of 
MA initiated with bis(2-bromopropnionyl)ethane (BPE) are outlined in Scheme 2.1. 
Duplicate and triplicate kinetics were carried out under the following conditions: 
[MA]0/[BPE]0/[L]0 = 222/1/0.2 using 9.0 cm of nonactivated Cu(0) wire. 
 
Scheme 2.1. SET-LRP of MA Initiated with BPE and Catalyzed with Nonactivated Cu(0) 
Wire by Employing Various Ratios of Me6-TREN and TREN in the Catalytically Active 
DMSO at 25 °C 

 
 
Figure 2.1a reports the kinetic data for the experiments performed with Me6-TREN as 
ligand, Figure 2.1b shows the data obtained with TREN, while Figure 2.1c shows the data 
obtained with the mixed-ligand system Me6-TREN/TREN. Selected kinetic experiments 
from which these external orders of reaction in DMSO were obtained for Me6-TREN 
(Figure 2.2a,c,e) and TREN (Figure 2.2b,d,f) as ligands are reported in Figures 2.2 when 
the DMSO concentration was varied from 1.0 to 1.5 and to 1.8 mL of DMSO with 2 mL 
of MA. Kinetic experiments with all other DMSO concentrations employed in Figure 
2.1a–c are shown in Appendix 21–25. First order reaction kinetics in monomer were 
observed for all DMSO concentrations from Figures 2.2 and Appendix 21–25. A 
continuous increase in the rate of polymerization and of the corresponding apparent rate 
constant, kpapp, as the concentration of the DMSO increased or the overall concentration of 
the MA decreased was observed in all cases (Figures 2.2 and Appendix 21–25). 
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Figure 2.1. Determination of the external order of reaction in [DMSO]0 for the Cu(0) 
wire/ligand-catalyzed polymerization of methyl acrylate (MA) in DMSO at 25 °C, initiated 
with BPE. ln(kpapp) vs ln([DMSO]0) with DMSO varied from 0.2 to 1.9 mL, with 2 mL of 
MA for (a) [MA]0/[BPE]0/[Me6-TREN]0/[Cu(0)]0 = 222/1/0.2/9 cm; (b) 
[MA]0/[BPE]0/[TREN]0/[Cu(0)]0 = 222/1/0.2/9 cm; (c) [MA]0/[BPE]0/[Me6-
TREN]0/[TREN]0/[Cu(0)]0 = 222/1/0.1/0.1/9 cm. 
 
 

a) b)

c)
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In any organic or polymerization reaction the decrease in the reactants concentration 
generated by increasing the solvent concentration results in a decrease of the rate of 
reaction. This unexpected trend that consists of the increase in rate of polymerization with 
the decrease of the monomer concentration demonstrates the catalytic activity of DMSO 
in SET-LRP. This result is in agreement with the experiments reported with Cu(0) powder 
as catalyst.12a The determination of the external order of reaction in DMSO was calculated 
by plotting the ln(kpapp) vs ln([DMSO]0) (Figure 2.1a–c). The slope of these dependencies 
provided the external order of reaction in DMSO for the different ligands used in these 
SET-LRP experiments. An external order of reaction in DMSO of 0.76 was obtained in the 
presence of Me6-TREN, while in the presence of TREN and the mixed-ligand Me6-
TREN/TREN (1/1 molar ratio), the external orders of reaction in DMSO were 0.99 and 
1.04, respectively. 
 
Potential Mechanism for the Catalytic Activity of DMSO 
 
In order to address the catalytic activity of DMSO, first it must be considered that SET-
LRP experiments were performed in a mixture of two solvents, DMSO and the monomer, 
MA. Both DMSO and MA are good solvents that mediate the disproportionation of Cu(I)Br 
into Cu(0) and Cu(II)Br2.20a  
 
While both solvents MA and DMSO mediate the disproportionation in the presence of 
these two ligands, MA and DMSO, only DMSO is a good solvent for Cu(I)Br and Cu(II)Br2 
obtained during the activation and disproportionation and is also a better solvent that 
mediates this disproportionation. MA mediates disproportionation mostly by a surface 
effect. Therefore, it is expected that by increasing the ratio between DMSO and MA in the 
reaction mixture, the extent of disproportionation will increase. At the same time it has 
been demonstrated that DMSO stabilizes Cu(0) nanoparticles, while MA does not. Figure 
2.3 presents disproportionation experiments that support this hypothesis. An increase in the 
amount of Cu(0) obtained by disproportionation is observed at the transition from 
MA/DMSO = 3/1 to 2/1. This increase continues to the transition to MA/DMSO = 1/1. 
However, in addition to this trend, at a 1/1 ratio, the stabilization of Cu(0) nanoparticles by 
the higher concentration of DMSO is also visible (see left vial in Figure 2.3). Increasing 
the stability of nanoparticles decreases the crystallization process and provides smaller but 
more active Cu(0) nanoparticles of the catalyst.20b It is well established that faster SET-
LRP is mediated in more disproportionating solvents and in their mixtures.20c-e In addition, 
mixtures of solvents can display also a cooperative and synergistic effect that was not yet 
investigated for the case of MA/DMSO.19e Last but not least, since DMSO is one of the 
best solvents for SET processes, an increased concentration of DMSO also is expected to 
increase the rate of SET-LRP.19f Therefore, all these factors, the extent of 
disproportionation that determines the concentration of Cu(0) produced by 
disproportionation, the Cu(0) particle size generated by disproportionation and their 
different reactivities, the solubility of Cu(I)Br and Cu(II)Br2 compounds in the MA/DMSO 
solvent, and the quality of the MA/DMSO solvent for SET reactions, contribute to the 
catalytic effect of DMSO reported here, even if the most reactive Cu(0) species employed 
in the SET-LRP are atoms.49  
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Figure 2.3. Visual observation of CuBr/Me6-TREN complex dissolved in DMSO/MA. 
Conditions: [CuBr] = 46.5 mM, solvent = 3.0 mL, [CuBr]0/[Me6-TREN]0 = 1/1. Pictures 
were taken 60 min after mixing the reagents. 
 
