ARCE 415 // ARCH 452 Portfolio

Studio Saliklis

California Polytechnic State University San Luis Obispo Winter Quarter 2021

Alexander Ameri 4th Year ARCE Student

The Team

Destiny Calderon 4th Year ARCE Student Jake Baldauf 4th Year ARCH Student Joseph Guzman 5th Year ARCE Student

Table of Contents

04	Timeline
05	Initial Concept Drawings
06	Project Cover
07	Site Analysis
08+09	GH Plan 01+ 02
10+11	GH Section 01 + 02
12	Window Wall Detail
13	Interior Perspective
14	Structural System Criteria
15	Structural System
16	Gravity System
17	Lateral System
18	Lateral System
19	Loading Diagrams
20	Baldauf Artifact
21	Calderon Artifact
22	Guzman Artifact
23	Final Fantasy Cover
24	FF Tower Diagram
25	FF Site Plan
26	Appendix 01
27	Appendix 02
<i>∠1</i>	Ahheijaix oz

Timeline

A timeline investigating the history of glass use in architecture both as a medium and metaphoric device since the mid 19th century.

Concepts of our redesigned 50x50 house arose from turning points in previous structures where social and structural aspects of glass buildings first became introduced. This extensive background of buildings played a key contribution in the development of the 50x50 House.

Initital Concept Drawings

From a structural perspective, I hope I am able to engineer a solution to fulfilling the vision of the Glass House while still allowing up to withstand the high seismic loads anticipated for this project. I actually really enjoyed reading 1984 in high school, and it seems that this class focuses on similar ideas. Because of this, I am excited from an architectural perspective to create my own artistic vision of a utopian/dystopian world from a fresh and more mature perspective. -Alex

By the end of this class, I hope to gain experience collaborating with architects and develop efficient communication skills through drawings and presentations. Although this project will be a pain to figure out, I personally appreciate huge glass structures, so I am excited. -Destiny

I am looking forward to learning more in depth about the architecture side of this studio. Understanding what goes through a designer's mind. Is there a process? Maybe no process at all? Where do you even begin? The site? The theme? The client? -Joseph I am looking forward to a "pragmatic" approach to architectural design; that is, one where the architect designs with the strucutral engineer close by their side as they make adjustments based on one anothers demands through the entirety of the design process. I hope to gain a better understanding of the structural criteria of a glass house, including but not limited to glass details, concrete footings, and siesmic structural systems. -Jake

Summit Road Glass House

In choosing where to locate the various spaces within our building, we took inspiration from the parallels between panopticon's and the virtual interactions we have today. Over the course of this pandemic, we have adapted to interact mostly through technology, the most common for us being through Zoom conference calls. In a time where we are physically isolated more than ever before, we simultaneously feel more surveilled than ever before in this virtual social space. In essence, we engage in our most public activities from our most private places at home. With this thinking, we decided to place our living spaces on the public entry level and our office and gym spaces on the private lower level, mirroring the swap between public and private spaces we've experienced over the past year.

Site: N Berkeley, CA

37*53'12*N 122*14'56* W 1310 Summit Rd, Berkeley, CA 94708

Scale 1/4" = 3'

Structural System Criteria

Inspired by the Miesian architecture of the 50x50 and Farnsworth Houses

No Columns or Mullions at the corners of the building

No Structural Walls or Core that connect to the roof

No Diagonal Bracing

Gravity System

Load Flow

Slab -> Aligned Beams -> Columns -> Foundation

D = 90 psf | L, floor = 40 psf | L, roof = 20 psf See appendix 1 for Load Takeoff Calculation

Truss system below each floor Top & bottom chords acting in tension & compression

Provides equal weight distribution Resists overall bending

Core at the center that extends to the 2nd floor

Stiff shell

Strengthens lateral resisting system

Deflections Roof Level Corner: -0.6" Middle: -1.12"

16

Entry Level Corner: -0.73" Middle: 0"

W18x50

Lateral System

3 MF Along Short Direction 2 MF Along Long Direction Concrete Shear Wall Core at Entry Level

Moment Frame Sizes: Beam - W16x31 Column - W18x50

Key Structural Decision:

Columns along Lines A & F increased to W18x158

Deflections:

X-Direction: Roof Level: 0.54" Entry Level: 0"

Y-Direction: Roof Level: 0.57" Entry Level: 0"

Lateral System Loading

SE/NW Moment

Frames

(A)

B

69 K

34 K

(A)

Artifact 01

Jake Baldauf

"A Cage in the Zoo"

1960's National Geographic on Paper

11"x17"

19

The collage shown represets the Parti Diagram from our Summit Road Glass House.

