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Abstract  
The Cal Poly Wind Power Club is entering the 2021 Collegiate Wind Competition (CWC) in 

June. Last year, three senior project teams were assigned to collaborate and assist the club with 

the pitching mechanism, the rotor balancing, and the manufacturing process. As the 

manufacturing team, the goal of our project was to design a manufacturing process for the blade 

geometry given. The manufacturing process was required to meet the team’s expectations and 

CWC’s performance requirements to place highly in the competition taking place in June 2021. 

These expectations included creating a manufacturing process that is repeatable and reliable for 

future competitions. The manufactured blades had to be dimensionally accurate up to less than 

one percent error between each of the three blades. The blades also needed to be as light as 

possible to be efficient, thus the blades needed to be less than half a pound each. The 

manufactured blades also needed to be as smooth as 0.25 microns to ensure aerodynamic 

performance is not compromised. Our finalized process met the requirements for almost all these 

requirements. The dimensional accuracy of the blades is less than one percent error between the 

blades, however, some additional changes will be needed for future blades which be explained 

later in the report. The finalized blades far surpass the goals given by the WPC, only weighing 

1/8 of a pound each compared to the half pound goal. Lastly the surface roughness of the blades 

did not meet the 0.25-micron requirement, however, we believe that the final design reaches a 

smoothness that will be acceptable for the competition. Solutions to make the blades smoother 

are also given in the report if the WPC believes the finalized blades do not meet their 

requirements. 
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Chapter 1 – Introduction  

According to the U.S. Department of Energy, wind power will supply 20% of the nation’s 

electricity in 2020. They hope to increase the use of wind energy for the electrical grid to 35% by 

2035. To accomplish this goal, more qualified workers will be needed to improve and facilitate 

the growth of wind power plants across the country. The U.S. Department of Energy created the 

Collegiate Wind Competition in 2014 to help reach their goal. The competition features teams of 

students from colleges across the U.S. who are tasked to create a scaled down wind turbine that 

must pass a series of tests and requirements.  The purpose of the competition is to spark the 

interest of college undergraduates who will be the face of new wind power technology in the 

years to come.  

In 2021, Cal Poly’s Wind Power Club will be entering the competition for their first time. Three 

senior project teams were assigned to help the club with certain mechanisms and processes for 

their turbine: the pitching mechanism team, the rotor balancing team, and the manufacturing 

team. As the manufacturing team, the goal of this project was to develop a blade manufacturing 

process for the turbine blades. This project included prototyping and creating a finalized product 

of the blades.  

This paper serves to document the complete process we took in designing the process. It is split 

into eight main sections. 

The Background section presents information obtained from our sponsor and different types of 

manufacturing processes researched for wind turbine blades. These processes include molding 

techniques, the use of composites, as well as 3D printing. These different manufacturing 

techniques will be compared, assessing the advantages and disadvantages of each process for the 

blade design given. Manufacturing processes used by teams in past competitions were also 

assessed and considered for the blade process finally chosen. Specifically, researching what 

manufacturing process were used by teams that placed in the top three of the competition in 2019 

and attempting to apply their methods to the process chosen.  

The Objectives section outlines the goals of our project, including the scope/boundary of our 

project, the requirements, and the specifications. A boundary diagram and QFD house of quality 

are presented to show the relation between specifications and the importance of each. 

Our research accumulates into a Concept Design section, including our ideation process, 

controlled convergence, and justifications for our selected design as of Spring 2020. 

Final Process Selection outlines new research and updates to the design created during Fall 2020. 

It also ends with the selection of multiple manufacturing processes for the blades and possible 

post-processing options, which are tested against each other in the design verification plan 

section. 

Design verification plan outlines the tests that were taken to ensure our blades meet the 

requirements and specifications given to us by the WPC. It also includes a final recommendation 

for the WPC when printing their final blades. 
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Our completed project timeline, deviations from our plan, and difficulties we faced are outlined 

in the project management section of the report.  
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Chapter 2 - Background 

2.1 Wind Turbine Design Considerations 

The wind turbine for this project is designed to be specialized for the competition guidelines. 

Blades are to be as light as possible while still having enough structural integrity so that the 

blades do not deflect to the point where they hit the turbine stand. 

Additionally, the blade must withstand a wind speed of up to 22 m/s without breaking or bending 

to the point of losing structural integrity. 

Creating the blade in one piece is desirable due to there being less risk of variance in mass 

properties, but some of the methods listed below are not able to be done in one piece.  

After research on small wind turbine blades, the consensus is that wind blades of this size are 

commonly hollow. 

2.2 Manufacturing Process Options 

2.2.1 Fused Deposition Modeling (FDM) 

Fused Deposition Modeling or Material Extrusion works by heating a spool of plastic (often 

PLA, ABS or PET) to nearly its melting point then gradually squeezing it out of an extrusion 

nozzle. The nozzle maneuvers in a 2D plane to place plastic at specific coordinates. The plastic is 

placed this way one layer at a time until it forms a solid 3D part.  

FDM is the most popular 3D printing style used, as it is cheap and easy to use. Cal Poly has 

many available printers on campus. The layer lines on FDM printing are the most prominent out 

of any 3D printing process. This means that the surface finish will be rougher than the other 

processes. There is an array of post-processing options available to improve the surface finish of 

FDM parts, outlined in Section 2.3. With the smaller printers on campus, the blades would have 

to be printed in two parts, possibly creating a critical point at the mending point. 

 

Figure 2-1. Object being created through the Material Extrusion process [5] 
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2.2.2 Selective Laser Sintering (SLS) 

This 3D printing process utilizes thermoplastic powder such as Nylon 12. A mass of powder is 

heated up to approximately 178 °C, just below the powder’s melting point. Then, a laser 

selectively solidifies each point within the powder layer-by-layer until the object is completed. 

This technique can produce a part with a surface finish similar to that of SLA, but given the very 

tight surface roughness tolerance for the airfoil this would still need to undergo post-processing. 

 

Figure 2-2. A 3D part being created out of thermoplastic powder using SLS [3] 

2.2.3 Stereolithography (SLA) 

Stereolithography (SLA) is a similar process to Laser sintering. The key difference between the 

two processes is that SLA utilizes liquid resins made of UV-curable photopolymers, as opposed 

to thermoplastic powder resins. The rest of the process is virtually identical: a laser exposes the 

resin to certain wavelengths of light, layer by layer. 

There are three primary methods of SLA printing: Laser SLA, DLP SLA and Masked SLA. 

Laser SLA utilizes a laser which focuses on one point at a time, gradually creating a 2D shape 

before moving onto the next layer. DLP SLA utilizes a projector to flash light patterns and 

solidify entire layers of resin at once. Similarly, Masked SLA utilizes an LCD mask which 

selectively darkens to block light from reaching the resin. 

 

Each SLA process comes with an array of advantages and disadvantages. Laser SLA has the 

crispest surface finish but has a longer manufacturing time. Both DLP and Masked SLA result in 

voxel lines (print lines aligned with the XYZ axes) across the surface due to the pixelated light 

displays used, which could cause possible critical failure points. 

 

SLA printing is a highly modifiable and repeatable process. Layer thickness can be adjusted to 

obtain a higher surface finish, albeit with a higher manufacturing time. The amount of time 

between each layer process, also known as over cure, affects the tensile strength of the part. The 

adaptability and reliability of this process makes it an attractive choice. However, the Cal Poly 

SLA printer can cost upwards of $150 per print.  
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Figure 2-3. Stereolithography printer creating a complex 3D shape [4] 

2.2.4 Wet Layup 

Wet layups produce a product made from stronger composite material. In this process the fiber of 

choice, such as carbon fiber, is placed into an open mold. The fibers are impregnated with resins 

by hand, utilizing paint brushes and rollers. Wet layups are the cheapest composite method. They 

are highly adaptable since each step is done by hand, but this makes the final product difficult to 

reproduce within a tight tolerance. It also requires a deal of skilled labor, to ensure evenly 

distributed resin and a wrinkle-free surface finish. 

 

Figure 2-4. Wet layup being performed by hand [6] 

2.2.5 Pre-preg 

The pre-preg process utilizes composite fibers that are industrially impregnated with resin before 

they enter the hands of the consumer. Pre-preg is sold in rolls that are kept refrigerated to 

increase their longevity. To start the pre-preg process, each side of the mold is covered in 

masking tape, then cut to use as a template. The most popular reliable pre-preg molds are made 

out of either epoxy with glass fiber or epoxy model boards. 3D pre-preg shapes are made using 

split molds, meaning it is a 2-part mold with slight overlap to fuse the two halves together. 

Depending on the durability requirements of the part, one might utilize multiple plies of pre-preg 
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to increase durability. Finally, after smoothing the pre-preg onto the mold, the mold and pre-preg 

are put into an autoclave for heat curing.  

Due to pre-preg’s limited shelf life, it needs to be applied within a certain time or else it is 

wasted. This means that industry connections who have almost expired pre-preg might be 

inclined to donate their pre-preg, circumventing the high price point of normal pre-preg parts. 

Pre-preg has other issues that prevent it from being a frontrunner, even with cost out of the 

picture. An important aspect of this project is for the wind blade designs to be tweakable and 

repeatable. While the pre-preg process is repeatable for the same blade design, small design 

adjustments would require a new mold to be created. This slows the design pipeline significantly, 

as there are two required steps to change anything in the blade shape. 

 

 

Figure 2-5. Pre-preg being used to create a carbon fiber part [2] 

2.2.6 Vacuum Infusion 

Vacuum Infusion or VARTM (Vacuum Assisted Resin Transfer Molding) is the most widely 

used process for modern full-sized wind blades. In this process, the fibers are arranged in a 

sealed mold, and the resin is injected into the mold. After the resin has filled the cavity, the 

composite is cured in an autoclave. This method is called, “vacuum infusion” because the resin is 

injected at a pressure below atmospheric. There is little variation from part-to-part, and the 

process is cheaper than making pre-preg parts. Unsuitably, only one side of the VARTM mold 

can have a smooth finish. 
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Figure 2-6. A composite part being created by VARTM [1] 

2.3 Post-Processing Options 

2.3.1 Manual Sanding 

Sanding a part by hand is an economical but labor-intensive process. The sanding is typically 

performed with sandpaper, steel wool, or files. To get a part down to a smooth surface finish, 

multiple sanding steps are required, going from coarse to fine grit. To get a polished surface, the 

final stage of sanding can be performed after the part has been dipped in water. This does not 

remove much material but can get the surface finish to be very smooth. 

2.3.2 Abrasive Milling 

Abrasive milling is a process in which rotating abrasive tool heads of varying grit sizes are used 

to remove material and improve surface finish. This process can produce highly dimensionally 

accurate parts, with up to a 90% improved surface finish. It is important to note that when 

employed on thermally reactive parts, there is a risk of this process generating enough heat to 

warp the part. 

2.3.3 Sand Blasting 

Sand blasting involves using pressurized air to spray abrasive sand onto the surface of the part. 

This process is often done after the vapor smoothing process and is considered an ultra-fine 

finishing process, improving surface roughness by up to 96%. 

2.3.4 Vibratory Bowl Abrasion 

Vibratory bowl abrasion is a process used to improve surface finish and break edges of SLA 

parts. The model part is placed in a bowl containing abrasive media and water. The bowl is then 

vibrated at a constant speed, based on the surface roughness specifications and the size of the 

part. The abrasive media tends to get stuck in parts with complex surface geometry. Due to the 

convex shape of the wind blade, this is likely not an issue for wind blade manufacturing. This 

process results in higher dimensional accuracy for smaller parts and longer manufacturing times.  



15 
 

 
 

Due to the small size of the turbine blade, as well as this step being towards the end of the 

manufacturing process, vibratory bowl abrasion may be well suited to the needs of the turbine. 