Mixed-Ligand Methodology During the SET-LRP of 2 mL of MA in 1 mL of DMSO 
Using Me6-TREN, Me6-TREN/TREN, and TREN as Ligands 
 
The detection of the mixed-ligand effect for Me6-TREN/TREN was first observed and 
reported for SET-LRP performed in water/organic solvents biphasic systems.11 In the 
current series of experiments, the ratio between Me6-TREN and TREN was changed from 
1:0 to 0:1 while keeping the ratio of ligand to initiator constant at 10 mol %. The ratio 
between MA and DMSO was also kept constant (2 mL of MA to 1 mL of DMSO; Scheme 
2.1 and Figure 2.4) 
 

Table 2.1. Dependence of kpapp on the Dimension of the Cu(0) Wire in the SET-LRP of MA Initiated 
with BPE in DMSO at 25 °Ca  

entry 

Wire 
length 
(cm) 
20G 

Reaction condition kpapp 
(min-1) 

kpapp/ 
kpapp(TREN) Mw/Mn Ieff(%) 

1 9.0 [MA]/[BPE]/[Me6-TREN] 
222/1/0.2 0.048 1.3 1.14 79 

2 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.15/0.05 0.051 1.4 1.21 81 

3 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.1/0.1 0.053 1.4 1.23 82 

4 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.05/0.15 0.044 1.2 1.20 82 

5 9.0 [[MA]/[BPE]/[TREN] 
222/1/0.2 0.037 1.0 1.23 79 

aReaction conditions: monomer = 2 mL; solvent =1 mL.  
 
 
 
 
 
 
 
 
 

[CuBr]/[Me6-TREN] = 1/1     [CuBr] = 46.5 mM in 3 mL solution

MA/DMSO = 1/1         MA/DMSO =2/1       MA/DMSO =3/1
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Figure 2.5. Representative GPC traces of the evolution of molecular weight as a function 
of conversion for the SET-LRP of MA in a mixture of 2 mL MA with 1 mL DMSO 
catalyzed by 9.0 cm nonactivated Cu(0) wire at 25 °C in the presence of various ligand 
compositions, as mentioned on top of the GPC curves. Reaction conditions: MA = 2 mL, 
DMSO = 1 mL, [MA]0/[BPE]0/[L]0 = 222/1/0.2. 
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Figure 2.6. Evolution of kpapp for the SET-LRP of MA (2 mL) initiated with BPE in DMSO 
(1 mL) mediated with different ratios between Me6-TREN and TREN at 25 °C (a). Initiator 
efficiency (Ieff (%)) and dispersity (Mw/Mn) as a function of the ratio between Me6-TREN 
and TREN. 
 
Interestingly, all tested mixed-ligand compositions generated higher kpapp values than those 
obtained in control experiments carried out in the presence of either Me6-TREN or TREN. 
These results will be discussed later. The partial replacement of Me6-TREN with TREN 
increased the kpapp while retaining first-order kinetics (Figure 2.4). The best catalytic 
activity was observed at a 1:1 molar ratio of the two ligands (compare Figure 2.4a, b, and 
c), suggesting the H-bonded new ligand from Scheme 2.1. Under these conditions, the 
SET-LRP of MA proceeded faster than control experiments with Me6-TREN (Figure 2.4a) 
and TREN (Figure 2.4e), respectively. This mixed-ligand methodology also provided the 
highest conversion and an improved control over molecular weight distribution (Figures 
2.5 and 2,6). The summary of results is in Table 2.1. 
 
Representative GPC data plotted in Figure 2.5 illustrate the dependence of molecular 
weight vs conversion. GPC data show monomodal peak distributions shifting to higher 
molar mass at high conversion. The most relevant result was observed at the 1:1 molar ratio 
between the two ligands. In this case, the Ieff was found to be above 80%. These data 
demonstrate that the mixed-ligand catalyst consisting of nonactivated Cu(0) wire and Me6-
TREN/TREN is an effective new catalytic system for the SET-LRP of MA in DMSO. 
 
Visualization of the Polymerization Reaction at High Conversion 
 
The images in Figure 2.7 reveal an almost undetectable increase in the blue color of the 
reaction mixture as the concentration of TREN increased. This trend most probably 
indicates a negligible increase in the extent of bimolecular termination that is too low to be 
detected by NMR and MALDI-TOF. A similar result was observed during the mixed-
ligand effect observed in biphasic water–organic solvent systems.11  
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Figure 2.7. Visualization of the reaction mixture of SET-LRP of MA initiated with BPE 
in DMSO using various ligand ratios (X) shown under the Schlenk tube. Reaction 
conditions are on top of each series of experiments 
 
Structural Analysis of PMA Before and After Thio-Bromo “Click” 
 