The diagram itself consists of two stacked rectangular boxes, the top one representing the living spaces of a house that are easily visible to the public passerby which could be understood as a sort of "display case." This level is represented by the black and white images that create a defined rectangular "case" that translates to the non-operable glass windows of the entry living floor of the Glass House.

The lower, seemingly sub terrainian, level serves a more private function and is represented by the projecting walls that release the inhabitant into nature, freeing them from the confines of their glass display case.

ricane's the thing. Whe

Neither squalls nor hurricanes "tempted"

ing; the water was oil-smooth in the gathe

Soon the fog burned off, and Mobile Bay ber

mer in the sun like some vast tureen of sea-fo

The bay sometimes does boil over with

what Mobilians call a "Jubilee." For reasons s

the Footsteps of Alexander the C AVELLA

to science, shoals of crab, shrimp, and a var-surge ashore and lie helplessly in the shallows

man has the fear in.

nhabitant of the Big Bend.

aid Buck Newsome. "He took Elena Canve

picked up a strange-looking

um people are crazy,' he said.

museum was right. The Army

as pack animals in the Big Bend

do you suppose an Indian thought

time he saw one of those things

k Service doesn't plan to experi-

reasewood hush?"

Jake a Comeback

tamets again, but it would like to the set of the set o

and short of the deaths on the rocks be the him Another legend says they were a start of the their last stronghold, and each shot the ben Annaberg Sugar Mill, which had VIBM IIO al citas sabes sales surv Kod daidar IIIM source surves sadanad sour

ending. One version holds that the

stright the uprisms. all legends that to agree on the final all legends that the agree on poly of the

mori in the sold it. It took French soldiers from

and for size island, and for six months

oats for St. Thomas. Later the planters

while their women and children were

and the bender off the

icel Bay Plantation. There the men

. I saw him next day.

as the skull of a camel."

Civil War.

JUDADS

Kydoso

four-lette

about the

me the

than halt

day race

Lo Ju

along the pa

Good road

(opposite), ar

at the eastern

part way int

between the t

to reach it o

horse or resig

as 1,500 fee viewed from

toward each

in theined

All three of

But no roa

Artifact_02

Alexander Ameri

link:

https://youtu.be/-93l1d99DM Searching Nothing moves Watching beyond from a perch unseen. Pupils in perfect circles Unblinking, wired like caffeine.

Touching Slowly and delicately Hearts with warmth and solace. No more cold stares From a pixelated palace.

Connecting Invisible yet tangible A world unknown and out of mind. Lines of light dance between A divide that seeks to blind.

Hoping For a new horizon Beyond an unplugged light. Freed from a prison To fly unguided.

Escaping Solo societies Respite from the silent drone. Overflowing with eyes In a space so utterly alone.

Neverending I see with closed eyes I speak with silent noise I love with promised lies I think with what destroys.

DISTORTION

Doors shut, lights off, silence As I make this home my cell

Trapped Behind these walls I've created There is no escape Enslaved to your power I do not live I survive

By night Your eyes fill the surface As I fear to close my own Arguing softly with the faint whispers in my head I hear the sound of my beating chest And watch flashes of silhouettes dance around me

By day

The sunlight invades your translucent barrier The trees themselves mock as they freely sway I can hear the wind knocking As it impatiently demands to be let in

So powerful Your deception has left me vulnerable Yet so honest and pure I remain You are the lie to my sanity

Tortured I can no longer endure I must confess Your beauty is unrecognizable For my greatest enemy lies within

Artifact_04

Joseph Guzman

- Inspired by the privacy challenges that arise with glass houses

- Portrays the idea of surveillance and its relationship with day and night
- Laptop, iPhone, neighbor
- Link: https://youtu.be/F6072QMe25g

BIG BROTHER

IS WATCHING YOU

Final Fantasy

23

Surveillance has often come with the understanding that there is a tradeoff between security and privacy. When that surveillance becomes too intrusive such as in a dystopian context, it can become extremely detrimental to mental health. We wanted to explore how to not only compromise with surveillance but to embrace it as a way to better connect and nurture the community. With this in mind, the central tower is the main social hub of our Continuing Care Retirement Community while simultaneously acting as a place for staff to view all residents for their safety and needs of assistance.