Vibratory bowl abrasion has been observed to offer up to a 73% improvement in surface finish. 

It is important to note that while the other surface finish measurements were performed on FDM 

parts, the data for the VBA process was gathered on SLA parts. 

2.3.5 Tumble Finishing 

The tumbling process is like the vibratory bowl abrasion process. The key difference is that 

instead of vibrating in a vat, the part is placed in a washing machine-like structure then rotated 

on the horizontal axis.  

Tumbling is well suited to small parts and is cheaper and faster than vibratory bowl abrasion. 

However, the abrasive media tends to hit the model surface too hard and create surface 

imperfections.  

2.3.6 Acetone Smoothing 

Acetone smoothing, a method of vapor smoothing, is a process in which an ABS part is exposed 

to a vapor bath of acetone for a controlled amount of time. When exposed to the acetone, the 

ABS plastic experiences a chemical reaction which melts the surface layer of the part. The 

acetone is introduced to the part in vapor form so that the concentration is low enough to cause 

too severe of a chemical reaction and destroy the structural integrity of the part. When the part is 

taken out of the vapor bath, the surface layer rehardens with a significantly smoother surface 

finish. 

The effects of this process on the roughness, strength, elasticity, and ultimate strength of the part 

are largely dependent on the amount of time the part is in the acetone bath. In general, prolonged 

exposure to the acetone decreases surface roughness and the elastic modulus, while increasing 

the ultimate strain to failure. 

 2.4 Considerations for 3D Printing 

There are a few important considerations when 3D printing.  

Layer thickness refers to the thickness of each 2D slice. A lower layer thickness means the 

surface finish will be smoother, and the dimensional accuracy will be higher. However, there is a 

direct correlation between layer thickness and time to print. The thinner the layers are, the more 

times the print head will have to pass over the part to complete it, and therefore the longer the 

printing process will take.  

Percent infill refers to the ratio of hollow to filled-in sections on the interior of a part. Since it 

would take a very long amount of time to fill in each layer of a 3D printed part all the way, the 

interior is often composed of a lattice structure to maintain structural integrity while keeping 

print times reasonable. Every 25% increase in infill density comes with a 10% increase in 

strength, so choosing an infill density is a balancing act between print time and strength. 
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The infill shape has a similar effect as infill density. The honeycomb is one of the most popular 

patterns because of its compromise between strength and print time. However, the diamond 

pattern has a lower print time because the print head has to make less passes to draw the shape, 

but it has comparable strength.  

 

Figure 2-7. Comparison of Infill Shape Properties 

It is important to note that choosing multiple printing options with high print time have a 

compounding effect. Choosing high-print time settings for each of these aspects has a 

multiplicative effect rather than an additive one.  

2.4 Competition Designs 

The most directly relevant existing designs for small wind turbines is the previous top-placers 

from the CWC 2019 competition.  

Table 2-1. Manufacturing Processes used for CWC 2019 Top Teams’ Manufacturing Processes  

Team Name Team Award Manufacturing Process Used 

Penn State 1st place 

overall 

Selective laser sintering 3D printing method using 

Nylon 12 

Virginia Tech 2nd place 

overall 

3D printed, followed by a coating of Smooth-On 

XTC-3D to improve surface roughness. 

California Maritime 

Academy 

3rd place 

overall 

3D printed in PLA plastic with a Makerbot 

Replicator+. 

Iowa State Project 

Development 

Unspecified 3D printing method. 

Most of the top placing teams did not delve into their reasonings for choosing their 

manufacturing process, only mentioning it in a single sentence. Penn State and Virginia state 

were the only ones to rigorously describe their reasoning and process. 
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Penn State chose Nylon 12 because of its strong yet flexible properties. They needed a material 

that would be sufficiently stiff to resist bending in high wind speeds but not so brittle that it 

snapped. They utilized finite element analysis to determine the material properties they needed to 

resist the bending moment imparted by the wind. They determined that Nylon 12 was the 

material that was most well suited for withstanding the stress concentrations at the root of the 

blade. 

Virginia Tech previously used form-fitting foam in negative molds to manufacture their blades. 

They came to a similar conclusion as our team: processes requiring mold manufacturing are 

unfriendly to rapid iterative design processes. To solve this issue last year, they switched to FDM 

printing. They noted that while FDM printing provides high dimensional accuracy, it had a rough 

surface finish. They coated the part with Smooth-On XTC-3D to remedy this. 

2.5 Summary of Patent Search Results 

As stated before, the only resources available online for wind turbine manufacturing are those 

that are full-scale. As this information might not be useful for the scale required by the 

competition. As shown in Table 2-1, every top placer in CWC 2019 utilized 3D printing 

methods. As such, the relevant patents to this project are a mix of wind-blade related patents and 

3D printing related patents. 
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Table 2-2. Patent Search Results 

Patent Name Date Filed Useful Information from this Patent 

Method for repairing and/or 

modifying component parts of a 

gas turbine 

4/1/2004 Outlines how to use additive manufacturing 

to create parts of a similar turbine, a gas 

turbine. 

Wind turbine and method of 

manufacture 

7/17/2006 Contains valuable information about how 

full-size wind turbines are constructed. 

Method for manufacturing of a 

fiber reinforced laminate, use of 

a wrinkle-preventing material, 

wind turbine blade and wind 

turbine 

11/19/2007 Mitigates wrinkles in fiber-reinforced 

laminate by carrying out curing at controlled 

temperature gradients. 

Method of manufacturing a 

wind turbine blade comprising 

steel wire reinforced matrix 

material 

3/23/2011 Offers a method of using metal fibers instead 

of glass fibers in the VARTM method. 

Laser sintering apparatus and 

methods 

3/14/2014 Offers information on how the laser sintering 

process is performed. 

2.6 List of Regulations 

As this project is intended to be used in a competition it must adhere to the CWC 201 

Guidelines’ codes and regulations. The rules listed below are only the rules that are relevant to 

the manufacturing process. 

1. The entire turbine must be contained within a 45 cm by 45 cm by 45 cm cube.  

2. The turbine must be designed to withstand continuous winds of up to 22 m/s during 

operation and up to 25 m/s when parked. 

3. The turbine must be able to handle a cut-in speed of as low as 2.5 m/s. 
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2.7 Customer Interactions 

The Wind Blade Manufacturing (WBM) team was in contact with the sponsor for this project, 

former Wind Power Club President Jessica Dent. A weekly meeting time had been set up every 

Monday at 3 pm in which progress was reported and questions were asked to clarify the project. 

Below is a summarized list of Spring 2020 interactions with the sponsor.  

The WBM team confirmed expectations of the project scope with the sponsor. This 

included determining the overlap with other teams and obtaining the design documents of 

the previous turbines. The sponsor described the process that the Wind Power team used 

in 2019. The sponsor referred the WBM team to many helpful contacts at Cal Poly. The 

WBM team worked closely with the sponsor when creating the QFD. 

In the beginning our sponsor was heavily in support of composites as it was a unique to 

the project. The new 2020 leads, however, were heavily in support of 3D printing. Thus, 

we researched each method equally to help them with their decision. 

Chapter 3 – Objectives 

3.1 Problem statement 

As of the beginning of the project, the Cal Poly Wind Power club did not have a manufacturing 

process to produce designs for their turbine blades. The scope of this project was to design a 

manufacturing process that produces reliable wind turbine blades with consistent mass 

properties. The process had to be repeatable and modifiable for different blade profiles and twist 

distributions. The resulting turbine blade must also conform to the rules stated in the U.S 

Department of Energy Collegiate Wind Competition, including withstanding wind speeds up to 

25 m/s, fitting within a 45 cm x 45 cm x 45 cm cube, and having a cut-in speed as low as 2.5 

m/s. The final product should be as light as possible.  

3.2 Boundary diagram  

Through a closer analysis of our problem statement, the bounds of our project were further 

defined, as seen below in Figure 3-1. Our team worked macroscopically under the rules provided 

by the Department of Energy Collegiate Wind Competition Requirements. The rotor balance, 

pitching mechanism, and Cal Poly Wind Power Club (WPC) teams also worked within this 

boundary. The rotor balance and pitching mechanism teams reported directly to the WPC, who 

used their work to design the blade geometry. The blade geometry will be the result of a bi-

directional informational flow. The blade geometry was the input of our project and dependent 

on the work of the other teams, with a final say by the WPC who will bring it to competition. As 

the manufacturers, it was our job to be informed on proper and feasible techniques. Therefore, 

our team worked with the WPC to ensure a blade geometry that was optimized for their needs 

and feasible for our process.  
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Figure 3-1. Boundary Diagram 

3.3 Customer Requirements 

The project must: 

1. Be repeatable. 

2. Accommodate minor design changes. 

3. Produce standardized characteristics (minimal variation between output). 

4. Have a sturdy base. 

5. Operate with up to 22 m/s wind speed. 

6. Have a cut-in speed as low as 2.5 m/s. 

7. Withstand 25 m/s wind when parked.  

The rotor and non-rotor turbine parts must be contained in a 45 cm x 45 cm x 45 cm cube. The 

non-rotor turbine parts are defined as anything that does not capture energy from the moving air, 

including the mounting flange. 

The rotor will need to pass a runaway test to ensure that the turbine will not fail. The runaway 

test will be performed by the WPC. Strength and stiffness of the blade will directly affect the 

results of the test. Attachment of the blade will also be integral to a successful runaway test.  

The three-blade turbine must have three blades that are as similar as possible, to maintain 

aerodynamic properties that are as similar as possible. 

3.4 Quality Function Deployment  

The Quality Function Deployment (QFD) method was utilized through the House of Quality 

(Appendix 8-1) to determine the most important customer of a product. The house of quality 

produces these results by considering the relationship between specifications and customer 
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requirements. Similar products are also ranked against each other by how well they meet the 

requirements and specifications. This information was then condensed into a measure of 

weighted importance. 

Our team compared five different casting processes: 3D printing, wet lay-ups, pre-preg, resin 

vacuum infusing, and blue foam molding. Of our requirements, standardizing the characteristics 

of each product was found to be the most important, with repeatability and ability to 

accommodate minor design changes following. Of our specifications, variability of results and 

cost efficiency were the most important. 

3.5 Engineering Specifications Table 

Through consideration of the completed QFD, the specifications seen below in Table 3-1 have 

been selected as the bounds of our project. The measurements of each specification will be 

determined as followed: 

• Weight: A general analysis will be done through computer analysis, but the final product 

will be mostly dependent on material. The final weight was tested with a scale and 

compared by similarity to the design with other materials. 

• Cost Efficient: Measured through research and analysis. The cost will vary greatly, thus 

similarity will be the most accurate measurement of efficiency. 

• Complexity of the Process: The process is defined as the entirety of the blade creation 

from start to finish. Compared by similarity. The process should be reproducible for 

varying skill levels with low variability of results. A less complex process will produce a 

better product. 

• Variability of Results: Variability was measured in post-production by comparing the 

specifications of two printed blades for consistency. This will be performed through 

weight and length testing by scale testing and through inertia testing by momentum swing 

calculations. Inspection of the outer surface with a flatness meter was considered to 

minimize the differences in air foil effects. 

• Number of Manufacturers Required: Compared by similarity. The process should not 

require more than 3 manufacturers per part. More than this would be excessive for such a 

small part. Less manufacturers also ensures a less complex process. The excess 

manufacturers were to be delegated elsewhere. 

• Labor Intensity: Labor intensity is defined as the amount of time and energy required of 

the manufacturer. Through testing and similarity, labor intensity can be determined. The 

process should minimize the amount of labor intensity. Automated processes are assumed 

to have the least amount of labor intensity.  