A combination 400 MHz 1H NMR and MALDI-TOF methods before and after reacting the 
-Br end-groups of PMA with thiophenol via thio-bromo “click” reaction50 were employed 
to estimate the living character of SET-LRP performed at various molar ratios between 
Me6-TREN and TREN and compare them with Me6-TREN and TREN. Low molecular 
weight polymers were synthesized for these investigations. Figures 2.8 and 2.9 show 
representative 1H NMR spectra of PMA isolated at high conversion of SET-LRP in DMSO 
in the presence of Me6-TREN (Figures 2.8a and 2.9a), Me6-TREN/TREN (Figures 2.8b 
and 2.9b), and TREN (Figures 2.8c, 2.9b) before and after thio-bromo “click” reaction. 
Within experimental error, the chain end functionality (FBr, FSPH%) of all PMA samples is 
100%. This is a remarkable result that demonstrates that the catalytic activity of DMSO 
increases the ligand activity of TREN and transforms it into an excellent ligand. 
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Figure 2.8. 1H NMR spectra at 400 MHz of α,ω-di(bromo)PMA at (a) 94% conversion 
(Mn = 8620 and Mw/Mn = 1.22; [MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.2); (b) 90% 
conversion (Mn = 9090 and Mw/Mn = 1.41; [MA]0/[BPE]0/[Me6-TREN]0/[TREN]0 = 
60/1/0.1/0.1); (c) 96% conversion (Mn = 7384 and Mw/Mn = 1.23; [MA]0/[BPE]0/[TREN]0 
= 60/1/0.2); Polymerization conditions: MA = 2 mL, DMSO = 1.0 mL, and nonactivated 9 
cm Cu(0) wire of 20 gauge. The signals at 7.26 and 5.30 ppm are due to partially 
nondeuterated residue of CDCl3 and dichloromethane, respectively. FBr values refer to 
chain-end functionality of PMA before thio-bromo “click” reaction (%). 
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Figure 2.9 1H NMR spectra at 400 MHz of α,ω-di(phenylthio)PMA at (a) 94% conversion 
(Mn = 8620 and Mw/Mn = 1.22; [MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.2); (b) 90% 
conversion (Mn = 9090 and Mw/Mn = 1.41; [MA]0/[BPE]0/[Me6-TREN]0/[TREN]0 = 
60/1/0.1/0.1); (c) 96% conversion (Mn = 7380 and Mw/Mn = 1.23; [MA]0/[BPE]0/[TREN]0 
= 60/1/0.2);Conditions: MA = 2 mL, DMSO = 1.0 mL, and nonactivated 9 cm Cu(0) wire 
of 20 gauge wire. The signals at 7.26 and 5.30 ppm are due to a partially nondeuterated 
residue of CDCl3 and dichloromethane, respectively. FSPh values refer to chain-end 
functionality of PMA after a thio-bromo “click” reaction (%). 
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Figure 2.10. MALDI-TOF of PMA-Br isolated at 94% from SET-LRP of MA in DMSO 
solution initiated with BPE and catalyzed by nonactivated Cu(0) wire at 25 °C. (a) Before 
“thio-bromo click” reaction. (b) After “thio-bromo click” reaction. Reaction conditions: 
MA = 2 mL, DMSO = 1.0 mL, [MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.2, 9.0 cm of 20 gauge 
Cu(0) wire. The dotted line in expansion after thioeterification shows the original peak 
from before thioeterification, while 59 represents the increase in molar mass after 
thioeterification, that is, 2*[SC6H5 (109, 2)–Br (79, 9)] = 58.57 for each chain-end. 
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Figure 2.11. MALDI-TOF of PMA-Br isolated at 90% from SET-LRP of MA in DMSO 
solution initiated with BPE and catalyzed by a nonactivated Cu(0) wire at 25 °C: (a) Before 
the “thio-bromo click” reaction; (b) After the “thio-bromo click” reaction. Reaction 
conditions: MA = 2 mL, DMSO = 1.0 mL, [MA]0/[BPE]0/[Me6-TREN]0/[TREN]0 = 
60/1/0.1/0.1, 9.0 cm of 20 gauge Cu(0) wire. The dotted line in expansion after 
thioetherification shows the original peak from before thioetherification, while 59 
represents the increase in molar mass after thioetherification, that is, 2*[SC6H5 (109, 2)–
Br (79, 9)] = 58.57 for each chain end. 
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Figure 2.12. MALDI-TOF of PMA-Br isolated at 96% from SET-LRP of MA in DMSO 
solution initiated with BPE and catalyzed by nonactivated Cu(0) wire at 25 °C: (a) Before 
the “thio-bromo click” reaction; (b) After the “thio-bromo click” reaction. Reaction 
conditions: MA = 2 mL, DMSO = 1.0 mL, [MA]0/[BPE]0/[TREN]0 = 60/1/0.2, 9.0 cm of 
20 gauge Cu(0) wire. The dotted line in expansion after thioetherification shows the 
original peak from before thioetherification, while 59 represents the increase in molar mass 
after thioetherification, that is, 2*[SC6H5 (109, 2)–Br (79, 9)] = 58.57 for each chain end. 
 
 
 
 
 

a) PMA before thioetherification

b) PMA after thioetherification
Conversion = 96%
Mth= 5,290
Mn,GPC= 7,380;  Mw/Mn=  1.18
Mn,MALDI= 5,220; Mw/Mn= 1.05

Conversion = 96%
Mth= 5,290
Mn,GPC= 6,830;  Mw/Mn= 1.23 
Mn,MALDI= 4,790; Mw/Mn= 1.06
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Structural Analysis by MALDI-TOF Before and After Thio-Bromo “Click” 
Reaction 
 
Representative MALDI-TOF spectra of PMA synthesized using Me6-TREN, TREN, and 
equimolar amounts of Me6-TREN and TREN isolated in between 90% and 96% conversion 
were analyzed before and after thioetherification (Figures 2.10, 2.11, and 2.12). The 
polymers isolated after SET-LRP at very high conversions showed one molecular weight 
distribution that was assigned to the bromine-terminated PMA ionized with Na+. 
 
After thioetherification, the original peaks disappeared and reappeared at 59 mass units 
higher mass values. This is the expected mass difference value for the replacement of −Br 
atoms (2 × 79.9) by −SPh moieties (2 × 109.2) at both polymer chain-ends. 
 
MALDI-TOF analysis of PMA prepared using Me6-TREN and TREN showed also high 
levels of chain-end functionality (Figures 2.10, 2.11, and 2.12, respectively). This 
demonstrates again the role of the catalytic activity of DMSO in transforming the neglected 
TREN into an excellent ligand for SET-LRP 
 
Mixed-Ligand Effect Observed During SET-LRP of 2 mL of MA in 1.5 mL of 
DMSO Using Me6-TREN, Me6-TREN/TREN, and TREN as Ligands 
 
Kinetic experiments for the SET-LRP of 2 mL of MA in 1.5 mL of DMSO performed with 
the mixed-ligand Me6-TREN/TREN under similar reaction conditions to the experiments 
performed with 2 mL of MA in 1 mL of DMSO from Figure 2.4 are reported in Figure 
2.13. 
 