Appendix_01	ALCO T 11- 7-77 : Grow Fixed at Both Ends - Uniformly Pistal	
	$M_{nex} (at ends) = \frac{w \ell^2}{12} = \frac{(l_1 2w_0 + l_1 6w_0) \ell^2}{12} + \frac{k_A (s_C Table 3 - 2*)}{k_A (s_C Table 3 - 2*)} = \frac{PLW3^{TM} \text{ or } W3 \text{ FORMLOK}^{TM}}{s 5 \text{ in. TOTAL SLAB DEPTH}}$ $M_{nex} = \frac{(l_1 2(l_1 \mathbf{k} \mathbf{f}) + l_1 6(q_{0.21} \mathbf{k} \mathbf{f}))(2^{n} + \mathbf{f})^2}{12} = \frac{124 \cdot 2 \ \mathbf{k} - \mathbf{f} k}{2} \bigotimes^2 203 \ \mathbf{k} - \mathbf{f} k = \phi M_n (W \mathbf{k} \text{ Normal Weight Concrete})$	
	Maximum Unshored Clear Span (ft-in.) Cor	ncrete Properties
	- Quter Column Loading (Long Side - W 18×50) Deck Number of Deck Spans	Density Uniform Weight Uniform Volume Compressive
	$A_{++} = 18.75 \text{ ft} + 15 \text{ ft} = 28 _{1.25} \text{ ft}^{-1}$ $22 10.0^{-1} 10.7^{-1} 11.4^{-1}$	145 42.3 1.080 3000
	21 10-117 11-8° 12-11 Not 20 11-77 12-24 12-107 1.V	es: /olumes and weights do not include allowance for deflection.
	$R_{2=1}$ 19 12-11 13-97 14-22 2 W	Veights are for concrete only and do not include weight of steel deck. otal slab depth is nominal depth from top of concrete to bottom of steel deck.
	$R_{1} = \left(1 - \sqrt{300} \right)^{-1} \left(\frac{1}{12} - \frac{1}{12} \right)^{-1}$	
	$L_{1} = L_{0}R_{1}R_{2} = 2c \rho_{1}s \left(0.918^{-16}\right) \left(1\right) = \frac{16.5 G \rho_{1}T_{1}}{16.5 G \rho_{1}T_{2}}$	
	Δ_{τ} = (5 ft × 2.5 ft) + (10 ft × 6.25 ft) + (13 ft × 100 ft) = <u>1021-17</u> negular densing.	
	1 Floor Allowable Superimposed Loads (pst)	
	Full - 1 (1) = $3(767.5 \text{ GeV}) = 187.5 \text{ Fe}^2$ (= $\log(1.5 + \frac{1}{\log(1.6)}) = 40 \text{ fr}(0.125^{\circ}) \text{ Deck}$ Number of (= $\log(1.5 + \frac{1}{\log(1.6)}) = 40 \text{ fr}(0.125^{\circ}) \text{ Deck}$ Number of (= $\log(1.5 + \frac{1}{\log(1.6)}) = 40 \text{ fr}(0.125^{\circ}) \text{ Deck}$ Number of (= $\log(1.5 + \frac{1}{\log(1.6)}) = 40 \text{ fr}(0.125^{\circ}) \text{ Deck}$ Number of (= $\log(1.5 + \frac{1}{\log(1.6)}) = 181.5 \text{ Fe}^{-1}$ (= $\log(1.5 + \frac{1}{\log(1.6)}) = 40 \text{ fr}(0.125^{\circ}) \text{ Deck}$ Number of (= $\log(1.5 + \frac{1}{\log(1.6)}) = 181.5 \text{ Fe}^{-1}$ (= $\log(1.5 + \frac{1}{\log(1.6)}) = 10 \text{ fr}(0.125^{\circ}) \text{ Deck}$ (= $\log(1.5 + \frac{1}{\log(1.6)}) = 10 \text{ fr}(0.125^{\circ}) = 10 \text{ fr}(0.12$	Span (ft-in.) -0" 10'-6" 11'-0" 11'-6" 12'-0" (12'-6") 13-0" 13'-6" 14'-0" 15'-0" 16'-0"
LOAD TAKE OFF	\rightarrow KUNF (100 (1)) $= 11$ (100 (1)) $= 124$ (22) 208 190 177 = 22 (254 229 208 190 177 3 254 229 208 190 177 3 254 229 208 190 177	120 108 97 88 79 72 65 58 48 39 5 161 108 97 88 79 72 65 58 48 39 5 161 108 97 88 79 72 65 58 48 39 5 161 108 97 88 79 72 65 58 48 39
5" DEEP W3 FORMLOK DECK 42.3 PSF	Roof Line / 1 274 248 225 208 181	9 174 120 108 98 89 81 73 66 55 45