The high-risk specifications of our project include variability of results and cost efficiency. The 

most popular process to manufacture small scale turbine blades is 3D printing. Printing with 

common filaments like PLA or ABS would be cost efficient, but the results would vary highly. 

The current printers on campus do not support the size of our blade, meaning we would have had 
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to print in parts, further increasing variability. Outsourcing printing would remedy the problem 

of variability, while also allowing us the option to print with stronger material such as carbon 

fiber or Nylon 12, at the expense of higher cost. An investment for specialty tooling by the WPC 

was also an option that would minimize variability but increase cost efficiency. The specialty 

tooling could be used by the WPC indefinitely and for other projects, therefore saving money in 

the long run. More research is outlined further in the report to decide how to best minimize 

variability without incurring too high of a cost.  

Table 3-1. Engineering Specifications Table 

Spec. 

# 

Specification 

Description 

Requirement or Target 

(units) 
Tolerance Risk Compliance 

1 Weight Under .40 lbs per blade +/- .05 lbs L A, T, S 

2 Cost Efficient Costs under $250 +/- $100 H A, S 

3 
Complexity of the 

process 
Least Complex 

Compared by 

Similarity 
M T, S 

4 Variability of results 

2% variability of blade 

design between molded 

blade 

Max. H 
T, A, I 

 

5 
# Manufacturers 

needed 

3 Manufacturers per 

process 
Max. L T, S 

6 Labor Intensity Least Labor Intensive 
Compared by 

Similarity 
M T, I, S 

 

After further consideration, we decided to get rid of specifications three and six, complexity of 

the process and labor intensity. This is because these specifications are extremely hard to 

quantify and verify. After talking with the WPC, we also decided these means of assuring a 

speedy and easy process were not of utmost importance to them, since they have months leading 

up to competition to make the blade.  
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Chapter 4 – Concept Design 

4.1 Concept Generation/SketchesPossible Manufacturing Processes 

To begin our concept generation, the general shape of the blade, along with possible physical 

manufacturing options were considered and sketched, seen in Figure 4-1. The blade could be 

printed in one or two pieces. It could be hollow inside or completely solid. The finish will be 

smoothed either naturally or in post-processing. A top-coat may be added for some processes. 

  

Figure 4-1. Physical blade manufacturing options 

 

Next, the steps for each process were abstracted from our background research and applied to 

blade creation. Each process was sketched below in a flow chart. 

For 3D printing, the blade can be made in one or two pieces. The one-piece option requires five 

steps and the two-piece option requires six. The two-piece option requires an extra step of 

epoxying before surface finishing. 3D printing requires the ability to model with a computer-

aided design program and possibly a specialty tooling path program. Considering the 
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repeatability requirement, print properties can be constant inputs, but cheaper printers or 

materials could product inconsistent results. Considering a smooth finish, a filler may be 

required and further surface smoothing.  

 

 

Figure 4-2. 3D printing steps 

For wet-layups, five steps are required. Composites do not require post-processing due to the 

material already being relatively smooth. Fundamentally, lay-ups create hollow parts. Because of 

this, it is more difficult to make solid parts through these lay-ups. The wet-layup can only make 

half the blade, therefore the process must be done twice per blade. Curing may be done at room 

temperature. Considering repeatability, the multiplicity of steps done by hand creates many opportunities 

for error and inconsistencies. For example, temperature would have to be constant, epoxy would have to 

be metered, and the material outline must be exact. For its finish, wrinkles must be smoothed by hand and 

prevented during additions of lay-ups.  
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Figure 4-3. Wet-layup steps 

 

Pre-preg requires six steps. As a composite process, pre-preg also requires no post-process 

surface smoothing. Like wet-layups, it also cannot create hollow parts and must make half the 

blade at a time. Pre-preg processes require an autoclave for curing. Considering repeatability, the 

outline must each be cut the same and cure time must be regulated. Its surface finish will come 

out as smooth as the mold it is created in. 

 

Figure 4-4. Pre-preg steps 
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A mixture of the above processes was previously used by the WPC. A 3D printed core can be 

used as a mold, with the wet-layup being placed on top of it. This process requires fives steps. 

  

Figure 4-5. Wet-layup with a 3D printed core steps 

Vacuum-infusion requires five steps. It can only make half a blade at a time, therefore it must be 

performed twice per blade. It requires special machining for injection below atmospheric 

pressure and an autoclave. Given our requirement of repeatability, vacuum-infusion would not be 

a first-choice option, since each new blade design would require special machining, incurring 

high costs and time. 

 

Figure 4-6. Vacuum-infusion steps 
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4.2 Manufacturing Process Decision Making 

After deciding our specifications from our QFD, the next step in the design process was 

functional decomposition. For the functions of smooth finishing, cost, repeatability, and material 

properties, we listed how 3D printing, wet-layup, and pre-preg met the requirements. The 

decomposition can be seen in Appendix 8.2. Using our newfound relationships, we furthered the 

decision process into a Pugh Matrix. 

Refer to the Processing Options Pugh Matrix, Table 8-3 in the Appendix. 

The weights were determined from the priorities outlined from the club sponsor. Repeatability 

and precisions of dimensions were outlined as important aspects of the project. Cost was added 

as a high-weighted factor due to the relatively low budget of the project, increasing the 

importance of being cautious of budgeting concerns. Fused deposition modeling was used as a 

datum due to its wide accessibility and simplicity. 

While composites offer incredible strength for their weight, additive manufacturing methods are 

the frontrunners. Due to the design of the wind blade being unfinished, it is important for the 

chosen process to be adaptable to small design changes. Composites require the manufacturing 

of a mold as well as the part itself, which makes them very rigid in their design process. On the 

other hand, 3D printing can produce many varied prototypes in a fraction of the time. 

FDM is widely available on campus and free in many cases. SLA is also available on campus, 

but it was estimated to cost over $100, a large portion of the budget. At this stage in the project, 

quick, efficient, and cheap prototyping was valued more than premium manufacturing options. 

Thus, we decided to move forward with FDM for the prototyping phase of the project, which on 

the Cal Poly campus allows us to use PLA and ABS, but can expand to Nylon 12 or SLA if 

outsourced. 

4.3 Post Processing Decisions 

To decide which post-processing method to move forward with, another Pugh matrix was 

utilized. The weights of the matrix are explained in Section 4.2. Refer to the Post-Processing 

Options Pugh Matrix in Table 8.2 in the Appendix. 

A large part of this project is to create a repeatable, reliable process that future generations of the 

club can easily reproduce. Manual sanding, abrasive milling and sand blasting are all processes 

which rely on a skilled and detailed-oriented laborer to provide consistent mass properties. This 

attention to detail can not necessarily be conveyed in an instruction manual, so we decided to 

choose post processing options that had less margin for human error.  

Of the hands-off post processing techniques, vapor smoothing and vibratory bowl abrasion 

provide the most improvement in surface finish. We decided that it was worthwhile to attempt to 

pursue and test both processes. Vapor smoothing is a process that can be done in-house, whereas 
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VBA requires outside help. We have contacted the closest company that offers VBA, C&M 

Manufacturing in Santa Barbara, and inquired about receiving a student discount or sponsorship. 

4.4 Blade Design Considerations 

For the blade design we evaluated deflection between a hollow and solid blade design. Hand 

calculations are attached in Appendix 8.4. A study was done by Pourrajabian, et al. (2016) 

proving that small turbine blades can be modeled with simple beam theory. Accordingly, simple 

beam theory for a circular cantilever beam was used. It was determined that a solid blade will 

have less deflection than a .005 m thick hollow blade. Testing deflection ranging from a hollow 

blade thickness of .001 m up to when it becomes solid, we came up with Figure 4-7 below.  

 

Figure 4-7. Thickness vs. deflection for a .225 m long hollow cantilever beam. 

As shown, there is a large slope for a thickness between 0.001 and 0.004 m. Around 0.013 m of 

thickness, the deflection is equivalent to the deflection of the solid beam. Therefore, the decision 

is between a solid beam or an equivalent hollow beam. 

The hollow beam would require less material, meaning less cost. The solid beam would be more 

material, meaning a higher mass. Due to the small size of the turbine, the effect of such a minute 

mass difference is negligible.  

4.5 Material Property Considerations 

After considering possible processes, we began investigating material property considerations for 

SLA, ABS, PLA, carbon fiber pre-preg, and a carbon fiber wet-layup, as referenced in Appendix 

8.2. First, we compared their tensile strengths. 

We found that SLA had the greatest tensile strength, at 65.0 MPa. Carbon fiber in a wet-layup 

was the second strongest at 2.1 GPa, but still not nearly as strong as the SLA. Carbon fiber in 
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pre-preg was the third strongest at 600 MPa, but once again with a significant difference from 

the stronger material before it. Next, Nylon 12 had a tensile strength of 50 MPa. Lastly, the two 

most common printer filaments, ABS and PLA, had tensile strengths of 27 MPa and 37 MPa 

respectively. From a strength standpoint, all of these are viable options since our blades will at 

max only be subjected to forces around 2.33 N-m.  

To test for tensile strength, we analyzed deflection with the same technique used previously to 

evaluate deflection of hollow and solid blade design, as shown in Appendix 8.4. This time, we 

picked an updated blade length of 19.6 cm and a diameter of 0.004 m, which is the smallest point 

on the blade. We also used a force of 2.64 N, which was calculated by the WPC to be the 

greatest normal flap-wise force. The material tensile modulus and resulting deflections are listed 

below in Table 4-1.  

Table 4-1. Deflections of materials subjected to a 2.64 N force, modeled as a solid cantilever 

beam. 

Materials E (Pa) Deflection (m) 

SLA 2900000000 0.006685295 

ABS 2300000000 0.008429285 

Nylon12 1400000000 0.013848112 

PLA 2700000000 0.007180502 

Carbon Fiber 10300000000 0.001882268 

 

Nylon 12 experiences the greatest deflection at 1.3 cm, but along with the other materials, stays 

within the 2 cm deflection limit given by the WPC. Therefore, all materials are usable by virtue 

of its tensile and strength properties. 

To further narrow down our options, we moved on to the requirement of cost. Considering cost, 

we were given a budget of $800.00. This cost will be analyzed later, depending on available 

printers in the region. We found that for pre-preg, the cheapest roll is around $48.95 for a yard. 

Likewise, 1 L of SLA resin is around $40. At the cheapest price, a 1 kg spool of PLA is around 

$20. Lastly, the price of a wet layup varies by the type of resin, but at the very least $40-50 will 

be spent on epoxy. If any of the other materials are chosen, but printing in parts is preferred, 

epoxy may still need to be purchased. The cost of labor and production by a third-party is not 

considered in this early-stage cost analysis.  

 

4.6 Selected Design Direction 

For PDR, we decided to move forward with prototyping using FDM printers located on campus, 

in either PLA or ABS. Our final product was determined to be printed on campus with an SLA 

printed final product using ABS resin material. This final product should meet all requirements, 

but we were continuing to investigate SLA printing off-campus with stronger materials. We also 

planned on contacting vapor smoothing companies. We had been emailing C&M Manufacturing 

in Santa Barbara in hopes of using their machines.  
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We thought we would pursue a hollow blade design, since it requires less material for creation, 

while maintaining the same aerodynamic properties of a solid blade.  

Since PDR, many changes have occurred to our design from new research and calculations. 

These are outlined below in Chapter 5. 

Chapter 5 – Final Process Selection  

5.1 Overall Process Selection 

5.1.1 Composites 

In the PDR stages of this project, composites were heavily discussed as an option for 

manufacturing the wind blades.  