The freeze-though process was identical in both series of experiments, and therefore, due 
to the larger scale of the experiments reported in Figure 2.13, a small induction period was 
observed in a few cases. All experiments from Figure 2.13 were performed as triplicates. 
A comparison of the kpapp values from Figure 2.4 with the data from Figure 2.13 indicates 
an increase in the kpapp values by increasing the concentration of DMSO. An increase in the 
concentration of DMSO corresponds to a decrease in the concentration of MA and is 
expected to provide, under normal kinetic conditions, a decrease in the rate of 
polymerization. Therefore, the increased kpapp values correspond to the catalytic effect of 
DMSO. Representative GPC experiments for the kinetics from Figure 2.13 are reported in 
Figure 2.14. 
 
The GPC traces from Figure 2.14 provide the same trend with the corresponding data from 
Figure 2.6. Control experiments for the kinetic data reported in Figure 2.13 are reported 
in Figure 2.15. Their GPC data are shown in Figure 2.16, while the summary of all results 
is reported in Table 2.2. 
 
Figure 2.17 illustrates the results of the mixed-ligand effect performed with 2 mL of MA 
and 1.5 mL of DMSO. The control experiment data are also included in Figure 2.17 to 
support the mixed-ligand effect. The most remarkable series of results comes from the 
comparison of the data from the mixed-ligand effect carried out with 2.0 mL of MA and 
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1.0 mL of DMSO versus 2.0 mL of MA and 1.5 mL of DMSO (compare Figure 4 with 
Figure 2.13 and Figure 2.6 a with Figure 2.17). This comparison is also made in Table 
2.3. The most representative result from this comparison is that, while the kpapp value for 
Me6-TREN at 1 mL of DMSO is 1.30, the value of kpapp for TREN at 1.5 mL of DMSO is 
1.38. Therefore, TREN becomes at 1.5 mL of DMSO more efficient than Me6-TREN at 1 
mL of DMSO. This result explains the revitalization of TREN and its transformation into 
an excellent ligand by the catalytic effect of DMSO. 
 
Structural Analysis of PMA Before and After Thio-Bromo “Click” Reaction 
 
Structural analysis was performed by a combination of 1H NMR and MALDI-TOF before 
and after thio-bromo “click” reaction (Appendix 26–30). The chain-end functionality of 
the PMA is 97% before thio-bromo “click” reaction and 98%, respectively, after thio-
bromo “click” reaction, regardless of the structure of the ligand employed during SET-LRP 
(Appendix 27 and 28). These excellent results are confirmed by the MALDI-TOF analysis 
performed before and after thio-bromo “click” reactions (Appendix 26, 29, and 30). 
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Figure 2.14. Representative GPC traces of the evolution of molecular weight as a function 
of conversion for the SET-LRP of MA in a mixture of 1 mL of DMSO and catalyzed by 
the 9.0 cm nonactivated Cu(0) wire at 25 °C in the presence of various ligand compositions. 
Reaction conditions: MA = 2 mL, DMSO = 1.5 mL, [MA]0/[BPE]0/[L]0 = 222/1/0.2. 
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Table 2.2. Dependence of kpapp on the Dimension of the Cu(0) Wire in the SET-LRP of MA Initiated 
with BPE in 1.5 ml DMSO at 25 °Ca  

entry Wire length 
(cm) 20G Reaction condition kpapp 

(min-1) Mw/Mn Ieff(%) 

1 9.0 [MA]/[BPE]/[Me6-TREN] 
222/1/0.2 0.0723 1.11 79 

2 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.15/0.05 0.0740 1.17 88 

3 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.1/0.1 0.0740 1.26 91 

4 9.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.05/0.15 0.0649 1.26 79 

5 9.0 [[MA]/[BPE]/[TREN] 
222/1/0.2 0.0512 1.28 77 

6 9.0 [MA]/[BPE]/[Me6-TREN] 
222/1/0.15 0.0679 1.13 78 

7 9.0 [MA]/[BPE]/[Me6-TREN] 
222/1/0.10 0.0661 1.13 80 

8 9.0 [MA]/[BPE]/[Me6-TREN] 
222/1/0.05 0.0547 1.10 76 

9 9.0 [[MA]/[BPE]/[TREN] 
222/1/0.15 0.0475 1.27 78 

10 9.0 [[MA]/[BPE]/[TREN] 
222/1/0.10 0.0415 1.27 78 

11 9.0 [[MA]/[BPE]/[TREN] 
222/1/0.05 0.0337 1.24 84 

aReaction conditions: monomer = 2 mL; solvent =1.5 mL. 
 

Table 2.3. The Dependence of kpapp on the 9cm 20 G of the Cu(0) Wire in the SET-LRP of MA Initiated 
with BPE in DMSO at 25 °Ca  

entry Volume of 
DMSO (ml) Reaction condition kpapp 

(min-1) 

kpapp/ 
kpapp(entry 

10) 
Mw/Mn Ieff(%) 

1 1.5 [MA]/[BPE]/[Me6-TREN] 
222/1/0.2 0.072 1.95 1.11 79 

2 1.0 [MA]/[BPE]/[Me6-TREN] 
222/1/0.2 0.048 1.30 1.14 79 

3 1.5 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.15/0.05 0.074 2.00 1.17 88 

4 1.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.15/0.05 0.051 1.38 1.21 81 

5 1.5 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.1/0.1 0.074 2.00 1.26 91 

6 1.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.1/0.1 0.053 1.43 1.23 82 

7 1.5 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.05/0.15 0.065 1.76 1.26 79 