20 save deck Z.Z PSF	Flact L = 40 d/ = 40 d/	9 174 161 150 140 89 81 73 66 55 45
	(20) 2 294 265 241 220 200 (20) 2 294 265 241 220 200	2 187 173 160 108 98 89 81 74 61 51 12 187 173 160 149 96 89 81 74 61 51
& CYPCIM ALACTER 10 PSF	1 333 301 274 256 241 220 200 1 333 301 274 250 23	2 187 173 160 149 40 89 81 74 61 51 0 212 191 172 155 116 106 97 89 75 63
	Unter Lelium Leading logt. 19 2 333 301 274 250 230	0 212 191 172 155 140 126 115 89 75 63 x0 212 191 172 155 140 126 115 104 75 63
CERAMIC TILE, 14"	$P_{u} = \{h \in \{1, 2, 5\} \text{ prod} \} + h_{v} \in \{1, 2, 315 \text{ prod} \} 2 \\ 1 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 4 \\ 3 \\ 3 \\ 4 \\ 3 \\ 3 \\ 4 \\ 3 \\ 3$	5 232 208 187 169 <u>134 122 112 103</u> 88 74
RADIANT + MEP 10 PJF	- Tak 5 370 334 304 278 256	5 232 208 187 169 153 139 126 115 88 74
MISC, (15%) 11.5 PSF	$= \frac{1}{100} \frac{1}{200} \frac{1}{1000} \frac{1}{1000$	9 268 241 217 197 178 162 143 132 113 95 9 268 241 217 197 178 162 148 135 113 95 0 268 241 217 197 178 162 148 135 113 95
SURTOTAL SE P(F	Confilerer Bean Leologie (CCC) Sector and a sector	Shoring required in shaded areas to right of heavy line.
SUBJUTE	$w_0 = x_F \rho_s t \times \frac{12.5 T}{5} = 0.55 K m$ Allowable Diaphragm Shear Strengths, q (plf)	
March Equip Paral In (WIG VZI)	AT = FOR SUX 15 EF = 9375 FAT -> No. (See Local Relation Allocation and and and and and and and and and an	Span (ft-in.)
TIMENT FLAME BEAM BRADING (FIORSI)		35 1557 1550 1544 1538 1532 1527 1523 1518 1511 1504
WD = 88 PSA × 10.5 F = [1.1 KII]	$v_{L_{r}} = 20 \text{ psf} + \frac{1000}{2} = 90.125 \text{ R/F}$	i0 1552 1544 1537 1530 1524 1519 1514 1509 1500 1493 59 1549 1541 1533 1526 1520 1513 1508 1503 1493 1485
Root Live Load Reduction	ALSC T.L. 7-77: (19 ((L) every Keen - Unitern) Vister butted 36/3 19 9 16/8 1002 1587 1573 156	31 1550 1540 1531 1523 1515 1508 1502 1496 1485 1475
Ru=1 for flat roof		37 1582 1568 1555 1543 1532 1512 1513 1504 1489 1472
$A_{+}=12.5$ Ft x 30 FL = 375 FL ²	$\gamma_{max} = \frac{m^2}{2} = \frac{11.6\omega_0 + 11.6\omega_0 + 1.2\omega_0}{12}$, $\gamma_{max} = \frac{11.6\omega_0 + 11.6\omega_0 + 1.2\omega_0}{12}$, $\gamma_{max} = \frac{11.6\omega_0 + 11.6\omega_0}{12}$,	J3 1618 1605 1593 1583 1572 1563 1555 1547 1532 1520 46 1630 1616 1602 1590 1579 1569 1560 1551 1535 1521
$p_{-1} = -2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 $	2 2 VIII (15 Fb) ¹ 410 115 Fb) ¹ 38/4 2 9 1720 1724 1700 1879 1879	30 1643 1627 1613 1600 1588 1577 1567 1557 1540 1525
	$M_{u} = (1.2 (0.5) R(F) + 1.6 (0.12) R(F) + 1.6 (0.12) R(F) + 1.6 (0.12) R(F) + 1.6 (0.11) R(F) + $	101 102 1040 1020 1011 1030 1000 1071 1030 1
Lr - Loking - 20 psr (0.865) (1) = 165 pst	L <u>16 (1973) 1929 1090 1005 102</u> See footnotes on page 69.	
WL= 16,5 11f x 12,5 Ft ≈ 0.21 R1F	70 • VF5 - REVISED 6/1/2016 VER	CO DECKING, INC. www.vercodeck.com
_26		