Composites are commonly used in full-sized wind turbines because of their excellent properties 

for their weight. Industrial wind turbines have steadily become larger to obtain a greater 

efficiency of energy capture. An increase in size is also accompanied by an increase in the loads 

the blades and the rest of the structure experiences. As such, it is important to optimize weight 

for large-scale applications. 

However, the purpose and constraints of this project are significantly different than industrial 

applications. Firstly, the size of this project is constrained, which means that the loads on this 

part are significantly smaller. Also, this project is much more akin to a prototype model than a 

finished product ready for mass production. These two reasons mean that the focus shifts to the 

ease of manufacturing and the repeatability of the process. 

The downside of every composite process is the time and effort it takes to make minor changes 

to the design. Creating a composite part requires meticulous planning, cutting of fiber sheets, and 

supervision of the process. This workload does not lessen after the first composite part is made. 

If the design undergoes a minor change, the process essentially needs to be restarted with the 

same level of care and detail. For professional blade designs that are already locked in, this 

downside does not come into play. However, since the blade design for this project is still in the 

testing phase, it is important to be able to pivot designs quickly and effortlessly. This issue of 

needing a very hands-on process is compounded in the COVID era. A process which requires 

multiple hours and multiple people at the Cal Poly Shops is unfortunately not feasible in these 

times. 

For the reasons listed above, the decision was made to pursue other methods of manufacturing 

the blade. 

5.1.2 3D Printing 

As stated previously, 3D printing is widely known to be well suited to rapidly manufacturing 

prototypes, but it has also been used for manufacturing applications to produce small-scale wind 

blades. 3D printing comes with the benefit of creating a part directly from a computer design. 
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While there are considerations that need to be made when choosing the printing settings, the 

process needs considerably less meticulous labor than composite processes. Additionally, the 

work that needs to be done in choosing the printer settings and material can carry over to other 

prototypes even if the design changes slightly. This process can also be completed with a 

relatively small amount of in-person contact, because it is possible to send the part files to 

printing companies in SLO and have a single group member pick them up or receive them in the 

mail. 

There are a few general disadvantages to consider when looking into 3D printing processes. 

First, to achieve an optimal surface finish on the parts, some post processing is required. Due to 

the nature of how 3D printing splits the part into thin slices, the dimensional accuracy of the 

sections along the layer lines will be higher than the sections that cross the layer lines. A figure is 

shown below to demonstrate this concept. 

 

Figure 5-1. Representation of dimensional accuracy parallel and perpendicular to layer lines 

This means that there needs to be special consideration when deciding the direction to print in. 

This will be explained more in later sections, but overall this limitation is one that is outweighed 

by the benefits of 3D printing. 

For the reasons we listed above, we decided to pursue 3D printing as our manufacturing process 

of choice. 

5.2 Final Process Selection 

With our ideas for the blade manufacturing process organized, the first blade design was finally 

given by the Wind Power Club. The initial design given had a few design flaws that needed 

attention. Although it was known that the blade design would be long and thin to maximize the 

aerodynamic performance of the blade, the initial blade given had a thickness at the tip of the 

Print direction 

Section with less 

dimensional accuracy 

Section with more 

dimensional accuracy 
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blade that was too small that could be feasibly print in Fusion Deposition Modeling. This was 

determined using the program, Cura, which allows users to see what a theoretical 3D printer can 

print using an STL file.  

 

Figure 5-2. STL file of the blade in Cura showing unprintable area in red 

 

Figure 5-3. STL file of the Blade in Cura showing structural supports 

Looking at Figure 5-2, the red color indicates where the printer cannot print due to the very thin 

nature of the blade. This clearly shows that based on the blade and current print orientation, the 

blade cannot be printed. Another downside to printing horizontally, is the high probability of the 

part breaking to the large number of supports necessary to print the part as shown in Figure 5-3.  

Realizing this issue would be the same for almost all the blade designs since they all are too thin 

in nature, we looked at a different approach to printing the blades. The flaw was the length and 

thinness of the blade would be impossible to print horizontally. From research and advice from 

our industry contact, Andrew Cunningham, who is an engineer that specializes in 3D printing at 

GM, a possible solution to this problem would be printing the blade vertically. Printing the blade 

vertically eliminates the need for structural supports since the blade would be printed from top to 

bottom versus left to right.  

Based on these findings, we decided to print vertically for our prototypes and final blades. As 

shown in Figure 5-4 below, printing vertically will create layer lines parallel to the incoming air 

velocity, which also is advantageous in terms of aerodynamic performance. 
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Figure 5-4. STL file of blade printed Vertically 

5.3 Post-process Selection 

5.3.1 Sanding 

During the PDR stages of the project, sanding was considered but not one of the frontrunners. 

One of the concerns was that machine sanding would generate too much heat, thus causing the 

part to warp. This concern was confirmed, as the thin sections of the blade would succumb to the 

effects of heat even sooner, meaning it would be more of an issue. The other concern was that 

sanding the part by hand might cause the part to lose its dimensional accuracy due to the margin 

for human error.  

However, after researching the sanding process more and discussing it with our sponsor and 

Andrew Cunningham, we changed our mind on the subject. Initially we were worried that 

sanding would not be able to hit the surface roughness requirement. Once we received the 

specific surface roughness requirement this quarter, .25 microns, we realized that this could 

easily be achieved with fine grit sandpaper. 
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Table 5-1. Common Grit Size and Corresponding Surface Roughness [Engineering Toolbox] 

Grit 

Size 

Surface 

Roughness 

(Microns) 

80 1.8 

120 1.32 

150 1.06 

180 0.76 

240 0.38 

320 0.3 

500 0.18 

600 0.13 

Additionally, every website that informed how to finish 3D printing parts suggested sanding. 

Even with acetone smoothing it is recommended to sand the part first. For these reasons we 

decided to research the best sanding methods. 

When sanding the part, it is important to start with a coarse grit then progress to a finer grit. 

Additionally, wet sanding steps can be used to polish the surface of the part. The planned 

sanding process is shown below. For each of these steps, it will be performed evenly along the 

surface, changing sanding spots enough so that the part does not become too hot. For each step in 

this process, if any imperfections are noticed they will be removed with the course grit sandpaper 

and the process will be repeated for that section. 

 

Table 5-2. Sanding Progression 

Grit Size 

Wet / 

Dry 

80 Dry 

150 Dry 

240 Dry 

320 Dry 

500 Wet 

 

With these considerations made, sanding can be selected as the initial post-processing process we 

move forward with. If the first round of airfoils does not pass our DVPR, we would have 

progressed to using vapor smoothing processes. 

 

5.3.2 Vapor Smoothing 

Vapor smoothing is a reliable process that can greatly improve the surface finish of a part, 

however it is only available for ABS parts, so it is essentially linked to that.  
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An essential consideration when deciding whether to use vapor smoothing was the level of 

dimensional accuracy that the process retained. When researching the effects of vapor smoothing 

on dimensional accuracy, several sources were found that tested the material properties of small 

ABS dog bone specimens undergoing the effects of vapor smoothing. 

Table 5-3. Average absolute dimensional changes for vapor polished specimens [Neff] 

  

Another trait that was discovered about acetone smoothing was that it affected the material 

properties of the surface layer of the specimens. When the specimens were taken out at 45 

minutes, the time in which the surface roughness reached a surface roughness of .25 microns, 

changes to certain material properties were observed, as shown below. 

 

Figure 5-5. Change in material properties from unpolished to polished (vapor smoothed) 

specimens [Neff] 
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Certain characteristics, like the elastic modulus, seemed to converge as the size increased, likely 

because less of the part percentage was affected by the vapor smoothing process. Others, like the 

change in ultimate tensile strength and strain to failure are traits that can be assumed to be 

experienced by the full-sized blade as well. As there is no significant trend in the dimensional 

changes for the different sample sizes, it can be assumed that the data from this experiment can 

be scaled up to the size of the wind blade. A variance of length of even 0.9 mm, the maximum 

dimensional change in the chart, is acceptable for this application. 

It is important to consider that the experiment was conducted on test specimens that were 

significantly smaller than the wind blade. To apply these results to a larger blade, a few 

assumptions must be made. First, that the vapor bath is applied evenly along the entire blade 

surface. Second, the trends observed in the smaller specimens must be carefully considered 

whether they can be applied to larger specimens. 

Overall, the vapor smoothing process could be utilized to significantly improve the surface finish 

of a part, with the risk of changing the material properties of the final product. As the loads seen 

by this part are relatively small, the changes to material properties caused by this process are a 

price we are willing to pay to improve the surface roughness. However, this process might be 

overkill for the first round of testing, so this process will be utilized if the first round of sanded 

FDM parts do not pass DVPR.  

5.3.3 Abrasion Processes 

Abrasion processes such as vibratory bowl abrasion and tumbling abrasion were heavily 

considered in the PDR stage of the project.  

Abrasion processes typically are well suited for parts which do not have any small concave 

surfaces or details. As the wind blade is entirely convex, we initially thought this would mean 

that these processes are well suited for our design.  

However, after we had received the finalized blade design, we had reconsidered our stance on 

these processes. Abrasion processes come with the risk of chipping or breaking a part if the part 

is too thin or small. The blade sent to us by the WPC has a thin trailing edge, which would be 

vulnerable to being damaged in the abrasion processes. 
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Figure 5-6. Representation of areas too thin for abrasion processes (shown in red) 

It is not as simple as thickening the trailing edge, because the trailing edge cannot be thickened 

without changing the blade length if the aerodynamic properties are to stay the same. As the 

entire turbine is constrained in size, the length does not have much leeway to grow, which also 

means the trailing edge cannot grow by a meaningful amount either. 

For the reasoning stated above, we decided to pursue a finishing process that is more well suited 

to delicate parts. 

5.4 Failure Mode and Effects Analysis (FMEA) 

Through FMEA, we could understand our design better by investigating failures that can occur 

in every function and system involved in our product. Then, proper actions could be decided to 

control or design around them. This will improve safety of the design, while also ensuring a 

product that matches the project specifications. The full FMEA table can be found below in 

Appendix 11.6. 

5.4.1 3D Printing 

Our first system to analyze for potential failures is 3D printing.  

Its first function was to create a physical product representative of the given WPC design. Given 

this function, a failure can occur if the computer-aided design (CAD) does not meet the 

requirements of the printer. This can be caused by parts being too thin to print or the design 

being too complex. The design would also be considered unprintable if the price to print the 

design incurs a cost higher than the allocated budget. These failures were preventable by design 

verification in the print preview window of the printer application. 
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Its second function includes the production of three identical blades. These blades must each 

meet the design requirements and have an equal center of mass and inertia. If they are to fail 

these requirements, the performance of the turbine may not meet performance specifications 

and/or the blade may become unbalanced. This can result from imperfections or warping during 

printing or a miscalibration of the printer. This can be prevented with inspection through 

dimensional analysis of each print being compared to the desired CAD dimensions. If a blade 

that does not pass inspection is found, it can be printed before it moves on to the design 

verification plan.  

Third, the print must maintain desired blade properties including airfoils and twist angles. If 

these differ from the WPC design, the angle of attack, lift and drag may be compromised, or 

different than the intended design.  This can likewise be caused through imperfections during 

printing or miscalibration of the printer. Therefore, it can also be prevented through inspection 

and review of printer calibration settings. 

Lastly, the blade must maintain the desired tensile and bending strength. If it fails to do so, the 

blade may flex or break, therefore leaving the WPC with no blades to compete with. This can be 

prevented by making sure the print is comparable to the CAD design and does not have any 

imperfections along the layer lines that could cause failure.  

5.4.2 Manual Sanding 

The main function of manual sanding is to remove any burrs or surface imperfections on the 

print. As all the individual processes work together to make one single part, they all share 

potential failure modes and effects. 