8 1.0 [MA]/[BPE]/[Me6-TREN]/[TREN] 
222/1/0.05/0.15 0.044 1.19 1.20 82 

9 1.5 [[MA]/[BPE]/[TREN] 
222/1/0.2 0.051 1.38 1.28 77 

10 1.0 [[MA]/[BPE]/[TREN] 
222/1/0.2 0.037 1.00 1.23 79 

aReaction conditions: MA = 2 mL 
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Figure 2.16. Representative GPC traces of the evolution of molecular weight as a function 
of conversion for the SET-LRP of MA in a mixture of 1 mL of DMSO and catalyzed by 
the 9.0 cm nonactivated Cu(0) wire at 25 °C in the presence of various ligand compositions. 
Conditions: MA = 2 mL, DMSO = 1.5 mL, ([MA]0/[BPE]0/[ligand]0/[Cu(0)]0 = 222/1/0.15 
to 0.05/9 cm); MA = 2 mL. 
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Figure 2.17. Evolution of kpapp for the SET-LRP of MA (2 mL) initiated with BPE in 
DMSO (1.5 mL) mediated with different ratios between Me6-TREN and TREN at 25 °C 
(in red). Control experiments performed only with Me6-TREN (in blue) and only with 
TREN (in yellow) are also incorporated. 
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Conclusion 
 
DMSO exhibits a catalytic effect when used as solvent during SET-LRP of MA initiated 
with BPE and catalyzed with nonactivated Cu(0) wire both in the presence of Me6-TREN 
and TREN and in mixtures of Me6-TREN with TREN. A mixed-ligand effect was observed 
when mixtures of Me6-TREN with TREN were used as ligands. The catalytic activity of 
DMSO can be exploited, as demonstrated here, to enhance the reactivity of TREN and of 
its 1/1 mixture with Me6-TREN, while decreasing the basicity of the ligand and eliminating 
side reactions mediated by it. The most fundamental question related to this topic that must 
be addressed is the following: do all disproportionating solvents display a catalytic effect 
in SET-LRP or only DMSO? Research to address this question is in progress. 
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Appendices  
Appendix 1. Evolution of Mw/Mn and Ieff for the SET-LRP of MA initiated with BPE in 
various “programmed” biphasic reaction mixtures at 25 °C. (a)  NMP/water mixture (8/2, 
v/v) using 9.0 cm nonactivated Cu(0) wire as catalyst. (b) DMF/water mixture (8/2, v/v) 
using 9.0 cm of nonactivated Cu(0) wire as catalyst. (c) DMF/water mixture (8/2, v/v) 
using 4.0 cm of nonactivated Cu(0) wire as catalyst. (d) DMF/water mixture (8/2, v/v) 
using 12.5 cm of nonactivated Cu(0) wire as catalyst. (e) DMAc/water mixture (8/2, v/v) 
using 9.0 cm of nonactivated Cu(0) wire as catalyst. Reaction conditions: MA = 1 mL, 
organic solvent = 0.4 mL, water = 0.1 mL, and [MA]0/[BPE]0/[L]0 = 222/1/0.1. 
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Appendix 2. Kinetic plots, molecular weight and polydispersity evolution for the SET-
LRP of MA in DMF/water mixture (8/2, v/v) initiated with BPE and catalyzed by 9.0 cm 
nonactivated Cu(0) wire at 25 °C. Experimental data in different colors were obtained from 
different kinetics experiments sometimes performed by different researches. kpapp and Ieff 
are the average values of three experiments. Reaction conditions: MA = 1 mL, DMF = 0.4 
mL, water = 0.1 mL, [MA]0/[BPE]0/[L]0 = 222/1/0.1. 
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Appendix 3. Kinetic plots, molecular weight and polydispersity evolution for the SET-
LRP of MA in DMF/water mixture (8/2, v/v) initiated with BPE and catalyzed by 4.0 cm 
nonactivated Cu(0) wire at 25 °C. Experimental data in different colors were obtained from 
different kinetics experiments sometimes performed by different researches. . kpapp and Ieff 
are the average values of three experiments. Reaction conditions: MA = 1 mL, DMF = 0.4 
mL, water = 0.1 mL, [MA]0/[BPE]0/[L]0 = 222/1/0.1. 
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Appendix 4. Kinetic plots, molecular weight, polydispersity evolution and representative 
GPC traces of the evolution of molecular weight as a function of conversion for the SET-
LRP of MA in DMF/water mixture (8/2, v/v) initiated with BPE and catalyzed by 12.5 cm 
nonactivated Cu(0) wire at 25 °C. Experimental data in different colors were obtained from 
different kinetics experiments sometimes performed by different researches. . kpapp and Ieff 
are the average values of three experiments. Reaction conditions: MA = 1 mL, DMF = 0.4 
mL, water = 0.1 mL, [MA]0/[BPE]0/[L]0 = 222/1/0.1. 
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Appendix 5. Kinetic plots, molecular weight and polydispersity evolution for the SET-
LRP of MA in DMF/water mixture (8/2, v/v) initiated with BPE and catalyzed by the 12.5 
cm nonactivated Cu(0) wire at 25 °C. Experimental data in different colors were obtained 
from different kinetics experiments sometimes performed by different researches. . kpapp 
and Ieff  are the average values of three experiments. Reaction conditions: MA = 1 mL, 
DMF = 0.4 mL, water = 0.1 mL, [MA]0/[BPE]0/[L]0 = 222/1/0.075 (panels a,d), 
[MA]0/[BPE]0/[L]0 = 222/1/0.05 (panels b,e), [MA]0/[BPE]0/[L]0 = 222/1/0.025 (panels 
c,f). 
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Appendix 6. Kinetic plots, molecular weight, polydispersity evolution and representative 
GPC traces of the evolution of molecular weight as a function of conversion for the SET-
LRP of MA in DMAc/water mixture (8/2, v/v) initiated with BPE and catalyzed by 9.0 cm 
nonactivated Cu(0) wire at 25 °C. Experimental data in different colors were obtained from 
different kinetics experiments sometimes performed by different researches. . kpapp and Ieff 
are the average values of three experiments. Reaction conditions: MA = 1 mL, DMAc = 
0.4 mL, water = 0.1 mL, [MA]0/[BPE]0/[L]0 = 222/1/0.1. 