Appendix 02	Period (ASCE 7-16, 12, 8.2.1)	Wind Load Calculation (ASCE 7-16 27.4-1)	
	$T_{G} = C_{t} h_{n}^{x}$	SITE : Berkeley, California	
	= 0.028 (24') 0.8 = 0.356 sec	·Occupancy: Residential =7 Rish Category II	
	(+) (r.) + e	· Basic wind speed = 95 milh	
1320 Summit Rd, Berkeley, CA 94708, USA		· Exposure Category: C 50	0'
Latitude, Longitude: 37.8865407, -122.2489709	$C_{S} = \frac{5}{20s} = \frac{1.424}{51.5} = \frac{0.38}{5.38} \leftarrow Choose lowest$	KZt= 1.0 (assumed) Y and	
Kensington	$\left(\frac{1}{1e}\right)$ $\left(\frac{1}{1}\right)$		
	· (s= SU1 = 0.858 = 0.46	ose 110 xin ter simplicity where	
😳 🛛 Revonal Park	$T\left(\frac{R}{T_{e}}\right) = 0.35 \left(\frac{5}{1}\right)$	·X-Direction:	
Albany La LOMA PARK	· Cs 7 0.044 Sps Ie 2 0.01	$\frac{L}{B} = \frac{50'}{30'} = 1.67 \text{ /h} = 24'$	- 28.5 pst
Siesta V McLaughlin Berkeley	0.38> 0.044(1.924)(1) 2 0.01	- pn = 24.6 psf	
Eastshore State Seashore	0.38 20.0847 2 0.01 1	-po=22.9 psf	26.9 psf
Date 2/10/2021, 3:42:17 PM	$\therefore Cs = 0.38$	·Y-Divection:	
Risk Category II II Site Class C Very Dense Soil and Soft Rock		$\frac{1}{2} = \frac{30'}{2} = 0.6$, $h = 24'$ DEFLECTIONS	SUMMARY:
Type Value Description	Base Shear	B 5 0' X-DIRECTION:	
Sg Z A05 Intellig ground motion: (nd of 2 security period) S1 0.919 MCE _R ground motion. (for 1.0s period)	· Area: 2 floors * 1500 SF = 3000 SF	- ph= 28.5 pst - ROOF LEVEL	: 0.04"
S _{MS} 2.885 Site-modified spectral acceleration value S _{M1} 1.287 Site-modified spectral acceleration value	· We: wht: 2 flwrs × 90 PSF × 1500 SF= 270 K	- p6 = 26.9 psf	1:0
Sp3 1.924 Numeric seismic design value at 0.2 second SA Sp1 0.858 Numeric seismic design value at 1.0 second SA	$y_{1} = y_{2} = y_{2} = y_{2} = y_{2} = y_{2} = y_{2} = y_{3} = y_{3$	Vind Dinphragn Forces	
Type Value Description SDC E Seismic design category		- ROOF LEVEL - メーロ・ゲーム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	: 0.08" L: 0"
Fa 1.2 Site amplification factor at 0.2 second Fv 1.4 Site amplification factor at 1.0 second	Vertical Distribution	- Frant = 24.6 ost (61) (30') = 4.44	
PGA 1.007 MCE _G peak ground acceleration	$G_{4h} \longrightarrow Q$	- Featry = 22.4 ps f (121) (301) = 8.2 M	
PGA 1.20 Site modified peak ground acceleration	EWIN:M	·Y-Direction	
IL 8 Long-period transmon period in seconds SsRT 2.708 Probabilistic risk-targeted ground motion. (0.2 second)	$R_{-of} = 2/3$, $E_{-try} = 1/2$ $34 \text{ K} \longrightarrow \Phi$	- Froof = 28.5 psf (6') (50') = 8.6 m	
Sum Sub restored uniforminazing (2%) processing of exceedance in SU years) spectral acceleration Sub 2.405 Factored deterministic acceleration value. (0 second) S107 1102 Probabilistic risk lamated arrand monitor. (1 a second)	V/0, L-7/2(102,64) - (69 K)	- Fentry = 27.7 psf (12') (50') = 16.6 h	
S1UH 1.145 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.919 Factored deterministic acceleration value. (1 a second)		Wind Dave shear	
PGAd 1.007 Factored deterministic acceleration value. (Peak Ground Acceleration) C _{RS} 0.9 Mapped value of the risk coefficient at short periods	VEntry= 1/3 (102.601 - 34 K	Vwm3 = Froot + Fentry	
C _{R1} 0.891 Mapped value of the risk coefficient at a period of 1 s		Vww2, y = 12.6 M	
_27		- Vwm2, X = 25.2 K	