Like printing, a failure in manual sanding’s core function will result in airfoils and twist angles 

varying from the WPC design, and the blades not meeting similarity requirements. If these 

failures are to occur, the angle of attack, lift, and drag may not match the requirements or 

specifications. Through this, the windspeed requirement may not be met. This can be caused by 

the removal of too much material, too little material, or creating an uneven finish. To prevent 

this, an optimal constant sanding pressure and time per grit paper must be found and documented 

to be used on every blade. 

5.4.3 Vapor Smoothing 

Like manual sanding, the main function of vapor smoothing is to remove any burrs or surface 

imperfections on the print. Since they share a function, they also share the same failure modes 

and effects, with the addition of one. Vapor smoothing incurs an addition failure mode through 

the possibility of over-warping the material. If this happens, the surface area, lift, and drag may 

be compromised. To prevent vapor smoothing failures, the proper smoothing time, or time for 

the print to be in the acetone, should be calculated and remain constant from blade to blade. 

5.4.4 Epoxy 
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For the two-piece SLA print, epoxy could be used to connect the parts. Potential failure modes 

include the surfaces of the pieces not being flush, the pieces not sticking, the material being 

ruined by the properties of the epoxy, or the blades not meeting similarity requirements. The 

effects would be compromised airfoils, lift, drag, and angle of attack values. If the blade does not 

stick, the blade could break and would not be able to compete. Possible causes include choosing 

an epoxy incompatible to the material, too little epoxy, too little cure time, or the parts not being 

lined up properly. The failures can be mitigated by ensuring a minimum cure time be met and 

creating a male-female connecting surface where the epoxy will stick. 

5.4.5 Highest Risk 

Due to the simple nature of our processes, most risks were of low priority. 3D printing problems 

could be fixed with a low-cost reprint, with each print becoming better through testing and 

documentation. Likewise, manual sanding risks were able to be mitigated through thorough 

documentation and testing of different techniques. Nonetheless, through our FMEA calculations, 

the highest risks include the blade losing structural integrity during 3D printing, and over-

warping during vapor smoothing. These were remedied with supports during printing and 

periodic check-ins while vapor smoothing.  

All failure modes will be detected in the design verification plan, as described later in the report 

in Chapter 7. 

5.5 Cost Analysis 

Since our design consisted of strictly one component, we broke down the cost of the 3D printing 

method chosen as well as the possible materials that we chose in our final design selection. For 

the 3D printing method, we broke it down into two possible choices; FDM and SLA. From there 

we reached out to companies to find a quote with either ABS or SLA to print our part as shown 

below.  

Table 5-4. Cost Analysis of Possible Companies to outsource 

Company Process Material Quote (cost) 

3Dhubz FDM ABS $66.31  

 SLA Formlabs Resin $152.35  

Shapeways FDM Versatile Plastic $26.00  

 SLA SLA Plastic $173.69  

Makexyz FDM ABS $17.90  

 SLA Accura Xtreme $122.90  

EE Helpdesk 

(free, just need FDM ABS $15  

material) SLA PLA $40  

Xometry FDM ABS $27.95  

 SLA PLA $79.66  
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Looking at Table 5-2, it’s clear that FDM processes with ABS material is the cheaper method 

while SLA is much more expensive. Based on the cheaper costs of FDM, this had been selected 

as the process for the initial prototyping while SLA has been chosen for the final blade 

manufacturing. The EE Helpdesk located at Cal Poly is currently the manufacturer of choice 

since the actual printing process is free and the only requirement is the purchasing of the 

material. 

Chapter 6 – Manufacturing Plan  

Once the blade design and 3D printing has been selected, the blade could be sent to a 

manufacturer to be printed. As stated earlier, our first prototypes will be using FDM with ABS as 

the material. The following process describes how to manufacture any blade design given. The 

first step was to choose the manufacturer. For our initial prototypes, we chose the cheapest 

option, which is the EE Helpdesk located at Cal Poly, but there are many different companies 

one can choose from. The next step would be choosing the printer settings for your blade, which 

includes making sure the blade will be printed vertically as well as setting your desired infill 

settings. Since the blade needs to be lightweight and the loads are minimal from the calculations 

given to us by the WPC, an infill of 40-50% is all that is needed to satisfy the loading 

requirements. Depending on the manufacturer chosen, either the material will be provided for 

you or you will have to buy it separately. Once the part is printed, structural supports will be 

carefully removed and then the steps to post processing are followed. This will be done using 

sandpaper for the prototypes, and a combination of both sanding and vapor smoothing for the 

final blades. The following table outlines the possible materials that were expected to be 

purchased for this process. 

Table 6-1. Materials Procurement Table 

  Material Quantity Seller Price 

1 80-500 grit Sandpaper 1 Home Depot $5.00-$15.00 

2 Roll of ABS 1 Amazon $19.99 

3 SLA Resin 1 Amazon $28.00 

4 Acetone 1 Home Depot $8.00 

 

Depending on the manufacturer chosen, the print would have either been picked up at their 

location or delivered to a desired address. Once the printed blade is received, make sure the blade 

meets the WPC requirements by following the design verification plan outlined in the next 

chapter. Once these are satisfied, sanding can begin starting from 80 grit sandpaper up to 500 grit 

sandpaper until the desired 25-micron surface finish is achieved, and then your part is ready to be 

attached to the turbine.  
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6.1 Overall Top-half Turbine Component Layout 

As our project is a single piece in the Wind Power Club’s turbine, it is important to understand 

how our project connected with the rest of the turbine at the end of production. 

The produced blades were to be attached to a blade hub with a hole in the middle. The blade hub 

will slide onto a shaft to connect it to the face of the nacelle, which houses all the drive 

components.  

 

Figure 6-1. Component layout of the top half of the turbine, illustrating how the blades fit into 

the overall turbine project. 

The blade design, as of Oct 22, 2020, is pictured below. The blade was planned to be attached 

through a dovetail on the end of the blade, which is not shown. 

 

Figure 6-2. Most recent blade design (10.22.20). 

 

6.2 Manufactured Blades 

Throughout the project, our team ended up printing three sets of blades from three different 

providers. Ideally, we would have printed multiple times with each provider, then compare the 

blades in groups of providers, then against each provider. But, due to the COVID-19 pandemic, 

long wait times and shut-downs forced us to print one set of blades per each provider. The results 
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of the blades are therefore affected by the printer and the skill level of the operators. The three 

sets of blades are shown in the Figure 6-3. 

 

Figure 6-3. Printed with Creality Pro v2 by EE Help Desk 

The blade in Figure 6-3 was printed on campus by the electrical engineering help desk, by an 

operator with a year and a half of 3D printing experience. The print may have been affected by 

its open-casing and temperature changes due to a more than 20 degree drop in temperature over 

its 12 hour print time. The blades were printed with ABS filament. From initial inspection, the 

blades contained an extensive number of burrs and the supports at the base of the blade were 

very difficult to separate from the print. The general shape of the blade seemed accurate to 

design, including the trailing edge. These blades will be referenced as “FDM blades”. 
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Figure 6-4.  Printed with Flashforge Creator Pro by private commission 

The blade in Figure 6-4 was our second print, printed by a private commission with a Flashforge 

Creator Pro printer, which is an FDM printer as well as the first, but advertised as specifically 

being good with ABS. The blades were printed with ABS filament. The print bed on this printer 

was not long enough on the Z-axis, so the print blade had to be printed in two parts. From initial 

inspection, the blades had much less burrs than the first FDM blades. The operator had cleaned 

off the supports before mailing and the trailing edge was also smooth. The general shape of the 

blade seemed accurate to design. These blades will be referenced as “ABS-specific” blades. 

 

Figure 6-5. Printed with SLA printer by MakeXYZ 

Lastly, we took to an online printer provider called, MakeXYZ to print our SLA blades, as 

shown in Figure 6-5. The blades were printed with Accura Xtreme, which is advertised as an 

ABS-like material. From initial inspection, the blades did not have any burrs. The print had 

smooth edges, and the general shape was accurate to the design. Printing three blades came out 

to be $399.49 and were delivered within a week. These blades will be referenced as “SLA” 

blades.  

After receiving all the blades, each blade went through design verification, as outlined in Chapter 

7, to determine the print that best met the design requirements. 

Chapter 7 – Design Verification Plan  

To test to see if our processes created blades that met our specifications, a design verification 

plan had been devised. The design verification plan can be found in Appendix 11.7. 

7.1a Blade Length Verification 

The first and easiest verification to perform was verifying whether the blade length was to the 

WPC’s specifications. The blade’s tip and root surfaces are ideally flush with each other, so it 

would be relatively easy to align a caliper along the blade length. To visualize this easier, Figure 
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7-1 of the blade and measurement area is included below. 

 

Figure 7-1. Blade length measurement diagram 

The length of the blade is 19.5 centimeters, which is larger than a 6 inch caliper, so a 12 inch 

caliper should be utilized. Vernier calipers typically measure with a 1 mm precision, which is 

more than enough to verify whether the blades successfully pass the length requirement of 19 ± 1 

cm. 

7.1b Blade Length Verification Results 

A Pittsburgh 12” Digital Caliper with a precision of ±0.001 cm was used to perform this test. 

The blades were measured from tip to base as shown below. 

 

Figure 7-2. Blade Length Test 
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Each blade was measured and tabulated, shown below. The reason for the FDM blades having a 

different length is that they were a print of a previous design with a longer extension at the base 

of the blade.  

 

Table 7-1. Blade Length Verification Test Results 

Printing Method Lengths (cm) Spread (cm) Pass or Fail 

FDM 19.592 0.022 Pass 

  19.614   Pass 

SLA 18.312 0.007 Pass 

  18.319   Pass 

  18.319   Pass 

ABS-specific 18.396 0.038 Pass 

  18.397   Pass 

  18.358   Pass 

 

Every blade passed the 19±1 cm constraint laid out by the WPC team. Predictably, the SLA was 

the most precise method, while the ABS-specific was the least. A possible reason for the lack of 

precision in the ABS-specific blade was that the blade was built in two pieces and the ends were 

not entirely flat. 

However, we believe that the constraint was too loose, and recommend that the constraints for 

the blade length be more precise.  

7.2a Mass Test 

To measure the mass of the blades, a simple triple beam balance was to be utilized. The weight 

of each blade was recorded for calculations in later tests. The precision of a triple beam balance 

is usually 0.5 grams. Although a weight requirement was not given by the WPC, for balancing 

purposes a set of blades was only considered successful if they had weights within 5% of each 

other. 

7.2b Mass Test Results 

This test was focused on comparing the masses within each set of blades rather than comparing 

the sets of blades with each other. This test was focused on comparing the similarity of the 

measured weights and was not as concerned with the weight values themselves.  

The allowable range that the weights could fall under was calculated by taking 5% of the average 

weight of each set of blades. Since the allowable spread of weights was greater than a gram, it 

was not necessary to use a device with a greater precision that 1 gram. Due to this, a simple 

kitchen scale was used to measure the blade weights due to its accessibility. 
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Table 7-2. Mass Test Results 

 

 

 

 

 

 

 

 

Each blade passed the mass test, although the ABS-specific blades had the highest variance in 

mass. 

7.3a Hanging Center of Gravity Test 

For balancing purposes, it is important to have knowledge of where the center of gravity is 

located. This test was based on a scaled-down version of the hanging center of gravity test 

performed for the Static Balancing of the Cal Poly Wind Turbine Rotor thesis. [Simon] Overall, 

the process was similar, but with considerations made to accommodate for a smaller part. 