 



 
 

67 

Appendix 7. Visualization of the reaction mixture for the control experiments performed 
under the conditions placed at the top of each series of experiments. EA is the short name 
used for ethyl acetate employed to mimic an inert compound resembling methyl acrylate 
(MA). 
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Appendix 8. 1H NMR spectra at 400 MHz of α,ω-di(phenylthio)PMA at (a) 93% monomer 
conversion (Mn= 7,420 and Mw/Mn= 1.15) ([MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.1); (b) 
91% monomer conversion (Mn = 8,260 and Mw/Mn= 1.17) ([MA]0/[BPE]0/[Me6-
TREN]0/[TREN]0 = 60/1/0.05/0.05); (c) 94% monomer conversion (Mn= 6,090  and Mw/Mn 
=1.34) ([MA]0/[BPE]0/[TREN]0 = 60/1/0.1). Polymerization conditions: MA = 1 mL, DMF 
= 0.4 mL, water = 0.1 ml using 12.5 cm of nonactivated Cu(0) wire 20-gauge wire. The 
signals at 7.26 ppm and 5.30 ppm are due to partially nondeuterated residue of CDCl3 and 
dichloromethane, respectively. 

 
 
 
  



 
 

69 

Appendix 9. MALDI-TOF of α,ω-di(bromo)PMA isolated at 93% monomer convesion 
from SET-LRP of MA in DMF/water (8/2, v/v) mixture initiated with BPE and catalyzed 
by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after “thio-bromo “click”. 
Polymerization conditions: MA = 1 mL, DMF = 0.4 mL, water = 0.1 mL using 12.5 cm of 
nonactivated Cu(0) wire 20-gauge wire ([MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.1). The 
dotted line in expansion after thioetherification shows the original peak from before 
thioetherification, while 58 represents the increase in molar mass after thioetherification 
i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.  
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Appendix 10. MALDI-TOF of α,ω-di(bromo)PMA isolated at 94% monomer conversion 
from SET-LRP of MA in DMF/water (8/2, v/v) mixture initiated with BPE and catalyzed 
by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after “thio-bromo “click”. 
Polymerization conditions: MA = 1 mL, DMF = 0.4 mL, water = 0.1 ml using 12.5 cm of 
nonactivated Cu(0) wire 20-gauge wire ([MA]0/[BPE]0/[TREN]0 = 60/1/0.1). The dotted 
line in expansion after thioetherification shows the original peak from before 
thioetherification, while 58 represents the increase in molar mass after thioetherification 
i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.  
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Appendix 11. 1H NMR spectra at 400 MHz of α,ω-di(bromo)PMA at (a) 98% monomer 
conversion (Mn= 6,850 and Mw/Mn= 1.17) ([MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.1); (b) 
98% monomer conversion (Mn = 4,750 and Mw/Mn= 1.25) ([MA]0/[BPE]0/[Me6-
TREN]0/[TREN]0 = 60/1/0.05/0.05); (c) 99% monomer conversion (Mn= 6,470  and Mw/Mn 
=1.33) ([MA]0/[BPE]0/[TREN]0 = 60/1/0.1).  Polymerization conditions: MA = 1 mL, 
NMP = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) wire 20-gauge wire. 
The signals at 7.26 ppm and 5.30 ppm are due to partially nondeuterated residue of CDCl3 
and dichloromethane, respectively. 
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Appendix 12. 1H NMR spectra at 400 MHz of α,ω-di(phenylthio)PMA at (a) 98% 
monomer conversion (Mn= 7,340 and Mw/Mn= 1.17) ([MA]0/[BPE]0/[Me6-TREN]0 = 
60/1/0.1); (b) 98% monomer conversion (Mn = 5,890 and Mw/Mn= 1.29) 
([MA]0/[BPE]0/[Me6-TREN]0/[TREN]0 = 60/1/0.05/0.05); (c) 99% monomer conversion 
(Mn= 7,400  and Mw/Mn =1.35) ([MA]0/[BPE]0/[TREN]0 = 60/1/0.1). Polymerization 
conditions: MA = 1 mL, NMP = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) 
wire 20-gauge wire. The signals at 7.26 ppm and 5.30 ppm are due to partially 
nondeuterated residue of CDCl3 and dichloromethane, respectively. 
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Appendix 13. MALDI-TOF of α,ω-di(bromo)PMA isolated at 98% monomer conversion 
from SET-LRP of MA in NMP/water (8/2, v/v) mixture initiated with BPE and catalyzed 
by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after “thio-bromo “click”. 
Polymerization conditions: MA = 1 mL, NMP = 0.4 mL, water = 0.1 ml using 9.0 cm of 
nonactivated Cu(0) wire 20-gauge wire ([MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.1). The 
dotted line in expansion after thioetherification shows the original peak from before 
thioetherification, while 58 represents the increase in molar mass after thioetherification 
i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.  
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Appendix 14. MALDI-TOF of α,ω-di(bromo)PMA isolated at 98% monomer conversion 
from SET-LRP of MA in NMP/water (8/2, v/v) mixture initiated with BPE and catalyzed 
by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after “thio-bromo “click”. 
Polymerization conditions: MA = 1 mL, NMP = 0.4 mL, water = 0.1 ml using 9.0 cm of 
nonactivated Cu(0) wire 20-gauge wire ([MA]0/[BPE]0/[Me6-TREN]0/[TREN]0 = 
60/1/0.05/0.05). The dotted line in expansion after thioetherification shows the original 
peak from before thioetherification, while 58 represents the increase in molar mass after 
thioetherification i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.  

 
 

  



 
 

75 

Appendix 15. MALDI-TOF of α,ω-di(bromo)PMA isolated at 99% monomer conversion 
from SET-LRP of MA in NMP/water (8/2, v/v) mixture initiated with BPE and catalyzed 
by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after “thio-bromo “click”. 
Polymerization conditions: MA = 1 mL, NMP = 0.4 mL, water = 0.1 ml using 9.0 cm of 
nonactivated Cu(0) wire 20-gauge wire ([MA]0/[BPE]0/[TREN]0 = 60/1/0.1). The dotted 
line in expansion after thioetherification shows the original peak from before 
thioetherification, while 58 represents the increase in molar mass after thioetherification 
i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.  
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Appendix 16. 1H NMR spectra at 400 MHz of α,ω-di(bromo)PMA at (a) 96% monomer 
conversion (Mn= 6,280 and Mw/Mn= 1.16) ([MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.1); (b) 
98% monomer conversion (Mn = 6,150 and Mw/Mn= 1.29) ([MA]0/[BPE]0/[Me6-
TREN]0/[TREN]0 = 60/1/0.05/0.05); (c) 83% monomer conversion (Mn= 4,870  and Mw/Mn 
=1.95) ([MA]0/[BPE]0/[TREN]0 = 60/1/0.1).  Polymerization conditions: MA = 1 mL, 
DMAc = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) wire 20-gauge wire. 
The signals at 7.26 ppm and 5.30 ppm are due to partially nondeuterated residue of CDCl3 
and dichloromethane, respectively. 

 
 

  



 
 

77 

Appendix 17. 1H NMR spectra at 400 MHz of α,ω-di(phenylthio)PMA at (a) 96% 
monomer conversion (Mn= 6,460 and Mw/Mn= 1.17) ([MA]0/[BPE]0/[Me6-TREN]0 = 
60/1/0.1); (b) 98% monomer conversion (Mn = 6,560 and Mw/Mn= 1.30) 
([MA]0/[BPE]0/[Me6-TREN]0/[TREN]0 = 60/1/0.05/0.05); (c) 83% monomer conversion 
(Mn= 7,380  and Mw/Mn =1.69) ([MA]0/[BPE]0/[TREN]0 = 60/1/0.1). Polymerization 
conditions: MA = 1 mL, DMAc = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated 
Cu(0) wire 20-gauge wire. The signals at 7.26 ppm and 5.30 ppm are due to partially 
nondeuterated residue of CDCl3 and dichloromethane, respectively. 
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Appendix 18. MALDI-TOF of α,ω-di(bromo)PMA isolated at 96% monomer conversion 
from SET-LRP of MA in DMAc/water (8/2, v/v) mixture initiated with BPE and catalyzed 
by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after “thio-bromo “click”. 
Polymerization conditions: MA = 1 mL, DMAc = 0.4 mL, water = 0.1 ml using 9.0 cm of 
nonactivated Cu(0) wire 20-gauge wire ([MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.1). The 
dotted line in expansion after thioetherification shows the original peak from before 
thioetherification, while 58 represents the increase in molar mass after thioetherification 
i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.  
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Appendix 19. MALDI-TOF of α,ω-di(bromo)PMA isolated at 96% monomer  conversion 
from SET-LRP of MA in DMAc/water (8/2, v/v) mixture initiated with BPE and catalyzed 
by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after “thio-bromo “click”. 
Polymerization conditions: MA = 1 mL, DMAc = 0.4 mL, water = 0.1 ml using 9.0 cm of 
nonactivated Cu(0) wire 20-gauge wire ([MA]0/[BPE]0/[Me6-TREN]0/[TREN]0 = 
60/1/0.05/0.05). The dotted line in expansion after thioetherification shows the original 
peak from before thioetherification, while 58 represents the increase in molar mass after 
thioetherification i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.  
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Appendix 20. MALDI-TOF of α,ω-di(bromo)PMA isolated at 83% monomer  conversion 
from SET-LRP of MA in DMAc/water (8/2, v/v) mixture initiated with BPE and catalyzed 
by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after “thio-bromo “click”. 
Polymerization conditions: MA = 1 mL, DMAc = 0.4 mL, water = 0.1 ml using 9.0 cm of 
nonactivated Cu(0) wire 20-gauge wire ([MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.1). The 
dotted line in expansion after thioetherification shows the original peak from before 
thioetherification, while 58 represents the increase in molar mass after thioetherification 
i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.  
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Appendix 21. Kinetic plots, molecular weight and dispersity evolutions for the SET-LRP 
of MA in DMSO, initiated with BPE and catalyzed by 9.0 cm non-activated Cu(0) wire at 
25 °C. Experimental data in different colors were obtained from different kinetics 
experiments, sometimes performed by different researchers kpapp and Ieff are the average 
values of three experiments. ln(kpapp) vs ln([DMSO]0), DMSO was varied from 1 to 1.8 mL 
with 2 mL of MA. [MA]0/[BPE]0/[Me6-TREN]0/[Cu(0)]0 = 222/1/0.2/9cm.  
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Appendix 22. Kinetic plots, molecular weight and dispersity evolutions for the SET-LRP 
of MA in DMSO, initiated with BPE and catalyzed by 9.0 cm non-activated Cu(0) wire at 
25 °C. Experimental data in different colors were obtained from different kinetics 
experiments, sometimes performed by different researchers kpapp and Ieff are the average 
values of three experiments. ln(kpapp) vs ln([DMSO]0), DMSO was varied from 0.2 to 1.1 
mL with 2 mL of MA. [MA]0/[BPE]0/[Me6-TREN]0/[TREN]0/[Cu(0)]0 = 222/1/0.1/0.1/9 
cm.
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Appendix 23. Kinetic plots, molecular weight and dispersity evolutions for the SET-LRP 
of MA in DMSO, initiated with BPE and catalyzed by 9.0 cm non-activated Cu(0) wire at 
25 °C. Experimental data in different colors were obtained from different kinetics 
experiments, sometimes performed by different researchers. kpapp and Ieff are the average 
value of three experiments. ln(kpapp) vs ln([DMSO]0), DMSO was varied from 1.2 to 1.9 
mL with 2 mL of MA. [MA]0/[BPE]0/[Me6-TREN]0/[TREN]0/[Cu(0)]0 = 
222/1/0.1/0.1/9cm. 
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Appendix 24. Kinetic plots, molecular weight and dispersity evolutions for the SET-LRP 
of MA in DMSO initiated with BPE and catalyzed with 9.0 cm non-activated Cu(0) wire 
at 25 °C. Experimental data in different colors were obtained from different kinetics 
experiments, sometimes performed by different researchers. kpapp and Ieff are the average 
values of three experiments. kpapp vs [DMSO]0 with DMSO varied from 0.2 to 1 mL with 
2 mL of MA. [MA]0/[BPE]0/[Me6-TREN]0/[Cu(0)]0 = 222/1/0.2/ 9cm.  
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Appendix 25. Kinetic plots, molecular weight and dispersity evolutions for the SET-LRP 
of MA in DMSO initiated with BPE and catalyzed with 9.0 cm non-activated Cu(0) wire 
at 25 °C. Experimental data in different colors were obtained from different kinetics 
experiments, sometimes performed by different researchers. kpapp and Ieff are the average 
values of three experiments. kpapp vs [DMSO]0 with DMSO varied from 0.2 to 1.8 mL with 
2 mL of MA. [MA]0/[BPE]0/[TREN]0/[Cu(0)]0 = 222/1/0.2/ 9cm. 
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Appendix 26. MALDI-TOF of PMA-Br isolated at 83 % from SET-LRP of MA in DMSO 
solution initiated with BPE and catalyzed by non-activated Cu(0) wire at 25 °C; (a) before 
thio-bromo “click” reaction; (b) after thio-bromo “click” reaction. Reaction conditions: 
MA = 2 mL, DMSO = 1.50 mL, [MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.2, 9.0 cm of 20 
gauge Cu(0) wire. The dotted line in expansion after thioeterification shows the original 
peak from before thioeterification, while 59 represents the increase in molar mass after 
thioeterification i.e., 2*[ SC6H5 (109, 2)–Br (79, 9)] = 58.57 for each chain end.  