 

Printing 

Method 

Allowable 

Spread (g) 

Weights 

(g) 

Pass or 

Fail 

FDM 2.65 53 Pass 

    53 Pass 

SLA 2.8 56 Pass 

    56 Pass 

    56 Pass 

ABS-specific 2.3 46 Pass 

    45 Pass 

    45 Pass 
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Figure 7-3. Hanging Method Formulation [Simon] 

 

The first step was to hang the blade in an off-axis manner. In front of the blade, hang a weighted 

fishing line. Once the system comes to rest, we carefully taped the fishing line to the blade, then 

cut the blade’s fishing line from the weight and the main cable. We repeated this process, except 

with the blade rotated 180 degrees. The intersection point of the two fishing lines was marked as 

the center of mass for later tests. We visually inspected the location of each center of mass. 

Blades that were not find them to be visibly different, were considered to have passed this test.  
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7.3b Hanging Center of Gravity Test Results 

Using this method, both ABS and SLA manufactured blades were tested for their center of mass. 

Each type of blade resulted in almost the exact same center of mass, with the SLA being slightly 

more accurate than the ABS. This makes sense since the SLA was much more dimensionally 

accurate compared to the ABS blade which still had supports on the end of the blade since the 

printer couldn’t precisive print as well compared to the SLA printer. From this test, SLA is the 

recommended blade since it’s center of mass is basically identical between each blade.  

7.4a Moment of Inertia Swing Test 

To estimate the moment of inertia of the wind blades, it will be sufficient to utilize a swinging 

moment test. The way this test works is by observing the natural frequencies of the blade when 

swinging and back-calculating to find the moment of inertia. 

The blade’s moment of inertia was measured by using the bifilar pendulum method, where two 

fixed points with two strings will attach to each end of the blade and the amount of time will be 

recorded for a set number of oscillations.  

First, the blade was set up using two strings attached to each end of the string which are attached 

to fixed point on a hook. In order for this method to be accurate, the distance D, had to be the 

same on both the top fixed points as well as the points on the blade. A picture of the setup is 

shown below. 

 

Figure 7-4. Moment of inertia test setup 

Once setup, the blade was twisted at a fixed point so that the same distance is used each time. 

Using a stopwatch, we timed the amount of time it took for the blade to complete 10 oscillations. 

The values were then be averaged to obtain a higher degree of accuracy.  
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The blade is assumed to be able to be treated as a compound pendulum, meaning the following 

equation could be used to calculate its moment of inertia. 

𝐼 =
𝐷2𝑊𝑓

16𝜋2𝐿
 

The weight, W, was obtained in the mass test and using gravity. The lengths, D and L, are 

measured using a ruler once the setup is complete. The value, f, is the period calculated using the 

average time of oscillations for each test. This experimental value was compared for each blade 

to see if the moment of inertia’s was similar.  

There was not an exact constraint given for the similarity of moment of inertia between the 

blades. However, since this is an important constraint, we did not consider a set of blades to be 

successful unless they are within a 3% margin of each other. 

7.4b Moment of Inertia Swing Test Results 

Using this method, the following is one set of data for calculating the mass moment of inertia of 

the blade. 

Table 7-3. Data collected to find the mass moment of inertia of a single blade 

Run Time (s) Period (s) 

Mass Moment (kg-

𝑚2 × 10−4) 

1 6.12 0.612 1.3787 

2 6.15 0.615 1.39225 

3 5.98 0.598 1.31634 

4 6.16 0.616 1.39678 

5 6.21 0.621 1.41954 

6 6.14 0.614 1.38772 

7 6.17 0.617 1.40132 

8 6.23 0.623 1.4287 

9 6.14 0.614 1.38772 

10 6.12 0.612 1.3787 

 

Using this data, the average mass moment of inertia was found for the blade using all the data 

points found. This was done for each blade that we printed except for the FDM blades, as they 

were in two separate pieces and we did not find an appropriate method to epoxy the blades 

accurately. The final results of the mass moment of inertia of the blades are shown in Table 7-4. 
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Table 7-4. Mass moment of inertias for each blade 

 

Mass Moment 

(kg-𝑚2 × 10−4) Pass/fail 

SLA 

1.3887 

Pass 1.4011 

1.3982 

FDM 
1.3685 

Pass 
1.3578 

 

Looking at the results, each blade had a mass moment of inertia within less than one percent of 

each other. The SLA blades were slightly closer together than the FDM blades, but both types of 

blades pass the WPC requirements of less than three percent difference between each blade.  

7.5a Airfoil Dimensional Accuracy Test 

To test the accuracy of the airfoils, we utilized laser cut profiles of airfoils at certain lengths 

along the blade tip. These laser-cut profiles can be done at Mustang 360. 

 

Figure 7-5. Profile at 3 cm from the blade tip 
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Figure 7-6. Profile at 7 cm from the blade tip 

 

Figure 7-7. Profile at 10 cm from the blade tip 

 

After laser cutting the profiles above, we were to slide the cutouts along from the tip towards the 

base. We could only do the test in this direction because the dovetail at the blade root prevented 

us from sliding cutouts from the root to the tip.  

 

Figure 7-8. Testing variables and installation method 

 

We were then to slide the cutout profiles along the blade until they reached the point where they 
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could not go any further. At this point, we were to visually inspect if the airfoil and the cutout 

match. If they did, we would continue with the next step. The distance to the blade tip could be 

calculated using the equation below. The variables are shown on the figure above. 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑇𝑖𝑝 = 𝐿 + 𝑡 − 𝑑 

 

If the experimental distance to the tip was within 1 cm of where the cutout was obtained from, 

we were to consider the blade to have passed this test. This criterion was chosen based on the ±1 

cm length constraint given to us by the WPC. 

7.5b Airfoil Dimensional Accuracy Test Results 

There were two attempts to make the cutouts for the airfoil dimensional accuracy test. The first 

attempt was done with water jetting on low-carbon steel, and the second was done with laser 

cutting on wood hardboard. The procedure for preparing the file needed to cut the material was 

the same between both tests, which will be covered first.  

To build the airfoil cutouts for the airfoil dimensional accuracy test, the following procedure was 

employed. For each of the cutouts, a plane was offset from the tip of the blade at the desired 

distance. 

 

 

Figure 7-9. Plane Offset from Tip of Blade 

Then, a sketch was created on the plane and the Intersection Curve function was used to project 

the airfoil cutout onto the sketch plane. 
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Figure 7-10. Using Intersection Curves to Generate an Airfoil Cutout 

Then, outside of the sketch view, the model was hidden, leaving only the sketch visible. 

 

Figure 7-11. Hiding the Model 

This was repeated for 3cm, 6cm, 9cm, and 12 cm from the blade tip, each in a different file. The 

reason why four cutouts was chosen rather than the original three was because the only material 

available was in a large stock, leaving a lot of extra room for cutouts. Then, each of the cutouts 

was placed into a drawing. 
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Figure 7-12. Drawing of Airfoil Cutouts 

The drawing was then saved as an STL file.  

The first attempt at cutting out the airfoils was done with the waterjet. A 12”x15”x0.0220” Low-

Carbon Steel Sheet from McMasterCarr was used as the stock for this cut. The metal was cut in 

Mustang60’s waterjet machine, with the following results. 

 

Figure 7-13. Waterjet Airfoil Cutouts 

The waterjet was not able to cut the sharp turns that the airfoil cutouts required, resulting in the 

blotching effect near the thin edges of the blades. The shop techs recommended using a laser 

cutter as it has a thinner kerf and thus would be able to cut the sharp turns that the cutouts would 

require. For the laser cutting, a 1/4” thick hardboard sheet was used. The width and height were a 
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lot larger than needed, and had to be cut down, so it would be ideal to buy a different size if there 

are plans to repeat this test in the future. The Universal Laser System laser cutters employed by 

Mustang 60 require an Adobe Illustrator file as input, but thankfully there are computers at the 

shop that can be used to convert STL files to Illustrator files. The laser cut airfoil cutouts are 

shown below, and it is evident that the laser cutter handled the sharp turns much better than the 

waterjet. 

 

Figure 7-14. Laser-cut Airfoil Cutouts 

Unfortunately, the laser cutter was in imperial while the STL file was in metric, so it was 

necessary to manually resize the prints and as such the airfoils did not fit into the cutouts. As it 

took a long time to do the waterjet and the laser cutting was a last-minute backup plan, there 

were not enough laser cutting time slots available before the shops closed to be able to get the 

part cut again.  

There is more than enough space on the hardboard to attempt more airfoil cutouts. Fixing the 

dimensioning problem is as simple as going into Settings > Document Properties > Units and 

changing the Unit System to IPS, but it is not possible to cut another cutout until the shops open 

up again in spring quarter. There are plans to cut correctly dimensioned airfoil cutouts in spring 

quarter and perform the test then.  

7.6a Surface Roughness Test 

A surface roughness tester can be found in Cal Poly’s IME department. This device works by 

holding sections of the blade up to the surface profile measurement device, then reading the 

output on the dial.  
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Figure 7-15. Surface profile measurement locations 

 

To gain an accurate understanding of the entire surface profile of the part, we measured seven 

points on each side then average the measurements to obtain our general surface roughness 

measurement. A blade that has an average surface roughness measurement of .25 microns or 

below will pass this test. 

7.6b Surface Roughness Test Results 

Due to IME lab restrictions, we were not allowed to do the measurements ourselves, and the 

technicians were only able to get a quick reading, with two points on each blade being measured, 

as shown below in Figure 7-16. 
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Figure 7-16. Surface roughness test points 

The measured values for each point are shown below in Table 7-5. 

Table 7-5. Surface roughness test results per blade (in microns) 

 A B Average 

FDM 8.44 18.61 13.53 

ABS-specific 13.03 28.55 20.79 

SLA  9.53 9.21 9.37 

 

Accordingly, after print, the parts do not meet the 0.25 micron criteria without post-processing. 

After discussing with the Wind Power Club, it was decided that this criterion may have been too 

tight of a constraint. A coat of epoxy or sanding could be performed to improve results, but our 

sponsor preferred keeping the high roughness over risking ruining the geometry of the print. 

7.7 Recommendations for Future Manufacturing Based on DVP&R  

After completion of our design verification, it was clear that the SLA printed blades were the 

best option for competition ready blades. Our recommendation for the WPC would be to 

continue printing through MakeXYZ, for the best quality prints at a reasonable price. We believe 

that the .25 micron criteria should be investigated, to see if it is possible to raise the minimum 

roughness. If the new roughness criteria are still not matched by the SLA blade, the team should 

epoxy the blade, at the risk of ruining the blade geometry. The epoxy should fill in the tiny gaps 

in the print, adding extra smoothness. A roughness test should be performed post-epoxy to see if 

the extra smoothness is worth the possible loss in design accuracy. Likewise, we believe that the 

blade length constraint should be reevaluated. We were given the constraint of +/- 1 cm, which is 

quite large, since one centimeter would be a 5% change in the blade length. We believe this 

should be a much tighter constraint, allowing for more consistency with the blade properties.  
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Chapter 8 – Project Management  

To accomplish this project before the competition in June 2021, a schedule was set forth 

including a list of deliverables that must be finished by certain dates with intent to have a 

finalized manufacturing process by the scheduled completion date in mid-March of 2021. This 

included key milestones set by the leads of Cal Poly Wind Power team as well as our senior 

project team. The milestones, along with any other communication and plans to stay on track are 

outlines in the sections below. 

8.1 Communication Plan 

Throughout the project there were three informal weekly status updates and two semi-quarterly 

formal updates. A project manager status update meeting with the project manager occurred 

every Thursday for 30 minutes. Weekly progress reports were shared along with feedback and 

mentoring. A client status update occurred weekly between the Blade Team and the WPC. 

Feedback and exchange of new findings were shared to make sure the project stays in alignment 

with the other sectors of the full turbine. Weekly planning meetings occurred between the 

members of the Blade team to ensure deliverables are being made in a timely manner. Work was 

divided evenly between team members with inter-work communication through GroupMe and 

Microsoft Teams.  

Table 8-1. Communication Matrix  

# Format Format Frequency Escalation Description 

1 PM Status 

Update 

Zoom Weekly Project Manager 

(PM, Fabijanic) 

Update and receive 

guidance and feedback 

2 Client Status 

Update 

Zoom Weekly Client (WPC) Report and receive new 

findings and feedback. 

3 Weekly 

Planning 

Zoom Weekly Team members Assign work for the 

following week. Check 

deadlines. 

4 Design Updates Document, 

Presentation 

Semi-Quarterly PM, class CDR, FDR 

5 Cost Estimation Document, 

Presentation 

Semi-Quarterly PM, class Included in updates in 

CDR, FDR 

 

8.2 Timeline and Deliverables 

Since submitting our Conceptual Design Report, we progressed greatly with much more with 

printing and testing. Our team completed a design review of three different blade printing styles. 

At the end of our testing, we decided that printing through MakeXYZ, who uses an SLA printer 

with Accura Xtreme material, is the best printing method for competition ready blades. 

Our process will be utilized by the WPC to create competition ready blades, which will be used 

in the June 2021 Collegiate Wind Competition. Below is a completed timeline for our project. 
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Table 8-2. Project Timeline 

Major Deliverable Description Deadline 

 

Prototype Printing* 

 

Single blades will be printed to create test subjects 

for sanding. After best sanding practices are chosen, 

two of a kind blades will be sanded and will move on 

to DVP. Deliverables include two of a kind smooth 

blades to be tested for specifications including 

similarity. 

Nov 14, 2020 

Manual Sanding 

Testing* 

Single blades will endure different sanding 

techniques, with each result being tested against each 

other for surface roughness and dimensional 

accuracy to the given design. Deliverables include a 

detailed documented process for sanding that can be 

reproduced. 

Nov 14, 2020 

First Design 

Verification 

Blades will be verified against project specifications. 

Full DVP plan is detailed in Chapter 7. Deliverables 

include a blade that meets all specifications and is 

accepted by the WPC for competition. 

Nov 24, 2020 

Competition 

Prototype Printing 

 

The optimal print and sanding techniques chosen 

through the first round of DVP will be used to create 

three competition-ready prototype blades. 

Deliverables include three competition-ready blades, 

ready to be tested in second-round DVP. 

Jan 16, 2020** 

Second Design 

Verification 

Blades will be verified against project specifications. 

Full DVP plan is detailed in Chapter 7. Deliverables 

include a blade that meets all specifications and is 

accepted by the WPC for competition. 

Jan 24, 2020 

Operator’s Manual 

Full user’s manual to perform the blade 

manufacturing process. Deliverables include detailed 

instructions for each part of the process, pictures, and 

a list of safety hazards. 

 By March 15, 2021 

Final Design Review 

(FDR) 

Final project review. Includes changes and updates 

made during testing and prototyping. Deliverables 

include a complete review of the design and testing 

performed, and an operator’s manual for future use 

of the product. 

By March 15, 2021 

*Prototype printing and manual sanding testing will occur at the same time. **Printing may have to be redone after 

the deadline if the WPC updates their blade design. 

8.3 Risk Assessment 

Although our design dictates mainly outsourcing for processes, such as 3D printing and surface 

smoothing, it is not safe to assume future WPC members will not perform the entire blade 

manufacturing process themselves. Therefore, there are many safety concerns to speak of. The 

following risks are reiterated in the Design Hazards Checklist in Appendix Appendix 11.8.   

3D Printing 
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• Automatic, high acceleration: The printer uses a printer head that moves with high 

acceleration to its input in the X, Y, and Z axes. Keep hand away from the printer bed 

and head when in use.  

• Pinch points: Printers that use pulley systems may have pinch points. Keep fingers away 

from these areas.  

• High temperatures, flammable: Printer must be watched when in use with temperature of 

the machine and components being monitored. Electrical fires can be caused by wire, 

connector, or individual component overheating and failure. Printer head and material 

also heat up to dangerous levels. Most printer material is flammable as well.  

• Falling: Ensure that the printer is placed on a stable surface that can handle its weight. 

Falling may occur. 

Surface Smoothing (Not to be done at home, approval required for on-campus) 

• Toxic chemicals: Chemicals such as acetone may be used, which is highly toxic to inhale 

and harmful to skin. When using toxic chemicals, make sure to wear gloves and a gas 

mask when needed. Check for spills and ensure the chemical is cleaned up when use is 

finished. 

• Flammable: Avoid high heat near chemicals, as they may be flammable. 

• High temperatures: During smoothing process, be sure to keep hands away from the 

vessel to avoid burning. 

• Spilling: Do not spill the chemical as it can damage the user and the surface. Any spills 

must be cleaned up immediately.  

Wind Turbine 

• Rotating Parts: Use eye protection when running the rotor with the blade attached. 

• Overspeed: If the motor is running at too high a speed, failure may occur resulting in 

flying pieces and damaged equipment. Eye protection is required. 

• High Accelerations: Turbine is subject to initial high accelerations. Keep hands away 

from the blades when starting the turbine. 

8.4 Completed Process and Deviations 

As intended after CDR, our project primarily focused on comparing FDM and SLA prints, since 

composites were ruled out due to their difficult skill level and high margin of error. For our FDM 

prints, we used 100% infill with a 45° zigzag pattern, with ABS filament. For our SLA print, we 

printed through an online printer, MakeXYZ, who printed with Accura Xtreme. The specifics of 

this process were described in detail in Section 6.2. 

There were many deviations from the original manufacturing plan due to complications from 

COVID. This limitation primarily came into effect for the DVP&R portion of the project. There 

was a lot of distance between team members, so it was not always easy to pass the blades 

between each team member to perform their test. This lengthened the testing timeline 

considerably.  

As mentioned in Section 7.5b, there were multiple deviations in the manufacturing of the airfoil 
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cutouts for the dimensional accuracy test. There was an initial pivot to waterjet cutting because it 

was thought that a thinner material such as the steel sheet would allow for a more accurate 

measurement of whether the airfoil was accurate or not. However, as this process did not work, 

there was the fallback plan of using laser cutting, but there was not enough time to perform it 

again and fix the mistakes due to the time that water jetting took. 

Chapter 9 – Conclusion  

The detailing of the final design review of this project, as described in this document, serves as 

the agreement between us and our sponsor of the final design process for the manufacturing of 

the blades. With the finalized manufacturing process, the Wind Power Club has all the tools 

necessary to print their final design of the blades for the competition in June. Based on our 

results which are outlined in this document, we recommend using SLA for printing the final 

blades as it was the best process that fit the criteria required of the WPC. If the team wants to 

continue to test blades for a cheaper option, ABS and FDM are still viable for prototyping for 

future design changes.  
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Chapter 11 – Appendices 

11.1 QFD (House of Quality) 

 

Figure 11-1. House of Quality for the blade manufacturing process. 
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11.2 Functional Decomposition 

 

Figure 11-2. Functional Decomposition for Surface Finish

  

Figure 11-3. Functional Decomposition for Repeatability 
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Figure 11-4. Functional Decomposition for Material Properties 

 

 

Figure 11-5. Functional Decomposition for Cost 
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11.3 Pugh Matrices 

Table 11-1. Processing Options Pugh Matrix 

Criteria Weight FDM SLS SLA WL PP VARTM 

Availability of 

Resources 3 0 -1 -1 0 -1 -1 

Cost to Implement 4 0 -1 -1 -1 -1 -1 

Time to Implement 1 0 0 0 0 -1 -1 

Accepts Design 

Changes 4 0 0 0 -1 -1 -1 

Precision of 

Dimensions 5 0 2 2 0 2 2 

Labor Involvement 2 0 0 0 -2 -1 -1 

  Totals 0 3 3 -12 -4 -4 
FDM: Fused Deposition Modeling • SLS: Selective Laser Sintering • SLA: Stereolithography 

WL: Wet Layup • PP: Pre-Preg • VARTM: Vacuum Infusion 

 

Table 11-2. Post Processing Pugh Matrix 

Criteria Weight MS AM SB TF VBA VS 

Availability of 

Resources 3 0 -1 -1 -1 -1 -1 

Cost to Implement 4 0 -1 -1 -1 -2 -2 

Time to Implement 1 0 1 1 -1 -1 -2 

Repeatability 4 0 0 0 1 1 1 

Precision of 

Dimensions 5 0 1 1 0 1 2 

Labor Involvement 2 0 0 0 2 2 1 

  Totals 0 -1 -1 0 1 3 
MS: Manual Sanding • AM: Abrasive Milling • SB: Sand Blasting • TF: Tumble Finishing 

VBA: Vibratory Bowl Abrasion • VS: Vapor Smoothing 
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11.4 Sample Deflection Calculations 

 

 

Figure 11-6. Deflection Calculations 
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11.5 Material Properties 

Table 11-3. Material Properties Specifications Table 

 

Material Tensile 

Strength 

Tensile 

Modulus 

Flexural 

Modulus 

Elongation Cost 

SLA 65 MPa 2.9 GPa 2.2 GPa 6.20% $50/L 

ABS 27 MPa 2.3 GPa 2.1-7.6 GPa 3.5-50% $15-20/kg 

Nylon-12 50 MPa - 1.4 GPa 200% $80/kg 

PLA 37 MPa 2.7 GPa 4 Gpa 6% $15-20/kg 

Carbon Fiber 2.1 GPa 10.3 GPa 3.38-638 GPa 1.34% $20/ 300mm^2 
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11.6.1 FMEA: 3D Printing 

 

System Function 

Potential 

Failure 

Mode 

Potential 

Effects of the 

Failure Mode S
ev

er
it

y
 

Potential Causes 

of the Failure 

Mode 

Current 

Preventative 

Activities 

O
cc

u
rr

en
ce

 

Current 

Detection 

Activities 

D
et

ec
ti

o
n

 

R
P

N
 

Recommended 

Action(s) 

3D 

Printing 

Creates 

physical 

product 

CAD does not 

meet printer 

requirements 

No blades 

produced 
10 

Too thin to print; 

design too 

complex; extreme 

cost 

Verify design 

with print 

preview 

1 
Was it able 

to print? 
1 10   

Produces 2-3 

identical blades 

Blades do not 

meet 

similarity 

requirements 

Performance 

does not meet 

specifications 

8 

Imperfections 

during printing or 

curing; printer not 

calibrated 

correctly 

Review printer 

calibrations and 

print preview; 

ensure constant 

print 

environment 

2 

Final 

testing 

(Inertia 

swing test; 

surface 

roughness 

test; wind 

tunnel test)  

2 32   

Turbine 

unbalanced 
8 

Imperfections 

during printing or 

curing; printer not 

calibrated 

correctly 

3 1 24   

Maintains 

desired airfoils 

Airfoils vary 

from design 

Lift/drag 

compromised 
7 

Imperfections 

during printing or 

curing; printer not 

calibrated 

correctly; design 

too complex 

4 5 140   

Maintains 

desired length 

Blade exceeds 

size limits or 

is too short 

MOI 

compromised 
7 

Imperfections 

during printing or 

curing; printer not 

calibrated 

correctly 

3 1 21   
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System Function 

Potential 

Failure 

Mode 

Potential 

Effects of the 

Failure Mode S
ev

er
it

y
 

Potential Causes 

of the Failure 

Mode 

Current 

Preventative 

Activities 

O
cc

u
rr

en
ce

 

Current 

Detection 

Activities 

D
et

ec
ti

o
n

 

R
P

N
 

Recommended 

Action(s) 