 
 
 

 
  

a) PMA before thioetherification

b) PMA after thioetherification Conversion = 83%
Mth= 4,610
Mn,GPC= 8,880;  Mw/Mn= 1.31 
Mn,MALDI= 5,570; Mw/Mn= 1.19

Conversion = 83%
Mth= 4,610
Mn,GPC= 8,460;  Mw/Mn= 1.34 
Mn,MALDI= 6,440; Mw/Mn= 1.18
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Appendix 27. 1H NMR spectra at 400 MHz of α,ω-di(bromo)PMA at: (a) 83% conversion 
(Mn = 8,460 and Mw/Mn = 1.34),     ([MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.2); (b) 92% 
conversion (Mn = 6,420 and Mw/Mn = 1.27) ( [MA]0/[BPE]0/[Me6-TREN]0/[TREN]0 = 
60/1/0.1/0.1); (c) 95% conversion (Mn = 7,690 and Mw/Mn =1.15 ) ( 
[MA]0/[BPE]0/[TREN]0 = 60/1/0.2);  Polymerization conditions: MA = 2 mL, DMSO = 
1.5 mL and non-activated 9 cm Cu(0) wire of 20 gauge. The signals at 7.26 ppm and 5.30 
ppm are due to the partially non-deuterated residues of CDCl3 and dichloromethane, 
respectively.  
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Appendix 28. 1H NMR spectra at 400 MHz of α,ω-di(phenylthio)PMA at: (a) 83% 
conversion (Mn = 8,880 and Mw/Mn = 1.19),     ([MA]0/[BPE]0/[Me6-TREN]0 = 60/1/0.2); 
(b) 90% conversion (Mn = 7,140 and Mw/Mn = 1.27), ( [MA]0/[BPE]0/[Me6-
TREN]0/[TREN]0 = 60/1/0.1/0.1); (c) 96% conversion (Mn = 8,180 and Mw/Mn =1.13 ), ( 
[MA]0/[BPE]0/[TREN]0 = 60/1/0.2); Polymerization conditions: MA = 2 mL, DMSO = 1.5 
mL and non-activated 9 cm Cu(0) wire of 20 gauge. The signals at 7.26 ppm and 5.30 ppm 
are due to the partially non-deuterated residues of CDCl3 and dichloromethane, 
respectively. 
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Appendix 29. MALDI-TOF of PMA-Br isolated at 92 % from SET-LRP of MA in DMSO 
solution initiated with BPE and catalyzed by non-activated Cu(0) wire at 25 °C; (a) before 
thio-bromo “click” reaction; (b) After thio-bromo “click” reaction. Reaction conditions: 
MA = 2 mL, DMSO = 1.50 mL, [MA]0/[BPE]0/[Me6-TREN]0 /[TREN]0 = 60/1/0.1/0.1, 
9.0 cm of 20 gauge Cu(0) wire. The dotted line in expansion after thioeterification shows 
the original peak from before thioeterification, while 59 represents the increase in molar 
mass after thioeterification i.e., 2*[ SC6H5 (109, 2)–Br (79, 9)] = 58.57 for each chain end.  

 
 
 
  

a) PMA before thioetherification

b) PMA after thioetherification Conversion = 92%
Mth= 4,080
Mn,GPC= 7,140;  Mw/Mn= 1.27 
Mn,MALDI= 5,160; Mw/Mn= 1.15

Conversion = 92%
Mth= 5,080
Mn,GPC= 6,420;  Mw/Mn= 1.27 
Mn,MALDI= 4,780; Mw/Mn= 1.20
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Appendix 30. MALDI-TOF of PMA-Br isolated at 95 % from SET-LRP of MA in DMSO 
solution initiated with BPE and catalyzed by non-activated Cu(0) wire at 25 °C; (a) before 
thio-bromo “click” reaction; (b) after thio-bromo “click” reaction. Reaction conditions: 
MA = 2 mL, DMSO = 1.50 mL, [MA]0/[BPE]0/[TREN]0 = 60/1/0.2, 9.0 cm of 20 gauge 
Cu(0) wire. The dotted line in expansion after thioeterification shows the original peak 
from before thioeterification, while 59 represents the increase in molar mass after 
thioeterification i.e., 2*[ SC6H5 (109, 2)–Br (79, 9)] = 58.57 for each chain end.  

 
 

a) PMA before thioetherification

b) PMA after thioetherification
Conversion = 95%
Mth= 5,230
Mn,GPC= 8,180;  Mw/Mn=  1.13
Mn,MALDI= 5,890; Mw/Mn= 1.20

Conversion = 95%
Mth= 5,230
Mn,GPC= 7,690;  Mw/Mn= 1.14 
Mn,MALDI= 5,620; Mw/Mn= 1.15
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