3D 

Printing 

Maintains 

Desired Length 

Blade exceeds 

size limits or 

is too short 

Loses 

structural 

integrity 

9 

Imperfections 

during printing or 

curing; printer not 

calibrated 

correctly; design 

too complex 

Review printer 

calibrations and 

print preview; 

ensure constant 

print 

environment 

5 
Final 

testing 

(Inertia 

swing test; 

surface 

roughness 

test; wind 

tunnel test) 

5 225 Add supports 

Turbine 

unbalanced 
7 

Imperfections 

during printing or 

curing; printer not 

calibrated 

correctly 

2 1 14   

 
Maintains 

desired twist 

angles 

Angles differ 

from design 

Angle of 

attack 

compromised 

7 

Imperfections 

during printing or 

curing; printer not 

calibrated 

correctly; design 

too complex 

 5  5 175   

 

Maintains 

desired 

tensile/bending 

strength 

Blade flexes 

or breaks 

Turbine can't 

compete 
10 

Imperfections 

during printing or 

curing; material  

poorly chosen 

 1  1 10   

 
Maintains 

desired moment 

of inertia (MOI) 

MOI varies 

between 

blades and 

from the 

design 

Turbine 

unbalanced 
7 

Imperfections 

during printing or 

curing; 

 5  2 70   
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11.6.2 FMEA: Manual Sanding Printing 

System Function 
Potential 

Failure Mode 

Potential 

Effects of the 

Failure Mode S
ev

er
it

y
 

Potential 

Causes of the 

Failure Mode 

Current 

Preventative 

Activities O
cc

u
rr

en
ce

 Current 

Detection 

Activities D
et

ec
ti

o
n

 

R
P

N
 

Recommended 

Action(s) 

Manual 

sanding 

Removes any 

burrs or 

surface 

imperfections 

Burrs 

maintained 

Airfoils 

change 
6 

Removing too 

much material; 

removing too 

little material; 

Uneven finish; 

Constant 

sanding 

pressure; 

constant sanding 

time per grit 

paper;  

3 

Final 

testing 

(Inertia 

swing test; 

surface 

roughness 

test; wind 

tunnel test)  

4 72   

Lift/drag 

compromised 
6 3 4 72   

Airfoils vary 

from design 

Wind speed 

req. not met 
8 3 4 96   

Lift/drag 

compromised 
7 3 4 84   

Angle of 

attack 

compromised 

7 3 3 63   

Twist varies 

from design 

Angle of 

attack 

compromised 

7 3 3 63   

Blades do not 

meet similarity 

requirements 

Wind speed 

req. not met 
8 6 3 144   

Lift/drag 

compromised 
7 6 3 126   

Angle of 

attack 

compromised 

7 6 3 126   
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11.6.3 FMEA: Vapor Smoothing 

System Function 
Potential 

Failure Mode 

Potential 

Effects of the 

Failure Mode S
ev

er
it

y
 

Potential 

Causes of the 

Failure Mode 

Current 

Preventative 

Activities 

O
cc

u
rr

en
ce

 

Current 

Detection 

Activities 

D
et

ec
ti

o
n

 

R
P

N
 

Recommended 

Action(s) 

Vapor 

Smoothing 

(ABS only?) 

Removes any 

burrs or 

surface 

imperfections 

Burrs 

maintained 

Airfoils 

change 
6 

Part not left in 

vapor long 

enough; vapor 

not diligent 

enough - burrs 

not removed; 

vapor causes 

warping 

Calculate proper 

smoothing time; 

keep constant 

time in vapor 

5 

Final 

testing 

(Inertia 

swing test; 

surface 

roughness 

test; wind 

tunnel test)  

5 150   

Lift/drag 

compromised 
6 5 5 150   

Airfoils vary 

from design 

Wind speed 

req. not met 
8 1 5 40   

Lift/drag 

compromised 
7 5 5 175   

Angle of 

attack 

compromised 

7 5 5 175   

Twist varies 

from design 

Angle of 

attack 

compromised 

7 5 5 175   

Material 

overwarped 

Surface area 

compromised 
8 5 5 200 

Periodic check-ins 

every 5 minutes. 

Lift/drag 

compromised 
8 5 5 200 

Periodic check-ins 

every 5 minutes. 

Blade does not 

meet similarity 

requirements 

Wind speed 

req. not met 
8 6 4 192   

Lift/drag 

compromised 
7 6 4 168   

Angle of 

attack 

compromised 

7 6 3 126   
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11.6.4 FMEA: Epoxy 

System Function 
Potential 

Failure Mode 

Potential 

Effects of the 

Failure 

Mode S
ev

er
it

y
 

Potential 

Causes of the 

Failure Mode 

Current 

Preventative 

Activities 

O
cc

u
rr

en
c

e 

Current 

Detection 

Activities 

D
et

ec
ti

o
n

 

R
P

N
 

Recommended 

Action(s) 

Epoxy 

Attach blade 

pieces together 

into one smooth 

blade 

Airfoils vary 

from design 

Wind speed 

req. not met 
8 

Epoxy not 

compatible, 

parts not flush 

Constant 

amount of 

epoxy used; 

constant epoxy 

spread 

technique used 

2 Final testing 

(Inertia 

swing test; 

surface 

roughness 

test; wind 

tunnel test)  

3 48   

Lift/drag 

compromised 
7 2 3 42   

Angle of 

attack 

compromised 

7 2 3 42   

Surfaces not 

flush 

Airfoils 

change 
6 

Epoxy not 

compatible, 

parts not lined 

up, too much 

epoxy 

Male-female 

connecting 

surface where 

they connect 

2 

Dimensional 

accuracy and 

visual 

inspection 

2 24   

Lift/drag 

compromised 
7 2 2 28   

Blade breaks 10 3 1 30   

Angle of 

attack 

compromised 

7 2 2 28   

Not stick Blade breaks 10 

Too little epoxy, 

epoxy not 

compatible, too 

little dry time 

Constant 

amount of 

epoxy used; 

constant epoxy 

spread 

technique used 

2 

Dimensional 

accuracy and 

visual 

inspection 

1 20   

Deteriorates 

the part 

Lift/drag 

compromised 
7 

Epoxy not 

compatible to 

print material 

Research and 

material testing 

on proper 

epoxy 

1 Dimensional 

accuracy and 

surface 

inspection 

3 21   

Angle of 

attack 

compromised 

7 1 3 21   
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System Function 
Potential 

Failure Mode 

Potential 

Effects of the 

Failure Mode S
ev

er
it

y
 

Potential 

Causes of the 

Failure Mode 

Current 

Preventative 

Activities O
cc

u
rr

e

n
ce

 Current 

Detection 

Activities 

D
et

ec
ti

o
n

 

R
P

N
 

Recommended 

Action(s) 

Epoxy 

Attach blade 

pieces together 

into one smooth 

blade 

Deteriorates 

the part 

Airfoils 

change 
6 

Epoxy not 

compatible to 

print material 

Research and 

material testing 

on proper 

epoxy 

1 

Dimensional 

accuracy and 

surface 

inspection 

3 18   

Blades do not 

meet similarity 

requirements 

Wind speed 

req. not met 
8 Epoxy not 

compatible, too 

much epoxy, too 

little epoxy, too 

little dry time, 

parts not lined 

up 

Constant 

amount of 

epoxy used; 

constant epoxy 

spread 

technique used 

2 Final testing 

(Inertia 

swing test; 

surface 

roughness 

test; wind 

tunnel test)  

2 32   

Lift/drag 

compromised 
7 2 2 28   

Angle of 

attack 

compromised 

7 2 2 28   
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11.7 DVPR  
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11.8 Design Hazard Checklist 

Table 11-4: Design Hazard Checklist 

 

DESIGN HAZARD CHECKLIST 

 

Team: Wind Blade Manufacturing  Faculty Coach: John Fabijanic 

Y   N 

 

  

1. Will any part of the design create hazardous revolving, reciprocating, running, shearing, punching, 

pressing, squeezing, drawing, cutting, rolling, mixing or similar action, including pinch points and 

sheer points? 

  2. Can any part of the design undergo high accelerations/decelerations? 

  3. Will the system have any large moving masses or large forces 

 ■ 4. Will the system produce a projectile? 

  5. Would it be possible for the system to fall under gravity creating injury? 

 ■ 6. Will a user be exposed to overhanging weights as part of the design? 

 ■ 7. Will the system have any sharp edges? 

 ■ 8. Will any part of the electrical systems not be grounded? 

 ■ 9. Will there be any large batteries or electrical voltage in the system above 40 V? 

 ■ 
10. Will there be any stored energy in the system such as batteries, flywheels, hanging weights or 

pressurized fluids? 

  11. Will there be any explosive or flammable liquids, gases, or dust fuel as part of the system? 

 ■ 
12. Will the user of the design be required to exert any abnormal effort or physical posture during the 

use of the design? 

■  
13. Will there be any materials known to be hazardous to humans involved in either the design or the 

manufacturing of the design? 

  14. Can the system generate high levels of noise? 

  
15. Will the device/system be exposed to extreme environmental conditions such as fog, humidity, 

cold, high temperatures, etc? 

  
16. Is it possible for the system to be used in an unsafe manner? 

 ■ 
17. Will there be any other potential hazards not listed above? If yes, please explain on reverse. 
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11.9 Gantt Chart 

Table 11-5: Gantt Chart Schedule for the Entire Timeline of the Project 

Name  Duration Start Finish 

Blade Manufacturing Senior Project 3 Quarters Apr 6, 2020 Mar 2021 

ME 428 Spring 2020 Apr 13, 2020 June 12, 2020 

Introduction ~3 Weeks April 13, 2020 May 6, 2020 

     Letter to Sponsor/Intro Meeting      1 Week April 3, 2020 April 10, 2020 

     Team Contract      2 Days April 15, 2020 April 17, 2020 

     Research      4 Weeks April 13, 2020 CONTINUOUS 

Scope of Work ~2 Weeks April 23, 2020 May 7, 2020 

     QFD      1 Week April 24, 2020 May 1, 2020 

     Finish report      1 Week May 1, 2020 May 7, 2020 

Concept Development 3 Weeks May 8, 2020 May 29, 2020 

     Model      1.5 Weeks May 8, 2020 May 20, 2020 

     Prototype      2 Weeks May 15, 2020 May 29, 2020 

Preliminary Design Report  2 Weeks May 29, 2020 June 7, 2020 

     Report       2 Weeks May 29, 2020 June 4, 2020 

     Presentation      2 Weeks May 29, 2020 June 7, 2020 

ME 429 Fall 2020 Sept 14, 2020 Dec 12, 2020 

Critical Design Report 6 Weeks Sept 14, 2020  Oct 22, 2020 

     Report       2 Weeks Sept 15, 2020 Oct 22, 2020 

     Presentation      2 Weeks Sept 16, 2020 Oct 15, 2020 

     Structural Prototype      4 Weeks Oct 22, 2020 Nov 14, 2020 

Status Report 4 Weeks Nov 14, 2020 Dec 12, 2020 

     Manufacturing and Test Review      3 Weeks Nov 14, 2020 Dec 5, 2020 

     Project Update Memo to Sponsor      1 Week Dec 5, 2020 Dec 12, 2020 

ME 430 Winter 2021 Jan 4, 2021 Mar 19, 2021 

Verification Prototype Sign off 2 Weeks Jan 4, 2021 Jan 18, 2021 

Testing Sign off 2 Weeks Jan 18, 2021 Feb 1, 2021 

Operator Manual 4 Weeks Feb 12, 2021 March 12, 2021 

Final Design Review 4 Weeks Feb 19, 2021 March 19, 2021 

     Verify Prototype      4 Weeks Feb 14, 2021 Mar 14, 2021 

     Report       3 Weeks Feb 26, 2021 Mar 19, 2021 

 

 


